
REST API�南

← �回主文档

本指南提供了OmniSS7 REST API 和 Swagger UI 的全面文档。

目录

1. 概述

2. HTTP服务器配置

3. Swagger UI

4. API端点

5. 身份验证

6. 响应格式

7. 错误处理

8. 指标（Prometheus）

9. 示例请求

概述

OmniSS7提供了一个REST API，用于以编程方式访问MAP（移动应用部分）操作。该API允许您：

发送MAP请求（SRI、SRI-for-SM、UpdateLocation等）

检索MAP响应

通过Prometheus监控系统指标

API架构

HTTP服务器配置

服务器详情

参数 值 可配置

协议 HTTP 否

IP地址 0.0.0.0（所有接口） 仅通过代码

端口 8080 仅通过代码

传输 Plug.Cowboy 否

访问URL: http://[server-ip]:8080

启用/禁用HTTP服务器

控制HTTP服务器是否启动：

默认: true（启用）

禁用时: HTTP服务器将不会启动，REST API/Swagger UI将不可用。

Swagger UI

该API包括一个Swagger UI，用于交互式API文档和测试。

访问Swagger UI

URL: http://[server-ip]:8080/swagger

config :omniss7,

 start_http_server: true # �置为false以禁用

功能:

交互式API文档

测试端点的尝试功能

请求/响应架构

示例有效负载

Swagger JSON

OpenAPI规范可在以下位置获取：

URL: http://[server-ip]:8080/swagger.json

用例:

导入到Postman或其他API客户端

生成客户端库

API文档自动化

API端点

所有MAP操作端点遵循模式：POST /api/{operation}

端点摘要

端点 方法 目的 超时

/api/sri POST 发送路由信息 10s

/api/sri-for-sm POST 发��SM的路由信息 10s

/api/send-auth-info POST 发送认证信息 10s

/api/MT-forwardSM POST 移动终止转发SM 10s

/api/forwardSM POST 转发SM 10s

/api/updateLocation POST 更新位置 10s

/api/prn POST 提供漫游号码 10s

/metrics GET Prometheus指标 N/A

/swagger GET Swagger UI N/A

/swagger.json GET OpenAPI规范 N/A

注意: 所有MAP请求都有一个硬编码的10秒超时。

SendRoutingInfo (SRI)

检索用于建立与移动用户的呼叫的路由信息。

端点: POST /api/sri

请求体:

参数:

字段 类型 必需 描述

msisdn 字符串 是 被叫方MSISDN

gmsc 字符串 是 网关MSC全球标题

响应 (200 OK):

错误 (504 Gateway Timeout):

cURL示例:

{

 "msisdn": "1234567890",

 "gmsc": "5551234567"

}

{

 "result": {

 "imsi": "001001234567890",

 "msrn": "5551234999",

 "vlr_number": "5551234800",

 ...

 }

}

{

 "error": "timeout"

}

SendRoutingInfoForSM (SRI-for-SM)

检索用于将SMS发送到移动用户的路由信息。

端点: POST /api/sri-for-sm

请求体:

参数:

字段 类型 必需 描述

msisdn 字符串 是 目的地MSISDN

service_center 字符串 是 服务中心全球标题

响应 (200 OK):

curl -X POST http://localhost:8080/api/sri \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "gmsc": "5551234567"

 }'

{

 "msisdn": "1234567890",

 "service_center": "5551234567"

}

cURL示例:

SendAuthenticationInfo

请求订阅者的认证向量。

端点: POST /api/send-auth-info

请求体:

参数:

{

 "result": {

 "imsi": "001001234567890",

 "msc_number": "5551234800",

 "location_info": {...},

 ...

 }

}

curl -X POST http://localhost:8080/api/sri-for-sm \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "service_center": "5551234567"

 }'

{

 "imsi": "001001234567890",

 "vectors": 3

}

字段 类型 必需 描述

imsi 字符串 是 订阅者IMSI

vectors 整数 是 要生成的认证向量数量

响应 (200 OK):

cURL示例:

MT-ForwardSM

将移动终止SMS发送给订阅者。

端点: POST /api/MT-forwardSM

{

 "result": {

 "authentication_sets": [

 {

 "rand": "0123456789ABCDEF...",

 "xres": "...",

 "ck": "...",

 "ik": "...",

 "autn": "..."

 }

],

 ...

 }

}

curl -X POST http://localhost:8080/api/send-auth-info \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vectors": 3

 }'

请求体:

参数:

字段 类型 必需 描述

imsi 字符串 是 目的地订阅者IMSI

destination_service_centre 字符串 是 目的地服务中心GT

originating_service_center 字符串 是 发起服务中心GT

smsPDU 字符串 是 以十六进制格式表示的SMS TPDU

注意: smsPDU必须是十六进制编码的字符串（大写或小写）。

响应 (200 OK):

cURL示例:

{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

}

{

 "result": {

 "delivery_status": "success",

 ...

 }

}

ForwardSM

转发SMS消息（来自订阅者的MO-SMS）。

端点: POST /api/forwardSM

请求体: 与MT-ForwardSM相同

cURL示例:

UpdateLocation

通知HLR订阅者位置更改（VLR注册）。

端点: POST /api/updateLocation

请求体:

curl -X POST http://localhost:8080/api/MT-forwardSM \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

 }'

curl -X POST http://localhost:8080/api/forwardSM \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

 }'

参数:

字段 类型 必需 描述

imsi 字符串 是 订阅者IMSI

vlr 字符串 是 VLR全球标题地址

响应 (200 OK):

注意: 在HLR模式下，这会触发带有每个ISD 10秒超时的InsertSubscriberData (ISD)序列。

cURL示例:

{

 "imsi": "001001234567890",

 "vlr": "5551234800"

}

{

 "result": {

 "hlr_number": "5551234567",

 "subscriber_data": {...},

 ...

 }

}

curl -X POST http://localhost:8080/api/updateLocation \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vlr": "5551234800"

 }'

ProvideRoamingNumber (PRN)

请求MSRN（移动台漫游号码）以进行呼叫路由到漫游订阅者。

端点: POST /api/prn

请求体:

参数:

字段 类型 必需 描述

msisdn 字符串 是 订阅者MSISDN

gmsc 字符串 是 网关MSC GT

msc_number 字符串 是 订阅者的MSC号码

imsi 字符串 是 订阅者IMSI

响应 (200 OK):

cURL示例:

{

 "msisdn": "1234567890",

 "gmsc": "5551234567",

 "msc_number": "5551234800",

 "imsi": "001001234567890"

}

{

 "result": {

 "msrn": "5551234999",

 ...

 }

}

身份验证

当前状态: API 不需要身份验证。

安全考虑:

API旨在用于内部/受信网络

考虑使用防火墙规则限制访问

对于生产部署，考虑实施身份验证中间件

响应格式

所有响应使用JSON格式。

成功响应

HTTP状态: 200 OK

结构:

curl -X POST http://localhost:8080/api/prn \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "gmsc": "5551234567",

 "msc_number": "5551234800",

 "imsi": "001001234567890"

 }'

{

 "result": {

 // �作特定的响应数据

 }

}

错误响应

HTTP状态:

400 Bad Request - 请求体无效JSON

504 Gateway Timeout - MAP请求超时（10秒）

404 Not Found - 无效端点

结构:

或

错误处理

常见错误

错误 HTTP代码 描述 解决方案

无效JSON 400 请求体不是有效的JSON 检查JSON语法

缺少字段 400 缺少必需字段 包含所有必需参数

超时 504 MAP请求超过10秒超时 检查M3UA连接，HLR/VLR可用性

未找到 404 无效端点 检查端点URL

{

 "error": "timeout"

}

{

 "error": "invalid request"

}

超时行为

所有MAP请求都有一个硬编码的10秒超时：

1. 请求发送到MapClient GenServer

2. 等待响应最多10秒

3. 如果没有响应 → �回504 Gateway Timeout

4. 如果收到响应 → �回200 OK和结果

故障排除超时:

检查M3UA连接状态（Web UI → M3UA页面）

验证网络元素（HLR/VLR/MSC）是否可达

检查路由配置

查看SS7事件日志以查找错误

�标（Prometheus）

该API公开Prometheus指标以供监控。

�标端点

URL: http://[server-ip]:8080/metrics

格式: Prometheus文本格式

示例输出:

HELP map_requests_total Total MAP requests

TYPE map_requests_total counter

map_requests_total{operation="sri"} 42

map_requests_total{operation="sri_for_sm"} 158

map_requests_total{operation="updateLocation"} 23

HELP cap_requests_total Total CAP requests

TYPE cap_requests_total counter

cap_requests_total{operation="initialDP"} 87

cap_requests_total{operation="requestReportBCSMEvent"} 91

HELP map_request_duration_milliseconds Duration of MAP

request/responses in ms

TYPE map_request_duration_milliseconds histogram

map_request_duration_milliseconds_bucket{operation="sri",le="10"}

5

map_request_duration_milliseconds_bucket{operation="sri",le="50"}

12

map_request_duration_milliseconds_bucket{operation="sri",le="100"}

35

...

HELP map_pending_requests Number of pending MAP TID waiters

TYPE map_pending_requests gauge

map_pending_requests 3

可用�标

�标 类型 标签 描述

map_requests_total
计数

器
operation

按操作类型的MAP请求

总数

cap_requests_total
计数

器
operation

按操作类型的CAP请求总

数

map_request_duration_milliseconds
直方

图
operation 请求持续时间（毫秒）

map_pending_requests 指标 - 待处理的MAP事务数量

Prometheus配置

添加到您的prometheus.yml：

scrape_configs:

 - job_name: 'omniss7'

 static_configs:

 - targets: ['server-ip:8080']

 metrics_path: '/metrics'

 scrape_interval: 15s

示例请求

Python示例

import requests

import json

SRI-for-SM请求

url = "http://localhost:8080/api/sri-for-sm"

payload = {

 "msisdn": "1234567890",

 "service_center": "5551234567"

}

response = requests.post(url, json=payload, timeout=15)

if response.status_code == 200:

 result = response.json()

 print(f"成功: {result}")

elif response.status_code == 504:

 print("超时 - 网络没有响应")

else:

 print(f"错误: {response.status_code} - {response.text}")

JavaScript示例

const axios = require('axios');

async function sendSRI() {

 try {

 const response = await

axios.post('http://localhost:8080/api/sri', {

 msisdn: '1234567890',

 gmsc: '5551234567'

 }, {

 timeout: 15000

 });

 console.log('成功:', response.data);

 } catch (error) {

 if (error.code === 'ECONNABORTED') {

 console.error('超时 - 网络没有响应');

 } else {

 console.error('错误:', error.response?.data || error.message);

 }

 }

}

sendSRI();

Bash/cURL示例

#!/bin/bash

UpdateLocation请求

response=$(curl -s -w "\n%{http_code}" -X POST

http://localhost:8080/api/updateLocation \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vlr": "5551234800"

 }')

http_code=$(echo "$response" | tail -n 1)

body=$(echo "$response" | sed '$d')

if ["$http_code" -eq 200]; then

 echo "成功: $body"

elif ["$http_code" -eq 504]; then

 echo "超时 - 网络没有响应"

else

 echo "错误 $http_code: $body"

fi

流程图

API请求流程

SS7 NetworkM3UA ConnectionMapClientAPIhandlerClient

SS7 NetworkM3UA ConnectionMapClientAPIhandlerClient

如果超时（10s）

POST /api/sri

GenServer.call (10s timeout)

Send SRI request

M3UA/SCCP/MAP

MAP Response

Response received

{:ok, response}

200 OK + JSON

{:error, :timeout}

504 Gateway Timeout

总结

OmniSS7 REST API提供：

✅ MAP操作 - 完全支持SRI、SRI-for-SM、UpdateLocation、SMS交付、认证

✅ Swagger UI - 交互式API文档和测试

✅ Prometheus�标 - 监控和可观察性

✅ 硬编码超时 - 所有MAP请求的10秒超时

✅ HTTP服务器 - 在8080端口运行（可通过start_http_server配置）

有关Web UI访问，请参见Web UI指南。

有关配置详细信息，请参见配置参考。

技术参考（附录）

← �回主文档

SS7协议和OmniSS7实现的技术参考。

SS7协议栈

MAP操作码

操作 操作码 目的

updateLocation 2 注册用户位置

cancelLocation 3 从VLR注销

provideRoamingNumber 4 请求MSRN

sendRoutingInfo 22 查询呼叫路由

mt-forwardSM 44 将SMS发送给用户

sendRoutingInfoForSM 45 查询SMS路由

mo-forwardSM 46 从用户转发SMS

sendAuthenticationInfo 56 请求认证向量

TCAP消息类型

BEGIN - 开始事务

CONTINUE - 事务中

END - 最终响应

ABORT - 取消事务

SCCP寻址

全球标题格式

E.164 - 国际电话号码（例如，447712345678）

E.212 - IMSI格式（例如，234509876543210）

E.214 - 点码格式

子系统编号（SSN）

SSN 6: HLR

SSN 7: VLR

SSN 8: MSC/SMSC

SSN 9: GMLC

SSN 10: SGSN

SMS TPDU

消息类型

SMS-DELIVER (MT) - 网络到移动

SMS-SUBMIT (MO) - 移动到网络

SMS-STATUS-REPORT - 投递状态

SMS-COMMAND - 远程命令

字符编码

GSM7 - 7位GSM字母表（每条SMS 160个字符）

UCS2 - 16位Unicode（每条SMS 70个字符）

8-bit - 二进制数据（每条SMS 140字节）

M3UA状态

DOWN - 无SCTP连接

CONNECTING - SCTP连接中

ASPUP_SENT - 等待ASPUP确认

INACTIVE - ASP已启动但未激活

ASPAC_SENT - 等待ASPAC确认

ACTIVE - 准备接收流量

常见SS7点码

点码通常为14位（ITU）或24位（ANSI）值。

示例格式（ITU）：

网络：3位

集群：8位

成员：3位

SCCP错误代码

0 - 地址无翻译

1 - 特定地址无翻译

2 - 子系统拥塞

3 - 子系统故障

4 - 用户未装备

5 - MTP故障

6 - 网络拥塞

7 - 无资格

8 - 消息传输错误

MAP错误代码

代码 错误 描述

1 unknownSubscriber 用户不在HLR中

27 absentSubscriber 用户不可达

34 systemFailure 网络故障

35 dataMissing 所需数据不可用

36 unexpectedDataValue 参数值无效

相关文档

← �回主文档

STP指南

MAP客户端指南

短信中心指南

HLR指南

常见功能

OmniSS7 由Omnitouch网络服务提供

CAMEL 请求构建器 - 实施摘要

概述

创建了一个新的 LiveView 组件，用于构建和发送 CAMEL/CAP 请求以进行测试。这提供了一个交互式 UI，用于创建

InitialDP 和其他 CAMEL 操作。

新组件

1. CAMEL 请求构建器 LiveView

功能：

基于表单的交互式 UI，用于构建 CAMEL 请求

支持多种请求类型：

InitialDP - 初始检测点（呼叫设置通知）

Connect - 将呼叫连接到目的地

ReleaseCall - 释放/终止呼叫

RequestReportBCSMEvent - 请求事件通知

Continue - 继续呼叫处理

ApplyCharging - 对呼叫应用计费/持续时间限制

关键功能：

请求类型选择下拉菜单

基于所选请求类型的动态表单字段

高级 SCCP/M3UA 选项（可折叠部分）

被叫/主叫方全球标题

SSN（子系统编号）配置

OPC/DPC（点码）设置

实时请求历史（最后 20 个请求）

通过 OTID 进行会话跟踪

成功/错误��馈

请求大小跟踪

路由： /camel_request

2. 增强的 EventLog 以支持 CAMEL

新功能：

paklog_camel/2 - 专用的 CAMEL/CAP 消息日志记录

lookup_cap_opcode_name/1 - CAP 操作码查找

find_cap_opcode/1 - 从 JSON 中提取 CAP 操作码

extract_cap_tids/1 - 从 CAP 消息中提取 OTID/DTID

format_cap_to_json/1 - 将 CAP PDU 转换为 JSON 格式

支持的 CAP 操作码：

功能：

所有 CAMEL 请求/响应的 JSON 日志记录

自动 TCAP 动作检测（开始/继续/结束/中止）

SCCP 地址提取

对格式错误消息的错误处理

后台任务处理（非阻塞）

事件前缀为 "CAP:" 以便于过滤

3. 更新的 CapClient

更改：

为传入和传出消息添加了 paklog_camel/2 调用

双重日志记录：同时记录 MAP (paklog) 和 CAP (paklog_camel) 以保持兼容性

传出消息记录在 sccp_m3ua_maker/2 中

传入消息记录在 handle_payload/1 中

配置

新的 LiveView 页面已添加到运行时配置中：

0 => "initialDP"

5 => "connect"

6 => "releaseCall"

7 => "requestReportBCSMEvent"

8 => "eventReportBCSM"

10 => "continue"

13 => "furnishChargingInformation"

35 => "applyCharging"

... (共 47 个操作)

使用

访问请求构建器

1. 导航到：https://your-server:8087/camel_request

2. 从下拉菜单中选择请求类型

3. 填写所需参数

4. 可选地展开“高级 SCCP/M3UA 选项”以进行微调

5. 点击“发送 [RequestType] 请求”

请求流程

InitialDP（新呼叫）

1. 设置服务密钥（例如，100）

2. 设置主叫号码（A-Party）

3. 设置被叫号码（B-Party）

4. 发送请求 → 生成新的 OTID

5. OTID 存储在会话中以供后续请求使用

后续请求（Connect, ReleaseCall 等）

文件：config/runtime.exs

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 事件"},

 {SS7.Web.TestClientLive, "/client", "SS7 客户端"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.HlrLinksLive, "/hlr_links", "HLR 链接"},

 {SS7.Web.CAMELSessionsLive, "/camel_sessions", "CAMEL 会话"},

 {SS7.Web.CAMELRequestLive, "/camel_request", "CAMEL 请求构建器"}

],

 page_order: ["/events", "/client", "/m3ua", "/hlr_links",

 "/camel_sessions", "/camel_request",

 "/application", "/configuration"]

1. 必须具有来自 InitialDP 的活动 OTID

2. 请求自动使用存储的 OTID

3. 如果没有活动 OTID，则显示警告

请求参数

InitialDP：

服务密钥（整数）

主叫号码（ISDN 格式）

被叫号码（ISDN 格式）

Connect：

目的号码（呼叫路由到哪里）

ReleaseCall：

原因代码（16 = 正常，17 = 忙，31 = 未指定）

RequestReportBCSMEvent：

BCSM 事件（以逗号分隔：oAnswer, oDisconnect 等）

Continue：

无参数（使用活动 OTID）

ApplyCharging：

持续时间（秒，1-864000） - 在采取行动之前的最大呼叫持续时间

超时释放（布尔值） - 持续时间到期时是否释放呼叫

高级选项

SCCP 地址：

被叫方 GT（全球标题）

主叫方 GT

被叫 SSN（默认 146 = gsmSSF）

主叫 SSN（默认 146）

M3UA 点码：

OPC（发起点码，默认 5013）

DPC（目的点码，默认 5011）

JSON 日志记录

所有 CAMEL 消息现在以 JSON 格式记录在事件日志中，包含：

方向： 传入/传出

TCAP 动作： 开始/继续/结束/中止

CAP 操作： 例如，“CAP:initialDP”，“CAP:connect”

SCCP 地址： 被叫/主叫方信息

TIDs： OTID/DTID 用于关联

完整消息： JSON 编码的 CAP PDU

示例日志条目

{

 "map_event": "CAP:initialDP",

 "direction": "outgoing",

 "tcap_action": "Begin",

 "otid": "A1B2C3D4",

 "sccp_called": {

 "SSN": 146,

 "GlobalTitle": {

 "Digits": "55512341234",

 "NumberingPlan": "isdn_tele",

 "NatureOfAddress_Indicator": "international"

 }

 },

 "event_message": "{ ... full CAP PDU ... }"

}

请求历史

UI 显示最后 20 个请求，包含：

时间戳

请求类型（带有颜色编码的徽章）

OTID（前 8 个十六进制字符）

状态（已发送/错误）

消息大小（以字节为单位）

会话跟踪

当前会话信息面板：

显示活动 OTID

显示最后请求的字节大小

仅在会话处于活动状态时可见

测试工作流程

1. 开始新呼叫：

发送 InitialDP → 获取 OTID

系统创建会话

2. 控制呼叫：

发送 RequestReportBCSMEvent → 请求通知

发送 ApplyCharging → 设置呼叫持续时间限制（例如，290 秒）

发送 Connect → 路由到目的地

或者发送 ReleaseCall → 终止

3. 查看结果：

检查请求历史

监控 CAMEL 会话页面

审查带有 "CAP:" 前缀的事件日志

ApplyCharging - 呼叫持续时间控制

概述

ApplyCharging 操作允许您设置最大呼叫持续时间，并在该持续时间到期时可���地释放呼叫。这通常用于预付费计费场景或对呼叫

施加时间限制。

用例

预付费计费：根据用户余额限制呼叫持续时间

基于时间的计费：强制执行定期计费间隔

资源管理：防止呼叫无限期进行

OCS 集成：与在线计费系统协调以进行实时信用控制

参数

持续时间（maxCallPeriodDuration）

类型：整数（1-864000 秒）

描述：呼叫可以运行的最大秒数，直到计时器到期

示例：

60 = 1 分钟

290 = 4 分钟 50 秒（常见测试值）

3600 = 1 小时

86400 = 24 小时

超时释放（releaseIfDurationExceeded）

类型：布尔值（true/false）

默认：true

描述：持续时间到期时发生的情况：

true：自动释放/断开呼叫

false：发送通知但保持呼叫活动（允许 gsmSCF 采取行动）

消息结构

ApplyCharging 消息编码为 TCAP Continue，包含：

TCAP：继续消息（使用现有事务）

操作码：35（applyCharging）

参数：ApplyChargingArg 包含：

aChBillingChargingCharacteristics：基于时间的计费信息

timeDurationCharging：最大持续时间和释放标志

partyToCharge：哪个方被计费（默认：sendingSideID）

示例用法

场景：预付费呼叫，限制为 5 分钟

1. 发送 InitialDP 开始呼叫监控

2. 发送 ApplyCharging 设置 5 分钟限制

3. 发送 Connect 完成呼叫

4. 5 分钟后（300 秒）：

呼叫由网络自动释放

服务密钥：100

主叫：447700900123

被叫：447700900456

→ OTID：A1B2C3D4

持续时间：300（秒）

超时释放：true

→ 使用 OTID：A1B2C3D4

目的地：447700900456

→ 使用 OTID：A1B2C3D4

gsmSCF 收到断开通知

最佳实践

1. 始终在 Connect 之前发送 ApplyCharging

确保在呼叫连接时计费处于活动状态

防止未计费的呼叫段

2. 与 RequestReportBCSMEvent 一起使用

请求 oAnswer 和 oDisconnect 事件

允许跟踪实际呼叫持续时间

如果需要，启用重新应用计费

3. 设置合理的持续时间

太短：频繁的计费操作，用户体验差

太长：在预付费呼叫中存在收入损失的风险

典型：预付费 60-300 秒，后付费更长

4. 优雅地处理超时

如果 release=false，请准备处理计时器到期通知

实现逻辑以延长持续时间或释放呼叫

错误处理

常见问��：

没有活动 OTID：必须先发送 InitialDP

无效的持续时间：必须为 1-864000 秒

网络支持：某些 SSF 实现可能不支持 ApplyCharging

计时器准确性：网络计时器分辨率通常为 1 秒，但可能会有所不同

监控

通过以下方式跟踪 ApplyCharging 操作：

请求历史：显示已发送的 ApplyCharging 请求

事件日志：搜索 "CAP:applyCharging"

CAMEL 会话：监控应用了计费的活动会话

TCAP 跟踪：调试编码/解码问题

实施细节

状态管理

LiveView 分配跟踪表单状态

OTID 存储在套接字分配中

请求历史限制为 20 条记录

自动刷新禁用（仅手动发送）

请求生成

使用现有的 CapRequestGenerator 模块

构建正确的 TCAP/CAP 结构

使用 :TCAPMessages 编解码器进行编码

通过 CapClient.sccp_m3ua_maker/2 包装在 SCCP 中

发送机制

通过 M3UA 发送到 :camelgw_client_asp

使用路由上下文 1

自动 SCCP/M3UA 封装

错误处理

表单验证与用户反馈

优雅处理缺失的 OTID

UI 中显示解析错误

编码失败记录

未来增强

潜在的补充：

1. 请求模板/预设

2. 响应关联和显示

3. 呼叫流程可视化

4. 会话详细信息深入

5. 导出请求历史

6. 负载测试（批量请求）

7. 生成消息的 PCAP 导出

8. CAP 参数验证

集成说明

与现有的 MAP 日志记录（paklog）兼容

与 MAP 事件共享事件日志数据库

使用相同的 SCCP/M3UA 基础设施

与 CAMELSessionsLive 一起工作以进行监控

与现有的 M3UA 路由集成

修改的文件

config/runtime.exs - 已更新

依赖项

现有的 CapRequestGenerator

用于 M3UA 发送的 CapClient

用于数据包传输的 M3UA.Server

用于消息日志记录的 EventLog

Phoenix LiveView 框架

用于 UI 基础设施的控制面板

CAMEL 网关配置�南

概述

CAMEL 网关 (CAMELGW) 模式将 OmniSS7 转换为一个智能网络 (IN) 平台，提供基于 CAMEL 应用部分

(CAP) 协议的实时呼叫控制和计费服务。

什么是 CAMEL？

CAMEL (定制的移动网络增强逻辑应用) 是一组标准，旨在在 GSM 核心网络或 UMTS 网络上工作。它允许运营商提供需要实时呼叫

控制的服务，例如：

预付费呼叫 - 实时余额检查和计费

增值服务 - 对增值服务的特殊计费

呼叫路由控制 - 基于时间/位置的动态目的地路由

虚拟专用网络 - 企业编号计划

呼叫筛选 - 根据标准允许/阻止呼叫

CAP 协议版本

OmniSS7 CAMELGW 支持多个 CAP 版本：

版本 阶段 特性

CAP v1 CAMEL 阶段 1 基本呼叫控制，操作有限

CAP v2 CAMEL 阶段 2 增强操作，支持 SMS

CAP v3 CAMEL 阶段 3 支持 GPRS，额外操作

CAP v4 CAMEL 阶段 4 高级特性，多媒体支持

默认： CAP v2（最广泛部署）

架构

呼叫流程示例

OCSCAMELGW (gsmSCF)MSC/VLR (gsmSSF)

OCSCAMELGW (gsmSCF)MSC/VLR (gsmSSF)

呼叫建立 - InitialDP

呼叫应答

呼叫进行中 (30s 后)

呼叫终止

InitialDP(IMSI, A-num, B-num, ServiceKey)

InitiateSession

MaxUsage: 30s

RequestReportBCSMEvent + Continue

EventReportBCSM(oAnswer)

UpdateSession(Usage: 0s)

MaxUsage: 30s

Continue

UpdateSession(Usage: 30s)

MaxUsage: 30s

EventReportBCSM(oDisconnect)

TerminateSession(Usage: 125s)

CDR 生成, 成本: $2.50

ReleaseCall

配置

先决条件

已安装并运行 OmniSS7

与 MSC/GMSC (gsmSSF) 的 M3UA 连接

在线计费系统 (OCS) 具有 API 端点（可选，用于实时计费）

启用 CAMEL 网关模式

编辑 config/runtime.exs 并配置 CAMEL 网关部分：

config :omniss7,

 # 模式标志 - 启用 CAP/CAMEL 特性

 cap_client_enabled: true,

 camelgw_mode_enabled: true,

 # 禁用其他模式

 map_client_enabled: false,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 # CAP/CAMEL 版本配置

 # 确定用于外发请求和对话的 CAP 版本

 # 选项: :v1, :v2, :v3, :v4

 cap_version: :v2,

 # OCS 集成（用于实时计费）

 ocs_enabled: true,

 ocs_url: "http://your-ocs-server/api/charging",

 ocs_timeout: 5000, # 毫秒

 ocs_auth_token: "your-api-token" # 可选，如果 OCS 需要身份验证

 # CAMEL 的 M3UA 连接配置

 # 作为 ASP（应用服务器进程）连接以进行 CAP 操作

 cap_client_m3ua: %{

 mode: "ASP",

 callback: {CapClient, :handle_payload, []},

 process_name: :camelgw_client_asp,

 # 本地端点（CAMELGW 系统）

 local_ip: {10, 179, 4, 13},

 local_port: 2905,

 # 远程端点（MSC/GMSC - gsmSSF）

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 # M3UA 参数

 routing_context: 1,

 network_appearance: 0,

 asp_identifier: 13

 }

配置 Web UI 页面

Web UI 包含用于 CAMEL 操作的专用页面：

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 事件"},

 {SS7.Web.TestClientLive, "/client", "SS7 客户端"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.CAMELSessionsLive, "/camel_sessions", "CAP 会话"},

 {SS7.Web.CAMELRequestLive, "/camel_request", "CAP 请求"}

],

 page_order: ["/events", "/client", "/m3ua", "/camel_sessions",

 "/camel_request", "/application", "/configuration"]

