
Guide des opérations

DRA

Table des matières

1. Routage Diameter standard

2. Configuration de base du DRA

3. Multihoming SCTP

4. Tables de référence

Identifiants d'application 3GPP courants

Codes AVP courants

5. Module de routage avancé

6. Module de transformation avancée

7. Traitement des règles

8. Module de métriques étendues

9. Métriques Prometheus

Métriques de base Diameter

Métriques du module de routage avancé

10. Dépannage

Vue d'ensemble de l'architecture

DRA

Routage Diameter standard

Sans les modules Routage avancé ou Transformation avancée, le DRA effectue

un routage Diameter standard basé sur le Protocole de base Diameter (RFC

6733):

https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc6733

Oui

Non

:drop erreur, code

pairs :destination_host

Pas de correspondance

Oui Non

Oui

Non

Oui

:random :failover

Non

Oui

Non

Demande Diameter

entrante

Routage Avancé

Activé?

Évaluer les règles de

routage

AVP Destination-Host

Présent?

Règle

Correspond?

Message abandonné

Pas de réponse

Générer une réponse

d'erreur

avec Result-Code

Router vers les pairs

spécifiés

Router vers l'AVP

Destination-Host

Router vers le pair

sélectionné

Router vers l'hôte

spécifié

AVP Destination-Realm

Présent?

Filtrer les pairs par

domaine

Échec du routage Filtrer par Application-Id

Plusieurs pairs

Correspondent?

Algorithme de sélection

de pair

Sélection aléatoire Premier pair Pair unique

Pair

Connecté?

Routage des demandes

Le DRA route les messages de demande en utilisant un mécanisme basé sur la

priorité défini dans RFC 6733 Section 6.1:

1. AVP Destination-Host (293) - S'il est présent, le DRA route directement

vers le pair spécifié

C'est le mécanisme de routage de la plus haute priorité

Si le pair n'est pas connecté, le routage échoue

Fournit un contrôle explicite du routage au niveau de l'hôte

2. AVP Destination-Realm (283) - Si Destination-Host est absent, le

routage se fait en fonction du domaine

Le DRA sélectionne un pair connecté qui annonce le support pour le

domaine cible

L'équilibrage de charge est appliqué lorsque plusieurs pairs

correspondent au domaine

Le routage basé sur le domaine permet une flexibilité entre plusieurs

hôtes

3. Application-Id - Les pairs sont filtrés par les applications Diameter prises

en charge

Seuls les pairs annonçant le support pour l'Application-Id du message

sont pris en compte

Basé sur l'échange de capacités (CER/CEA) lors de l'établissement de la

connexion du pair

Voir Identifiants d'application 3GPP courants pour référence

Routage des réponses

Les paquets de réponse utilisent un mécanisme de routage fondamentalement

différent de celui des demandes :

https://datatracker.ietf.org/doc/html/rfc6733#section-6.1
https://datatracker.ietf.org/doc/html/rfc6733#section-6.5
https://datatracker.ietf.org/doc/html/rfc6733#section-6.4
https://datatracker.ietf.org/doc/html/rfc6733#section-6.3

Routage basé sur la session: Les paquets de réponse suivent toujours le

chemin inverse de la demande

Préservation de l'ID de bout en bout: L'identifiant de bout en bout

reste inchangé à travers tous les sauts

Routage par saut: Le DRA utilise l'identifiant de saut pour maintenir l'état

de routage (change à chaque saut)

Aucune évaluation de règle: Le DRA n'évalue pas les règles de routage

ou le contenu des AVP pour les réponses

Corrélation avec état: Les tables de routage internes suivent quel pair a

envoyé chaque demande

Pourquoi les réponses ne sont pas routées par des modules avancés :

Le routage des réponses est déterministe et doit revenir au pair d'origine

Le protocole Diameter exige que les réponses suivent le chemin de

demande établi

Les décisions de routage pour les réponses sont prises en fonction du

contexte de la demande originale, pas du contenu de la réponse

Cela garantit une gestion correcte des sessions et empêche les boucles de

routage

Voir RFC 6733 Section 6.2 pour des détails sur le routage des messages de

réponse.

Sélection de pairs

Lorsque plusieurs pairs correspondent aux critères de routage, l'algorithme de

peer_selection_algorithm configuré détermine la sélection :

:random - Sélectionne aléatoirement parmi les pairs disponibles (par

défaut)

:failover - Sélectionne toujours le premier pair de la liste (basé sur la

priorité)

Les pairs doivent être en état connecté pour être sélectionnés

Les pairs déconnectés ou hors service sont automatiquement exclus

https://datatracker.ietf.org/doc/html/rfc6733#section-6.2

Limitations du routage standard

Pas de règles de routage personnalisées basées sur les valeurs AVP (par

exemple, motifs IMSI)

Pas de traduction de domaine ou de modification d'AVP

Impossible de router en fonction du pair d'origine

Contrôle limité sur la distribution du trafic

Les modules Routage avancé et Transformation avancée étendent ce

comportement standard avec des capacités de routage basées sur des règles

et de manipulation de paquets.

Configuration de base du DRA

Le DRA nécessite une configuration de base définissant son identité, ses

paramètres réseau et ses connexions de pair. Cette configuration établit la

base de toutes les opérations de routage.

Structure de configuration

%{

 host: "dra01.example.com",

 realm: "example.com",

 listen_ip: "192.168.1.10",

 listen_port: 3868,

 service_name: :example_dra,

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 log_unauthorized_peer_connection_attempts: true,

 peers: [

 # Configurations des pairs...

]

}

Paramètres d'identité du DRA

Paramètre Type Description

host Chaîne
L'Identité Diameter du DRA (nom de domaine

entièrement qualifié)

realm Chaîne Le domaine Diameter du DRA

product_name Chaîne
Nom du produit annoncé dans les messages

CER/CEA

vendor_id Entier
Vendor-ID tel que défini dans RFC 6733 Section

5.3.3 (10415 = 3GPP)

Paramètres réseau

Paramètre Type Description

listen_ip
Chaîne

ou Liste

Adresse(s) IP sur lesquelles le DRA écoute.

