
ANSSI R226

Interception

Compliance

Documentation

Document Purpose: This document provides technical specifications required

for ANSSI R226 authorization under Articles R226-3 and R226-7 of the French

Penal Code for the OmniTAS IMS Application Server.

Classification: Regulatory Compliance Documentation

Target Authority: Agence nationale de la sécurité des systèmes d'information

(ANSSI)

Regulation: R226 - Protection of Correspondence Privacy and Lawful

Interception

1. DETAILED TECHNICAL

SPECIFICATIONS

1.1 Commercial Technical Datasheet

Product Name: OmniTAS IMS Application Server Product Type:

Telecommunications Application Server (TAS) Primary Function: IMS (IP

Multimedia Subsystem) call processing and session management Network

Protocols: SIP, Diameter, HTTP/HTTPS, SS7/MAP Deployment Model: On-

premises server application

Core Capabilities

Call Processing:

Session Initiation Protocol (SIP) proxy and B2BUA functionality

IMS Initial Filter Criteria (iFC) processing

Session routing and call control

Emergency call handling (E.164 PSAP routing)

Call Detail Record (CDR) generation

Network Interfaces:

Northbound: IMS S-CSCF interface (SIP over TCP/UDP)

Southbound: SBC/Gateway interface (SIP trunking)

Diameter: Sh (subscriber data), Ro (online charging)

SS7: MAP gateway interface for HLR/MSC interworking

HTTP/HTTPS: External service integration (SMS, TTS, MAP gateway)

Storage and Processing:

Real-time session state management

CDR storage and retrieval

Subscriber registration database (Sofia SIP)

Configuration database (SQLite)

1.2 Interception Capabilities

1.2.1 Signal Acquisition

SIP Signaling Capture:

The OmniTAS processes all SIP signaling messages between IMS

subscribers and external networks

Full access to SIP headers including:

Calling party identification (From, P-Asserted-Identity)

Called party identification (To, Request-URI)

Contact URIs and network location

Call routing information

Session description (SDP) including media codecs and endpoints

Call Metadata Acquisition:

Complete Call Detail Records (CDR) stored in database with:

Timestamp (start, answer, end times)

Caller and callee identifiers (MSISDN, IMSI, SIP URI)

Call direction (mobile originating/terminating)

Call result (answered, busy, failed, etc.)

Duration and charging information

Network location data (cell tower information when available)

Session Recording Interface (SIPREC):

SIPREC protocol support for lawful interception

Capability to replicate SIP signaling to external recording servers

Configurable session recording policies

Licensing Control: SIPREC functionality requires explicit licensing

authorization

Access Control: SIPREC configuration restricted to authorized

administrators

1.2.2 Media Processing Capabilities

Media Plane:

B2BUA with RTP media relay capabilities

RTP streams pass through the server

Access to media flows for interception purposes

SDP parsing for media endpoint and codec information

Signaling Plane:

SIP message parsing and analysis

Diameter message encoding/decoding (Sh, Ro interfaces)

HTTP/HTTPS request/response processing

1.2.3 Analysis Capabilities

Real-Time Call Monitoring:

Web UI dashboard showing active calls with:

Call state (trying, ringing, active, terminated)

Caller/callee information

Call duration

Media codec information

Network endpoints

Historical Analysis:

CDR database queryable by:

Time range

Calling/called party number

Call type (voice, emergency, etc.)

Call result/disposition

Duration thresholds

Subscriber Tracking:

Active registration monitoring

Subscriber location tracking via:

IMS registration contact URI

P-Access-Network-Info header (cell tower identification)

IP address and port information

Historical registration records

Network Analytics:

Call volume metrics (Prometheus integration)

Gateway status and connectivity

Diameter peer connectivity

System performance metrics

For comprehensive metrics documentation: See metrics.md for detailed

monitoring, alerting, and observability configuration.

Location Intelligence:

Cell tower database integration

E.164 number to geographic location mapping (North American Numbering

Plan)

Emergency services routing (PSAP mapping)

1.3 Countermeasure Capabilities

1.3.1 Privacy Protection Mechanisms

Communication Confidentiality:

Diameter TLS transport security

HTTPS for web interfaces and APIs

Database encryption at rest (configurable)

Access Control:

Role-based access control (RBAC) for web UI

Password hashing with SHA-512 and salt (65,532 iterations)

Audit Logging:

Complete audit trail of administrative actions

Configuration change logging

Authentication event logging

Tamper-evident log storage

1.3.2 Anti-Interception Features

Secure Communications:

Mandatory TLS for external interfaces (configurable)

Certificate-based authentication

Perfect Forward Secrecy (PFS) cipher suites

Data Protection:

Automatic CDR retention policies

Secure data deletion capabilities

Database access controls

Network segmentation support (separate management/signaling/media

networks)

System Hardening:

Boot parameter protection

Integrity verification mechanisms

Minimal attack surface (only required services enabled)

1.4 Technical Architecture for Lawful

Interception

Lawful Interception Integration Points

1. SIPREC Interface (Session Recording Protocol - RFC 7866):

2. CDR Export Interface:

CDR export to external systems

Standard formats (CSV, JSON)

Secure transfer (HTTPS)

3. Direct Database Access:

Read-only database credentials for authorized systems

SQL query access to CDR tables

Subscriber registration data access

Audit log access

4. API Integration:

RESTful API for call monitoring

Real-time active call queries

Historical CDR retrieval

Subscriber registration status

Interception Triggering Mechanisms

Target-Based Interception:

Subscriber identifier matching (MSISDN, IMSI, SIP URI)

Configurable interception rules in application logic

SIPREC session forking based on caller/callee identity

Event-Based Interception:

Emergency call detection and recording

Specific destination number monitoring

Geographic area-based triggering (cell tower location)

Time-Based Interception:

Scheduled recording windows

Retention period enforcement

Automatic expiration of interception warrants

2. ENCRYPTION AND

CRYPTANALYSIS CAPABILITIES

2.1 Cryptographic Capabilities Overview

The OmniTAS IMS Application Server implements cryptographic mechanisms for

securing communications and protecting sensitive data. This section

documents all cryptographic capabilities in accordance with ANSSI

requirements.

2.2 Transport Layer Encryption

2.2.1 TLS/SSL Implementation

Supported Protocols:

TLS 1.2 (RFC 5246)

TLS 1.3 (RFC 8446)

SSL 2.0/3.0: DISABLED (known vulnerabilities)

TLS 1.0/1.1: DEPRECATED (configurable, disabled by default)

Cipher Suites (Configurable Priority List):

Preferred - TLS 1.3:

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_GCM_SHA256

Supported - TLS 1.2:

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

Security Features:

Perfect Forward Secrecy (PFS) required

Strong Diffie-Hellman groups (2048-bit minimum)

Elliptic Curve Cryptography: NIST P-256, P-384, P-521

Server Name Indication (SNI) support

OCSP stapling for certificate validation

Certificate Management:

X.509 certificate support

RSA key sizes: 2048-bit minimum, 4096-bit recommended

ECDSA support (P-256, P-384)

Certificate chain validation

CRL and OCSP revocation checking

Self-signed certificates (development only)

External CA integration

Applications:

HTTPS for web UI and API access

Diameter over TLS

2.3 Data Encryption at Rest

2.3.1 Database Encryption

SQLite Encryption:

SQLCipher integration support

AES-256 encryption

Encrypted storage for sensitive data (CDR, subscriber data)

2.3.2 File System Encryption

Sensitive Data Storage:

CDR files: AES-256 encryption (optional)

Configuration files: Encrypted storage for credentials

Private keys: Encrypted keystores (PKCS#12, PEM with passphrase)

Log files: Encryption support for archived logs

Key Storage:

File-based keystores with passphrase protection

Secure key rotation mechanisms

2.4 Authentication and Password Cryptography

2.4.1 Password Hashing

Algorithm: SHA-512 with salt Configuration:

Randomly generated salt (128-bit minimum)

65,532 iteration rounds (configurable)

Salt stored alongside hash

Resistant to rainbow table attacks

Storage Format:

Applications:

Web UI user authentication

API token generation

Administrator password storage

Database user credentials

2.4.2 SSH Key Authentication

Supported Key Types:

RSA: 1024-4096 bits (2048-bit minimum recommended)

DSA: 1024-4096 bits (deprecated, RSA preferred)

6rounds=65532$<salt>$<hash>

ECDSA: P-256, P-384, P-521 curves

Ed25519: 256-bit (preferred for new deployments)

Key Management:

External key generation support

Public key import for client authentication

Server host key management

Individual key revocation

Key rotation procedures

SSH Protocol:

SSH-2 protocol only (SSH-1 disabled)

Strong MAC algorithms (HMAC-SHA2-256, HMAC-SHA2-512)

Key exchange: curve25519-sha256, ecdh-sha2-nistp256, diffie-hellman-

group14-sha256

2.5 Diameter Protocol Security

2.5.1 Diameter Security Mechanisms

Transport Security:

TLS over TCP for Diameter peer connections

Mutual certificate authentication

Application-Level Security:

Peer authentication via Origin-Host/Origin-Realm validation

Shared secret configuration (legacy, deprecated)

AVP (Attribute-Value Pair) encryption for sensitive data

End-to-end security with CMS (Cryptographic Message Syntax)

2.6 SIP Identity Mechanisms

P-Asserted-Identity:

Trusted network assertion

Identity validation and translation

Privacy header support

Note: Subscriber authentication is performed by the IMS Core (P-CSCF/S-CSCF),

not by the TAS.

2.7 Cryptanalysis and Security Assessment

Capabilities

2.7.1 Protocol Analysis Tools

Built-in Debugging Capabilities:

SIP message tracing with full header/body capture

Diameter message logging (AVP decoding)

TLS handshake debugging

Certificate chain validation logging

External Integration:

Wireshark/tcpdump packet capture support

SSLKEYLOGFILE export for TLS decryption (development only)

PCAP export for offline analysis

2.7.2 Vulnerability Assessment Considerations

Known Cryptographic Weaknesses:

Legacy MD5 support in SIP Digest (maintained for backward compatibility)

Configurable weak cipher suites (disabled by default)

Self-signed certificate support (development/testing only)

Security Testing:

Regular security audits recommended

Penetration testing support

Cipher suite strength validation

Certificate expiration monitoring

2.8 Key Management Infrastructure

2.8.1 Key Generation

Internal Key Generation:

RSA key generation: OpenSSL library (FIPS 140-2 compliant algorithms)

Random number generation: /dev/urandom (Linux kernel CSPRNG)

Entropy sources: Hardware RNG, system entropy pool

2.8.2 Key Storage and Protection

Private Key Storage:

File system with restricted permissions (0600)

Encrypted PEM format with passphrase

Secure deletion on key rotation

Key Backup:

Encrypted backup procedures

Split-key recovery mechanisms

Secure key escrow (if required by regulation)

2.8.3 Key Distribution

Certificate Distribution:

Manual import via web UI

Automated provisioning via API

ACME protocol support (Let's Encrypt, future enhancement)

Symmetric Key Distribution:

Out-of-band key exchange for Diameter peers

Diffie-Hellman key agreement in TLS

No cleartext key transmission

2.9 Compliance and Standards

Cryptographic Standards Compliance:

NIST SP 800-52: TLS guidelines

NIST SP 800-131A: Cryptographic algorithm transitions

RFC 7525: TLS recommendations

ETSI TS 133 310: IMS network security

3GPP TS 33.203: IMS access security

French Cryptography Regulations:

Cryptographic means declaration (if applicable)

ANSSI cryptographic product certification (if required)

No export-restricted cryptography (all standard algorithms)

2.10 Cryptanalysis Resistance

2.10.1 Design Principles

Defense Against Cryptanalysis:

No custom/proprietary cryptographic algorithms

Industry-standard, peer-reviewed algorithms only

Regular security updates for cryptographic libraries

Deprecation of weak algorithms

2.10.2 Operational Security

Key Rotation:

TLS certificate renewal (annually recommended)

Session key rotation (per-session for TLS)

Password expiration policies (configurable)

Monitoring and Detection:

Failed authentication attempt logging

Certificate expiration alerts

Cipher suite negotiation logging

Anomaly detection for encryption failures

3. INTERCEPTION CONTROL AND

AUTHORIZATION

3.1 Access Control for Lawful Interception

Administrative Authorization:

Lawful interception features require administrator-level privileges

SIPREC configuration access: Super-admin role only

CDR access: Configurable role-based permissions

Audit logging of all interception-related actions

Legal Framework Integration:

Interception warrant tracking (external system integration)

Target identifier authorization lists

Time-limited interception activation

Automatic deactivation on warrant expiration

3.2 Data Retention and Privacy

Retention Policies:

CDR retention: Configurable (default 90 days, regulatory requirement 1

year)

Registration logs: Configurable retention

Audit logs: Minimum 1 year retention

Automatic purging of expired data

Privacy Protections:

Minimal data collection principle

Purpose limitation (telecommunications service provision)

Access logging and monitoring

3.3 Handover Interfaces for Law Enforcement

Standard Lawful Interception Interfaces:

ETSI LI (Lawful Interception) interface support (via external mediation

device)

SIPREC to LI gateway integration

X1, X2, X3 interface support (external system)

Delivery Formats:

IRI (Intercept Related Information): CDR metadata

CC (Content of Communication): SIP signaling + media (via MRF)

Structured reporting: XML, JSON formats

4. SYSTEM SECURITY AND

INTEGRITY

4.1 Boot Security

Secure Boot Mechanisms:

Bootparameter protection (ANSSI R226 requirement)

Configuration integrity verification

Tamper detection on startup

Secure configuration loading

4.2 Network Security

Network Security:

Minimal exposed ports (SIP, Diameter, HTTPS only)

Port-based access control

IP whitelisting/blacklisting

4.3 Intrusion Detection

Monitoring Capabilities:

Failed authentication monitoring

Unusual call pattern detection

Anomalous Diameter traffic detection

Security event alerting (SIEM integration)

5. DOCUMENTATION REFERENCES

5.1 Technical Manuals

Available documentation in the project repository:

README.md: System overview, architecture, and operational features

doc/deployment_guide.md: Deployment instructions (if available)

doc/configuration.md: Configuration reference (if available)

5.2 Security Certifications

Penetration Test Reports: [To be provided upon request]

Security Audit Reports: [To be provided upon request]

Cryptographic Module Validation: OpenSSL FIPS 140-2 compliance

5.3 Compliance Documentation

ANSSI R226 Authorization Request: This document

Lawful Interception Compliance: As required by French

telecommunications regulations

6. CONTACT INFORMATION

Vendor/Operator Information:

Company Name: Omnitouch Network Services Pty Ltd

Address: PO BOX 296, QUINNS ROCKS WA 6030, AUSTRALIA

Contact Person: Compliance Team

Email: compliance@omnitouch.com.au

Technical Security Contact:

Name: Compliance Team

Email: compliance@omnitouch.com.au

Legal/Compliance Contact:

Name: Compliance Team

Email: compliance@omnitouch.com.au

APPENDICES

Appendix A: SIP Message Flow Examples

A.1 Mobile Originating Call Flow with Interception Points

mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au

SBC/GatewayOmniTASS-CSCFP-CSCFUE/Handset

[INTERCEPTION]

- SIP headers

- SDP info

- Caller ID

- Called party

- CDR created

[MEDIA RELAY]

- RTP anchored

- SIPREC fork

RTP Media (relayed through OmniTAS)

[INTERCEPTION]

- Media copy

- SIPREC send

[INTERCEPTION]

- CDR updated

- Call end time

- Duration

INVITE

INVITE

INVITE

INVITE

183 Progress

180 Ringing

180 Ringing

180 Ringing

180 Ringing

200 OK

200 OK

200 OK

200 OK

ACK

ACK

ACK

ACK

BYE

BYE

BYE

BYE

200 OK

SBC/GatewayOmniTASS-CSCFP-CSCFUE/Handset

200 OK

200 OK

200 OK

Legend: [INTERCEPTION] = Points where lawful interception data is captured

A.2 Emergency Call with Location Tracking

A.3 SIPREC Recording Session Establishment

Session Recording Server

(SRS)

OmniTAS

(SRC)

Session Recording Server

(SRS)

OmniTAS

(SRC)

RTP Streams

- Signaling metadata

- Participant 1 media

- Participant 2 media

INVITE (SIPREC)

Content-Type: multipart/mixed

- recording-session SDP

- participant 1 SDP

- participant 2 SDP

200 OK

ACK

Appendix B: CDR Schema

The OmniTAS system stores Call Detail Records in a SQLite database

(FreeSWITCH CDR format) located at /etc/freeswitch/db/cdr.db .

B.1 Key CDR Fields for Lawful Interception

Field Name Type Description
Interception

Relevance

uuid TEXT
Unique call

identifier

Session

correlation

caller_id_number TEXT

Calling party

number

(MSISDN)

Primary

identifier for

target

tracking

caller_id_name TEXT
Calling party

display name

Identity

verification

destination_number TEXT
Called party

number

Target

destination

tracking

start_stamp DATETIME
Call start

timestamp
Event timeline

answer_stamp DATETIME
Call answer

timestamp

Call

establishment

time

end_stamp DATETIME
Call end

timestamp

Session

duration

calculation

duration INTEGER

Total call

duration

(seconds)

Session length

billsec INTEGER

Billable

seconds

(answered

time)

Actual

conversation

duration

Field Name Type Description
Interception

Relevance

hangup_cause TEXT

Call

termination

reason

Call outcome

analysis

sip_hangup_disposition TEXT

SIP

termination

details

Protocol-level

termination

network_addr TEXT
Network IP

address

Source

location

tracking

sip_from_user TEXT

SIP From

header user

part

Original SIP

identity

sip_to_user TEXT
SIP To header

user part
SIP destination

sip_call_id TEXT
SIP Call-ID

header

SIP session

correlation

B.2 CDR Query Examples for Lawful Interception

Query calls by target number:

Query calls within time window:

SELECT * FROM cdr

WHERE caller_id_number = '+33612345678'

 OR destination_number = '+33612345678'

ORDER BY start_stamp DESC;

Export to CSV for law enforcement:

B.3 CDR Retention

Default retention: Configurable (typically 90 days to 1 year)

Automatic purging: Supported

Manual export: Via Web UI at /cdr or API

Format: SQLite database, exportable to CSV/JSON

Appendix C: SIPREC Configuration Examples

SIPREC (Session Initiation Protocol Recording) enables the OmniTAS to send

both call signaling and media to external Session Recording Servers for lawful

interception.

C.1 SIPREC Architecture

SIPREC Session

Calling Party
OmniTAS

Session Recording Client

Called Party

Session Recording

Server

SRS

Law Enforcement

Monitoring Interface

SELECT * FROM cdr

WHERE start_stamp BETWEEN '2025-11-01 00:00:00' AND '2025-11-30

23:59:59'

 AND (caller_id_number = '+33612345678' OR destination_number =

'+33612345678')

ORDER BY start_stamp DESC;

.mode csv

.output /tmp/interception_report.csv

SELECT caller_id_number, destination_number, start_stamp,

end_stamp, duration, hangup_cause

FROM cdr

WHERE caller_id_number = '+33612345678'

ORDER BY start_stamp DESC;

.output stdout

C.2 Triggering SIPREC Recording

Recording can be triggered based on:

Target-based:

Caller phone number (caller_id_number)

Called phone number (destination_number)

SIP URI matching

Event-based:

All emergency calls (911, 112, etc.)

Calls to/from specific destinations

Time-window based recording

Geographic:

Cell tower location (via P-Access-Network-Info header)

IP address ranges

C.3 SIPREC Session Content

The SIPREC session sends to the SRS:

Signaling Metadata:

Complete SIP headers (From, To, P-Asserted-Identity)

Call-ID and session identifiers

Timestamps (start, answer, end)

Caller/callee information

Media Streams:

Participant 1 RTP stream (caller audio)

Participant 2 RTP stream (callee audio)

Codec information

DTMF tones

C.4 Integration with Law Enforcement

The Session Recording Server provides:

X1 Interface: Administrative function (warrant management)

X2 Interface: Intercept Related Information (IRI) - call metadata

X3 Interface: Content of Communication (CC) - actual media

The OmniTAS serves as the Session Recording Client (SRC) and delivers both IRI

and CC to the SRS for handover to law enforcement via standardized interfaces.

Appendix D: Encryption Configuration Guide

D.1 Certificate Generation

Generate TLS Certificate:

Note: SIP signaling to/from IMS does not use TLS. SIP communication is

unencrypted TCP/UDP.

D.2 HTTPS Configuration for Web UI

API/Web Server TLS (config/runtime.exs):

Generate private key

openssl genrsa -out server.key 4096

Generate certificate signing request

openssl req -new -key server.key -out server.csr

Self-signed certificate (for testing)

openssl x509 -req -days 365 -in server.csr -signkey server.key -

out server.crt

Production: Obtain certificate from trusted CA

D.3 SIP Configuration

SIP interfaces use unencrypted TCP/UDP transport. No TLS configuration

required.

FreeSWITCH SIP Profile:

D.4 Diameter TLS Configuration

Diameter Peer TLS:

config :api_ex,

 api: %{

 enable_tls: true,

 tls_cert_path: "priv/cert/server.crt",

 tls_key_path: "priv/cert/server.key",

 tls_versions: [:"tlsv1.2", :"tlsv1.3"],

 ciphers: [

 "ECDHE-RSA-AES256-GCM-SHA384",

 "ECDHE-RSA-AES128-GCM-SHA256",

 "TLS_AES_256_GCM_SHA384",

 "TLS_AES_128_GCM_SHA256"

]

 }

<!-- SIP profile uses TCP/UDP only -->

<profile name="external">

 <settings>

 <param name="sip-port" value="5060"/>

 <param name="context" value="public"/>

 </settings>

</profile>

D.5 Database Encryption

SQLite Encryption with SQLCipher:

Note: Database encryption is optional. For lawful interception purposes,

physical access controls and database access logging may be sufficient.

D.6 Password Security Configuration

Password hashing is automatically configured with SHA-512 and salt:

No additional configuration required - secure by default.

Enable TLS for Diameter connections

config :diameter_ex,

 peers: [

 %{

 host: "dra.example.com",

 port: 3868,

 transport: :tls,

 tls_opts: [

 certfile: "priv/cert/diameter.crt",

 keyfile: "priv/cert/diameter.key",

 cacertfile: "priv/cert/ca.crt",

 verify: :verify_peer

]

 }

]

config/runtime.exs

config :exqlite,

 encryption: true,

 encryption_key: System.get_env("DB_ENCRYPTION_KEY")

Default password hashing configuration

config :pbkdf2_elixir,

 rounds: 65_532,

 salt_len: 16

Appendix E: Glossary

Regulatory and Standards Bodies

ANSSI: Agence nationale de la sécurité des systèmes d'information -

French National Cybersecurity Agency

ETSI: European Telecommunications Standards Institute

3GPP: 3rd Generation Partnership Project - Mobile telecommunications

standards organization

IETF: Internet Engineering Task Force - Internet standards body

IMS Network Components

IMS: IP Multimedia Subsystem - All-IP network architecture for multimedia

services

CSCF: Call Session Control Function - SIP server in IMS core

P-CSCF: Proxy-CSCF - First contact point for UE, SIP proxy

I-CSCF: Interrogating-CSCF - Entry point to operator's network

S-CSCF: Serving-CSCF - Session control and service triggering

HSS: Home Subscriber Server - Subscriber database

TAS: Telephony/Telecommunications Application Server - Service logic

execution

Protocols and Signaling

SIP: Session Initiation Protocol (RFC 3261) - Signaling protocol for

voice/video calls

SDP: Session Description Protocol (RFC 4566) - Media session parameters

RTP: Real-time Transport Protocol (RFC 3550) - Media stream transport

RTCP: RTP Control Protocol - Quality monitoring for RTP

SRTP: Secure RTP (RFC 3711) - Encrypted media streams

Diameter: AAA protocol used in IMS (authentication, authorization,

accounting)

Sh: Diameter interface for subscriber data access

Ro: Diameter interface for online charging

SIPREC: Session Initiation Protocol Recording (RFC 7866) - Call recording

protocol

Telecommunications Equipment

SBC: Session Border Controller - Network edge security and media gateway

MRF: Media Resource Function - Media processing (transcoding, mixing,

recording)

UE: User Equipment - Mobile handset or device

PSAP: Public Safety Answering Point - Emergency services call center

DRA: Diameter Routing Agent - Diameter message routing

Lawful Interception

LI: Lawful Interception - Legal monitoring of telecommunications

IRI: Intercept Related Information - Call metadata for law enforcement

CC: Content of Communication - Actual voice/media content

SRC: Session Recording Client - SIPREC client (OmniTAS role)

SRS: Session Recording Server - SIPREC server for recording storage

X1 Interface: LI administrative interface (warrant provisioning)

X2 Interface: LI interface for IRI delivery

X3 Interface: LI interface for CC delivery

R226: Articles R226-3 and R226-7 of French Penal Code governing

interception equipment

Call Processing

CDR: Call Detail Record - Billing and logging record for each call

B2BUA: Back-to-Back User Agent - SIP element that acts as both client and

server

DTMF: Dual-Tone Multi-Frequency - Touch-tone signals

MSISDN: Mobile Station International Subscriber Directory Number - Phone

number

IMSI: International Mobile Subscriber Identity - Unique subscriber identifier

E.164: International numbering plan for telephone numbers

Security and Encryption

TLS: Transport Layer Security (RFC 5246, RFC 8446) - Encryption protocol

PFS: Perfect Forward Secrecy - Cryptographic property ensuring session

key security

SHA-512: Secure Hash Algorithm with 512-bit output

AES: Advanced Encryption Standard

RSA: Rivest-Shamir-Adleman - Public key cryptography algorithm

ECDSA: Elliptic Curve Digital Signature Algorithm

PKI: Public Key Infrastructure - Certificate management system

CA: Certificate Authority - Issues digital certificates

CRL: Certificate Revocation List

OCSP: Online Certificate Status Protocol

Network and Location

MAP: Mobile Application Part - SS7 protocol for mobile networks

HLR: Home Location Register - Subscriber location database (legacy)

SS7: Signaling System No. 7 - Legacy telephony signaling

NANP: North American Numbering Plan

Cell Tower/Cell ID: Mobile network base station identifier for location

tracking

Data Formats and Storage

SQLite: Embedded relational database

SQLCipher: SQLite extension with encryption support

CSV: Comma-Separated Values - Export format

JSON: JavaScript Object Notation - Data interchange format

XML: eXtensible Markup Language - Structured data format

Application Components

API: Application Programming Interface - Programmatic access

UI: User Interface - Web-based control panel

RBAC: Role-Based Access Control - Permission system

UUID: Universally Unique Identifier - Session tracking

Document Version: 1.0 Date: 2025-11-29 Prepared for: ANSSI R226

Authorization Application Document Classification: Regulatory Compliance -

Confidential

Configuration Guide

� Back to Main Documentation

This document provides comprehensive configuration reference for the TAS

Application Server.