支持的 CAP 操作

入站操作��从 gsmSSF → gsmSCF）

操作
操作

码
描述 处理程序

InitialDP 0
初始检测点 -

呼叫建立通知
handle_initial_dp/1

EventReportBCSM 6

基本呼叫状态

模型事件（应

答、断开等）

handle_event_report_bcsm/1

ApplyChargingReport 71

来自

gsmSSF

的计费报告

handle_apply_charging_repo

AssistRequestInstructions 16

来自

gsmSRF

的协助请求

handle_assist_request_inst

出站操作（从 gsmSCF → gsmSSF）

操作
操作

码

描

述
生成器

Connect 20

将

呼

叫

连

接

到

目

的

号

码

CapRequestGenerator.connect_req

Continue 31

继

续

呼

叫

处

理

而

不

修

改

CapRequestGenerator.continue_re

ReleaseCall 22

释

放/

终

止

呼

叫

CapRequestGenerator.release_cal

RequestReportBCSMEvent 23 请

求

呼

CapRequestGenerator.request_rep

操作
操作

码

描

述
生成器

叫

事

件

通

知

ApplyCharging 35

对

呼

叫

应

用

计

费

CapRequestGenerator.apply_charg

Web UI 特性

CAMEL 会话页面

URL: http://localhost/camel_sessions

实时监控活动的 CAMEL 呼叫会话：

特性：

实时会话列表 - 每 2 秒自动刷新

会话详情 - OTID、呼叫 ID、状态、持续时间

CAP 版本 - 显示从 InitialDP 检测到的协议版本 (CAP v1/v2/v3/v4)

呼叫信息 - IMSI、A 号码、B 号码、服务密钥

状态跟踪 - 已发起、已应答、已终止

持续时间计时器 - 实时呼叫持续时间显示

表格列：

呼叫 ID、状态、版本、IMSI、主叫号码、被叫号码、服务密钥、持续时间、开始时间、OTID

会话状态：

🟡 已发起 - 收到 InitialDP，等待应答

🟢 已应答 - 呼叫已应答，计费进行中

🔴 已终止 - 呼叫结束，生成 CDR

CAP 版本检测： 系统自动从 InitialDP 对话部分检测 CAP 协议版本，并在版本列中显示。这有助于识别每个 MSC 使用的 CAP

版本。

CAMEL 请求构建器

URL: http://localhost/camel_request

用于构建和发送 CAP 请求的交互式工具：

特性：

请求类型选择器 - InitialDP、Connect、ReleaseCall 等

动态表单字段 - 根据选定的请求类型调整

SCCP/M3UA 选项 - 高级寻址配置

请求历史 - 最近 20 个请求及其状态

会话跟踪 - 维护 OTID 以便后续请求

实时反馈 - 成功/错误消息

请求类型：

1. InitialDP - 启��新呼叫会话

服务密钥（整数）

主叫号码（A 方）

被叫号码（B 方）

2. Connect - 将呼叫路由到目的地

目的号码

3. ReleaseCall - 终止呼叫

原因代码（16=正常，17=忙，31=未指定）

4. RequestReportBCSMEvent - 请求事件通知

事件：oAnswer、oDisconnect、tAnswer、tDisconnect

5. Continue - 继续呼叫而不修改

无需参数

6. ApplyCharging - 应用呼叫持续时间限制

持续时间（秒，1-864000）

超时释放（布尔值）

详细用法请参见 CAMEL 请求构建器指南

高级 SCCP 选项：

被叫方全球标题

主叫方全球标题

被叫 SSN（默认：146 = gsmSSF）

主叫 SSN（默认：146）

M3UA 选项：

OPC（起始点代码，默认：5013）

DPC（目的点代码，默认：5011）

与 OCS 的集成

呼叫生命周期与计费

1. 呼叫发起 (InitialDP)

当 MSC 发送 InitialDP 时，CAMELGW：

1. 检测 CAP 版本 - 检查对话部分以识别 CAP v1/v2/v3/v4

2. 解码 CAP 消息 - 提取 IMSI、主叫/被叫号码

3. 调用 OCS - InitiateSession API

4. 接收授权 - MaxUsage（例如，30 秒）

5. 存储会话 - ��� SessionStore (ETS 表) 中存储 CAP 版本

6. 响应 MSC - RequestReportBCSMEvent + Continue（使用相同的 CAP 版本）

示例：

2. 呼叫应答 (EventReportBCSM - oAnswer)

当呼叫被应答时：

1. 接收 oAnswer 事件 - 来自 MSC

2. 更新 OCS - UpdateSession，使用=0

3. 开始扣费循环 - OCS 开始计费

4. 更新会话状态 - 在 SessionStore 中为 :answered

5. 继续呼叫 - 向 MSC 发送 Continue

3. 定期更新（可选）

解码的 InitialDP 数据

%{

 imsi: "310150123456789",

 calling_party_number: "14155551234",

 called_party_number: "14155556789",

 service_key: 1,

 msc_address: "19216800123",

 cap_version: :v2 # 从对话中检测到

}

OCS 响应

{:ok, %{max_usage: 30}} # 授权 30 秒

SessionStore 条目

%{

 call_id: "CAMEL-4B000173",

 initial_dp_data: %{...},

 cap_version: :v2, # 为响应生成存储

 start_time: 1730246400,

 state: :initiated

}

对于长时间呼叫，请求额外信用：

如果 MaxUsage �回 0，订阅者没有信用 → 发送 ReleaseCall

4. 呼叫终止 (EventReportBCSM - oDisconnect)

当呼叫结束时：

1. 接收 oDisconnect 事件 - 来自 MSC

2. 计算总持续时间 - 从会话开始时间

3. 终止 OCS 会话 - TerminateSession API

4. 生成 CDR - 由 OCS 生成最终成本

5. 清理会话 - 从 SessionStore 中删除

6. 发送 ReleaseCall - 确认终止给 MSC

CDR 分析

CDR 由您的 OCS 生成，通常包括：

来自 CAMEL 的 CDR 字段：

Account - IMSI 或主叫号码

Destination - 被叫方号码

OriginID - 唯一呼叫标识符 (CAMEL-OTID)

Usage - 总呼叫持续时间（秒）

Cost - 计算成本

IMSI - 订阅者 IMSI

CallingPartyNumber - A 方

CalledPartyNumber - B 方

MSCAddress - 服务 MSC 点代码

ServiceKey - CAMEL 服务密钥

每 30 秒

OCS.Client.update_session(call_id, %{}, current_usage)

测试

使用请求构建器进行手动测试

1. 导航到请求构建器：

2. 发送 InitialDP：

从下拉菜单中选择 "InitialDP"

服务密钥：100

主叫号码：14155551234

被叫号码：14155556789

点击 "发送 InitialDP 请求"

注意生成的 OTID

3. 监控会话：

打开新标签页：http://localhost/camel_sessions

查看状态为 "已发起" 的活动会话

4. 模拟呼叫应答：

�回请求构建器

选择 "EventReportBCSM"

事件类型：oAnswer

点击 "发送 EventReportBCSM 请求"

会话状态更改为 "已应答"

5. 结束呼叫：

选择 "ReleaseCall"

原因代码：16（正常）

点击 "发送 ReleaseCall 请求"

会话状态更改为 "已终止"

http://localhost/camel_request

使用真实 MSC 进行测试

配置 MSC CAMEL 服务

在您的 MSC/VLR 上，配置 CAMEL 服务：

监控日志

观察 CAMELGW 日志以获取传入的 CAP 消息：

负载测试

在循环中使用请求构建器进行负载测试：

示例华为 MSC 配置

ADD CAMELSERVICE:

 SERVICEID=1,

 SERVICEKEY=100,

 GSMSCFADDR="55512341234", # CAMELGW 全球标题

 DEFAULTCALLHANDLING=CONTINUE;

ADD CAMELSUBSCRIBER:

 IMSI="310150123456789",

 SERVICEID=1,

 TRIGGERTYPE=TERMCALL;

实时查看日志

tail -f /var/log/omniss7/omniss7.log

过滤 CAP 事件

grep "CAP:" /var/log/omniss7/omniss7.log

查看事件日志（JSON 格式）

curl http://localhost/api/events | jq '.[] | select(.map_event |

startswith("CAP:"))'

监控与操作

Prometheus �标

CAMELGW 在 http://localhost:8080/metrics 处公开指标：

特定于 CAP 的�标：

cap_requests_total{operation} - 按操作类型（例如，initialDP、

requestReportBCSMEvent）统计的总 CAP 请求

其他 MAP/API �标：

map_requests_total{operation} - 按操作类型统计的总 MAP 请求

map_request_duration_milliseconds{operation} - 请求持续时间直方图

map_pending_requests - 待处理 MAP 事务的数量

M3UA STP �标（如果启用 STP 模式）：

m3ua_stp_messages_received_total{peer_name,point_code} - 从对等方接收到的消息

m3ua_stp_messages_sent_total{peer_name,point_code} - 发送到对等方的消息

m3ua_stp_routing_failures_total{reason} - 按原因统计的路由失败

示例查询：

发送 100 个 InitialDP 请求

for i in {1..100}; do

 curl -X POST http://localhost/api/camel/initial_dp \

 -H "Content-Type: application/json" \

 -d '{

 "service_key": 100,

 "calling_number": "1415555'$i'",

 "called_number": "14155556789"

 }'

 sleep 0.1

done

健康检查

日志配置

在 config/runtime.exs 中调整日志级别：

CAP 请求

curl http://localhost:8080/metrics | grep cap_requests_total

收到的总 InitialDP

curl http://localhost:8080/metrics | grep

'cap_requests_total{operation="initialDP"}'

MAP 待处理请求

curl http://localhost:8080/metrics | grep map_pending_requests

检查 M3UA 连接

curl http://localhost/api/m3ua-status

检查 OCS 连接

curl http://localhost/api/ocs-status

检��活动会话

curl http://localhost/api/camel/sessions/count

config :logger,

 level: :info # 选项：:debug, :info, :warning, :error

启用 CAP 调试日志

config :logger, :console,

 metadata: [:cap_operation, :otid, :call_id]

故障排除

问题：未接收到 CAP 消息

症状： 请求构建器正常工作，但 MSC 不发送 InitialDP

检查：

1. M3UA 链接状态：curl http://localhost/api/m3ua-status

2. MSC CAMEL 服务配置（服务密钥，gsmSCF 地址）

3. SCCP 路由（全球标题必须路由到 CAMELGW）

4. 防火墙规则（允许 SCTP 端口 2905）

解决方案：

问题：OCS 错误

症状： INSUFFICIENT_CREDIT 或超时错误

检查：

1. OCS 可达：curl http://your-ocs-server/api/health

2. 账户在 OCS 中有余额

3. OCS 中配置了计费计划

4. 与 OCS 的网络连接

5. 身份验证令牌有效（如需要）

解决方案：

验证 runtime.exs 中的 OCS URL 配置

检查 OCS 日志中的错误

验证 M3UA 连接

tcpdump -i eth0 sctp

检查 MSC 是否能够到达 CAMELGW

ss -tuln | grep 2905

使用 curl 手动测试 OCS API

验证防火墙规则允许连接

问题：未找到会话

症状： EventReportBCSM 失败，提示 "未找到会话"

原因： OTID 不匹配或会话过期

解决方案：

1. 验证日志中的 OTID

2. 检查会话超时（默认：无过期）

3. 确保 DTID 在 Continue/End 消息中与 OTID 匹配

问题：解码错误

症状： 日志中出现 Failed to decode InitialDP

原因： CAP 版本不匹配或消息格式错误

解决方案：

1. 检查 CAP 版本配置是否与 MSC 匹配

2. 验证 ASN.1 编码是否正确

3. 捕获 PCAP 并使用 Wireshark 分析

检查活动会话

iex> CAMELGW.SessionStore.list_sessions()

捕获 CAP 消息

tcpdump -i eth0 -w cap_trace.pcap sctp port 2905

使用 Wireshark 分析（过滤：m3ua）

wireshark cap_trace.pcap

高级配置

多个 CAP 版本

支持每个服务密钥不同的 CAP 版本：

总结

CAMEL 网关模式使 OmniSS7 能够作为一个完整的智能网络平台，具有：

✅ 完全的 CAP 协议支持 (v1/v2/v3/v4)

✅ 通过 OCS 集成的实时计费

✅ 呼叫控制操作 (Connect, Release, Continue)

✅ 使用 ETS 存储的会话管理

✅ 通过 Web UI 请求构建器的交互式测试

✅ 活动呼叫会话的实时监控

✅ 用于计费和分析的 CDR 生成

✅ 生产就绪的性能和可靠性

有关更多信息：

CAMEL 请求构建器文档

技术参考 - CAP 操作

产品： OmniSS7 CAMEL 网关

文档版本： 1.0

最后更新： 2025-10-26

config :omniss7,

 cap_version_map: %{

 100 => :v2, # 服务密钥 100 使用 CAP v2

 200 => :v3, # 服务密钥 200 使用 CAP v3

 300 => :v4 # 服务密钥 300 使用 CAP v4

 },

 cap_version: :v2 # 默认

常见功能�南

← �回主文档

本指南涵盖所有 OmniSS7 操作模式的常见功能。

目录

1. Web UI 概述

2. API 文档

3. 监控与指标

4. 最佳实践

5. 网络冗余的 SCTP 多宿主

Web UI 概述

Web UI 可通过您配置的 Web 服务器地址访问。

主要导航

事件 - 实时 SS7 信令事件和消息日志

应用程序 - 应用程序状态和运行时信息

配置 - 系统配置查看器

M3UA 状态 - M3UA 对等连接（STP 模式）

短信队列 - 外发短信消息（SMSc 模式）

访问 Web UI

1. 打开您的 Web 浏览器

2. 导航到配置的主机名（例如，http://localhost）

3. 查看系统状态仪表板

Swagger API 文档

交互式 API 文档：

Web UI 配置

在 config/runtime.exs 中配置：

配置参数：

http://your-server/swagger

config :control_panel,

 # 导航菜单中的页面顺序

 page_order: ["/events", "/application", "/configuration"],

 # Web 服务器�置

 web: %{

 listen_ip: "0.0.0.0", # 绑定的 IP（0.0.0.0 表示所有接口）

 port: 80, # HTTP 端口（HTTPS 使用 443）

 hostname: "localhost", # URL 生成的服务器主机名

 enable_tls: false, # �置为 true 以启用 HTTPS

 tls_cert: "cert.pem", # TLS 证书文件路径

 tls_key: "key.pem" # TLS 私钥文件路径

 }

参数 类型 默认值 描述

page_order 列表
["/events", "/application",

"/configuration"]
导航菜单中的页面顺序

listen_ip
字符

串
"0.0.0.0"

绑定 Web 服务器的 IP

地址

port 整数 80
HTTP 端口（HTTPS

使用 443）

hostname
字符

串
"localhost" URL 生成的服务器主机名

enable_tls
布尔

值
false 启用 TLS 的 HTTPS

tls_cert
字符

串
"cert.pem"

TLS 证书路径（启用

TLS 时）

tls_key
字符

串
"key.pem"

TLS 私钥路径（启用

TLS 时）

日志配置

在 config/runtime.exs 中配置日志级别：

日志级别：

:debug - 详细调试信息

:info - 一般信息消息

:warning - 潜在问题的警告消息

:error - 仅错误消息

config :logger,

 level: :debug # 选项: :debug, :info, :warning, :error

API 文档

API 基础 URL

响应代码

200 - 成功

400 - 错误请求

504 - 网关超时

OpenAPI 规范

监控与�标

Prometheus �标端点

关键�标类别

M3UA/SCTP �标：

SCTP 关联状态变化

M3UA ASP 状态转换

发送/接收的协议数据单元

http://your-server/api

http://your-server/swagger.json

http://your-server/metrics

M2PA �标：

链路状态转换（DOWN → ALIGNMENT → PROVING → READY）

每个链路发送/接收的消息和字节

链路特定错误（解码、编码、SCTP）

STP �标：

每个对等体接收/发送的消息

按原因的路由失败

在对等体之间的流量分布

MAP 客户端�标：

按操作类型的 MAP 请求

请求持续时间直方图

待处理事务计量

CAP �标：

按操作类型的 CAP 请求

CAMEL 网关操作

SMSc �标：

队列深度

投递率

失败的消息

Grafana 集成

OmniSS7 指标与 Prometheus 和 Grafana 兼容。

最佳实践

安全建议

1. 网络隔离

部署在专用 VLAN 中

防火墙规则限制访问

仅允许来自已知地址的 SCTP

2. Web UI 安全

在生产环境中启用 TLS

使用带身份验证的反向代理

限制为管理 IP

3. API 安全

实施速率限制

使用 API 密钥或 OAuth

记录所有请求以便审计

性能调优

1. TPS 限制

配置适当的 TPS

监控系统负载

调整 SCTP 缓冲区

2. 数据库优化

添加索引

归档旧消息

监控连接池

3. M3UA 调优

调整 SCTP 心跳间隔

配置超时值

使用多个链路以实现冗余

SCTP 多宿主网络冗余

什么是 SCTP 多宿主？

SCTP 多宿主是 SCTP 协议的内置功能，允许单个 M3UA 连接绑定到同一网络接口或不同网络接口上的多个 IP 地址。这提供了传输

层的自动故障转移和冗余。

主要好处：

自动故障转移：如果一条网络路径失败，SCTP 会自动切换到备用路径而不丢失连接

零配置故障转移：无需应用级逻辑 - SCTP 处理路径监控和故障转移

提高可靠性：能够在网络故障、交换机故障或网卡故障中生存

负载均衡：SCTP 可以在多个路径之间分配流量（依赖于实现）

工作原理

当您为 M3UA 连接配置多个 IP 地址时，SCTP：

1. 绑定到所有 IP：套接字同时绑定到所有配置的 IP 地址

2. 监控路径：SCTP 持续在所有路径上发送心跳数据包以监控其健康状况

3. 检测故障：如果主路径的心跳失败，SCTP 将其标记为不可达

4. 自动故障转移：流量立即切换到备用路径，无需应用干预

5. 路径恢复：当故障路径恢复时，SCTP 检测到并再次标记为可用

配置

SCTP 多宿主通过提供 IP 地址列表 而不是单个 IP 元组进行配置。

单个 IP（传统）

多个 IP（启用多宿主）

配置示例

示例 1：具有多宿主的 STP 对等体

示例 2：具有多宿主的 MAP 客户端

单个 IP - 无多宿主

local_ip: {10, 179, 4, 10}

多个 IP - 启用多宿主

第一个 IP 为主，后续 IP 为备用路径

local_ip: [{10, 179, 4, 10}, {10, 179, 4, 11}]

STP 模式对等体配置

config :omniss7,

 m3ua_peers: [

 %{

 peer_id: 1,

 name: "Partner_STP_Redundant",

 role: :client,

 # 多宿主：绑定两个本地 IP 以实现冗余

 local_ip: [{213, 57, 23, 200}, {213, 57, 23, 201}],

 local_port: 0,

 # 远程对等体也支持多宿主

 remote_ip: [{213, 57, 23, 100}, {213, 57, 23, 101}],

 remote_port: 2905,

 routing_context: 1,

 point_code: 100,

 network_indicator: :international

 }

]

示例 3：具有多宿主的 STP 监听器

示例 4：混合配置（向后兼容）

MAP 客户端模式与多宿主

config :omniss7,

 map_client_enabled: true,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # 多宿主：两个本地 IP 以实现故障转移

 local_ip: [{10, 0, 0, 100}, {10, 0, 0, 101}],

 local_port: 2905,

 # 远程 STP 支持多宿主

 remote_ip: [{10, 0, 0, 1}, {10, 0, 0, 2}],

 remote_port: 2905,

 routing_context: 1

 }

独立的 STP 服务器与多宿主

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 # 监听多个 IP 以接收传入连接

 local_ip: [{172, 16, 0, 10}, {172, 16, 0, 11}],

 local_port: 2905,

 point_code: 100

 }

网络拓扑场景

场景 1：双 NIC（常见部署）

单个和多宿主对等体的混合

config :omniss7,

 m3ua_peers: [

 # 传统对等体 - 单个 IP

 %{

 peer_id: 1,

 name: "Legacy_STP",

 role: :client,

 local_ip: {10, 0, 0, 1}, # 单个 IP 元组

 local_port: 0,

 remote_ip: {10, 0, 0, 10},

 remote_port: 2905,

 routing_context: 1,

 point_code: 100

 },

 # 新对等体 - 多宿主

 %{

 peer_id: 2,

 name: "Redundant_STP",

 role: :client,

 local_ip: [{10, 0, 0, 2}, {10, 0, 0, 3}], # IP 列表

 local_port: 0,

 remote_ip: [{10, 0, 0, 20}, {10, 0, 0, 21}],

 remote_port: 2905,

 routing_context: 2,

 point_code: 200

 }

]

配置：

好处：

在一个 NIC 故障时仍能存活

在一个交换机故障时仍能存活

自动故障转移小于 1 秒

场景 2：多个子网

┌──────────────────────────┐

│ OmniSS7 服务器 │

│ │

│ eth0: 10.0.0.100 ──┐ │

│ eth1: 10.0.0.101 ──┤ │

└──────────────────────┴────┘

 │

 ┌────────┴────────┐

 │ │

 ┌────▼────┐ ┌───▼─────┐

 │ Switch A │ │ Switch B │

 └────┬────┘ └────┬────┘

 │ │

 └────────┬────────┘

 │

 ┌────────▼────────┐

 │ 远程 STP │

 │ 10.1.0.1 │

 │ 10.1.0.2 │

 └─────────────────┘

local_ip: [{10, 0, 0, 100}, {10, 0, 0, 101}] # 两个 NIC

remote_ip: [{10, 1, 0, 1}, {10, 1, 0, 2}] # 远程对等体

配置：

好处：

在子网故障时仍能存活

可能实现地理冗余

独立的路由路径

监控与日志记录

启用多宿主时，您将看到指示配置的日志消息：

成功的多宿主

路径故障转移事件

┌──────────────────────────┐

│ OmniSS7 服务器 │

│ │

│ eth0: 192.168.1.10 ──┐ │

│ eth1: 192.168.2.10 ──┤ │

└──────────────────────┴───┘

 │

 ┌─────────────┴──────────────┐

 │ │

 192.168.1.0/24 192.168.2.0/24

 │ │

 │ │

 ┌────▼────┐ ┌───▼─────┐

 │ STP A │ │ STP B │

 ��� .1.100 │ │ .2.100 │

 └─────────┘ └─────────┘

local_ip: [{192, 168, 1, 10}, {192, 168, 2, 10}]

remote_ip: [{192, 168, 1, 100}, {192, 168, 2, 100}]

[info] SCTP 客户端多宿主：绑定 2 个本地 IP

[info] STP 监听器多宿主启用：绑定 2 个本地 IP

Web UI 显示

Web UI 自动显示多宿主信息：

M3UA 状态页面：

单个 IP：显示为 10.0.0.100

多个 IP：显示为 10.0.0.100 (+1) 或 10.0.0.100 (+2)

详细视图：显示所有 IP 及主/备用标签

最佳实践

1. 网络设计

使用不同的 NIC 以实现最大冗余

不同的交换机 以存活交换机故障

不同的子网 如果可能以实现路由多样性

同一数据中心初期 - 测试后再进行地理分离

2. IP 地址规划

第一个 IP 是主 - 确保它在最可靠的路径上

顺序很重要 - 按优先顺序列出 IP

一致的寻址 - 使用相似的寻址方案以便于故障排除

3. 测试故障转移

[warning] [MULTIHOMING] 路径 10.0.0.100 对于对等体 Partner_STP

（assoc_id=1）不可达

[info] [MULTIHOMING] 路径 10.0.0.101 现在是对等体 Partner_STP（assoc_id=1）的

主路径

[info] [MULTIHOMING] 路径 10.0.0.100 现在对等体 Partner_STP（assoc_id=1）可用

4. 双方应支持多宿主

最佳：本地和远程都使用多个 IP

可接受：仅一方使用多宿主

注意：当两个端点都支持时冗余效果最佳

5. 防火墙配置

故障排除

问题：多宿主无法工作

症状：仅使用主 IP，无故障转移

检查：

1. 验证 Erlang SCTP 支持：erl -eval 'gen_sctp:open(9999, [binary, {ip,

{127,0,0,1}}]).'

2. 检查内核 SCTP 模块：lsmod | grep sctp

3. 如有需要加载 SCTP：sudo modprobe sctp

4. 验证系统上配置了两个 IP：ip addr show

问题：路径未故障转移

症状：主路径标记为关闭但流量未切换

禁用主接口以测试故障转移

sudo ip link set eth0 down

监控日志以查看故障转移

tail -f /var/log/omniss7.log | grep MULTIHOMING

重新启用接口

sudo ip link set eth0 up

允许所有多宿主 IP 上的 SCTP

iptables -A INPUT -p sctp --dport 2905 -s 10.0.0.0/24 -j ACCEPT

iptables -A INPUT -p sctp --dport 2905 -s 10.1.0.0/24 -j ACCEPT

检查：

1. 检查 SCTP 心跳设置

2. 验证路由表中有所有路径的路由

3. 检查防火墙允许所有 IP 上的 SCTP

4. 查看 SCTP 路径监控日志

问题：频繁的路径波动

症状：路径在 UP 和 DOWN 之间不断切换

检查：

1. 网络不稳定 - 检查物理链接

2. SCTP 心跳过于激进 - 可能需要调优

3. 防火墙丢弃 SCTP 心跳

4. 一条路径上的 MTU 问题

性能考虑

最小开销：SCTP 心跳小且不频繁

无需应用更改：多宿主对应用层透明

快速故障转移：通常小于 1 秒检测和故障转移

自动恢复：无需手动干预

兼容性

向后兼容：单个 IP 元组格式仍然有效

混合部署：可以混合单 IP 和多 IP 对等体

支持所有模式：在 STP、HLR、SMSc 和 MAP 客户端模式下均可工作

Erlang 要求：需要编译支持 SCTP 的 Erlang

监控与警报

关键�标：

M3UA 连接状态

MAP 请求成功率

API 响应时间

消息队列深度

警报阈值：

M3UA 超过 1 分钟

MAP 超时率超过 10%

队列深度超过 1000

API 错误率超过 5%

完整配置参考

所有配置参��

本节提供所有可用配置参数的完整参考，涵盖所有操作模式。

日志配置 (:logger)

Web UI 配置 (:control_panel)

config :logger,

 level: :debug # :debug | :info | :warning | :error

config :control_panel,

 page_order: ["/events", "/application", "/configuration"],

 web: %{

 listen_ip: "0.0.0.0",

 port: 80,

 hostname: "localhost",

 enable_tls: false,

 tls_cert: "cert.pem",

 tls_key: "key.pem"

 }

参数
类

型
必需 默认值 描述

page_order

字

符

串

列

表

否

["/events",

"/application",

"/configuration"]

导航菜单页面顺序

web.listen_ip

字

符

串

是 "0.0.0.0"
绑定 Web 服务器的

IP 地址

web.port
整

数
是 80

HTTP/HTTPS

端口号

web.hostname

字

符

串

是 "localhost" 服务器主机名

web.enable_tls

布

尔

值

否 false 启用 HTTPS

web.tls_cert

字

符

串

如果启用

TLS
"cert.pem" TLS 证书路径

web.tls_key

字

符

串

如果启用

TLS
"key.pem" TLS 私钥路径

M3UA STP 配置 (:omniss7)

参数 类型 必需 默认值 描述

m3ua_stp.enabled 布尔值 是 false 启动��启用 STP 模式

m3ua_stp.local_ip 元组 是 {127, 0, 0, 1} 绑定用于接收 M3UA 的 IP

m3ua_stp.local_port 整数 是 2905 M3UA 的 SCTP 端口

enable_gt_routing 布尔值 否 false 启用全球标题路由

M3UA 对等体参数：

config :omniss7,

 m3ua_stp: %{

 enabled: false,

 local_ip: {127, 0, 0, 1},

 local_port: 2905

 },

 enable_gt_routing: true,

 m3ua_peers: [...],

 m3ua_routes: [...],

 m3ua_gt_routes: [...]