Pour le multihoming SCTP, utilisez une liste

de chaînes IP (voir Multihoming SCTP)

listen_port Entier
Port TCP/SCTP pour les connexions

Diameter (standard : 3868)

service_name Atome Identifiant de service interne Erlang

request_timeout Entier

Délai d'attente en millisecondes pour les

paires demande/réponse (par défaut :

5000)

https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-5.3.3
https://datatracker.ietf.org/doc/html/rfc6733#section-5.3.3

Paramètres de sélection de pairs

Paramètre Type Description

peer_selection_algorithm Atome

Algorithme

d'équilibrage

de charge :

:random

(sélection

aléatoire) ou

:failover

(priorité au

premier pair)

allow_undefined_peers_to_connect Booléen

Autoriser les

connexions de

pairs non

définis dans la

configuration

(par défaut :

false)

log_unauthorized_peer_connection_attempts Booléen

Journaliser les

tentatives de

connexion de

pairs non

autorisés

Configuration des pairs

Chaque pair dans la liste peers définit une connexion Diameter :

Paramètres des pairs

%{

 host: "mme01.operator.com",

 realm: "operator.com",

 ip: "192.168.1.20",

 port: 3868,

 transport: :diameter_tcp,

 tls: false,

 initiate_connection: false

}

Paramètre Type Description

host Chaîne

L'Identité Diameter du pair (FQDN) -

doit correspondre exactement pour le

routage

realm Chaîne Domaine Diameter du pair

ip Chaîne
Adresse IP principale du pair pour la

connexion (requise)

ips Liste

Liste d'adresses IP pour le multihoming

SCTP (optionnel, voir Multihoming

SCTP)

port Entier
Port Diameter du pair (typiquement

3868)

transport Atome
Protocole de transport : :diameter_tcp

ou :diameter_sctp

tls Booléen
Activer le chiffrement TLS (si true ,

utiliser généralement le port 3869)

initiate_connection Booléen

true : le DRA se connecte au pair,

false : le DRA attend que le pair se

connecte

Modes de connexion

Initier la connexion (initiate_connection: true)

Le DRA agit en tant que client Diameter

Le DRA initie la connexion TCP/SCTP au pair

Utilisé pour se connecter à HSS, PCRF ou d'autres systèmes backend

Le DRA réessaiera les connexions si le pair est injoignable

https://datatracker.ietf.org/doc/html/rfc6733#section-4.3

Accepter la connexion (initiate_connection: false)

Le DRA agit en tant que serveur Diameter

Le DRA attend que le pair se connecte

Utilisé pour les connexions MME, SGSN, P-GW

Le pair doit être dans la configuration ou

allow_undefined_peers_to_connect: true

Exemple de configuration

%{

 host: "dra01.mvno.example.com",

 realm: "mvno.example.com",

 listen_ip: "10.100.1.10",

 listen_port: 3868,

 service_name: :mvno_dra,

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 log_unauthorized_peer_connection_attempts: true,

 peers: [

 # MME - attend que le MME se connecte

 %{

 host: "mme01.operator.example.com",

 realm: "operator.example.com",

 ip: "10.100.2.15",

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: false

 },

 # HSS - le DRA initie la connexion

 %{

 host: "hss01.mvno.example.com",

 realm: "mvno.example.com",

 ip: "10.100.3.141",

 port: 3868,

 transport: :diameter_tcp,

 tls: false,

 initiate_connection: true

 },

 # PCRF avec TLS - le DRA initie une connexion sécurisée

 %{

 host: "pcrf01.mvno.example.com",

 realm: "mvno.example.com",

 ip: "10.100.3.22",

 port: 3869,

 transport: :diameter_tcp,

 tls: true,

Notes importantes

Correspondance des noms d'hôtes : Les noms d'hôtes des pairs dans

les règles de Routage avancé doivent correspondre exactement à la valeur

host configurée ici (sensible à la casse)

Échange de capacités : Lors de la connexion, les pairs échangent les

applications prises en charge via des messages CER/CEA

Support des applications : Le DRA annonce toutes les applications 3GPP

prises en charge (voir Identifiants d'application 3GPP courants)

Vendor-ID 10415 : Valeur standard pour les applications 3GPP

Délai d'attente des demandes : Affecte le TTL des Métriques étendues

(délai d'attente + 5 secondes)

Sélection de pairs : Lorsque plusieurs pairs correspondent aux critères de

routage, peer_selection_algorithm détermine lequel est choisi

Considérations de sécurité

Définir allow_undefined_peers_to_connect: false en production

Activer log_unauthorized_peer_connection_attempts: true pour la

surveillance de la sécurité

S'assurer que les règles de pare-feu correspondent aux paramètres

listen_ip et listen_port

Valider les certificats des pairs lors de l'utilisation de TLS

Multihoming SCTP

Le multihoming SCTP fournit une redondance réseau en permettant aux points

de terminaison de se lier à plusieurs adresses IP. Si le chemin réseau principal

 initiate_connection: true

 }

]

}

échoue, le SCTP bascule automatiquement vers un chemin alternatif sans

perturber la session Diameter.

