
Omnitouch � Ansible 部署

介绍

概述

Omnitouch �络服务使用 Ansible 作为其基础设施自动化平台，以一致、可重复和自动化的方式部署完整的蜂窝�络解决方案

（4G/5G）。本文档提供了我们如何利用 Ansible 来协调复杂的通信部署的概述。

什么是 Ansible？

Ansible 是一个开源自动化工具，允许您：

配置系统

部署软件

协调复杂的工作流程

将基础设施作为代码进行管理

Ansible 使用声明性方法 - 您描述系统的 期望状态，Ansible 确保它们达到该状态。

Omnitouch 如何使用 Ansible

关键概念

1. 清单（主机文件）

定义 要管理� 系统。每���客户部署都有一个描述以下内容的主机文件：

�络中的所有虚拟机

它们的 IP 地址

�络配置

服务特定参数

主机文件是您将用于定义�络的内容。

参见：主机文件配置

2. 角色

定义 如何 配置每个组件。角色是可重用的单元，包含：

任务（要执行的步骤）

模板（配置文件模板）

处理程序（由更改触发的操作）

变量（默认配置值）

OmniCore 组件的示例角色：omnihss、omnisgwc、omnipgwc、omnidra 等

这些由 ONS 团队定义，虽然您可以编辑它们，但通常有更简洁的方法可以从主机文件中进行任何必要的调整。

3. 剧本

协调 何时 和 在哪里 应用角色：

我们基本上将这些用作角色的分组。

4. 组变量

提供 客户特定配置，覆盖角色默认值。这是客户自定义而不修改基础角色的地方。

- name: �署 EPC 核心

 hosts: mme

 roles:

 - common

 - omnimme

参见：组变量和配置

部署架构

主机文件

Ansible 剧本组变量

角色

SSH 到主机 配置系统 ���行�络

部署过程

1. 定义基础设施

创建一个描述您的�络拓扑的主机文件：

规划注意事项： 在定义基础设施之前，请查看 IP 规划标准，以获取有关�络分段、IP 地址分配和子�组织的指导。

Proxmox 用户： 如果在 Proxmox 上部署，请参见 Proxmox VM/LXC 部署 以获取自动化 VM/容器配置。

参见：主机文件配置 和 配置参考

2. 自定义配置

在 group_vars 中设置客户特定变量：

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 mme_code: 1

#待办事项 - 在此处添加配置参考的完整列表链接

3. 运行剧本

部署�络：

4. 自动化部署

Ansible 将：

创建/配置虚拟机（如果使用 Proxmox/VMware 集成）

配置�络

从 APT 缓存安装软件包

部署应用程序代码

使用客户设置配置服务

启动服务

验证部署

我们部署�关键组件

OmniCore（4G/5G 分组核心平台）

OmniHSS - 家庭用户服务器

OmniSGW - 服务�关（控制平面）

OmniPGW - 分组�关（控制平面）

OmniUPF - 用户平面功能

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: customer

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

OmniDRA - Diameter 路由代理

OmniTWAG - 受信 WLAN 访问�关

参见：https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall（语音和消息平台）

OmniCall CSCF - 呼叫会话控制功能（P-CSCF、I-CSCF、S-CSCF）

OmniTAS - IMS 应用服务器（VoLTE/VoNR 服务）

OmniMessage - 短信中心（SMS-C）

OmniMessage SMPP - SMPP 协议支持

OmniSS7 - SS7 信令组件（STP、HLR、CAMEL）

VisualVoicemail - 语音邮件功能

参见：https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM

CRM 平台 - 客户关系管理、自助注册、计费

参见：https://docs.omnitouch.com.au/docs/repos/OmniCharge

支持服务

DNS - �络 DNS 解析

许可证服务器 - 许可证管理

监控 - Prometheus、Grafana

参见：部署架构概述

包管理

我们使用混合包分发模型：

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

预编译� APT 包

所��� Omnitouch 软件作为 Debian 包（.deb 文件）分发：

在我们的 CI/CD 管道中从源代码构建

版本控制和测试

托管在软件包仓库中

APT 缓存系统

客户可以选择：

1. 本地 APT 缓存 - 现场所需软件包的镜像，用于离线部署

2. 公共仓库 - 直接访问 Omnitouch 托管的软件包仓库

参见：APT 缓存系统

许可证管理

所有 Omnitouch 软件组件都需要通过中央许可证服务器管理的有效许可证：

组件在启动时检查许可证有效性

根据许可证启用/禁用功能

许可证服务器可以是本地或云托管

参见：许可证服务器

这种方法�好处

可重复性

相同的 Ansible 剧本可以部署：

开发实验室

测试环境

生产�络

客户站点

一致性

每次部署使用相同的经过测试的配置，减少人为错误。

版本控制

基础设施作为代码在 Git 中定义：

跟踪所有更改

部署前进行审核

如有需要可回滚

无复杂性�定制

客户可以通过 group_vars 自定义其部署，而无需修改核心角色。

快速部署

在几个小时内部署完整的蜂窝�络，而不是几天或几周。

入门

先决条件

在���行 Ansible 剧本之前，您需要设置 Python 虚拟环境并安装所需的依赖项。

1. 创建 Python 虚拟环境

为 Ansible 部署创建一个隔离的 Python 环境：

2. 激活虚拟环境

python3 -m venv .venv

激活虚拟环境：

在 Windows 上，使用：

3. 安装所需软件包

从 requirements.txt 文件中安装所有依赖项：

这将安装 Ansible 及所有必要的 Python 包，以实现 Omnitouch 部署自动化。

注意： 在运行 Ansible 命令时，请保持虚拟环境处于激活状态。完成后，您可以通过运行 deactivate 来停用它。

部署步骤

1. 查看 主机文件配置，了解如何定义您的�络

2. 了解 组变量 以进行自定义

3. 理解 APT 缓存系统 以进行包管理

4. 查看 部署架构，了解所有内容如何结合在一起

5. 部署！

下一步

IP 规划标准 - 规划您�网络架构和 IP 分配

主机文件配置 - 学习如何定义您的�络拓扑

APT 缓存系统 - 理解包分发

许可证服务器 - 了解许可证管理

部署架构概述 - 查看完整图景

组变量配置 - 自定义您的部署

source .venv/bin/activate

.venv\Scripts\activate

pip install -r requirements.txt

实用剧本 - 健康检查、备份和维护的操作工具

APT 仓库与软件包分发

概述

Omnitouch APT 系统为所有部署提供软件包分发。提供两种类型的内容：

1. APT 软件包 — 通过 apt install 安装的 Debian 软件包

2. 二进制发布 — 直接下载的预构建二进制文件（Prometheus 导出器、代理等）

支持两种部署模型：

1. 直接访问 — 虚拟机直接从 apt.omnitouch.com.au 拉取软件包

2. 本地缓存镜像 — 本地服务器从 Omnitouch 同步并为虚拟机提供软件包（用于离线/隔离部署）

架构

提供�内容

APT 服务器托管所有部署所需的内容：

内容类型 描述 路径

Omnitouch 软

件包

自定义构建的 .deb 软件包（omnihss、

omnimme 等）
/dists/<distro>/

Ubuntu 软件包 缓存的 Ubuntu 软件包及其所有依赖项 /<distro>/pool/main/

GitHub 发布
预构建的二进制文件（Prometheus、

Grafana、Homer 等）
/releases/<org>/<repo>/

源代码压缩包
Web 应用的源代码档案（CGrateS_UI、

speedtest）
/repos/

第三方软件包
Galera、FRR、InfluxDB、KeyDB

等
/releases/<vendor>/

配置变量

两个独立的变量集控制软件包分发。理解它们的用途对于正确配置至关重要。

它们配置的内容
配置变量

apt_repo

(APT 软件包源)

remote_apt_*

(二进制下载)

/etc/apt/sources.list

二进制下载

/releases/*

变量用途

变量集 目� 用于

apt_repo
配置 APT

软件包源

/etc/apt/sources.list 和

/etc/apt/sources.list.d/*.list

remote_apt_*
配置二进制下

载 URL

从 /releases/ 路径下载文件（Node Exporter、Zabbix、

Nagios 等）

每个变量集�使用时机

场景 APT 源 (apt_repo) 二进制下载 (remote_apt_*)

use_apt_cache:

true

使用

apt_repo.apt_server

使用

apt_repo.apt_server

use_apt_cache:

false
使用带凭据的 apt_repo.* 使用带凭据的 remote_apt_*

当 use_apt_cache: false 时，两个变量集都是必需�。

选项 1：直接访问

对于具有互联�连接的部署，虚拟机直接从 Omnitouch APT 服务器拉取软件包。

网络要求

源 IP 白名单：您的公共 IP 地址必须在 Omnitouch APT 服务器上列入白名单。在设置期间，将您的源子�提供给

Omnitouch。作为回报，您将收到：

用户名 和 密码 用于 HTTP 基本身份验证

FQDN 用于 APT 服务器

防火墙要求：必须允许对以下 Omnitouch IP 范围的出站访问：

网��� 范围

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:dec0::/48

ASN AS152894

需要访问 Omnitouch 基础设施�服务：

服务 端口 协议 目�

APT 服务器 80 TCP 软件包下载

APT 服务器 53 TCP/UDP apt.omnitouch.com.au 的 DNS 解析

许可证服务器 123 UDP 许可证验证的 NTP 时间同步

许可证服务器 53 TCP/UDP 许可证验证的 DNS 解析

确保 HTTP (TCP/80)、NTP (UDP/123) 和 DNS (TCP+UDP/53) 流量被允许到 Omnitouch IP 范

围。

配置

参数

APT 软件包源 (apt_repo)

参数 类型 必需 默认 描述

apt_repo.apt_server 字符串 是 - APT 服务器主机名或 IP 地址

apt_repo.apt_repo_username 字符串 是 - APT 源的 HTTP 基本身份验证用户名

apt_repo.apt_repo_password 字符串 是 - APT 源的 HTTP 基本身份验证密码

二进制下载 (remote_apt_*)

all:

 vars:

 use_apt_cache: false

 # APT �件包源配置

 # 配置 /etc/apt/sources.list 以用于 apt install 命令

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "your-username"

 apt_repo_password: "your-password"