参数 类型 必需 描述

peer_id 整数 是 唯一对等体标识符

name
字符

串
是 描述性对等体名称

role 原子 是 :client 或 :server

local_ip

元组

或列

表

如果是

:client

本地 IP（单个：{10, 0, 0, 1} 或列表：

[{10, 0, 0, 1}, {10, 0, 0,

2}]）

local_port 整数
如果是

:client
本地端口（0 表示动态）

remote_ip

元组

或列

表

是

远程对等体 IP（单个：{10, 0, 0, 10} 或列

表：[{10, 0, 0, 10}, {10, 0, 0,

11}]）

remote_port 整数
如果是

:client
远程对等体端口

routing_context 整数 是 M3UA 路由上下文

point_code 整数 是 SS7 点代码

network_indicator 原子 否 :international 或 :national

M3UA 路由参数：

参数 类型 必需 描述

dest_pc 整数 是 目标点代码

peer_id 整数 �� 通过此对等体路由

priority 整数 是 路由优先级（较低的值表示较高的优先级）

network_indicator 原子 否 :international 或 :national

M3UA GT 路由参数：

参数 类型 必需 描述

gt_prefix 字符串 是 要匹配的全球标题前缀

peer_id 整数 是 目标对等体

priority 整数 是 路由优先级

description 字符串 否 日志记录的路由描述

source_ssn 整数 否 仅在源 SSN 匹配时匹配

dest_ssn 整数 否 将目标 SSN 重写为此值

MAP 客户端配置 (:omniss7)

config :omniss7,

 map_client_enabled: false,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :map_client_asp,

 local_ip: {10, 0, 0, 100},

 local_port: 2905,

 remote_ip: {10, 0, 0, 1},

 remote_port: 2905,

 routing_context: 1

 }

参数
类

型

必

需
默认值 描述

map_client_enabled

布

尔

值

是 false
启用 MAP

客户端模式

map_client_m3ua.mode

字

符

串

是 "ASP"

M3UA 连

接模式

（"ASP"

或

"SGP"）

map_client_m3ua.callback
元

组
是

{MapClient,

:handle_payload,

[]}

消息回调处理

程序

map_client_m3ua.process_name
原

子
是 :map_client_asp

注册的进程名

称

map_client_m3ua.local_ip
元

组
是 - 本地 IP 地址

map_client_m3ua.local_port
整

数
是 2905

本地 SCTP

端口

map_client_m3ua.remote_ip
元

组
是 -

远程

STP/SGP

IP

map_client_m3ua.remote_port
整

数
是 2905

远程 SCTP

端口

map_client_m3ua.routing_context
整

数
是 -

M3UA 路

由上下文

短信中心配置 (:omniss7)

参数 类型 必需 默认值 描述

auto_flush_enabled 布尔值 否 false 启用 SMS 队列的自动刷新

auto_flush_interval 整数 否 10000 队列轮询间隔（毫秒）

auto_flush_dest_smsc 字符串/nil 否 nil 按目标 SMSC 过滤（nil = 全部）

auto_flush_tps 整数 否 10 每秒最大事务数

HTTP API 配置 (:omniss7)

短信后端现在使用 HTTP API 而不是直接数据库连接。

API 参数：

config :omniss7,

 auto_flush_enabled: false,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: nil,

 auto_flush_tps: 10

config :omniss7,

 smsc_api_base_url: "https://10.5.198.200:8443",

 frontend_name: "omni-smsc01" # 可选：默认为 hostname_SMSc

参数
类

型

必

需
默认值 描述

smsc_api_base_url

字

符

串

是 "https://10.5.198.200:8443"
短信后端 API

的基础 URL

frontend_name

字

符

串

否 "{hostname}_SMSc"
注册的前端标识

符

使用的 API 端点：

POST /api/frontends - 将此前端实例注册到后端

POST /api/messages_raw - 插入新 SMS 消息

GET /api/messages - 检索消息队列（带 smsc 头）

PATCH /api/messages/{id} - 将消息标记为已投递

PUT /api/messages/{id} - 更新消息状态

POST /api/events - 添加事件跟踪

GET /api/status - 健康检查端点

前端注册：

系统在启动时自动向后端 API 注册，并每 5 分钟重新注册。注册内容包括：

前端名称和类型（SMSc）

主机名

运行时间（秒）

配置详情（JSON 格式）

配置说明：

默认情况下，针对自签名证书禁用 SSL 验证

HTTP 请求在 5 秒后超时

所有时间戳均为 ISO 8601 格式

API 使用 JSON 作为请求/响应主体

相关文档

← �回主文档

STP 指南

MAP 客户端指南

短信中心指南

HLR 指南

OmniSS7 由 Omnitouch 网络服务提供

配置参考

← �回主文档

本文档提供了所有 OmniSS7 配置参数的全面参考。

目录

1. 概述

2. 操作模式标志

3. HLR 模式参数

4. SMSc 模式参数

5. STP 模式参数

6. 全局标题 NAT 参数

7. M3UA 连接参数

8. HTTP 服务器参数

9. 数据库参数

10. 硬编码值

概述

OmniSS7 配置通过 config/runtime.exs 管理。系统支持三种操作模式：

STP 模式 - 信号传输点用于路由

HLR 模式 - 用户位置寄存器用于用户管理

SMSc 模式 - 短信中心用于消息传递

配置文件: config/runtime.exs

操作模式标志

控制启用哪些功能。

参数 类型 默认 描述 模式

map_client_enabled 布尔 false 启用 MAP 客户端和 M3UA 连接 所有

hlr_mode_enabled 布尔 false 启用 HLR 特定功能 HLR

smsc_mode_enabled 布尔 false 启用 SMSc 特定功能 SMSc

示例:

HLR 模式参数

HLR（用户位置寄存器）模式的配置。

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false

HLR API 配置

参数
类

型

默

认

必

需
描述

hlr_api_base_url

字

符

串

- 是
后端 HLR API 端点 URL（SSL

验证硬编码为禁用）

hlr_service_center_gt_address

字

符

串

- 是
在 UpdateLocation 响应中�回

的 HLR 全局标题地址

smsc_service_center_gt_address

字

符

串

- 是
在 SRI-for-SM 响应中�回的

SMSC GT 地址

示例:

MSISDN ↔ IMSI 映射

从 MSISDN 生成合成 IMSI 的配置。有关映射算法的详细技术说明，请参见 HLR 指南中的 MSISDN ↔ IMSI 映射。

config :omniss7,

 hlr_api_base_url: "https://10.180.2.140:8443",

 hlr_service_center_gt_address: "55512341111",

 smsc_service_center_gt_address: "55512341112"

参数
类

型
默认

必

需
描述

hlr_imsi_plmn_prefix

字

符

串

"50557" 否
合成 IMSI 生成的 PLMN 前缀

（MCC+MNC）

hlr_msisdn_country_code

字

符

串

"61" 否
IMSI→MSISDN 反向映射的国家代

码前缀

hlr_msisdn_nsn_offset
整

数
0 否

MSISDN 中 NSN 开始的偏移量（通

常是国家代码的长度）

hlr_msisdn_nsn_length
整

数
9 否

从 MSISDN 中提取的国家用户号码的长

度

示例（2 位国家代码）:

示例（3 位国家代码）:

重要: 将 nsn_offset 设置为国家代码的长度以正确提取 NSN。例如：

国家代码 "9"（1 位）→ nsn_offset: 1

国家代码 "99"（2 位）→ nsn_offset: 2

config :omniss7,

 hlr_imsi_plmn_prefix: "50557", # MCC 505 + MNC 57

 hlr_msisdn_country_code: "99", # 示例 2 位国家代码

 hlr_msisdn_nsn_offset: 2, # 跳过 2 位国家代码

 hlr_msisdn_nsn_length: 9 # 提取 9 位 NSN

config :omniss7,

 hlr_imsi_plmn_prefix: "50557", # MCC 505 + MNC 57

 hlr_msisdn_country_code: "999", # 示例 3 位国家代码

 hlr_msisdn_nsn_offset: 3, # 跳过 3 位国家代码

 hlr_msisdn_nsn_length: 8 # 提取 8 位 NSN

国家代码 "999"（3 位）→ nsn_offset: 3

InsertSubscriberData (ISD) 配置

在 UpdateLocation 期间发送到 VLR 的用户配置数据的配置。有关 ISD 序列和消息流的详细说明，请参见 HLR 指南中的

InsertSubscriberData 配置。

参数
类

型
默认

必

需
描

isd_network_access_mode
原

子
:packetAndCircuit 否

网络接入类型：

:packetAndCircu

或 :circuitOnly

isd_send_ss_data
布

尔
true 否 发送带有补充服务数据的 ISD

isd_send_call_barring
布

尔
true 否 发送带有呼叫限制数据的 ISD

示例:

CAMEL 配置

基于 CAMEL 的智能呼叫路由的配置。有关 CAMEL 集成和服务密钥的详细说明，请参见 HLR 指南中的 CAMEL 集成。

config :omniss7,

 isd_network_access_mode: :packetAndCircuit,

 isd_send_ss_data: true,

 isd_send_call_barring: true

参数
类

型
默认

必

需

camel_service_key
整

数
11_110 否 用于 S

camel_trigger_detection_point
原

子
:termAttemptAuthorized 否

CAM

:ter

camel_gsmscf_gt_address

字

符

串

(使用被叫 GT) 否 CAM

示例:

家庭 VLR 前缀

用于区分家庭用户与漫游用户的配置。有关家庭/漫游检测和 PRN 操作的详细说明，请参见 HLR 指南中的漫游用户处理。

参数 类型 默认 必需 描述

home_vlr_prefixes 列表 ["5551231"] 否 被视为“家庭”网络的 VLR GT 前缀

示例:

config :omniss7,

 camel_service_key: 11_110,

 camel_trigger_detection_point: :termAttemptAuthorized

config :omniss7,

 home_vlr_prefixes: ["5551231", "5551234"]

SMSc 模式参数

SMS 中心模式的配置。

SMSc API 配置

参数
类

型
默认

必

需
描述

smsc_api_base_url

字

符

串

- 是

后端

SMSc

API 端点

URL

（SSL 验证

硬编码为禁

用）

smsc_name

字

符

串

"

{hostname}_SMSc"
否

后端注册的

SMSc 标

识符

smsc_service_center_gt_address

字

符

串

- 是
服务中心全局

标题地址

示例:

注意: 前端注册每 5 分钟 发生一次（硬编码）通过 SMS.FrontendRegistry 模块。

config :omniss7,

 smsc_api_base_url: "https://10.179.3.219:8443",

 smsc_name: "ipsmgw",

 smsc_service_center_gt_address: "55512341112"

自动刷新配置

参数 类型 默认 必需 描述

auto_flush_enabled 布尔 true 否 启用自动 SMS 队列处理

auto_flush_interval 整数 10_000 否 队列处理间隔（毫秒）

auto_flush_dest_smsc 字符串 - 是 自动刷新目标 SMSC 名称

auto_flush_tps 整数 10 否 消息处理速率（事务/秒）

示例:

STP 模式参数

M3UA 信号传输点模式的配置。有关详细的路由配置和示例，请参见 STP 配置指南。

config :omniss7,

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10

独立 STP 服务器

参数
类

型
默认 必需 描述

m3ua_stp.enabled
布

尔
false 否 启用独立 M3UA STP 服务器

m3ua_stp.local_ip

元

组

或

列

表

{127,

0, 0,

1}

否

监听连接的 IP 地址。单个 IP: {10,

0, 0, 1} 或多个 IP 用于 SCTP 多

宿主: [{10, 0, 0, 1}, {10,

0, 0, 2}]

m3ua_stp.local_port
整

数
2905 否 监听的端口

m3ua_stp.point_code
整

数
-

是（如

果启

用）

此 STP 的 SS7 点代码

示例（单个 IP）:

示例（SCTP 多宿主）:

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 point_code: 100

 }

注意: 有关 SCTP 多宿主配置和好处的详细信息，请参见 常见指南中的 SCTP 多宿主。

全局标题路由

参数 类型 默认 必需 描述

enable_gt_routing 布尔 false 否 除了 PC 路由外启用 GT 路由

示例:

全局标题 NAT 参数

全局标题网络地址转换允许根据呼叫方前缀使用不同的响应 GT。有关详细说明和示例，请参见 全局标题 NAT 指南。

参数 类型 默认 必需 描述

gt_nat_enabled 布尔 false 否 启用/禁用 GT NAT 功能

gt_nat_rules 映射列表 [] 是（如果启用） 前缀到 GT 的映射列表

规则格式: gt_nat_rules 中的每个规则必须是一个映射，包含：

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 # 多个 IP 用于冗余

 local_ip: [{10, 179, 4, 10}, {10, 179, 4, 11}],

 local_port: 2905,

 point_code: 100

 }

config :omniss7,

 enable_gt_routing: true

calling_prefix : 字符串前缀，用于与呼叫 GT 匹配

response_gt : 用于响应的全局标题

示例:

另见: 有关详细用法和示例，请参见 GT NAT 指南。

M3UA 连接参数

MAP 客户端模式的 M3UA 连接配置。有关详细用法和示例，请参见 MAP 客户端指南。

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # 当从以 "8772" 开头的 GT 被叫时，响应 "55512341112"

 %{calling_prefix: "8772", response_gt: "55512341112"},

 # 当从以 "8773" 开头的 GT 被叫时，响应 "55512341111"

 %{calling_prefix: "8773", response_gt: "55512341111"},

 # 默认回退（空前缀匹配所有）

 %{calling_prefix: "", response_gt: "55512311555"}

]

参数
类

型
默认

必

需
描述

map_client_m3ua.mode

字

符

串

- 是
连接模式： "ASP" 或

"SGP"

map_client_m3ua.callback
元

组
- 是

回调模块/函数：

{MapClient,

:handle_payload,

[]}

map_client_m3ua.process_name
原

子
- 是 注册的进程名称

map_client_m3ua.local_ip

元

组

或

列

表

- 是

要绑定的本地 IP 地址。单个：

{10, 0, 0, 1} 或多个

用于 SCTP 多宿主： [{10,

0, 0, 1}, {10, 0,

0, 2}]

map_client_m3ua.local_port
整

数
2905 是 本地 SCTP 端口

map_client_m3ua.remote_ip

元

组

或

列

表

- 是

远程 STP/SGW IP 地址。单

个： {10, 0, 0, 10}

或多个： [{10, 0, 0,

10}, {10, 0, 0,

11}]

map_client_m3ua.remote_port
整

数
2905 是 远程 SCTP 端口

map_client_m3ua.routing_context
整

数
- 是 M3UA 路由上下文 ID

示例（单个 IP）:

示例（SCTP 多宿主）:

注意: 有关 SCTP 多宿主配置和好处的详细信息，请参见 常见指南中的 SCTP 多宿主。

HTTP 服务器参数

REST API HTTP 服务器的配置。

config :omniss7,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

config :omniss7,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # 多个本地 IP 用于冗余

 local_ip: [{10, 179, 4, 11}, {10, 179, 4, 12}],

 local_port: 2905,

 # 多个远程 IP 用于 STP 冗余

 remote_ip: [{10, 179, 4, 10}, {10, 179, 4, 20}],

 remote_port: 2905,

 routing_context: 1

 }

参数 类型 默认 必需 描述

start_http_server 布尔 true 否 启用/禁用 HTTP 服务器（端口 8080）

硬编码值（不可配置）:

IP: 0.0.0.0（所有接口）

端口: 8080

传输: Plug.Cowboy

示例:

API 端点:

REST API: http://[server-ip]:8080/api/*

Swagger UI: http://[server-ip]:8080/swagger

Prometheus 指标: http://[server-ip]:8080/metrics

有关详细信息，请参见 API 指南。

数据库参数

Mnesia 数据库持久性的配置。

参数
类

型
默认

必

需
描述

mnesia_storage_type
原

子
:disc_copies 否

Mnesia 存储类型：

:disc_copies 或

:ram_copies

config :omniss7,

 start_http_server: true # �置为 false 以禁用

示例:

存储类型:

:disc_copies - 持久磁盘存储（重启后仍然存在） - 推荐用于生产

:ram_copies - 仅在内存中（重启时丢失） - 仅用于测试

Mnesia 表:

m3ua_peer - M3UA 对等连接

m3ua_route - 点代码路由

m3ua_gt_route - 全局标题路由

位置: Mnesia.{node_name}/ 目录

硬编码值

以下值在源代码中硬编码，无法通过配置更改。

超时

值 影响 解决方法

MAP 请求超时: 10 秒 所有 MAP 操作在 10 秒后超时 修改源代码

ISD 超时: 10 秒 每个 ISD 消息在 10 秒后超时 修改源代码

config :omniss7,

 mnesia_storage_type: :disc_copies # 生产

 # mnesia_storage_type: :ram_copies # 仅用于测试

HTTP 服务器

值 影响 解决方法

HTTP IP: 0.0.0.0 服务器在所有接口上监听 修改源代码

HTTP 端口: 8080 REST API 在端口 8080 上运行 修改源代码

SSL 验证

值 影响 解决方法

HLR API SSL: 禁用 SSL 验证始终禁用 修改源代码

SMSc API SSL: 禁用 SSL 验证始终禁用 修改源代码

注册间隔

值 影响 解决方法

前端注���: 5 分钟 SMSc 每 5 分钟与后端注册一次 修改源代码

Web UI 自动刷新

页面 间隔

路由管理 5 秒

活跃用户 2 秒

配置示例

最小 HLR 配置

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false,

 hlr_api_base_url: "https://10.180.2.140:8443",

 hlr_service_center_gt_address: "55512341111",

 smsc_service_center_gt_address: "55512341112",

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

最小 SMSc 配置

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: true,

 smsc_api_base_url: "https://10.179.3.219:8443",

 smsc_name: "ipsmgw",

 smsc_service_center_gt_address: "55512341112",

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 local_ip: {10, 179, 4, 12},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

使用独立服务器的 STP

摘要

总配置参数: 32

按类别:

操作模式: 3 个参数

HLR 模式: 13 个参数

SMSc 模式: 7 个参数

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 enable_gt_routing: true,

 mnesia_storage_type: :disc_copies,

 m3ua_stp: %{

 enabled: true,

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 point_code: 100

 },

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 local_ip: {10, 179, 4, 10},

 local_port: 2906,

 remote_ip: {10, 179, 4, 11},

 remote_port: 2905,

 routing_context: 1

 }

STP 模式: 5 个参数

M3UA 连接: 8 个参数

HTTP 服务器: 1 个参数

数据库: 1 个参数

必需参数（必须设置）:

hlr_api_base_url（HLR 模式）

hlr_service_center_gt_address（HLR 模式）

smsc_api_base_url（SMSc 模式）

smsc_service_center_gt_address（SMSc/HLR 模式）

所有 map_client_m3ua.* 参数

m3ua_stp.point_code（如果启用 STP）

相关文档

HLR �南 - HLR 特定配置

SMSc �南 - SMSc 特定配置

STP �南 - STP 路由配置

API �南 - REST API 参考

Web UI �南 - Web 界面文档

全球标题 NAT �南

概述

全球标题网络地址转换（GT NAT）是一项功能，允许 OmniSS7 根据呼叫方的 GT 前缀、被叫方的 GT 前缀或两者的组合响应不同

的全球标题地址。当需要确保响应使用正确的 GT 时，这一点至关重要，尤其是在与多个全球标题操作时，确保根据哪个网络或对等方在呼叫和/或他

们呼叫的 GT 来使用正确的 GT。

新功能（增强的 GT NAT）

GT NAT 功能已增强，具备强大的新能力：

新特性

1. 被叫方前缀匹配：规则现在可以匹配 called_prefix，除了 calling_prefix 之外

2. 组合匹配：规则可以同时匹配呼叫和被叫前缀

3. 基于权重的优先级：规则现在使用 weight 字段（较低 = 较高优先级），而不仅仅是前缀长度

4. 灵活匹配：现在可以创建具有以下特性的规则：

仅呼叫前缀

仅被叫前缀

同时具有呼叫和被叫前缀

两者都没有（通配符/回退规则）

新规则格式

必需字段：

weight：整数优先级（较低 = 较高优先级）

response_gt：要响应的 GT

可选字段（建议至少�定一个以进行特定匹配）：

calling_prefix：匹配呼叫方 GT 前缀

called_prefix：匹配被叫方 GT 前缀

示例：

用例

多网络操作

当您有多个对等网络，每个网络都期望从特定 GT 接收响应时：

网络 A 呼叫您的 GT 111111 并期望从 111111 接收响应

网络 B 呼叫您的 GT 222222 并期望从 222222 接收响应

没有 GT NAT，您需要单独的实例或复杂的路由。使用 GT NAT，单个 OmniSS7 实例可以智能地处理此情况。

漫游场景

当作为 HLR 或 SMSc 运营时，具有漫游协议：

本地网络 用户使用 GT 555000

漫游合作伙伴 1 使用 GT 555001

漫游合作伙伴 2 使用 GT 555002

GT NAT 确保每个合作伙伴从他们配置的正确 GT 接收响应。

gt_nat_rules: [

 # 同时具有两个前缀的特定规则 - 最高优先级

 %{calling_prefix: "8772", called_prefix: "555", weight: 1,

response_gt: "111111"},

 # 特定规则 - 中等优先级

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"},

 %{called_prefix: "555", weight: 10, response_gt: "333333"},

 # 通配符回退 - 最低优先级

 %{weight: 100, response_gt: "999999"}

]

测试和迁移

在网络迁移或测试期间：

逐步将流量从旧 GT 迁移到新 GT

在过渡期间维护两个 GT

根据呼叫者使用的 GT 路由响应

工作原理

地址转换流程

1. 传入请求：OmniSS7 接收到带有以下内容的 SCCP 消息：

被叫方 GT：55512341112（您的 GT）

呼叫方 GT：877234567（他们的 GT）

2. GT NAT 查找：系统检查呼叫 GT 877234567 是否与配置的前缀规则匹配

3. 前缀匹配：找到最长的匹配前缀（例如，8772 匹配 877234567）

4. 响应 GT 选择：使用匹配规则中的 response_gt（例如，55512341112）

5. 发送响应：SCCP 响应使用：

被叫方 GT：877234567（反转 - 他们的 GT）

呼叫方 GT：55512341112（NAT'd GT）

受影响的响应类型

GT NAT 适用于 SS7 栈的多个层次：

SCCP 层（所有响应）

所有响应消息中的 SCCP 被叫/呼叫 GT 地址

ISD（InsertSubscriberData）确认

UpdateLocation 响应

错误响应

MAP 层（操作特定）

SRI-for-SM 响应：networkNode-Number（SMSc GT 地址）

UpdateLocation：响应中的 hlr-Number

InsertSubscriberData：ISD 消息中的 HLR GT

配置

基本配置

添加到 config/runtime.exs：

配置参数

有关完整的配置参考，请参见 配置参考中的全球标题 NAT 参数。

config :omniss7,

 # 启用 GT NAT

 gt_nat_enabled: true,

 # 定义 GT NAT 规则

 gt_nat_rules: [

 # 规则 1：来自前缀 "8772" 的呼叫从 "55512341112" 获取响应

 %{calling_prefix: "8772", response_gt: "55512341112"},

 # 规则 2：来自前缀 "8773" 的呼叫从 "55512341111" 获取响应

 %{calling_prefix: "8773", response_gt: "55512341111"},

 # 默认规则（空前缀匹配所有内容）

 %{calling_prefix: "", response_gt: "55512311555"}

]

参数 类型 必需 描述

gt_nat_enabled 布尔 是 启用/禁用 GT NAT 功能

gt_nat_rules 映射列表 是（如果启用） 前缀匹配规则列表

规则格式

每个规则都是一个具有以下键的映射：

规则字段：

calling_prefix（可选）：要与传入呼叫 GT 匹配的字符串前缀

匹配通过 String.starts_with?/2 完成

空字符串 "" 或 nil 作为通配符（匹配任何呼叫 GT）

可以省略以匹配任何呼叫 GT

called_prefix（可选）：要与传入被叫 GT 匹配的字符串前缀

匹配通过 String.starts_with?/2 完成

空字符串 "" 或 nil 作为通配符（匹配任何被叫 GT）

可以省略以匹配任何被叫 GT

weight（必需）：整数优先级值

较低的权重 = 较高的优先级（优先处理）

必须大于或等于 0

用作匹配规则的主要排序标准

%{

 calling_prefix: "8772", # （可选）要与呼叫 GT 匹配的前缀

 called_prefix: "555", # （可选）要与被叫 GT 匹配的前缀

 weight: 10, # （必需）优先级值（较低 = 较高优先级）

 response_gt: "55512341112" # （必需）在响应中使用的 GT

}

response_gt（必需）：在响应中使用的全球标题地址

必须是有效的 E.164 数字字符串

应与您的配置 GT 之一匹配

至少应�定 calling_prefix 或 called_prefix 中的一个以进行特定路由。两者都可以省略以用于通配符/回退规则。

规则匹配逻辑

规则首先按 权重（升序） 进行评估，然后按 组合前缀特异性：

匹配算法：

1. 筛选所有指定前缀匹配的规则

如果设置了 calling_prefix，则必须匹配呼叫 GT

如果设置了 called_prefix，则必须匹配被叫 GT

如果两者都设置，则两者都必须匹配

如果两者都未设置，则规则作为通配符

2. 按以下方式对匹配规则进行排序：

主要：权重（升序 - 较低的值优先）

次要：组合前缀长度（降序 - 较长 = 更特定）

3. �回第一个匹配的规则

示例：

示例

示例 1：两个网络合作伙伴

场景：您运营一个 SMSc，拥有两个网络合作伙伴。每个合作伙伴期望从不同的 GT 接收响应。

示例规则

gt_nat_rules: [

 # 权重 1：最高优先级 - 匹配两个前缀

 %{calling_prefix: "8772", called_prefix: "555", weight: 1,

response_gt: "111111"},

 # 权重 10：中等优先级 - 特定规则

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"}, #

仅呼叫

 %{called_prefix: "555", weight: 10, response_gt: "333333"}, #

仅被叫

 # 权重 100：最低优先级 - 通配符回退

 %{weight: 100, response_gt: "444444"} # 匹配所有

]

匹配示例：

呼叫："877234567"，被叫："555123" -> "111111"（权重 1，两个匹配）

呼叫："877234567"，被叫："999999" -> "222222"（权重 10，仅呼叫）

呼叫："999999999"，被叫："555123" -> "333333"（权重 10，仅被叫）

呼叫："999999999"，被叫："888888" -> "444444"（权重 100，通配符）

流量流程：

示例 2：具有区域 GT 的 HLR

场景：国家 HLR，每个区域有不同的 GT。

config :omniss7,

 gt_nat_enabled: true,

 # 默认 SMSc GT（在禁用 GT NAT 或没有规则匹配时使用）

 smsc_service_center_gt_address: "5551000",

 # 合作伙伴的 GT NAT 规则

 gt_nat_rules: [

 # 合作伙伴 A（前缀 4412）期望从 GT 5551001 获取响应

 %{calling_prefix: "4412", weight: 10, response_gt: "5551001"},

 # 合作伙伴 B（前缀 4413）期望从 GT 5551002 获取响应

 %{calling_prefix: "4413", weight: 10, response_gt: "5551002"},

 # 默认：使用标准 SMSc GT（通配符回退）

 %{weight: 100, response_gt: "5551000"}

]

来自 44121234567 的传入 SRI-for-SM：

 被叫 GT：5551001（您使用的 GT，合作伙伴 A 使用）

 呼叫 GT：44121234567（合作伙伴 A 的 GT）

GT NAT 查找：

 "44121234567" 匹配前缀 "4412"

 选择的 response_gt： "5551001"

响应 SRI-for-SM 到 44121234567：

 被叫 GT：44121234567（反转）

 呼叫 GT：5551001（NAT'd）

 networkNode-Number：5551001（在 MAP 响应中）

示例 3：迁移场景

场景：逐步从旧 GT 迁移到新 GT。

config :omniss7,

 gt_nat_enabled: true,

 hlr_service_center_gt_address: "555000", # 默认 HLR GT

 gt_nat_rules: [

 # 北方区域 VLR（前缀 5551）

 %{calling_prefix: "5551", weight: 10, response_gt: "555100"},

 # 南方区域 VLR（前缀 5552）

 %{calling_prefix: "5552", weight: 10, response_gt: "555200"},

 # 西方区域 VLR（前缀 5553）

 %{calling_prefix: "5553", weight: 10, response_gt: "555300"},

 # 其他区域的默认（通配符）

 %{weight: 100, response_gt: "555000"}

]

config :omniss7,

 gt_nat_enabled: true,

 hlr_service_center_gt_address: "123456789", # 旧 GT（默认）

 gt_nat_rules: [

 # 已迁移的网络（已更新其配置）

 %{calling_prefix: "555", weight: 10, response_gt:

"987654321"}, # 新 GT

 %{calling_prefix: "666", weight: 10, response_gt:

"987654321"}, # 新 GT

 # 其他人仍然使用旧 GT（通配符）

 %{weight: 100, response_gt: "123456789"} # 旧 GT

]

示例 4：被叫方前缀匹配（新）

场景：您有多个 GT 用于不同服务，并希望根据呼叫的 GT 响应正确的 GT。

流量流程：

示例 5：组合呼叫 + 被叫前缀匹配（高级）

场景：不同的合作伙伴呼叫不同的 GT，您希望进行精细控制。

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # 当他们呼叫您的 SMS GT（5551xxx）时，响应该 GT

 %{called_prefix: "5551", weight: 10, response_gt: "555100"},

 # 当他们呼叫您的语音 GT（5552xxx）时，响应该 GT

 %{called_prefix: "5552", weight: 10, response_gt: "555200"},

 # 当他们呼叫您的数据 GT（5553xxx）时，响应该 GT

 %{called_prefix: "5553", weight: 10, response_gt: "555300"},

 # 默认回退

 %{weight: 100, response_gt: "555000"}

]

传入请求到被叫 GT：555100（您的 SMS GT）

呼叫 GT：441234567（任何呼叫者）

GT NAT 查找：

 被叫 GT "555100" 匹配前缀 "5551"

 选择的 response_gt： "555100"

响应使用呼叫 GT：555100（匹配他们所呼叫的）

匹配示例：

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # 合作伙伴 A 呼叫您的 SMS GT - 最高优先级（权重 1）

 %{calling_prefix: "4412", called_prefix: "5551", weight: 1,

response_gt: "555101"},

 # 合作伙伴 B 呼叫您的 SMS GT - 最高优先级（权重 1）

 %{calling_prefix: "4413", called_prefix: "5551", weight: 1,

response_gt: "555102"},

 # 任何人呼叫您的 SMS GT - ���等优先级（权重 10）

 %{called_prefix: "5551", weight: 10, response_gt: "555100"},

 # 合作伙伴 A 呼叫任何 GT - 中等优先级（权重 10）

 %{calling_prefix: "4412", weight: 10, response_gt: "555200"},

 # 默认回退 - 低优先级（权重 100）

 %{weight: 100, response_gt: "555000"}

]

合作伙伴 A 呼叫 SMS GT

呼叫："441234567"，被叫："555100"

→ 匹配权重 1 规则（两个前缀）→ "555101"

合作伙伴 A 呼叫语音 GT

呼叫："441234567"，被叫："555200"

→ 匹配权重 10 规则（仅呼叫）→ "555200"

未知呼叫者呼叫 SMS GT

呼叫："999999999"，被叫："555100"

→ 匹配权重 10 规则（仅被叫）→ "555100"

未知呼叫者呼叫语音 GT

呼叫："999999999"，被叫："555200"

→ 匹配权重 100 通配符 → "555000"