Comment ça fonctionne

HSS (Multihomé)DRA (Multihomé)

Chemin principal

Chemin de secours

Chemin croisé

Chemin croisé

192.168.1.10

10.0.0.10

192.168.1.20

10.0.0.20

Les cœurs SCTP surveillent tous les chemins réseau

La bascule automatique se produit si le chemin principal devient

injoignable

Aucune perturbation de la session Diameter pendant le changement de

chemin

Le noyau gère automatiquement la sélection de chemin

Configuration

Adresses d'écoute DRA

Configurez plusieurs adresses IP locales pour que le DRA se lie à :

Remarques :

Le transport TCP utilise uniquement la première IP de la liste

Le transport SCTP se lie à toutes les IP spécifiées

Le format de chaîne IP unique reste entièrement pris en charge

Configuration des pairs

Configurez plusieurs adresses IP distantes pour les connexions de pairs :

Remarques :

Le champ ip est requis pour la compatibilité avec les versions antérieures

%{

 # IP unique (compatible avec les versions antérieures)

 listen_ip: "192.168.1.10",

 # Plusieurs IP pour le multihoming SCTP

 listen_ip: ["192.168.1.10", "10.0.0.10"],

 listen_port: 3868,

 ...

}

peers: [

 %{

 host: "hss01.example.com",

 realm: "example.com",

 ip: "192.168.1.20", # IP principale

(requise)

 additional_ips: ["192.168.1.20", "10.0.0.20"], # Toutes

les IP pour le multihoming

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: true

 }

]

Le champ ips est optionnel ; s'il est omis, seul ip est utilisé

Pour SCTP, incluez l'IP principale dans la liste ips

Pour TCP, seul ip est utilisé (TCP ne prend pas en charge le multihoming)

Exemple complet

config :dra,

 diameter: %{

 service_name: :omnitouch_dra,

 listen_ip: ["192.168.1.10", "10.0.0.10"], # DRA multihomé

 listen_port: 3868,

 host: "dra01",

 realm: "example.com",

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 peers: [

 # Connexion HSS multihomée

 %{

 host: "hss01.example.com",

 realm: "example.com",

 ip: "192.168.1.20",

 additional_ips: ["192.168.1.20", "10.0.0.20"],

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: true

 },

 # MME à domicile unique (compatible avec les versions

antérieures)

 %{

 host: "mme01.example.com",

 realm: "example.com",

 ip: "192.168.1.30",

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: false

 }

]

 }

Exigences

Le module noyau SCTP doit être chargé (package lksctp-tools sur Linux)

Toutes les adresses IP doivent être routables depuis/vers le pair

Les règles de pare-feu doivent autoriser le trafic SCTP sur toutes les IP

configurées

Les deux points de terminaison doivent être configurés pour le multihoming

pour une redondance complète

Limitations

Le transport TCP ne prend pas en charge le multihoming (n'utilise que l'IP

principale)

Le TLS sur le multihoming SCTP peut avoir des limitations de compatibilité

Le timing de basculement de chemin dépend des paramètres SCTP du

noyau

Tables de référence

Identifiants d'application 3GPP courants

Application-

Id
Interface Description

16777251 S6a/S6d
Authentification MME/SGSN et données

d'abonnement vers HSS

16777252 S13/S13'
Vérification de l'identité de l'équipement

MME vers EIR

16777238 Gx
Contrôle de la politique et de la facturation

PCEF vers PCRF

16777267 S9
Politique de roaming PCRF domicile vers

PCRF visité

16777272 Sy Liaison de session PCRF vers OCS

16777216 Cx Enregistrement IMS I-CSCF/S-CSCF vers HSS

16777217 Sh Données utilisateur IMS AS vers HSS

16777236 SLg
Services de localisation MME/SGSN vers

GMLC

16777291 SLh
Informations sur l'abonné de localisation

GMLC vers HSS

16777302 S6m MTC-IWF vers HSS/HLR pour dispositifs M2M

16777308 S6c Routage SMS HSS vers SMS-SC/IP-SM-GW

16777343 S6t Événements de surveillance SCEF vers HSS

Application-

Id
Interface Description

16777334 Rx Autorisation média AF vers PCRF

Codes AVP courants

Code Nom AVP Type Utilisation

1 User-Name UTF8String
Identifiant de l'abonné

(IMSI dans 3GPP)

264 Origin-Host DiameterIdentity
Nom d'hôte du pair

d'origine

268 Result-Code Unsigned32 Code de résultat standard

283
Destination-

Realm
DiameterIdentity Domaine cible

293 Destination-Host DiameterIdentity Hôte cible (optionnel)

296 Origin-Realm DiameterIdentity Domaine source

297
Experimental-

Result
Grouped

Code de résultat spécifique

au fournisseur

Codes de commande courants

Les codes de commande font partie de l'en-tête du message Diameter, pas des

AVP :

Code
Nom de

commande
Description

257 CER/CEA Demande/Réponse d'échange de capacités

258 RAR/RAA Demande/Réponse de ré-authentification

274 ASR/ASA Demande/Réponse d'annulation de session

275 STR/STA Demande/Réponse de terminaison de session

280 DWR/DWA
Demande/Réponse de surveillance de

dispositif

282 DPR/DPA Demande/Réponse de déconnexion de pair

316 ULR/ULA
Demande/Réponse de mise à jour de

localisation (S6a)

317 CLR/CLA
Demande/Réponse d'annulation de

localisation (S6a)

318 AIR/AIA
Demande/Réponse d'information

d'authentification (S6a)

321 PUR/PUA Demande/Réponse de purge d'UE (S6a)

Module de routage avancé

Le module de routage avancé fournit des capacités de routage de message

flexibles basées sur des règles avec support pour des conditions de

correspondance complexes.

Important : Ce module évalue uniquement les paquets de demande

Diameter entrants (pas les paquets de réponse). Les paquets de réponse

suivent le routage de session établi vers le pair d'origine - voir Routage des

réponses pour plus de détails.