Related Documentation

Core Configuration

📋 Main README - Overview and quick start

🔧 Operations Guide - Monitoring and operational tasks

📊 Metrics Reference - Prometheus metrics and monitoring

Integration Interfaces

👥 Sh Interface - Subscriber data retrieval from HSS/Repository

💳 Online Charging (Ro) - OCS integration and credit control

📡 SS7 MAP - HLR queries for roaming and call forwarding

Call Processing

🔀 Dialplan Configuration - XML dialplan and call routing logic

🔢 Number Translation - E.164 normalization rules

⚙️ Supplementary Services - Call forwarding, CLI blocking, emergency

Value-Added Services

📞 Voicemail - Voicemail service with SMS notifications

🔊 TTS Prompts - Text-to-Speech prompt configuration

👥 IMS Conference Server - Multi-party conferencing

Testing & Compliance

🧪 HLR & Call Simulator - Testing tools

📜 ANSSI R226 Compliance - French market compliance

Config

The Application Server needs:

To connect to SIP Trunks / SBCs for calls to/from off-net

Connect to the DRA or HSS to get the Sh

Optionally connect to DRA or OCS for Ro online charging

Dialplan Config

Configuration around the dialing rules / number translation

Voicemail config

Prompts

Tests

Metrics (Prometheus)

Event Socket Configuration

The Event Socket is used for call control, monitoring active calls, and

interacting with the telephony engine. This connection allows the TAS to control

call routing, retrieve channel variables, and manage active sessions.

Configuration Location: config/runtime.exs

Configuration Parameters:

config :tas,

 fs_event_socket: %{

 host: "127.0.0.1",

 port: 8021,

 secret: "YourSecretPassword"

 }

host (string, required): Hostname or IP address of the Event Socket server

Default: "127.0.0.1" (localhost)

Use localhost if the telephony engine runs on the same server as TAS

Use remote IP for distributed deployments

Example: "10.8.82.60" for remote connection

port (integer, required): TCP port for Event Socket connections

Default: 8021

Standard Event Socket port is 8021

Must match the Event Socket configuration in your telephony engine

Example: 8021

secret (string, required): Authentication password for Event Socket

Must match the password configured in your telephony engine

Used for authenticating ESL connections

Security Note: Use a strong random password and keep it secure

Example: "cd463RZ8qMk9AHMMDGT3V"

Use Cases:

Real-time call control and routing

Retrieving active call information for the /calls view in Control Panel

Executing dialplan applications programmatically

Monitoring call state changes and events

Managing conference calls

Connection Behavior:

TAS establishes persistent connections to the Event Socket

Automatically reconnects on connection failure

Used for both inbound (receiving events) and outbound (controlling calls)

modes

Connection timeouts and retry logic are built-in

Security Considerations:

Always use a strong, unique password for the secret parameter

If using remote connections, ensure firewall rules allow only trusted TAS

servers

Consider using localhost-only connections when TAS and telephony engine

are co-located

Do not expose Event Socket port to public networks

Troubleshooting:

Connection Refused: Verify the telephony engine is running and Event

Socket is enabled

Authentication Failed: Check that secret matches the telephony engine

configuration

Timeout Errors: Verify network connectivity and firewall rules

Cannot Control Calls: Ensure TAS has connected successfully (check

logs)

Control Panel Configuration

The Control Panel provides a web-based interface for monitoring and managing

the TAS system. This includes viewing subscribers, CDRs, active calls, Diameter

peers, gateways, and system configuration.

Configuration Location: config/runtime.exs

Configuration Parameters:

config :control_panel,

 page_order: ["/application", "/configuration"]

config :control_panel, ControlPanelWeb.Endpoint,

 url: [host: "0.0.0.0", path: "/"],

 https: [

 port: 443,

 keyfile: "priv/cert/server.key",

 certfile: "priv/cert/server.crt"

]

Page Order Configuration

page_order (list of strings): Controls the display order of configuration

pages in the Control Panel

Specifies which pages appear in navigation and their order

Example: ["/application", "/configuration"]

Default: If not set, pages appear in default alphabetical order

Web Endpoint Configuration

url (map): Public URL configuration for the Control Panel

host : Hostname for generating URLs (e.g., "tas.example.com" or

"0.0.0.0")

path : Base path for all Control Panel routes (default: "/")

Used for generating absolute URLs in redirects and links

https (map): HTTPS/TLS configuration for secure access

port (integer): HTTPS port number (standard is 443)

keyfile (string): Path to TLS private key file (PEM format)

certfile (string): Path to TLS certificate file (PEM format)

Both files must be readable by the TAS application

Certificate Management:

The Control Panel requires valid TLS certificates for HTTPS access:

1. Self-Signed Certificates (Development/Testing):

2. Production Certificates:

Use certificates from a trusted Certificate Authority (CA)

Common providers: Let's Encrypt (free), commercial CAs

openssl req -x509 -newkey rsa:4096 -keyout priv/cert/server.key

\

 -out priv/cert/server.crt -days 365 -nodes

Ensure certificates include full chain for browser trust

Keep private keys secure with appropriate file permissions (chmod 600)

Access Control:

The Control Panel provides access to sensitive operational data:

Subscriber Information: Registration details, call history, locations

Call Detail Records: Complete call records with MSISDN data

System Configuration: Diameter peers, gateways, routing

Active Calls: Real-time monitoring of ongoing sessions

Recommended Security Measures:

Deploy behind firewall or VPN for production environments

Use strong TLS certificates from trusted CAs

Implement network-level access controls (IP whitelisting)

Consider additional authentication layers if exposing externally

Regularly audit access logs

Use HTTPS only - never serve over plain HTTP

Common Deployment Patterns:

1. Internal-Only Access:

2. External Access with Domain:

3. Behind Reverse Proxy:

url: [host: "10.8.82.60", path: "/"] # Internal network only

url: [host: "tas.operator.com", path: "/"]

https: [port: 443, ...]

url: [host: "tas.internal", path: "/panel"] # Nginx/Apache

forwards to this

Troubleshooting:

Certificate Errors: Verify paths to keyfile and certfile are correct and

files are readable

Port Already in Use: Check if another service is using port 443, or change

to another port

Cannot Access UI: Verify firewall rules allow access to the configured

HTTPS port

SSL Handshake Failures: Ensure certificate and key match and are in

PEM format

API Configuration

The TAS includes a REST API for programmatic access to system functions,

subscriber management, and operational data. The API supports

OpenAPI/Swagger documentation and is secured with TLS.

Configuration Location: config/runtime.exs

Configuration Parameters:

port (integer, required): TCP port for the API server

Default: 8444

Choose a port that doesn't conflict with other services

config :api_ex,

 api: %{

 port: 8444,

 listen_ip: "0.0.0.0",

 product_name: "OmniTAS",

 title: "API - OmniTAS",

 hostname: "localhost",

 enable_tls: true,

 tls_cert_path: "priv/cert/server.crt",

 tls_key_path: "priv/cert/server.key"

 }

Standard HTTPS port is 443, but custom ports are common for APIs

Example: 8444 , 8443 , 9443

listen_ip (string, required): IP address to bind the API server

"0.0.0.0" : Listen on all network interfaces (external access)

"127.0.0.1" : Listen only on localhost (internal access only)

Specific IP: Bind to a particular interface (e.g., "10.8.82.60")

Security: Use "127.0.0.1" if API only needed internally

product_name (string): Product identifier for API metadata

Used in API responses and documentation

Example: "OmniTAS" , "MyOperator-IMS"

title (string): Human-readable title for API documentation

Displayed in OpenAPI/Swagger UI header

Example: "API - OmniTAS" , "IMS Application Server API"

hostname (string): Hostname for API server in documentation

Used in OpenAPI spec for generating example URLs

Should match how clients access the API

Examples: "localhost" , "api.operator.com" , "10.8.82.60"

enable_tls (boolean): Enable or disable TLS/HTTPS for API

true : Serve API over HTTPS (recommended for production)

false : Serve API over HTTP (only for testing/development)

Security: Always use true in production environments

tls_cert_path (string): Path to TLS certificate file (PEM format)

Required when enable_tls: true

Must be readable by the TAS application

Example: "priv/cert/server.crt"

tls_key_path (string): Path to TLS private key file (PEM format)

Required when enable_tls: true

Must be readable by the TAS application

Security: Protect with file permissions (chmod 600)

Example: "priv/cert/server.key"

API Features:

The REST API provides programmatic access to:

Subscriber management and provisioning

Call Detail Records (CDR) queries

System status and health checks

Diameter peer status

Gateway status and statistics

Active call monitoring

Configuration management

OpenAPI/Swagger Documentation:

The API includes built-in OpenAPI (Swagger) documentation:

Access Swagger UI at: https://hostname:port/api/swaggerui

OpenAPI JSON spec at: https://hostname:port/api/openapi

Interactive API testing directly from the browser

Complete endpoint documentation with request/response schemas

Security Considerations:

Authentication: Implement API authentication based on your security

requirements

Network Access: Use firewall rules to restrict API access to authorized

clients

TLS Required: Always enable TLS in production (enable_tls: true)

Certificate Validation: Use trusted certificates for production APIs

Rate Limiting: Consider implementing rate limiting for public-facing APIs

Access Logs: Monitor API access logs for suspicious activity

Example Usage:

Common Deployment Scenarios:

1. Internal API Only:

2. Production API with TLS:

3. Development/Testing:

Troubleshooting:

Port Binding Failed: Verify port is not in use by another service, or run as

root for ports < 1024

TLS Errors: Check that certificate and key paths are correct and files are

readable

Cannot Connect: Verify firewall allows access to the configured port

Certificate Mismatch: Ensure hostname matches the certificate Common

Name (CN) or SAN

Query API with curl (replace with actual endpoint)

curl -k https://localhost:8444/api/health

Access Swagger documentation

https://localhost:8444/api/swaggerui

listen_ip: "127.0.0.1" # Only accessible from localhost

enable_tls: false # HTTP for internal testing

listen_ip: "0.0.0.0" # Accessible from network

enable_tls: true # HTTPS required

hostname: "api.operator.com"

listen_ip: "0.0.0.0"

enable_tls: false # HTTP for easier testing

port: 8080 # Non-privileged port

API Returns 404: Check that the API application started successfully in

logs

SIP Trunk Config

Ansible is responsible for creating the XML config for each outgoing gateway,

visible in the Gateways tab, which are used for outgoing calls.

CSCF addresses and Gateway addresses have to be included in the that are

visible in the runtime config, so we know what IPs to allow calls from, we do

this in the allowed_sbc_source_ips for Gateways / SBCs (sources that will

send MT traffic towards the network) and allowed_cscf_ips for CSCFs (sources

that MO traffic will originate from).

Note - If you will route calls from your TAS to itself (ie a MO call to an on-net

subscriber routes back into the MT dialplan) then your TAS IP must also be in

the allowed source IPs list.

From the Web UI we can see the state of each gateway, and:

SIP Registration status (if register is enabled)

SIP Realm

SIP Proxy Address (if used)

Username

Ping Time (Average SIP OPTIONs response time (if SIP OPTIONs enabled))

Uptime (Seconds since the profile was restarted or came up)

Calls in / Calls Out / Failed Calls In / Failed Calls Out

Last SIP OPTIONs ping time (Epoch)

SIP OPTIONs ping frequency

More info in the detail button

config :tas,

 allowed_sbc_source_ips: ["10.5.198.200", "103.26.174.36"],

 allowed_cscf_ips: ["10.8.3.34"],

Gateway Configuration Reference

Gateways are configured in XML format. Each gateway represents a SIP trunk

connection to an external SBC, carrier, or PSTN gateway.

Basic Gateway Example:

Gateway without Registration:

<include>

 <gateway name="carrier_trunk">

 <param name="proxy" value="203.0.113.50;transport=tcp"/>

 <param name="register" value="true"/>

 <param name="caller-id-in-from" value="true"/>

 <param name="username" value="trunk_user"/>

 <param name="password" value="secure_password"/>

 <param name="register-transport" value="tcp"/>

 <param name="retry-seconds" value="30"/>

 <param name="ping" value="25"/>

 </gateway>

</include>

<include>

 <gateway name="sbc_static">

 <param name="proxy" value="198.51.100.10"/>

 <param name="register" value="false"/>

 <param name="caller-id-in-from" value="true"/>

 </gateway>

</include>

Gateway Parameters

Required Parameters

name (gateway attribute)

The unique name identifier for this gateway

Used in dialplan to reference the gateway:

sofia/gateway/name/destination

Example: <gateway name="my_trunk">

proxy

SIP proxy/gateway IP address or hostname

Can include port and transport protocol

Examples:

value="203.0.113.50" (default port 5060, UDP)

value="203.0.113.50:5061" (custom port)

value="203.0.113.50;transport=tcp" (TCP transport)

value="203.0.113.50:5061;transport=tls" (TLS on port 5061)

register

Whether to send SIP REGISTER to the gateway

Values: true | false

Set to true if the trunk requires registration

Set to false for static IP-based trunks

Authentication Parameters

username

SIP authentication username

Used in REGISTER and for digest authentication

Required if register="true"

Example: value="trunk_account_123"

password

SIP authentication password

Used for digest authentication challenges

Required if register="true"

Example: value="MySecureP@ssw0rd"

realm

SIP realm for authentication

Optional - usually auto-detected from challenge

Example: value="sip.carrier.com"

auth-username

Alternative username for authentication (if different from username)

Rarely needed - only if carrier requires different user in auth vs From

header

Example: value="auth_user_456"

Registration Parameters

register-transport

Transport protocol for REGISTER messages

Values: udp | tcp | tls

Must match transport specified in proxy parameter

Example: value="tcp"

register-proxy

Alternative proxy address for REGISTER (if different from call routing)

Useful when registration server differs from call routing server

Example: value="register.carrier.com:5060"

retry-seconds

Seconds to wait before retrying failed registration

Default: 30

Range: 5 to 3600

Example: value="30"

expire-seconds

Registration expiry time in seconds

Default: 3600 (1 hour)

The gateway will re-register before expiry

Example: value="1800" (30 minutes)

caller-id-in-from

Include caller ID in SIP From header

Values: true | false

true : From header includes actual caller number (required by most

carriers)

false : From header uses gateway username

Recommendation: Set to true for most deployments

Example: value="true"

Monitoring Parameters

ping

Send SIP OPTIONS ping every N seconds

Monitors gateway availability and measures latency

Disabled if not specified or set to 0

Typical values: 15 to 60 seconds

Visible in Gateway Status UI as "Ping Time"

Example: value="25"

ping-max

Maximum time (seconds) to retry pings before marking gateway down

Default: Calculated from ping interval

Example: value="3"

Call Routing Parameters

extension

Fixed destination number to always dial on this gateway

Rarely used - usually destination comes from dialplan

Example: value="+12125551234"

extension-in-contact

Include extension in Contact header

Values: true | false

Default: false

Example: value="false"

contact-params

Additional parameters to append to Contact header

Useful for carrier-specific requirements

Example: value="line=1;isup=true"

Advanced Parameters

from-user

Override username in From header

Default: Uses calling number or gateway username

Example: value="trunk_pilot"

from-domain

Override domain in From header

Default: Uses proxy domain

Example: value="my-domain.com"

outbound-proxy

Outbound proxy for all SIP messages

Different from proxy - used as Route header target

Example: value="edge-proxy.carrier.com:5060"

context

Dialplan context for incoming calls from this gateway

Default: public

Allows different incoming call routing per gateway

Example: value="from-carrier"

channels

Maximum concurrent calls on this gateway

Default: Unlimited

Used for capacity management

Example: value="100"

dtmf-type

DTMF transmission method

Values: rfc2833 | info | inband | auto

Default: rfc2833 (recommended)

rfc2833 : RTP telephone events (most common)

info : SIP INFO messages

inband : Audio tones

Example: value="rfc2833"

codec-prefs

Preferred codec list for this gateway

Comma-separated list in preference order

Example: value="PCMU,PCMA,G729"

Common codecs: PCMU , PCMA , G729 , AMR , AMR-WB , G722 , OPUS

rtp-timeout-sec

Hangup call if no RTP received for N seconds

Default: 0 (disabled)

Useful for detecting dead calls

Example: value="120"

rtp-hold-timeout-sec

Timeout for calls on hold with no RTP

Default: 0 (disabled)

Example: value="1800" (30 minutes)

SIP Signaling Options

sip-port

Local SIP port to use for this gateway

Default: Profile's port

Rarely needed

Example: value="5060"

rtp-ip

Local IP address for RTP media

Default: Profile's RTP IP

Example: value="10.0.0.5"

register-proxy-port

Port for registration proxy

Only needed if different from proxy port

Example: value="5061"

contact-host

Override host portion of Contact header

Useful for NAT scenarios

Example: value="public-ip.example.com"

distinct-to

Use distinct To header (different from Request-URI)

Values: true | false

Carrier-specific requirement

Example: value="false"

cid-type

Caller ID type in Remote-Party-ID or P-Asserted-Identity headers

Values: rpid | pid | none

rpid : Remote-Party-ID header

pid : P-Asserted-Identity header

Example: value="pid"

extension-in-contact

Add extension parameter to Contact URI

Values: true | false

Example: value="true"

Transport Security

transport (in proxy parameter)

Transport protocol

Values: udp | tcp | tls | ws | wss

Specified as part of proxy value

Example: proxy="203.0.113.50;transport=tcp"

For TLS connections, additional certificate configuration may be required in the

SIP profile.

Complete Example with Common Options

Gateway Usage in Dialplan

Reference gateways in your dialplan using the

sofia/gateway/name/destination format:

<include>

 <gateway name="primary_carrier">

 <!-- Required: Basic connection -->

 <param name="proxy"

value="sbc.carrier.com:5060;transport=tcp"/>

 <param name="register" value="true"/>

 <!-- Authentication -->

 <param name="username" value="customer_trunk_01"/>

 <param name="password" value="SecurePassword123"/>

 <!-- Registration -->

 <param name="register-transport" value="tcp"/>

 <param name="expire-seconds" value="1800"/>

 <param name="retry-seconds" value="30"/>

 <!-- Caller ID -->

 <param name="caller-id-in-from" value="true"/>

 <!-- Monitoring -->

 <param name="ping" value="30"/>

 <!-- Media -->

 <param name="codec-prefs" value="PCMU,PCMA,G729"/>

 <param name="dtmf-type" value="rfc2833"/>

 <!-- Call limits -->

 <param name="channels" value="100"/>

 <!-- RTP timeouts -->

 <param name="rtp-timeout-sec" value="300"/>

 </gateway>

</include>

Troubleshooting Gateway Issues

Gateway Won't Register:

Verify username and password are correct

Check proxy address is reachable

Confirm register-transport matches carrier requirements

Review logs for authentication failures

Calls Fail:

Check gateway status in Web UI (/gw)

Verify caller-id-in-from setting matches carrier requirement

Confirm codec compatibility with codec-prefs

Check firewall allows SIP and RTP traffic

Poor Call Quality:

Review ping times in Gateway Status

Check rtp-timeout-sec isn't too aggressive

Verify codec preferences match network capabilities

Monitor network latency and packet loss

<!-- Route to specific gateway -->

<action application="bridge" data="sofia/gateway/primary_carrier/+121

<!-- Route using variable -->

<action application="bridge" data="sofia/gateway/primary_carrier/${ta

<!-- Route with custom SIP headers -->

<action application="bridge" data="{sip_h_X-Custom=Value}sofia/gatewa

<!-- Failover between gateways -->

<action application="bridge"

data="sofia/gateway/primary_carrier/${tas_destination_number}|sofia/g

Diameter Peer Config

Dimeter peers must be defined in the runtime config.

This config is largely boilerplate.

The Ro interface does not need to be included in the Applications if Ro is not

used in your deployment.

config :diameter_ex,

 diameter: %{

 service_name: :omnitouch_tas,

 listen_ip: "10.8.82.60",

 listen_port: 3868,

 decode_format: :map,

 host: "example-dc01-as01",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 product_name: "OmniTAS",

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: true,

 log_unauthorized_peer_connection_attempts: true,

 control_module: Tas.Control.Diameter,

 processor_module: DiameterEx.Processor,

 auth_application_ids: [],

 acct_application_ids: [],

 vendor_id: 10415,

 supported_vendor_ids: [10415],

 # Optional: Global destination_realm for all applications

 # destination_realm: "global.destination.realm",

 applications: [

 %{

 application_name: :sh,

 application_dictionary: :diameter_gen_3gpp_sh,

 # Optional: Application-specific destination_realm for Sh

requests

 # destination_realm: "sh.destination.realm",

 vendor_specific_application_ids: [

 %{

 vendor_id: 10415,

 auth_application_id: 16_777_217,

 acct_application_id: nil

 }

]

 },

 %{

 application_name: :ro,

 application_dictionary: :diameter_gen_3gpp_ro,

 # Optional: Application-specific destination_realm for Ro

requests

 # destination_realm: "ocs.destination.realm",

 vendor_specific_application_ids: [

Diameter Configuration Parameters

Service Configuration:

service_name (atom): Unique identifier for this Diameter service instance

Example: :omnitouch_tas

Used internally for service management

 %{

 vendor_id: 0,

 auth_application_id: 4,

 acct_application_id: nil

 }

]

 }

],

 peers: [

 %{

 port: 3868,

 host: "example-dc01-

dra01.epc.mnc001.mcc001.3gppnetwork.org",

 ip: "1.2.3.4",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 tls: false,

 transport: :diameter_tcp,

 initiate_connection: true

 },

 %{

 port: 3869,

 host: "example-dc01-

dra02.epc.mnc001.mcc001.3gppnetwork.org",

 ip: "1.2.3.44",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 tls: false,

 transport: :diameter_tcp,

 initiate_connection: true

 }

]

 }

listen_ip (string): IP address to bind for Diameter connections

Example: "10.8.82.60"

Use "0.0.0.0" to listen on all interfaces

Peers will connect to this IP

listen_port (integer): TCP port for Diameter connections

Standard Diameter port: 3868

Must not conflict with other services

host (string): Diameter host identity (without realm)

Example: "example-dc01-as01"

Combined with realm to form Origin-Host AVP

Must be unique within the Diameter network

realm (string): Diameter realm identity

Example: "epc.mnc001.mcc001.3gppnetwork.org"

Used in Origin-Realm AVP

Must match 3GPP network identifier conventions

product_name (string): Product identifier in CER/CEA messages

Example: "OmniTAS"

Used in Capabilities-Exchange messages

request_timeout (integer): Timeout in milliseconds for Diameter requests

Example: 5000 (5 seconds)

Requests without response within this time will timeout

peer_selection_algorithm (atom): Algorithm for selecting peer when

multiple available

Values: :random | :round_robin | :priority

:random : Random peer selection

:round_robin : Distribute requests evenly across peers

vendor_id (integer): 3GPP vendor ID

Standard 3GPP vendor ID: 10415

Used in Vendor-Specific-Application-Id AVP

Destination Realm Configuration

The destination_realm parameter controls the Destination-Realm AVP

included in Diameter requests. This AVP tells the Diameter Routing Agent (DRA)

where to route the request.

Three levels of configuration:

1. Application-specific (highest priority): Set destination_realm within

each application configuration

2. Global: Set destination_realm at the top level of the diameter config

3. Fallback (lowest priority): Uses the realm value if neither of the above are

configured

Configuration Examples:

Example 1: Application-specific destination realms

config :diameter_ex,

 diameter: %{

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 applications: [

 %{

 application_name: :sh,

 destination_realm:

"hss.epc.mnc001.mcc001.3gppnetwork.org",

 # ... other config

 },

 %{

 application_name: :ro,

 destination_realm:

"ocs.epc.mnc001.mcc001.3gppnetwork.org",

 # ... other config

 }

]

 }

Example 2: Global destination realm with app-specific override

config :diameter_ex,

 diameter: %{

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 destination_realm: "dra.epc.mnc001.mcc001.3gppnetwork.org", #

Default for all apps

 applications: [

 %{

 application_name: :sh,

 # Will use global: "dra.epc.mnc001.mcc001.3gppnetwork.org"

 },

 %{

 application_name: :ro,

 destination_realm:

"ocs.epc.mnc001.mcc001.3gppnetwork.org", # Override

 }

]

 }

Example 3: No destination_realm configured (uses realm)

config :diameter_ex,

 diameter: %{

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

When to Use Destination Realm:

Different backend systems: When Sh goes to HSS and Ro goes to OCS in

different realms

DRA routing: When DRA uses Destination-Realm to route to different

backend clusters

Multi-tenant deployments: Route different applications to different

tenant realms

Testing scenarios: Override destination realm per application for testing

without changing peers

Fallback Hierarchy:

This ensures the mandatory Destination-Realm AVP is always present in

outgoing requests.

You can check the status of Diameter peers from the Diameter tab on the Web

UI.

 # No destination_realm specified anywhere

 applications: [

 %{

 application_name: :sh,

 # Will use realm fallback:

"epc.mnc001.mcc001.3gppnetwork.org"

 }

]

 }

Application-specific destination_realm

 ↓ (if not set)

Global destination_realm

 ↓ (if not set)

realm

You can also test retriving Sh data from the Sh tab on the Web UI to try to

fetch any of the data from Sh.