操作模式

GT NAT 在所有 OmniSS7 操作模式下工作：

HLR 模式

GT NAT 影响：

UpdateLocation 响应（响应中的 HLR GT）

InsertSubscriberData 消息（作为呼叫方的 HLR GT）

SendAuthenticationInfo 响应

取消位置响应

有关 HLR 操作的更多信息，请参见 HLR 配置指南。

配置：

SMSc 模式

GT NAT 影响：

SRI-for-SM 响应（networkNode-Number 字段） - 参见 SRI-for-SM 详细信息

MT-ForwardSM 确认

有关 SMSc 操作的更多信息，请参见 SMSc 配置指南。

config :omniss7,

 hlr_mode_enabled: true,

 hlr_service_center_gt_address: "5551234567", # 默认 HLR GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "331", weight: 10, response_gt:

"5551234568"}, # 法国

 %{calling_prefix: "44", weight: 10, response_gt:

"5551234569"}, # 英国

 %{weight: 100, response_gt: "5551234567"} # 默认通配符

]

配置：

CAMEL 网关模式

GT NAT 影响：

所有 SCCP 层响应（gsmSCF GT 作为呼叫方）

CAMEL/CAP 操作响应（InitialDP、EventReportBCSM 等）

RequestReportBCSMEvent 确认

ApplyCharging ���应

Continue 响应

配置：

config :omniss7,

 smsc_mode_enabled: true,

 smsc_service_center_gt_address: "5559999", # 默认 SMSc GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "1", weight: 10, response_gt: "5559991"},

北美

 %{calling_prefix: "44", weight: 10, response_gt: "5559992"},

英国

 %{calling_prefix: "86", weight: 10, response_gt: "5559993"},

中国

 %{weight: 100, response_gt: "5559999"} # 默认通配符

]

用例： 当作为多个网络的 gsmSCF（服务控制功能）操作时，每个网络的 gsmSSF 可能期望从特定的 gsmSCF GT 接收响

应。GT NAT 确保根据哪个 gsmSSF 在呼叫使用正确的 GT。

日志记录和调试

启用 GT NAT 日志记录

GT NAT 包括对所有转换的自动日志记录：

上下文字段显示了 NAT 应用的位置：

"SRI-for-SM 响应" - 在 SRI-for-SM 处理程序中

"UpdateLocation ISD" - 在 InsertSubscriberData 消息中

"UpdateLocation END" - 在 UpdateLocation END 响应中

"MAP BEGIN 响应" - ��用 MAP BEGIN 响应

"ISD ACK" - ISD 确认

config :omniss7,

 camelgw_mode_enabled: true,

 camel_gsmscf_gt_address: "55512341112", # 默认 gsmSCF GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "555", weight: 10, response_gt:

"55512341111"}, # 网络 A

 %{calling_prefix: "666", weight: 10, response_gt:

"55512311555"}, # 网络 B

 %{weight: 100, response_gt: "55512341112"} # 默认通配符

]

在日志中，您将看到：

[info] GT NAT [SRI-for-SM 响应]: 呼叫 GT 877234567 -> 响应 GT

55512341112

[info] GT NAT [UpdateLocation ISD]: 呼叫 GT 331234567 -> 响应 GT

55512341111

[info] GT NAT [MAP BEGIN 响应]: 呼叫 GT 441234567 -> 响应 GT 55512311555

"HLR 错误响应" - HLR 的错误响应

"CAMEL 响应" - CAMEL/CAP 操作响应（gsmSCF）

验证

系统在启动时验证 GT NAT 配置：

测试 GT NAT

以编程方式测试 GT NAT 逻辑：

检查 GT NAT 配置

iex> GtNat.validate_config()

{:ok, [

 %{calling_prefix: "8772", weight: 10, response_gt:

"55512341112"},

 %{calling_prefix: "8773", weight: 10, response_gt:

"55512341111"}

]}

检查是否启用

iex> GtNat.enabled?()

true

获取所有规则

iex> GtNat.get_rules()

[

 %{calling_prefix: "8772", weight: 10, response_gt:

"55512341112"},

 %{calling_prefix: "8773", weight: 10, response_gt:

"55512341111"}

]

故障排除

问题：GT NAT 无法工作

检查 1：是否启用？

检查 2：规则是否配置？

仅使用呼叫 GT 测试转换（called_gt 为 nil）

iex> GtNat.translate_response_gt("877234567", nil, "default_gt")

"55512341112"

使用呼叫和被叫 GT 测试转换

iex> GtNat.translate_response_gt("877234567", "555123",

"default_gt")

"55512341112"

测试日志记录（nil 被叫 GT）

iex> GtNat.translate_response_gt_with_logging("877234567", nil,

"default_gt", "test")

日志：GT NAT [test]: 呼叫 GT 877234567 -> 响应 GT 55512341112

"55512341112"

测试日志记录（两个 GT）

iex> GtNat.translate_response_gt_with_logging("877234567",

"555123", "default_gt", "test")

日志：GT NAT [test]: 呼叫 GT 877234567, 被叫 GT 555123 -> 响应 GT

55512341112

"55512341112"

测试无匹配（返回默认）

iex> GtNat.translate_response_gt("999999999", "888888",

"default_gt")

"default_gt"

iex> Application.get_env(:omniss7, :gt_nat_enabled)

true # 应为 true

检查 3：检查日志 搜索日志中的 "GT NAT" 以查看是否发生了转换。

问题：响应中的 GT 错误

症状：响应使用意外的 GT 地址

原因：规则前缀匹配可能过于宽泛或默认规则捕获了流量

解决方案：检查规则权重和前缀：

问题：GT NAT 未应用于特定消息类型

症状：某些响应使用 NAT'd GT，其他则不使用

当前覆盖范围：

✅ SCCP 呼叫 GT（所有响应）

✅ SRI-for-SM 响应（networkNode-Number）

✅ UpdateLocation ISD 消息（HLR GT）

✅ UpdateLocation END 响应

iex> Application.get_env(:omniss7, :gt_nat_rules)

[%{calling_prefix: "8772", response_gt: "55512341112"}, ...] # 应返

回列表

不好：低权重的通配符（捕获所有内容）

gt_nat_rules: [

 %{weight: 1, response_gt: "111111"}, # 这会首先匹配所有内容！

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"} #

从未到达

]

好：具有较低权重的特定规则，较高权重的通配符

gt_nat_rules: [

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"}, #

特定，低权重

 %{weight: 100, response_gt: "111111"} # 通配符，高权重（回退）

]

✅ ISD 确认

✅ MAP BEGIN 响应

如果特定消息类型未使用 GT NAT，可能尚未实现。检查源代码或联系支持。

性能考虑

查找性能

GT NAT 使用简单的前缀匹配，复杂度为 O(n)，其中 n 是规则的数量。

性能提示：

将规则数量保持在 100 以下以获得最佳性能

使用特定前缀以减少规则数量

默认规则（空前缀）应放在最后

基准（典型系统）：

10 条规则：每次查找 < 1µs

50 条规则：每次查找 < 5µs

100 条规则：每次查找 < 10µs

内存使用

每条规则大约需要 100 字节的内存：

10 条规则 ≈ 1 KB

100 条规则 ≈ 10 KB

最佳实践

1. 始终包含通配符回退规则

2. 使用有意义的前缀和权重

3. 记录您的规则

gt_nat_rules: [

 %{calling_prefix: "8772", weight: 10, response_gt: "111111"},

 %{calling_prefix: "8773", weight: 10, response_gt: "222222"},

 %{weight: 100, response_gt: "default_gt"} # 始终有一个高权重的通配符

]

好：清晰、特定的前缀和适当的权重

%{calling_prefix: "331", weight: 10, response_gt: "..."} # 法国

%{calling_prefix: "44", weight: 10, response_gt: "..."} # 英国

不好：过于宽泛的前缀或混淆的权重

%{calling_prefix: "3", weight: 5, response_gt: "..."} # 太多国家

%{calling_prefix: "331", weight: 100, response_gt: "..."} # 权重应为较

低以适用于特定规则

gt_nat_rules: [

 # 合作伙伴 XYZ - 英国网络（GT 范围：4412xxxxxxx）

 # 权重 10：标准合作伙伴优先级

 %{calling_prefix: "4412", weight: 10, response_gt: "5551001"},

 # 合作伙伴 ABC - 法国网络（GT 范围：33123xxxxxx）

 # 权重 10：标准合作伙伴优先级

 %{calling_prefix: "33123", weight: 10, response_gt: "5551002"}

]

4. 部署前测试

5. 监控日志

启用 INFO 级别日志记录，以查看生产环境中的所有 GT NAT 转换。

与其他功能的集成

STP 模式

GT NAT 独立于 STP 路由工作。STP 根据点代码和目标 GT 进行路由，而 GT NAT 处理响应地址。

有关 STP 路由的更多信息，请参见 STP 配置指南。

CAMEL 集成

GT NAT 与 CAMEL/CAP 操作 完全集成：

SCCP 层：

所有 CAMEL 响应中的呼叫方 GT

根据传入的 gsmSSF GT 自动应用

配置：

camel_gsmscf_gt_address - 默认 gsmSCF GT（可选）

如果未配置，则使用来自传入请求的被叫方 GT

GT NAT 规则根据呼叫方前缀覆盖默认值

在部署前在 iex 中测试

iex> GtNat.translate_response_gt("44121234567", nil, "default")

"5551001" # 预期结果

使用被叫 GT 测试

iex> GtNat.translate_response_gt("44121234567", "555123",

"default")

"5551001" # 预期结果

示例：

负载均衡

GT NAT 可以与 M3UA 负载均衡结合使用，以实现高级流量管理。

迁移�南

在现有系统上启用 GT NAT

1. 准备配置

2. 测试配置

当 gsmSSF 555123456 呼叫您的 gsmSCF

传入：被叫=55512341112，呼叫=555123456

GT NAT 查找："555" -> response_gt="55512341111"

响应：被叫=555123456，呼叫=55512341111

添加到 runtime.exs（最初保持禁用）

config :omniss7,

 gt_nat_enabled: false, # 初始禁用

 gt_nat_rules: [

 # 您的规则在这里，带有权重

 %{calling_prefix: "877", weight: 10, response_gt:

"111111"},

 %{weight: 100, response_gt: "999999"} # 通配符回退

]

验证配置是否编译

mix compile

在 iex 中测试

iex -S mix

iex> GtNat.validate_config()

3. 在暂存环境中启用

4. 监控日志

5. 部署到生产

在维护窗口期间进行部署

密切监控前 24 小时

准备回滚计划（设置 gt_nat_enabled: false）

支持

如有问题或疑问：

检查日志中的 "GT NAT" 消息

使用 GtNat.validate_config() 验证配置

查看本指南的故障排除部分

联系 OmniSS7 支持，提供日志摘录

另见

HLR 指南 - HLR 模式配置

SMSC 指南 - SMSc 模式配置

STP 指南 - STP 路由配置

配置参考 - 完整配置参考

gt_nat_enabled: true # 更改为 true

tail -f log/omniss7.log | grep "GT NAT"

HLR 配置�南

← �回主文档

本指南提供了将 OmniSS7 作为 家庭位置寄存器 (HLR/HSS) 与 OmniHSS 作为后端用户数据库的配置。

OmniHSS 集成

OmniSS7 HLR 模式作为 SS7 信令前端，与 OmniHSS（一个功能齐全的家庭用户服务器 HSS 后端）进行接口。该架

构分离了关注点：

OmniSS7 (HLR 前端)：处理所有 SS7/MAP 协议信令、SCCP 路由和网络通信

OmniHSS (HSS 后端)：管理用户数据、身份验证、配置和高级功能

为什么选择 OmniHSS？

OmniHSS 提供了运营商级的用户管理，具有以下功能：

多 IMSI 支持：每个用户可以与一个 MSISDN 关联多个 IMSI，以便于国际漫游、网络切换和 eSIM 配置

灵活的身份验证：支持 Milenage（3G/4G/5G）和 COMP128（2G）身份验证算法

电路和数据会话跟踪：独立跟踪 CS（电路交换）和 PS（分组交换）网络注册

高级配置：可定制的服务配置、附加服务和 CAMEL 订阅数据

API 优先设计：RESTful HTTP API 用于与计费、CRM 和配置系统的集成

实时更新：位置跟踪、会话管理和身份验证向量生成

所有用户数据、身份验证凭据和服务配置都存储在 OmniHSS 中。OmniSS7 通过 HTTPS API 调用查询 OmniHSS，以

响应 MAP 操作，如 UpdateLocation、SendAuthenticationInfo 和 SendRoutingInfo。

重要：OmniSS7 HLR 模式仅为 信令前端。所有用户管理逻辑、身份验证算法、配置规则和数据库操作均由 OmniHSS 处理。本指

南涵盖 OmniSS7 中的 SS7/MAP 协议配置。有关用户配置、身份验证配置、服务配置和管理操作的信息，请 参阅 OmniHSS

文档。

多 IMSI 支持

OmniHSS 原生支持多 IMSI 配置，允许单个用户（通过 MSISDN 识别）拥有多个 IMSI。这使得：

国际漫游配置：不同区域的不同 IMSI 以降低漫游费用

eSIM 多配置：在单个支持 eSIM 的设备上使用多个网络配置

网络切换：在不更改 MSISDN 的情况下无缝切换网络

双 SIM 协调：跨多个物理或虚拟 SIM 进行协调

测试与开发：多个测试 IMSI 指向同一用户

工作原理：

每个 IMSI 具有自己的身份验证凭据（Ki、OPc、算法）

每个 IMSI 可以有独立的电路和数据会话注册

用户服务和配置可以按 IMSI 共享或自定义

OmniSS7 按 IMSI 查询 OmniHSS，OmniHSS �回适当的用户数据

计费系统可以按 IMSI 跟踪使用情况，同时将所有 IMSI 关联到单一账户

示例多 IMSI 场景：

所有三个 IMSI 可以独立用于网络注册，但它们都属于同一用户账户。OmniHSS 管理 IMSI 到用户的映射，并确保每个 IMSI 的适当

身份验证和配置。

用户 MSISDN: +1-555-123-4567

├─ IMSI 1: 310260123456789 (美国本地网络 - Milenage 身份验证)

├─ IMSI 2: 208011234567890 (法国漫游配置 - Milenage 身份验证)

└─ IMSI 3: 440201234567891 (英国漫游配置 - COMP128 身份验证)

目录

1. OmniHSS 集成

2. 多 IMSI 支持

3. 什么是 HLR 模式？

4. 启用 HLR 模式

5. 用户数据库

6. 身份验证向量

7. 位置更新

8. CAMEL 集成

9. 漫游用户处理

10. HLR 操作

响应字段映射

SendRoutingInfo (SRI)

UpdateLocation / ISD

SendRoutingInfoForSM

字段源摘要

什么是 HLR 模式？

HLR 模式使 OmniSS7 能够作为家庭位置寄存器运行：

用户管理：存储和管理用户数据

身份验证：生成网络访问的身份验证向量

位置跟踪：处理来自 VLR 的位置更新

路由信息：提供呼叫和 SMS 的路由信息

HLR 架构

启用 HLR 模式

OmniSS7 可以在不同模式下运行。要将其用作 HLR，您需要在配置中启用 HLR 模式。

切换到 HLR 模式

OmniSS7 的 config/runtime.exs 包含三个预配置的操作模式。要启用 HLR 模式：

1. 打开 config/runtime.exs

2. 查找 三个配置部分（第 53-174 行）：

配置 1：STP 模式（第 53-85 行）

配置 2：HLR 模式（第 87-123 行）

配置 3：SMSc 模式（第 125-174 行）

3. 注释掉 当前活动的配置（在每行前添加 #）

4. 取消注释 HLR 配置（从第 87-123 行移除 #）

5. 根据需要自定义 配置参数

6. 重启 应用程序：iex -S mix

HLR 模式配置

完整的 HLR 配置如下所示：

config :omniss7,

 # 模式标志 - 仅启用 HLR 功能

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false,

 # OmniHSS 后端 API 配置

 hlr_api_base_url: "https://10.180.2.140:8443",

 # HLR 服务中心 GT 地址，用于 SMS 操作

 hlr_service_center_gt_address: "1234567890",

 # MSISDN ↔ IMSI 映射配置

 # 参见：MSISDN ↔ IMSI 映射部分以获取详细信息

 hlr_imsi_plmn_prefix: "50557",

 hlr_msisdn_country_code: "61",

 hlr_msisdn_nsn_offset: 0,

 hlr_msisdn_nsn_length: 9,

 # InsertSubscriberData 配置

 # 网络访问模式：:packetAndCircuit、:packetOnly 或 :circuitOnly

 isd_network_access_mode: :packetAndCircuit,

 # 发送 ISD #2（附加服务数据）

 isd_send_ss_data: true,

 # 发送 ISD #3（呼叫限制数据）

 isd_send_call_barring: true,

 # CAMEL 配置（用于 SendRoutingInfo 响应）

 # CAMEL 服务启动的服务密钥

 camel_service_key: 11_110,

 # CAMEL 触发检测点

 # 选项：:termAttemptAuthorized、:tBusy、:tNoAnswer、:tAnswer

 camel_trigger_detection_point: :termAttemptAuthorized,

 # 家庭 VLR 前缀

 # 被视为“家庭”网络的 VLR 地址前缀列表

 # 如果用户的 VLR 以这些前缀之一开头，则使用标准 SRI 响应

 # 否则，用户正在漫游，我们需要发送 PRN 以获取 MSRN

 home_vlr_prefixes: ["123456"],

需要自定义的配置参数

有关所有配置参数的完整参考，请参见 配置参考。

 # M3UA 连接配置

 # 作为 ASP 连接以接收 MAP 操作（UpdateLocation、SendAuthInfo 等）

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # 本地端点（HLR 系统）

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 # 远程 STP 端点

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

参数
类

型
默认值

hlr_api_base_url

字

符

串

�需 Omn

hlr_service_center_gt_address

字

符

串

�需
用于 U

应的 H

smsc_service_center_gt_address

字

符

串

�需
在 SR

SMS

hlr_smsc_alert_gts
列

表
[]

在 Up

送 ale

的 SM

hlr_alert_location_expiry_seconds
整

数
172800

当 SM

alert

的位置过

hlr_imsi_plmn_prefix

字

符

串

"50557"

MSIS

PLM

↔ IM

hlr_msisdn_country_code

字

符

串

"61"

反向 IM

国家代码

IMSI

hlr_msisdn_nsn_offset
整

数
0

从 MS

偏移量（

IMSI

hlr_msisdn_nsn_length
整

数
9

要提取的

MSIS

参数
类

型
默认值

isd_network_access_mode
原

子
:packetAndCircuit

Inse

的网络访

isd_send_ss_data
布

尔
true 发送 IS

isd_send_call_barring
布

尔
true 发送 IS

camel_service_key
整

数
11_110

Send

CAM

camel_trigger_detection_point
原

子
:termAttemptAuthorized CAM

home_vlr_prefixes
列

表
["5551231"]

被视为“

缀列表

local_ip
元

组
�需 您的 H

local_port
整

数
2905 本地 S

remote_ip
元

组
�需 用于 S

remote_port
整

数
2905 远程 S

routing_context
整

数
1 M3U

启用 HLR 模式时会发生什么

当 hlr_mode_enabled: true 时，Web UI 将显示：

✅ SS7 事件 - 事件日志

✅ SS7 客户端 - MAP 操作测试

✅ M3UA - 连接状态

✅ HLR 链接 - HLR API 状态 + 用户管理 ← 特定于 HLR

✅ 资源 - 系统监控

✅ 配置 - 配置查看器

路由、路由测试和 SMSc 链接 选项卡将被隐藏。

重要说明

必需配置：hlr_service_center_gt_address 参数是 强制性的。如果未配置，应用程序将无法启动。

OmniHSS 后端：OmniHSS API 后端必须在配置的 hlr_api_base_url 处可访问

API 请求超时：所有 OmniHSS API 请求都有一个 硬编码的 5 秒超时

MAP 请求超时：所有 MAP 请求（SRI、UpdateLocation、SendAuthInfo 等）都有一��� 硬编码的

10 秒超时

ISD 超时：UpdateLocation 序列中的每个 InsertSubscriberData (ISD) 消息都有一个 硬编码的 10

秒超时

需要与 STP 建立 M3UA 连接以接收 MAP 操作

更改模式后，您必须重启应用程序以使更改生效

Web UI：有关使用 Web 界面的信息，请参见 Web UI 指南

API 访问：有关 REST API 文档和 Swagger UI 访问的信息，请参见 API 指南

用户数据库

OmniHSS 管理所有用户数据，包括身份、身份验证凭据、服务配置和位置信息。OmniSS7 通过 RESTful API 调用检索这

些数据。

OmniHSS 用户模型

OmniHSS 存储全面的用户信息：

每个用户多个 IMSI：支持多 IMSI 配置（eSIM、漫游配置、网络切换）

身份验证凭据：Ki、OPc 和算法选择（Milenage 或 COMP128）

服务配置：用户类别、允许的服务、QoS 参数

位置跟踪：当前 VLR/MSC（电路会话）和 SGSN/GGSN（数据会话）独立跟踪

CAMEL 订阅数据：服务密钥、触发点和 gsmSCF 地址

附加服务：呼叫转移、限制、等待、CLIP/CLIR 配置

管理状态：启用/禁用、服务限制、到期日期

身份验证向量

生成身份验证向量

OmniHSS 使用 Milenage 或 COMP128 算法生成身份验证向量，具体取决于每个用户配置的身份验证方法。当

OmniSS7 接收到 sendAuthenticationInfo MAP 请求时：

1. OmniSS7 从 MAP 请求中提取 IMSI

2. OmniSS7 调用 OmniHSS API 生成身份验证向量

3. OmniHSS 检索用户的 Ki 和 OPc 凭据

4. OmniHSS 生成请求数量的向量（RAND、XRES、CK、IK、AUTN）

5. OmniSS7 将向量编码为 MAP 格式并将其�回给请求的 VLR/SGSN

OmniHSS API 集成

OmniSS7 通过 HTTPS REST API 与 OmniHSS 通信，以检索用户信息、更新位置信息和生成身份验证向量：

当 OmniSS7 从 SS7 网络接收到 MAP 操作时，它查询 OmniHSS 以：

config :omniss7,

 hlr_api_base_url: "https://omnihss-server:8443"

按 IMSI 或 MSISDN 检索用户数据

使用存储的 Ki/OPc 凭据生成身份验证向量

在用户执行 UpdateLocation 时更新电路会话位置

检查用户状态和服务权限

位置更新

更新位置处理

在接收到 updateLocation MAP 请求时，OmniSS7 与 OmniHSS 协调以在新的 VLR 注册用户：

1. 从 UpdateLocation 请求中提取位置信息（IMSI、新 VLR GT、新 MSC GT）

2. 查询 OmniHSS 以验证用户是否存在且已启用

3. 在 OmniHSS 中更新电路会话，以新的 VLR/MSC 位置

4. 发送 InsertSubscriberData (ISD) 消息以在新 VLR 中配置用户

5. 返回 UpdateLocation 响应 给 VLR（包括来自 hlr_service_center_gt_address 的

HLR GT）

6. 发送 alertServiceCenter 给配置的 SMSc GT（如果 hlr_smsc_alert_gts 被填充）

注意：hlr_service_center_gt_address 配置参数指定在 UpdateLocation 响应中�回的 HLR 的全球

标题。这允许 VLR/MSC 识别并将消息路由回此 HLR。

警报服务中心集成

在成功的 UpdateLocation 之后，HLR 可以通过发送 alertServiceCenter（MAP 操作码 64）消息自动通知

SMSc 系统，用户现在可达。有关 SMSc 如何处理这些警报的信息，请参见 SMSc 指南中的警报服务中心处理。

配置

配置要通知的 SMSc 全球标题列表：

流程图

SMSc APISMScHLRVLR

SMSc APISMScHLRVLR

用户在新 VLR 注册

发送 InsertSubscriberData (ISD) 序列

通知 SMSc 用户可达性

loop [对于 hlr_smsc_alert_gts 中的每个 SMSc GT]

UpdateLocation (IMSI, VLR GT, MSC GT)

验证用户是否存在

在数据库中更新 VLR 位置

InsertSubscriberData

ISD

InsertSubscriberData

ISD

InsertSubscriberData

ISD

UpdateLocation 响应 (hlr_service_center_gt_address)

alertServiceCenter (MSISDN)

从 MSISDN 中剥离 TON/NPI 前缀

计算 IMSI

POST /api/location (user_agent=HLR GT)

200 OK

在 SubscriberTracker 中跟踪（活动）

alertServiceCenter ACK

行为

config :omniss7,

 # 在 UpdateLocation 后发送 alertServiceCenter 的 SMSc GT 列表

 hlr_smsc_alert_gts: [

 "15559876543",

 "15559876544"

],

 # SMSc 接收到 alertServiceCenter 时的位置过期时间（默认：48 小时）

 hlr_alert_location_expiry_seconds: 172800

当用户执行 UpdateLocation 时：

1. HLR 向 hlr_smsc_alert_gts 列表中的 每个 SMSc GT 发送 alertServiceCenter

2. 消息包括用户的 MSISDN

3. HLR 使用 hlr_service_center_gt_address 作为呼叫方 GT

4. SCCP 定址：呼叫 SSN=6（HLR），被叫 SSN=8（SMSc）

SMSc 接收警报，并：

剥离 MSISDN 的 TON/NPI 前缀（例如，“19123123213” → “123123213”）

在其位置数据库中将用户标记为可达（通过 POST 到 /api/location）

在调用 API 时将 user_agent 字段设置为 HLR GT（用于跟踪哪个 HLR 发送了警报）

根据 hlr_alert_location_expiry_seconds 设置位置过期时间

在 SMSc 用户跟踪器中跟踪用户以进行监控

测试

使用 Web UI 中的 活动用户 页面手动发送 alertServiceCenter 消息进行测试：

1. 导航到“活动用户”选项卡

2. 找到“测试警报服务中心”部分

3. 输入 MSISDN、SMSc GT 和 HLR GT（默认值已从配置中预填充）

SMSc GT 默认值为 hlr_smsc_alert_gts 中的第一个条目

HLR GT 默认值为 hlr_service_center_gt_address

4. 点击“发送 alertServiceCenter”

这对于测试 SMSc 警报处理非常有用，而无需完整的 UpdateLocation 流程。该表单使用 phx-blur 验证以避免在输入时显

示错误。

InsertSubscriberData (ISD) 配置

在成功的 UpdateLocation 之后，HLR 使用 InsertSubscriberData (ISD) 消息将用户配置数据发送到

VLR。ISD 配置允许您自定义发送的数据及其方式。

有关配置参数参考，请参见 配置参考���的 ISD 配置。

ISD 序列

HLR 可以发送最多 3 条顺序 ISD 消息：

1. ISD #1（始终发送） - 基本用户数据：

IMSI

MSISDN

用户类别

用户状态（serviceGranted）

承载服务列表

电信服务列表

网络访问模式

2. ISD #2（可选） - 附加服务（SS）数据：

呼叫转移设置（无条件、忙、无回复、不可达）

呼叫等待

呼叫保持

多方服务

附加服务状态和功能

3. ISD #3（可选） - 呼叫限制数据：

阻止所有外呼（BAOC）

阻止外部国际呼叫（BOIC）

访问限制数据

配置选项

InsertSubscriberData 配置

网络访问模式：:packetAndCircuit、:packetOnly 或 :circuitOnly

isd_network_access_mode: :packetAndCircuit,

发送 ISD #2（附加服务数据）

isd_send_ss_data: true,

发送 ISD #3（呼叫限制数据）

isd_send_call_barring: true,

网络访问模式

isd_network_access_mode 参数控制用户被允许的网络访问类型：

值 描述 用例

:packetAndCircuit 同时支持分组交换（GPRS/LTE）和电路交换（语音） 默认 - 完整服务用户

:packetOnly 仅支持分组交换（数据/LTE） 数据卡、物联网设备

:circuitOnly 仅支持电路交换（语音/SMS） 旧设备、仅语音计划

控制 ISD 消息

您可以根据网络需求控制发送哪些 ISD 消息：

发送所有 ISD（默认 - 完整功能集）：

仅发送基本用户数据（最小配置）：

发送基本 + 附加服务（无呼叫限制）：

ISD 流程示例

当接收到 UpdateLocation 时：

isd_send_ss_data: true,

isd_send_call_barring: true,

isd_send_ss_data: false,

isd_send_call_barring: false,

isd_send_ss_data: true,

isd_send_call_barring: false,

如果 isd_send_ss_data 或 isd_send_call_barring 设置为 false，则跳过这些 ISD 消息，并更早

发送 UpdateLocation 结束。

最佳实践

默认配置：使用 :packetAndCircuit 并启用所有 ISD，以���得最大兼容性

物联网/M2M：使用 :packetOnly 并禁用 SS 数据/呼叫限制，以适应仅数据设备

互操作性：某些旧 VLR 可能不支持所有附加服务 - 如果遇到问题，请禁用 isd_send_ss_data

性能：禁用未使用的 ISD 可减少消息开销，加快位置更新速度

CAMEL 集成

CAMEL 配置用于 SendRoutingInfo

在响应来自 GMSC（网关 MSC）的 SendRoutingInfo（SRI）请求时，HLR 可以指示 GMSC 调用 CAMEL

服务以进行智能呼叫路由和服务控制。

有关配置参数参考，请参见 CAMEL 配置在配置参考中。

什么是 CAMEL？

CAMEL（定制的移动网络增强逻辑应用程序）是一种协议，使 GSM/UMTS 网络中的智能网络服务成为可能。它允许网络运营商实现增

值服务，例如：

预付费计费

呼叫筛选和限制

虚拟专用网络（VPN）

VLR → HLR: UpdateLocation (开始)

HLR → VLR: InsertSubscriberData #1 (继续) - 基本数据

VLR → HLR: ISD #1 ACK (继续)

HLR → VLR: InsertSubscriberData #2 (继续) - SS 数据 [如果启用]