Configuration

Activez le module et définissez les règles de routage dans votre configuration :

Paramètres

Paramètre Description

enabled Définir sur True pour activer le module

rule_name Identifiant unique pour la règle de routage

match

Comment les filtres sont combinés : :all (logique ET - tous

les filtres doivent correspondre), :any (logique OU - au moins

un filtre doit correspondre), :none (logique NOR - aucun filtre

ne peut correspondre)

filters Liste des conditions de filtre (voir Filtres disponibles)

route Action de routage (voir Actions de routage ci-dessous)

Actions de routage

Le paramètre route prend en charge plusieurs actions :

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: <identifiant_de_règle>

 match: <portée_de_correspondance>

 filters: [<liste_de_filtres>]

 route:

 peers: [<liste_de_pairs>]

Router vers des pairs

Routage vers les noms d'hôtes de pairs spécifiés. Les pairs doivent être :

Définis dans la configuration des pairs Diameter du DRA

Le nom d'hôte exact tel que configuré (sensible à la casse)

Actuellement connectés pour que le routage réussisse (les pairs

déconnectés sont ignorés)

Router vers l'AVP Destination-Host

Routage vers le pair spécifié dans l'AVP Destination-Host (293). Si l'AVP

Destination-Host est manquant, le routage revient au comportement normal.

Abandonner le trafic

Élimine silencieusement le message sans envoyer de réponse. Utilisé pour :

Filtrage de trafic et blackholing

Blocage de demandes non désirées

Limitation de débit en abandonnant le trafic excessif

Comportement :

Le message est abandonné au DRA (non transmis)

Aucun message de réponse n'est envoyé au pair demandeur

Implemente le comportement :discard de Diameter Erlang

Métrique : diameter_advanced_routing_drop_count_total (voir Métriques

Prometheus)

route:

 peers: [peer01.example.com, peer02.example.com]

route: :destination_host

route: :drop

https://datatracker.ietf.org/doc/html/rfc6733#section-6.5

Générer une réponse d'erreur

Génère une réponse d'erreur Diameter avec le Result-Code spécifié et l'envoie

au pair demandeur. Codes de résultat courants :

3002 - DIAMETER_UNABLE_TO_DELIVER (routage indisponible)

3003 - DIAMETER_REALM_NOT_SERVED (domaine non pris en charge)

3004 - DIAMETER_TOO_BUSY (protection contre la surcharge, limitation de

débit)

5012 - DIAMETER_UNABLE_TO_COMPLY (rejet général)

Comportement :

Le DRA génère une réponse d'erreur avec le Result-Code spécifié

La réponse inclut Origin-Host, Origin-Realm, Session-Id (auto-rempli par

Diameter)

Le message n'est PAS transmis à aucun pair

Implemente {:protocol_error, code} de Diameter Erlang (équivalent à

{:answer_message, code})

Métrique : diameter_advanced_routing_error_count_total (voir

Métriques Prometheus)

Filtres disponibles

Filtres standard

Disponibles à la fois dans Routage avancé et Transformation avancée :

:application_id - Correspondre à l'identifiant d'application Diameter (voir

référence d'ID d'application)

Valeur unique : {:application_id, 16777251} (S6a/S6d)

Valeurs multiples : {:application_id, [16777251, 16777252]} (S6a

ou S6b)

route: {:error, 3004}

:command_code - Correspondre au code de commande Diameter

Valeur unique : {:command_code, 318} (demande AIR)

Valeurs multiples : {:command_code, [317, 318]} (ULR ou AIR)

:avp - Correspondre à la valeur AVP (voir référence de code AVP)

Correspondance exacte : {:avp, {296,

"epc.mnc001.mcc001.3gppnetwork.org"}}

Correspondance regex : {:avp, {1, ~r"999001.*"}}

Plusieurs motifs : {:avp, {1, ["505057001313606", ~r"999001.*",

~r"505057.*"]}}

Toute valeur (vérification de présence) : {:avp, {264, :any}}

Filtre spécifique au routage

Uniquement disponible dans Routage avancé :

:via_peer - Correspond au pair d'où la demande a été reçue

Pair unique : {:via_peer, "omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org"}

Plusieurs pairs : {:via_peer, ["omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org", "omnitouch-lab-

dra02.epc.mnc001.mcc001.3gppnetwork.org"]}

Tout pair : {:via_peer, :any}

Filtres spécifiques à la transformation

Uniquement disponibles dans Transformation avancée :

:to_peer - Correspond à un pair de destination prédéterminé (uniquement

pour les paquets de demande)

Pair unique : {:to_peer, "dra01.omnitouch.com.au"}

Plusieurs pairs : {:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}

:from_peer - Correspond au pair qui a envoyé la réponse (uniquement

pour les paquets de réponse)

Pair unique : {:from_peer, "hss-01.example.com"}

Plusieurs pairs : {:from_peer, ["hss-01.example.com", "hss-

02.example.com"]}

:packet_type - Correspond à la direction du paquet

Demande : {:packet_type, :request}

Réponse : {:packet_type, :answer}

Remarques importantes sur les filtres

Filtres AVP : Recommandés uniquement pour les AVP simples (User-Name,

Origin-Host, Destination-Realm, etc.)

Les AVP groupés ne sont pas pris en charge et ne correspondront pas

Les valeurs binaires complexes ne sont pas prises en charge

Utilisez le format : {:avp, {code, value}}

Opérateurs de liste : Pris en charge pour toutes les valeurs de filtre sauf

:packet_type

Lorsqu'une liste est utilisée, elle applique une logique OU à l'intérieur

de la liste

Exemple : {:command_code, [317, 318]} correspond au code de

commande 317 OU 318

Valeurs spéciales :

:any - Correspond à toute valeur (vérifie la présence de l'AVP)

Exemple : {:avp, {264, :any}} correspond si l'AVP Origin-Host existe

avec n'importe quelle valeur

Exemples de routage

Exemple 1 : Routage via le pair

Routez les messages en fonction du DRA d'où ils sont arrivés :

Comment ça fonctionne : Route le trafic S6a qui arrive via des pairs DRA

spécifiques vers des nœuds HSS locaux.