Dialplan Configuration

& Call Routing

� Back to Main Documentation

Comprehensive guide to XML dialplan configuration, call routing logic, and

dialplan variables.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - SIP trunk and gateway configuration

🔧 Operations Guide - Dialplan testing and templates viewer

Call Processing Flow

🔢 Number Translation - E.164 normalization (happens before dialplan)

👥 Sh Interface - Subscriber data retrieved for dialplan variables

📡 SS7 MAP - MSRN/HLR data in dialplan variables

💳 Online Charging - OCS authorization in call flow

Services Implementation

⚙️ Supplementary Services - Implementing call forwarding, CLI blocking

in dialplan

📞 Voicemail - Voicemail routing and deposit/retrieval in dialplan

🔊 TTS Prompts - Using prompts in dialplan with playback

Monitoring

📊 Dialplan Metrics - Dialplan-specific metrics and monitoring

📈 Metrics Reference - General system metrics

Dialplan Config / Call Routing

The TAS uses XML dialplans with a schema compatible with standard telecom

XML dialplan formats, with variables populated by the TAS. This means you can

define your own dialplan as needed, with the business logic for the operator,

but have all the required data such as Repository Data, SS7 routing info, IMPI /

IMPU identities, dialplan normalization, etc, etc.

Dialplans are written into priv/templates and take the form:

mo_dialplan.xml - Mobile Originated Call Dialplan

mo_emergency_dialplan.xml - Mobile Originated Emergency Call Dialplan

mt_dialplan.xml - Mobile Terminated Call Dialplan

You can view the Dialplans from inside the Web UI.

Various variables are set by the TAS before the XML gets parsed, these

variables are printed to the log at the start of the call with their current values

and are very helpful when defining your own call logic.

FreeSWITCH XML Dialplan Fundamentals

OmniTAS uses the same XML call routing system as the FreeSWITCH project,

which allows for flexible call routing to meet your needs.

This section explains the core concepts and provides practical examples.

Basic Structure

A dialplan consists of extensions containing conditions and actions:

Extensions are evaluated in order from top to bottom. When a condition

matches, its actions execute.

Conditions and Regex Matching

Conditions test variables against regular expressions. If the regex matches,

actions execute; if not, anti-actions execute.

Basic exact match:

Multiple number match:

<extension name="description-of-what-this-does">

 <condition field="${variable}" expression="regex-pattern">

 <action application="app_name" data="parameters"/>

 <anti-action application="app_name" data="parameters"/>

 </condition>

</extension>

<condition field="${tas_destination_number}" expression="2222">

 <action application="log" data="INFO Calling voicemail access

number"/>

</condition>

Pattern matching with capture groups:

Prefix matching:

Range matching:

Actions vs Anti-Actions

Actions execute when a condition matches. Anti-actions execute when a

condition does NOT match.

<condition field="${tas_destination_number}"

expression="^(2222|3444|3445)$">

 <action application="log" data="INFO Calling special service"/>

</condition>

<condition field="${tas_destination_number}" expression="^1(8[0-9]

{9})$">

 <!-- Matches 1 followed by 8 and 9 more digits -->

 <action application="log" data="INFO Matched toll-free: $1"/>

 <action application="bridge"

data="sofia/gateway/trunk/${tas_destination_number}"/>

</condition>

<condition field="${tas_destination_number}" expression="^00">

 <!-- Matches any number starting with 00 (international) -->

 <action application="log" data="INFO International call

detected"/>

</condition>

<condition field="${msisdn}" expression="^5551241[0-9]{4}$">

 <!-- Matches 55512410000 through 55512419999 -->

 <action application="log" data="INFO Subscriber in range"/>

</condition>

The continue="true" Attribute

By default, when an extension's condition matches, the dialplan stops

processing further extensions. The continue="true" attribute allows

processing to continue to the next extension.

Without continue (default behavior):

With continue="true":

<condition field="${cli_withheld}" expression="true">

 <!-- Executes if CLI is withheld -->

 <action application="set"

data="effective_caller_id_number=anonymous"/>

 <action application="set"

data="origination_privacy=hide_number"/>

 <!-- Executes if CLI is NOT withheld -->

 <anti-action application="log" data="DEBUG CLI is normal"/>

 <anti-action application="set"

data="effective_caller_id_number=${msisdn}"/>

</condition>

<extension name="First-Check">

 <condition field="${tas_destination_number}"

expression="^(.*)$">

 <action application="log" data="INFO Processing call"/>

 </condition>

</extension>

<extension name="Never-Reached">

 <!-- This NEVER executes because the previous extension matched

-->

 <condition field="${tas_destination_number}"

expression="^(.*)$">

 <action application="log" data="INFO This won't print"/>

 </condition>

</extension>

Use continue="true" for:

Logging/debugging extensions

Setting variables that apply to multiple scenarios

Validation checks that don't route the call

Common Applications

call control

answer - Answer the call (send 200 OK)

hangup - Terminate the call with a specific cause

<extension name="Print-Vars" continue="true">

 <condition field="${tas_destination_number}"

expression="^(.*)$">

 <action application="info" data=""/>

 </condition>

</extension>

<extension name="Check-Balance" continue="true">

 <condition field="${hangup_case}"

expression="OUTGOING_CALL_BARRED">

 <action application="log" data="ERROR Insufficient balance"/>

 <action application="hangup" data="${hangup_case}"/>

 </condition>

</extension>

<extension name="Route-Call">

 <!-- This extension still gets evaluated -->

 <condition field="${tas_destination_number}"

expression="^(.*)$">

 <action application="bridge"

data="sofia/gateway/trunk/${tas_destination_number}"/>

 </condition>

</extension>

<action application="answer" data=""/>

bridge - Connect the call to another destination

Variables and Channel Data

set - Set a channel variable

unset - Remove a channel variable

export - Set variable and export to B-leg (bridged call)

Media and Prompts

<action application="hangup" data="NORMAL_CLEARING"/>

<action application="hangup" data="USER_BUSY"/>

<action application="hangup" data="NO_ANSWER"/>

<!-- Bridge to external gateway -->

<action application="bridge"

data="sofia/gateway/trunk/+12125551234"/>

<!-- Bridge to internal extension with codec preferences -->

<action application="bridge" data="{absolute_codec_string=AMR-

WB,AMR,PCMA}sofia/internal/sip:user@domain.com"/>

<!-- Bridge with timeout -->

<action application="bridge" data="

{originate_timeout=30}sofia/gateway/trunk/${tas_destination_number}"/

<action application="set" data="my_variable=my_value"/>

<action application="set" data="sip_h_X-Custom-

Header=CustomValue"/>

<action application="set"

data="effective_caller_id_number=anonymous"/>

<action application="unset" data="sip_h_P-Asserted-Identity"/>

<action application="export" data="sip_h_X-Account-Code=ABC123"/>

playback - Play an audio file

sleep - Pause for specified milliseconds

echo - Echo audio back to caller (testing)

conference - Place call into conference

voicemail

voicemail - Access voicemail system

Logging and Debugging

log - Write to log file

<action application="playback"

data="/sounds/en/us/callie/misc/8000/out_of_credit.wav"/>

<action application="playback"

data="$${base_dir}/sounds/custom_prompt.wav"/>

<action application="sleep" data="1000"/> <!-- Sleep for 1 second

-->

<action application="echo" data=""/>

<action application="conference"

data="room-${destination_number}@wideband"/>

<!-- Leave voicemail for mailbox -->

<action application="voicemail" data="default default ${msisdn}"/>

<!-- Check voicemail with auth -->

<action application="voicemail" data="check auth default default

${msisdn}"/>

info - Dump all channel variables to log

Misc Applications

say - Text-to-speech number reading

send_dtmf - Send DTMF tones

Practical Examples

Emergency Services Routing:

<action application="log" data="INFO Processing call from

${msisdn}"/>

<action application="log" data="DEBUG Destination:

${tas_destination_number}"/>

<action application="log" data="ERROR Call failed with cause:

${hangup_cause}"/>

<action application="info" data=""/>

<action application="say" data="en number iterated

${tas_destination_number}"/>

<action application="send_dtmf" data="1234#"/>

Conditional Routing Based on Balance:

On-Net vs Off-Net Routing:

<extension name="Emergency-911">

 <condition field="${tas_destination_number}"

expression="^(911|112)$">

 <action application="log" data="ALERT Emergency call from

${msisdn}"/>

 <action application="answer" data=""/>

 <action application="playback"

data="/sounds/emergency_services_transfer.wav"/>

 <action application="bridge"

data="sofia/gateway/emergency_gw/${tas_destination_number}"/>

 </condition>

</extension>

<extension name="Check-Credit">

 <condition field="${hangup_case}"

expression="OUTGOING_CALL_BARRED">

 <action application="answer" data=""/>

 <action application="playback"

data="/sounds/out_of_credit.wav"/>

 <action application="hangup" data="CALL_REJECTED"/>

 </condition>

</extension>

<extension name="Route-Decision">

 <condition field="${on_net_status}" expression="true">

 <!-- On-net: route back through TAS -->

 <action application="log" data="INFO Routing to on-net

subscriber"/>

 <action application="bridge"

data="sofia/internal/+${tas_destination_number}@10.179.3.60"/>

 <anti-action application="log" data="INFO Routing off-net"/>

 <anti-action application="bridge"

data="sofia/gateway/trunk/+${tas_destination_number}"/>

 </condition>

</extension>

Anonymous Caller ID Handling:

Voicemail on No Answer:

Number Range Routing:

<extension name="CLI-Privacy" continue="true">

 <condition field="${cli_withheld}" expression="true">

 <action application="set"

data="effective_caller_id_name=anonymous"/>

 <action application="set"

data="effective_caller_id_number=anonymous"/>

 <action application="set"

data="origination_privacy=hide_number"/>

 </condition>

</extension>

<extension name="Try-Bridge-Then-VM">

 <condition field="${tas_destination_number}"

expression="^(555124115\d{2})$">

 <action application="set" data="call_timeout=30"/>

 <action application="bridge"

data="sofia/internal/${tas_destination_number}@domain.com"/>

 <!-- If bridge fails, go to voicemail -->

 <action application="log" data="INFO Bridge failed, routing to

voicemail"/>

 <action application="answer" data=""/>

 <action application="voicemail" data="default default

${tas_destination_number}"/>

 </condition>

</extension>

Further Documentation

For complete details on each application:

FreeSWITCH Dialplan Documentation:

https://freeswitch.org/confluence/display/FREESWITCH/Dialplan

FreeSWITCH mod_dptools:

https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools

(complete application reference)

Regular Expression Reference:

https://freeswitch.org/confluence/display/FREESWITCH/Regular+Expression

<extension name="Local-Numbers">

 <condition field="${tas_destination_number}" expression="^([2-

9]\d{2})$">

 <!-- 3-digit local extensions 200-999 -->

 <action application="log" data="INFO Local extension: $1"/>

 <action application="bridge"

data="sofia/internal/$1@pbx.local"/>

 </condition>

</extension>

<extension name="National-Numbers">

 <condition field="${tas_destination_number}"

expression="^555\d{7}$">

 <!-- National mobile numbers -->

 <action application="log" data="INFO National mobile call"/>

 <action application="bridge"

data="sofia/gateway/national_trunk/${tas_destination_number}"/>

 </condition>

</extension>

<extension name="International">

 <condition field="${tas_destination_number}"

expression="^00\d+$">

 <!-- International calls starting with 00 -->

 <action application="log" data="INFO International call"/>

 <action application="bridge"

data="sofia/gateway/intl_trunk/${tas_destination_number}"/>

 </condition>

</extension>

https://freeswitch.org/confluence/display/FREESWITCH/Dialplan
https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools
https://freeswitch.org/confluence/display/FREESWITCH/Regular+Expression

Channel Variables:

https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables

The FreeSWITCH wiki contains detailed documentation for every dialplan

application, including all parameters and use cases.

Dialplan Variables

Variables set by the TAS in the XML dialplan logic:

Common Variables (All Call Types)

Initial Setup:

destination_number - translated destination number

tas_destination_number - translated destination number

effective_caller_id_number - translated source number

Emergency Calls

hangup_case - "none"

ims_private_identity - private user identity

ims_public_identity - public user identity

msisdn - subscriber number (stripped of +)

imsi - IMSI from private identity

ims_domain - domain from private identity

MT Calls (Mobile Terminated)

ims_private_identity - private user identity

ims_public_identity - public user identity

msisdn - subscriber number (stripped of +)

imsi - IMSI from private identity

ims_domain - domain from private identity

call_forward_all_destination - CFA destination or "none"

call_forward_not_reachable_destination - CFNRc destination

scscf_address - S-CSCF address or "none"

https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables

scscf_domain - S-CSCF domain or "none"

no_reply_timer - timeout for no reply

hangup_case - "none" or "UNALLOCATED_NUMBER"

msrn - MSRN from PRN (if roaming) or forwarded number from SRI (if call

forwarding active)

tas_destination_number - Routing destination override (set to MSRN or

forwarded number)

MO Calls (Mobile Originated)

hangup_case - "none", "OUTGOING_CALL_BARRED", or

"UNALLOCATED_NUMBER"

ims_private_identity - private user identity

ims_public_identity - public user identity

msisdn - subscriber number (stripped of +)

imsi - IMSI from private identity

ims_domain - domain from private identity

allocated_time - time allocated by OCS (if online charging enabled)

cli_withheld - "true" or "false" string

on_net_status - "true" or "false" string (whether destination is on-net)

msrn - MSRN for roaming subscribers (if applicable)

tas_destination_number - MSRN override (if roaming)

Emergency Calling

Emergency calling is controlled through the emergency_call_codes

configuration parameter and is automatically detected during call

authorization.

Configuration

Configure the emergency call codes in your TAS configuration file:

Configuration parameters:

emergency_call_codes : List of emergency service numbers to detect

Common codes: "911" (US), "112" (EU), "000" (AU), "999" (UK), "sos"

These codes are checked in addition to SIP emergency URNs (e.g.,

<urn:service:sos>)

The system performs exact match comparison against the destination

number

Example configuration values:

US deployment: ["911", "933"] - 911 for emergency, 933 for test

European deployment: ["112", "999"]

Australian deployment: ["000", "106"] - 000 for emergency, 106 for text

relay

Multi-region: ["911", "112", "000", "sos"]

How Emergency Detection Works

The system checks two conditions:

1. SIP URI Emergency Service URN: Detects <urn:service:sos> or any

URI containing "service:sos"

2. Destination Number Match: Compares Caller-Destination-Number

against configured emergency_call_codes

If either condition is true, the call is classified as emergency.

Processing Flow

no

yes

MO INVITE

SIP URI =

urn:service:sos

OR

destination in

emergency_call_codes?

Proceed normal MO flow

mo_emergency_dialplan.xml

Set emergency vars,

Announcement prompt

optional

Bridge to PSAP GW / URI Reporting / Metrics

Emergency Call Processing Flow

Call Flow Details:

1. Call arrives at TAS

2. Authorization module checks destination against emergency patterns

3. If emergency detected:

Call type is set to :emergency

mo_emergency_dialplan.xml template is used

OCS authorization is typically bypassed

Call is routed to PSAP gateway

4. Metrics are recorded with call_type: emergency label

Dialplan Routing

Define the routing for emergency calls in

priv/templates/mo_emergency_dialplan.xml . This template determines how

calls are routed to your PSAP (Public Safety Answering Point) gateway or SIP

URI based on your market requirements.

Example emergency dialplan:

Best Practices

Always include "sos" in your emergency codes list for SIP URN

compatibility

Include all local emergency numbers for your jurisdiction (e.g., 911,

112, 000, 999)

Test emergency routing regularly using the Call Simulator

Bypass OCS for emergency calls to ensure they always connect

(configured via skipped_regex)

Configure PSAP gateway with high availability and redundancy

Monitor emergency call metrics to ensure system reliability

<extension name="Emergency-SOS">

 <condition field="${destination_number}"

expression="^(911|912|913|sos)$">

 <action application="log" data="ALERT Emergency call from

${msisdn}"/>

 <action application="answer" data=""/>

 <action application="bridge"

data="sofia/gateway/psap_gw/${destination_number}"/>

 </condition>

</extension>

On-Net Mobile Originated call to an On-Net

Mobile-Terminating Subscriber

When a subscriber calls another subscriber on your network (on-net call), the

proper approach is to route the MO call back through the TAS for MT

processing. This ensures the called party receives full MT call treatment

including call forwarding, voicemail, MSRN routing for roaming, and all other

subscriber services.

Why Route MO to MT?

Without MT processing (direct routing):

Called party's call forwarding settings are ignored

No voicemail on no-answer

No MSRN routing for roaming subscribers

Missing subscriber service logic

With MT processing (route back to TAS):

Full call forwarding support (CFU, CFB, CFNRy, CFNRc)

Voicemail on busy/no-answer

MSRN routing for CS roaming subscribers

Complete subscriber service experience

Proper call state tracking for both parties

Implementation

The MO dialplan checks if the destination is on-net (served by your TAS), and if

so, routes the call back to the TAS itself. The TAS receives this as a new MT call

and processes it through the mt_dialplan.xml template.

Example dialplan snippet:

Key parameters:

${sip_local_network_addr} - TAS IP address (e.g., 10.179.3.60)

${tas_destination_number} - Called party's MSISDN

sip_invite_call_id=${sip_call_id} - Preserves call-id for tracking

sip_copy_multipart=false - Prevents multipart message copying

sip_h_Request-Disposition=no-fork - Ensures sequential processing

Call Flow:

Important configuration:

The TAS IP (e.g., 10.179.3.60) must be in your allowed_sbc_source_ips

configuration list

This allows the TAS to receive calls from itself for MT processing

<extension name="On-Net-Route">

 <condition field="${on_net_status}" expression="true">

 <action application="log" data="DEBUG On-Net MO call - Routing ba

 <!-- Clean up headers for internal routing -->

 <action application="set" data="sip_copy_multipart=false"/>

 <action application="set" data="sip_h_Request-Disposition=no-fork

 <!-- Route back to TAS (becomes MT call) -->

 <action application="bridge"

 data="{absolute_codec_string='AMR-

WB,AMR,PCMA,PCMU',originate_retries=1,originate_timeout=60,sip_invite

/>

 <action application="hangup" data="" />

 </condition>

</extension>

Without this, the TAS will reject the call as coming from an unauthorized

source

MSRN Usage for 2G/3G Roaming

Subscribers

When a subscriber is roaming in a 2G/3G Circuit-Switched (CS) network, the

TAS must obtain an MSRN (Mobile Station Roaming Number) to route the

incoming call to the subscriber's current location. This section explains how

MSRN retrieval and routing works.

What is MSRN?

MSRN (Mobile Station Roaming Number) is a temporary routing number

assigned by the visited network's VLR (Visitor Location Register) to route calls

to a roaming subscriber. It acts as a temporary destination number that points

to the subscriber's current location in the CS network.

MSRN Retrieval Flow

The TAS retrieves MSRN data via SS7 MAP (Mobile Application Part) protocol

using a two-step process:

MSRN directly

IMSI + VLR IMSI only (no VLR)

Forwarding active

MSRN

No MSRN

MT Call to Subscriber

Send Routing

Information (SRI)

SRI Response Type?

Use MSRN from SRI

Provide Roaming

Number (PRN)

Subscriber in IMS/PS

only

Use forwarding

destination

PRN Response?

Set dialplan variable:

msrn

Bridge to MSRN via CS

Gateway

Route to IMS S-CSCF

Route to forwarding

destination

MSRN Retrieval for MT Calls to Roaming Subscribers

Success Failure

Bridge Success?

Call Connected
Route to Call Forward

No-Answer

Implementation Details

Step 1: Send Routing Information (SRI)

The TAS queries the HLR via SS7 MAP to get routing information for the called

subscriber.

SRI Response Scenarios:

1. MSRN directly in SRI - Roaming subscriber with MSRN already available

Response includes: MSISDN, GMSC, IMSI, and MSRN

Example MSRN: 61412345678 (Australian mobile number format)

2. IMSI + VLR number - Subscriber registered in CS network (requires PRN)

Response includes: MSISDN, GMSC, IMSI, and MSC/VLR number

Indicates subscriber is in CS network but MSRN must be requested

3. IMSI only (no VLR) - Subscriber not in CS network (IMS/PS only)

Response includes: MSISDN, GMSC, IMSI

Indicates subscriber is registered in IMS/4G only, not in CS network

4. Call forwarding active - SRI returns forwarding information

Response includes forwarding reason (unconditional, busy, no-reply,

not-reachable)

Response includes forwarded-to number

Step 2: Provide Roaming Number (PRN) - If Needed

If SRI returns IMSI + VLR but no MSRN, the TAS sends a PRN request to the VLR

to obtain the MSRN.

The VLR allocates a temporary MSRN from its pool and returns it to the TAS.

This MSRN is valid only for this specific call setup.

Example PRN Response: MSRN 61412345678

Dialplan Variable: msrn

Once the MSRN is retrieved via SS7 MAP, it's set as a dialplan variable that can

be used in the MT dialplan.

Variable: ${msrn}

Type: String (E.164 number without leading +)

Example: "61412345678" (Australian mobile format)

Usage: Route calls to CS roaming subscribers

Set by: HLR data retrieval process during MT call processing

Routing to MSRN in mt_dialplan.xml

The MSRN variable is used in the MT dialplan template to route calls to roaming

subscribers.

Dialplan logic:

1. Check for MSRN: Extension checks if msrn variable is set (contains digits)

2. Set timeout parameters:

Progress timeout: 10 seconds to receive early media

Bridge answer timeout: Uses subscriber's configured no-reply timer

3. Bridge to MSRN: Route call to MSRN via CS gateway

Uses ignore_early_media=ring_ready for consistent ringback

Codec preference: AMR (mobile), PCMA/PCMU (wireline)

Gateway: sofia/gateway/CS_Gateway/+${msrn}

4. Fallback on failure: If bridge fails, route to call forwarding destination

Example dialplan snippet:

Key Points

1. MSRN is temporary - Valid only for the duration of the call setup

2. CS network only - MSRN is used for 2G/3G roaming, not VoLTE/IMS

roaming

3. Priority in MT flow - MSRN check happens before standard IMS routing

4. Fallback to forwarding - If MSRN bridge fails, routes to call forwarding

destination

5. HLR overrides Sh - MSRN from HLR takes precedence over Sh subscriber

data

Configuration

SS7 MAP integration must be enabled in the TAS configuration:

Required settings:

enabled: Set to true to enable SS7 MAP queries

http_map_server_url_base: URL of your SS7 MAP gateway (e.g.,

"http://10.1.1.100:5001")

<extension name="Route-to-CS-MSRN" continue="false">

 <condition field="msrn" expression="^(\d+)$">

 <!-- Configure timeouts -->

 <action application="set" data="progress_timeout=10" />

 <action application="set" data="bridge_answer_timeout=${no_reply_

 <!-- Bridge to MSRN via CS gateway -->

 <action application="bridge"

 data="

{ignore_early_media=ring_ready,absolute_codec_string='AMR,PCMA,PCMU',

/>

 <!-- Fallback to voicemail/call forwarding -->

 <action application="bridge"

 data="sofia/internal/${call_forward_not_reachable_destination}@

 </condition>

</extension>

gmsc: Gateway MSC number for SRI/PRN requests (e.g., "61400000000")

timeout_ms: Query timeout in milliseconds (default: 5000ms)

See SS7 MAP Documentation for complete configuration details.

Call Forwarding Data Usage

Call forwarding settings determine how calls are routed when the primary

destination is unavailable. The TAS retrieves call forwarding data from two

sources: the Sh interface (HSS) and SS7 MAP (HLR), with HLR data taking

precedence.

Call Forwarding Types

The system supports four types of call forwarding:

Forwarding

Type
Variable When Act

Call Forward

Unconditional

(CFU)

call_forward_all_destination

Always forwa

all calls

immediately

Call Forward

Busy (CFB)
call_forward_not_reachable_destination

Subscriber's

busy

Call Forward

No Reply

(CFNRy)

call_forward_not_reachable_destination

Subscriber do

answer withi

timeout

Call Forward

Not

Reachable

(CFNRc)

call_forward_not_reachable_destination
Subscriber is

unreachable/

Data Sources

1. Sh Interface (HSS)

Static configuration stored in the HSS subscriber profile.

The TAS retrieves call forwarding settings from the HSS via Sh interface during

call processing. These are the provisioned/default settings for the subscriber.

Example retrieved data:

call_forward_all_destination : CFU destination (e.g., "61412345678")

call_forward_not_reachable_destination : CFB/CFNRy/CFNRc destination

(e.g., "61487654321")

no_reply_timer : Seconds before CFNRy triggers (e.g., "20")

2. SS7 MAP (HLR)

Real-time data from the HLR, which may differ from HSS if subscriber

changed settings via USSD/MMI codes (e.g., dialing *21* codes).

The TAS queries the HLR via SS7 MAP during call setup to get the current/active

forwarding settings.

HLR forwarding response includes:

forwarded_to_number: The destination number for forwarding (e.g.,

"61412345678")

reason: Forwarding type (unconditional, busy, no-reply, not-reachable)

notification flags: Whether to notify calling party, forwarding party, etc.

Mapping to dialplan variables:

If reason is unconditional → Sets call_forward_all_destination

If reason is busy, no-reply, or not-reachable → Sets

call_forward_not_reachable_destination

Variable Merging Priority

HLR data overrides Sh data when both are present.

The TAS retrieves subscriber data from both sources during MT call processing:

1. First, retrieves static configuration from HSS via Sh interface

2. Then, queries HLR via SS7 MAP for real-time settings

3. Merges the data, with HLR values taking precedence over Sh values

This ensures that recent subscriber changes (via USSD codes) are respected

even if HSS hasn't been updated yet.

Dialplan Variables

Available in MT calls:

Variable Type Example D

call_forward_all_destination String "61412345678"
CFU

num

call_forward_not_reachable_destination String "61487654321"
CFB

dest

no_reply_timer String "20"

Time

seco

CFN

Default values:

If not configured: "none" (string)

Check for presence: Use regex ^(?!none$).* to match any value except

"none"

Call Forwarding in mt_dialplan.xml

Example 1: Call Forward Unconditional (CFU)

Routes ALL incoming calls immediately to the forwarding destination. The

forwarding destination is typically an off-net number, so it uses an external

gateway.