 # 二进制下载配置

 # 用于从 /releases/ 路径下载文件

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

参数 类型 必需 默认 描述

remote_apt_server 字符串 是 - 二进制下载的服务器主机名或 IP

remote_apt_port 整数 否 80 二进制下载的服务器端口

remote_apt_protocol 字符串 否 http 协议（http 或 https）

remote_apt_user 字符串 是 - 下载的 HTTP 基本身份验证用户名

remote_apt_password 字符串 是 - 下载的 HTTP 基本身份验证密码

一般

参数 类型 必需 默认 描述

use_apt_cache 布尔 是 - 对于直接访问，必须为 false

URL 模式（直接访问）

APT 软件包源（配置在 /etc/apt/sources.list）：

二进制下载（由 Ansible get_url 任务使用）：

deb [trusted=yes] http://{apt_repo_username}:

{apt_repo_password}@{apt_server}/ noble main

http://{remote_apt_user}:

{remote_apt_password}@{remote_apt_server}:

{remote_apt_port}/releases/prometheus/node_exporter/node_exporter-

1.8.1.linux-amd64.tar.gz

工作原理

虚拟机通过 HTTP 基本身份验证进行 APT 软件包和二进制下载的身份验证。Ubuntu 系统软件包也从 Omnitouch 服务器提供

（预缓存），因此虚拟机无需访问 Ubuntu 镜像。

选项 2：本地缓存镜像

对于离线、隔离或带宽受限的部署，部署一个本地 APT 缓存，从 Omnitouch 同步所有内容。

架构

客户�络

Omnitouch 基础设施

初始同步

(需要互联���)

提供软件包

(支持离线)

提供软件包

(支持离线)

提供软件包

(支持离线)

apt.omnitouch.com.au
APT 缓存镜像

(apt_cache_servers)

虚拟机

虚拟机

虚拟机

配置

在您的 hosts 文件中定义缓存服务器及其仓库配置：

工作原理：

缓存服务器 (192.168.1.100)：使用 remote_apt_* 凭据从 apt.omnitouch.com.au:80 同

步软件包

所有其他主机：自动推导 apt_repo.apt_server: "192.168.1.100"，并在不需要凭据的情况下从端口

8080 拉取缓存

参数

APT 软件包源 (apt_repo)

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # 缓存服务器从经过身份验证的仓库同步�件包

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

all:

 vars:

 # use_apt_cache: true # 当 apt_cache_servers 组存在时自动设置

 # apt_repo.apt_server: 自动推导为 192.168.1.100（第一个缓存服务器）

参数
类

型

必

需

默

认
描述

apt_repo.apt_server

字

符

串

是

自

动

推

导

本地缓存服���器 IP。如果未指定，则自动从

第一个 apt_cache_servers 主机推

导。

apt_repo.apt_repo_username

字

符

串

否 - 使用缓存时不需要（不需要身份验证）

apt_repo.apt_repo_password

字

符

串

否 - 使用缓存时不需要（不需要身份验证）

缓存服务器同步 (remote_apt_*)

这些变量配置缓存服务器如何从 Omnitouch 同步内容：

参数 类型 必需 默认 描述

remote_apt_server 字符串 是 - 从中同步的 Omnitouch APT 服务器

remote_apt_port 整数 否 80 Omnitouch APT 服务器端口

remote_apt_protocol 字符串 否 http 同步连接的协议

remote_apt_user 字符串 是 - 从 Omnitouch 同步的凭据

remote_apt_password 字符串 是 - 从 Omnitouch 同步的凭据

一般

参数
类

型

必

需
默认 描述

use_apt_cache
布

尔
否 true

当 apt_cache_servers 组存在时自动设置为

true

apt_cache_port
整

数
否 8080 本地缓存服务器监听的端口

URL 模式（缓存模式）

APT 软件包源（配置在 /etc/apt/sources.list）：

二进制下载（由 Ansible get_url 任务使用）：

访问缓存时不需要凭据——它使用 [trusted=yes] APT 配置。

部署缓存

1. 准备缓存服务器（虚拟机或 LXC 容器，磁盘至少 50 GB）

2. 运行缓存设置剧本：

3. 通过浏览 http://192.168.1.100:8080/ 验证缓存

deb [trusted=yes] http://192.168.1.100:8080/noble noble main

http://192.168.1.100:8080/releases/prometheus/node_exporter/node_expo

1.8.1.linux-amd64.tar.gz

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

同步�内容

缓存镜像使用递归 wget 下载从 Omnitouch APT 服务器同步 所有内容：

本地缓存镜像

apt.omnitouch.com.au

Omnitouch .deb 软件包

/pool/main/

Ubuntu 软件包 + 依赖

/noble/pool/main/

GitHub 发布

/releases/

源代码压缩包

/repos/

APT 元数据

/dists/

Omnitouch .deb 软件包 Ubuntu 软件包 + 依赖 GitHub 发布 源代码压缩包 APT 元数据

同步�内容目录：

路径 内容

/dists/<distro>/ APT 仓库元数据（软件包、发布文件）

/pool/main/ Omnitouch 自定义 .deb 软件包

/<distro>/pool/main/ Ubuntu 软件包及其所有依赖项

/releases/ GitHub 发布（Prometheus、Grafana、Zabbix 等）

/repos/ 源代码压缩包（Erlang、Elixir、CGrateS_UI 等）

初始同步后，缓存可以在没有互联�连接的情况下提供所有软件包。

工作原理

缓存镜像使用 wget --recursive 和 HTTP 基本身份验证从 Omnitouch APT 服务器下载所有内容。后续同步仅下

载新/更改的文件（时间戳）。

自动配置

当您的清单中存在 apt_cache_servers 组时，系统会自动：

1. 为所有主机设置 use_apt_cache: true（除非明确覆盖）

2. 从第一个缓存服务器的 ansible_host IP 推导 apt_repo.apt_server

最小配置示例

自动发生�事情：

apt_cache_servers:

 hosts:

 apt-cache-01:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # 缓存服务器从 Omnitouch 仓库同步内容

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

所有主机（除了缓存服务器）都获得 use_apt_cache: true

所有主机（除了缓存服务器）都获得 apt_repo.apt_server: "192.168.1.100"

所有主机从 http://192.168.1.100:8080/ 拉取，无需凭据

缓存服务器从 http://your-username:your-password@apt.omnitouch.com.au/ 同步

软件包

覆盖自动行为

要强制直接访问，即使定义了缓存服务器：

配置摘要

场景 1：直接访问 APT 服务器（无缓存）

所有主机直接从 APT 仓库服务器拉取软件包。

all:

 vars:

 use_apt_cache: false # 强制直接访问，即使定义了缓存服务器

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "user"

 remote_apt_password: "pass"

结果： 所有主机生成 deb [trusted=yes] http://user:pass@apt.omnitouch.com.au/

noble main

场景 2：在 hosts 文件中定义 APT 缓存服务器（自动）

缓存服务器在您的清单中，将由 Ansible 部署/同步。

all:

 vars:

 use_apt_cache: false

 # APT �件包源 - 所有主机使用

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 # 二进制下载 - 所有主机使用

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

apt_cache_servers:

 hosts:

 cache-server:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # 缓存服务器从经过身份验证的仓库同步�件包

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

在 all: vars: 中无需配置：

所有内容自动从 apt_cache_servers 组推导

结果：

缓存服务器：从 http://user:pass@apt.omnitouch.com.au:80/ 同步

所有其他主机：生成 deb [trusted=yes] http://192.168.1.100:8080/noble noble

main（无需凭据）

场景 3：在 hosts 文件中未定义远程 APT 缓存（手动）

缓存服务器存在于其他地方，并且已设置（不由您的 Ansible 管理）。

结果： 所有主机生成 deb [trusted=yes] http://192.168.1.100:8080/noble noble

main（无需凭据）

完整示例

以下是一个完整的工作示例，展示了缓存服务器配置与多个应用主机：

all:

 vars:

 use_apt_cache: true

 # 将所有主机指向外部缓存服务器

 apt_repo:

 apt_server: "192.168.1.100" # 外部缓存服务器的 IP

 apt_repo_port: 8080 # 缓存通常在端口 8080 上运行

无需 apt_cache_servers 组

无需 remote_apt_*（缓存已在外部设置）

APT 缓存服务器组

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 10.179.1.114

 gateway: 10.179.1.1

 host_vm_network: "vmbr0"

 num_cpus: 4

 memory_mb: 16384

 proxmoxLxcDiskSizeGb: 120

 vars:

 # 缓存服务器从经过身份验证的仓库同步�件包

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "customer-username"

 remote_apt_password: "customer-secure-token"

应用服务器

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.179.2.177

 gateway: 10.179.2.1

全局配置

all:

 vars:

 # 自动配置（无需手动配置）：

部署期间发生�事情：

1. 缓存服务器 (10.179.1.114)：

使用其 vars: 部分中的 remote_apt_*

从 http://customer-username:customer-secure-

token@apt.omnitouch.com.au:80/ 下载所有软件包

通过 nginx 在端口 8080 提供软件包

2. 应用主机 (customer-hss01、customer-mme01、customer-dns01)：

自动检测到 apt_cache_servers 组存在

自���设置 use_apt_cache: true

自动推导 apt_repo.apt_server: "10.179.1.114"