Exemple 2 : Roaming entrant avec correspondance de motifs

Routez le trafic de roaming en fonction des motifs IMSI :

Comment ça fonctionne : Route les messages S6a d'un domaine d'origine

spécifique avec des motifs IMSI correspondants vers des pairs DRA désignés.

Exemple 3 : Routage dynamique avec :destination_host

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: temporary_until_cutover_s6a_via_to_local_hss

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:via_peer, ["omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org", "omnitouch-lab-

dra02.epc.mnc001.mcc001.3gppnetwork.org"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 route:

 peers: [omnitouch-lab-

hss01.epc.mnc001.mcc001.3gppnetwork.org, omnitouch-lab-

hss02.epc.mnc001.mcc001.3gppnetwork.org]

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: inbound_s6a_roaming_to_dcc

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, ["505571234567", ~r"999001.*"]}}'

 route:

 peers: [dra01.omnitouch.com.au, dra02.omnitouch.com.au]

Routez vers la valeur de l'AVP Destination-Host dans le message :

Comment ça fonctionne :

Lorsque les filtres correspondent, route vers le pair spécifié dans l'AVP

Destination-Host (293)

Si l'AVP Destination-Host est manquant, la correspondance est considérée

comme un échec et revient au routage normal

Utile pour honorer le routage lorsque l'expéditeur spécifie la destination

exacte

Exemple 4 : Abandonner le trafic indésirable

Abandonnez le trafic de plages IMSI spécifiques :

Comment ça fonctionne :

Correspond aux messages S6a avec un IMSI commençant par 999999

Abandonne silencieusement le message sans envoyer de réponse

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: route_to_specified_destination_host

 match: ":all"

 filters:

 - '{:avp, {1, [~r"90199.*"]}}' # Correspondance du motif

IMSI

 route: :destination_host

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: drop_test_subscribers

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a

 - '{:avp, {1, [~r"999999.*"]}}' # Plage IMSI de test

 route: :drop

Utile pour filtrer le trafic de test ou bloquer des plages d'abonnés

spécifiques

Voir Métriques Prometheus pour surveiller le trafic abandonné

Exemple 5 : Limitation de débit avec des réponses d'erreur

Retournez DIAMETER_TOO_BUSY pour des motifs de trafic spécifiques :

Comment ça fonctionne :

Correspond au trafic S6a d'un pair surchargé spécifique

Retourne une réponse d'erreur DIAMETER_TOO_BUSY (3004)

Le pair demandeur reçoit une erreur et doit se retirer

Utile pour la protection contre la surcharge et la limitation de débit

Voir Métriques Prometheus pour surveiller les réponses d'erreur

Exemple 6 : Réponses d'erreur conditionnelles par commande

Bloquez des types de commandes spécifiques avec des codes d'erreur

appropriés :

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: rate_limit_high_volume_peer

 match: ":all"

 filters:

 - '{:via_peer, "mme-overloaded-01.example.com"}'

 - '{:application_id, 16777251}'

 route: {:error, 3004}

Comment ça fonctionne :

Correspond aux messages de demande de purge S6a

Retourne une erreur DIAMETER_UNABLE_TO_COMPLY (5012)

Bloque certaines opérations sans abandonner silencieusement le trafic

Utile pour désactiver sélectivement certaines commandes Diameter

Module de transformation avancée

Le module de transformation avancée permet la modification dynamique des

AVP de message Diameter en fonction de critères de correspondance. Voir

Traitement des règles pour des détails sur la façon dont les règles sont

évaluées.

Configuration

Activez le module et définissez les règles de transformation :

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: block_purge_requests

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a

 - '{:command_code, 321}' # PUR (Demande de purge

d'UE)

 route: {:error, 5012}

Paramètres

Paramètre Description

enabled Définir sur True pour activer le module

rule_name Identifiant unique pour la règle de transformation

match

Comment les filtres sont combinés : :all (logique

ET), :any (logique OU), :none (logique NOR) - voir

Logique de filtre

filters Liste des conditions de filtre (voir Filtres disponibles)

transform.action
Type de transformation (:edit , :remove ou

:overwrite)

transform.avps
Liste des modifications d'AVP à appliquer (voir

référence de code AVP)

Actions de transformation

Paquets de demande (Demandes Diameter)

:edit - Modifier les valeurs AVP existantes

Modifie uniquement les AVP qui existent dans le message

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: <identifiant_de_règle>

 match: <portée_de_correspondance>

 filters: [<liste_de_filtres>]

 transform:

 action: <action_de_transformation>

 avps: [<modifications_avp>]

Si l'AVP n'existe pas, aucun changement n'est effectué

:remove - Supprimer les AVP du message

:overwrite - Remplacer des structures AVP entières

Nécessite le paramètre dictionary spécifiant le dictionnaire Diameter

(par exemple, :diameter_gen_3gpp_s6a)

Paquets de réponse (Réponses Diameter)

:remove - Supprimer les AVP du message

:overwrite - Remplacer des structures AVP entières

Nécessite le paramètre dictionary

Important : Si aucune règle ne correspond, le paquet est transmis de manière

transparente sans aucune transformation.