Gateway used: sofia/gateway/ExternalSIPGateway (your PSTN/interconnect

gateway)

Template example:

Key points:

Uses external gateway because forwarding is typically to off-net number

Marks call-id with ;CALL_FORWARD_UNCONDITIONAL for tracking

Sets History-Info header to identify original called number

Example: Subscriber 61412345678 has CFU to 61487654321 - all calls

immediately forwarded

Example 2: Call Forward No Reply/Not Reachable

Used as fallback when bridge to primary destination fails (subscriber doesn't

answer, is busy, or unreachable).

<extension name="Check-Call-Forward-All">

 <condition field="${call_forward_all_destination}" expression="^(?!

 <action application="log" data="INFO Call Forward All Set to redi

 <!-- Set History-Info header for call forwarding -->

 <action application="set" data="sip_h_History-Info=<sip:${destina

 <!-- Mark call-id to indicate call forwarding type -->

 <action application="set" data="sip_call_id=${sip_call_id};CALL_F

 <!-- Bridge to off-net forwarding destination -->

 <action application="bridge"

 data="{absolute_codec_string='AMR-

WB,AMR,PCMA,PCMU',originate_retries=1,originate_timeout=60}sofia/gate

/>

 </condition>

</extension>

Example dialplan snippet:

Example scenario:

Subscriber 61412345678 has CFNRy to voicemail number 61487654321

Incoming call attempts to reach subscriber

No answer after 20 seconds (no_reply_timer)

Call forwarded to 61487654321 with History-Info header preserving original

destination

History-Info Header

The History-Info SIP header tracks call forwarding:

Purpose:

Indicates the call was originally for ${destination_number}

Allows downstream systems to identify forwarded calls

Used by voicemail systems to deposit to correct mailbox

Example in voicemail routing:

<!-- After bridge to MSRN or IMS fails... -->

<action application="log" data="INFO Failed to bridge Call - Routing

<!-- Set History-Info to indicate forwarding -->

<action application="set" data="sip_h_History-Info=<sip:${destination

<!-- Route to forwarding destination -->

<action application="bridge"

 data="

{absolute_codec_string='AMR,PCMU,PCMA',originate_timeout=65}sofia/gat

/>

<action application="set" data="sip_h_History-Info=

<sip:${destination_number}@${ims_domain}>;index=1.1" />

How it works:

Voicemail service numbers: 555121 , 555122 (generic short codes)

When call is forwarded to voicemail, History-Info contains original

destination

Voicemail system extracts original number from History-Info header

Voicemail deposited to original called party's mailbox, not voicemail service

number

Best Practices

1. Always check for "none" - Use regex ^(?!none$).* to avoid routing to

literal string "none"

2. Set History-Info - Always set when forwarding for proper call tracking

3. Use continue_on_fail - Allow fallback to forwarding if primary route fails

4. Adjust CLI format - National vs international prefix formatting (see Caller

ID section)

5. Test forwarding loops - Ensure forwarding destinations don't create

routing loops

<extension name="Voicemail Route" continue="false">

 <condition field="${tas_destination_number}"

expression="^(555121|555122)$">

 <!-- Extract the phone number from the History Info -->

 <action application="set"

data="history_info_value=${sip_i_history_info}"/>

 <action application="log" data="DEBUG Called Voicemail Deposit

Number for ${history_info_value}" />

 <!-- Deposit voicemail to ORIGINAL called party, not voicemail

number -->

 <action application="voicemail" data="default default

${history_info_value}"/>

 </condition>

</extension>

Caller ID (CLI) Management

The TAS manages Calling Line Identification (CLI) presentation and formatting

throughout the call flow, handling privacy requests, prefix normalization, and

network-specific formatting requirements.

CLI Variables

Core CLI variables in dialplans:

Variable Usage Example

msisdn
Subscriber's

number (no +)
"61412345678"

effective_caller_id_number
Displayed caller

number

"+61412345678" or

"anonymous"

effective_caller_id_name
Displayed caller

name

"+61412345678" or

"anonymous"

origination_caller_id_number
CLI for outbound

leg
"+61412345678"

caller_id_number

Standard

FreeSWITCH CLI

var

"+61412345678"

sip_from_user
SIP From header

user part

"0412345678" or

"+61412345678"

cli_withheld Privacy flag
"true" or "false"

(string)

origination_privacy Privacy setting "hide_number"

CLI Privacy (Withheld/Anonymous)

Detection Methods

The TAS detects CLI privacy requests through three methods:

1. Blocked Prefix in Dialed Number

Subscriber dials a prefix before the destination number to block their caller ID.

Common prefixes:

*67 - North American standard

#31# - European/GSM standard

1831 - Alternative format

The TAS checks if the dialed number starts with any configured blocked CLI

prefix. If detected, the cli_withheld variable is set to "true" .

Example: Subscriber dials *67555 1234 - the *67 prefix is detected and

removed, call proceeds to 5551234 with CLI withheld.

2. Anonymous in From Header

The user equipment (UE) sets the caller name to "anonymous" in the SIP From

header.

The TAS checks the Caller-Orig-Caller-ID-Name field (case-insensitive) for

the string "anonymous". If found, cli_withheld is set to "true" .

3. SIP Privacy Headers

The S-CSCF may set Privacy: id headers in the SIP INVITE, which are honored

by the dialplan.

Dialplan Implementation

The dialplan checks the cli_withheld variable and sets all CLI-related

variables accordingly.

Example dialplan snippet:

Note: This extension uses continue="true" so call processing continues to

routing extensions even after CLI is set.

CLI Format: National vs International

Different destinations may require different CLI formats depending on your

network's requirements.

Example: National Format

For national calls within your country, you may need to present CLI without the

country code.

Example dialplan snippet (Australian mobile network):

<extension name="Manage-Caller-ID" continue="true">

 <condition field="${cli_withheld}" expression="true">

 <!-- CLI is withheld - set to anonymous -->

 <action application="log" data="DEBUG CLI withheld detected"

/>

 <action application="set"

data="effective_caller_id_name=anonymous" />

 <action application="set"

data="effective_caller_id_number=anonymous" />

 <action application="set"

data="origination_caller_id_number=anonymous" />

 <action application="set"

data="origination_privacy=hide_number" />

 <!-- CLI is NOT withheld - use normal MSISDN -->

 <anti-action application="log" data="DEBUG CLI is normal (not

withheld)" />

 <anti-action application="set"

data="effective_caller_id_number=${msisdn}" />

 </condition>

</extension>

How it works:

Regex ^61(.*)$ captures everything after country code 61

Input: msisdn="61412345678" → Output: $1="412345678" or "0412345678"

Presents CLI in national format for domestic calls

Example: International Format

For international calls, present CLI in full E.164 format with + prefix.

Example dialplan snippet:

<extension name="Outgoing-Call-CLI-National" continue="true">

 <condition field="${msisdn}" expression="^61(.*)$">

 <action application="log" data="Setting source CLI to $1 for

national" />

 <action application="set"

data="effective_caller_id_number=$1"/> <!-- 0412345678 -->

 <action application="set" data="effective_caller_id_name=$1"/>

 <action application="set" data="sip_from_user=$1"/>

 <action application="set" data="sip_cid_type=pid"/>

 </condition>

</extension>

How it works:

Condition checks if destination starts with national prefix (e.g., 61 for

Australia)

<anti-action> executes when condition does NOT match (international

call)

Adds + prefix for full E.164 format on international calls

CLI Format for Call Forwarding

When routing to call forwarding destinations, you may need to adjust CLI

format depending on whether forwarding to on-net or off-net numbers.

Example: Adjusting CLI prefix for call forwarding

<extension name="Outgoing-Call-CLI-International" continue="true">

 <condition field="${tas_destination_number}"

expression="^61(.*)$">

 <action application="log" data="Call is to national" />

 <!-- Anti-action runs when destination is NOT national -->

 <anti-action application="log" data="Setting source CLI for

international" />

 <anti-action application="set"

data="effective_caller_id_number=+${msisdn}"/> <!-- +61412345678

-->

 <anti-action application="set"

data="effective_caller_id_name=+${msisdn}"/>

 <anti-action application="set"

data="sip_from_user=+${msisdn}"/>

 <anti-action application="set" data="sip_cid_type=pid"/>

 </condition>

</extension>

<!-- Adjust CLI format if needed for forwarding destination -->

<action application="set"

data="effective_caller_id_number=${effective_caller_id_number:3}"/>

<action application="set"

data="effective_caller_id_name=${effective_caller_id_name:3}"/>

String Slicing: ${variable:N} removes first N characters

Input: effective_caller_id_number="+61412345678" with :3 → Output:

"412345678"

Input: effective_caller_id_number="+61412345678" with :1 → Output:

"61412345678"

Use cases:

Remove + for national forwarding: Use :1

Remove country code for local format: Use appropriate offset (:3 for +61 ,

:2 for +1 , etc.)

SIP P-Asserted-Identity (PAI)

The sip_cid_type=pid setting controls how caller ID is presented:

Effect:

Sets SIP P-Asserted-Identity header with caller information

Used for trusted network caller ID assertion

Standard for IMS networks

Removing Proprietary Headers

To prevent leaking internal network information, dialplans should remove

proprietary or internal headers before routing calls off-net.

Example: Cleaning headers before external routing

<action application="set" data="sip_cid_type=pid"/>

Purpose:

Prevents internal routing data from reaching external networks

Removes vendor-specific proprietary headers

Privacy and security best practice

Reduces SIP message size

Common headers to remove:

Internal correlation/tracking IDs

Access network information (may reveal network topology)

Vendor-specific P-headers

Custom application headers meant for internal use only

Best Practices

1. Use continue="true" for CLI extensions - Allows multiple CLI formatting

rules

2. Set sip_cid_type=pid - Required for IMS network compliance

3. Test CLI withholding - Verify *67 and #31# prefixes work

4. Format per destination - National vs international CLI formatting

5. Remove proprietary headers - Prevent internal data leakage

6. Handle anonymous gracefully - Both display and routing should work

with anonymous CLI

<action application="set" data="sip_copy_multipart=false"/>

<action application="set" data="sip_copy_custom_headers=false"/>

<action application="unset" data="sip_h_P-Internal-Correlation-

ID"/>

<action application="unset" data="sip_h_P-Access-Network-Info"/>

<!-- Add more vendor-specific or internal headers as needed -->

Bridging to Gateways

The TAS bridges calls to external gateways (IMS core, PSTN, etc.) using

FreeSWITCH's bridge application with carefully configured parameters for

codec negotiation, timeout handling, and retry logic.

Gateway Configuration

Gateways are configured as SIP trunks to external systems. The TAS uses a

single SIP interface for all traffic, with different gateways defined for different

destinations.

Example gateway configuration:

See Configuration Guide for complete gateway setup.

Bridge Syntax

Calls are bridged to gateways using the following syntax:

Basic syntax:

With parameters:

<gateway name="CS_Gateway">

 <param name="proxy" value="10.1.1.100:5060"/>

 <param name="register" value="false"/>

 <param name="caller-id-in-from" value="true"/>

 <param name="extension-in-contact" value="true"/>

</gateway>

<action application="bridge"

data="sofia/gateway/GATEWAY_NAME/DESTINATION_NUMBER" />

Where GATEWAY_NAME is the name of the gateway defined in your configuration

(e.g., IMS_Core , PSTN_Primary , International_Gateway).

Bridge Parameters

Codec Selection

absolute_codec_string - Prioritized codec list for negotiation:

Codec priority order:

1. AMR (Adaptive Multi-Rate) - Mobile-optimized, preferred for cellular

2. PCMA (G.711 a-law) - Fixed-line standard in Europe/international

3. PCMU (G.711 μ-law) - Fixed-line standard in North America

Template usage: priv/templates/mt_dialplan.xml:80 ,

mo_dialplan.xml:124 , mo_dialplan.xml:202

Timeout Configuration

originate_timeout - Maximum seconds to wait for answer (includes ringing):

progress_timeout - Seconds to wait for 180/183 (early media/ringing):

<action application="bridge" data="

{param1=value1,param2=value2}sofia/gateway/GATEWAY_NAME/DESTINATION_N

/>

<action application="bridge" data="

{absolute_codec_string='AMR,PCMA,PCMU'}sofia/gateway/IMS_Gateway/+${m

/>

<action application="set" data="originate_timeout=60"/>

<action application="bridge" data="

{originate_timeout=60}sofia/gateway/CS_Gateway/+${msisdn}" />

bridge_answer_timeout - Seconds to wait for 200 OK after ringing starts:

leg_progress_timeout - Per-leg progress timeout:

Template example: priv/templates/mt_dialplan.xml:73-76

Variable: ${no_reply_timer} comes from subscriber data (typically 20-30

seconds)

Retry and Failure Handling

originate_retries - Number of retry attempts:

continue_on_fail - Continue dialplan execution after bridge failure:

<action application="set" data="progress_timeout=10" />

<action application="set"

data="bridge_answer_timeout=${no_reply_timer}" />

<action application="set"

data="leg_progress_timeout=${no_reply_timer}" />

<action application="set" data="progress_timeout=10" />

<!-- How long do we wait between the INVITE and a 200 OK

(Including RINGING) -->

<action application="set"

data="bridge_answer_timeout=${no_reply_timer}" />

<action application="set"

data="leg_progress_timeout=${no_reply_timer}" />

<action application="bridge" data="

{originate_retries=1}sofia/gateway/CS_Gateway/+${msisdn}" />

hangup_after_bridge - Hangup A-leg when B-leg hangs up:

Early Media Handling

ignore_early_media - Control early media behavior:

Options:

ring_ready - Generate local ringback, ignore remote early media

true - Completely ignore early media

false (default) - Pass through early media (announcements, tones)

Why use ring_ready? - Prevents caller from hearing network announcements

or tones from remote network

Template example: priv/templates/mt_dialplan.xml:78-79

On-net vs Off-net caller handling:

<action application="set" data="continue_on_fail=true" />

<action application="bridge" data="

{continue_on_fail=true}sofia/gateway/CS_Gateway/+${msisdn}" />

<!-- Subsequent actions execute if bridge fails -->

<action application="log" data="INFO Bridge failed - routing to

voicemail" />

<action application="set" data="hangup_after_bridge=true"/>

<action application="set" data="ignore_early_media=ring_ready" />

<action application="bridge" data="

{ignore_early_media=ring_ready}sofia/gateway/CS_Gateway/+${msisdn}"

/>

<action application="set" data="ignore_early_media=ring_ready" />

<action application="bridge" data="

{ignore_early_media=ring_ready,...}sofia/gateway/CS_Gateway/+${msrn}"

/>

Note: The ${on_net_caller} variable is set based on your network's

subscriber numbering plan. You can also use regex patterns to match your

specific number ranges.

Caller ID Parameters

sip_cid_type=pid - Use P-Asserted-Identity for caller ID:

Common Bridge Patterns

Pattern 1: Route to IMS Subscriber via IMS Domain

Route MT call to IMS subscriber by sending to the IMS domain (S-CSCF will

resolve and route).

Template example:

<extension name="Route-to-IMS-Sub-Early-Media" continue="true">

 <condition field="${on_net_caller}" expression="true">

 <!-- On-net caller - use ring_ready -->

 <action application="log" data="INFO On-net caller

${effective_caller_id_number} - using

ignore_early_media=ring_ready"/>

 <action application="set"

data="ignore_early_media=ring_ready"/>

 <!-- Off-net caller - provide instant ringback -->

 <anti-action application="log" data="INFO Off-net caller

${effective_caller_id_number} - setting instant ringback"/>

 <anti-action application="set" data="instant_ringback=true"/>

 <anti-action application="set" data="ringback=${fr-ring}"/>

 <anti-action application="set" data="transfer_ringback=${fr-

ring}"/>

 </condition>

</extension>

<action application="set" data="sip_cid_type=pid" />

<action application="bridge" data="

{sip_cid_type=pid}sofia/gateway/CS_Gateway/+${msisdn}" />

Key points:

Routes to ${msisdn}@${ims_domain} (e.g.,

5551234567@ims.mnc380.mcc313.3gppnetwork.org)

IMS core (S-CSCF/I-CSCF) handles final routing to subscriber

ignore_early_media=ring_ready provides consistent ringback

On failure, uses external gateway for off-net call forwarding

Sets History-Info and Diversion headers for call forwarding tracking

Pattern 2: Route to MSRN (CS Roaming)

<extension name="Route-to-IMS-Sub" continue="false">

 <condition field="destination_number" expression="^(.*)$">

 <action application="set" data="continue_on_fail=true" />

 <action application="set" data="hangup_after_bridge=true"/>

 <action application="set" data="progress_timeout=10" />

 <!-- How long do we wait between the INVITE and a 200 OK (Includi

 <action application="set" data="bridge_answer_timeout=${no_reply_

 <action application="set" data="leg_progress_timeout=${no_reply_t

 <!-- Send call to IMS domain (S-CSCF resolves) -->

 <action application="set" data="ignore_early_media=ring_ready" />

 <action application="set" data="sip_cid_type=pid" />

 <action application="bridge"

 data="{absolute_codec_string='AMR-

WB,AMR,PCMA,PCMU',ignore_early_media=ring_ready,continue_on_fail=true

/>

 <!-- Fallback to call forwarding if bridge fails -->

 <action application="log" data="INFO Failed to bridge Call - Rout

 <action application="set" data="sip_h_History-Info=<sip:${destina

 <action application="set" data="sip_h_Diversion=<sip:${destinatio

 <!-- Route to off-net gateway for call forwarding -->

 <action application="bridge"

 data="{absolute_codec_string='AMR-WB,AMR,PCMU,PCMA',originate_t

 </condition>

</extension>

Route to roaming subscriber via CS network:

Template: priv/templates/mt_dialplan.xml:67-80

Pattern 3: On-Net Routing (MO to MT via TAS)

When a subscriber calls another on-net subscriber, the call must be routed

back to the TAS for full MT processing. This pattern is critical for ensuring that

on-net calls receive the same service treatment as external MT calls.

Why this pattern is required:

Without routing back to TAS, on-net calls would bypass MT processing entirely,

meaning:

Call forwarding settings would not be honored

Voicemail-on-busy/no-answer would not work

MSRN routing for roaming subscribers would fail

Subscriber service logic would be skipped

Call tracking and CDRs would be incomplete

<extension name="Route-to-CS-MSRN" continue="false">

 <condition field="msrn" expression="^(\d+)$">

 <action application="set" data="continue_on_fail=true" />

 <action application="set" data="hangup_after_bridge=true"/>

 <action application="set" data="progress_timeout=10" />

 <action application="set" data="bridge_answer_timeout=${no_reply_

 <action application="set" data="leg_progress_timeout=${no_reply_t

 <!-- Send call to MSRN via Gateway -->

 <action application="set" data="ignore_early_media=ring_ready" />

 <action application="set" data="sip_cid_type=pid" />

 <action application="bridge"

 data="

{ignore_early_media=ring_ready,absolute_codec_string='AMR,PCMA,PCMU',

/>

 </condition>

</extension>

By routing the MO call back to the TAS as a new MT call, the destination

subscriber gets full service treatment.

Template example:

How it works:

1. MO Call Arrives: Subscriber A calls Subscriber B (both on-net)

2. Check On-Net Status: TAS determines destination is on-net via

${on_net_status} variable

3. Route to TAS: Bridge to

sofia/internal/${tas_destination_number}@${sip_local_network_addr}

Uses TAS's own IP address as destination

Preserves original call-id for tracking

4. MT Processing: TAS receives call as new MT call and processes

mt_dialplan.xml

Checks call forwarding settings (CFU, CFB, CFNRy, CFNRc)

Queries for MSRN if subscriber is roaming

Routes to IMS domain or forwards appropriately

5. Complete Service: Destination subscriber gets full MT treatment

Key points:

<extension name="On-Net-Route">

 <condition field="${on_net_status}" expression="true">

 <action application="log" data="DEBUG On-Net MO call - Routing ba

 <!-- Clean up headers for internal routing -->

 <action application="set" data="sip_copy_multipart=false"/>

 <action application="set" data="sip_h_Request-Disposition=no-fork

 <!-- Route back to TAS (becomes MT call) -->

 <action application="bridge"

 data="{absolute_codec_string='AMR-

WB,AMR,PCMA,PCMU',originate_retries=1,originate_timeout=60,sip_invite

/>

 <action application="hangup" data="" />

 </condition>

</extension>

Routes to ${sip_local_network_addr} (TAS IP address, e.g., 10.179.3.60)

Call is re-processed as MT call to destination subscriber

Preserves call-id with sip_invite_call_id parameter for end-to-end

tracking

Enables all MT features: call forwarding, voicemail, MSRN routing,

subscriber services

Proper call state tracking and CDR generation for both parties

On-net calls get identical service treatment to external MT calls

TAS IP must be in allowed_sbc_source_ips configuration list

Variable: ${on_net_status} is set to "true" when the destination number is

served by your TAS. This is determined during MO call authorization by

checking if the destination MSISDN exists in your subscriber database.

Pattern 4: Off-Net Routing (MO to PSTN/External)

Route MO call to external PSTN, interconnect, or other external network via

gateway.

Gateway used: sofia/gateway/ExternalSIPGateway or

sofia/gateway/PSTN_Gateway

Template example:

Key points:

Uses sofia/gateway/ExternalSIPGateway for external routing

Sets P-Asserted-Identity for caller ID on trusted interconnect

<extension name="Outgoing-Call-Off-Net">

 <condition field="${tas_destination_number}" expression="^(.*)$">

 <action application="log" data="Sending call off-net" />

 <!-- Clean up headers before external routing -->

 <action application="set" data="sip_copy_multipart=false"/>

 <!-- Set call event hooks for CDR/billing -->

 <action application="set" data='api_body=caller=${msisdn}&called=

 <action application="set" data='api_on_answer=curl http://localho

${api_body}'/>

 <action application="set" data='api_body=caller=${msisdn}&called=

 <action application="set" data='api_hangup_hook=curl http://local

${api_body}'/>

 <!-- Set P-Asserted-Identity for trusted network -->

 <action application="set" data="sip_h_Request-Disposition=no-fork

 <action application="set" data="sip_h_P-Asserted-Identity=<sip:${

 <action application="set" data="hangup_after_bridge=true"/>

 <action application="set" data="continue_on_fail=true"/>

 <!-- Bridge to external PSTN/interconnect gateway -->

 <action application="set" data="used_gateway=ExternalSIPGateway"/

 <action application="bridge"

 data="{absolute_codec_string='AMR-

WB,AMR,PCMA,PCMU',originate_retries=1,originate_timeout=60,sip_invite

/>

 <!-- If bridge fails, provide error treatment -->

 <action application="answer" data="" />

 <action application="log" data="INFO Bridge failed with SIP code

 <action application="sleep" data="500"/>

 <action application="transfer" data="${last_bridge_proto_specific

 </condition>

</extension>

Call event hooks for CDR/billing tracking

continue_on_fail=true allows error handling

On failure, transfers to error announcement based on SIP code

used_gateway variable for reporting/troubleshooting

Common off-net gateways:

ExternalSIPGateway - Primary PSTN trunk/interconnect

BackupSIPGateway - Backup PSTN trunk (for failover)

International_GW - International calling gateway

Emergency_GW - Emergency services gateway

Gateway Routing Strategy

All calls are routed via gateways. Understanding which gateway to use for

different call scenarios is critical for proper call routing:

On-Net vs Off-Net Decision Tree

MO Call MT Call

Yes No Yes Roaming CSForwarded

Call to Route

Call Type?

Destination

On-Net?

Subscriber

in IMS?

sofia/internal/

${tas_destination_number}

@${sip_local_network_addr}

sofia/gateway/ExternalSIPGateway/

${tas_destination_number}

sofia/internal/

${msisdn}@${ims_domain}

sofia/gateway/CS_Gateway/

+${msrn}

sofia/gateway/ExternalSIPGateway/

${call_forward_destination}

TAS re-processes

as MT call

IMS routes to

subscriber UE
PSTN/Interconnect CS Network (2G/3G)

Gateway Selection Decision Flow

Gateway Types and Organization

You will need to define your own gateways based on your network's

interconnection requirements. Gateways are typically organized by traffic type,

destination, or provider to enable flexible routing policies and cost optimization.