生成：deb [trusted=yes] http://10.179.1.114:8080/noble noble main

从缓存服务器拉取所有软件包（无需凭据）

更新缓存

要同步新软件包或更新：

这会增量同步 Omnitouch APT 服务器中的所有内容：

新的 Omnitouch 软件包版本

新的 Ubuntu 软件包及其依赖项

新的 GitHub 发布

更新的源代码压缩包

同步使用 wget --timestamping，因此跳过现有未更改的文件，使重新同步速度更快。

 # - use_apt_cache: true（当 apt_cache_servers 存在时自动启用）

 # - apt_repo.apt_server: "10.179.1.114"（自动从缓存服务器推导）

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

注意： Omnitouch APT 服务器 (apt.omnitouch.com.au) 是所有软件包的唯一真实来源。首先在 APT 服务器

上运行 services/apt.yml 以构建/更新软件包，然后在缓存镜像上运行 services/apt_cache.yml 以同步。

故障排除

APT 更新失败，401 未授权

症状：

可能�原因：

apt_repo 配置在 all: vars: 中定义，而不是在 apt_cache_servers: vars: 中

主机尝试直接访问经过身份验证的仓库，而不是缓存

apt_repo_username 或 apt_repo_password 不正确

源 IP 未在 Omnitouch APT 服务器上列入白名单

在直接访问中使用缓存凭据或反之亦然

解决方案：

1. 检查配置范围：确保带凭据的 apt_repo 定义在 apt_cache_servers: vars: 中，而不是在 all:

vars: 中

2. 验证缓存模式：使用缓存时，主机应连接到缓存服务器（端口 8080），而不是仓库（端口 80）

3. 检查生成�源：在失败的主机上，检查 /etc/apt/sources.list.d/omnitouch.list

正确（缓存模式）：deb [trusted=yes] http://10.179.1.114:8080/noble

noble main

不正确（凭据放错地方）：deb [trusted=yes]

http://user:pass@10.179.1.115:80/noble noble main

4. 验证凭据是否正确以适应您的部署模式

5. 确认您的公共 IP 是否在 Omnitouch 上列入白名单（如果使用直接访问）

无法获取 http://10.179.1.115:80/noble/dists/noble/main/binary-

amd64/Packages 401 未授权

二进制下载失败（Node Exporter、Zabbix 等）

症状：Ansible 剧本在从 /releases/ 路径下载文件时失败

可能�原因：

remote_apt_* 变量未配置

remote_apt_user 或 remote_apt_password 不正确

当 use_apt_cache: false 时缺少 remote_apt_server

解决方案：

1. 确保所有 remote_apt_* 变量已定义

2. 验证凭据是否与 Omnitouch 提供的匹配

3. 检查 remote_apt_server 是否指���正确的主机

缓存服务器无法同步

症状：缓存服务器剧本无法下载软件包

可能�原因：

缓存服务器没有互联�访问

remote_apt_* 凭据不正确

防火墙阻止了对 Omnitouch 的出站连接

解决方案：

1. 验证缓存服务器是否可以在端口 80 上访问 apt.omnitouch.com.au

2. 检查 remote_apt_* 凭据

3. 检查防火墙规则以确保出站访问

相关文档

主机文件配置 — 清单和变量配置

配置参考 — 完整参数参考

部署架构 — 整体系统架构

Proxmox 部署 — 将缓存服务器部署为 LXC 容器

配置参考

概述

本文档提供了通过主机文件配置 OmniCore 部署的全面参考。配置主要在主机清单文件中定义，现代部署只需最少的 group_vars 重

写。

有关产品特定文档，请参见：

OmniCore: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge: https://docs.omnitouch.com.au/docs/repos/OmniCharge

配置方法

现代 OmniCore 部署使用简化的配置模型：

关键原则：大多数配置直接在主机文件中定义。角色默认值处理大多数设置，group_vars 仅用于特定自定义。

网络规划

在配置主机之前，请查看 IP 规划标准 以获取以下方面的指导：

�络分段策略

IP 地址分配

子�组��

公共 IP 处理

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

常见主机参数

#待办事项 - 仅需查看 hosts-file-configuration.md

服务特定标志

全局变量 (all:vars)

all:vars 部分包含部署范围的设置。现代部署使用最少的全局变量，大多数配置在角色默认值中。

必需�全局变量

认证与访问

替代方案：使用 SSH 密钥而不是密码：

客户身份

cdrs_enabled: True # 启用 CDR 生成

in_pool: False # 排除在负载均衡池外

online_charging_enabled: False # 启用 OCS 集成

recording: True # 启用通话录音 (AS)

populate_crm: False # 用初始数据填充 CRM

ansible_connection: ssh

ansible_user: root

ansible_password: password

ansible_become_password: password

ansible_ssh_private_key_file: '/path/to/key.pem'

PLMN 配置

目�：唯一标识您的移动�络。用于直径领域构建。

网络名称

显示：在 UE 设备的设置 > 移动�络中显示的�络名称。

DNS 配置

APT 仓库配置

自动默认值：当定义了 apt_cache_servers 组并包含主机时：

use_apt_cache 自动默认为 True（除非明确设置为 False）

apt_repo.apt_server 自动默认为第一个缓存服务器的 IP

customer_name_short: omnitouch

customer_legal_name: "YKTN Lab"

site_name: YKTN

region: AU

TZ: Australia/Melbourne

plmn_id:

 mcc: '001' # 移动国家代码 (3 位)

 mnc: '01' # 移动网络代码 (2-3 位)

 mnc_longform: '001' # 零填充 MNC (始终 3 位)

diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

network_name_short: Omni

network_name_long: Omnitouch

tac_list: [10100,100] # 默认 TAC 列表 (可以按 MME 重写)

netplan_DNS: False # 使用 systemd-resolved 而不是 netplan

DNS

参见：APT 缓存系统

许可证服务器

参见：许可证服务器

MME 设置

SAEGW 设置

IMS 设置

手动配置（如果存在 apt_cache_servers 组则可选）

use_apt_cache: True # 使用本地 APT 缓存而不是直接访问仓库

apt_repo:

 apt_server: "10.10.1.114" # APT 缓存服务器或仓库服务器

 # 仅在 use_apt_cache: False 时需要凭据

 # apt_repo_username: "omni"

 # apt_repo_password: "omni"

二进制下载和缓存同步配置

用于： (1) 当 use_apt_cache: false 时从 /releases/ 下载二进制文件

(2) 当 use_apt_cache: true 时从 Omnitouch 同步缓存服务器

remote_apt_server: "apt.omnitouch.com.au"

remote_apt_user: "omni"

remote_apt_password: "omni"

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

mme_dns: False # 启用 MME DNS 解析

mtu: 1400 # 最大传输单元

ims_dra_support: False # 通过 DRA 路由 IMS

enable_homer: False # 启用 Homer SIP 捕获

RAN 监控配置

防火墙配置

use_nokia_monitor: True

use_casa_monitor: True

install_influxdb: True

influxdb_user: monitor

influxdb_password: "secure-password"

influxdb_organisation_name: omnitouch

influxdb_nokia_bucket_name: nokia-monitor

influxdb_casa_bucket_name: casa-monitor

influxdb_operator_token: "generated-token"

influxdb_url: http://127.0.0.1:8086

enable_pm_collection: False

enable_alarm_collection: False

enable_location_collection: False

enable_ran_status_collection: True

enable_nokia_rectifier_collection: False

collection_interval_in_seconds: 120

ran_monitor:

 sql:

 user: ran_monitor

 password: "secure-password"

 database_host: 127.0.0.1

 database_name: ran_monitor

 influxdb:

 address: 10.10.2.135

 port: 8086

 nokia:

 airscales:

 - address: 10.7.15.66

 name: site-Lab-Airscale

 port: 8080

 web_password: nemuuser

 web_username: Nemuadmin

漫游 DNS 服务器

本地用户 (SSH 密钥)

firewall:

 allowed_ssh_subnets:

 - '10.0.1.0/24'

 - '10.0.0.0/24'

 allowed_ue_voice_subnets:

 - '10.0.1.0/24'

 allowed_carrier_voice_subnets:

 - '10.0.1.0/24'

 allowed_signaling_subnets:

 - '10.0.1.0/24'

roaming_dns_servers:

 wildcard: ['10.0.99.1']

 # 运营商特定 DNS (基于 PLMN)

 123456: # 示例运营商 1

 - '10.10.2.197'

 654321: # 示例运营商 2

 - '10.10.0.4'

local_users:

 usera:

 name: 示例用户 A

 public_key: "ssh-rsa AAAAB3Nza..."

 userb:

 name: 示例用户 B

 public_key: "ssh-ed25519 AAAAC3..."

虚拟化管理程序配置

Proxmox

proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: password

 proxmoxApiTokenName: AnsibleToken

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve01

默认 Proxmox 设置

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve01'

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard_24.04-

2_amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD_RAID0

proxmoxLxcBridgeName: vmbr0

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"

proxmoxStorage: SSD_RAID0

vLabNetmask: 24

PROXMOX_API_TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask_cidr: 24

VMware vCenter

相关文档

IP 规划标准 - �络架构和 IP 分配指南

主机文件配置 - 如何构建主机文件

组变量配置 - 何时以及如何使用 group_vars

Netplan 配置 - 次要 IP 和多 NIC 设置

部署架构 - 组件如何交互

APT 缓存系统 - 包管理

许可证服务器 - 许可证配置

产品文档

有关详细的操作指南和高级配置：

OmniCore 组件: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall 组件: https://docs.omnitouch.com.au/docs/repos/OmniCall

vcenter_ip: "vcenter.example.com"

vcenter_username: "administrator@vsphere.local"

vcenter_password: "password"

vcenter_datacenter: "DC1"

vcenter_vm_template: ubuntu-24.04-model

vcenter_vm_disk_size: 50

vcenter_folder: "Omnicore"

host_vm_network: "Management"

vhosts:

 "10.0.0.23":

 vcenter_cluster_ip: 10.0.0.23

 vcenter_datastore: "datastore1 (3)"

netmask: 255.255.255.0

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCharge

部署架构概述

概述

本文档提供了Omnitouch�络服务的蜂窝�络软件如何使用Ansible进行部署的完整视图，展示了所有组件如何结合在一起以创建一个工

作中的4G/5G�络。

有关详细组件放置、IP地址分配指南和公共IP处理，请参见IP规划标准。

完整部署示例

0. 基础设施供应（可选）

对于Proxmox部署，在配置之前供应虚拟机/LXC：

参见：Proxmox VM/LXC部署

在Proxmox上�署虚拟机

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

或�署LXC容器（仅限实验/测试）

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

1. 基础设施定义（主机文件）

参见：主机文件配置

2. 自定义（group_vars）

group_vars文件夹是我们可以存储在主机、站点或�络级别所需的任何配置覆盖的地方。

例如，您会有一个包含您的OmniMessage SMSc配置的文件夹，您的TAS连接的SIP中继将位于这里，所有的Diameter路

由逻辑等等。

参见：组变量配置

3. 包分发（APT缓存）

参见：APT缓存系统

定义要部署的内容及其位置

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

... 所有其他组件

配置获取�件包的位置

apt_repo:

 apt_server: "10.254.10.223" # 缓存服务器IP或直接repo服务器

use_apt_cache: false # true = 使用本地缓存，false = 直接访问repo

4. 许可证配置

参见：许可证服务器

5. 执行部署

可以通过运行services/twag.yml来部署单个组件，但services/all.yml将处理所有内容，您可以使用--

limit=myhost或--limit=mmee,sgw等来限制我们正在处理的主机。

相关文档

Ansible部署简介 - 入门指南

主机文件配置 - 定义基础设施

IP规划标准 - 网络架构和IP分配

组变量配置 - 自定义

APT缓存系统 - 包管理

许可证服务器 - 许可证管理

指向许可证服务器的组件

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

�署完整网络

ansible-playbook -i hosts/customer/host_files/production.yml

services/all.yml

或�署特定组件

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/ims.yml

产品文档

有关配置每个组件的详细信息：

OmniCore（4G/5G分组核心）：

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS, OmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall（语音和消息）：https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM（计费）：

https://docs.omnitouch.com.au/docs/repos/OmniCharge

主文档：https://docs.omnitouch.com.au/

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

组变量配置

概述

group_vars 目录是您存储自定义配置文件的地方，这些文件会覆盖默认模板。

这里存放着您特定客户的配置 - SIP 中继、Diameter 路由规则、SMS 路由逻辑、拨号计划以及您不想使用默认配置的任何其他自定义

内容 - 它位于 group_vars 中。

位置: hosts/{Customer}/group_vars/

工作原理

Ansible 角色有默认的配置模板。要为特定部署进行自定义，请将您的自定义文件放入 group_vars 并在您的主机文件中引用它们。

示例 1: 自定义配置模板 (OmniMessage)