VLR → HLR: ISD #2 ACK (继续)

HLR → VLR: InsertSubscriberData #3 (继续) - 呼叫限制 [如果启用]

VLR → HLR: ISD #3 ACK (继续)

HLR → VLR: UpdateLocation 响应 (结束)

高价服务

带有自定义逻辑的呼叫转移

基于位置的服务

配置选项

服务密钥

camel_service_key 标识在 gsmSCF（服务控制功能）中应调用哪个 CAMEL 服务。这是一个在您的网络中配置的数字

标识符：

服务密钥 典型用例

11_110 预付费终止呼叫控制（默认）

100 发起预付费服务

200 ���有自定义逻辑的呼叫转移

300 虚拟专用网络（VPN）

自定义 运营商特定服务

配置示例：

CAMEL 配置（用于 SendRoutingInfo 响应）

CAMEL 服务启动的服务密钥

camel_service_key: 11_110,

CAMEL 触发检测点

选项：:termAttemptAuthorized、:tBusy、:tNoAnswer、:tAnswer

camel_trigger_detection_point: :termAttemptAuthorized,

触发检测点

camel_trigger_detection_point 指定在呼叫设置期间何时触发 CAMEL 服务：

检测点 描述 何时触发

:termAttemptAuthorized 呼叫尝试已授权（默认） 在呼叫路由到用户之前

:tBusy 终止忙碌 当用户忙时

:tNoAnswer 终止未应答 当用户未应答时

:tAnswer 终止应答 当用户接听电话时

配置示例：

标准预付费控制（在路由之前触发）：

自定义忙碌处理（在忙碌时触发）：

基于应答计费（在应答时触发）：

带 CAMEL 的 SRI 响应

对于预付费终止呼叫控制

camel_service_key: 11_110,

对于 VPN 服务

camel_service_key: 300,

camel_trigger_detection_point: :termAttemptAuthorized,

camel_trigger_detection_point: :tBusy,

camel_trigger_detection_point: :tAnswer,

配置后，SendRoutingInfo 响应将包括 CAMEL 订阅信息：

最佳实践

生产网络：使用与您的 gsmSCF 提供商达成一致的标准化服务密钥

测试：使用 :termAttemptAuthorized 进行最全面的测试

预付费服务：服务密钥 11_110 是预付费终止呼叫的常见行业标准

回退处理：defaultCallHandling: :continueCall 确保在 gsmSCF 无法访问时呼叫继续进行

漫游用户处理

家庭 VLR 与漫游 VLR 检测

当 HLR 接收到 SendRoutingInfo（SRI）请求时，它需要确定用户是在“家庭” VLR（在您的网络内）还是在漫游 VLR

（访问其他网络）。根据此确定，行为有所不同：

有关配置参数参考，请参见 配置参考中的家庭 VLR 前缀。

家庭 VLR：�回带有 CAMEL 路由信息的标准 SRI 响应

漫游 VLR：发送提供漫游号码（PRN）请求以获取 MSRN，然后在 SRI 响应中�回

GMSC → HLR: SendRoutingInfo (开始)

HLR → GMSC: SRI 响应 (结束) 包含：

 - IMSI

 - VLR 编号

 - 用户状态

 - CAMEL 路由信息：

 * 服务密钥：11_110

 * gsmSCF 地址：<配置的地址>

 * 触发检测点：termAttemptAuthorized

 * 默认呼叫处理：continueCall

GMSC 在触发点联系 gsmSCF 执行 CAMEL 服务

配置

配置示例：

工作原理

1. 家庭用户流（标准）

当用户的 VLR 地址以配置的家庭前缀开头时：

2. 漫游用户流（需要 PRN）

当用户的 VLR 地址不匹配任何家庭前缀时：

家庭 VLR 前缀

被视为“家庭”网络的 VLR 地址前缀列表

如果用户的 VLR 地址以这些前缀之一开头，则��用标准 SRI 响应

否则，用户正在漫游，我们需要发送 PRN 以获取 MSRN

home_vlr_prefixes: ["555123"],

单一家庭网络

home_vlr_prefixes: ["555123"],

多个家庭网络（例如，不同区域或子公司）

home_vlr_prefixes: ["555123", "555124", "555125"],

GMSC → HLR: SendRoutingInfo (MSISDN: "1234567890")

HLR 查询后端 API 获取用户数据

HLR 检查 VLR 地址："5551234567"

HLR 确定：VLR 以 "555123" 开头 → 家庭网络

HLR → GMSC: SRI 响应带有 CAMEL 路由信息：

 - IMSI

 - VLR 编号："5551234567"

 - gsmSCF 地址（MSC）："5551234501"

 - CAMEL 服务密钥：11_110

 - 触发检测点：termAttemptAuthorized

响应结构差异

家庭用户 SRI 响应

漫游用户 SRI 响应

GMSC → HLR: SendRoutingInfo (MSISDN: "1234567890")

HLR 查询后端 API 获取用户数据

HLR 检查 VLR 地址："49170123456"

HLR 确定：VLR 不以 "555123" 开头 → 漫游

HLR → MSC: ProvideRoamingNumber (PRN):

 - MSISDN: "1234567890"

 - IMSI: "999999876543210"

 - MSC 编号: "49170123456"

 - GMSC 地址: "5551234501"

MSC → HLR: PRN 响应带有 MSRN: "49170999888777"

HLR → GMSC: SRI 响应带有路由信息：

 - IMSI

 - VLR 编号: "49170123456"

 - 漫游号码 (MSRN): "49170999888777"

%{

 imsi: "999999876543210",

 extendedRoutingInfo: {

 :camelRoutingInfo, %{

 gmscCamelSubscriptionInfo: %{

 "t-CSI": %{

 serviceKey: 11_110,

 "gsmSCF-Address": "5551234501",

 defaultCallHandling: :continueCall,

 "t-BcsmTriggerDetectionPoint": :termAttemptAuthorized

 }

 }

 }

 },

 subscriberInfo: %{

 locationInformation: %{"vlr-number": "5551234567"},

 subscriberState: {:notProvidedFromVLR, :NULL}

 }

}

提供漫游号码（PRN）操作

PRN 请求结构

发送到 MSC/VLR 的 PRN 请求包含：

字段 来源 描述

MSISDN SRI 请求 用户的电话号码

IMSI HLR API 用户的 IMSI

MSC 编号 HLR API 为漫游用户提供服务的 MSC（serving_msc）

GMSC 地址 SRI 请求 发起原始 SRI 请求的 GMSC

呼叫参考编号 静态 呼叫参考标识符

支持的 CAMEL 阶段 静态 GMSC 支持的 CAMEL 阶段

PRN 响应处理

HLR 期望 PRN 响应包含：

MSRN（移动台漫游号码）：由访问网络分配的临时号码，用于路由呼叫

%{

 imsi: "999999876543210",

 extendedRoutingInfo: {

 :routingInfo, %{

 roamingNumber: "49170999888777" # 从 PRN 获取的 MSRN

 }

 },

 subscriberInfo: %{

 locationInformation: %{"vlr-number": "49170123456"},

 subscriberState: {:notProvidedFromVLR, :NULL}

 }

}

错误处理：

如果 PRN 超时 → 在 SRI 响应中�回错误 27（缺少用户）

如果 PRN 失败 → 在 SRI 响应中�回错误 27（缺少用户）

如果无法提取 MSRN → 在 SRI 响应中�回错误 27（缺少用户）

配置示例

单一家庭网络运营商

VLR 5551234567 → 家庭（CAMEL 响应）

VLR 5551235001 → 家庭（CAMEL 响应）

VLR 49170123456 → 漫游（PRN + MSRN 响应）

多区域运营商

VLR 5551234567 → 家庭（区域 1）

VLR 5552341234 → 家庭（区域 2）

VLR 5553411111 → 家庭（区域 3）

VLR 44201234567 → 漫游（国际）

测试配置

为了测试 PRN 功能，设置一个空列表以将所有 VLR 视为漫游：

所有 VLR 地址以 "555123" 开头被视为家庭

home_vlr_prefixes: ["555123"],

跨不同区域的多个家庭网络

home_vlr_prefixes: ["555123", "555124", "555125"],

所有 VLR 被视为漫游（用于测试 PRN 流程）

home_vlr_prefixes: [],

最佳实践

前缀选择：使用唯一的最短前缀来识别您网络的 VLR（例如，国家代码 + 网络代码）

多个前缀：包括您网络中的所有 VLR 前缀，包括不同区域和子公司

漫游协议：确保漫游合作网络正确支持 PRN

测试：在生产部署之前彻底测试家庭和漫游场景

监控：监控 PRN 超时率，以识别与漫游合作伙伴的连接问题

故障排除

症状：所有用户都被视为漫游

原因：未配置 home_vlr_prefixes 或前缀与 VLR 地址不匹配

解决方案：检查数据库中的 VLR 地址并相应更新前缀

症状：PRN 请求超时

原因：与漫游合作伙伴 MSC/VLR 的网络连接问题

解决方案：验证与远程 MSC 地址的 M3UA/SCCP 路由

症状：SRI 响应中的 MSRN 无效

原因：漫游合作伙伴的 PRN 响应格式与预期结构不匹配

解决方案：检查 PRN 响应日志，并根据需要调整 extract_msrn_from_prn/1

HLR 操作

支持的 MAP 操作

updateLocation（操作码 2） - 注册 VLR 位置

sendAuthenticationInfo（操作码 56） - 生成身份验证向量

sendRoutingInfo（操作码 22） - 为支持 CAMEL 的呼叫提供 MSRN

sendRoutingInfoForSM（操作码 45） - 为 SMS 提供 MSC GT

cancelLocation（操作码 3） - 从旧 VLR 注销

insertSubscriberData（操作码 7） - 推送用户配置

响应字段映射

本节详细说明 HLR 响应中每个字段的来源。

SendRoutingInfo (SRI) 响应

目的：提供用户的呼叫路由信息。

HLR 根据用户是在家庭 VLR 还是漫游提供两种不同的响应类型：

家庭用户响应（CAMEL 路由）

用于用户的 VLR 地址以配置的 home_vlr_prefixes 值开头时。

响应结构：

字段 来源 描述

IMSI
OmniHSS

API
来自 OmniHSS 数据库的用户 IMSI

VLR 编号
OmniHSS

API

当前为用户提供服务的 VLR

（circuit_session.assigned_vlr）

用户状态 静态 始终为 notProvidedFromVLR

extendedRoutingInfo - 类型：camelRoutingInfo

gsmSCF 地址
OmniHSS

API

为用户提供服务的 MSC

（circuit_session.assigned_msc）

服务密钥 runtime.exs CAMEL 服务标识符（camel_service_key）

触发检测点 runtime.exs
何时触发 CAMEL

（camel_trigger_detection_point）

CAMEL 能力处理 静态 CAMEL 阶段支持级别

默认呼叫处理 静态 如果 gsmSCF 无法访问的回退

漫游用户响应（MSRN 路由）

用于用户的 VLR 地址不匹配任何配置的 home_vlr_prefixes 值时。

响应结构：

字段 来源 描述

IMSI
OmniHSS

API
来自 OmniHSS 数据库的用户 IMSI "

VLR 编号
OmniHSS

API

当前为用户提供服务的 VLR

（circuit_session.assigned_vlr）
"

用户状态 静态 始终为 notProvidedFromVLR :

extendedRoutingInfo - 类型：routingInfo -

漫游号码（MSRN） PRN 响应 从提供漫游号码请求中获得的 MSRN "

路由决策逻辑：

数据流：

OmniSS7 查询 OmniHSS 获取用户信息

OmniHSS �回 IMSI、当前 VLR/MSC 位置和用户状态

OmniSS7 使用这些数据构建 MAP 响应

配置要求：

1. OmniSS7 接收到 SendRoutingInfo 请求

2. OmniSS7 查询 OmniHSS API 获取用户数据

3. OmniSS7 检查 VLR 地址与 home_vlr_prefixes：

 如果 VLR 以家庭前缀开头：

 → 返回 CAMEL 路由信息（家庭用户流）

 如果 VLR 不匹配���何家庭前缀：

 → 向 MSC 发送提供漫游号码（PRN）

 → 从 PRN 响应中提取 MSRN

 → 返回带有 MSRN 的路由信息（漫游用户流）

错误响应：

如果 serving_vlr 和 serving_msc 为 null：�回错误 27（缺少用户）

如果未找到用户：�回错误 1（未知用户）

如果 PRN 请求超时（漫游情况）：�回错误 27（缺少用户）

如果 PRN 响应无效（漫游情况）：�回错误 27（缺少用户）

UpdateLocation 响应与 InsertSubscriberData

目的：在新 VLR 中注册用户并配置用户数据。

UpdateLocation 结束响应

字段 来源 描述 示例

HLR

编号
runtime.exs

此 HLR 的全球标题

（hlr_service_center_gt_address）
"5551234568"

TCAP

消息类型
静态 在所有 ISD 之后的最终响应 END

InsertSubscriberData #1（基本用户数据）

在 runtime.exs 中

home_vlr_prefixes: ["555123"], # 家庭 VLR 前缀列表

字段 来源 描述 示例

IMSI 请求 来自 UpdateLocation 请求 "999999876543210"

MSISDN
OmniHSS

API
来自 OmniHSS 的用户电话号码 "555123456"

类别 静态 用户类别 "\n" (0x0A)

用户状态 静态 服务状态 :serviceGranted

承载服务列表 静态 支持的承载服务 [<<31>>]

电信服务列表 静态 支持的电信服务
[<<17>>, "!",

"\""]

网络访问模式 runtime.exs
分组/电路访问

（isd_network_access_mode）
:packetAndCircuit

InsertSubscriberData #2（附加服务） - 可选

字段 来源 描述 由谁控制

配置的 SS 静态 附加服务数据 isd_send_ss_data: true

呼叫转移 静态 转移配置（无条件、忙、无回复、不可达） 配置启用

呼叫等待 静态 呼叫等待服务状态 配置启用

多方服务 静态 会议呼叫支持 配置启用

InsertSubscriberData #3（呼叫限制） - 可选

字段 来源 描述 由谁控制

呼叫限制信息 静态 呼叫限制配置 isd_send_call_barring: true

BAOC 静态 阻止所有外呼（SS 代码 146） 配置启用

BOIC 静态 阻止外部国际呼叫（SS 代码 147） 配置启用

访问限制数据 静态 网络访问限制 配置启用

ISD 序列控制：

ISD #1：始终发送 - 包含基本用户数据

ISD #2：仅在 isd_send_ss_data: true 时发送

ISD #3：仅在 isd_send_call_barring: true 时发送

SendRoutingInfoForSM (SRI-for-SM) 响应

目的：提供 SMS 交付的 MSC/SMSC 路由信息。当 SMSc 需要将 SMS 发送到用户时，它向 HLR 发送 SRI-for-SM

请求以确定消息的路由位置。

响应结构：

字段 来源 描述 如何生成

IMSI 计算

从

MSISDN

派生的合成

IMSI

PLMN_PREFIX +

zero_padded_MSISDN
"00100

网络节点

编号
runtime.exs

用于 SMS

路由的

SMSC

GT 地址

smsc_service_center_gt_address "55512

配置参数（来自 runtime.exs）：

MSISDN ↔ IMSI 映射

配置参数：

这些参数控制 OmniSS7 如何为 SRI-for-SM 响应生成合成 IMSI：

hlr_imsi_plmn_prefix：用于构建合成 IMSI 的 MCC+MNC 前缀（例如，“50557”表示

MCC=505，MNC=57）

hlr_msisdn_country_code：在进行反向 IMSI→MSISDN 映射时要添加的国家代码（例如，“61”表示澳

大利亚，“1”表示美国/加拿大）

hlr_msisdn_nsn_offset：MSISDN 中国家用户号码（NSN）开始的字符位置（通常为 0，如果

MSISDN 不包括国家代码，或者为国家代码的长度）

hlr_msisdn_nsn_length：要从 MSISDN 中提取的 NSN 的位数

有关更多配置详细信息，请参见 配置参考中的 MSISDN ↔ IMSI 映射。

为什么需要 MSISDN 到 IMSI 的映射？

SendRoutingInfoForSM（SRI-for-SM）协议要求 HLR 在响应中�回 IMSI（国际移动用户身份）。然而，请

求的 SMSc 只知道用户的 MSISDN（电话号码）。

在传统网络中：

SMSc 发送带有目标 MSISDN 的 SRI-for-SM（例如，“5551234567”）

HLR 必须在其数据库中查找用户以找到他们的 IMSI

HLR 在 SRI-for-SM 响应中�回 IMSI

SMSc 然后在将 MT-ForwardSM ���送到 MSC/VLR 时使用此 IMSI

OmniSS7 的方法 - 合成 IMSI：

服务中心 GT 地址（在 SRI-for-SM 响应中返回）

这告诉请求的 SMSc 应该将 MT-ForwardSM 消息发送到哪里

smsc_service_center_gt_address: "5551234567", # 必需

MSISDN ↔ IMSI 映射配置

PLMN 前缀：MCC（001 = 测试网络）+ MNC（01 = 测试运营商）

hlr_imsi_plmn_prefix: "001001", # 唯一需要的配置参数！

OmniSS7 不再维护完整的用户数据库与 MSISDN 到 IMSI 的映射，而是使用简单的编码方案直接计算合成 IMSI。此方法提供了

两个关键好处：

1. 隐私：存储在 HLR 数据库中的真实用户 IMSI 永远不会在通过 SS7 网络发送的 SRI-for-SM 响应中暴露

2. 简单性：在 SRI-for-SM 操作期间无需查询 HLR 数据库进行 IMSI 查找 - IMSI 是根据 MSISDN 动态计算的

工作原理：

MSISDN 直接编码到 IMSI 的用户部分（MCC+MNC 之后的数字）：

其中：

PLMN_PREFIX：MCC + MNC（例如，“001001”表示测试网络）

MSISDN：电话号码中的所有数字

零填充：左侧填充零以使 IMSI 恰好为 15 位

逐步示例：

完整示例：

IMSI = PLMN_PREFIX + zero_padded_MSISDN

配置

plmn_prefix = "001001" # MCC 001 + MNC 01

输入：来自 SRI-for-SM 请求的 MSISDN（TBCD 解码）

msisdn = "555123456" # 9 位数字

步骤 1：计算用户号码的可用空间

subscriber_digits = 15 - String.length("001001") # = 9 位数字

步骤 2：左侧填充 MSISDN 以填充用户部分

padded_msisdn = String.pad_leading("555123456", 9, "0") # =

"555123456"（无需填充）

步骤 3��连接 PLMN 前缀 + 填充的 MSISDN

imsi = "001001" <> "555123456" # = "001001555123456"（恰好 15 位）

输入 MSISDN PLMN 前缀

可

用

的

用

户

数

字

填充的

MSISDN
最终 IMSI 备注

"555123456"
"001001"

(6)
9 "555123456" "001001555123456"

完全

适

合，

无需

填充

"99"
"001001"

(6)
9 "000000099" "001001000000099"

左侧

填充

零

"999999999"
"001001"

(6)
9 "999999999" "001001999999999"

完全

适合

"91123456789"
"001001"

(6)
9 "555123456" "001001555123456"

太

长，

保留

右侧

9

位

边缘情况处理：

短 MSISDN：左侧填充零（例如，“99” → “000000099”）

长 MSISDN：保留右侧数字，截断左侧数字（例如，“91123456789” → “555123456”）

IMSI 长度：始终恰好为 15 位

反向映射（IMSI → MSISDN）：

SMSc 可以反向此映射将 IMSI 转换回 MSISDN：

反向映射示例：

输入 IMSI PLMN 前缀 用户部分 去除前导零 最终 MSISD

"001001555123456" "001001" "555123456" "555123456" "55512345

"001001000000099" "001001" "000000099" "99" "99"

"001001999999999" "001001" "999999999" "999999999" "99999999

此映射的属性：

✅ 确定性：相同的 MSISDN 始终产生相同的 IMSI

✅ 可逆性：可以从 IMSI 转换回 MSISDN

✅ 最小配置：仅需要 hlr_imsi_plmn_prefix

✅ 隐私保护：真实 IMSI 从不暴露

✅ 简单性：无需查询 HLR 数据库

✅ 始终 15 位：IMSI 始终恰好为 15 位

MSISDN 输入处理：

当 HLR 接收到 SRI-for-SM 请求时，MSISDN 会经过 TBCD 解码：

1. TBCD 解码：将二进制 TBCD 转换为字符串（可能包括 TON/NPI 前缀，如“91”）

2. 提取数字：仅保留数字，剥离任何非数字字符

3. 标准化：如果超过可用空间，则取右侧数字；如果较短，则左侧填充零

输入：来自 SRI-for-SM 响应的 IMSI

imsi = "001001555123456"

步骤 1：剥离 PLMN 前缀

plmn_prefix = "001001"

subscriber_portion = String.slice(imsi, 6, 9) # = "555123456"

步骤 2：去除前���零以获取实际 MSISDN

msisdn = String.replace_leading(subscriber_portion, "0", "") # =

"555123456"

4. 编码：连接 PLMN 前缀 + 标准化��� MSISDN

安全考虑：

在 SRI-for-SM 响应中�回的合成 IMSI 仅用于路由目的。它们不是存储在 HLR 用户数据库中的真实 IMSI。这提供了额外的隐私保

护层，因为真实用户 IMSI 仅在绝对必要时暴露（例如，在 UpdateLocation 或 SendAuthenticationInfo 操作中

需要真实的身份验证向量）。

响应流：

配置：

以下参数在 runtime.exs 中使用：

NSN 提取配置：

1. SMSc → HLR: SRI-for-SM 请求

 - MSISDN（TBCD）："91123456789"（包括 TON/NPI）

2. HLR 处理：

 - TBCD 解码："91123456789"

 - 提取数字："91123456789"（11 位数字）

 - 填充到 9 位数字："555123456"（保留右侧 9 位）

 - 添加 PLMN："001001" + "555123456" = "001001555123456"

 - 从配置中获取 SMSC GT："5551234567"

3. HLR → SMSc: SRI-for-SM 响应

 - IMSI："001001555123456"（合成，始终 15 位）

 - 网络节点编号："5551234567"（发送 MT-ForwardSM 的位置）

4. SMSc 将 MT-ForwardSM 发送到 "5551234567"，IMSIN 为 "001001555123456"

PLMN 前缀：MCC（001 = 测试网络）+ MNC（01 = 测试运营商）

hlr_imsi_plmn_prefix: "001001",

NSN 提取（如果 MSISDN 包括国家代码）

hlr_msisdn_country_code: "1", # 用于反向映射（IMSI→MSISDN）

hlr_msisdn_nsn_offset: 1, # 跳过 1 位国家代码

hlr_msisdn_nsn_length: 10 # 提取 10 位 NSN

如果您的 MSISDN 包括国家代码（例如，“68988000088”而不是仅仅“88000088”），则必须配置 NSN 提取：

hlr_msisdn_nsn_offset：NSN 开始的位置（通常为国家代码的长度）

hlr_msisdn_nsn_length：要从 MSISDN 中提取的 NSN 位数

示例：

示例 国家代码 MSISDN 示例 nsn_offset nsn_length 提取的 NSN

1

位

CC

"9" "95551234567" 1 10 "5551234567"

2

位

CC

"99" "99412345678" 2 9 "412345678"

3

位

CC

"999" "99988000088" 3 8 "88000088"

工作原理：

1. MSISDN → IMSI：从 MSISDN 中提取 NSN，填充零，连接 PLMN 前缀

2. IMSI → MSISDN：剥离 PLMN 前缀，去除前导零，添加国家代码

MSISDN: "99988000088"

NSN: String.slice("99988000088", 3, 8) = "88000088"

填充的 NSN: "088000088"（9 位数字）

IMSI: "547050" + "088000088" = "547050088000088"

IMSI: "547050088000088"

用户部分: "088000088"

去除零: "88000088"

MSISDN: "+999" + "88000088" = "+99988000088"

API 要求：无 - SRI-for-SM 使用计算值和配置。无需后端

API 调用。

字段源摘要

源类型 描述 示例

OmniHSS

API

来自

OmniHSS 用

户数据库的动态数据

IMSI、MSISDN、来自 circuit_session 的服务

VLR/MSC

runtime.exs
OmniSS7 配置

参数

smsc_service_center_gt_address、

camel_service_key、

isd_network_access_mode

静态
响应生成器中的硬编码

值
用户状态、承载服务、SS 代码

请求
从传入 MAP 请求

中提取的字段
来自 UpdateLocation 的 IMSI、来自 SRI 的 MSISDN

计算 使用逻辑生成的派生值 SRI-for-SM 中的合成 IMSI（hlr_imsi_prefix + NSN）

配置依赖关系

在 runtime.exs 中必需：

hlr_service_center_gt_address - 在 UpdateLocation 响应中使用

smsc_service_center_gt_address - 在 SRI-for-SM 响应中使用（MT-ForwardSM 应路由

到的位置）

在 runtime.exs 中可选（带默认值）：

camel_service_key - 默认：11_110

camel_trigger_detection_point - 默认：:termAttemptAuthorized

isd_network_access_mode - 默认：:packetAndCircuit

isd_send_ss_data - 默认：true

isd_send_call_barring - 默认：true

hlr_imsi_plmn_prefix - 默认："001001"（用于 MSISDN↔IMSI 映射的 PLMN 前缀）

来自 OmniHSS 的必需：

OmniHSS 必须提供 REST API 端点以：

按 IMSI 和 MSISDN 查询用户

更新电路会话位置（VLR/MSC 分配）

生成身份验证向量

查询用户状态和服务配置

相关文档

OmniSS7 文档：

← �回主文档

常见功能指南

MAP 客户端指南

技术参考

配置参考

OmniHSS 文档： 有关用户管理、配置、身份验证配置和管理操作的信息，请参阅 OmniHSS 产品文档。OmniHSS 包含所

有用户数据库逻辑、身份验证算法、服务配置规则和多 IMSI 管理能力。

OmniSS7 由 Omnitouch 网络服务提供

MAP客户端配置�南

← �回主文档

本指南提供了使用OmniSS7作为MAP客户端向网络元素发送MAP协议请求的详细配置。

目录

1. 什么是MAP客户端模式？

2. 启用MAP客户端模式

3. 可用的MAP操作

4. 通过API发送请求

5. 指标和监控

6. 故障排除

什么是MAP客户端模式？

MAP客户端模式允许OmniSS7作为**应用服务器进程（ASP）连接到M3UA对等体（STP或SGP），并发送/接收MAP

（移动应用部分）**消息，用于以下服务：

HLR查询：SRI（发送路由信息）、SRI-for-SM、认证信息

位置更新：更新位置、取消位置

用户管理：提供漫游号码（PRN）、插入用户数据

网络架构

启用MAP客户端模式

编辑config/runtime.exs并配置MAP客户端设置。有关完整的配置参考，请参见配置参考中的M3UA连接参数。

基本配置

config :omniss7,

 # 启用MAP客户端模式

 map_client_enabled: true,

 # MAP客户端的M3UA连接（作为ASP连接到远程STP/SGP）

 map_client_m3ua: %{

 mode: "ASP", # M3UA模式："ASP"（客户端）或"SGP"（服务

器）

 callback: {MapClient, :handle_payload, []}, # 处理传入消息的回调

 process_name: :map_client_asp, # 注册的进程名称

 local_ip: {10, 0, 0, 100}, # 本地IP地址

 local_port: 2905, # 本地SCTP端口

 remote_ip: {10, 0, 0, 1}, # 远程STP/SGP IP

 remote_port: 2905, # 远程STP/SGP端口

 routing_context: 1 # M3UA路由上下文

 }

生产配置示例

config :omniss7,

 # 为生产启用MAP客户端

 map_client_enabled: true,

 # 生产M3UA连接

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :map_client_asp,

 local_ip: {10, 0, 0, 100},

 local_port: 2905,

 remote_ip: {10, 0, 0, 1}, # 生产STP IP

 remote_port: 2905,

 routing_context: 1

 }

config :control_panel,

 web: %{

 listen_ip: "0.0.0.0",

 port: 443,

 hostname: "ss7-gateway.example.com",

 enable_tls: true,

 tls_cert: "/etc/ssl/certs/gateway.crt",

 tls_key: "/etc/ssl/private/gateway.key"

 }

可用的MAP操作

1. 为SM发送路由信息（SRI-for-SM）

查询HLR以确定SMS投递的服务MSC。有关HLR如何处理SRI-for-SM请求的详细信息，请参见HLR指南中的SRI-for-

SM。

API端点： POST /api/sri-for-sm

请求：

响应：

cURL示例：

2. 发送路由信息（SRI）

查询HLR以获取语音通话路由信息。

API端点： POST /api/sri

请求：

{

 "msisdn": "447712345678",

 "serviceCenter": "447999123456"

}

{

 "result": {

 "imsi": "234509876543210",

 "locationInfoWithLMSI": {

 "networkNode-Number": "447999555111"

 }

 }

}

curl -X POST http://localhost/api/sri-for-sm \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "447712345678",

 "serviceCenter": "447999123456"

 }'

响应：

3. 提供漫游号码（PRN）

请求服务MSC的临时漫游号码（MSRN）。

API端点： POST /api/prn

请求：

{

 "msisdn": "447712345678",

 "gmsc": "447999123456"

}

{

 "result": {

 "imsi": "234509876543210",

 "extendedRoutingInfo": {

 "routingInfo": {

 "roamingNumber": "447999555222"

 }

 }

 }

}

{

 "msisdn": "447712345678",

 "gmsc": "447999123456",

 "msc_number": "447999555111",

 "imsi": "234509876543210"