Common gateway usage patterns:

Gateway Type Usage Examples

PSTN/Interconnect Off-net call termination

• PSTN termination

• International carriers

• Other domestic

providers

CS Network
Circuit-switched

network

• 2G/3G roaming (MSRN)

• CS network integration

Emergency

Services
Emergency call routing

• 911/112/000 calls

• PSAP routing

Voicemail Platform Voicemail services
• Voicemail deposit

• Message retrieval

Common gateway organization patterns:

1. By Destination Type:

sofia/gateway/International_Gateway - International calls (least-cost

routing)

sofia/gateway/National_Gateway - Domestic/national calls

sofia/gateway/Mobile_Gateway - Mobile-to-mobile interconnect

sofia/gateway/Emergency_Gateway - Emergency services

(911/112/000)

2. By Provider:

sofia/gateway/Provider_A_Primary - Primary carrier for Provider A

traffic

sofia/gateway/Provider_A_Backup - Backup route for Provider A

sofia/gateway/Provider_B - Secondary carrier interconnect

sofia/gateway/Transit_Provider - Transit/hubbing provider

3. By Geographic Region:

sofia/gateway/APAC_Gateway - Asia-Pacific region

sofia/gateway/EMEA_Gateway - Europe/Middle East/Africa

sofia/gateway/Americas_Gateway - North/South America

4. By Function:

sofia/gateway/Voice_Gateway - Standard voice traffic

sofia/gateway/SMS_Gateway - SMS over SIP (if supported)

sofia/gateway/Wholesale_Gateway - Wholesale/carrier traffic

sofia/gateway/CS_Network_Gateway - Circuit-switched (2G/3G)

integration

Example: Multi-gateway configuration

Routing logic examples:

You can then route calls to different gateways based on your business logic:

<profile name="external">

 <gateways>

 <!-- International traffic -->

 <gateway name="International_Primary">

 <param name="proxy" value="10.1.1.100:5060"/>

 <param name="register" value="false"/>

 </gateway>

 <!-- National/domestic providers -->

 <gateway name="Domestic_Provider_A">

 <param name="proxy" value="10.1.2.100:5060"/>

 <param name="register" value="false"/>

 </gateway>

 <gateway name="Domestic_Provider_B">

 <param name="proxy" value="10.1.3.100:5060"/>

 <param name="register" value="false"/>

 </gateway>

 <!-- Emergency services -->

 <gateway name="Emergency_PSAP">

 <param name="proxy" value="10.1.4.100:5060"/>

 <param name="register" value="false"/>

 </gateway>

 <!-- CS network integration (for MSRN routing) -->

 <gateway name="CS_Network">

 <param name="proxy" value="10.1.5.100:5060"/>

 <param name="register" value="false"/>

 </gateway>

 </gateways>

</profile>

Best practices for gateway organization:

Use descriptive names that reflect the gateway's purpose

Plan for redundancy with primary/backup gateways

Organize by cost to enable least-cost routing policies

Separate critical traffic (emergency calls on dedicated gateway)

Document interconnection details for each gateway (SIP trunk

specifications, codec support)

<!-- International calls (country codes other than domestic) -->

<extension name="Route-International">

 <condition field="${tas_destination_number}"

expression="^(?!61).*$">

 <action application="bridge"

data="sofia/gateway/International_Primary/${tas_destination_number}"

/>

 </condition>

</extension>

<!-- Route to specific provider based on destination prefix -->

<extension name="Route-Provider-A">

 <condition field="${tas_destination_number}"

expression="^614\d{8}$">

 <action application="bridge"

data="sofia/gateway/Domestic_Provider_A/${tas_destination_number}"

/>

 </condition>

</extension>

<!-- Fallback routing with multiple gateways -->

<extension name="Route-With-Failover">

 <condition field="${tas_destination_number}" expression="^(.*)$">

 <action application="set" data="continue_on_fail=true"/>

 <action application="bridge"

data="sofia/gateway/Primary_Gateway/$1"/>

 <!-- If primary fails, try backup -->

 <action application="bridge"

data="sofia/gateway/Backup_Gateway/$1"/>

 </condition>

</extension>

Monitor gateway health and implement failover logic in dialplans

Common Routing Patterns

Pattern: On-net MO call

Pattern: Off-net MO call

Pattern: MT call to IMS subscriber

Pattern: MT call with CFU to off-net

Pattern: MT call to CS roaming subscriber

Configuration

See Configuration Guide for complete gateway configuration details.

Gateway configuration example:

Subscriber A (MO) → TAS → sofia/internal/B@TAS_IP → TAS (MT

processing) → IMS → Subscriber B

Subscriber A (MO) → TAS →

sofia/gateway/ExternalSIPGateway/+123456789 → PSTN

External → TAS (MT) → sofia/internal/msisdn@ims.domain → I-CSCF →

S-CSCF → Subscriber

External → TAS (MT) → CFU detected →

sofia/gateway/ExternalSIPGateway/+forwarding_number → PSTN

External → TAS (MT) → MSRN retrieved →

sofia/gateway/CS_Gateway/+msrn → CS Network → Subscriber

Best Practices

1. Always set codecs - Use absolute_codec_string to ensure proper codec

negotiation

2. Configure timeouts - Set progress_timeout and bridge_answer_timeout

appropriately

3. Handle failures - Use continue_on_fail=true with fallback actions

4. Clean headers - Remove proprietary headers before external routing

5. Use early media wisely - ring_ready prevents unexpected

announcements

6. Prevent forking - Set Request-Disposition: no-fork for sequential

routing

7. Log bridge results - Add logging before/after bridge for troubleshooting

8. Test retry logic - Verify originate_retries works as expected

<!-- External PSTN Gateway -->

<gateway name="ExternalSIPGateway">

 <param name="proxy" value="10.1.1.100:5060"/>

 <param name="register" value="false"/>

 <param name="caller-id-in-from" value="true"/>

</gateway>

<!-- CS Network Gateway (for MSRN routing) -->

<gateway name="CS_Gateway">

 <param name="proxy" value="10.1.1.200:5060"/>

 <param name="register" value="false"/>

 <param name="caller-id-in-from" value="true"/>

</gateway>

<!-- Emergency Services Gateway -->

<gateway name="Emergency_GW">

 <param name="proxy" value="10.1.1.250:5060"/>

 <param name="register" value="false"/>

 <param name="caller-id-in-from" value="true"/>

</gateway>

Troubleshooting

Enable FreeSWITCH debug logging:

Common issues:

Issue Cause Solution

No audio Codec mismatch Check absolute_codec_string

Call drops

immediately

Gateway

unreachable
Verify gateway configuration

Timeout too

short

originate_timeout

too low
Increase timeout values

Unwanted

announcements

Early media passing

through

Use

ignore_early_media=ring_ready

Wrong caller ID
sip_cid_type not

set
Set sip_cid_type=pid

<action application="set" data="sip_trace=on"/>

<action application="info" data=""/> <!-- Dumps all variables to

log -->

Prometheus Metrics

and Monitoring Guide

Overview

OmniTAS exports comprehensive operational metrics in Prometheus format for

monitoring, alerting, and observability. This guide covers all available metrics,

their usage, troubleshooting, and monitoring best practices.

Metrics Endpoint

All metrics are exposed at: http://<tas-ip>:8080/metrics

Complete Metric Reference

Diameter Metrics

diameter_response_duration_milliseconds

Type: Histogram Labels: application (ro, sh), command (ccr, cca, etc),

result (success, error, timeout) Buckets: 10, 50, 100, 250, 500, 1000, 2500,

5000, 10000 ms Description: Duration of Diameter requests in milliseconds

Usage:

Average Diameter Response Time

rate(diameter_response_duration_milliseconds_sum[5m]) /

rate(diameter_response_duration_milliseconds_count[5m])

P95 Diameter latency

histogram_quantile(0.95,

rate(diameter_response_duration_milliseconds_bucket[5m]))

Alert When:

P95 > 1000ms - Slow Diameter responses

diameter_requests_total

Type: Counter Labels: application (ro, sh), command (ccr, udr, etc)

Description: Total number of Diameter requests sent

Usage:

diameter_responses_total

Type: Counter Labels: application (ro, sh), command (ccr, udr, etc),

result_code (2001, 3002, 5xxx, etc) Description: Total number of Diameter

responses received

Usage:

diameter_peer_state

Type: Gauge Labels: peer_host , peer_realm , application (ro, sh)

Description: State of Diameter peers (1=up, 0=down) Update interval:

Every 10 seconds

Usage:

Alert When:

Request rate

rate(diameter_requests_total[5m])

Success rate

rate(diameter_responses_total{result_code="2001"}[5m]) /

rate(diameter_responses_total[5m]) * 100

Check for down peers

diameter_peer_state == 0

Any peer down for > 1 minute

Dialplan Generation Metrics

1. HTTP Request Metrics

http_dialplan_request_duration_milliseconds

Type: Histogram Labels: call_type (mt, mo, emergency, unknown)

Description: End-to-end HTTP request duration from when the dialplan

HTTP request is received to when the response is sent. This includes all

processing: parameter parsing, authorization, Diameter lookups (Sh/Ro), HLR

lookups (SS7 MAP), and XML generation.

Usage:

Alert When:

Average end-to-end HTTP request time

rate(http_dialplan_request_duration_milliseconds_sum[5m]) /

rate(http_dialplan_request_duration_milliseconds_count[5m])

P95 by call type

histogram_quantile(0.95,

 rate(http_dialplan_request_duration_milliseconds_bucket[5m])

) by (call_type)

Compare MT vs MO performance

histogram_quantile(0.95,

rate(http_dialplan_request_duration_milliseconds_bucket{call_type="mt

[5m])

)

vs

histogram_quantile(0.95,

rate(http_dialplan_request_duration_milliseconds_bucket{call_type="mo

[5m])

)

P95 > 2000ms - Slow HTTP response times

P95 > 3000ms - Critical performance issue

P99 > 5000ms - Severe performance degradation

Any requests showing call_type="unknown" - Call type detection failure

Insights:

This is the most important metric for understanding user-facing latency

Typical values: P50: 100-500ms, P95: 500-2000ms, P99: 1000-3000ms

Includes all component timings (Sh + HLR + OCS + processing)

If this is slow, drill down into component metrics (subscriber_data, hlr_data,

ocs_authorization)

Expected range: 100ms (fast local calls) to 5000ms (slow with

retries/timeouts)

Important Notes:

Replaces the older dialplan_generation_duration_milliseconds metric

which only measured XML generation

Accurately reflects what FreeSWITCH/SBC experiences

Use this for SLA monitoring and capacity planning

2. Subscriber Data Metrics

subscriber_data_duration_milliseconds

Type: Histogram Labels: result (success, error) Description: Time taken to

retrieve subscriber data from Sh interface (HSS)

Usage:

Alert When:

P95 > 100ms - Slow HSS responses

P95 > 500ms - Critical HSS performance issue

subscriber_data_lookups_total

Type: Counter Labels: result (success, error) Description: Total number of

subscriber data lookups

Usage:

Alert When:

Error rate > 5% - HSS connectivity issues

Error rate > 20% - Critical HSS failure

2. HLR Data Metrics

hlr_data_duration_milliseconds

Average Sh lookup time

rate(subscriber_data_duration_milliseconds_sum[5m]) /

rate(subscriber_data_duration_milliseconds_count[5m])

95th percentile Sh lookup time

histogram_quantile(0.95,

 rate(subscriber_data_duration_milliseconds_bucket[5m])

)

Sh lookup rate

rate(subscriber_data_lookups_total[5m])

Sh error rate

rate(subscriber_data_lookups_total{result="error"}[5m])

Sh success rate percentage

(rate(subscriber_data_lookups_total{result="success"}[5m]) /

 rate(subscriber_data_lookups_total[5m])) * 100

Type: Histogram Labels: result (success, error) Description: Time taken to

retrieve HLR data via SS7 MAP

Usage:

Alert When:

P95 > 500ms - Slow SS7 MAP responses

P95 > 2000ms - Critical SS7 MAP issue

hlr_lookups_total

Type: Counter Labels: result_type (msrn, forwarding, error, unknown)

Description: Total HLR lookups by result type

Usage:

Alert When:

Average HLR lookup time

rate(hlr_data_duration_milliseconds_sum[5m]) /

rate(hlr_data_duration_milliseconds_count[5m])

95th percentile HLR lookup time

histogram_quantile(0.95,

 rate(hlr_data_duration_milliseconds_bucket[5m])

)

HLR lookup rate by type

rate(hlr_lookups_total[5m])

MSRN discovery rate (roaming subscribers)

rate(hlr_lookups_total{result_type="msrn"}[5m])

Call forwarding discovery rate

rate(hlr_lookups_total{result_type="forwarding"}[5m])

HLR error rate

rate(hlr_lookups_total{result_type="error"}[5m])

Error rate > 10% - SS7 MAP issues

Sudden drop in MSRN rate - Possible roaming issue

Insights:

High MSRN rate indicates many roaming subscribers

High forwarding rate indicates many forwarded calls

Compare to call volume for roaming percentage

3. OCS Authorization Metrics

ocs_authorization_duration_milliseconds

Type: Histogram Labels: result (success, error) Description: Time taken for

OCS authorization

Usage:

Alert When:

P95 > 1000ms - Slow OCS responses

P95 > 5000ms - Critical OCS performance issue

ocs_authorization_attempts_total

Type: Counter Labels: result (success, error), skipped (yes, no)

Description: Total OCS authorization attempts

Usage:

Average OCS auth time

rate(ocs_authorization_duration_milliseconds_sum[5m]) /

rate(ocs_authorization_duration_milliseconds_count[5m])

95th percentile OCS auth time

histogram_quantile(0.95,

 rate(ocs_authorization_duration_milliseconds_bucket[5m])

)

Alert When:

Error rate > 5% - OCS connectivity issues

Success rate < 95% - OCS declining too many calls

Insights:

High skip rate indicates many emergency/free calls

Error rate spikes indicate OCS outages

Compare success rate to business expectations

4. Call Processing Metrics

call_param_errors_total

Type: Counter Labels: error_type (parse_failed, missing_required_params)

Description: Call parameter parsing errors

Usage:

OCS authorization rate

rate(ocs_authorization_attempts_total{skipped="no"}[5m])

OCS error rate

rate(ocs_authorization_attempts_total{result="error",skipped="no"}

[5m])

OCS skip rate (emergency, voicemail, etc.)

rate(ocs_authorization_attempts_total{skipped="yes"}[5m])

OCS success rate percentage

(rate(ocs_authorization_attempts_total{result="success",skipped="no"}

[5m]) /

 rate(ocs_authorization_attempts_total{skipped="no"}[5m])) * 100

Alert When:

Any errors > 0 - Indicates malformed call parameter requests

Errors > 1% of call volume - Critical issue

authorization_decisions_total

Type: Counter Labels: disposition (mt, mo, emergency, unauthorized),

result (success, error) Description: Authorization decisions by call type

Usage:

Alert When:

Unauthorized rate > 1% - Possible attack or misconfiguration

Sudden spike in emergency calls - Possible emergency event

Unexpected change in MT/MO ratio - Possible issue

Parameter error rate

rate(call_param_errors_total[5m])

Errors by type

rate(call_param_errors_total[5m]) by (error_type)

Authorization rate by disposition

rate(authorization_decisions_total[5m]) by (disposition)

MT call rate

rate(authorization_decisions_total{disposition="mt"}[5m])

MO call rate

rate(authorization_decisions_total{disposition="mo"}[5m])

Emergency call rate

rate(authorization_decisions_total{disposition="emergency"}[5m])

Unauthorized call rate

rate(authorization_decisions_total{disposition="unauthorized"}

[5m])

Insights:

MT/MO ratio indicates traffic patterns

Emergency call rate indicates service usage

Unauthorized rate indicates security posture

freeswitch_variable_set_duration_milliseconds

Type: Histogram Labels: batch_size (1, 5, 10, 25, 50, 100) Description:

Time to set Dialplan Variables

Usage:

Alert When:

P95 > 100ms - Slow variable set performance

Growing trend - Possible system performance issue

5. Module Processing Metrics

dialplan_module_duration_milliseconds

Type: Histogram Labels: module (MT, MO, Emergency, CallParams, etc.),

call_type Description: Processing time for each dialplan module

Usage:

Average variable set time

rate(freeswitch_variable_set_duration_milliseconds_sum[5m]) /

rate(freeswitch_variable_set_duration_milliseconds_count[5m])

Variable set time by batch size

histogram_quantile(0.95,

 rate(freeswitch_variable_set_duration_milliseconds_bucket[5m])

) by (batch_size)

Alert When:

Any module P95 > 500ms - Performance issue

Growing trend in any module - Potential leak or issue

Insights:

Identify which module is slowest

Optimize the slowest modules first

Compare module times across call types

6. Call Volume Metrics

call_attempts_total

Type: Counter Labels: call_type (mt, mo, emergency, unauthorized), result

(success, rejected) Description: Total call attempts

Usage:

Processing time by module

histogram_quantile(0.95,

 rate(dialplan_module_duration_milliseconds_bucket[5m])

) by (module)

MT module processing time

histogram_quantile(0.95,

 rate(dialplan_module_duration_milliseconds_bucket{module="MT"}

[5m])

)

Alert When:

Rejected rate > 5% - Possible issue

Sudden drop in call volume - Service outage

Sudden spike in call volume - Possible attack

active_calls

Type: Gauge Labels: call_type (mt, mo, emergency) Description: Currently

active calls

Usage:

Alert When:

Active calls > capacity - Overload

Active calls = 0 for extended time - Service down

Call attempt rate

rate(call_attempts_total[5m])

Success rate by call type

(rate(call_attempts_total{result="success"}[5m]) /

 rate(call_attempts_total[5m])) * 100 by (call_type)

Rejected call rate

rate(call_attempts_total{result="rejected"}[5m])

Current active calls

active_calls

Active calls by type

active_calls by (call_type)

Peak active calls (last hour)

max_over_time(active_calls[1h])

7. Simulation Metrics

call_simulations_total

Type: Counter Labels: call_type (mt, mo, emergency, unauthorized), source

(web, api) Description: Call simulations run

Usage:

Insights:

Track diagnostic tool usage

Identify heavy users

Correlate with troubleshooting activity

8. SS7 MAP Metrics

ss7_map_http_duration_milliseconds

Type: Histogram Labels: operation (sri, prn), result (success, error,

timeout) Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000, 10000 ms

Description: Duration of SS7 MAP HTTP requests in milliseconds

Usage:

Alert When:

P95 > 500ms - Slow SS7 MAP responses

Simulation rate

rate(call_simulations_total[5m])

Simulations by type

rate(call_simulations_total[5m]) by (call_type)

SS7 MAP Error Rate

rate(ss7_map_operations_total{result="error"}[5m]) /

rate(ss7_map_operations_total[5m]) * 100

Error rate > 50% - Critical SS7 MAP issue

ss7_map_operations_total

Type: Counter Labels: operation (sri, prn), result (success, error)

Description: Total number of SS7 MAP operations

9. Online Charging Metrics

online_charging_events_total

Type: Counter Labels: event_type (authorize, answer, reauth, hangup),

result (success, nocredit, error, timeout) Description: Total number of online

charging events

Usage:

Alert When:

High rate of credit failures

10. System State Metrics

tracked_registrations

Type: Gauge Description: Number of currently active SIP registrations (from

FreeSWITCH Sofia registration database) Update interval: Every 10 seconds

Notes:

Automatically decrements when registrations expire (FreeSWITCH manages

expiration)

tracked_call_sessions

OCS Credit Failures

rate(online_charging_events_total{result="nocredit"}[5m])

Type: Gauge Description: Number of currently tracked call sessions in ETS

Update interval: Every 10 seconds

11. HTTP Request Metrics

http_requests_total

Type: Counter Labels: endpoint (dialplan, call_event, directory, voicemail,

sms_ccr, metrics), status_code (200, 400, 500, etc) Description: Total

number of HTTP requests by endpoint

Usage:

Alert When:

HTTP 5xx error rate > 10%

12. Call Rejection Metrics

call_rejections_total

Type: Counter Labels: call_type (mo, mt, emergency, unknown), reason

(nocredit, unauthorized, parse_failed, missing_params, hlr_error, etc)

Description: Total number of call rejections by reason

Usage:

Alert When:

Rejection rate > 1/sec - Investigation needed

HTTP Error Rate

rate(http_requests_total{status_code=~"5.."}[5m]) /

rate(http_requests_total[5m]) * 100

Call Rejection Rate by Reason

sum by (reason) (rate(call_rejections_total[5m]))

13. Event Socket Connection Metrics

event_socket_connected

Type: Gauge Labels: connection_type (main, log_listener) Description:

Event Socket connection state (1=connected, 0=disconnected) Update

interval: Real-time on connection state changes

Usage:

Alert When:

Connection down for > 30 seconds

event_socket_reconnections_total

Type: Counter Labels: connection_type (main, log_listener), result

(attempting, success, failed) Description: Total number of Event Socket

reconnection attempts

Grafana Dashboard Integration

The metrics can be visualized in Grafana using the Prometheus data source.

Recommended panels:

Dashboard 1: Call Volume

Active calls gauge

Call attempts rate by type (MO/MT/Emergency)

Call rejection rate

Dashboard 2: Diameter Performance

Response time heatmap

Event Socket Connection Status

event_socket_connected

Request/response rates

Peer status table

Error rate by result code

Dashboard 3: Online Charging Health

Credit authorization success rate

"No credit" event rate

OCS timeout rate

Dashboard 4: System Performance

Dialplan generation latency (P50/P95/P99)

SS7 MAP response times

Overall system availability

Recommended Grafana Dashboard Layout

Row 1: Call Volume

Call attempts rate (by type)

Active calls gauge

Success rate percentage

Row 2: Performance

P95 HTTP dialplan request time (by call type) - PRIMARY METRIC

P95 Sh lookup time

P95 HLR lookup time

P95 OCS authorization time

P95 dialplan module processing time (by module)

Row 3: Success Rates

Sh lookup success rate

HLR lookup success rate

OCS authorization success rate

Call attempt success rate

Row 4: Module Performance

P95 processing time by module

Module call counts

Row 5: Errors

Parameter errors

Unauthorized attempts

Sh errors

HLR errors

OCS errors

Critical Alerts

Priority 1 (Page immediately):

Priority 2 (Alert):

Dialplan completely down

rate(call_attempts_total[5m]) == 0

HSS completely down

rate(subscriber_data_lookups_total{result="error"}[5m]) /

rate(subscriber_data_lookups_total[5m]) > 0.9

OCS completely down

rate(ocs_authorization_attempts_total{result="error"}[5m]) /

rate(ocs_authorization_attempts_total[5m]) > 0.9

Priority 3 (Warning):

Slow dialplan generation

histogram_quantile(0.95,

 rate(dialplan_generation_duration_milliseconds_bucket[5m])

) > 1000

High HSS error rate

rate(subscriber_data_lookups_total{result="error"}[5m]) /

rate(subscriber_data_lookups_total[5m]) > 0.2

High OCS error rate

rate(ocs_authorization_attempts_total{result="error"}[5m]) /

rate(ocs_authorization_attempts_total[5m]) > 0.1

Elevated HSS latency

histogram_quantile(0.95,

 rate(subscriber_data_duration_milliseconds_bucket[5m])

) > 100

Elevated OCS latency

histogram_quantile(0.95,

 rate(ocs_authorization_duration_milliseconds_bucket[5m])

) > 1000

Moderate error rate

rate(call_attempts_total{result="rejected"}[5m]) /

rate(call_attempts_total[5m]) > 0.05

Alerting Examples

Diameter Peer Down

High Diameter Latency

OCS Credit Failures

alert: DiameterPeerDown

expr: diameter_peer_state == 0

for: 1m

annotations:

 summary: "Diameter peer {{ $labels.peer_host }} is down"

alert: HighDiameterLatency

expr: histogram_quantile(0.95,

rate(diameter_response_duration_milliseconds_bucket[5m])) > 1000

for: 5m

annotations:

 summary: "Diameter P95 latency above 1s"

alert: HighOCSCreditFailures

expr: rate(online_charging_events_total{result="nocredit"}[5m]) >

0.1

for: 2m

annotations:

 summary: "High rate of OCS credit failures"

SS7 MAP Gateway Errors

Event Socket Disconnected

High Call Rejection Rate

HTTP Error Rate High

alert: SS7MapErrors

expr: rate(ss7_map_operations_total{result="error"}[5m]) /

rate(ss7_map_operations_total[5m]) > 0.5

for: 3m

annotations:

 summary: "SS7 MAP error rate above 50%"

alert: EventSocketDown

expr: event_socket_connected == 0

for: 30s

annotations:

 summary: "Event Socket {{ $labels.connection_type }}

disconnected"

alert: HighCallRejectionRate

expr: rate(call_rejections_total[5m]) > 1

for: 2m

annotations:

 summary: "High call rejection rate: {{ $value }} rejections/sec"

alert: HighHTTPErrorRate

expr: rate(http_requests_total{status_code=~"5.."}[5m]) /

rate(http_requests_total[5m]) > 0.1

for: 3m

annotations:

 summary: "HTTP 5xx error rate above 10%"

Troubleshooting with Metrics

Problem: Call type showing as "unknown"

Symptoms:

All metrics show call_type="unknown" instead of mt , mo , or emergency

Cannot differentiate performance between call types

Root Cause: The call type extraction is failing or not being properly passed

through the processing pipeline.

Investigation:

1. Check logs for "HTTP dialplan request" messages - they should show the

correct call type

2. Review system logs for call type processing errors

Resolution: Contact support if call type detection continues to fail.

Problem: Calls are slow

Investigation:

1. Check http_dialplan_request_duration_milliseconds P95 - START

HERE

2. If high, check component timings:

Check subscriber_data_duration_milliseconds for Sh delays

Check hlr_data_duration_milliseconds for HLR delays

Check ocs_authorization_duration_milliseconds for OCS delays

Check dialplan_module_duration_milliseconds for module-specific

delays

3. Check if call_type="unknown" - indicates call type detection failure

4. Compare MT vs MO vs Emergency processing times

5. Correlate with system logs for detailed error messages

Resolution: Optimize the slowest component

Problem: Calls are failing

Investigation:

1. Check call_attempts_total{result="rejected"} rate

2. Check subscriber_data_lookups_total{result="error"} for Sh issues

3. Check hlr_lookups_total{result_type="error"} for HLR issues

4. Check ocs_authorization_attempts_total{result="error"} for OCS

issues

5. Check authorization_decisions_total{disposition="unauthorized"} for

auth issues

Resolution: Fix the failing component

Problem: High load

Investigation:

1. Check active_calls current value

2. Check call_attempts_total rate

3. Check if rate matches expected traffic

4. Compare MT vs MO ratio

5. Check for unusual patterns (spikes, steady growth)

Resolution: Scale up or investigate unusual traffic

Problem: Roaming issues

Investigation:

1. Check hlr_lookups_total{result_type="msrn"} rate

2. Check hlr_data_duration_milliseconds for delays

3. Use HLR Lookup tool for specific subscribers

4. Check if MSRN is being retrieved correctly

Resolution: Fix HLR connectivity or configuration

Performance Baselines

Typical Values (Well-Tuned System)

HTTP dialplan request (end-to-end): P50: 100-500ms, P95: 500-

2000ms, P99: 1000-3000ms

Sh lookup time: P50: 15ms, P95: 50ms, P99: 100ms

HLR lookup time: P50: 100ms, P95: 300ms, P99: 800ms

OCS auth time: P50: 150ms, P95: 500ms, P99: 1500ms

Dialplan module processing: P50: 1-5ms, P95: 10-25ms, P99: 50ms

Sh success rate: > 99%

HLR success rate: > 95% (lower is normal due to offline subscribers)

OCS success rate: > 98%

Call success rate: > 99%

Note: HTTP dialplan request time is the sum of all component times plus

overhead. It should roughly equal: Sh lookup + HLR lookup + OCS auth +

dialplan module processing + network/parsing overhead. Minimum expected

time is ~100ms (when only Sh lookup is needed), maximum typical time is

~2000ms (with all lookups and retries).