Syntaxe de modification AVP

Modification standard :

{:avp, {<code>, <new_value>}} - Définir l'AVP à une nouvelle valeur

Suppression d'AVP :

{:avp, {<code>, :any}} - Supprimer l'AVP par ID (supprime

indépendamment de la valeur actuelle)

Remarque : La suppression basée sur avp_id est prise en charge ; la

suppression basée sur le contenu de l'AVP n'est pas prise en charge

Écraser avec dictionnaire :

transform: %{

 action: :overwrite,

 dictionary: :diameter_gen_3gpp_s6a,

 avps: [{:avp, {:"s6a_Supported-Features", {:"s6a_Supported-

Features", 10415, 1, 3221225470, []}}}]

}

Exemples de transformation

Exemple 1 : Réécriture de domaine de destination basée sur le pair

Réécrire le domaine de destination en fonction de l'endroit où le message est

routé :

Comment ça fonctionne : Lorsque les demandes S6a sont routées vers des

pairs DRA spécifiques et correspondent au motif IMSI, réécrit le domaine de

destination pour le réseau d'Operator X.

Exemple 2 : Routage de plusieurs opérateurs avec transformations

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: rewrite_s6a_destination_realm_for_Operator_X

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, [~r"9999999.*"]}}'

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc999.mcc999.3gppnetwork.org"}}'

Comment ça fonctionne : Route différentes plages d'abonnés IMSI vers les

domaines de réseau appropriés en fonction des motifs IMSI. La première règle

correspondante l'emporte (voir Ordre d'exécution).

Exemple 3 : Ré��criture de domaine pour MVNO

Comment ça fonctionne : Transforme le domaine de destination pour un

abonné MVNO spécifique vers leur réseau central hébergé.

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name:

rewrite_s6a_destination_realm_for_roaming_partner_ausie

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc057.mcc505.3gppnetwork.org"}}'

 - '{:avp, {1, [~r"50557.*"]}}'

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc030.mcc310.3gppnetwork.org"}}'

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: rewrite_s6a_destination_realm_for_single_sub

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, ["505057000003606"]}}' # Correspondance

exacte de l'IMSI

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc001.mcc001.3gppnetwork.org"}}'

Exemple 4 : Transformation uniquement pour les demandes avec filtre

de type de paquet

Transformez uniquement les paquets de demande (pas les réponses) :

Comment ça fonctionne :

Correspond uniquement aux paquets demande S6a (pas aux paquets de

réponse)

Vérifie que User-Name (AVP 1) est égal à "999999000000001"

Vérifie que Origin-Host (AVP 264) existe avec n'importe quelle valeur

Réécrit User-Name en "999999000000002"

Si l'AVP n'existe pas, aucun changement n'est effectué

Exemple 5 : Supprimer un AVP

Supprimer un AVP spécifique des messages :

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: Tutorial_Rule_AIR

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:command_code, 318}'

 - '{:packet_type, :request}'

 - '{:avp, {1, "999999000000001"}}'

 - '{:avp, {264, :any}}' # Origin-Host doit exister avec

n'importe quelle valeur

 transform:

 action: ":edit"

 avps:

 - '{:avp, {1, "999999000000002"}}'

Comment ça fonctionne : Supprime l'AVP User-Name (code 1) de tous les

messages S6a, indépendamment de sa valeur actuelle.

Exemple 6 : Écraser un AVP groupé sur les paquets de réponse

Modifier des AVP groupés complexes dans les paquets de réponse en utilisant

l'action :overwrite avec le support du dictionnaire :

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: remove_user_name_avp

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 transform:

 action: ":remove"

 avps:

 - '{:avp, {1, :any}}' # Supprimer User-Name

indépendamment de la valeur

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: add_sos_apn_to_ula

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a/S6d

 - '{:command_code, 316}' # ULA (Réponse de

mise à jour de localisation)

 - '{:packet_type, :answer}' # Paquets de réponse

uniquement

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}' #

Domaine d'origine

 transform:

 action: ":overwrite"

 dictionary: ":diameter_gen_3gpp_s6a"

 avps:

 - '{:avp, {:"s6a_APN-Configuration-Profile",

 {:"s6a_APN-Configuration-Profile", 1, 0, [

 {:"s6a_APN-Configuration", 1, 0, "internet", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 9,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[0], []}, []}],

 [1], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []},

 {:"s6a_APN-Configuration", 2, 0, "ims", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 5,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[1], []}, []}],

 [0], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []},

 {:"s6a_APN-Configuration", 3, 0, "sos", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 5,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[1], []}, []}],

 [1], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

Comment ça fonctionne :

Correspond aux paquets S6a de réponse de mise à jour de localisation

(ULA) d'un domaine d'origine spécifique

Utilise l'action :overwrite pour remplacer l'ensemble de l'AVP groupé APN-

Configuration-Profile

Nécessite le paramètre dictionary pour encoder correctement les

structures AVP groupées complexes

Ajoute trois configurations APN : "internet" (contexte 1), "ims" (contexte 2)

et "sos" (contexte 3)

Chaque APN inclut des profils QoS, des limites de bande passante (AMBR)

et des paramètres de type PDN

La transformation garantit que les services d'urgence (SOS) APN sont

provisionnés pour tous les abonnés de ce domaine

Quand utiliser :overwrite avec dictionnaire :

Modifier des AVP groupés avec des structures imbriquées (comme APN-

Configuration-Profile)

Ajouter ou restructurer des données d'abonnement complexes 3GPP

Lorsque l'action :edit ne peut pas gérer la complexité de l'AVP

Le dictionnaire doit correspondre à l'application Diameter

(:diameter_gen_3gpp_s6a pour S6a, etc.)