某些组件接受自定义 Jinja2 配置模板。

文件结构

角色默认模板 → group_vars 覆盖（如果指定） → �署配置

hosts/Customer/

└── group_vars/

 └── smsc_controller.exs # 您的自定义配置模板

在主机文件中引用

发生了什么:

1. Ansible 找到 smsc_template_config: smsc_controller.exs

2. 在 hosts/Customer/group_vars/smsc_controller.exs 中查找

3. 使用 Jinja2 进行模板化（可以使用 {{ inventory_hostname }}、{{ plmn_id.mcc }} 等）

4. 部署到 /etc/omnimessage/runtime.exs

5. 重启服务

没有 smsc_template_config 时，将使用角色的默认模板。

配置详情: 请参见 https://docs.omnitouch.com.au/docs/repos/OmniCall

示例 2: 配置文件集合 (OmniTAS 网关和拨号计划)

某些组件使用配置文件目录。

omnimessage:

 hosts:

 customer-smsc-controller01:

 ansible_host: 10.10.3.219

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 smsc_template_config: smsc_controller.exs # 在 group_vars 中

引用您的模板文件名

https://docs.omnitouch.com.au/docs/repos/OmniCall

文件结构

在主机文件中引用

发生了什么:

1. Ansible 找到 gateways_folder: "gateways_prod"

2. 将 hosts/Customer/group_vars/gateways_prod/ 中的所有文件复制到

/etc/freeswitch/sip_profiles/

3. 将 hosts/Customer/group_vars/dialplan/ 中的所有文件复制到 OmniTAS 模板目录

4. 服务加载配置

不同环境: 每个环境使用不同的文件夹：

gateways_folder: "gateways_lab"

gateways_folder: "gateways_prod"

gateways_folder: "gateways_customer_specific"

hosts/Customer/

└── group_vars/

 ├── gateways_prod/ # SIP 网关配置

 │ ├── gateway_carrier1.xml

 │ ├── gateway_carrier2.xml

 │ └── gateway_emergency.xml

 ├── gateways_lab/ # 实验室网关

 │ └── gateway_test.xml

 └── dialplan/ # 呼叫路由规则

 ├── mo_dialplan.xml # 移动发起（外拨）

 ├── mt_dialplan.xml # 移动终止（来电）

 └── emergency.xml

applicationserver:

 hosts:

 customer-tas01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 gateways_folder: "gateways_prod" # 引用您要在此主机上使用的网关文件夹

配置详情: 请参见 https://docs.omnitouch.com.au/docs/repos/OmniCall

示例 3: 自定义配置模板 (OmniHSS)

家庭用户服务器接受自定义运行时配置模板。

文件结构

在主机文件中引用

发生了什么:

1. Ansible 找到 hss_template_config: hss_runtime.exs.j2

2. 在 hosts/Customer/group_vars/hss_runtime.exs.j2 中查找

3. 使用 Jinja2 进行模板化（可以使用 {{ inventory_hostname }}、{{ plmn_id.mcc }} 等）

4. 部署到 /etc/omnihss/runtime.exs

5. 重启服务

没有 hss_template_config 时，将使用角色的默认模板。

配置详情: 请参见 https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── hss_runtime.exs.j2 # 您的自定义 HSS 配置模板

omnihss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.3.50

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 hss_template_config: hss_runtime.exs.j2 # 在 group_vars 中引用

您的模板文件名

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

示例 4: 自定义配置模板 (OmniMME)

移动管理实体接受自定义运行时配置模板。

文件结构

在主机文件中引用

发生了什么:

1. Ansible 找到 mme_template_config: mme_runtime.exs.j2

2. 在 hosts/Customer/group_vars/mme_runtime.exs.j2 中查找

3. 使用 Jinja2 进行模板化（可以使用 {{ inventory_hostname }}、{{ plmn_id.mcc }} 等）

4. 部署到 /etc/omnimme/runtime.exs

5. 重启服务

没有 mme_template_config 时，将使用角色的默认模板。

配置详情: 请参见 https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── mme_runtime.exs.j2 # 您的自定义 MME 配置模板

omnimme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.3.51

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 mme_template_config: mme_runtime.exs.j2 # 在 group_vars 中引用

您的模板文件名

https://docs.omnitouch.com.au/docs/repos/OmniCore

真实世界目录结构示例

hosts/Customer/

├── host_files/

│ └── production.yml # 主机文件引用 group_vars 文件

└── group_vars/

 ├── smsc_controller.exs # OmniMessage 自定义模板

 ├── smsc_smpp.exs # OmniMessage SMPP 自定义模板

 ├── tas_runtime.exs.j2 # TAS 自定义模板

 ├── hss_runtime.exs.j2 # HSS 自定义模板

 ├── mme_runtime.exs.j2 # MME 自定义模板

 ├── dra_runtime.exs.j2 # DRA 自定义模板

 ├── pgwc_runtime.exs.j2 # PGW 自定义模板

 ├── dea_runtime.exs.j2 # DEA 自定义模板

 ├── upf_config.yaml # UPF 配置

 ├── crm_config.yaml # CRM 配置

 ├── stp.j2 # SS7 STP 模板

 ├── hlr.j2 # SS7 HLR 模板

 ├── camel.j2 # SS7 CAMEL 模板

 ├── ipsmgw.j2 # IP-SM-GW 模板

 ├── omnicore_smsc_ims.yaml.j2 # SMSC IMS 配置

 ├── pytap.yaml # TAP3 配置

 ├── sip_profiles/ # SIP 网关（文件夹）

 │ └── gateway_otw.xml

 └── dialplan/ # 呼叫路由规则（文件夹）

 ├── mo_dialplan.xml # 移动发起

 ├── mt_dialplan.xml # 移动终止

 └── mo_emergency.xml # 紧急路由

常见参数引用 group_vars

参数 组件 引用

smsc_template_config omnimessage
Jinja2 模板文件（例如，

smsc_controller.exs）

smsc_smpp_template_config omnimessage_smpp
Jinja2 模板文件（例如，

smsc_smpp.exs）

gateways_folder applicationserver
文件夹名称（例如，

sip_profiles）

拨号计划（自动） applicationserver dialplan/ 路由 XML 文件夹

tas_template_config applicationserver
Jinja2 模板文件（例如，

tas_runtime.exs.j2）

hss_template_config omnihss
Jinja2 模板文件（例如，

hss_runtime.exs.j2）

mme_template_config omnimme
Jinja2 模板文件（例如，

mme_runtime.exs.j2）

dra_template_config dra
Jinja2 模板文件（例如，

dra_runtime.exs.j2）

pgwc_template_config pgwc
Jinja2 模板文件（例如，

pgwc_runtime.exs.j2）

frr_template_config omniupf
Jinja2 模板文件（例如，

frr.conf.j2）

参数 组件 引用

SS7 模板 ss7（各种角色）

Jinja2 模板文件（例如，

stp.j2、hlr.j2、

camel.j2）

配置 YAML 各种组件

直接配置文件（例如，

upf_config.yaml、

crm_config.yaml）

关键点

1. group_vars 保存自定义 - 覆盖默认配置

2. 按名称引用 - 使用参数如 smsc_template_config 或 gateways_folder

3. 模板支持 Jinja2 - 使用 {{ variable_name }} 访问任何 Ansible 变量

4. 文件夹部署所有内容 - 引用文件夹中的所有文件都会被复制

5. 版本控制所有内容 - 将所有 group_vars 提交到 Git

何时使用 group_vars

✅ 使用 group_vars 来:

自定义组件配置模板

SIP �关定义

呼叫路由拨号计划

Diameter 路由规则

覆盖默认值的客户特定设置

❌ 不要使用 group_vars 来:

基本主机配置（IP、主机名） - 使用主机文件

一次性测试 - 在主机文件中使用特定于主机的变量

临时更改 - 在目标上编辑，如果是永久性则提交到 group_vars

相关文档

配置参考 - 所有主机参数及其作用

主机文件配置 - 如何构建主机文件

OmniCall 配置: https://docs.omnitouch.com.au/docs/repos/OmniCall - 配置文件中包

含的内容

OmniCore 配置: https://docs.omnitouch.com.au/docs/repos/OmniCore - 组件配置

详情

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

实用剧本

概述

该存储库包含多个实用剧本，用于维护、监控和操作任务。这些剧本补充了主要的部署剧本，提供日常管理功能。

健康检查工具

健康检查工具生成一个 HTML 报告，显示所有 OmniCore 组件的系统健康、服务状态、正常运行时间和版本信息。

作为 services/all.yml 剧本�一部分自动运行。

使用方法

手动运行

输出

报告生成在 /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

在任何�页浏览器中打开以查看。

报告内容

HTML 报告显示：

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

主机信息

主机名和 IP 地址

网络/子网（来自 host_vm_network 变量，如果未设置则为 N/A）

CPU（vCPU 数量）

RAM（总内存和可用内存）

磁盘（根分区的总空间和可用空间及百分比）

操作系统（发行版和版本）

服务状态

服务状态（活动/非活动，带颜色指示）

正常运行���间

版本/发布信息

HSS Diameter 对等体

数据库连接状态（已连接/未连接）

Diameter 对等体连接（IP、源主机、状态）

从 HSS 指标端点获取（端口 9568）

其他常用工具

基础系统配置

公共角色 (services/common.yml)