}

4. 发送认证信息

请求HLR的认证向量以进行用户认证。

API端点： POST /api/send-auth-info

请求：

响应：

5. 更新位置

向HLR注册用户的当前位置。有关更新位置处理和插入用户数据序列的详细信息，请参见HLR指南中的位置更新。

API端点： POST /api/updateLocation

请求：

{

 "imsi": "234509876543210",

 "vectors": 5

}

{

 "result": {

 "authenticationSetList": [

 {

 "rand": "0123456789ABCDEF0123456789ABCDEF",

 "xres": "ABCDEF0123456789",

 "ck": "0123456789ABCDEF0123456789ABCDEF",

 "ik": "FEDCBA9876543210FEDCBA9876543210",

 "autn": "0123456789ABCDEF0123456789ABCDEF"

 }

]

 }

}

MAP操作摘要

认证

sendAuthenticationInfo

操作码: 56

短信服务

sendRoutingInfoForSM

操作码: 45

mt-forwardSM

操作码: 44

mo-forwardSM

操作码: 46

呼叫处理

sendRoutingInfo

操作码: 22

initialDP

CAMEL操作码: 0

移动管理

updateLocation

操作码: 2

cancelLocation

操作码: 3

provideRoamingNumber

操作码: 4

{

 "imsi": "234509876543210",

 "vlr": "447999555111"

}

通过API发送请求

使用Swagger UI

Swagger UI提供了一个交互式界面，用于发送SS7请求。

访问Swagger UI：

1. 导航到http://your-server/swagger

2. 浏览可用的API端点

3. 点击任何端点以展开其详细信息

发送请求：

1. 点击您想使用的端点（例如，/api/sri-for-sm）

2. 点击“试用”按钮

3. 在请求体中填写所需参数

4. 点击“执行”

5. 查看下面的响应

API响应代码

200 - 成功，结果�回在响应体中

400 - 错误请求，参数无效

504 - 网关超时，SS7网络在10秒内没有响应

MAP客户端�标

可用�标

请求�标：

map_requests_total - 发送的MAP请求总数

标签：operation（值：sri、sri_for_sm、prn、authentication_info等）

map_request_errors_total - MAP请求错误的总数

标签：operation

map_request_duration_milliseconds - MAP请求持续时间的直方图

标签：operation

map_pending_requests - 当前待处理的MAP请求数量（仪表）

示例Prometheus查询

故障排除MAP客户端

问题：请求超时

症状：

API�回504网关超时

HLR/MSC没有响应

检查：

1. 验证M3UA连接是否处于活动状态：

最近一小时内的总SRI-for-SM请求

increase(map_requests_total{operation="sri_for_sm"}[1h])

SRI请求的平均响应时间

rate(map_request_duration_milliseconds_sum{operation="sri"}[5m]) /

rate(map_request_duration_milliseconds_count{operation="sri"}[5m])

所有MAP操作的错误率

sum(rate(map_request_errors_total[5m])) by (operation)

当前待处理请求

map_pending_requests

2. 检查与STP的网络连接

3. 验证路由上下文和SCCP寻址

4. 检查日志中的SCCP错误

问题：SCCP错误

症状：

API�回SCCP错误响应

日志显示“SCCP unitdata service”消息

常见SCCP错误代码：

无翻译：在STP路由表中找不到全局标题

子系统故障：目标子系统（HLR SSN 6）不可用

网络故障：网络拥塞或故障

解决方案：

联系STP管理员以验证路由配置

验证目标全局标题是否可达

检查目标子系统是否正常运行

相关文档

← �回主文档

常见功能指南 - Web UI、API、监控

STP指南 - 路由配置

短信中心指南 - 短信投递

在IEx控制台中

:sys.get_state(:map_client_asp)

技术参考 - 协议规范

OmniSS7由Omnitouch网络服务提供

短信中心 (SMSc) 配置�南

← �回主文档

本指南提供了使用 OmniSS7 作为 短信中心 (SMSc) 前端与 OmniMessage 作为后端消息存储和传递平台的详细配

置。

OmniMessage 集成

OmniSS7 SMSc 模式作为 SS7 信令前端，与 OmniMessage 进行接口，这是一个运营商级的 SMS 平台。该

架构分离了关注点：

OmniSS7 (SMSc 前端)：处理所有 SS7/MAP 协议信令、SCCP 路由和网络通信

OmniMessage (SMS 后端)：管理消息存储、排队、重试逻辑、交付跟踪和路由决策

为什么选择 OmniMessage？

OmniMessage 提供运营商级的 SMS 消息传递能力，具有以下功能：

消息队列管理：持久存储，具有可配置的重试逻辑和优先级排队

交付跟踪：实时交付状态、交付报告 (DLR) 和失败原因跟踪

多 SMSc 支持：多个前端实例可以连接到单个 OmniMessage 后端以实现负载均衡和冗余

路由智能：基于目的地、发送者、消息内容和时间的高级路由规则

速率限制：每条路由的 TPS（每秒事务）控制，以防止网络拥塞

API 优先设计：RESTful HTTP API 用于与计费系统、客户门户和第三方应用集成

分析与报告：消息量统计、交付成功率和性能指标

所有消息数据、交付状态和路由配置都存储和管理在 OmniMessage 中。OmniSS7 通过 HTTPS API 调用查询

OmniMessage，以检索待处理消息、更新交付状态并注册为活动前端。

重要：OmniSS7 SMSc 模式仅为 信令前端。所有消息路由逻辑、队列管理、重试算法、交付跟踪和业务规则均由

OmniMessage 处理。本指南涵盖 OmniSS7 中的 SS7/MAP 协议配置。有关消息路由、队列配置、交付报告、速率限制和

分析的信息，请 参考 OmniMessage 文档。

目录

1. OmniMessage 集成

2. 什么是短信中心模式？

3. 启用 SMSc 模式

4. HTTP API 配置

5. 短信消息流

6. 循环预防

7. SMSc 订阅者跟踪

8. 自动刷新配置

9. 指标和监控

10. 故障排除

什么是短信中心模式？

注意：��节仅涵盖 OmniSS7 的 SS7 信令配置。有关消息路由规则、队列管理、交付跟踪和业务逻辑配置，请参见

OmniMessage 产品文档。

短信中心模式 使 OmniSS7 能够作为 SMSc 运行：

MT-SMS 交付：将移动终端短信交付给订阅者

MO-SMS 处理：接收和路由移动发起的短信

消息排队：基于数据库的消息队列，具有重试逻辑

自动刷新：从队列自动交付短信

交付报告：跟踪消息交付状态

短信中心架构

启用 SMSc 模式

OmniSS7 可以在不同模式下运行。要将其用作 SMSc，您需要在配置中启用 SMSc 模式。

切换到 SMSc 模式

OmniSS7 的 config/runtime.exs 包含三个预配置的操作模式。要启用 SMSc 模式：

1. 打开 config/runtime.exs

2. 查找 三个配置部分（第 53-204 行）：

配置 1：STP 模式（第 53-95 行）

配置 2：HLR 模式（第 97-142 行）

配置 3：SMSc 模式（第 144-204 行）

3. 注释掉 任何其他活动配置（在每行前添加 #）

4. 取消注释 SMSc 配置（从第 144-204 行删除 #）

5. 根据需要自定义 配置参数

6. 重启 应用程序：iex -S mix

SMSc 模式配置

完整的 SMSc 配置如下所示：

config :omniss7,

 # 模式标志 - 启用 STP + SMSc 功能

 # 注意：map_client_enabled 为 true，因为 SMSc 需要路由能力

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: true,

 # OmniMessage 后端 API 配置

 smsc_api_base_url: "https://10.179.3.219:8443",

 # SMSc 注册时的标识

 smsc_name: "ipsmgw",

 # 短信操作的服务中心 GT 地址

 smsc_service_center_gt_address: "5551234567",

 # 自动刷新配置（后台 SMS 队列处理）

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10,

 # M3UA 连接配置

 # 作为 ASP 连接以发送/接收 MAP SMS 操作

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 # 本地端点（SMSc 系统）

 local_ip: {10, 179, 4, 12},

 local_port: 2905,

 # 远程 STP 端点

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 事件"},

 {SS7.Web.TestClientLive, "/client", "SS7 客户端"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.RoutingLive, "/routing", "路由"},

 {SS7.Web.RoutingTestLive, "/routing_test", "路由测试"},

 {SS7.Web.SmscLinksLive, "/smsc_links", "SMSc 链接"}

自定义的配置参数

有关��有配置参数的完整参考，请参见 配置参考。

],

 page_order: ["/events", "/client", "/m3ua", "/routing",

"/routing_test", "/smsc_links", "/application", "/configuration"]

参数
类

型
默认 描述

smsc_api_base_url

字

符

串

�需
OmniMessage

后端 API 端点

smsc_name

字

符

串

"

{hostname}_SMSc"

您的 SMSc 标识符用于

注册

smsc_service_center_gt_address

字

符

串

�需 服务中心全球标题

auto_flush_enabled
布

尔
true 启用自动队列处理

auto_flush_interval
整

数
10_000 队列处理间隔（毫秒）

auto_flush_dest_smsc

字

符

串

�需
自动刷新目标 SMSC 名

称

auto_flush_tps
整

数
10 消息处理速率（事务/秒）

local_ip
元

组
�需

您的 SMSc 系统的 IP

地址

local_port
整

数
2905 本地 SCTP 端口

remote_ip
元

组
�需

SS7 连接的 STP IP

地址

参数
类

型
默认 描述

remote_port
整

数
2905 远程 SCTP 端口

routing_context
整

数
1 M3UA 路由上下文 ID

启用 SMSc 模式时发生的事情

当 smsc_mode_enabled: true 和 map_client_enabled: true 时，Web UI 将显示：

✅ SS7 事件 - 事件日志

✅ SS7 客户端 - MAP 操作测试

✅ M3UA - 连接状态

✅ 路由 - 路由表管理（STP 启用）

✅ 路由测试 - 路由测试（STP 启用）

✅ SMSc 链接 - SMSc API 状态 + SMS 队列管理 ← SMSc 特定

✅ 资源 - 系统监控

✅ 配置 - 配置查看器

HLR 链接 选项卡将被隐藏。

重要说明

SMSc 模式需要 map_client_enabled: true 以获得路由能力

OmniMessage 后端：OmniMessage API 后端必须在配置的 smsc_api_base_url 可访问

前端注册：系统每 5 分钟 自动通过 SMS.FrontendRegistry 模块注册到 OmniMessage

API 请求超时：所有 OmniMessage API 请求都有 硬编码的 5 秒超时

MAP 请求超时：所有 MAP 请求（SRI-for-SM、MT-ForwardSM 等）都有 硬编码的 10 秒超时

自动刷新会在后台自动处理 SMS 队列

需要与 STP 建立 M3UA 连接以发送/接收 MAP SMS 操作

更改模式后，必须重启应用程序以使更改生效

Web UI：有关使用 Web 界面的信息，请参见 Web UI 指南

API 访问：有关 REST API 文档和 Swagger UI 访问的信息，请参见 API 指南

HTTP API 配置

OmniMessage 后端设置

OmniSS7 通过 HTTPS REST API 与 OmniMessage 通信，以管理消息交付、跟踪订阅者状态并注册为活动前端：

配置参数：

config :omniss7,

 # OmniMessage API 基础 URL

 smsc_api_base_url: "https://10.5.198.200:8443",

 # SMSC 注册标识符（如果为空，默认为 hostname_SMSc）

 smsc_name: "omni-smsc01",

 # 短信操作的服务中心 GT 地址

 smsc_service_center_gt_address: "5551234567"

参数
类

型

必

需
默认

smsc_api_base_url

字

符

串

是 "https://localhost:8443"
O

A

smsc_name

字

符

串

否
""（使用 "

{hostname}_SMSc"）

用

S

smsc_service_center_gt_address

字

符

串

否 "5551234567"

在

应

G

网

F

路

息

S

前端注册

系统在启动时会自动注册自身到 OmniMessage，并且每 5 分钟 通过 SMS.FrontendRegistry 模块重新注册。这使

OmniMessage 能够：

跟踪活动���端以进行负载均衡

监控正常运行时间和健康状态

收集配置信息

管理多个前端之间的分布式 SMS 路由

实现细节：

注册间隔：5 分钟（硬编码）

过程：当 smsc_mode_enabled: true 时自动启动

注册有效负载：

注意：前端名称取自 smsc_name 配置参数。如果未设置，则默认为 "{hostname}_SMSc"。

OmniMessage API 通信

当 OmniSS7 从 SS7 网络接收 MAP 操作或处理消息队列时，它与 OmniMessage 通信以：

注册为活动前端 并报告健康状态

提交从订阅者接收的移动发起 (MO) 消息

从队列中检索移动终端 (MT) 消息以进行交付

更新交付状态 以获取成功/失败报告

查询路由信息 以进行消息转发

{

 "frontend_name": "omni-smsc01",

 "configuration": "{...}",

 "frontend_type": "SS7",

 "hostname": "smsc-server01",

 "uptime_seconds": 12345

}

端点 方法 目的 请求体

/api/frontends POST
注册前端

实例

{"frontend_name": "...",

"frontend_type": "SMSc",

"hostname": "...",

"uptime_seconds": ...}

/api/messages_raw POST

插入新

SMS

消息

{"source_msisdn": "...",

"source_smsc": "...",

"message_body": "..."}

/api/messages GET
获取消息

队列
头部: smsc: <smsc_name>

/api/messages/{id} PATCH
标记消息

为已交付

{"deliver_time": "...",

"dest_smsc": "..."}

/api/messages/{id} PUT
更新消息

状态
{"dest_smsc": null}

/api/locations POST

插入/更

新订阅者

位置

{"msisdn": "...", "imsi":

"...", "location": "...",

"ims_capable": true, "csfb":

false, "expires": "...",

"user_agent": "...",

"ran_location": "...", "imei":

"...", "registered": "..."}

/api/events POST
添加事件

跟踪

{"message_id": ..., "name":

"...", "description": "..."}

/api/status GET 健康检查 -

API 响应格式

所有 API 响应均使用 JSON 格式，遵循以下约定：

成功响应：HTTP 200-201，JSON 主体包含结果数据

错误响应：HTTP 4xx/5xx，响应主体中包含错误详细信息

时间戳：ISO 8601 格式（例如，"2025-10-21T12:34:56Z"）

消息 ID：整数或字符串标识符

API 客户端模块

SMS 系统由三个主要模块组成：

1. SMSc.APIClient

主要 API 客户端模块，提供与 OmniMessage 的所有 HTTP API 通信：

frontend_register/4 - 向 OmniMessage 注册前端

insert_message/3 - 插入原始 SMS 消息（与 Python 兼容的 3 参数版本）

insert_location/9 - 插入/更新订阅者位置数据

get_message_queue/2 - 从队列中检索待处理消息

mark_dest_smsc/3 - 标记消息为已交付或失败

add_event/3 - 为消息添加事件跟踪

flush_queue/2 - 处理待处理消息（SRI-for-SM + MT-forwardSM）

auto_flush/2 - 持续的队列处理循环

2. SMS.FrontendRegistry

处理与后端的定期前端注册：

启动时自动注册

每 5 分钟重新注册

使用配置中的 smsc_name（回退到主机名）

收集系统配置和正常运行时间信息

3. SMS.Utils

用于 SMS 操作的实用函数：

generate_tp_scts/0 - 生成 TPDU 格式的 SMS 时间戳

短信消息流

入站 SMS 流（移动发起）

Forward-SM

M3UA 接收 SCTP 数据包

M3UA 解码数据包

提取 SCCP 有效负载

解码 SCCP 消息

提取 TCAP/MAP 消息

解析 MAP 操作

操作类型

解码 SMS TPDU

提取消息字段

解码用户数据

POST 到

/api/messages_raw

POST 到 /api/events

发送 MAP 响应

出站 SMS 流（移动终端）

关键步骤解释：

SRI-for-SM 请求：SMSc 向 HLR 查询目标 MSISDN，以确定将 SMS 消息路由到哪里。HLR 响应：

一个合成 IMSI（从 MSISDN 计算得出以保护隐私） - 参见 MSISDN ↔ IMSI 映射

SMSC GT 地址（网络节点编号），MT-ForwardSM 应该发送到这里

有关此工作原理的完整细节，请参见 HLR 指南中的 SRI-for-SM

MT-forwardSM 请求：一旦获得路由信息，SMSc 将实际的 SMS 消息发送到服务该订阅者的 MSC/VLR

SMS TPDU 结构

短信 TPDU

消息类型指示符 消息字段

短信-交付 短信-提交 发起地址 目的地址 数据编码方案 用户数据

GSM 7 位

160 字符

UCS-2/Unicode

70 字符

警报服务中心处理

SMSc 可以接收来自 HLR 的 alertServiceCenter 消息，以跟踪订阅者的可达性状态。

有关 HLR 如何发送 alertServiceCenter 消息的信息，请参见 HLR 指南中的警报服务中心集成。

什么是 alertServiceCenter？

当订阅者在 HLR 执行 UpdateLocation（即，注册到新的 VLR/MSC）时，HLR 可以通过发送

alertServiceCenter（MAP 操作码 64）消息通知 SMSc 系统，订阅者现在可达。

配置

位置过期时间在 HLR 中配置：

config :omniss7,

 # SMSc 接收 alertServiceCenter 时的位置过期时间（默认：48 小时）

 hlr_alert_location_expiry_seconds: 172800

行为

当 SMSc 接收到 alertServiceCenter 消息时：

1. 解码 MSISDN：从消息中提取订阅者的 MSISDN（TBCD 格式）

2. 去除 TON/NPI 前缀：去除常见前缀，如 "19"、"11"、"91"（例如，"19123123213" →

"123123213"）

3. 计算 IMSI：使用与 SRI-for-SM 相同的映射生成合成 IMSI

4. POST 到 /api/location：使用以下内容更新位置数据库：

msisdn：订阅者的电话号码（已清理）

imsi：合成 IMSI

location：SMSc 名称（例如，"ipsmgw"）

expires：当前时间 + hlr_alert_location_expiry_seconds

csfb：true（订阅者可通过电路交换回退到达）

ims_capable：false（这是 2G/3G CS 注册，而不是 IMS/VoLTE）

user_agent：发送警报的 HLR GT（用于跟踪）

ran_location： "SS7"

5. 在 SMSc 订阅者跟踪器中跟踪：记录订阅者与 HLR GT，状态=活动，消息计数器为 0

6. 发送 ACK：回复 HLR 以确认 alertServiceCenter

缺席订阅者处理

当 SMSc 尝试交付消息并在 SRI-for-SM 中收到 "缺席订阅者" 错误时（有关 SRI-for-SM 的更多信息，请参见 HLR 指南中

的 SRI-for-SM）：

1. 检测缺席：SRI-for-SM �回 absentSubscriberDiagnosticSM 错误

2. 过期位置：POST 到 /api/location，expires=0 以标记订阅者为不可达

3. 用户代理：设��为 "SS7_AbsentSubscriber" 以识别来源

4. 更新跟踪器：在 SMSc 订阅者跟踪器中将订阅者标记为 failed

这确保位置数据库和跟踪器准确反映订阅者的可达性状态。

流程图

SMSc APISMScHLR

SMSc APISMScHLR

订阅者在 HLR 执行 UpdateLocation

稍后：尝试发送 SMS

alertServiceCenter(15551234567)

从 MSISDN 计算 IMSI

POST /api/location (expires=48h)

200 OK

alertServiceCenter ACK

SRI-for-SM (15551234567)

缺席订阅者错误

POST /api/location (expires=0)

200 OK

API 端点

POST /api/location

注意：user_agent 字段包含发送 alertServiceCenter 的 HLR GT，使 SMSc 能够跟踪提供位置更新的

HLR。

对于缺席的订阅者，expires 设置为当前时间（立即过期）。

循环预防

SMSc 实施 自动循环预防，以避免在消息源自 SS7 网络时出现无限消息路由循环。

为什么循环预防很重要

当 SMSc 从 SS7 网络接收移动发起 (MO) 短信时，它将其插入消息队列，并带有 source_smsc 字段以标识其来源（例

如，"SS7_GT_15551234567"）。如果没有循环预防，这些消息可能会：

1. 从 SS7 网络接收 → 使用 source_smsc 排队，包含 "SS7"

2. 从队列中检索 → 处理以进行交付

3. 发送回 SS7 网络 → 创建循环

它是如何工作的

SMSc 在消息处理期间自动检测并防止循环：

{

 "msisdn": "15551234567",

 "imsi": "001010123456789",

 "location": "ipsmgw",

 "ims_capable": false,

 "csfb": true,

 "expires": "2025-11-01T12:00:00Z",

 "user_agent": "15551111111",

 "ran_location": "SS7",

 "imei": "",

 "registered": "2025-10-30T12:00:00Z"

}

实现

在处理来自队列的消息时，SMSc 检查 source_smsc 字段：

如果 source_smsc 包含 "SS7"：

跳过消息

添加事件："循环预防"，描述跳过原因

通过 PUT 请求将消息标记为失败

以警告级别记录

否则：

正常处理消息

继续 SRI-for-SM 和 MT-ForwardSM 操作

源 SMSC 值

消息可以具有各种 source_smsc 值：

来源 示例值 操作

SS7 网络 (MO-FSM) "SS7_GT_15551234567" 跳过 - 循环预防

外部 API/SMPP "ipsmgw" 或 "api_gateway" 正常处理

其他 SMSc "smsc-node-01" 正常处理

事件跟踪

当由于循环预防而跳过消息时，会记录一个事件：

该事件在以下位置可见：

Web UI：SS7 事件页面 (/events)

数据库：通过 API 的 events 表

日志：警告级别日志条目

配置

循环预防始终 启用，无法禁用。这是防止消息循环导致网络中断的关键安全功能。

示例场景

场景：移动订阅者通过 SS7 网络发送 SMS

{

 "message_id": 12345,

 "name": "循环预防",

 "description": "消息跳过 - source_smsc 'SS7_GT_15551234567' 包含

'SS7'，防止消息循环"

}

如果没有循环预防，第 8 步将把消息发送回 SS7 网络，可能会创建无限循环。

SMSc 订阅者跟踪

SMSc 包含一个 订阅者跟踪器 GenServer，实时维护基于 alertServiceCenter 消息和消息交付尝试的订阅者状态。

目的

跟踪器提供：

可达性监控：当前可达的订阅者

HLR 跟踪：发送 alertServiceCenter 的 HLR

消息计数器：每个订阅者发送/接收的消息数量

失败跟踪：当交付尝试失败时将订阅者标记为失败

Web UI 可见性：实时仪表板显示所有跟踪的订阅者

跟踪的信息

对于每个订阅者，跟踪器存储：

1. 移动电话 → MSC/VLR → SMSc（通过 MO-ForwardSM）

2. SMSc 从 GT 15551234567 接收 MO-FSM

3. SMSc 插入队列：source_smsc = "SS7_GT_15551234567"

4. 自动刷新从队列中检索消息

5. SMSc 检测到 source_smsc 中的 "SS7" → 跳过

6. 记录事件："循环预防"

7. 消息标记为失败

8. 不发送 SRI-for-SM 或 MT-ForwardSM（防止循环）

字段 描述 示例

msisdn 订阅者的电话号码（键） "15551234567"

imsi 订阅者的 IMSI "001010123456789"

hlr_gt
发送 alertServiceCenter 的 HLR

GT
"15551111111"

messages_sent 发送的 MT-FSM 消息计数 5

messages_received 接收的 MO-FSM 消息计数 2

status :active 或 :failed :active

updated_at 最后更新时间的 Unix 时间戳 1730246400

状态转换

接收到 alertServiceCenter

发送/接收消息

SRI-for-SM 失败
缺席订阅者 新的 alertServiceCenter

手动移除

手动移除

Active

Failed

行为

当接收到 alertServiceCenter 时：

创建或更新订阅者条目

设置 status = :active

记录 HLR GT

重置或保留消息计数器

当 SRI-for-SM 成功时：

增加 messages_sent 计数器

更新 updated_at 时间戳

当 SRI-for-SM 失败时：

设置 status = :failed

保留在跟踪器中以进行监控

当订阅者被移除时：

从 ETS 表中删除

不再出现在 Web UI 中

Web UI - SMSc 订阅者页面

路径：/smsc_subscribers

自动刷新：每 2 秒

注意：此页面仅在 SMSc 模式下运行时可用。在 config/runtime.exs 中取消注释 SMSc 配置后，必须重启应用程序以使

路由可用。

SMSc 订阅者 页面提供所有跟踪订阅者的实时监控：

特性

1. 订阅者表

MSISDN、IMSI、HLR GT

发送/接收消息计数器

状态徽章（活动/失败）及颜色编码

最后更新时间戳和持续时间

单个订阅者的移除按钮

2. 汇总统计

总跟踪订阅者

活动订阅者计数

失败订阅者计数

唯一 HLR 的数量

3. 操作

清除所有：移除所有跟踪的订阅者

移除：移除单个订阅者

示例视图

API 函数

跟踪器公开以下函数以供程序访问：

┌──

│ SMSc 跟踪的订阅者 总计: 3 │

├──

│ MSISDN IMSI HLR GT Msgs 状态 │

│ S/R

├──

│ 15551234567 001010123456789 15551111111 5/2 ● 活动 │

│ 15559876543 001010987654321 15551111111 0/0 ● 活动 │

│ 15551112222 001010111222233 15552222222 3/1 ○ 失败 │

└──────���───

汇总： 总计: 3 | 活动: 2 | 失败: 1 | 唯一 HLR: 2

集成

跟踪器自动与以下内容集成：

alertServiceCenter 处理程序：在成功位置更新时调用 alert_received/3

SRI-for-SM 处理程序：在成功路由时增加 messages_sent

缺席订阅者处理程序：在订阅者缺席时调用 mark_failed/1

未知订阅者错误：在 SRI-for-SM 失败时调用 mark_failed/1

自动刷新 SMS 队列

自��刷新 服务自动处理待处理的 SMS 消息。

有关配置参数参考，请参见 配置参考中的自动刷新配置。

当接收到 alertServiceCenter 时调用

SMSc.SubscriberTracker.alert_received(msisdn, imsi, hlr_gt)

增加消息计数器

SMSc.SubscriberTracker.message_sent(msisdn)

SMSc.SubscriberTracker.message_received(msisdn)

标记为失败（SRI-for-SM 失败）

SMSc.SubscriberTracker.mark_failed(msisdn)

从跟踪中移除

SMSc.SubscriberTracker.remove_subscriber(msisdn)

查询函数

SMSc.SubscriberTracker.get_active_subscribers()

SMSc.SubscriberTracker.get_subscriber(msisdn)

SMSc.SubscriberTracker.count_subscribers()

SMSc.SubscriberTracker.clear_all()

配置

工作原理

1. 轮询：每 auto_flush_interval 毫秒，查询 API 以获取待处理消息

2. 过滤：可选地通过 auto_flush_dest_smsc 进行过滤

3. 速率限制：每个周期最多处理 auto_flush_tps 消息

4. 交付：对于每条消息：

发送 SRI-for-SM（发送短消息路由信息）到 HLR 以获取路由信息

HLR �回一个合成 IMSI，从 MSISDN 计算得出

HLR �回 SMSC GT 地址，MT-ForwardSM 应该发送到这里

有关完整文档，请参见 HLR 指南中的 SRI-for-SM 详细信息。

成功时，发送 MT-forwardSM 到 MSC/VLR

通过 API 更新消息状态（已交付/失败）

通过 API 添加事件跟踪

📖 技术深入：有关 SRI-for-SM 工作原理的完整解释，包括 MSISDN 到 IMSI 映射、服务中心 GT 地址配置和隐私保护

的合成 IMSI 生成，请参见 HLR 配置指南中的 SRI-for-SM 部分。

SMSc �标

可用�标

SMS 队列�标：

smsc_queue_depth - 当前待处理消息数量

smsc_messages_delivered_total - 成功交付的总消息数

smsc_messages_failed_total - 交付失败的总消息数

config :omniss7,

 auto_flush_enabled: true, # 启用/禁用自动刷新

 auto_flush_interval: 10_000, # 轮询间隔（毫秒）

 auto_flush_dest_smsc: nil, # 过滤器：nil = 所有

 auto_flush_tps: 10 # 每秒最大事务数

smsc_delivery_duration_milliseconds - 交付时间的直方图

示例查询：

故障排除 SMSc

问题：消息未交付

检查：

1. 验证自动刷新是否启用

2. 检查数据库连接

3. 监控日志以查找错误

4. 验证 M3UA 连接是否处于活动状态

5. 检查 TPS 限制

问题：队列深度过高

可能原因：

TPS 限制过低

HLR 超时问题

网络连接问题

当前队列深度

smsc_queue_depth

交付成功率（过去 5 分钟）

rate(smsc_messages_delivered_total[5m]) /

(rate(smsc_messages_delivered_total[5m]) +

rate(smsc_messages_failed_total[5m]))

平均交付时间

rate(smsc_delivery_duration_milliseconds_sum[5m]) /

rate(smsc_delivery_duration_milliseconds_count[5m])

无效的目的号码

解决方案：

增加 auto_flush_tps

检�� HLR 可用性

审查失败的消息日志

MT-forwardSM API

通过 API 发送 SMS

API 端点：POST /api/MT-forwardSM

请求：

响应：

{

 "imsi": "234509876543210",

 "destination_serviceCentre": "447999555111",

 "originating_serviceCenter": "447999123456",

 "smsPDU":

"040B917477218345F600001570301857140C0BD4F29C0E9281C4E1F11A"

}

{

 "result": "success",

 "message_id": "12345"