Remarques importantes :

:overwrite remplace l'ensemble de l'AVP, pas seulement des champs

individuels

La structure de l'AVP doit correspondre exactement à la définition du

dictionnaire

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []}

], []}

 }}'

Une structure incorrecte entraînera des échecs d'encodage et des paquets

abandonnés

Il s'agit d'une fonctionnalité avancée - validez soigneusement dans un

environnement de test d'abord

Cas d'utilisation

Support MVNO : Router le trafic des opérateurs virtuels vers des réseaux

centraux hébergés

Migration de réseau : Rediriger progressivement les abonnés vers une

nouvelle infrastructure

Traduction de domaine : Convertir entre différents schémas de

nommage pour les partenaires de roaming

Multi-location : Isoler les populations d'abonnés par domaine

Routage des transporteurs : Diriger le trafic vers les réseaux de

transporteurs corrects en fonction des plages IMSI

Traitement des règles

S'applique aux modules Routage avancé et Transformation avancée.

Ordre d'exécution

Oui

Non

Oui

Non

Oui Non

Message Diameter

entrant

Règle 1

Filtres correspondent ?

Appliquer l'action de la

règle 1

Règle 2

Filtres correspondent ?

Appliquer l'action de la

règle 2

Règle 3

Filtres correspondent ?

Appliquer l'action de la

règle 3

Aucune règle ne

correspond

Comportement par

défaut :

Routage standard

ou passage à travers

Arrêter le traitement

1. Les règles sont évaluées dans l'ordre de haut en bas tel que défini dans

la configuration

2. Les filtres au sein d'une règle sont évalués en fonction du paramètre match

(:all , :any ou :none)

3. La première règle correspondante l'emporte - les règles suivantes ne

sont pas évaluées

4. Si aucune règle ne correspond, le comportement de routage/passage à

travers par défaut est utilisé

Logique de filtre

Le paramètre match détermine comment les filtres sont combinés :

match: :all (Logique ET)

Tous les filtres doivent correspondre pour que la règle réussisse.

Exemple : Avec 3 filtres, filter1 ET filter2 ET filter3 doivent tous être

vrais.

match: :any (Logique OU)

Au moins un filtre doit correspondre pour que la règle réussisse.

Oui

Non

Oui

Non

Oui

Non

Filtres 1

Passer ?

Règle correspond

Appliquer l'action

Filtres 2

Passer ?

Filtres 3

Passer ?

Règle échoue

Appliquer l action

Exemple : Avec 3 filtres, filter1 OU filter2 OU filter3 (au moins un passe).

match: :none (Logique NOR)

Aucun filtre ne peut correspondre pour que la règle réussisse (correspondance

inverse).

Exemple : Avec 3 filtres, PAS filter1 ET PAS filter2 ET PAS filter3 (tous

doivent échouer).

Remarques supplémentaires :

Lors de l'utilisation d'opérateurs de liste au sein d'une valeur de filtre (par

exemple, {:avp, {1, ["value1", "value2"]}}), les valeurs utilisent la logique

OU (n'importe quelle peut correspondre).

Modèles d'expressions régulières

Utilisez la syntaxe ~r"pattern" pour la correspondance regex :

~r"999001.*" - Correspond aux IMSI commençant par 999001

~r"^310[0-9]{3}.*" - Correspond aux IMSI avec des motifs MNC

spécifiques

~r".*test$" - Correspond aux valeurs se terminant par "test"

Meilleures pratiques

1. Spécificité : Ordre des règles de la plus spécifique à la plus générale

2. Performance : Placez les correspondances les plus courantes en premier

pour réduire la surcharge de traitement

3. Tests : Validez les motifs regex avant le déploiement

4. Documentation : Utilisez des valeurs descriptives pour rule_name pour

une clarté opérationnelle

5. Surveillance : Suivez les taux de correspondance des règles pour vérifier

le comportement attendu

Module de métriques étendues

Le module de métriques étendues fournit des capacités de télémétrie et

d'analyse avancées pour analyser les modèles de trafic Diameter au-delà des

métriques standard.

Configuration

Activez le module et configurez des types de métriques spécifiques :

Paramètres

Paramètre Description

enabled
Définir sur true pour activer le

module de métriques étendues

attach_attempt_reporting_enabled

Activer le suivi et le rapport des

tentatives de connexion LTE (S6a

AIR/AIA)

Métriques disponibles

Suivi des tentatives de connexion

Suit les tentatives de connexion des abonnés LTE en surveillant les paires de

messages de demande d'information d'authentification (AIR) et de réponse

(AIA) :

Parse error on line 36: ... style Metrics fill:#f3e5f5 style E -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Réessayer

Mesure : attach_attempt_count

Champs :

imsi - L'IMSI de l'abonné (à partir de l'AVP User-Name - voir codes AVP)

module_extended_metrics:

 enabled: true

 attach_attempt_reporting_enabled: true

Tags :

origin_host - Le pair qui a originairement fait la demande de connexion

result_code - Le code de résultat Diameter de la réponse HSS

Comment ça fonctionne :

1. Lorsqu'une AIR (code de commande 318, application S6a 16777251 - voir

Identifiants d'application) est reçue, le module extrait :

ID de bout en bout pour la corrélation demande/réponse

IMSI (AVP User-Name code 1)

Origin-Host (AVP code 264)

2. Les métadonnées de la demande sont stockées dans ETS avec un TTL

3. Lorsque l'AIA correspondante est reçue, le module :

Corrèle en utilisant l'ID de bout en bout

Extrait le code de résultat (AVP 268 ou AVP de résultat expérimental

297)

Émet la métrique avec l'IMSI, l'hôte d'origine et le code de résultat

Cas d'utilisation

Analyse du taux de succès des connexions - Suivre les tentatives de

connexion réussies par rapport aux échecs par code de résultat

Dépannage au niveau de l'IMSI - Identifier les abonnés rencontrant des

échecs de connexion

Surveillance des performances du réseau - Surveiller les modèles de

tentatives de connexion par origine (MME/SGSN)

Analyse du roaming - Analyser les taux de succès des connexions de

roaming entrant

Intégration

Les métriques étendues sont exportées via l'intégration InfluxDB :