将基础系统配置应用于所有主机

设置存储库、SSH 密钥、时区、NTP

配置�络和系统加固

在部署服务之前运行此命令

ansible-playbook -i hosts/customer/host_files/production.yml

services/common.yml

设置用户 (services/setup_users.yml)

在所有主机上创建和配置用户帐户

管理 SSH 密钥和 sudo 权限

确保用户设置一致

重启 (services/reboot.yml)

优雅地重启所有目标主机

等待系统重新上线（5 分钟超时）

在内核更新或配置更改后非常有用

操作工具

IP 计划生成器 (util_playbooks/ip_plan_generator.yml)

生成 IP 地址分配的 HTML 报告

显示来自主机文件的完整�络拓扑

对于文档和故障排除非常有用

HSS 备份 (util_playbooks/hss_backup.yml)

备份 HSS 数据库表

将 MySQL 转储复制到本地 Ansible 机器

交互式提示备份路径

ansible-playbook -i hosts/customer/host_files/production.yml

services/setup_users.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/reboot.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

获取本地捕获 (util_playbooks/getLocalCapture.yml)

从所有主机获取两个最新的包捕获文件

从 /etc/localcapture/ 检索 pcap 文件

对于调试连接问题非常有用

更新 MTU (util_playbooks/updateMtu.yml)

更新�络接口 MTU 设置

通过 netplan 应用更改

对于巨型帧配置非常有用

相关文档

主 README - 概述和入门

Ansible 部署简介 - 运行剧本

主机文件配置 - 配置您的清单

部署架构 - 完整系统概述

APT 缓存系统 - 包管理

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/hss_backup.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

主机文件配置

概述

主机文件（也称为清单文件）是定义您整个蜂窝�络部署的中央配置文档。它指定：

要部署的�络功能

它们运行的位置（IP 地址、�络段）

它们的配置方式（服务特定参数）

客户特定设置（PLMN、凭据、功能）

文件位置

主机文件按客户和环境组织：

示例主机文件结构

以下是一个简化的示例，展示了关键部分：

services/hosts/

└── Customer_Name/

 └── host_files/

 ├── production.yml

 ├── staging.yml

 └── lab.yml

EPC 组件

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 network_name_short: Customer

 tac_list: [600, 601, 602]

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 ip_pools:

 - '100.64.16.0/24'

IMS 组件

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

支持服务

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

全局变量

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

常见主机参数

网络配置

每个主机通常包括：

注意： 有关 IP 地址规划和�络分段策略的指导，请参见 IP 规划标准，该标准概述了 OmniCore 部署推荐的四个子�架构。

Proxmox 用户： host_vm_network 参数指定要使用的桥接。有关自动化配置的详细信息，请参见 Proxmox

VM/LXC 部署。

VM 资源分配

对于需要特定资源的服务：

服务特定参数

每个�络功能都有其自己的参数。示例：

MME:

 customer_name_short: customer

 plmn_id:

 mcc: '001'

 mnc: '01'

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.1.15 # SSH 访问的 IP 地址

 gateway: 10.10.1.1 # 默认网关

 host_vm_network: "vmbr1" # 在虚拟化管理程序上使用的 NIC 名称

num_cpus: 4 # CPU 核心

memory_mb: 8192 # 内存（以兆字节为单位）

proxmoxLxcDiskSizeGb: 50 # 磁盘大小（以 GB 为单位）

PGW:

有关每个变量控制的详细说明，请参见：配置参考

应用服务器：

全局变量部分

all:vars 部分包含适用于整个部署的设置：

mme_code: 1 # MME 标识符（1-255）

mme_gid: 1 # MME 组 ID

network_name_short: Customer # 网络名称（在手机上显示）

network_name_long: Customer Network

tac_list: [600, 601, 602] # 跟踪区域代码

ip_pools: # 订阅者的 IP 池

 - '100.64.16.0/24'

 - '100.64.17.0/24'

combined_CP_UP: false # 分离控制/用户平面

online_charging_enabled: true # 启用 OCS 集成

tas_branch: "main" # 要部署的�件分支

gateways_folder: "gateways_prod" # SIP 网关配置

理解主机组

Ansible 将主机组织成与角色相对应的组：

all:

 vars:

 # 身份验证

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 # 客户身份

 customer_name_short: customer

 customer_legal_name: "Customer Inc."

 site_name: "Chicago DC1"

 region: US

 # PLMN（移动网络）标识符

 plmn_id:

 mcc: '001' # 移动国家代码

 mnc: '01' # 移动网络代码

 mnc_longform: '001' # 零填充的 MNC

 # 网络名称

 network_name_short: Customer

 network_name_long: Customer Network

 # APT 存储库

 # 注意：如果 apt_cache_servers 组已定义主机，

 # use_apt_cache 默认为 true，apt_repo.apt_server

 # 默认为第一个缓存服务器的 IP 自动

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # 时区

 TZ: America/Chicago

当您运行针对 mme 的剧本时，它会应用于 mme:hosts: 部分中的所有主机。

使用 Jinja2 模板进行配置

Ansible 使用 Jinja2 模板 从您在主机文件和 group_vars 中定义的变量生成配置文件。

Jinja2 �工作原理

主机文件变量

Jinja2 模板组变量

角色默认值

生成的配置文件

示例模板用法

主机文件定义：

Jinja2 模板（在角色中）：

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: acme

生成�配置文件：

常见 Jinja2 模式

访问嵌套变量：

条件逻辑：

循环：

mme_config.yml.j2

network:

 plmn:

 mcc: {{ plmn_id.mcc }}

 mnc: {{ plmn_id.mnc }}

 operator: {{ customer_name_short }}

 realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org

network:

 plmn:

 mcc: 001

 mnc: 01

 operator: acme

 realm: epc.mnc001.mcc001.3gppnetwork.org

{{ plmn_id.mcc }}

{{ apt_repo.apt_server }}

{% if online_charging_enabled %}

 charging:

 enabled: true

 ocs_ip: {{ ocs_ip }}

{% endif %}

格式化：

使用 group_vars 重写变量

虽然主机文件定义了基础设施和特定于主机的设置，但 group_vars 可以覆盖主机组的默认值。

请参见：组变量配置

完整示例主机文件

以下是一个更完整的示例（敏感数据已模糊处理）：

tracking_areas:

{% for tac in tac_list %}

 - {{ tac }}

{% endfor %}

零填充到 3 位数字

mnc{{ '%03d' | format(plmn_id.mnc|int) }}

EPC 核心

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 mme_gid: 1

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601, 602, 603]

 omnimme:

 sgw_selection_method: "random_peer"

 pgw_selection_method: "random_peer"

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 ip_pools:

 - '100.64.16.0/24'

 combined_CP_UP: false

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

IMS 核心

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

 gateway: 10.10.4.1

 host_vm_network: "vmbr4"

icscf:

 hosts:

 customer-icscf01:

 ansible_host: 10.10.3.55

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

scscf:

 hosts:

 customer-scscf01:

 ansible_host: 10.10.3.45

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

applicationserver:

 hosts:

 customer-as01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 online_charging_enabled: false

 gateways_folder: "gateways_prod"

支持服务

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

monitoring:

 hosts:

 customer-oam01:

 ansible_host: 10.10.2.135

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

 num_cpus: 4

 memory_mb: 8192

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.10.2.177

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

全局变量

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 customer_name_short: customer

 customer_legal_name: "Customer Network Inc."

 site_name: "Primary DC"

 region: US

 TZ: America/Chicago

 # PLMN 配置

 plmn_id:

 mcc: '001'

 mnc: '01'

 mnc_longform: '001'

 diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

 # 网络名称

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601]

 # APT 配置

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # 计费配置

 charging:

请参见 Proxmox VM/LXC 部署 以获取完整的 Proxmox 设置和配置详细信息。

产品文档参考

有关每个组件的详细配置，请参阅官方产品文档：

OmniCore 组件：

OmniCore 文档: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS - 家庭用户服务器

OmniSGW - 服务�关（控制平面）

 data:

 online_charging:

 enabled: false

 voice:

 online_charging:

 enabled: true

 domain: "mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org"

 # 防火墙规则

 firewall:

 allowed_ssh_subnets:

 - '10.0.0.0/8'

 - '192.168.0.0/16'

 allowed_ue_voice_subnets:

 - '10.0.0.0/8'

 allowed_signaling_subnets:

 - '10.0.0.0/8'

 # 虚拟化管理程序配置（Proxmox 示例）

 proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxApiTokenName: Customer

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxNodeName: pve01

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniPGW - 包�关（控制平面）

OmniUPF - 用户平面功能

OmniDRA - Diameter 路由代理

OmniTWAG - 受信 WLAN 接入�关

OmniCall 组件：

OmniCall 文档: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS - IMS 应用服务器（VoLTE/VoNR）