}

相关文档

OmniSS7 文档：

← �回主文档

HLR 配置指南 - HLR 模式设置和操作

SRI-for-SM 技术细节 - 有关 MSISDN 到 IMSI 映射和服务中心配置的完整文档

常见功能指南 - Web UI、API、监控

MAP 客户端指南 - MAP 操作

技术参考 - 协议规范

OmniMessage 文档： 有关消息路由配置、队列管理、交付跟踪、速率限制和分析的信息，请参考 OmniMessage 产品

文档。OmniMessage 包含所有消息路由逻辑、队列重试算法、交付报告处理和业务规则引擎。

OmniSS7 由 Omnitouch 网络服务提供

M3UA STP 配置�南

← �回主文档

本指南提供了使用 OmniSS7 作为 信令传输点 (STP) 的详细配置。

目录

1. 什么是 STP？

2. STP 网络角色

3. 启用 STP 模式

4. 配置对等体

5. M2PA 协议支持

M3UA 与 M2PA

配置 M2PA 对等体

通过 Web UI 管理 M2PA

M2PA 指标

6. 点码路由

7. 全局标题路由

8. 路由管理功能

禁用路由

DROP 路由 - 防止路由循环

9. 高级路由

10. 测试配置

11. 指标和监控

12. M3UA 对等体监控

什么是信令传输点 (STP)？

信令传输点 (STP) 是 SS7 和基于 IP 的信令网络中的关键网络元素，负责在网络节点之间路由信令消息。

STP 功能

消息路由：根据目标点码 (PC) 或全局标题 (GT) 路由 SS7 信令流量

协议转换：将传统 SS7 网络与基于 IP 的 M3UA/SCTP 网络连接起来

负载分配：使用基于优先级的路由将流量分配到多个目标

网络网关：连接不同的信令网络和服务提供商

拓扑隐藏：可以重写地址以隐藏内部网络拓扑

STP 网络图

STP 网络角色解释

ASP (应用服务器进程)

角色：连接到远程 SGP/STP 的客户端

方向：出站连接

用例：您的 STP 连接到合作伙伴网络的 STP

SGP (信令网关进程)

角色：接受来自 ASP 的连接的服务器

方向：入站连接

用例：合作伙伴网络连接到您的 STP

AS (应用服务器)

定义：一个或多个 ASP 的逻辑分组

目的：提供冗余和负载共享

用例：多个 ASP 为同一目标服务

启用 M3UA STP 模式

OmniSS7 可以在不同模式下运行。要将其用作 STP，您需要在配置中启用 STP 模式。

切换到 STP 模式

OmniSS7 的 config/runtime.exs 包含三个预配置的操作模式。要启用 STP 模式：

1. 打开 config/runtime.exs

2. 查找 三个配置部分（第 53-174 行）：

配置 1：STP 模式（第 53-85 行）

配置 2：HLR 模式（第 87-123 行）

配置 3：SMSc 模式（第 125-174 行）

3. 注释掉 当前活动配置（在每行前添加 #）

4. 取消注释 STP 配置（从第 53-85 行移除 #）

5. 根据需要自定义 配置参数

6. 重启 应用程序：iex -S mix

STP 模式配置

完整的 STP 配置如下所示：

自定义的配置参数

有关所有配置参数的完整参考，请参见 配置参考。

config :omniss7,

 # 模式标志 - 仅启用 STP 功能

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 # M3UA 连接配置

 # 作为 ASP（应用服务器进程）连接到远程 STP/SGW

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 # 本地端点（此系统）

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 # 远程 STP/SGW 端点

 remote_ip: {10, 179, 4, 11},

 remote_port: 2905,

 routing_context: 1

 }

参数 类型 默认值 描述 示例

map_client_enabled
布尔

值
true 启用 MAP 客户端和路由功能 true

local_ip

元组

或列

表

�需

您系统的 IP 地址。单个：{10, 0,

0, 1} 或多重：[{10, 0, 0,

1}, {10, 0, 0, 2}]

{10,

179, 4,

10}

local_port 整数 2905 本地 SCTP 端口 2905

remote_ip

元组

或列

表

�需 远程 STP/SGW IP 地址。单个或多重

{10,

179, 4,

11}

remote_port 整数 2905 远程 SCTP 端口 2905

routing_context 整数 1 M3UA 路由上下文 ID 1

enable_gt_routing
布尔

值
false 启用全局标题路由（除了 PC 路由） true

提示：通过为 local_ip 和/或 remote_ip 提供 IP 地址列表来使用 SCTP 多宿主，以启用自动故障转移。请参见

SCTP 多宿主指南。

启用 STP 模式后发生的情况

当 map_client_enabled: true 时，Web UI 将显示：

✅ SS7 事件 - 事件日志

✅ SS7 客户端 - MAP 操作测试

✅ M3UA - 连接状态

✅ 路由 - 路由表管理 ← STP 特定

✅ 路由测试 - 路由测试 ← STP 特定

✅ 资源 - 系统监控

✅ 配置 - 配置查看器

HLR 链接 和 SMSc 链接 选项卡将被隐藏。

重要注意事项

SCTP 协议（IP 协议 132）必须允许通过防火墙

默认 M3UA 端口为 2905（行业标准）

确保有足够的系统资源来处理路由流量

路由持久性：通过 Web UI 或 API 配置的所有路由都存储在 Mnesia 数据库 中，并且 在重启后仍然有效

配置合并：runtime.exs 中的路由在启动时加载，并与 Mnesia 路由合并

更改模式后，必须重启应用程序以使更改生效

Web UI：有关通过 Web 界面管理路由的信息，请参见 Web UI 指南

API 访问：有关 REST API 文档和 Swagger UI 访问的信息，请参见 API 指南

独立 STP 模式

除了在 map_client_enabled: true 时可用的 STP 路由功能外，您还可以运行一个 独立的 M3UA STP 服务

器，该服务器监听传入连接。

启用独立 STP

将以下配置添加到 config/runtime.exs：

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 local_ip: {127, 0, 0, 1}, # 监听的 IP 地址

 local_port: 2905, # 监听的端口

 point_code: 100 # 此 STP 自身的点码

 }

STP 配置参数

参数 类型 默认值 描述 示例

enabled 布尔值 false 启用独立 STP 服务器 true

local_ip 元组 {127, 0, 0, 1} 监听连接的 IP 地址 {0, 0, 0, 0}

local_port 整数 2905 监听的端口 2905

point_code 整数 �需 此 STP 自身的 SS7 点码 100

何时使用独立 STP

纯路由：当您只需要 M3UA 路由而不需要 MAP 客户端功能时

中央 STP：为多个网络元素创建一个中央信令路由器

中心架构：通过中央 STP 连接多个 HLR、MSC 和 SMSC

注意：如果您需要出站连接和入站 STP 功能，可以同时启用 map_client_m3ua 和 m3ua_stp。

路由表持久性 (Mnesia)

所有路由表（对等体、点码路由和全局标题路由）都存储在 Mnesia 数据库 中以实现持久性。

路由工作原理

1. Runtime.exs 路由：在应用程序启动时加载 config/runtime.exs 中定义的路由，位于

m3ua_peers、m3ua_routes 和 m3ua_gt_routes 下

2. Web UI 路由：通过 Web UI 路由页面 添加的路由存储在 Mnesia 中

3. 路由合并：在重启时，runtime.exs 路由与现有 Mnesia 路由合并（无重复）

4. 持久性：通过 Web UI 配置的所有路由 在应用程序重启后仍然有效

Mnesia 存储类型

控制路由表的存储方式。有关数据库配置的更多详细信息，请���见 配置参考中的数据库参数。

存储类型 描述 持久性 用例

:disc_copies 磁盘备份存储（默认） 在重启后仍然有效 生产环境

:ram_copies 仅内存 重启时丢失 测试、开发

默认：:disc_copies

Mnesia 数据库位置

Mnesia 将路由表存储在应用程序的 Mnesia 目录中：

位置：Mnesia.{node_name}/（例如，Mnesia.nonode@nohost/）

表：m3ua_peer、m3ua_route、m3ua_gt_route

管理路由

您有三种管理路由的选项：

1. Runtime.exs - 启动时加载的静态配置

2. Web UI - 交互式路由管理（请参见 Web UI 指南）

3. REST API - 程序化路由管理（请参见 API 指南）

最佳实践：使用 runtime.exs 进行基本配置，并在运行期间通过 Web UI 进行动态路由更改。

配置 M3UA 对等体

对等体表示 M3UA 连接端点（其他 STP、HLR、MSC、SMSC）。将对等体添加到 config/runtime.exs。

config :omniss7,

 mnesia_storage_type: :disc_copies # 或 :ram_copies 用于测试

对等体配��示例

config :omniss7,

 m3ua_peers: [

 # 与合作伙伴 STP 的出站连接（角色：:client）

 %{

 peer_id: 1, # 唯一标识符

 name: "Partner_STP_West", # 描述性名称

 role: :client, # :client 用于出站，:server

用于入站

 local_ip: {10, 0, 0, 1}, # 本地 IP 绑定

 local_port: 0, # 0 = 动态端口分配

 remote_ip: {10, 0, 0, 10}, # 远程对等体 IP

 remote_port: 2905, # 远程对等体端口

 routing_context: 1, # M3UA 路由上下文

 point_code: 100, # 此对等体的点码

 network_indicator: :international # :international 或

:national

 },

 # 与本地 HLR 的连接（角色：:client）

 %{

 peer_id: 2,

 name: "Local_HLR",

 role: :client,

 local_ip: {10, 0, 0, 1},

 local_port: 0,

 remote_ip: {10, 0, 0, 20},

 remote_port: 2905,

 routing_context: 2,

 point_code: 200,

 network_indicator: :international

 },

 # 来自远程 MSC 的入站连接（角色：:server）

 # 对于 :server 角色，STP 等待传入连接

 %{

 peer_id: 3,

 name: "Remote_MSC",

 role: :server, # 接受入站连接

 remote_ip: {10, 0, 0, 30}, # 预期源 IP

 remote_port: 2905, # 预期源端口（0 = 接受来自任何端口）

 routing_context: 3,

 point_code: 300,

 network_indicator: :international

 },

 # 动态源端口的入站连接（无端口过滤）

 %{

 peer_id: 4,

 name: "Dynamic_Client",

 role: :server,

 remote_ip: {10, 0, 0, 40}, # 预期源 IP

 remote_port: 0, # 0 = 接受来自任何源端口的连接

 routing_context: 4,

 point_code: 400,

 network_indicator: :international

 }

]

对等体配置参数

参数 类型 必需 描述

peer_id 整数 是 对等体的唯一数字标识符

name
字符

串
是 日志和监控的可读名称

role 原子 是 :client（出站）或 :server（入站）

local_ip

元组

或列

表

是（客

户端）

本地 IP 地址。单个：{10, 0, 0, 1} 或多个用于

SCTP 多宿主：[{10, 0, 0, 1}, {10, 0,

0, 2}]

local_port 整数
是（客

户端）
本地端口（0 为动态）

remote_ip

元组

或列

表

是
远程对等体 IP 地址。单个：{10, 0, 0, 10} 或多个：

[{10, 0, 0, 10}, {10, 0, 0, 11}]

remote_port 整数 是 远程对等体端口（0 为入站 = 接受来自任何源端口）

routing_context 整数 是 M3UA 路由上下文标识符

point_code 整数 是 此对等体的 SS7 点码

network_indicator 原子 否 :international 或 :national

SCTP 多宿主：为了网络冗余，您可以为 local_ip 和 remote_ip 配置多个 IP 地址。这使得在一个网络路径失败时

能够自动故障转移。请参见 SCTP 多宿主指南 以获取详细的配置示例和最佳实践。

入站连接的源端口过滤

对于 入站连接（角色：:server），remote_port 参数控制源端口过滤：

特定端口（例如，remote_port: 2905）：仅接受来自该确切源端口的连接

通过验证源端口提供额外的安全性

当远程对等体使用固定源端口时使用

任何端口（remote_port: 0）：接受来自任何源端口的连接

当远程对等体使用动态/临时源端口时很有用

仅验证源 IP 地址

更灵活但稍微不安全

示例：

M2PA 协议支持

OmniSS7 支持 M3UA 和 M2PA 协议用于 SS7 信令传输。

仅接受来自 10.5.198.200:2905（特定端口）

%{

 peer_id: 1,

 name: "Strict_Peer",

 role: :server,

 remote_ip: {10, 5, 198, 200},

 remote_port: 2905,

 # ... 其他配置

}

接受来自 10.5.198.200 的任何源端口

%{

 peer_id: 2,

 name: "Flexible_Peer",

 role: :server,

 remote_ip: {10, 5, 198, 200},

 remote_port: 0, # 接受来自任何源端口

 # ... 其他配置

}

什么是 M2PA？

M2PA（MTP2 用户对等适配层）是 IETF 标准化的协议（RFC 4165），用于通过 IP 网络使用 SCTP 传输 SS7

MTP3 消息。

M3UA 与 M2PA：关键区别

特性 M3UA M2PA

架构 客户端/服务器 (ASP/SGW) 对等

用例 SS7 与 IP 之间的网关 直接点对点链接

链路状态管理 应用层（ASPUP/ASPAC） MTP2 风格（对齐、证明、就绪）

序列号 无固有排序 24 位 BSN/FSN 用于有序交付

典型部署 SS7 到 IP 网关，STP 节点之间的直接信令链接

RFC RFC 4666 RFC 4165

协议选择�导

建议：默认使用 M3UA。仅在特定需要时使用 M2PA。

何时使用 M3UA（推荐）

M3UA 是大多数部署的推荐协议：

STP 部署：标准信令传���点实现

网关功能：将 SS7 网络与基于 IP 的信令连接

网络元素连接：将 HLR、MSC、SMSC 和其他网络元素连接到您的 STP

信令网关 (SGW)：接受来自多个应用服务器的连接的中央网关

灵活拓扑：具有集中控制的客户端/服务器架构

多厂商网络：广泛支持的行业标准（RFC 4666）

使用 M3UA 将网络元素（HLR、MSC、SMSC、VLR 等）连接到您的 STP。

何时使用 M2PA（仅限特殊情况）

M2PA 仅应在特定场景中使用：

STP 到 STP 链接：在多 STP 网络中，信号传输点之间的直接点对点连接

传统 TDM 替代：在远程系统特别要求 M2PA 时替换传统的 SS7 TDM 链接

需要 MTP2 兼容性：在连接到强制要求 MTP2 风格链路状态管理的遗留系统时

合作伙伴要求：当合作伙伴或互联互通特别要求 M2PA 协议时

重要：不要使用 M2PA 将网络元素（HLR、MSC、SMSC）连接到您的 STP - 请使用 M3UA。M2PA 旨在用于 STP

到 STP 的互连，其中两侧都作为路由节点操作。

配置 M2PA 对等体

M2PA 对等体的配置与 M3UA 对等体相同，增加了一个 protocol 参数。

M2PA 对等体配置

将 M2PA 对等体添加到 config/runtime.exs 中的 m3ua_peers ��置（是的，尽管是不同的协议，它们共享相

同的配置部分）：

M2PA 的关键参数：

参数 值 描述

protocol :m2pa
指定 M2PA 协议（如果省略，则默认为

:m3ua）

role
:client 或

:server
连接方向

local_port 整数
本地 SCTP 端口（标准 M2PA 端口为

3565）

remote_port 整数
远程 SCTP 端口（标准 M2PA 端口为

3565）

point_code 整数 您的点码

adjacent_point_code 整数 远程对等体的点码（M2PA 特定）

注意：M2PA 使用 端口 3565 作为行业标准（与 M3UA 的端口 2905 不同）。

M2PA 链路状态

M2PA 链接在初始化期间经历几个状态：

1. 关闭 - 未建立连接

2. 对齐 - 初始同步阶段（约 1 秒）

3. 证明 - 链路质量验证（约 2 秒）

4. 就绪 - 链路活动并准备传输流量

链路状态进展确保在交换流量之前进行可靠的信令。

通过 Web UI 管理 M2PA 对等体

Web UI 的 路由 页面提供对 M2PA 对等体的完整管理支持：

1. 导航 到路由页面

2. 选择 “对等体” 选项卡

3. 点击 “添加新对等体”

4. 选择 “M2PA (RFC 4165)” 从协议下拉菜单

5. 填写 对等体配置：

对等体名称（描述性标识符）

协议：M2PA

角色：客户端或服务器

点码（您的 PC）

本地/远程 IP 地址

本地/远程端口（通常为 3565 的 M2PA）

网络指示符（国际或国家）

6. 点击 “保存对等体”

对等体表显示协议类型并进行颜色编码：

蓝色 - M3UA 对等体

绿色 - M2PA 对等体

M2PA 路由行为

M2PA 对等体与 OmniSS7 的路由系统无缝集成：

点码路由：对于 M2PA 和 M3UA 工作方式相同

全局标题路由：在 M2PA 链接上完全支持

路由优先级：M2PA 和 M3UA 对等体可以混合在同一路由表中

消息中继：消息可以在 M2PA 上到达并路由到 M3UA，反之亦然

M2PA �标

M2PA 提供全面的 Prometheus 指标，用于监控链路健康和流量：

流量�标：

m2pa_messages_sent_total - 每个链路发送的总 MTP3 消息

m2pa_messages_received_total - 每个链路接收的总 MTP3 消息

m2pa_bytes_sent_total - 通过 M2PA 发送的总字节

m2pa_bytes_received_total - 通过 M2PA 接收的总字节

所有流量指标按：link_name、point_code、adjacent_pc 标记

链路状态�标：

m2pa_link_state_changes_total - 链路状态转换（DOWN → ALIGNMENT →

PROVING → READY）

标签：link_name、from_state、to_state

错误�标：

m2pa_errors_total - 按类型统计的总错误

decode_error - M2PA 消息解码失败

encode_error - M2PA 消息编码失败

sctp_send_error - SCTP 传输失败

标签：link_name、error_type

访问�标：

Prometheus 端点：http://your-server:8080/metrics

指标在应用程序启动时自动注册

M2PA 最佳实践

1. 端口选择：使用端口 3565 作为 M2PA（行业标准）

2. 链路监控：通过指标监控链路状态变化

3. 防火墙规则：确保 SCTP（IP 协议 132）被允许

4. 点码：确保相邻点码在两侧正确配置

5. 网络�示符：必须在对等体之间匹配（国际或国家）

6. 测试：使用路由测试页面在配置后验证连接

配置点码路由

点码路由根据 MTP3 头中的 目标点码 (DPC) 指导消息。

理解 SS7 协议栈中的点码

点码存在于 SS7 协议栈的不同层。理解这种区别很重要：

协议栈层：

两种类型的点码：

1. MTP3 层点码（用于路由）：

位于 MTP3 路由标签中（DPC、OPC）

存在于 M3UA 协议数据参数（标签 528）中

存在于 M2PA 用户数据消息中

STP 使用这些 DPC 值进行路由决策

这些决定了消息的最终投递位置

2. M3UA 层点码（用于网络管理）：

存在于 M3UA 管理消息中（DUNA、DAVA、SCON、DUPU）

指示受影响的点码以获取网络状态

告诉对等体哪些目标可用/不可用

不用于路由用户数据

STP 路由工作原理：

┌───┐

│ 应用层 (SCCP/TCAP/MAP) │

├───────────��─────────────────────────────┤

│ MTP3 层 │ ← 用户数据路由

│ - 路由标签：DPC、OPC、SLS │ ← 用于 STP 路由

│ - 服务信息字节 (SIO) │

├───┤

│ M3UA 或 M2PA（适配层） │ ← 传输协议

│ - 协议数据（包含 MTP3） │

│ - 网络管理（DUNA/DAVA） │ ← 网络状态

├───┤

│ SCTP（传输） │

└───┘

对于 M3UA 数据消息：STP 从协议数据参数（标签 528）中提取 MTP3 消息，该消息包含 MTP3 路由标签（DPC、

OPC、SLS）。MTP3 层的 DPC 用于查找路由。

对于 M2PA 用户数据消息：STP 从 M2PA 用户数据字段中提取 MTP3 消息，然后读取 MTP3 路由标签中的

DPC。

M3UA 管理消息：网络管理消息（DUNA、DAVA、SCON）在 M3UA 层中包含受影响的点码，用于在对等体之间信令

网络状态。

基本点码路由

将路由添加到 config/runtime.exs：

注意：mask 字段是可选的，默认为 14（精确点码匹配）。仅在需要基于范围的路由时指定 mask（请参见点码掩码部分）。

路由逻辑

1. STP 接收 M3UA 数据或 M2PA 用户数据消息

2. STP 从协议数据（M3UA）或用户数据（M2PA）字段提取 MTP3 消息

3. STP 从 MTP3 路由标签中读取 目标点码 (DPC)

config :omniss7,

 m3ua_routes: [

 # 将所有流量路由到 PC 100 的对等体 1（合作伙伴 STP）

 %{

 dest_pc: 100, # 目标点码

 peer_id: 1, # 通过的对等体

 priority: 1, # 优先级（数字越小优先级越高）

 network_indicator: :international

 # mask: 14 # 可选：默认为 14（精确匹配）

 },

 # 将所有流量路由到 PC 200 的对等体 2（本地 HLR）

 %{

 dest_pc: 200,

 peer_id: 2,

 priority: 1,

 network_indicator: :international

 },

 # 负载均衡示例：PC 300 的主路由和备份路由

 %{

 dest_pc: 300,

 peer_id: 3, # 主路由

 priority: 1,

 network_indicator: :international

 },

 %{

 dest_pc: 300,

 peer_id: 4, # 备份路由（优先级数字更高）

 priority: 2,

 network_indicator: :international

 }

]

4. 查找路由表以匹配 DPC（考虑掩码）

5. 如果存在多个路由，选择具有 最具体掩码（最高掩码值）的路由，然后 最低优先级数字

6. 将 MTP3 消息封装在 M3UA 数据或 M2PA 用户数据中以发送到目标对等体

7. 将消息路由到相应的对等体

8. 如果所选对等体处于关闭状态，则尝试下一个优先级最高的路由

点码掩码

点码是 14 位值（范围 0-16383）。默认情况下，路由���确匹配单个点码（掩码 /14）。但是，您可以使用 点码掩码 创建匹配

点码范围 的路由。

理解掩码

掩码指定路由的目标 PC 和传入消息的 DPC 之间必须匹配的 最重要的位数。其余位可以是任何值，从而创建匹配点码的范围。

掩码参考表：

掩码 匹配的点码 用例

/14 1 PC（精确匹配） 单一目标（默认）

/13 2 PCs 小范围

/12 4 PCs 小范围

/11 8 PCs 小范围

/10 16 PCs 中等范围

/9 32 PCs 中等范围

/8 64 PCs 中等范围

/7 128 PCs 中大范围

/6 256 PCs 大范围

/5 512 PCs 大范围

/4 1,024 PCs 非常大范围

/3 2,048 PCs 非常大范围

/2 4,096 PCs 极大范围

/1 8,192 PCs 一半的所有 PCs

/0 16,384 PCs 所有 PCs（默认/回退路由）

点码掩码示例

注意：mask 字段是 可选的，在所有示例中。如果省略，默认为 14（精确匹配）。

示例 1：单个点码（默认行为）

示例 2：小范围

示例 3：中等范围

没有掩码字段（推荐用于单个 PC）

%{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 network_indicator: :international

}

掩��默认为 14 - 匹配：仅 PC 1000

显式掩码（相同结果）

%{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 mask: 14, # 显式精确匹配

 network_indicator: :international

}

匹配：仅 PC 1000

%{

 dest_pc: 1000,

 peer_id: 2,

 priority: 1,

 mask: 12, # 匹配 4 PCs

 network_indicator: :international

}

匹配：PC 1000、1001、1002、1003

示例 4：默认/回退路由

结合特定和掩码路由

您可以结合特定路由和掩码路由以实现灵活路由：

%{

 dest_pc: 1000,

 peer_id: 3,

 priority: 1,

 mask: 8, # 匹配 64 PCs

 network_indicator: :international

}

匹配：PC 1000-1063（64 个连续点码）

%{

 dest_pc: 0,

 peer_id: 4,

 priority: 10, # 低优先级（高数字）

 mask: 0, # 匹配所有 PCs

 network_indicator: :international

}

匹配：所有点码（0-16383）

用作低优先级的捕获所有/默认路由

DPC 1000 的路由决策：

1. 匹配掩码 /14 路由（PC 1000 精确） - 选择（最具体）

2. 也匹配掩码 /8 路由（PC 1000-1063 范围） - 被忽略（不够具体）

3. 也匹配掩码 /0 路由（所有 PCs） - 被忽略（最不具体）

DPC 1015 的路由决策：

1. 不匹配掩码 /14 路由（仅 PC 1000）

2. 匹配掩码 /8 路由（PC 1000-1063 范围） - 选择（最具体匹配）

3. 也匹配掩码 /0 路由（所有 PCs） - 被忽略（最不具体）

config :omniss7,

 m3ua_routes: [

 # 针对 PC 1000 的特定路由（优先级最高）

 %{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 network_indicator: :international

 # 掩码默认为 14（精确匹配）

 },

 # 针对 PCs 1000-1063 的范围路由

 %{

 dest_pc: 1000,

 peer_id: 2,

 priority: 1,

 mask: 8, # 匹配 64 PCs

 network_indicator: :international

 },

 # 针对所有其他 PCs 的默认/回退路由

 %{

 dest_pc: 0,

 peer_id: 3,

 priority: 10, # 低优先级

 mask: 0, # 匹配所有 PCs

 network_indicator: :international

 }

]

DPC 5000 的路由决策：

1. 不匹配掩码 /14 路由

2. 不匹配掩码 /8 路由

3. 匹配掩码 /0 路由（所有 PCs） - 选择（唯一匹配，回退路由）

最佳实践

1. 省略 mask 用于单个目标：对于精确点码匹配，完全省略 mask 字段（默认为 /14）

2. 仅在需要时显式使用 /14：仅在需要在文档中明确说明或与范围路由混合时指定 mask: 14

3. 使用范围掩码用于网络块：将整个网络段路由到特定对等体，使用掩码 /0 到 /13

4. 使用 /0 作为回退：创建一个低优先级的默认路由以捕获未匹配的流量

5. 最具体的优先：路由引擎始终首先选择最具体（最高掩码值）匹配的路由

6. 优先级作为平局打破者：如果多个路由具有相同掩码，则最低优先级数字优先

配置全局标题 (GT) 路由

全局标题路由启用基于内容的路由，使用电话号码或 IMSI 值而不是点码。有关基于呼叫方/被叫方的高级全局标题地址转换，请参见 全局标题

NAT 指南。

前提条件

启用 GT 路由：在 config/runtime.exs 中设置 enable_gt_routing: true

GT 路由配置

config :omniss7,

 # 启用 GT 路由

 enable_gt_routing: true,

 m3ua_gt_routes: [

 # 将所有英国号码（前缀 44）路由到对等体 1

 %{

 gt_prefix: "44", # 匹配的全局标题前缀

 peer_id: 1, # 目标对等体

 priority: 1, # 优先级（数字越小优先级越高）

 description: "英国号码" # 日志描述

 },

 # 将美国号码（前缀 1）路由到对等体 2

 %{

 gt_prefix: "1",

 peer_id: 2,

 priority: 1,

 description: "美国号码"

 },

 # 更具体的路由：以 447 开头的英国手机号码

 %{

 gt_prefix: "447", # 最长前缀匹配胜出

 peer_id: 3,

 priority: 1,

 description: "英国手机号码"

 },

 # SSN 特定路由（可选）

 %{

 gt_prefix: "555",

 source_ssn: 8, # 仅在源 SSN = 8（SMSC）时匹配

 peer_id: 4,

 dest_ssn: 6, # 将目标 SSN 重写为 6（HLR）

 priority: 1,

 description: "以 61 前缀的 SMS 流量"

 }

]

GT 路由逻辑

GT 路由算法遵循以下决策过程：

否

是

是

传入 SCCP 消息

提取被叫 GT、SSN、TT、NPI、

NAI

GT 路由

启用？

查找所有匹配路由

GT 前缀 + SSN + TT + NPI

+ NAI

有

匹配？

按特异性排序:

1. 最长 GT 前缀

2. 特定 SSN > 通配符

3. 特定 TT > 通配符

4. 特定 NPI > 通配符

5. 特定 NAI > 通配符

6. 最低优先级

否

否
是

使用点码路由

选择最具体的路由

路由

启用？

应用重写:

- dest_ssn

- dest_tt

- dest_npi

- dest_nai

将 OPC 重写为 STP 的点码

转发到目标对等体

按 DPC 查找

消息路由

路由步骤：

1. 最长前缀匹配：STP 查找所有 GT 路由，其中前缀与全局标题的开头匹配

示例：GT "447712345678" 匹配 "44" 和 "447"，但 "447" 胜出（最长匹配）

2. SSN 匹配（可选）：

如果指定了 source_ssn，则仅在 SCCP 被叫方 SSN 等于该值时路由匹配

如果 source_ssn 为 nil，则路由匹配任何 SSN（通配符）

3. TT/NPI/NAI 匹配（可选）：

如果指定了 source_tt、source_npi 或 source_nai，则路由必须匹配这些指示符

nil 值作为通配符（匹配任何值）

4. 基于特异性的选择：

具有更具体匹配条件的路由胜出通配符

优先级顺序：GT 前缀长度 → SSN → TT → NPI → NAI → 优先级数字

5. �示符重写（可选）：

如果指定了 dest_ssn、dest_tt、dest_npi 或 dest_nai，STP 将重写这些指示符

对于协议规范化和网络互连非常有用

6. 回退到点码：

如果没有 GT 路由匹配，STP 将回退到使用 DPC 的点码路由

高级 GT 路由：转换类型、NPI 和 NAI

除了 GT 前缀和 SSN 匹配外，STP 还支持基于 SCCP 全局标题指示符的路由和转换：

转换类型 (TT)：标识编号计划和地址类型

编号计划�示符 (NPI)：定义编号计划（例如，ISDN、数据、传真）

地址类型�示符 (NAI)：指定地址格式（例如，国际、国家、用户）

匹配（源�示符）

路由可以根据传入消息指示符进行匹配：

source_tt：匹配具有特定转换类型的消息

source_npi：匹配具有特定编号计划指示符的消息

source_nai：匹配具有特定地址类型指示符的消息

nil 值 = 通配符（匹配任何值）

转换（目标�示符）

路由在转发时可以重写指示符：

dest_tt：将转换类型转换为新值

dest_npi：将编号计划指示符转换为新值

dest_nai：将地址类型指示符转换为新值

nil 值 = 保留原始值（无转换）

基于特异性的选择

当多个路由匹配时，选择最具体的路由，优先顺序如下：

1. 最长 GT 前缀匹配

2. 特定源 SSN 胜出通配符 SSN

3. 特定源 TT 胜出通配符 TT

4. 特定源 NPI 胜出通配符 NPI

5. 特定源 NAI 胜出通配符 NAI

6. 最低优先级数字

配置示例

config :omniss7,

 enable_gt_routing: true,

 m3ua_gt_routes: [

 # 示例 1：匹配并转换转换类型

 %{

 gt_prefix: "44",

 peer_id: 1,

 source_tt: 0, # 匹配 TT=0（未知）

 dest_tt: 3, # 转换为 TT=3（国家）

 priority: 1,

 description: "英国号码：TT 0→3 转换"