Capacity Planning

Monitor these trends:

Growth in call_attempts_total rate

Growth in active_calls peak

Stable or improving P95 latencies

Stable or improving success rates

Plan for scaling when:

Active calls approaching 80% of capacity

P95 latencies growing despite stable load

Success rates declining despite stable external systems

Integration with Logging

Correlate metrics with logs:

1. High error rate in metrics → Search logs for ERROR messages

2. Slow response times → Search logs for WARNING messages about timeouts

3. Specific call issues → Search logs by call ID or phone number

4. Use simulation tool to reproduce and debug

Best Practices

1. Set up dashboards before issues occur

2. Define alert thresholds based on your baseline

3. Test alerts by using Call Simulator

4. Review metrics weekly to identify trends

5. Correlate metrics with business events (campaigns, outages, etc.)

6. Use metrics to justify infrastructure investments

7. Share dashboards with operations team

8. Document your alert response procedures

Configuration

Metrics collection is automatically enabled when the application starts. The

metrics endpoint is exposed on the same port as the API (default: 8080).

To configure Prometheus to scrape metrics, add this job to your

prometheus.yml :

scrape_configs:

 - job_name: 'omnitas'

 static_configs:

 - targets: ['<tas-ip>:8080']

 metrics_path: '/metrics'

 scrape_interval: 10s

Metric Cardinality

The metrics are designed with controlled cardinality to avoid overwhelming

Prometheus:

Peer labels: Limited to configured peers only

Call types: Fixed set (mo, mt, emergency, unauthorized)

Result codes: Limited to actual Diameter/OCS result codes received

Operations: Fixed set per interface (sri/prn for MAP, ccr/cca for Diameter)

Total estimated time series: ~200-500 depending on number of configured

peers and active result codes.

Metric Retention

Recommended retention periods:

Raw metrics: 30 days (high resolution)

5-minute aggregates: 90 days

1-hour aggregates: 1 year

Daily aggregates: 5 years

This supports:

Real-time troubleshooting (raw metrics)

Weekly/monthly analysis (5-min/1-hour aggregates)

Capacity planning (daily aggregates)

Historical comparison (yearly aggregates)

HLR Lookup and Call

Simulator - User Guide

Overview

Two new diagnostic tools have been added to help operations staff troubleshoot

call routing issues without affecting live traffic.

HLR Lookup Tool

Purpose

The HLR Lookup tool queries the Home Location Register (HLR) via SS7 MAP

protocol to retrieve real-time subscriber routing information.

Access

Navigate to /hlr or click "HLR" in the navigation menu.

What It Shows

For any phone number, the HLR Lookup displays:

1. MSRN (Mobile Station Roaming Number)

Temporary routing number assigned when subscriber roams to 2G/3G

network

Only present if subscriber is currently roaming

Used by the dialplan to route calls to roaming subscriber's current

location

2. Call Forwarding Settings

Real-time call forwarding configuration from HLR

Types: Unconditional, Busy, No-Reply, Not-Reachable

Shows forwarding destination number

Shows if notification is enabled

3. Dialplan Variables

Exactly which channel variables will be set

Variables match those used in actual call processing

Shows how HLR data overrides Sh data

Use Cases

Diagnosing Roaming Issues

Scenario: Incoming call to roaming subscriber fails or routes incorrectly

Steps:

1. Open HLR Lookup page

2. Enter the subscriber's phone number

3. Click "Lookup HLR Data"

4. Check for MSRN in results

5. If MSRN present: Subscriber is roaming, verify MSRN is valid

6. If no MSRN: Subscriber may be in LTE/VoLTE (no MSRN needed)

Verifying Call Forwarding

Scenario: Call forwarding not working as expected

Steps:

1. Open HLR Lookup page

2. Enter the subscriber's phone number

3. Click "Lookup HLR Data"

4. Look for "Call Forwarding" in results

5. Verify forwarding type (Unconditional, Busy, etc.)

6. Verify forwarding destination number

7. Note: HLR data overrides any Sh/HSS data

Testing HLR Connectivity

Scenario: Verify SS7 MAP gateway is working

Steps:

1. Open HLR Lookup page

2. Enter any known subscriber number

3. Click "Lookup HLR Data"

4. Check for "Error" in results

5. If error: Check SS7 MAP gateway connectivity

6. Common errors:

"SS7 MAP is disabled" - Check configuration

"Timeout" - Network issue to HLR

"No VLR Number" - Subscriber offline or doesn't exist

Information Box

The HLR Lookup page includes educational information explaining:

What MSRN is and when it's used

How call forwarding works in HLR

How this integrates with call processing

SS7 MAP protocol basics

Call Simulator Tool

Purpose

The Call Simulator allows you to simulate complete call routing without actually

placing a call or affecting live traffic.

Access

Navigate to /simulator or click "Simulator" in the navigation menu.

Features

Input Parameters

1. Source Number (Caller)

Phone number of calling party

For MT calls: Can be any number

For MO calls: Must be provisioned subscriber

2. Destination Number (Called Party)

Phone number of called party

For MT calls: Must be provisioned subscriber

For MO calls: Can be any number

For Emergency: Use "urn:service:sos" or similar

3. Source IP Address

IP address of SIP signaling source

Must be in allowed_sbc_source_ips (for MT) or allowed_cscf_ips (for

MO)

Determines call disposition (MT vs MO)

4. Force Disposition

Auto: Determine from IP address (normal behavior)

MT: Force Mobile Terminating (incoming)

MO: Force Mobile Originating (outgoing)

Emergency: Force emergency call processing

5. Options

Skip OCS Authorization: Bypass online charging (faster simulation)

Skip HLR Lookup: Bypass SS7 MAP query (faster simulation)

Output

The simulator shows comprehensive results:

1. Call Type Banner

MT, MO, or Emergency

Color-coded for quick identification

Shows source and destination numbers

2. Processing Steps (Left Column)

Subscriber Data: Results from Sh interface (HSS)

HLR Data: Results from SS7 MAP lookup (MT only)

OCS Authorization: Results from online charging (MO only)

On-Net Status: Whether destination is on your network (MO only)

3. Dialplan Variables (Right Column)

Every variable that would be set on the channel

Sorted alphabetically for easy reading

Color-coded values (green for normal, red for errors)

4. Processing Notes

Step-by-step explanation of what happened

Describes data flow and decision points

Helps understand why certain variables were set

Use Cases

Pre-Flight Testing

Scenario: Testing configuration change before deploying to production

Steps:

1. Make configuration change in dev/test environment

2. Open Call Simulator

3. Test multiple scenarios:

MT call from your SBC

MO call from your CSCF

Emergency call

On-net destination

Off-net destination

4. Verify all variables are correct

5. Check processing notes for any issues

6. Deploy to production with confidence

Debugging MT Call Issues

Scenario: Incoming calls to subscriber failing

Steps:

1. Open Call Simulator

2. Enter destination as the problem subscriber

3. Enter source as test number

4. Set source IP to your SBC IP

5. Leave Force Disposition as "Auto"

6. Click "Simulate Call"

7. Check Subscriber Data section for Sh lookup success

8. Check HLR Data section for MSRN or forwarding

9. Check Final Variables for hangup_case

10. If hangup_case is "UNALLOCATED_NUMBER": Subscriber not provisioned

11. If variables look correct: Issue may be in dialplan template

Debugging MO Call Issues

Scenario: Outgoing calls from subscriber failing

Steps:

1. Open Call Simulator

2. Enter source as the problem subscriber

3. Enter destination as test number

4. Set source IP to your CSCF IP

5. Uncheck "Skip OCS Authorization" if testing charging

6. Click "Simulate Call"

7. Check Caller Data section for Sh lookup success

8. Check OCS Authorization section for success/failure

9. Check On-Net Status to verify correct routing

10. Check Final Variables for allocated_time or hangup_case

11. If hangup_case is "OUTGOING_CALL_BARRED": OCS denied the call

Testing Emergency Call Handling

Scenario: Verify emergency calls work correctly

Steps:

1. Open Call Simulator

2. Enter source as test subscriber

3. Enter destination as "urn:service:sos"

4. Set any source IP (emergency calls bypass IP auth)

5. Click "Simulate Call"

6. Verify Call Type shows "Emergency (SOS)"

7. Verify hangup_case is "none" (emergency calls always proceed)

8. Check that OCS and HLR were bypassed

9. Verify caller data was retrieved for location info

Training Staff

Scenario: Teaching operations staff how call routing works

Steps:

1. Open Call Simulator

2. Run various scenarios and explain each section:

Show MT call and explain Sh + HLR lookups

Show MO call and explain OCS authorization

Show Emergency call and explain bypass behavior

Show unauthorized IP and explain rejection

3. Have staff try different combinations

4. Use Processing Notes to explain each decision

5. Compare variables between different scenarios

Comparing Sh vs HLR Data

Scenario: Understanding how HLR overrides Sh data

Steps:

1. Open Call Simulator for MT call

2. Uncheck "Skip HLR Lookup"

3. Click "Simulate Call"

4. Compare Subscriber Data variables vs HLR Data variables

5. Check Final Variables to see which values won

6. Note: HLR data always takes precedence for:

MSRN

call_forward_all_destination

call_forward_not_reachable_destination

Tips

Use "Skip OCS Authorization" and "Skip HLR Lookup" for faster simulations

when testing other aspects

Copy/paste phone numbers from logs into simulator for quick testing

Use "Force Disposition" to test specific call types regardless of IP

Check Processing Notes if you're unsure why certain variables were set

Run simulation multiple times to verify consistency

Compare simulation results to actual call logs

Limitations

The simulator:

Does NOT actually place calls

Does NOT affect the call routing system

Does NOT consume OCS quota (even if OCS is queried)

Does NOT generate CDRs

Is safe to use on production systems

The simulator DOES:

Query actual Sh interface (HSS) if not skipped

Query actual HLR via SS7 MAP if not skipped

Query actual OCS if not skipped

Show exactly what would happen in real call

Use real configuration values

Integration with Monitoring

Both tools integrate with Prometheus metrics:

HLR lookups via the tool are counted in hlr_lookups_total

Call simulations are counted in call_simulations_total{call_type,

source}

Processing times are tracked in respective duration metrics

This helps:

Track diagnostic tool usage

Monitor performance of diagnostic queries

Identify heavy users of diagnostic tools

For complete metrics documentation: See metrics.md for all available

metrics, query examples, and monitoring setup.

Best Practices

1. Use Call Simulator First

Before making configuration changes

When troubleshooting subscriber-specific issues

To understand call flow for training

2. Use HLR Lookup For

Quick check of roaming status

Verifying call forwarding from HLR

Testing SS7 MAP connectivity

3. Document Findings

Take screenshots of simulator results

Note any unexpected behavior

Share results with team for analysis

4. Compare to Logs

Run simulation with same parameters as failed call

Compare simulator variables to actual call logs

Identify discrepancies

5. Regular Testing

Weekly spot checks with simulator

Test each call type (MT/MO/Emergency)

Verify OCS and HLR integration

Troubleshooting the Tools

HLR Lookup Issues

Tool shows "SS7 MAP is disabled"

Check config/runtime.exs for ss7_map.enabled

Restart application after config change

Tool shows timeout errors

Check SS7 MAP gateway is reachable

Check network connectivity to HLR

Check ss7_map.timeout_ms in configuration

Tool shows "No VLR Number"

Subscriber is offline or doesn't exist in HLR

Normal for subscribers who are powered off

Normal for non-existent numbers

Call Simulator Issues

Simulator shows "No Sh data"

Subscriber not provisioned in HSS

HSS is unreachable

Check diameter.sh_application configuration

Simulator shows "Source IP is not authorized"

IP not in allowed_sbc_source_ips or allowed_cscf_ips

Use "Force Disposition" to override IP-based auth

Simulator shows "Missing required parameters"

All fields are required except options

Enter valid phone numbers

Enter valid IP address

Simulator takes too long

Uncheck "Skip OCS Authorization" if not testing OCS

Uncheck "Skip HLR Lookup" if not testing HLR

Check actual system performance (Sh/HLR/OCS response times)

Support

For issues with these tools:

1. Check application logs for errors

2. Verify configuration (Sh, HLR, OCS)

3. Test connectivity to external systems

4. Contact support team with screenshots and error messages

IMS Conference Server

- User Guide

Overview

The IMS Conference Server provides multi-party conferencing capabilities

compliant with the 3GPP IMS Conference Framework (RFC 4579, RFC 4575, TS

24.147). It enables subscribers to create and manage audio/video conferences

through the IMS Application Server.

Architecture

The IMS Conference Server is an integrated component of OmniTAS that

provides:

Conference Factory URI: SIP URI for creating new conferences

Conference Focus: Manages conference state and participants

Conference Policy Control: Enforces participant roles and permissions

Media Mixing: Handles audio/video mixing for conference participants

IMS Conference Factory Architecture

The TAS implements the 3GPP Conference Factory pattern as defined in TS

24.147 and RFC 4579:

Conference Creation Flow (RFC 4579 Factory

Pattern)

This diagram shows how a user creates a new conference through the

Conference Factory URI:

OmniTAS

Media Server
Conference DB

OmniTAS

Conference Factory
S-CSCFP-CSCF

User A (Creator)

UE/Phone

OmniTAS

Media Server
Conference DB

OmniTAS

Conference Factory
S-CSCFP-CSCF

User A (Creator)

UE/Phone

Phase 1: Conference Creation Request

User dials conference

factory URI or uses

one-button conference

P-CSCF adds network info

and forwards to S-CSCF

S-CSCF evaluates iFC

(Initial Filter Criteria)

Routes to TAS

Phase 2: Conference Instantiation

Verify user is allowed

to create conferences

Generate unique ID

conf-1-1765699908

Conference URI:

sip:conf-1-1765699908

@conference.ims.local

Phase 3: Connect Creator to Conference

Phase 4: SIP Response with Conference Info

Response includes:

- Conference URI

- Conference-Info header

- Session parameters

Conference Active - Creator Connected

Event Package notification

with conference state

and participant list

Conference 1-1765699908 is now active

Creator can invite participants or share conference URI

INVITE sip:conference-factory@conf-factory.ims.mnc380.mcc313.3gppnetwork.org

INVITE (with P-Access-Network-Info)

INVITE (iFC triggers AS)

Authenticate Creator

Check Authorization

Create Conference Record

Conference ID: 1-1765699908

Create Conference

sip:user-a@ims.local

Instantiate Conference Room

ims-conf-1-1765699908

Conference Created

Set Creator as Moderator (Role=1)

Generate Conference URI

Bridge User A to Conference

Add participant to room

Enable audio/video

Participant Added

200 OK

Contact: sip:conf-1-1765699908@conference.ims.local

Conference-Info header

200 OK

200 OK

ACK

ACK

ACK

Confirm Session

NOTIFY (Conference State - RFC 4575)

200 OK (NOTIFY)

Conference Creation Flow - 3GPP TS 24.147 / IR.92

Participant Join Flow

This diagram shows how additional participants join an existing conference:

Conference Event Package (RFC 4575)

The conference server sends conference state notifications to all participants:

OmniTAS

Media Server

OmniTAS

Conference Focus

User C

(Participant)

User B

(Participant)

User A

(Moderator)

All users subscribed to conference event package

Event: User C Joins Conference

Conference State Changed

Generate RFC 4575 Notification

XML Body:

<?xml version="1.0"?>

<conference-info>

<conference-state>active</conference-state>

<users>

<user entity='sip:userA@ims.local'>

<roles><entry>moderator</entry></roles>

</user>

<user entity='sip:userB@ims.local'>

<roles><entry>participant</entry></roles>

</user>

<user entity='sip:userC@ims.local'>

<roles><entry>participant</entry></roles>

</user>

</users>

</conference-info>

par [Notify All Participants]

Event: Moderator Locks Conference

par [Notify All Participants]

Event: User B Leaves Conference

par [Notify Remaining Participants]

INVITE (join conference)

Add User C

User C Added

NOTIFY (Conference State)

NOTIFY (Conference State)

NOTIFY (Conference State)

200 OK

200 OK

200 OK

SIP INFO or Web UI Action

Lock Conference

Lock Conference

Conference Locked

NOTIFY (Conference Locked)

NOTIFY (Conference Locked)

NOTIFY (Conference Locked)

200 OK

200 OK

200 OK

BYE

Remove User B

User B Removed

200 OK

NOTIFY (User B left)

NOTIFY (User B left)

Conference Event Package - RFC 4575 State Notifications

OmniTAS

Media Server

OmniTAS

Conference Focus

User C

(Participant)

User B

(Participant)

User A

(Moderator)

opt [Leave Announcement Enabled]

Event: Conference Terminated

par [Final Notifications]

Conference 1-1765699908 terminated

()

200 OK

200 OK

Play leave tone

Play leave tone

BYE (Moderator leaves/destroys)

Destroy Conference

Disconnect

200 OK (BYE)

BYE (conference terminated)

200 OK

Conference Management Operations

Operations performed through Web UI or OmniTAS Console:

Web Browser OmniTAS Console

Monitor Control Manage

Operator/Moderator

Access Method

Control Panel UI

/conference

ims_conference

commands

Select Action

View Conference State Conference Control Participant Management

List Active Conferences View Statistics Conference Details Participant List Lock/Unlock Conference Enable/Disable Video Start/Stop Recording Send Announcement Destroy Conference Add Participant Remove Participant Change Participant Role

OmniTAS

Conference Server

OmniTAS

Conference Server

OmniTAS

Conference Server

Update Conference

State
Execute Control Action Modify Participants

Send RFC 4575

Event Notifications

All Conference

Participants

Conference Management & Control Operations

Access

Web Interface

Navigate to /conference or click "Conference" in the navigation menu to

access the Conference Management interface.

OmniTAS Console

Access the conference server from the OmniTAS console using the

ims_conference command.

Features

Conference Management Interface

The web interface provides real-time monitoring and management of active

IMS conferences:

Statistics Dashboard

Displays high-level conference server statistics:

Active Conferences: Total number of ongoing conferences

Total Participants: Combined participant count across all conferences

Video Conferences: Number of conferences with video enabled

Locked Conferences: Number of conferences locked to new participants

The dashboard also shows server configuration:

Domain: Conference server domain (e.g., conference.ims.local)

Factory URI: SIP URI for conference creation requests

MNC/MCC: Mobile Network Code and Country Code

Access Network: Network type (e.g., 3GPP-E-UTRAN-FDD)

Default Max Participants: Maximum participants per conference

Video by Default: Whether video is enabled by default

Recording Enabled: Whether conference recording is available

Conference List

Shows all active conferences with:

Conference ID: Unique identifier for the conference

URI: SIP URI of the conference

Participants: Current number of participants

Creator: Phone number/URI of the conference creator

Click on any conference to expand and view detailed information.

Conference Details

Expanding a conference shows:

Conference Information:

ID and URI

Room name

Creator identity

Conference state

Participant count (current/max and minimum)

Video status (Enabled/Disabled)

Lock status (Locked/Unlocked)

Recording status (Active/Inactive)

Participant List:

SIP URI of each participant

Session UUID

Participant state

Role (0 = participant, 1 = moderator)

Video status

Conference Actions:

Lock/Unlock conference

Enable/Disable video

(Additional actions available via CLI)

Auto-Refresh

The interface automatically refreshes every 5 seconds to show real-time

conference status. You can toggle auto-refresh on/off or manually refresh using

the "Refresh" button.

OmniTAS Console Commands

All conference management operations are available through the

ims_conference command in the OmniTAS console.

Command Syntax

Available Commands

list

Lists all active IMS conferences.

info

ims_conference <command> [arguments]

omnitas@server> ims_conference list

IMS Conferences:

Conference ID Conference URI Partici

Creator

===

1-1765699908 sip:conf-1-1765699908@conference.ims.local 3

19078720151

Total: 1 conferences

Shows detailed information about a specific conference.

Syntax: ims_conference info <conf_id>

Important: Use the Conference ID (e.g., 1-1765699908), not the conference

name with prefix.

stats

Displays overall conference server statistics and configuration.

omnitas@server> ims_conference info 1-1765699908

Conference Information:

 ID: 1-1765699908

 URI: sip:conf-1-1765699908@conference.ims.local

 Room: ims-conf-1-1765699908

 Creator: 19078720151

 State: 1

 Participants: 3/10 (min: 2)

 Video: Enabled

 Locked: No

 Recording: Inactive

Participants:

 - sip:1235;phone-

context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwo

(342d50e0-9f67-4cc5-9179-4acae6f65f34)

 State: 3, Role: 0, Video: On

 - sip:1235;phone-

context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwo

(bd98ca37-64fd-4618-b2db-aaba108c73e2)

 State: 3, Role: 0, Video: On

 - 19078720151 (6270da85-9b94-4285-8130-8769b11d0aa2)

 State: 3, Role: 1, Video: On

create

Creates a new conference.

Syntax: ims_conference create <creator_uri>

destroy

Terminates a conference and disconnects all participants.

Syntax: ims_conference destroy <conf_id>

omnitas@server> ims_conference stats

IMS Conference Server Statistics:

================================

Active conferences: 1

Total participants: 3

Video conferences: 1

Locked conferences: 0

Configuration:

 Domain: conference.ims.local

 Factory URI: sip:conference-factory@conf-

factory.ims.mnc380.mcc313.3gppnetwork.org

 MNC/MCC: 380/313

 Access Network: 3GPP-E-UTRAN-FDD

 Default max participants: 10

 Allow anonymous: Yes

 Video by default: Yes

 Recording enabled: Yes

 Announcements: Join=On, Leave=On, Count=On

omnitas@server> ims_conference create sip:19078720151@ims.local

Conference created: 1-1765699909

Conference URI: sip:conf-1-1765699909@conference.ims.local

omnitas@server> ims_conference destroy 1-1765699908

Conference 1-1765699908 destroyed

add

Adds a participant to an existing conference.

Syntax: ims_conference add <conf_id> <sip_uri>

remove

Removes a participant from a conference.

Syntax: ims_conference remove <conf_id> <uuid>

Note: Use the participant's session UUID from the info command output.

lock

Locks a conference to prevent new participants from joining.

Syntax: ims_conference lock <conf_id>

unlock

Unlocks a conference to allow new participants.

Syntax: ims_conference unlock <conf_id>

omnitas@server> ims_conference add 1-1765699908

sip:19078720152@ims.local

Adding participant sip:19078720152@ims.local to conference 1-

1765699908

omnitas@server> ims_conference remove 1-1765699908 342d50e0-9f67-

4cc5-9179-4acae6f65f34

Removed participant from conference 1-1765699908

omnitas@server> ims_conference lock 1-1765699908

Conference 1-1765699908 locked

video

Controls video for a conference.

Syntax: ims_conference video <conf_id> on|off

record

Controls conference recording.

Syntax: ims_conference record <conf_id> start|stop

announce

Plays an announcement to all conference participants.

Syntax: ims_conference announce <conf_id> <message>

subscribers

omnitas@server> ims_conference unlock 1-1765699908

Conference 1-1765699908 unlocked

omnitas@server> ims_conference video 1-1765699908 on

Video enabled for conference 1-1765699908

omnitas@server> ims_conference video 1-1765699908 off

Video disabled for conference 1-1765699908

omnitas@server> ims_conference record 1-1765699908 start

Recording started for conference 1-1765699908

omnitas@server> ims_conference record 1-1765699908 stop

Recording stopped for conference 1-1765699908

omnitas@server> ims_conference announce 1-1765699908 "This

conference will end in 5 minutes"

Announcement sent to conference 1-1765699908

Lists all subscribers currently in a conference (alternative view to info).