Les codes de résultat sont des codes Diameter standard :

2001 - Succès (DIAMETER_SUCCESS)

5001 - Échec d'authentification (DIAMETER_AUTHENTICATION_REJECTED)

5004 - AVP Diameter non pris en charge

Voir RFC 6733 pour la liste complète des codes de résultat

Notes importantes

Les métriques des tentatives de connexion ne suivent que les paires

AIR/AIA S6a (Application-Id 16777251, Command-Code 318)

Les métadonnées de la demande expirent en fonction du délai d'attente de

la demande configuré + 5 secondes

Le traitement des métriques est asynchrone (processus lancé) pour éviter

de bloquer le flux de messages

Le module fonctionne indépendamment des modules de routage et de

transformation

Métriques Prometheus

Le DRA expose des métriques Prometheus complètes pour surveiller le trafic

Diameter, la santé des pairs et les opérations des modules. Toutes les

métriques sont disponibles à l'endpoint /metrics .

Métriques de base Diameter

État des pairs

DRA.Metrics.InfluxDB.write(%{

 measurement: "attach_attempt_count",

 fields: %{imsi: "505057000000001"},

 tags: %{origin_host: "mme-01.example.com", result_code: 2001}

})

Métrique : diameter_peer_status Type : Gauge Description : Si le pair est

connecté (1) ou non (0) Tags :

origin_host - Identité Diameter du pair

ip - Adresse IP du pair

Exemple :

Compte de messages

Métrique : diameter_peer_message_count_total Type : Counter Description

: Nombre total de messages Diameter échangés avec les pairs Tags :

origin_host - Identité Diameter du pair

received_from - Pair d'où le message a été reçu

application_id - Identifiant d'application Diameter (voir référence d'ID

d'application)

cmd_code - Code de commande Diameter (voir Codes de commande

courants)

application_name - Nom d'application lisible par l'homme (par exemple,

"3GPP_S6a")

cmd_name - Nom de commande lisible par l'homme (par exemple, "AIR")

direction - "request" ou "response"

Exemple :

Vérifier si un pair spécifique est connecté

diameter_peer_status{origin_host="hss01.example.com"}

Compter les pairs déconnectés

count(diameter_peer_status == 0)

Codes de résultat des réponses

Métrique : diameter_peer_message_result_code_count_total Type : Counter

Description : Nombre total de réponses Diameter par code de résultat Tags :

origin_host - Demandeur d'origine

routed_to - Pair qui a envoyé la réponse

application_id - Identifiant d'application Diameter

cmd_code - Code de commande Diameter

application_name - Nom de l'application

cmd_name - Nom de la commande

result_code - Code de résultat Diameter ou code de résultat expérimental

Exemple :

Taux de demande AIR S6a d'un MME spécifique

rate(diameter_peer_message_count_total{

 cmd_code="318",

 direction="request",

 origin_host="mme01.example.com"

}[5m])

Taux total de messages par application

sum by (application_name)

(rate(diameter_peer_message_count_total[5m]))

Taux de succès pour les demandes AIR S6a

rate(diameter_peer_message_result_code_count_total{

 cmd_code="318",

 result_code="2001"

}[5m])

Taux d'erreur par code de résultat

sum by (result_code) (

 rate(diameter_peer_message_result_code_count_total{

 result_code!="2001"

 }[5m])

)

Codes de résultat courants :

2001 - DIAMETER_SUCCESS

3002 - DIAMETER_UNABLE_TO_DELIVER

3003 - DIAMETER_REALM_NOT_SERVED

3004 - DIAMETER_TOO_BUSY

5001 - DIAMETER_AUTHENTICATION_REJECTED

5004 - DIAMETER_INVALID_AVP_VALUE

5012 - DIAMETER_UNABLE_TO_COMPLY

Délai de réponse

Métrique : diameter_peer_last_response_delay Type : Gauge Description :

Délai de réponse le plus récent en millisecondes (DRA → Pair → DRA) Tags :

origin_host - Demandeur d'origine

routed_to - Pair qui a envoyé la réponse

application_name - Nom de l'application

cmd_name - Nom de la commande

Exemple :

Demandes non répondues

Métrique : diameter_peer_unanswered_request_count_total Type : Counter

Description : Demandes envoyées mais non répondues dans le délai d'attente

Tags :

origin_host - Demandeur d'origine

Temps de réponse moyen de HSS

avg(diameter_peer_last_response_delay{routed_to="hss01.example.com"})

Temps de réponse P95 pour S6a

histogram_quantile(0.95,

 rate(diameter_peer_last_response_delay{application_name="3GPP_S6a"}

[5m])

)

routed_to - Pair qui n'a pas répondu

application_id - Identifiant d'application Diameter

cmd_code - Code de commande Diameter

application_name - Nom de l'application

cmd_name - Nom de la commande

Exemple :

Tentatives de connexion non autorisées

Métrique : diameter_peer_unauthorized_connection_count_total Type :

Counter Description : Tentatives de connexion de pairs non autorisés Tags :

origin_host - Identité revendiquée du pair non autorisé

supported_applications - Applications annoncées par le pair

peer_ip - Adresse IP de la tentative de connexion

Exemple :

Métriques du module de routage avancé

Trafic abandonné

Taux de demandes non répondues

rate(diameter_peer_unanswered_request_count_total[5m])

Identifier les pairs problématiques

topk(5, sum by (routed_to) (

 rate(diameter_peer_unanswered_request_count_total[5m])

))

Tentatives de connexion non autorisées

rate(diameter_peer_unauthorized_connection_count_total[5m])

Alerte sur un accès non autorisé

diameter_peer_unauthorized_connection_count_total > 0

Métrique : diameter_advanced_routing_drop_count_total Type : Counter

Description : Demandes abandonnées par l'action