 },

 # 示例 2：匹配特�� NPI 并转换 NAI

 %{

 gt_prefix: "1",

 peer_id: 2,

 source_npi: 1, # 匹配 NPI=1（ISDN/电信）

 source_nai: 4, # 匹配 NAI=4（国际）

 dest_nai: 3, # 转换为 NAI=3（国家）

 priority: 1,

 description: "美国号码：国际→国家 NAI"

 },

 # 示例 3：结合 SSN 和指示符路由

 %{

 gt_prefix: "33",

 source_ssn: 8, # 匹配 SMSC 流量

 source_tt: 0, # 匹配 TT=0

 dest_ssn: 6, # 将 SSN 重写为 HLR

 dest_tt: 2, # 转换为 TT=2

 dest_npi: 1, # �置 NPI=1（ISDN）

 dest_nai: 4, # �置 NAI=4（国际）

 peer_id: 3,

 priority: 1,

 description: "法国 SMS：完全规范化"

 },

 # 示例 4：通配符 TT，特定 NPI

 %{

 gt_prefix: "49",

 source_tt: nil, # 匹配任何 TT（通配符）

常见 TT/NPI/NAI 值

转换类型 (TT)：

0 = 未知

1 = 国际

2 = 国家

3 = 网络特定

编号计划�示符 (NPI)：

0 = 未知

1 = ISDN/电信（E.164）

3 = 数据（X.121）

4 = 传真（F.69）

6 = 陆地移动（E.212）

地址类型�示符 (NAI)：

0 = 未知

1 = 用户号码

2 = 保留用于国家使用

3 = 国家显著号码

4 = 国际号码

路由决策示例

对于传入消息：

GT: "447712345678"

 source_npi: 6, # 匹配 NPI=6（数据）

 dest_npi: 1, # 转换为 NPI=1（ISDN）

 peer_id: 4,

 priority: 1,

 description: "德国数据网络规范化"

 }

]

SSN: 8

TT: 0

NPI: 1

NAI: 4

配置了这些路由：

结果：路由 C 被选择（最具体：匹配 GT + TT + NPI）

消息根据路由 C 的 dest_tt、dest_npi、dest_nai 值进行转发。

路由 A：通配符 TT

%{gt_prefix: "447", peer_id: 1, priority: 1}

路由 B：特定 TT

%{gt_prefix: "447", source_tt: 0, peer_id: 2, priority: 1}

路由 C：特定 TT + NPI

%{gt_prefix: "447", source_tt: 0, source_npi: 1, peer_id: 3,

priority: 1}

GT 路由示例

被叫 GT
源

SSN
TT NPI NAI 匹配的路由 原因

447712345678 6 - - -
"447" → 对等

体 3
最长前缀匹配

441234567890 6 - - -
"44" → 对等体

1
前缀匹配，没有更具体的路由

12125551234 6 - - - "1" → 对等体 2 美国号码的前缀匹配

555881234567 8 - - -
"555"（SSN

8）→ 对等体 4

GT + SSN 匹配，重写

SSN 为 6

555881234567 6 - - -

"555"（SSN

通配符）→ 对等体

X

GT 匹配，没有 SSN 重

写

441234567890 6 0 1 4
"44"（TT=0）

→ 对等体 1

GT + TT 匹配，转换

TT 为 3

12125551234 8 0 1 4

"1"（TT=0，

NPI=1，

NAI=4）

最具体：

GT+TT+NPI+NAI

匹配

TT/NPI/NAI 路由的实际用例

1. 网络互连规范化

不同网络可能使用不同的指示符约定

在互连点转换指示符以确保兼容性

示例：合作伙伴网络使用 TT=0 表示国际，您的网络使用 TT=1

2. 协议转换

在不同网络类型之间路由时转换编号计划

示例：从移动网络（NPI=6）路由到 PSTN（NPI=1）

3. 地址格式标准化

规范化所有传入流量以使用一致的 NAI 值

示例：将所有国际格式（NAI=4）转换为国家格式（NAI=3）以进行国内路由

4. 运营商特定路由

根据转换类型将流量路由到不同的服务提供商

示例：TT=0 路由到运营商 A，TT=2 路由到运营商 B

5. 遗留系统集成

现代系统可能使用与遗留系统不同的指示符值

在 STP 处转换以保持向后兼容性

路由管理功能

禁用路由

可以临时禁用路由而不删除它们。这对于测试、维护或流量管��很有用。

启用标志

点码和全局标题路由都支持可选的 enabled 标志：

默认行为：

如果未指定 enabled，路由默认为 enabled: true

禁用的路由在路由查找期间完全跳过

使用 Web UI 切换路由的启用/禁用状态，而无需编辑配置

用例：

测试流量流向变化

config :omniss7,

 m3ua_routes: [

 # 活动路由

 %{

 dest_pc: 100,

 peer_id: 1,

 priority: 1,

 network_indicator: :international,

 enabled: true # 路由处于活动状态（省略时默认为启用）

 },

 # 禁用路由（在路由期间不进行评估）

 %{

 dest_pc: 200,

 peer_id: 2,

 priority: 1,

 network_indicator: :international,

 enabled: false # 路由已禁用

 }

],

 m3ua_gt_routes: [

 # 禁用 GT 路由

 %{

 gt_prefix: "44",

 peer_id: 1,

 priority: 1,

 description: "英国号码 - 暂时禁用",

 enabled: false

 }

]

临时维护窗口

A/B 测试不同的路由路径

新路由的逐步推出

DROP 路由 - 防止路由循环

DROP 路由（peer_id: 0）会静默丢弃流量，而不是转发它。这可以防止路由循环并启用高级流量过滤。

配置 DROP 路由

DROP 路由的工作原理

当消息匹配 DROP 路由时：

1. 路由引擎识别 peer_id: 0

2. 消息 被静默丢弃（不转发）

config :omniss7,

 m3ua_routes: [

 # 针对特定点码的 DROP 路由

 %{

 dest_pc: 999,

 peer_id: 0, # peer_id=0 表示 DROP

 priority: 1,

 network_indicator: :international

 }

],

 m3ua_gt_routes: [

 # 针对 GT 前缀的 DROP 路由

 %{

 gt_prefix: "999",

 peer_id: 0, # peer_id=0 表示 DROP

 priority: 99,

 description: "阻止测试范围"

 }

]

3. 生成 信息日志："DROP route matched for DPC 999" 或 "DROP route matched for

GT 999"

4. 路由查找�回 {:error, :dropped}

重要：丢弃的流量以信息级别记录，以便于监控和故障排除。

常见用例：前缀白名单

DROP 路由的一个强大用途是 前缀白名单 - 仅允许特定号码在大范围内，同时阻止所有其他号码。

模式：

1. 创建一个针对整个前缀的 DROP 路由，优先级 高（例如，99）

2. 为单个号码创建特定允许路由，优先级 低（例如，1）

3. 由于较低的优先级数字首先被评估，允许的路由在 DROP 路由之前匹配

4. 任何未明确允许的号码都将被 DROP 路由捕获

示例场景：

您有一个 GT 前缀 1234，表示 10,000 个号码（1234000000 - 1234999999），但您只想路由 3 个特定号

码：1234567890、1234555000 和 1234111222。

路由行为：

config :omniss7,

 m3ua_gt_routes: [

 # 使用高优先级数字的 DROP 路由（最后评估）

 %{

 gt_prefix: "1234",

 peer_id: 0, # DROP

 priority: 99, # 高数字 = 低优先级 = 最后评估

 description: "阻止所有 1234* 除了白名单号码"

 },

 # 具有低优先级数字的特定允许路由（优先评估）

 %{

 gt_prefix: "1234567890",

 peer_id: 1, # 路由到对等体 1

 priority: 1, # 低数字 = 高优先级 = 首先评估

 description: "允许的号码 1"

 },

 %{

 gt_prefix: "1234555000",

 peer_id: 1,

 priority: 1,

 description: "允许的号码 2"

 },

 %{

 gt_prefix: "1234111222",

 peer_id: 1,

 priority: 1,

 description: "允许的号码 3"

 }

]

传入 GT 匹配的路由 选择的路由 动作

1234567890

✅ "1234567890"（优先级

1）

✅ "1234" DROP（优先级

99）

"1234567890"（最具体��优先

级最高）

路由到对等

体 1

1234555000

✅ "1234555000"（优先级

1）

✅ "1234" DROP（优先级

99）

"1234555000"（最具体，优先级最

高）

路由到对等

体 1

1234111222

✅ "1234111222"（优先级

1）

✅ "1234" DROP（优先级

99）

"1234111222"（最具体，优先级最

高）

路由到对等

体 1

1234999999
✅ "1234" DROP（优先级

99）
"1234" DROP（唯一匹配）

丢弃 + 记

录

1234000000
✅ "1234" DROP（优先级

99）
"1234" DROP（唯一匹配）

丢弃 + 记

录

结果：

✅ 仅 3 个特定号码被路由到对等体 1

❌ 所有其他 1234* 号码被静默丢弃

📊 所有丢弃的流量被记录以便监控

生成的日志：

针对点码的 DROP 路由

相同的白名单模式适用于点码路由：

[INFO] DROP route matched for GT 1234999999

[INFO] DROP route matched for GT 1234000000

结果：仅 PCs 1010、1020 和 1030 被路由。所有其他 1000-1063 范围内的 PCs 被丢弃。

监控 DROP 路由

检查日志：

通过 Web UI：

导航到 系统日志 选项卡

按 INFO 级别过滤

搜索 "DROP route matched"

最佳实践：

config :omniss7,

 m3ua_routes: [

 # DROP 整个范围 /8（64 个点码：1000-1063）

 %{

 dest_pc: 1000,

 peer_id: 0,

 priority: 99,

 mask: 8,

 network_indicator: :international

 },

 # 允许特定 PCs

 %{dest_pc: 1010, peer_id: 1, priority: 1, network_indicator:

:international},

 %{dest_pc: 1020, peer_id: 1, priority: 1, network_indicator:

:international},

 %{dest_pc: 1030, peer_id: 1, priority: 1, network_indicator:

:international}

]

监控丢弃的流量

tail -f logs/app.log | grep "DROP route matched"

预期输出：

[INFO] DROP route matched for GT 1234999999

[INFO] DROP route matched for DPC 1050

1. ⚠️ 定期监控日志以确保 DROP 路由不会阻止合法流量

2. 📝 使用描述性 description 字段记录为何丢弃路由

3. 🔢 使用高优先级数字（90-99）为 DROP 路由确保它们是捕获所有路由

4. ✅ 在生产环境中部署之前测试 DROP 路由行为

5. 📊 设置警报以监控丢弃流量的意外增加

高级路由：基于 SSN 的路由和重写

子系统编号 (SSN)

子系统编号标识应用层：

SSN 6：HLR（归属位置寄存器）

SSN 7：VLR（访客位置寄存器）

SSN 8：MSC（移动交换中心）/ SMSC（短信中心）

SSN 9：GMLC（网关移动位置中心）

基于 SSN ���路由示例

根据号码前缀将 SMS 流量路由到不同的 HLR：

测试 STP 路由配置

在配置对等体和路由后，验证您的配置：

1. 检查对等体状态

通过 Web UI：

导航到 http://localhost

检查 M3UA 状态页面

验证对等体显示 状态：活动

通过 IEx 控制台：

m3ua_gt_routes: [

 # 将英国号码的 SMS 路由到英国 HLR，将 SSN 从 8（SMSC）重写为 6（HLR）

 %{

 gt_prefix: "44",

 source_ssn: 8, # 匹配传入的 SSN 8（SMSC）

 peer_id: 1,

 dest_ssn: 6, # 重写为 SSN 6（HLR）

 priority: 1,

 description: "英国 SMS 到 HLR"

 },

 # 将英国号码的语音流量（SSN 6）路由到同一对等体而不重写

 %{

 gt_prefix: "44",

 source_ssn: 6, # 匹配传入的 SSN 6（HLR）

 peer_id: 1,

 dest_ssn: nil, # 无 SSN 重写

 priority: 1,

 description: "英国语音流量"

 }

]

http://localhost/

2. 测试点码路由

获取所有对等体状态

M3UA.STP.get_peers_status()

预期输出：

[

%{peer_id: 1, name: "Partner_STP_West", status: :active,

point_code: 100, ...},

%{peer_id: 2, name: "Local_HLR", status: :active, point_code:

200, ...}

]

发送测试 M3UA 消息到 DPC 100

test_payload = <<1, 2, 3, 4>> # 虚拟负载

M3UA.STP.route_by_pc(100, test_payload, 0)

检查日志以获取路由决策

预期日志： "Routing message: OPC=... -> DPC=100 via peer 1"

3. 测试全局标题路由

4. 监控路由�标

访问 Prometheus 指标在 /metrics

关键指标：

STP �标和监控

可用�标

每个对等体的流量�标：

手动查找 GT 路由

M3UARouting.lookup_peer_by_gt("447712345678")

预期输出：

{:ok, {:m3ua_peer, 3, "UK_Mobile_Peer", ...}, nil}

带 SSN 查找 GT 路由

M3UARouting.lookup_peer_by_gt("555881234567", 8)

预期输出带 SSN 重写：

{:ok, {:m3ua_peer, 4, "SMS_HLR_Peer", ...}, 6}

每个对等体接收的消息

m3ua_stp_messages_received_total{peer_name="Partner_STP_West",point_c

1523

每个对等体发送的消息

m3ua_stp_messages_sent_total{peer_name="Local_HLR",point_code="200"}

路由失败

m3ua_stp_routing_failures_total{reason="no_route"} 5

m3ua_stp_routing_failures_total{reason="no_gt_route"} 2

m3ua_stp_messages_received_total - 从每个对等体接收的总消息

标签：peer_name、point_code

m3ua_stp_messages_sent_total - 转发到每个对等体的总消息

标签：peer_name、point_code

路由失败�标：

m3ua_stp_routing_failures_total - 按原因统计的路由失败次数

标签：reason（值：no_route、no_gt_route）

�标解释

高消息计数：表示活跃的流量流动

路由失败：表示缺少路由或配置错误

no_route：未找到目标点码路由

no_gt_route：未找到全局标题路由，且 PC 路由也失败

使用�标进行故障排除

场景：没有流量到达目标

1. 检查消息是否被接收：

2. 检查消息是否被发送：

3. 检查路由失败：

解决方案：如果路由失败高，添加缺失的路由到配置中。

m3ua_stp_messages_received_total{peer_name="Source_Peer"} > 0

m3ua_stp_messages_sent_total{peer_name="Dest_Peer"} > 0

m3ua_stp_routing_failures_total{reason="no_route"} > 0

M3UA 对等体状态监控

理解 M3UA

M3UA（MTP3 用户适配层）是一种协议，允许 SS7 信令通过 IP 网络使用 SCTP 进行传输。

M3UA 连接状态

M3UA 连接经历几个状态：

Web UI �南

← �回主文档

本指南提供了使用 OmniSS7 Web UI（Phoenix LiveView 接口）的全面文档。

目录

1. 概述

2. 访问 Web UI

3. 路由管理页面

4. 活动用户页面

5. 常见操作

6. 自动刷新行为

概述

OmniSS7 Web UI 是一个 Phoenix LiveView 应用程序，提供实时监控和管理功能。可用页面取决于当前激活的操作

模式（STP、HLR 或 SMSc）。

Web UI 架构

服务器配置

协议: HTTPS

端口: 443（在 config/runtime.exs 中配置）

默认 IP: 0.0.0.0（监听所有接口）

证书: 位于 priv/cert/

访问 URL: https://[server-ip]:443

访问 Web UI

先决条件

1. SSL 证书: 确保 priv/cert/ 中存在有效的 SSL 证书：

omnitouch.crt - 证书文件

omnitouch.pem - 私钥文件

2. 应用程序运行: 使用 iex -S mix 启动应用程序

3. 防火墙: 确保端口 443 对 HTTPS 流量开放

按模式可用页面

页面 STP 模式 HLR 模式 SMSc 模式 描述

SS7 事件 ✅ ✅ ✅ 事件日志和 SCCP 消息捕获

SS7 客户端 ✅ ✅ ✅ 手动 MAP 操作测试

M3UA ✅ ✅ ✅ M3UA 连接状态

路由 ✅ ❌ ✅ M3UA 路由表管理

路由测试 ✅ ❌ ✅ 路由测试和验证

HLR 链接 ❌ ✅ ❌ HLR API 状态和用户管理

活动用户 ❌ ✅ ❌ 实时用户位置跟踪（HLR）

SMSc 链接 ❌ ❌ ✅ SMSc API 状态和队列管理

SMSc 用户 ❌ ❌ ✅ 实时用户跟踪（SMSc）

应用程序 ✅ ✅ ✅ 系统资源和监控

配置 ✅ ✅ ✅ 配置查看器

路由管理

页面: /routing

模式: STP, SMSc

自动刷新: 每 5 秒

路由管理页面提供了一个选项卡界面，用于管理 M3UA 路由表。

页面布局

Data Storage

Routing Page

Tab Navigation

Peers Tab

Point Code Routes Tab

Global Title Routes Tab

Mnesia DB

Peers 选项卡

管理 M3UA 对等连接（其他 STP、HLR、MSC、SMSC）。

对等表列

列 描述 示例

ID 唯一对等标识符 1

名称 可读的对等名称 "STP_West"

角色 连接角色 client , server , stp

点代码 对等的 SS7 点代码 100

远程 远程 IP:端口 10.0.0.10:2905

状态 连接状态 active , aspup , down

操作 编辑/删除按钮 -

添加对等

1. 点击 Peers 选项卡

2. 填写 表单字段：

对等 ID: 如果留空则自动生成

对等名称: 描述性名称（必填）

角色: 选择 client , server 或 stp

点代码: SS7 点代码（必填）

本地 IP: 您系统的 IP 地址

本地端口: 动态端口分配为 0

远程 IP: 对等的 IP 地址

远程端口: 对等的端口（通常为 2905）

路由上下文: M3UA 路由上下文 ID

网络�示符: international 或 national

3. 点击 "Add Peer"

持久性: 对等信息立即保存到 Mnesia，并在重启后仍然存在。

编辑对等

1. 点击 对等行上的 "Edit" 按钮

2. 根据需要修改 表单字段

3. 点击 "Update Peer"

注意: 如果您更改对等 ID，旧的对等将被删除并创建一个新的。

删除对等

1. 点击 对等行上的 "Delete" 按钮

2. 确认 删除（所有使用此对等的路由也将被移除）

对等状态�示器

状态 颜色 描述

active 🟢 绿色 对等已连接并路由消息

aspup 🟡 黄色 ASP 已启动但尚未激活

down 🔴 红色 对等已断开连接

点代码路由选项卡

根据目标点代码配置路由规则。

路由表列

列 描述 示例

目标 PC 目标点代码（zone.area.id 格式） 1.2.3 (100)

掩码 用于 PC 匹配的子网��码 /14 (精确), /8 (范围)

对等 ID 此路由的目标对等 1

对等名称 目标对等的名称 "STP_West"

优先级 路由优先级（1 = 最高） 1

网络 网络指示符 international

操作 编辑/删除按钮 -

添加点代码路由

1. 点击 "Point Code Routes" 选项卡

2. 填写 表单字段：

目标点代码: 输入为 zone.area.id（例如，1.2.3）或整数（0-16383）

掩码: 选择掩码 /14 进行精确匹配，较小值用于范围

对等 ID: 从下拉菜单中选择目标对等

优先级: 输入优先级（1 = 最高，默认）

网络�示符: 选择 international 或 national

3. 点击 "Add Route"

点代码格式: 您可以以两种格式输入点代码：

3-8-3 格式: zone.area.id（例如，1.2.3）

整数格式: 0-16383（例如，1100）

系统会自动在格式之间转换。

理解掩码

点代码是 14 位值（0-16383）。掩码指定必须匹配的最高有效位数：

掩码 匹配的 PC 数 用例

/14 1 (精确匹配) 路由到特定目的地

/13 2 PCs 小范围

/8 64 PCs 中等范围

/0 所有 16,384 PCs 默认/后备路由

示例:

PC 1000 /14 → 仅匹配 PC 1000

PC 1000 /8 → 匹配 PC 1000-1063（64 个连续的 PC）

PC 0 /0 → 匹配所有点代码（默认路由）

点代码掩码参考卡

网页包含一个交互式参考，显示所有掩码值及其范围。

全球标题路由选项卡

根据 SCCP 全球标题地址配置路由规则。

要求: 必须在配置中启用全球标题路由：

路由表列

config :omniss7,

 enable_gt_routing: true

列 描述 示例

GT 前缀 被叫方 GT 前缀（空 = 后备） "1234" , ""

源 SSN 匹配被叫方 SSN（可选） 6 (HLR), any

对等 ID 目标对等 1

对等 对等名称 "HLR_West (1)"

目标 SSN 转发时重写 SSN（可选） 6 , preserve

优先级 路由优先级 1

描述 路由描述 "US numbers"

操作 编辑/删除按钮 -

添加全球标题路由

1. 点击 "Global Title Routes" 选项卡

2. 填写 表单字段：

GT 前缀: 留空以用于后备路由，或输入数字（例如，"1234"）

源 SSN: 可选 - 按被叫方 SSN 过滤

对等 ID: 选择目标对等

目标 SSN: 可选 - 转发时重写 SSN

优先级: 路由优先级（1 = 最高）

描述: 可读描述

3. 点击 "Add Route"

后备路由: 如果 GT 前缀为空，则该路由充当不匹配任何其他路由的 GT 的捕获。

常见 SSN 值

页面包含一个参考卡，列出常见的 SSN 值：

SSN 网络元素

6 HLR (家庭位置寄存器)

7 VLR (访客位置寄存器)

8 MSC (移动交换中心)

9 EIR (设备身份寄存器)

10 AUC (认证中心)

142 RANAP

145 gsmSCF (服务控制功能)

146 SGSN

SSN 重写

源 SSN: 匹配传入消息中的被叫方 SSN

目标 SSN: 如果设置，在转发时重写被叫方 SSN

空 = 保留原始 SSN

值 = 替换为此 SSN

用例: 将 SSN=6（HLR）的消息路由到对等，并在出站时重写为 SSN=7（VLR）。

路由表持久性

所有路由都存储在 Mnesia 中，并在应用程序重启后仍然存在。

路由如何持久化

1. Web UI 更改: 所有添加/编辑/删除操作立即保存到 Mnesia

2. 应用程序重启: 启动时从 Mnesia 加载路由

3. Runtime.exs 合并: 从 config/runtime.exs 中的静态路由与 Mnesia 路由合并（无重复）

路由��先级

当多个路由匹配一个目标时：

1. 更具体的优先: 更高的掩码值（更具体）优先

2. 优先级字段: 较低的优先级数字优先路由（1 = 最高优先级）

3. 对等状态: 仅使用到 active 对等的路由

活动用户

页面: /subscribers

模式: 仅 HLR

自动刷新: 每 2 秒

显示实时跟踪发送 UpdateLocation 请求的用户。

页面功能

用户表列

列 描述 示例

IMSI 用户 IMSI "50557123456789"

VLR 号码 当前 VLR GT 地址 "555123155"

MSC 号码 当前 MSC GT 地址 "555123155"

更新时间 最后 UpdateLocation 时间戳 "2025-10-25 14:23:45 UTC"

持续时间 自注册以来的时间 "2h 15m 34s"

统计摘要

当用户存在时，摘要卡显示：

���活动: 注册用户的总数

唯一 VLRs: 不同 VLR 地址的数量

唯一 MSCs: 不同 MSC 地址的数量

清除用户

清除所有按钮: 从跟踪器中移除所有活动用户。

确认: 清除之前需要确认（无法撤销）。

用例: 在网络维护或测试后清除过期的用户记录。

自动刷新

页面每 2 秒 自动刷新，以显示实时用户更新。

SMSc 用户

页面: /smsc_subscribers

模式: 仅 SMSc

自动刷新: 每 2 秒

显示基于从 HLR 接收到的 alertServiceCenter 消息、消息传递状态和失败跟踪的用户实时跟踪。

页面功能

WebUITrackerSMScHLR

WebUITrackerSMScHLR

alertServiceCenter (MSISDN)

Add subscriber (active)

Auto-refresh (2s)

Display subscriber

SRI-for-SM

Absent Subscriber

Mark failed

Auto-refresh (2s)

Update status badge

用户表列

列 描述 示例

MSISDN 用户的电话号码 "15551234567"

IMSI 用户 IMSI "001010123456789"

HLR GT 发送 alertServiceCenter 的 HLR GT "15551111111"

发送的消息 发送的 MT-FSM 消息计数 5

接收的消息 从用户接收的 MO-FSM 消息计数 2

状态 Active 或 Failed（颜色编码） ● Active

最后更新时间 最后更新时间戳 "2025-10-30 14:23:45 UTC"

持续时间 自最后更新以来的时间 "15m 34s"

状态�示器

● Active (绿色): 用户可达，最后一次成功接收 alertServiceCenter

○ Failed (红色): 最后一次投递尝试失败（SRI-for-SM 或缺失用户错误）

统计摘要

当用户存在时，摘要卡显示：

总跟踪: 跟踪的用户总数

活动: 活动状态的用户数量

失败: 失败状态的用户数量

唯一 HLRs: 发送警报的不同 HLR 数量

管理用户

移除按钮: 从跟踪中移除单个用户。

清除所有按钮: 移除所有跟踪的用户。

确认: 清除所有需要确认（无法撤销）。

用例:

在网络问题后移除过期条目

在开发后清除测试数据

监控哪些 HLR 正在发送警报

消息计数器

跟踪器会自动增加计数器：

发送的消息: 当 SRI-for-SM 成功并发送 MT-FSM 时增加

接收的消息: 当从用户接收 MO-FSM 时增加

自动刷新

页面每 2 秒 自动刷新，以显示实时用户和状态更新。

常见操作

搜索和过滤

目前，Web UI 不包括内置的搜索/过滤功能。要查找特定路由：

1. 使用浏览器的查找功能 (Ctrl+F / Cmd+F)

2. 搜索对等名称、点代码或 GT 前缀

批量操作

要执行批量路由更改：

1. 选项 1: 使用 REST API 进行编程访问

2. 选项 2: 编辑 config/runtime.exs 并重启应用程序

3. 选项 3: 使用 Web UI 进行单个路由更改

导出/导入

注意: Web UI 目前不支持导出或导入路由表。路由：

存储在 Mnesia 数据库文件中

在 config/runtime.exs 中配置

要备份路由：

1. Mnesia: 备份 Mnesia.{node_name}/ 目录

2. 配置: 版本控制 config/runtime.exs

自动刷新行为

不同页面具有不同的刷新间隔：

页面 刷新间隔 原因

路由管理 5 秒 路由更改不频繁

活动用户 2 秒 用户状态频繁变化

M3UA 状态 按页面变化 连接状态监控

WebSocket 连接: 所有页面使用 Phoenix LiveView WebSocket 连接进行实时更新。

网络中断: 如果 WebSocket 连接丢失，页面将尝试自动重新连接。

故障排除

页面未加载

1. 检查 HTTPS 证书: 确保 priv/cert/omnitouch.crt 和 .pem 存在

2. 验证端口 443: 检查防火墙规则允许 HTTPS 流量

3. 应用程序运行: 确认应用程序正在运行，使用 iex -S mix

4. 浏览器控制台: 检查 SSL 证书错误（自签名证书警告）

路由未持久化

1. 检查 Mnesia 存储: 验证配置中的 mnesia_storage_type: :disc_copies

2. Mnesia 目录: 确保 Mnesia 目录可写

3. 检查日志: 查找应用程序日志中的 Mnesia 错误

自动刷新不起作用

1. WebSocket 连接: 检查浏览器控制台中的 WebSocket 错误

2. 网络: 验证网络连接稳定

3. 页面重新加载: 尝试刷新页面 (F5)

相关文档

STP �南 - 详细的路由配置

HLR �南 - 用户管理

API �南 - 用于编程访问的 REST API

配置参考 - 所有配置参数

总结

OmniSS7 Web UI 提供直观的实时路由表和用户跟踪管理：

✅ 实时更新 - 自动刷新保持数据最新

✅ 持久存储 - Mnesia 确保路由在重启后仍然存在

✅ 基于角色的 UI - 页面根据操作模式（STP/HLR/SMSc）进行调整

✅ 交互式管理 - 添加、编辑、删除路由无需重启

✅ 状态监控 - 实时连接和对等状态

有关高级操作或自动化，请参阅 API 指南。