Syntax: ims_conference subscribers <conf_id>

Conference States

Conferences and participants have numeric state values:

Conference States

0: Initializing

1: Active

2: Terminating

3: Terminated

Participant States

0: Invited

1: Dialing

2: Alerting

3: Connected

4: Disconnecting

5: Disconnected

Participant Roles

0: Regular participant

1: Moderator/Creator

omnitas@server> ims_conference subscribers 1-1765699908

Subscribers in conference 1-1765699908:

 - sip:1235;phone-

context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwo

 - 19078720151

Use Cases

Monitoring Active Conferences

Scenario: Operations team needs to see how many conferences are active

Steps:

1. Open Conference Management interface (/conference)

2. View the Statistics Dashboard for high-level metrics

3. Review the conference list for specific conferences

4. Use auto-refresh to monitor in real-time

CLI Alternative:

Troubleshooting Conference Issues

Scenario: User reports they cannot join a conference

Steps:

1. Get the conference ID from the user

2. Run ims_conference info <conf_id> to check conference state

3. Check if conference is locked (Locked: Yes)

4. Check current participant count vs. maximum

5. Review participant list for any connection issues

6. Check OmniTAS logs for SIP invite failures

Common Issues:

Conference locked: ims_conference unlock <conf_id>

Maximum participants reached: Check default_max_participants config

Network issues: Check SIP connectivity and firewall rules

omnitas@server> ims_conference stats

omnitas@server> ims_conference list

Managing Conference Bandwidth

Scenario: Need to reduce bandwidth usage during network congestion

Steps:

1. Identify conferences with video enabled

2. For non-critical conferences, disable video:

3. Monitor bandwidth usage

4. Re-enable video when congestion clears

Handling Disruptive Participants

Scenario: A participant is being disruptive in a conference

Steps:

1. Get the conference ID and participant's session UUID

2. Remove the participant:

3. Lock the conference to prevent them from rejoining:

4. Add legitimate participants manually if needed:

Recording Important Conferences

Scenario: Need to record a conference for compliance or documentation

Steps:

ims_conference video <conf_id> off

ims_conference remove <conf_id> <participant_uuid>

ims_conference lock <conf_id>

ims_conference add <conf_id> <sip_uri>

1. Identify the conference ID

2. Start recording:

3. Monitor that recording is active (Recording: Active in info output)

4. Stop recording when complete:

5. Recording files are stored in the OmniTAS recordings directory

Emergency Conference Termination

Scenario: Need to immediately terminate a conference

Steps:

1. Optionally announce to participants:

2. Wait a few seconds for announcement to play

3. Destroy the conference:

4. All participants will be disconnected immediately

Integration with IMS Network

Conference Creation Flow

1. Subscriber sends SIP INVITE to conference factory URI

2. IMS Application Server receives request

ims_conference record <conf_id> start

ims_conference record <conf_id> stop

ims_conference announce <conf_id> "This conference is being

terminated"

ims_conference destroy <conf_id>

3. Conference Server creates new conference instance

4. Conference ID and URI are generated

5. Conference policy is initialized based on creator

6. Creator is added as first participant with moderator role

7. Conference URI is returned to creator

8. Other participants can now join via the conference URI

Participant Roles

Moderator (Role: 1)

Can lock/unlock conference

Can remove other participants

Can control video settings

Receives conference notifications

Participant (Role: 0)

Can join/leave conference

Can speak and listen

Can enable/disable own video

Subject to conference policies

3GPP Compliance

The IMS Conference Server implements key 3GPP specifications:

TS 24.147: Conferencing using IP Multimedia (IM) Core Network (CN)

subsystem

RFC 4579: Session Initiation Protocol (SIP) Call Control - Conferencing for

User Agents

RFC 4575: A Session Initiation Protocol (SIP) Event Package for Conference

State

RFC 5239: A Framework for Centralized Conferencing

Network Elements Integration

P-CSCF: Handles initial SIP signaling from UE

S-CSCF: Routes conference requests to Application Server

OmniTAS: Hosts the Conference Server functionality and provides media

mixing

HSS: Provides subscriber authentication and authorization

Configuration

Conference server configuration is managed through OmniTAS configuration

files:

Key Parameters:

domain : Conference server domain

factory_uri : SIP URI for conference creation

mnc_mcc : Mobile network identifiers

access_network : Network access type

default_max_participants : Default maximum participants per conference

allow_anonymous : Whether to allow anonymous participants

video_by_default : Default video setting for new conferences

recording_enabled : Whether recording feature is available

announce_join : Play tone when participant joins

announce_leave : Play tone when participant leaves

announce_count : Announce participant count

Best Practices

Capacity Planning

Monitor active conference count and participant counts

Plan for peak usage (e.g., business hours)

Allocate sufficient CPU/memory for media mixing

Consider video vs. audio-only for bandwidth management

Security

Ensure conference URIs are not easily guessable

Use conference locking for private conferences

Monitor for unauthorized access attempts

Implement maximum participant limits

Review conference recordings access controls

Operational Monitoring

Set up alerts for conference server errors

Monitor conference creation/destruction rates

Track average conference duration

Review participant connection failures

Monitor media quality metrics

For detailed metrics documentation: See metrics.md for:

RTP/RTCP media quality metrics (Port 9093)

Active call and session metrics (Port 9090)

System and Erlang VM metrics (Port 8080)

Prometheus query examples

Troubleshooting

Check OmniTAS logs for conference-related errors

Verify SIP connectivity between participants and conference server

Monitor RTP media streams for packet loss

Verify network bandwidth availability

Check participant device compatibility

Limitations

Maximum participants per conference: Configurable (default: 10)

Maximum concurrent conferences: Limited by server resources

Video quality: Depends on network bandwidth and participant devices

Recording format: Determined by OmniTAS configuration

Conference ID format: Auto-generated, cannot be customized via web

interface

Support

For issues or questions about the IMS Conference Server:

1. Check OmniTAS logs for error messages

2. Verify conference server configuration

3. Review network connectivity and firewall rules

4. Contact Omnitouch support with conference ID and timestamps

Metrics Documentation

This document describes the Prometheus metrics exposed by the IMS

Application Server components.

Table of Contents

Metrics Endpoints

Port 9090 - System Metrics

Call and Session Metrics

System Resource Metrics

Memory Metrics

Codec Status Metrics

Endpoint Status Metrics

Module Status Metrics

Registration Metrics

Sofia Gateway Metrics

Exporter Health Metrics

Port 8080 - TAS Engine Metrics

Application Call Metrics

Diameter Protocol Metrics

Telephony Operations Metrics

Online Charging System (OCS) Metrics

Dialplan & Processing Metrics

Event Socket Metrics

Feature Usage Metrics

SMS Trigger Metrics

Erlang Mnesia Database Metrics

Erlang VM Memory Metrics

Erlang VM Statistics

Erlang VM System Information

Erlang VM Microstate Accounting (MSACC)

Erlang VM Allocators

Port 9093 - Media & Call Quality Metrics

RTP Audio - Byte Counters

RTP Audio - Packet Counters

RTP Audio - Special Packet Types

RTP Audio - Jitter & Quality Metrics

RTCP Metrics

Go Runtime Metrics

Process Metrics

Prometheus HTTP Metrics

Metric Types

Usage

Example Queries

Metric Time Unit Configuration

Grafana Dashboard Integration

Alerting Examples

Troubleshooting with Metrics

Performance Baselines

Best Practices

Metrics Endpoints

Port Endpoint Purpose
Jump to

Section

9090 /metrics
System, gateway, and core

telephony metrics
Port 9090 →

8080 /metrics
TAS engine, Diameter, HLR,

OCS, and Erlang VM metrics
Port 8080 →

9093
/esl?

module=default

RTP/RTCP media quality and

call statistics
Port 9093 →

Port 9090 - System Metrics

Call and Session Metrics

Metric Name Port Description

freeswitch_bridged_calls 9090

Number of

bridged calls

currently active

freeswitch_detailed_bridged_calls 9090

Number of

detailed bridged

calls active

freeswitch_current_calls 9090
Number of calls

currently active

freeswitch_detailed_calls 9090

Number of

detailed calls

active

freeswitch_current_channels 9090

Number of

channels

currently active

freeswitch_current_sessions 9090

Number of

sessions

currently active

freeswitch_current_sessions_peak 9090

Peak number of

sessions since

startup

freeswitch_current_sessions_peak_last_5min 9090

Peak number of

sessions in the

last 5 minutes

Metric Name Port Description

freeswitch_sessions_total 9090

Total number of

sessions since

startup (counter)

freeswitch_current_sps 9090
Current sessions

per second

freeswitch_current_sps_peak 9090

Peak sessions

per second since

startup

freeswitch_current_sps_peak_last_5min 9090

Peak sessions

per second in

the last 5

minutes

freeswitch_max_sessions 9090

Maximum

number of

sessions allowed

freeswitch_max_sps 9090

Maximum

sessions per

second allowed

System Resource Metrics

Metric Name Port Description

freeswitch_current_idle_cpu 9090 Current CPU idle percentage

freeswitch_min_idle_cpu 9090
Minimum CPU idle percentage

recorded

freeswitch_uptime_seconds 9090 Uptime in seconds

freeswitch_time_synced 9090

Whether system time is in sync

with exporter host time

(1=synced, 0=not synced)

Memory Metrics

Metric Name Port Description

freeswitch_memory_arena 9090
Total non-mmapped bytes (malloc

arena)

freeswitch_memory_ordblks 9090 Number of free chunks

freeswitch_memory_smblks 9090 Number of free fastbin blocks

freeswitch_memory_hblks 9090 Number of mapped regions

freeswitch_memory_hblkhd 9090 Bytes in mapped regions

freeswitch_memory_usmblks 9090 Maximum total allocated space

freeswitch_memory_fsmblks 9090 Free bytes held in fastbins

freeswitch_memory_uordblks 9090 Total allocated space

freeswitch_memory_fordblks 9090 Total free space

freeswitch_memory_keepcost 9090 Topmost releasable block

Codec Status Metrics

Metric Name Port Description

freeswitch_codec_status 9090

Codec status with labels: ikey

(module), name (codec name), type

(codec). Value=1 indicates codec is

available

Available Codecs Include:

G.711 alaw/ulaw

PROXY PASS-THROUGH

PROXY VIDEO PASS-THROUGH

RAW Signed Linear (16 bit)

Speex

VP8/VP9 Video

AMR variants

B64

G.723.1, G.729, G.722, G.726 variants

OPUS

MP3

ADPCM, GSM, LPC-10

Endpoint Status Metrics

Metric Name Port Description

freeswitch_endpoint_status 9090

Endpoint status with labels: ikey

(module), name (endpoint name),

type (endpoint). Value=1 indicates

endpoint is available

Available Endpoints Include:

error, group, pickup, user (mod_dptools)

loopback, null (mod_loopback)

rtc (mod_rtc)

rtp, sofia (mod_sofia)

modem (mod_spandsp)

Module Status Metrics

Metric Name Port Description

freeswitch_load_module 9090
Module load status (1=loaded, 0=not

loaded) with label: module

Key Modules Monitored:

mod_sofia (SIP)

mod_conference, mod_conference_ims

mod_opus, mod_g729, mod_amr, etc.

mod_event_socket

mod_dptools

mod_python3

mod_rtc

And many more...

Registration Metrics

Metric Name Port Description

freeswitch_registrations 9090
Total number of active

registrations

freeswitch_registration_defails 9090

Detailed registration

information with labels:

expires, hostname,

network_ip, network_port,

network_proto, realm,

reg_user, token, url

Sofia Gateway Metrics

Metric Name Port Description

freeswitch_sofia_gateway_status 9090

Gateway status

with labels:

context, name,

profile, proxy,

scheme, status

(UP/DOWN)

freeswitch_sofia_gateway_call_in 9090

Number of inbound

calls through

gateway

freeswitch_sofia_gateway_call_out 9090

Number of

outbound calls

through gateway

freeswitch_sofia_gateway_failed_call_in 9090
Number of failed

inbound calls

freeswitch_sofia_gateway_failed_call_out 9090
Number of failed

outbound calls

freeswitch_sofia_gateway_ping 9090

Last ping

timestamp (Unix

epoch)

freeswitch_sofia_gateway_pingtime 9090
Last ping time in

milliseconds

freeswitch_sofia_gateway_pingfreq 9090
Ping frequency in

seconds

freeswitch_sofia_gateway_pingcount 9090
Number of pings

sent

Metric Name Port Description

freeswitch_sofia_gateway_pingmin 9090
Minimum ping

time recorded

freeswitch_sofia_gateway_pingmax 9090
Maximum ping

time recorded

Exporter Health Metrics

Metric Name Port Description

freeswitch_up 9090

Whether the last scrape

was successful

(1=success, 0=failure)

freeswitch_exporter_total_scrapes 9090
Total number of scrapes

performed (counter)

freeswitch_exporter_failed_scrapes 9090
Total number of failed

scrapes (counter)

↑ Back to top

Port 8080 - TAS Engine Metrics

These metrics are exposed by the Telephony Application Server engine and

provide insight into call processing, database operations, and Erlang VM

performance.

Application Call Metrics

Metric Name Port Description

call_simulations_total 8080
Total number of call simulations

(counter)

call_attempts_total 8080
Total number of call attempts

(counter)

call_rejections_total 8080
Total number of call rejections by

reason (counter)

call_param_errors_total 8080
Total number of call parameter

parsing errors (counter)

active_calls 8080
Number of currently active calls with

labels: call_type (mo/mt/emergency)

tracked_call_sessions 8080
Number of currently tracked call

sessions in ETS

Diameter Protocol Metrics

Metric Name Port Description

diameter_peer_state 8080

State of Diameter

peers (1=up,

0=down) with

labels: peer_host,

peer_realm,

application

diameter_requests_total 8080

Total number of

Diameter requests

(counter)

diameter_responses_total 8080

Total number of

Diameter responses

(counter)

diameter_response_duration_milliseconds 8080

Duration of

Diameter requests

in milliseconds

(histogram)

Telephony Operations Metrics

Metric Name Port Description

hlr_lookups_total 8080
Total number of HLR

lookups (counter)

hlr_data_duration_milliseconds 8080

Duration of HLR data

retrieval in

milliseconds

(histogram)

subscriber_data_lookups_total 8080

Total number of

subscriber data

lookups (counter)

subscriber_data_duration_milliseconds 8080

Duration of Sh

subscriber data

retrieval in

milliseconds

(histogram)

ss7_map_operations_total 8080

Total number of SS7

MAP operations

(counter)

ss7_map_http_duration_milliseconds 8080

Duration of SS7 MAP

HTTP requests in

milliseconds

(histogram)

tracked_registrations 8080

Number of currently

tracked SIP

registrations

Online Charging System (OCS) Metrics

Metric Name Port Description

ocs_authorization_attempts_total 8080

Total number of OCS

authorization

attempts (counter)

ocs_authorization_duration_milliseconds 8080

Duration of OCS

authorization in

milliseconds

(histogram)

online_charging_events_total 8080

Total number of

online charging

events (counter)

authorization_decisions_total 8080

Total number of

authorization

decisions (counter)

Dialplan & Processing Metrics

Metric Name Port Description

http_requests_total 8080

Total number

of HTTP

requests with

labels:

endpoint,

status_code

(counter)

http_dialplan_request_duration_milliseconds 8080

Duration of

HTTP dialplan

requests in

milliseconds

(histogram)

dialplan_module_duration_milliseconds 8080

Duration of

individual

dialplan

module

processing

(histogram)

freeswitch_variable_set_duration_milliseconds 8080

Duration of

variable

setting

operations

(histogram)

Event Socket Metrics

Metric Name Port Description

event_socket_connected 8080

Event Socket connection

state (1=connected,

0=disconnected) with

label: connection_type

event_socket_reconnections_total 8080

Total number of Event

Socket reconnection

attempts (counter) with

labels: connection_type,

result

event_socket_commands_total 8080

Total number of Event

Socket commands

executed (counter) with

labels: command_type,

result

event_socket_command_timeouts_total 8080

Total number of Event

Socket command

timeouts (counter) with

label: command_type

Command Types Tracked:

uuid_setvar, uuid_dump, uuid_kill, uuid_transfer

uuid_set_media_stats

sched_hangup, sched_transfer

vm_boxcount

status, echo, show, sofia

Result Values:

success: Command completed successfully

timeout: Command exceeded timeout threshold

error: Command returned unexpected response

Feature Usage Metrics

Metric Name Port Description

feature_invocations_total 8080

Total number of TAS feature

invocations (counter) with labels:

feature, call_type, result

feature_data_source_total 8080

Total number of feature data source

usages (counter) with labels:

feature, source

Features:

call_forward_all - Unconditional call forwarding

call_forward_not_reachable - Call forwarding when subscriber not

reachable

call_forward_no_reply - Call forwarding on no reply

call_barring - OCS-based call barring (insufficient credit)

cli_withheld - CLI privacy/screening

Call Types: mo , mt

Data Sources: sh_interface , hlr , config_fallback

Result Values: success , error , skipped

SMS Trigger Metrics

Metric Name Port Description

sms_trigger_attempts_total 8080

Total number of SMS trigger

attempts (counter) with labels:

trigger_type, result

sms_trigger_errors_total 8080

Total number of SMS trigger errors

(counter) with labels: trigger_type,

error_stage

smsc_requests_total 8080

Total number of SMSC HTTP

requests (counter) with labels:

message_type, result

Trigger Types: voicemail_deposit , voicemail_clear

Error Stages: vm_boxcount , template_render , smsc_request

Message Types: notification , mwi

Result Values: success , error

Erlang Mnesia Database Metrics

Metric Name Port Description

erlang_mnesia_held_locks 8080
Number of held

locks

erlang_mnesia_lock_queue 8080

Number of

transactions

waiting for a

lock

erlang_mnesia_transaction_participants 8080

Number of

participant

transactions

erlang_mnesia_transaction_coordinators 8080

Number of

coordinator

transactions

erlang_mnesia_failed_transactions 8080

Number of failed

(aborted)

transactions

(counter)

erlang_mnesia_committed_transactions 8080

Number of

committed

transactions

(counter)

erlang_mnesia_logged_transactions 8080

Number of

transactions

logged (counter)

erlang_mnesia_restarted_transactions 8080 Total number of

transaction

Metric Name Port Description

restarts

(counter)

erlang_mnesia_memory_usage_bytes 8080

Total bytes

allocated by all

mnesia tables

erlang_mnesia_tablewise_memory_usage_bytes 8080

Bytes allocated

per mnesia table

with label: table

erlang_mnesia_tablewise_size 8080

Number of rows

per table with

label: table

Erlang VM Memory Metrics

Metric Name Port Description

erlang_vm_memory_atom_bytes_total 8080
Memory allocated for at

with label: usage (used/

erlang_vm_memory_bytes_total 8080

Total memory allocated

label: kind

(system/processes)

erlang_vm_memory_dets_tables 8080 DETS tables count

erlang_vm_memory_ets_tables 8080 ETS tables count

erlang_vm_memory_processes_bytes_total 8080

Memory allocated for

processes with label: us

(used/free)

erlang_vm_memory_system_bytes_total 8080

Memory for emulator (n

process-related) with la

usage

(atom/binary/code/ets/o

Erlang VM Statistics

Metric Name Port Des

erlang_vm_statistics_bytes_output_total 8080

Tota

outp

port

(cou

erlang_vm_statistics_bytes_received_total 8080

Tota

rece

thro

port

(cou

erlang_vm_statistics_context_switches 8080

Tota

swit

sinc

star

(cou

erlang_vm_statistics_dirty_cpu_run_queue_length 8080

Leng

dirty

run-

erlang_vm_statistics_dirty_io_run_queue_length 8080

Leng

dirty

que

erlang_vm_statistics_garbage_collection_number_of_gcs 8080

Num

garb

colle

(cou

erlang_vm_statistics_garbage_collection_bytes_reclaimed 8080 Byte

recla

Metric Name Port Des

by G

(cou

erlang_vm_statistics_garbage_collection_words_reclaimed 8080

Wor

recla

by G

(cou

erlang_vm_statistics_reductions_total 8080

Tota

redu

(cou

erlang_vm_statistics_run_queues_length 8080

Leng

norm

que

erlang_vm_statistics_runtime_milliseconds 8080

Sum

runt

all t

(cou

erlang_vm_statistics_wallclock_time_milliseconds 8080

Rea

mea

(cou

Erlang VM System Information

Metric Name Port Description

erlang_vm_dirty_cpu_schedulers 8080
Number of dirty CPU

scheduler threads

erlang_vm_dirty_cpu_schedulers_online 8080
Number of dirty CPU

schedulers online

erlang_vm_dirty_io_schedulers 8080
Number of dirty I/O

scheduler threads

erlang_vm_ets_limit 8080
Maximum number of

ETS tables allowed

erlang_vm_logical_processors 8080

Number of logical

processors

configured

erlang_vm_logical_processors_available 8080
Number of logical

processors available

erlang_vm_logical_processors_online 8080
Number of logical

processors online

erlang_vm_port_count 8080
Number of ports

currently existing

erlang_vm_port_limit 8080
Maximum number of

ports allowed

erlang_vm_process_count 8080
Number of processes

currently existing

erlang_vm_process_limit 8080
Maximum number of

processes allowed

Metric Name Port Description

erlang_vm_schedulers 8080
Number of scheduler

threads

erlang_vm_schedulers_online 8080
Number of

schedulers online

erlang_vm_smp_support 8080

1 if compiled with

SMP support, 0

otherwise

erlang_vm_threads 8080

1 if compiled with

thread support, 0

otherwise

erlang_vm_thread_pool_size 8080
Number of async

threads in pool

erlang_vm_time_correction 8080
1 if time correction

enabled, 0 otherwise

erlang_vm_wordsize_bytes 8080
Size of Erlang term

words in bytes

erlang_vm_atom_count 8080
Number of atoms

currently existing

erlang_vm_atom_limit 8080
Maximum number of

atoms allowed

Erlang VM Microstate Accounting (MSACC)

Detailed time tracking for scheduler activities with labels: type, id

Metric Name Port Description

erlang_vm_msacc_aux_seconds_total 8080

Time spent handling

auxiliary jobs

(counter)

erlang_vm_msacc_check_io_seconds_total 8080

Time spent

checking for new

I/O events (counter)

erlang_vm_msacc_emulator_seconds_total 8080

Time spent

executing Erlang

processes (counter)

erlang_vm_msacc_gc_seconds_total 8080

Time spent in

garbage collection

(counter)

erlang_vm_msacc_other_seconds_total 8080

Time spent on

unaccounted

activities (counter)

erlang_vm_msacc_port_seconds_total 8080

Time spent

executing ports

(counter)

erlang_vm_msacc_sleep_seconds_total 8080
Time spent sleeping

(counter)

erlang_vm_msacc_alloc_seconds_total 8080

Time spent

managing memory

(counter)

erlang_vm_msacc_bif_seconds_total 8080
Time spent in BIFs

(counter)

Metric Name Port Description

erlang_vm_msacc_busy_wait_seconds_total 8080
Time spent busy

waiting (counter)

erlang_vm_msacc_ets_seconds_total 8080
Time spent in ETS

BIFs (counter)

erlang_vm_msacc_gc_full_seconds_total 8080

Time spent in

fullsweep GC

(counter)

erlang_vm_msacc_nif_seconds_total 8080
Time spent in NIFs

(counter)

erlang_vm_msacc_send_seconds_total 8080
Time spent sending

messages (counter)

erlang_vm_msacc_timers_seconds_total 8080

Time spent

managing timers

(counter)

Erlang VM Allocators

Detailed memory allocator metrics with labels: alloc, instance_no, kind, usage

Metric Name Port Description

erlang_vm_allocators 8080

Allocated (carriers_size) and used

(blocks_size) memory for different

allocators. See erts_alloc(3).

Allocator types include: temp_alloc, sl_alloc, std_alloc, ll_alloc, eheap_alloc,

ets_alloc, fix_alloc, literal_alloc, binary_alloc, driver_alloc

↑ Back to top

Port 9093 - Media & Call Quality

Metrics

These metrics provide real-time RTP/RTCP statistics and call quality information

per channel.

Metric Name Port Description

freeswitch_info 9093 System info with label: version

freeswitch_up 9093
Ready status (1=ready, 0=not

ready)

freeswitch_stack_bytes 9093 Stack size in bytes

freeswitch_session_total 9093 Total number of sessions

freeswitch_session_active 9093 Active number of sessions

freeswitch_session_limit 9093 Session limit

rtp_channel_info 9093
RTP channel info with labels for

channel details

RTP Audio - Byte Counters

Metric Name Port Description

rtp_audio_in_raw_bytes_total 9093
Total bytes received

(including headers)

rtp_audio_out_raw_bytes_total 9093
Total bytes sent (including

headers)

rtp_audio_in_media_bytes_total 9093
Total media bytes received

(payload only)

rtp_audio_out_media_bytes_total 9093
Total media bytes sent

(payload only)

RTP Audio - Packet Counters

Metric Name Port Description

rtp_audio_in_packets_total 9093 Total packets received

rtp_audio_out_packets_total 9093 Total packets sent

rtp_audio_in_media_packets_total 9093
Total media packets

received

rtp_audio_out_media_packets_total 9093 Total media packets sent

rtp_audio_in_skip_packets_total 9093 Inbound packets discarded

rtp_audio_out_skip_packets_total 9093
Outbound packets

discarded

RTP Audio - Special Packet Types

Metric Name Port Description

rtp_audio_in_jitter_packets_total 9093
Jitter buffer packets

received

rtp_audio_in_dtmf_packets_total 9093 DTMF packets received

rtp_audio_out_dtmf_packets_total 9093 DTMF packets sent

rtp_audio_in_cng_packets_total 9093
Comfort Noise Generation

packets received

rtp_audio_out_cng_packets_total 9093
Comfort Noise Generation

packets sent

rtp_audio_in_flush_packets_total 9093
Flushed packets (buffer

resets)

RTP Audio - Jitter & Quality Metrics

Metric Name Port Description

rtp_audio_in_jitter_buffer_bytes_max 9093
Largest jitter buffer size

in bytes

rtp_audio_in_jitter_seconds_min 9093
Minimum jitter in

seconds

rtp_audio_in_jitter_seconds_max 9093
Maximum jitter in

seconds

rtp_audio_in_jitter_loss_rate 9093
Packet loss rate due to

jitter (ratio)

rtp_audio_in_jitter_burst_rate 9093
Packet burst rate due

to jitter (ratio)

rtp_audio_in_mean_interval_seconds 9093
Mean interval between

inbound packets

rtp_audio_in_flaw_total 9093

Total audio flaws

detected (glitches,

artifacts)

rtp_audio_in_quality_percent 9093
Audio quality as

percentage (0-100)

rtp_audio_in_quality_mos 9093
Mean Opinion Score (1-

5, where 5 is best)

RTCP Metrics

Metric Name Port Description

rtcp_audio_bytes_total 9093 Total RTCP bytes

rtcp_audio_packets_total 9093 Total RTCP packets

Go Runtime Metrics

Metric Name Port Description

go_goroutines 9090
Number of goroutines

currently running

go_threads 9090
Number of OS threads

created

go_info 9090

Information about the Go

environment (with version

label)

go_gc_duration_seconds 9090
Pause duration of garbage

collection cycles (summary)

go_memstats_alloc_bytes 9090
Number of bytes allocated

and still in use

go_memstats_alloc_bytes_total 9090
Total number of bytes

allocated (counter)

go_memstats_heap_alloc_bytes 9090
Heap bytes allocated and

still in use

go_memstats_heap_idle_bytes 9090
Heap bytes waiting to be

used

go_memstats_heap_inuse_bytes 9090 Heap bytes currently in use

go_memstats_heap_objects 9090
Number of allocated heap

objects

go_memstats_heap_released_bytes 9090 Heap bytes released to OS

Metric Name Port Description

go_memstats_heap_sys_bytes 9090
Heap bytes obtained from

system

go_memstats_sys_bytes 9090
Total bytes obtained from

system

Process Metrics

Metric Name Port Description

process_cpu_seconds_total 9090
Total user and system CPU

time spent (counter)

process_max_fds 9090
Maximum number of open

file descriptors

process_open_fds 9090
Current number of open file

descriptors

process_resident_memory_bytes 9090
Resident memory size in

bytes

process_virtual_memory_bytes 9090
Virtual memory size in

bytes

process_virtual_memory_max_bytes 9090
Maximum amount of virtual

memory available

process_start_time_seconds 9090
Process start time since

Unix epoch

Prometheus HTTP Metrics

Metric Name Port Description

promhttp_metric_handler_requests_in_flight 9090

Current number

of scrapes being

served

promhttp_metric_handler_requests_total 9090

Total number of

scrapes by HTTP

status code

(counter)

↑ Back to top

Metric Types

gauge: A metric that can go up or down (e.g., current_calls, cpu_idle)

counter: A metric that only increases (e.g., sessions_total, failed_scrapes)

summary: A metric that tracks quantiles over a sliding time window (e.g.,

gc_duration_seconds)

↑ Back to top

Usage

To scrape these metrics, configure your Prometheus server to scrape all three

endpoints:

↑ Back to top

Example Queries

Quick Links:

General Metrics (Port 9090)

Media Quality Metrics (Port 9093)

TAS Engine Metrics (Port 8080)

General Metrics

Current call volume:

Gateway health:

scrape_configs:

 - job_name: 'ims_as_system'

 static_configs:

 - targets: ['localhost:9090']

 - job_name: 'ims_as_engine'

 static_configs:

 - targets: ['localhost:8080']

 metrics_path: '/metrics'

 - job_name: 'ims_as_media'

 static_configs:

 - targets: ['localhost:9093']

 metrics_path: '/esl'

 params:

 module: ['default']

freeswitch_current_calls

Average ping time to gateways:

Sessions per second rate:

Memory usage:

Media Quality Metrics

Call quality (MOS score):

Audio quality percentage:

Jitter rate:

Packet loss rate:

freeswitch_sofia_gateway_status{status="UP"}

avg(freeswitch_sofia_gateway_pingtime)

freeswitch_current_sps

freeswitch_memory_uordblks

rtp_audio_in_quality_mos

rtp_audio_in_quality_percent

rate(rtp_audio_in_jitter_packets_total[5m])

rtp_audio_in_jitter_loss_rate

Average jitter:

RTP bandwidth (inbound):

Audio flaws detected:

TAS Engine Metrics

Active calls by type:

Diameter peer health:

Call attempt rate:

HLR lookup latency (95th percentile):

OCS authorization latency:

avg(rtp_audio_in_jitter_seconds_max -

rtp_audio_in_jitter_seconds_min)

rate(rtp_audio_in_media_bytes_total[1m]) * 8

increase(rtp_audio_in_flaw_total[5m])

active_calls

diameter_peer_state{application="sh"}

rate(call_attempts_total[5m])

histogram_quantile(0.95, hlr_data_duration_milliseconds)

Subscriber data lookup rate:

Diameter request success rate:

Event Socket connection status:

Mnesia transaction performance:

Mnesia failed transaction rate:

Erlang VM process count:

Erlang VM memory usage:

Garbage collection rate:

histogram_quantile(0.99, ocs_authorization_duration_milliseconds)

rate(subscriber_data_lookups_total[5m])

rate(diameter_responses_total[5m]) /

rate(diameter_requests_total[5m])

event_socket_connected

rate(erlang_mnesia_committed_transactions[5m])

rate(erlang_mnesia_failed_transactions[5m])

erlang_vm_process_count

erlang_vm_memory_bytes_total

Scheduler run queue length:

ETS table count:

HTTP dialplan request duration (median):

↑ Back to top

Grafana Dashboard Integration

The metrics can be visualized in Grafana using the Prometheus data source.