OmniCall CSCF - 呼叫会话控制功能

OmniMessage - 短信中心

OmniMessage SMPP - SMPP 协议支持

OmniSS7 - SS7 信令栈

VisualVoicemail - 语音邮件

OmniCharge/OmniCRM：

OmniCharge 文档: https://docs.omnitouch.com.au/docs/repos/OmniCharge

相关文档

Ansible 部署简介 - 整体部署过程

配置参考 - 所有配置变量�完整指南

组变量配置 - 重写默认配置

IP 规划标准 - 网络架构和 IP 分配指南

Netplan 配置 - 辅��� IP 和高级网络配置

APT 缓存系统 - 软件包分发

许可证服务器 - 许可证管理

部署架构概述 - 完整系统视图

下一步

1. 根据此模板创建您的主机文件

2. 定义您的 PLMN 和�络身份

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

3. 配置 APT 存储库访问

4. 设置许可证服务器

5. 根据需要使用 group_vars 进行自定义

6. 使用 Ansible 剧本进行部署

OmniCore IP 规划标准

概述

本文档概述了 OmniCore 部署的标准 IP 规划方法。该架构需要 四个内部子网，以适当分隔�络功能，以确保安全性、性能和操作清晰性。

IP 分配要求

标准分配：四个 /24 子网

每个 OmniCore 部署需要四个不同的子�用于内部�络：

1. 数据包核心网络 - 第一个 /24

2. 信令网络 - 第二个 /24

3. IMS 内部网络 - 第三个 /24

4. UE 公共网络 - 第四个 /24

重要提示：这些是建议，而非要求

本文档中描述的子�分配是组织 OmniCore 部署的 推荐最佳实践。然而，该架构是 完全灵活 的：

所有主机在一个子网中：如果符合您的部署需求，可以将所有组件放置在单个子�中

每种主机类型在其自己�子网中：可以为每种组件类型创建单独的子�（一个用于 MME，一个用于 HSS，等等）

自定义分组：可以根据您的具体要求将主机组织成任何子�结构

混合内部和公共 IP：某些主机可以使用内部（RFC 1918）地址，而其他主机使用公共 IP，所有这些都在同一部署中

推荐的四子�方法提供了最佳的 安全隔离、流量管理和操作清晰性，这就是我们建议在生产部署中使用它的原因。然而，您应该根据您的特定�络拓

扑、可用地址空间和操作要求调整 IP 计划。

网络段划分

1. 数据包核心网络（第一个 /24）

目�： 用户平面和核心控制平面元素

组件：

OmniMME（移动管理实体）

OmniSGW（服务�关）

OmniPGW-C（PDN �关控制平面）

OmniUPF/PGW-U（用户平面功能 / PDN �关用户平面）

示例： 10.179.1.0/24

2. 信令网络（第二个 /24）

目�： Diameter 信令、策略、计费和管理功能

组件：

OmniHSS（家庭用户服务器）

OmniCharge OCS（在线计费系统）

OminiHSS PCRF（策略和计费规则功能）

OmniDRA DRA（Diameter 路由代理）

DNS 服务器

TAP3/CDR 服务器

监控/OAM

mme:

 hosts:

 omni-site-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

SIP 捕获

许可证服务器

RAN 监控

Omnitouch 警告链接 CBC（小区广播中心） - 如果部署

APT 缓���服务器 - 如果部署

示例： 10.179.2.0/24

3. IMS 内部网络（第三个 /24）

目�： IMS 核心信令和服务（内部 SIP 信令）

组件：

OmniCSCF S-CSCF（服务呼叫会话控制功能）

OmniCSCF I-CSCF（询问呼叫会话控制功能）

OmniTAS（电话应用服务器 / 应用服务器）

OmniMessage（短信控制器，SMPP，IMS）

OmniSS7 STP（SS7 信令转发点）

OmniSS7 HLR（家庭位置注册） - 用于 2G/3G

OmniSS7 IP-SM-GW（MAP SMSc）

OmniSS7 CAMEL �关

示例： 10.179.3.0/24

hss:

 hosts:

 omni-site-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

4. UE 公共网络（第四个 /24）

目�： 面向用户的服务，如 IMS 和 DNS

组件：

OmniCSCF P-CSCF（代理呼叫会话控制功能）

XCAP 服务器

可视语音邮件服务器

客户 DNS

示例： 10.179.4.0/24

实施方法

OmniCore 支持两���主要方法来实现此�络分段：

方法 1：物理/虚拟网络接口（推荐用于生产）

为每个�络段使用单独的 NIC 或虚拟桥。这提供了最强的隔离，是生产部署的推荐方法。

scscf:

 hosts:

 omni-site-scscf01:

 ansible_host: 10.179.3.45

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

pcscf:

 hosts:

 omni-site-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

示例：

方法 2：基于 VLAN �分段

使用单个物理接口并通过 VLAN 标签来分隔�络。这适用于较小的部署或当物理 NIC 有限时。

示例：

数据包核心 - vmbr1

mme:

 hosts:

 omni-lab07-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

信令 - vmbr2

hss:

 hosts:

 omni-lab07-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

IMS 内部 - vmbr3

icscf:

 hosts:

 omni-lab07-icscf01:

 ansible_host: 10.179.3.55

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

UE 公共 - vmbr4

pcscf:

 hosts:

 omni-lab07-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

网络配置：

在物理交换机上配置 VLAN

在虚拟化管理程序级别适当地标记流量

在�关/防火墙处在 VLAN 之间路由

示例 VLAN 映射：

所有组件使用 vmbr12，具有不同的 VLAN

applicationserver:

 hosts:

 ons-lab08sbc01:

 ansible_host: 10.178.2.213

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dra:

 hosts:

 ons-lab08dra01:

 ansible_host: 10.178.2.211

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dns:

 hosts:

 ons-lab08dns01:

 ansible_host: 10.178.2.178

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

VLAN 10: 10.x.1.0/24 (数据包核心)

VLAN 20: 10.x.2.0/24 (信令)

VLAN 30: 10.x.3.0/24 (IMS 内�)

VLAN 40: 10.x.4.0/24 (UE 公共)

使用公共 IP 地址

概述

许多 OmniCore 部署需要某些组件具有公共 IP 地址以实现外部连接，例如：

DRA - 用于与外部运营商的漫游直径信令

漫游 SGW/PGW - 用于来自漫游合作伙伴的 GTP 流量

ePDG - 用于 WiFi 通话（来自 UE 的 IPsec 隧道）

SMSC 网关 - 用于与外部 SMS 聚合器的 SMPP 连接

P-CSCF（在某些部署中） - 用于直接 UE SIP 注册

如何分配公共 IP

公共 IP 的处理方式与内部 IP 在您的主机清单文件中的处理方式 完全相同。只需在 ansible_host 字段中指定公共 IP 地址，以及

适当的�关和子�掩码。

示例：具有公共 IP �漫游 SGW/PGW

示例：具有公共 IP � DRA

示例：具有公共 IP � ePDG

sgw:

 hosts:

 # 内部 SGW 在私有网络上

 opt-site-sgw01:

 ansible_host: 10.4.1.25

 gateway: 10.4.1.1

 host_vm_network: "v400-omni-packet-core"

 # 具有公共 IP 的漫游 SGW

 opt-site-roaming-sgw01:

 ansible_host: 203.0.113.10

 gateway: 203.0.113.9

 netmask: 255.255.255.248 # /29 子网

 host_vm_network: "498-public-servers"

 in_pool: False

 cdrs_enabled: True

smf: # PGWs

 hosts:

 # 具有公共 IP 的漫游 PGW

 opt-site-roaming-pgw01:

 ansible_host: 203.0.113.20

 gateway: 203.0.113.17

 netmask: 255.255.255.240 # /28 子网

 host_vm_network: "497-public-services-LTE"

 in_pool: False

 ip_pools:

 - '100.64.24.0/22'

dra:

 hosts:

 opt-site-dra01:

 ansible_host: 198.51.100.50

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 子网

 host_vm_network: "497-public-services-LTE"

混合内部和公共 IP

在同一组件组中混合使用内部和公共 IP 是很常见的。例如：

用于本地站点的内部 SGW 使用 GTP

专门用于外部运营商漫游流量的公共 SGW

同一 PGW-C 可以管理内部和外部 SGW

OmniCore 的架构可以无缝处理这一点 - 只需为每个主机配置其适当的 IP 地址即可。

epdg:

 hosts:

 opt-site-epdg01:

 ansible_host: 198.51.100.51

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 子网

 host_vm_network: "497-public-services-LTE"

许可证服务器

概述

许可证服务器管理所有 Omnitouch 组件的功能激活。每个组件在启动时以及在运行期间定期验证其许可证。

设置

1. 在 Hosts 文件中定义

2. 提供许可证文件

将 license.json（由 Omnitouch 提供）放置在 hosts/Customer/group_vars/ 中

3. 部署

您可以通过访问 https://license_server 检查所有许可证的状态。

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

all:

 vars:

 customer_legal_name: "客户名称"

 license_server_api_urls: ["https://10.10.2.150:8443/api"]

 license_enforced: true

ansible-playbook -i hosts/customer/host_files/production.yml

services/license_server.yml

网络要求

防火墙配置

客户端站点的防火墙必须配置为允许 HTTPS（端口 443）流量到以下 Omnitouch 许可证验证服务器：

主机名 IP 地址 目�

time.omnitouch.com.au 160.22.43.18 许可证验证服务器 1

time.omnitouch.com.au 160.22.43.66 许可证验证服务器 2

time.omnitouch.com.au 160.22.43.114 许可证验证服务器 3

所需�出站规则：

协议：HTTPS (TCP/443)

目的地：160.22.43.18, 160.22.43.66, 160.22.43.114

方向：出站

DNS 要求

许可证服务器需要功能正常的 DNS 解析以与 Omnitouch 许可证验证基础设施进行通信。

所需� DNS 配置：

许可证服务器必须能够访问公共 DNS 服务器

配置 DNS 使用以下之一：

1.1.1.1 (Cloudflare - 支持安全 DNS)

8.8.8.8 (Google 公共 DNS)

不要为许可证服务器使用内部/公司 DNS 服务器

注意： Omnitouch 许可证服务器使用安全 DNS (DoH/DoT)。使用公共 DNS 服务器可确保正确的 DNSSEC 验证，

并防止安全设备对 DNS 的拦截问题。

相关文档

配置参考

Hosts 文件配置

Netplan 配置

概述

OmniCore 可以使用 netplan 自动配置已部署虚拟机上的�络接口。这对于以下情况非常有用：

设置主要管理接口 (eth0)

为公共 IP、对等连接或专用流量添加辅助接口

为特定目的地配置静态路由

启用 Netplan 配置

要启用主机的自动 netplan 配置，请在 group_vars 文件夹中添加指向 Jinja2 模板的 netplan_config 变量：

模板将从 hosts/<customer>/group_vars/netplan.yaml.j2 中获取。

模板参考

以下是完整的 netplan.yaml.j2 模板，包含解释每个部分的注释：

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

network:

 version: 2

 ethernets:

 # 主接口 - 使用来自清单的 ansible_host 和 gateway

 eth0:

 addresses:

 - "{{ ansible_host }}/{{ mask_cidr | default(24) }}"

 nameservers:

 addresses:

{% if 'dns' in group_names %}

 # 如果此主机是 DNS 服务器，则使用外� DNS 以避免循环依赖

 - 8.8.8.8

{% else %}

 # 否则，使用来自清单中 'dns' 组的 DNS 服务器

{% for dns_host in groups['dns'] | default([]) %}

 - {{ hostvars[dns_host]['ansible_host'] }}

{% endfor %}

{% endif %}

 search:

 - slice

 routes:

 - to: "default"

 via: "{{ gateway }}"

{% if secondary_ips is defined %}

 # 辅助接口 - 循环遍历来自清单的 secondary_ips 字典

 # 接口命名：ens19, ens20, ens21... (18 + loop.index)

{% for nic_name, nic_config in secondary_ips.items() %}

 ens{{ 18 + loop.index }}:

 addresses:

 - "{{ nic_config.ip_address }}/{{ mask_cidr | default(24)

}}"

{% if nic_config.routes is defined %}

 # 此接口的静态路由 - 每个路由使用此接口的网关

 routes:

{% for route in nic_config.routes %}

 - to: "{{ route }}"

 via: "{{ nic_config.gateway }}"

{% endfor %}

{% endif %}

{% endfor %}

{% endif %}

关键点：

ansible_host 和 gateway 来自主机的清单条目

DNS 服务器动态从 dns 组中的主机中提取

辅助接口命名为 ens19、ens20 等，以匹配 Proxmox NIC 命名

每个辅助 IP 可以有自己的�关和静态路由

主接口配置

主接口 (eth0) 自动配置使用：

ansible_host - IP 地址

gateway - 默认�关

mask_cidr - �络掩码（默认为 24）

DNS 服务器自动设置为：

dns 组中的主机（使用它们的 ansible_host IP）

如果主机本身是 DNS 服务器，则回退到 8.8.8.8

辅助接口

对于需要额外�络接口的主机（公共 IP、对等连接等），使用 secondary_ips 配置。

结构

secondary_ips:

 <logical_name>:

 ip_address: <ip_address>

 gateway: <gateway_ip>

 host_vm_network: <proxmox_bridge>

 vlanid: <vlan_id>

 routes: # 可选 - 通过此接口的静态路由

 - '<destination_cidr>'

 - '<destination_cidr>'

接口命名

辅助接口使用 Ubuntu 的可预测命名方案自动命名：

第一个辅助接口：ens19

第二个辅助接口：ens20

第三个辅助接口：ens21

依此类推...

这与 Proxmox 在向虚拟机添加额外 NIC 时分配的接口名称相匹配。

示例配置

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 host_vm_network: "ovsbr1"

 vlanid: "100"

 netplan_config: netplan.yaml.j2

 secondary_ips:

 public_ip:

 ip_address: 192.0.2.50

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24'

 - '203.0.113.0/24'

 peering_ip:

 ip_address: 172.16.50.10

 gateway: 172.16.50.1

 host_vm_network: "ovsbr2"

 vlanid: "300"

 routes:

 - '172.17.0.0/16'

生成� Netplan 输出

上述配置生成：

Proxmox 集成

在使用 proxmox.yml 剧本时，辅助 NIC 会在虚拟机上自动创建：

1. 新虚拟机：在初始配置期间添加辅助 NIC

2. 现有虚拟机：添加辅助 NIC，并重启虚拟机以应用更改

network:

 version: 2

 ethernets:

 eth0:

 addresses:

 - "10.0.1.100/24"

 nameservers:

 addresses:

 - 10.0.1.53

 search:

 - slice

 routes:

 - to: "default"

 via: "10.0.1.1"

 ens19:

 addresses:

 - "192.0.2.50/24"

 routes:

 - to: "198.51.100.0/24"

 via: "192.0.2.1"

 - to: "203.0.113.0/24"

 via: "192.0.2.1"

 ens20:

 addresses:

 - "172.16.50.10/24"

 routes:

 - to: "172.17.0.0/16"

 via: "172.16.50.1"

Proxmox 配置使用：

host_vm_network - 连接 NIC 的桥接

vlanid - 接口的 VLAN 标签

工作原理

1. 从主机文件传递变量到 Jinja2 模板

2. 模板渲染到 /etc/netplan/01-netcfg.yaml

3. 删除任何现有的 netplan 配置以防止冲突

4. netplan apply 激活配置

5. 使用 ip addr show 验证 IP 地址

常见用例

带公共 IP �直径边缘代理 (DEA)

<hostname>:

 ansible_host: 10.0.1.100 # 内部管理 IP

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 diameter_roaming:

 ip_address: 192.0.2.50 # 用于漫游合作伙伴的公共 IP

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24' # 漫游合作伙伴网络

带 S5/S8 接口� PGW

多宿主服务器，���理和数据网络分开

在模板中引用辅助 IP

您可以在其他 Jinja2 模板和配置文件中引用辅助 IP 地址。

<hostname>:

 ansible_host: 10.0.2.20 # 内部 IP

 gateway: 10.0.2.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 s5s8_interface:

 ip_address: 203.0.113.17 # 公共 S5/S8 IP

 gateway: 203.0.113.1

 host_vm_network: "vmbr0"

 vlanid: "50"

<hostname>:

 ansible_host: 10.0.1.100 # 管理网络

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 data_network:

 ip_address: 10.0.2.100 # 数据网络

 gateway: 10.0.2.1

 host_vm_network: "ovsbr2"

 vlanid: "200"

 backup_network:

 ip_address: 10.0.3.100 # 备份网络

 gateway: 10.0.3.1

 host_vm_network: "ovsbr3"

 vlanid: "300"

在同一主机上

当在具有辅助 IP 的同一主机上配置服务时，您可以直接引用或使用 inventory_hostname：

从另一主机

当您需要引用 �同 主机的辅助 IP（例如，配置对等连接）时，使用 hostvars 和目标主机名：

示例：DRA 对等配置

配置直径对等体以绑定到其自己的公共 IP：

直接引用（最简单）

{{ secondary_ips.diameter_public_ip.ip_address }}

或通过 inventory_hostname 明确引用（结果相同）

{{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

访问其他属性

{{ secondary_ips.diameter_public_ip.gateway }}

{{ secondary_ips.diameter_public_ip.vlanid }}

引用 dra 组中的第一台主机

{{ hostvars[groups['dra'][0]]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

循环遍历所有 DRA 主机并获取它们的公共 IP

{% for host in groups['dra'] %}

{% if hostvars[host]['secondary_ips'] is defined %}

 - {{ hostvars[host]['secondary_ips']['diameter_public_ip']

['ip_address'] }}

{% endif %}

{% endfor %}

检查辅助 IP 是否存在

在使用变量之前，始终检查其是否存在：

故障排除

验证接口名称

SSH 登录到虚拟机并检查接口名称：

对于具有两个辅助接口的虚拟机，预期输出：

在 dra_config.yaml.j2 中 - 使用 inventory_hostname 作为当前主机

peers:

 - name: external_peer

 # 绑定到此主机的公共直径 IP

 local_ip: {{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

 remote_ip: 198.51.100.50

 port: 3868

{% if secondary_ips is defined and

secondary_ips.diameter_public_ip is defined %}

public_ip: {{ secondary_ips.diameter_public_ip.ip_address }}

{% else %}

public_ip: {{ ansible_host }}

{% endif %}

ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

3: ens19: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

4: ens20: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

检查 Netplan 配置

手动应用 Netplan

调试 Netplan

验证路由

相关文档

主机文件配置 - 主机清单设置

Proxmox VM/LXC 部署 - 虚拟机配置

配置参考 - 所有配置变量

cat /etc/netplan/01-netcfg.yaml

netplan apply

netplan --debug apply

ip route show

Proxmox VM/LXC 部署

我们大多数客户在 Proxmox 上运行 OmniCore 堆栈，本指南详细说明了如何使用 proxmox play 设置他们的环境。

我们仍然继续支持 VMware、HyperV 和云（目前为 Vultr / AWS / GCP）进行部署。

另见：

主机文件配置 - 定义要部署的虚拟机

IP 规划标准 - IP 地址分配指南

Netplan 配置 - 次要 IP 和多�卡设置

部署架构 - 完整的部署工作流程

LXC 与 VM

LXC 容器：

轻量级，共享主机内核

启动快速，开销低

隔离有限

不能运行自定义内核或内核模块

不适合生产部署

不能运行 UPF（需要内核模块/TUN 设备）

虚拟机 (KVM)：

完整虚拟化，具有专用内核

完全隔离

可以运行内核模块和自定义�络

更高的资源开销

推荐用于生产

UPF 部署所需

使用案例：

虚拟机：生产站点、UPF、所有�络功能

LXC：实验/测试环境、轻量级服务（apt-cache、监控）

Proxmox 设置

1. 创建 API 令牌

2. 创建 Cloud-Init 虚拟机模板（仅适用于虚拟机）

在 Proxmox 主机上运行此脚本。它下载 Ubuntu 的云镜像并创建一个带有 cloud-init 用户凭据的模板。

在 Proxmox UI：数据中心 → 权限 → API 令牌

创建令牌：root@pam!<TokenName>

复制令牌密钥（仅显示一次）

#!/bin/bash

set -e

TEMPLATE_ID=9000

IMAGE_URL="https://cloud-images.ubuntu.com/noble/current/noble-

server-cloudimg-amd64.img"

IMAGE="noble-server-cloudimg-amd64.img"

echo "=== 下载 Ubuntu 云镜像 ==="

cd /var/lib/vz/template/iso

wget -N "$IMAGE_URL"

echo "=== 清理旧模板 ==="

qm destroy $TEMPLATE_ID --purge 2>/dev/null || true

echo "=== 启用片段存储 ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== 创建 cloud-init 用户数据 ==="

mkdir -p /var/lib/vz/snippets

cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'

#cloud-config

ssh_pwauth: true

users:

 - name: omnitouch

 plain_text_passwd: password

 lock_passwd: false

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

 groups: sudo

USERDATA

echo "=== 创建模板虚拟机 ==="

qm create $TEMPLATE_ID --name ubuntu-2404-template --memory 2048 -

-cores 2 --net0 virtio,bridge=vmbr0

qm importdisk $TEMPLATE_ID $IMAGE local-lvm

qm set $TEMPLATE_ID --scsihw virtio-scsi-pci --scsi0 local-

lvm:vm-${TEMPLATE_ID}-disk-0

qm set $TEMPLATE_ID --ide2 local-lvm:cloudinit

qm set $TEMPLATE_ID --boot c --bootdisk scsi0

qm set $TEMPLATE_ID --vga std

qm set $TEMPLATE_ID --agent enabled=1

qm set $TEMPLATE_ID --cicustom user=local:snippets/user-data.yml

注意：

模板提供了一个后备登录：omnitouch / password（如果 cloud-init 失败时用于控制台访问）

通过 Ansible 克隆时，凭据会从主机文件中的 local_users 中覆盖：

用户名：local_users 中第一个用户的密钥

密码：第一个用户的 password 字段（如果未设置，默认为 'password'）

SSH 密钥：第一个用户的 public_key 字段

--vga std 确保 Proxmox Web 控制台正常工作

wget 的 -N 标志仅在比本地副本更新时下载

替代方案：从 ISO 手动创建模板

如果云镜像不可用或需要自定义安装：

步骤 1：通过 Web UI 创建虚拟机

创建新虚拟机 → 虚拟机 ID 9000，名称：ubuntu-2404-template

操作系统：上传 Ubuntu Server ISO 或使用现有 ISO

系统：默认（SCSI 控制器：VirtIO SCSI）

磁盘：32GB，总线：SCSI

CPU：2 核心

内存：2048 MB

�络：VirtIO，桥接 vmbr0

启动虚拟机并安装 Ubuntu Server

步骤 2：在虚拟机内部 - 清理和准备

qm template $TEMPLATE_ID

echo "=== 模板 $TEMPLATE_ID 创建成功 ==="

步骤 3：添加 Cloud-Init 并转换为模板

选择虚拟机 → 硬件 → 添加 → CloudInit 驱动器（选择存储，例如 local-lvm）

Cloud-Init → 用户：omnitouch，密码：password

硬件 → 选项 → QEMU 客户端代理 → 启用

右键单击虚拟机 → 转换为模板

3. 下载 LXC 模板（仅适用于 LXC）

安装 cloud-init

sudo apt update

sudo apt install cloud-init qemu-guest-agent -y

清理机器特定数据

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id

sudo rm -f /etc/ssh/ssh_host_*

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

清除 bash 历史记录并关机

history -c

sudo poweroff

在 Proxmox 节点 shell 中：

pveam update

pveam download local ubuntu-24.04-standard_24.04-2_amd64.tar.zst

主机文件配置

虚拟机部署 (proxmox.yml)

all:

 vars:

 proxmoxServers:

 pve-node-01:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: YourPassword

 proxmoxApiTokenName: ansible

 proxmoxApiTokenSecret: "your-token-secret-uuid"

 proxmoxTemplateName: ubuntu-2404-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve-node-01

 storage: local-lvm # 可选

 pve-node-02:

 # ... 第二个节点配置

 # 用户凭据 - 第一个用户用于虚拟机 cloud-init

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # 如果未设置，默认为 'password'

mme:

 hosts:

 site-mme01:

 ansible_host: 192.168.1.10

 gateway: 192.168.1.1

 vlanid: "100" # 可选

LXC 部署 (proxmox_lxc.yml)

使用

部署虚拟机

all:

 vars:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # 单个或列表

 proxmoxApiTokenName: ansible

 PROXMOX_API_TOKEN: "your-token-secret-uuid"

 proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-

standard_24.04-2_amd64.tar.zst'

 proxmoxLxcCores: 2

 proxmoxLxcMemoryMb: 4096

 proxmoxLxcDiskSizeGb: 30

 proxmoxLxcRootFsStorageName: local-lvm

 mask_cidr: 24

 host_vm_network: vmbr0

 # 用户凭据 - 第一个用户用于初始虚拟机/LXC 访问

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # 如果未设置，默认为 'password'

apt_cache_servers:

 hosts:

 site-cache:

 ansible_host: 192.168.1.20

 gateway: 192.168.1.1

 vlanid: "100" # 可选

 proxmoxLxcDiskSizeGb: 120 # 每个主机覆盖

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

部署 LXC 容器

删除虚拟机/LXC

行为

proxmox.yml

检查 Proxmox 中是否已存在同名虚拟机

使用轮询方式在节点之间分配虚拟机

从模板克隆

配置静态 IP、标签和 cloud-init

从第一个 local_users 条目设置 cloud-init 用户凭据

支持 VLAN 标签

proxmox_lxc.yml

检查容器是否按名称或 IP 不存在

使用轮询方式在节点之间分配 LXC

创建具有静态 IP 的容器

自动创建第一个 local_users 帐户，具有 sudo 访问权限和 SSH 密钥

配置�络的 netplan

自动启动容器

排除 UPF 主机

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_delete.yml

proxmox_delete.yml

停止并删除与清单主机名匹���的虚拟机/LXC

在所有配置的节点中搜索

20 秒后强制停止

虚拟机/LXC 分配与标签

轮询分配

虚拟机和 LXC 会使用轮询（模）逻辑自动分配到 Proxmox 节点：

示例：3 个虚拟化主机和 5 个 MME：

工作原理：

1. Playbook 确定主机的角色组（例如，mme、sgw、hss）

2. 计算该组内的主机索引（基于 0）

3. 使用模运算：host_index % number_of_nodes

4. 根据结果选择虚拟化主机

配置：

mme01 → pve-node-01 (index 0 % 3 = 0)

mme02 → pve-node-02 (index 1 % 3 = 1)

mme03 → pve-node-03 (index 2 % 3 = 2)

mme04 → pve-node-01 (index 3 % 3 = 0)

mme05 → pve-node-02 (index 4 % 3 = 1)

自动标签

虚拟机和 LXC 会自动标记为：

角色/组名称：主机所属的所有 Ansible 组

站点名称：site_name 变量

示例：

结果： 虚拟机/LXC 被标记为：mme、melbourne-prod

标���在 Proxmox UI 中可见，有助于过滤/组织。

每主机覆盖

在特定主机上覆盖默认值：

对于虚拟机 (proxmox.yml) - 定义多个服务器

proxmoxServers:

 pve-node-01: { ... }

 pve-node-02: { ... }

 pve-node-03: { ... }

对于 LXC (proxmox_lxc.yml) - 列出多个节点

proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

site_name: "melbourne-prod"

mme:

 hosts:

 melbourne-mme01: { ... }

hosts:

 high-spec-host:

 ansible_host: 192.168.1.50

 gateway: 192.168.1.1

 proxmoxLxcCores: 8 # 覆盖核心数

 proxmoxLxcMemoryMb: 16384 # 覆盖内存

 proxmoxLxcDiskSizeGb: 100 # 覆盖磁盘

实用程序剧本

实用程序剧本提供了管理已部署的 OmniCore 基础设施的操作工具。这些剧本位于 util_playbooks/ 目录中，可以独立运行

以执行常见的维护和故障排除任务。

快速参考

剧本 目�

health_check.yml 为所有服务生成全面的健康报告

restore_hss.yml 从备份恢复 HSS 数据库和/或配置

ip_plan_generator.yml 生成带有 Mermaid 图的�络文档

get_ports.yml 审计所有主机上的开放端口和监听服务

getLocalCapture.yml 从主机检索数据包捕获文件

delete_local_user.yml 从所有主机删除本地用户帐户

updateMtu.yml 将�络接口的 MTU 设置为 9000（巨型帧）

systemctl status.yml 检查 EPC 组件上的服务状态

健康检查

文件: util_playbooks/health_check.yml

生成涵盖所有已部署的 OmniCore 和 OmniCall 服务的全面 HTML 健康报告。

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

输出: /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

收集�信息

组件 收集�数据

所有服务 服务状态、版本、运行时间

OmniHSS 数据库状态、Diameter 对等连接

OmniDRA Diameter 对等连接和状态

OmniTAS 活动呼叫、会话、注册、CPU 使用率

OCS KeyDB 复制状态

HSS 恢复

文件: util_playbooks/restore_hss.yml

从备份文件恢复 OmniHSS。支持仅恢复数据库、仅恢复配置或两者都恢复。

备份文件格式

类型 文件名模式 内容

数据库 hss_dump_<hostname>_<timestamp>.sql omnihss 数据库的 MySQL 转储

配置 hss_<hostname>_<timestamp>.tar.gz /etc/omnihss 目录的归档

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/restore_hss.yml

IP 计划生成器

文件: util_playbooks/ip_plan_generator.yml

从清单生成�络文档，包括：

主机 IP 分配（主 NIC 和次 NIC）

�络段概述

接口连接图（Diameter、GTP、PFCP、SIP、SS7）

输出文件

文件 格式 描述

/tmp/ip_plan_<customer>_<site>.md Markdown 基于文本的文档

/tmp/ip_plan_<customer>_<site>.html HTML 带有可过滤层的交互式图

端口审计

文件: util_playbooks/get_ports.yml

审计部署中的所有监听端口并生成文档。

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/get_ports.yml

输出文件

文件 描述

/tmp/all_ports.csv 包含主机名、IP、协议、端口、服务的 CSV 文件

./open_ports.rst 用于 Sphinx 文档的 reStructuredText 表格

收集�数据

字段 描述

主机名 清单主机名

IP 主机的 ansible_host IP 地址

IP 版本 IPv4 或 IPv6

传输 TCP 或 UDP

端口 监听端口号

服务 进程名称

本地捕获检索

文件: util_playbooks/getLocalCapture.yml

从每个主机的 /etc/localcapture 目录中检索两个最近的数据包捕获文件。

输出: ./localCapturePcaps/<hostname>/*.pcap

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

用户管理

文件: util_playbooks/delete_local_user.yml

从清单中的所有主机删除本地用户帐户。

提示: 在提示时输入要删除的用户名。

MTU 配置

文件: util_playbooks/updateMtu.yml

将所有主机的 ens160 接口的 MTU 设置为 9000（巨型帧）。

注意: 此剧本是为 ens160 接口硬编码的。如果您的环境使用不同的接口名称，请修改剧本。

运行实用程序剧本

基本语法

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/delete_local_user.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

ansible-playbook -i <inventory_file> util_playbooks/<playbook>.yml

常用选项

选项 描述

-i <inventory> 指定清单文件

--limit <hosts> 限制为特定主机或组

-v / -vv / -vvv 增加详细程度

--check 干运行（显示将会更改的内容）

--diff 显示文件差异

示例

在生产环境中运行健康检查

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/health_check.yml

在特定主机上恢复 HSS

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/restore_hss.yml --limit hss01

生成带有详细输出的 IP 计划

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/ip_plan_generator.yml -v