Recommended Dashboard Layout

Row 1: Call Volume & Health

Active calls gauge (active_calls)

Call attempts rate by type (rate(call_attempts_total[5m]))

Call rejection rate (rate(call_rejections_total[5m]))

Gateway health (freeswitch_sofia_gateway_status)

Row 2: Performance (Latency Percentiles)

P95 HTTP dialplan request time by call type

rate(erlang_vm_statistics_garbage_collection_number_of_gcs[5m])

erlang_vm_statistics_run_queues_length

erlang_vm_memory_ets_tables

histogram_quantile(0.5,

http_dialplan_request_duration_milliseconds)

P95 Sh subscriber data lookup time

P95 HLR lookup time

P95 OCS authorization time

P95 Diameter response time by application

Row 3: Success Rates

Subscriber data lookup success rate

HLR lookup success rate

OCS authorization success rate

Diameter peer state

Row 4: Media Quality

Call quality MOS score (rtp_audio_in_quality_mos)

Audio quality percentage (rtp_audio_in_quality_percent)

Jitter statistics

Packet loss rate

Row 5: System Resources

Erlang VM process count

Erlang VM memory usage

ETS table count

Scheduler run queue length

Garbage collection rate

Row 6: Error Tracking

Call parameter errors

Authorization failures

Event Socket connection status

Mnesia transaction failures

Example Panel Queries

Active Calls by Type:

P95 Dialplan Generation Latency:

Diameter Success Rate:

Media Quality - Average MOS:

↑ Back to top

Alerting Examples

Critical Alerts (Page Immediately)

System Down - No Call Attempts:

sum by (call_type) (active_calls)

histogram_quantile(0.95,

 rate(http_dialplan_request_duration_milliseconds_bucket[5m])

)

rate(diameter_responses_total{result="success"}[5m]) /

rate(diameter_requests_total[5m]) * 100

avg(rtp_audio_in_quality_mos)

alert: SystemDown

expr: rate(call_attempts_total[5m]) == 0

for: 2m

labels:

 severity: critical

annotations:

 summary: "TAS system appears down - no call attempts"

 description: "No call attempts detected for 2 minutes"

Diameter Peer Down:

Event Socket Disconnected:

High Severity Alerts

High Diameter Latency:

alert: DiameterPeerDown

expr: diameter_peer_state == 0

for: 1m

labels:

 severity: critical

annotations:

 summary: "Diameter peer {{ $labels.peer_host }} is down"

 description: "Peer for {{ $labels.application }} application is

unavailable"

alert: EventSocketDisconnected

expr: event_socket_connected == 0

for: 30s

labels:

 severity: critical

annotations:

 summary: "Event Socket {{ $labels.connection_type }}

disconnected"

 description: "Critical communication channel down"

alert: HighDiameterLatency

expr: |

 histogram_quantile(0.95,

 rate(diameter_response_duration_milliseconds_bucket[5m])

) > 1000

for: 5m

labels:

 severity: high

annotations:

 summary: "High Diameter latency detected"

 description: "P95 latency is {{ $value }}ms"

OCS Authorization Failures:

High Call Rejection Rate:

Poor Media Quality:

alert: OCSAuthFailures

expr: |

 rate(ocs_authorization_attempts_total{result="no_credit"}[5m]) /

 rate(ocs_authorization_attempts_total[5m]) > 0.1

for: 5m

labels:

 severity: high

annotations:

 summary: "High rate of OCS no-credit responses"

 description: "{{ $value | humanizePercentage }} of requests

denied credit"

alert: HighCallRejectionRate

expr: |

 rate(call_rejections_total[5m]) /

 rate(call_attempts_total[5m]) > 0.05

for: 5m

labels:

 severity: high

annotations:

 summary: "Call rejection rate above 5%"

 description: "{{ $value | humanizePercentage }} of calls

rejected"

alert: PoorMediaQuality

expr: avg(rtp_audio_in_quality_mos) < 3.5

for: 3m

labels:

 severity: high

annotations:

 summary: "Poor call quality detected"

 description: "Average MOS score is {{ $value }}"

Warning Alerts

High Memory Usage:

High Scheduler Run Queue:

Mnesia Transaction Failures:

alert: HighMemoryUsage

expr: |

 erlang_vm_memory_bytes_total{kind="processes"} /

 (erlang_vm_process_limit * 1000000) > 0.8

for: 10m

labels:

 severity: warning

annotations:

 summary: "Erlang VM memory usage high"

 description: "Process memory at {{ $value | humanizePercentage

}}"

alert: HighSchedulerRunQueue

expr: erlang_vm_statistics_run_queues_length > 10

for: 5m

labels:

 severity: warning

annotations:

 summary: "High scheduler run queue length"

 description: "Run queue length is {{ $value }}"

alert: MnesiaTransactionFailures

expr: rate(erlang_mnesia_failed_transactions[5m]) > 1

for: 5m

labels:

 severity: warning

annotations:

 summary: "Mnesia transaction failures detected"

 description: "{{ $value }} failures per second"

↑ Back to top

Troubleshooting with Metrics

Problem: Calls are slow

Investigation Steps:

1. Check overall dialplan generation time:

2. Break down by component:

3. Check module-specific delays:

Common Causes:

External system latency (HSS, HLR, OCS)

Network issues

histogram_quantile(0.95,

rate(http_dialplan_request_duration_milliseconds_bucket[5m]))

Subscriber data lookup

histogram_quantile(0.95,

rate(subscriber_data_duration_milliseconds_bucket[5m]))

HLR lookup

histogram_quantile(0.95,

rate(hlr_data_duration_milliseconds_bucket[5m]))

OCS authorization

histogram_quantile(0.95,

rate(ocs_authorization_duration_milliseconds_bucket[5m]))

histogram_quantile(0.95,

 rate(dialplan_module_duration_milliseconds_bucket[5m])

) by (module)

Database contention

High system load

Problem: Calls are failing

Investigation Steps:

1. Check call rejection reasons:

2. Check authorization decisions:

3. Check Diameter peer health:

4. Check Event Socket connection:

Problem: High load

Investigation Steps:

1. Check call volume:

2. Check Erlang VM resources:

sum by (reason) (rate(call_rejections_total[5m]))

sum by (decision) (rate(authorization_decisions_total[5m]))

diameter_peer_state

event_socket_connected

rate(call_attempts_total[5m])

active_calls

3. Check garbage collection:

Problem: Poor Media Quality

Investigation Steps:

1. Check MOS scores:

2. Check jitter:

3. Check packet loss:

4. Check bandwidth usage:

↑ Back to top

erlang_vm_process_count

erlang_vm_statistics_run_queues_length

erlang_vm_memory_bytes_total

rate(erlang_vm_statistics_garbage_collection_number_of_gcs[5m])

rtp_audio_in_quality_mos

rtp_audio_in_quality_percent

rtp_audio_in_jitter_seconds_max

rtp_audio_in_jitter_loss_rate

rtp_audio_in_skip_packets_total

rtp_audio_in_flaw_total

rate(rtp_audio_in_media_bytes_total[1m]) * 8

Performance Baselines

Typical Values (Well-Tuned System)

Latency (P95):

HTTP dialplan request: 200-500ms

Subscriber data (Sh) lookup: 50-150ms

HLR data lookup: 100-300ms

OCS authorization: 100-250ms

Diameter requests: 50-200ms

Dialplan module processing: 10-50ms per module

Success Rates:

Call completion: >95%

Subscriber data lookups: >99%

HLR lookups: >98%

OCS authorizations: >99% (excluding legitimate no-credit)

Diameter peer uptime: >99.9%

Media Quality:

MOS score: >4.0

Audio quality percentage: >80%

Jitter: <30ms

Packet loss rate: <1%

System Resources:

Erlang process count: <50% of limit

Erlang memory usage: <70% of available

Scheduler run queue: <5

ETS tables: <1000

Capacity Planning

Per-Server Capacity (recommended maximums):

Concurrent calls: 500-1000 (depends on hardware)

Calls per second: 20-50 CPS

Registered subscribers: 10,000-50,000

Scaling Indicators (add capacity when):

Active calls consistently >70% of capacity

Erlang process count >70% of limit

P95 latency degrading

Scheduler run queues consistently >10

↑ Back to top

Best Practices

Monitoring Strategy

1. Set up dashboards for different audiences:

Operations dashboard: Call volume, success rates, system health

Engineering dashboard: Latency percentiles, error rates, resource

usage

Executive dashboard: High-level KPIs, uptime, cost metrics

2. Configure alerts at multiple levels:

Critical: Page on-call (system down, major outage)

High: Alert during business hours (degraded performance)

Warning: Track in ticket system (potential issues)

3. Use appropriate time ranges:

Real-time monitoring: 5-minute windows

Troubleshooting: 15-minute to 1-hour windows

Capacity planning: Daily/weekly aggregates

4. Focus on user impact:

Prioritize end-to-end latency metrics

Track success rates over individual error counters

Monitor media quality for user experience

Query Performance

1. Use recording rules for frequently-used queries:

2. Avoid high-cardinality labels in queries (e.g., don't group by phone

number)

3. Use appropriate rate intervals:

Short-term trends: [5m]

Medium-term trends: [1h]

Long-term trends: [1d]

Metric Cardinality

Monitor cardinality to prevent Prometheus performance issues:

groups:

 - name: ims_as_aggregations

 interval: 30s

 rules:

 - record: job:call_attempts:rate5m

 expr: rate(call_attempts_total[5m])

 - record: job:dialplan_latency:p95

 expr: histogram_quantile(0.95,

rate(http_dialplan_request_duration_milliseconds_bucket[5m]))

High-cardinality risks:

Labels with unique values per call (phone numbers, call IDs)

Unbounded label values

Labels with >1000 unique values

Solution:

Use labels for categories, not unique identifiers

Aggregate high-cardinality data in external systems

Use recording rules to pre-aggregate

↑ Back to top

Check metric cardinality

count by (__name__) ({__name__=~".+"})

Number Translation

� Back to Main Documentation

Number translation converts phone numbers between different formats to

ensure consistent E.164 formatting throughout the system.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - Number translation configuration

(number_translate)

🔧 Operations Guide - Number translation testing in Control Panel

Call Processing Flow

🔀 Dialplan Configuration - Using translated numbers in dialplan

(translation happens first)

👥 Sh Interface - Sh lookup uses translated numbers

💳 Online Charging - OCS receives translated numbers

📡 SS7 MAP - HLR queries use translated numbers

Related Services

⚙️ Supplementary Services - CLI blocking prefix stripping during

translation

📞 Voicemail - Voicemail numbers in translation

Monitoring

📊 Metrics Reference - Number translation metrics

Number Translation

Number translation converts phone numbers between different formats (local,

national, international) to ensure consistent E.164 formatting throughout the

system.

What is Number Translation?

Number translation normalizes phone numbers to E.164 format (international

standard) before call processing. This ensures:

Consistent numbering throughout the system

Proper routing to on-net and off-net destinations

Compatibility with international SIP trunks and IMS networks

E.164 Format: [Country Code][National Number] (no + prefix, no spaces)

Example: 61403123456 (Australia mobile)

Example: 16505551234 (US number)

When Translation Occurs

Translation happens:

Before Sh lookups

Before HLR lookups

Before OCS authorization

Before dialplan XML is generated

For MT Calls: Translate destination number (called party) For MO Calls:

Translate both source and destination numbers

Configuration

Parameters:

country_code : ISO country code as atom (e.g., :AU , :US , :PF)

localAreaCode : Area code prepended to short local numbers

Supported Country Codes

The TAS includes translation logic for these countries:

Country

Code
Country Supported Formats

E.164

Prefix

:AU Australia
0NSN (10-digit), SN (8-digit),

E.164
61

:US
United

States

NPANXXXXXX (10-digit),

1+NPANXXXXXX, E.164
1

:PF
French

Polynesia

Local (6-digit), National (8-

digit), E.164
689

Adding New Country Codes: Contact your integration engineer to add

support for new countries.

Special Translation Behaviors

1. CLI Blocking Prefix Stripping

config :tas,

 number_translate: %{

 country_code: :PF, # ISO 3166-1 alpha-2 country code

 localAreaCode: "617" # Default area code for short

numbers

 }

Before format translation, CLI blocking prefixes are removed:

2. SIP Parameter Stripping

Parameters after semicolons are removed:

3. Non-Digit Character Removal

All non-digit characters (except +) are stripped:

Variables Set After Translation

Variable Value Description

destination_number
E.164

format
Normalized destination number

tas_destination_number
E.164

format

Same as destination_number

(both set for compatibility)

effective_caller_id_number
E.164

format

Normalized source number (MO

calls)

Input: *67555123456

Step 1: Strip *67 → 555123456

Step 2: Translate → 1555123456 (if US)

Input: 61403123456;npdi;rn=+61400000000

Step 1: Strip ;npdi;rn=... → 61403123456

Step 2: Translate → 61403123456

Input: +61 (403) 123-456

Step 1: Strip formatting → +61403123456

Step 2: Translate → 61403123456

What Happens When Translation Fails

Scenario: Undefined Country Code

Result: {:error, "Undefined Country Code"} - call rejected

Scenario: Invalid Number Format

Best Practice: Always validate subscriber provisioning with correct E.164

numbers in HSS.

Testing Number Translation

Web UI Translation Tester (/translate):

1. Navigate to /translate in Control Panel

2. Select country code from dropdown

3. Enter test number in any format

4. View translated E.164 output

5. Test multiple formats to validate

Common Test Scenarios:

Local short codes → E.164

National format (0NSN) → E.164

International format (+CC) → E.164

Numbers with CLI prefixes → stripped and translated

Numbers with formatting (spaces, dashes) → clean E.164

config :tas, number_translate: %{country_code: :XX} # Invalid

Input: "abc123" (contains letters)

Step 1: Strip non-digits → "123"

Step 2: Too short, cannot match any pattern

Result: May pass through as-is or reject based on dialplan logic

Troubleshooting Number Translation

Problem: Calls failing with "UNALLOCATED_NUMBER"

1. Check translated number format:

Use /translate tool to test number

Verify output matches expected E.164 format

Confirm country code and area code are correct

2. Check Sh lookup:

Translated number is used for Sh query

Use /sh_test with translated number

Verify subscriber exists with that MSISDN

3. Check dialplan variables:

Review logs for destination_number value

Confirm translation occurred before dialplan

Problem: Wrong area code applied

Problem: International numbers not recognized

Check if number includes country code:

✅ +61403123456 or 61403123456 → Recognized

❌ 0403123456 in wrong country_code config → Misrouted

Configuration

config :tas, number_translate: %{

 country_code: :AU,

 localAreaCode: "617" # Wrong for your region

}

Input: 12345678 (8-digit local)

Output: 6161712345678 (incorrect - double area code)

Fix: Set correct localAreaCode for your deployment

MO vs MT Translation Behavior

MT (Mobile Terminated) Calls:

Only destination number (called party) is translated

Source number (caller) passed through as-is from SIP

Destination used for Sh lookup of called subscriber

MO (Mobile Originating) Calls:

Destination number (called party) translated

Source number (calling party) also translated

Source used for Sh lookup of calling subscriber

Both numbers normalized for consistent logging/CDR

Best Practices

1. Use Correct Country Code:

Set country_code to match your deployment region

Test thoroughly before production

2. Configure Appropriate Local Area Code:

localAreaCode should match your network's default area

Used for short numbers without area code

3. Test All Number Formats:

Local (short codes)

National (0NSN format)

International (+CC format)

Special service numbers (emergency, voicemail)

4. Monitor Translation Logs:

Check for "Undefined Country Code" errors

Watch for unexpected number formats

Validate E.164 output matches expectations

5. Document Your Numbering Plan:

Define which formats subscribers will use

Test each format in /translate tool

Train operations staff on expected formats

Online Charging

System (OCS)

Integration

Comprehensive guide to OmniTAS integration with Online Charging Systems via

Diameter Ro interface, including real-time credit control, AVP extraction, and

FreeSWITCH variable mapping.

Table of Contents

Architecture Overview

Credit Control Flow

AVP Parsing and Variable Mapping

Configuration

FreeSWITCH Integration

Diameter Messages

Metrics

Troubleshooting

Reference

FreeSWITCH Channel Variables

AVP Codes Reference

Architecture Overview

OmniTAS implements the Diameter Ro interface per 3GPP TS 32.299 for real-

time online charging. The system authorizes calls by requesting credit from an

OCS before call setup, monitors credit during the call, and reports final usage

on termination.

https://www.3gpp.org/DynaReport/32299.htm

Key Components

Credit-Control-Request (CCR):

CCR-Initial (Type 1): Sent before call setup to request initial credit

authorization

CCR-Update (Type 2): Sent during active calls for re-authorization or

interim updates

CCR-Terminate (Type 3): Sent on call termination with final usage

reporting

Credit-Control-Answer (CCA):

Contains granted service units (time quota in seconds)

Includes vendor-specific AVPs with additional charging data

Provides routing information, charged party details, and service identifiers

Credit Control Flow

Call Authorization Sequence

No

Yes

Yes

No

2001 Success

4xxx/5xxx Error Timeout

Yes

No

Call Received

OCS Enabled?

Bypass OCS

Allow Call

Matches Skip

Regex?

Send CCR-Initial

Wait for CCA

Result Code

Parse AVPs

R j t C ll

Granted

Units > 0?

Map AVPs to

YesNo
Yes

No

Reject Call
p

FreeSWITCH Variables

Setup Call with

AVP Variables

Monitor Call

Periodic

Re-auth Time?

Send CCR-UpdateContinue Call

Call

Active?

Send CCR-Terminate

Call Ended

Credit Exhaustion Handling

OmniTAS supports multiple mechanisms for handling credit exhaustion, with

automatic integration between scheduled hangups and credit exhaustion

announcements.

Scheduled Hangup with Dynamic Rescheduling

When schedule_hangup_auth is enabled, OmniTAS schedules a FreeSWITCH

timer that automatically terminates calls when granted credit expires. This

timer is dynamically rescheduled every time new credit is granted via CCR-

Update responses.

How it works:

Buffer Logic:

OmniTAS sends CCR-Update messages before the granted credit expires to

ensure continuous service. The buffer time is configurable via

ccr_update_buffer_seconds (default: 2 seconds).

Example timeline:

T+0s: Call answered, OCS grants 10s, timer scheduled for T+10s

T+8s: CCR-U sent (10s - 2s buffer)

T+8.1s: OCS grants 10s, timer rescheduled to T+18.1s (10s from now)

T+16.1s: CCR-U sent

T+16.2s: OCS grants 10s, timer rescheduled to T+26.2s

Call continues as long as OCS keeps granting credit

Logs to watch:

Integration: schedule_hangup_auth +

credit_exhaustion_announcement

When both features are enabled, OmniTAS automatically uses scheduled

transfers instead of direct hangups, allowing the caller to hear an

announcement before call termination.

[OCS HANGUP RESCHEDULE] Found UUID <uuid> for call <id> -

rescheduling timer to 10s from now

[SCHED TRANSFER] Scheduling transfer to credit_exhausted dialplan

for <uuid> in 10s

[OCS HANGUP RESCHEDULE] Successfully rescheduled timer for call

<id> (UUID: <uuid>)

Without announcement configured:

→ Uses sched_hangup - direct hangup when credit expires

With announcement configured:

→ Uses sched_transfer - transfers to credit_exhausted dialplan which plays

announcement then hangs up

How the transfer works:

1. OmniTAS sets tas_call_reason=credit_exhausted channel variable

2. Schedules transfer to credit_exhausted extension in ims_as dialplan

context

3. When timer fires:

FreeSWITCH transfers A-leg to credit_exhausted dialplan

Bridge breaks automatically, B-leg receives BYE

Dialplan plays announcement to A-leg

Call terminates after announcement

Benefits:

Caller hears professional announcement instead of abrupt disconnect

B-leg (called party) doesn't hear announcement

CCR-T still sent with actual usage

Announcement path: Must be relative to FreeSWITCH base directory (use

${base_dir} variable)

config :tas, :online_charging,

 schedule_hangup_auth: true,

 credit_exhaustion_announcement: nil

config :tas, :online_charging,

 schedule_hangup_auth: true,

 credit_exhaustion_announcement:

"${base_dir}/sounds/en/us/callie/misc/8000/credit_exhausted.wav"

Immediate Credit Exhaustion During CCR-Update

If the OCS denies credit or returns zero seconds during a CCR-Update,

OmniTAS immediately triggers credit exhaustion handling, overriding any

scheduled timer.

OCS Response Scenarios:

Grant N seconds

N > 0

Grant 0 seconds
Error 4012

CREDIT_LIMIT_REACHED

Error 4010

SERVICE_DENIED
Other Error

Yes

No

Send CCR-Update

Wait for CCA

OCS Response

Reschedule Timer

to +N seconds
Immediate Hangup

Stop Periodic Job

Scheduled timer

will fire

Continue Call
Announcement

Configured?

Transfer to

credit_exhausted

dialplan

Immediate Hangup

OUTGOING_CALL_BARRED
Play Announcement

Call Terminates

Scheduled Timer

Eventually Fires

Handled Error Codes:

OCS Response Action Logs

{:ok, 0} (Zero seconds)

Immediate

credit

exhaustion

hangup

Credit exhausted (zero

seconds allocated) -

triggering immediate

hangup

{:error, 4012}

(CREDIT_LIMIT_REACHED)

Immediate

credit

exhaustion

hangup

Credit exhausted (4012

CREDIT_LIMIT_REACHED) -

triggering immediate

hangup

{:error, 4010}

(END_USER_SERVICE_DENIED)

Immediate

credit

exhaustion

hangup

Service denied (4010

END_USER_SERVICE_DENIED)

- triggering immediate

hangup

{:error, reason} (Other

errors)

Stop

periodic

CCR job,

scheduled

timer fires

Periodic CCR failed with

error <reason> -

Stopping job

{:ok, N} where N > 0

Reschedule

timer to +N

seconds

Periodic CCA allocated

Ns, will send next CCR-U

in (N-buffer)s

Priority: Immediate credit exhaustion handling wins over scheduled timer. If

OCS denies credit at T+8s but timer was scheduled for T+10s, the immediate

hangup at T+8s occurs and the scheduled timer becomes irrelevant.

Example timeline with mid-call credit denial:

Logs for immediate credit exhaustion:

Summary: Credit Exhaustion Mechanisms

OmniTAS provides two complementary mechanisms:

1. Scheduled Timer (schedule_hangup_auth):

Automatic hangup/transfer when granted credit expires

Dynamically rescheduled on each CCR-U response

Uses buffer logic to send CCR-U before expiration

Integrates with announcement feature

2. Immediate Exhaustion Handling:

Triggered when OCS denies credit during CCR-U

Overrides scheduled timer

Supports announcement playback

Handles specific Diameter error codes

T+0s: Call answered

T+0.1s: OCS grants 10s → Timer scheduled for T+10.1s

T+8s: CCR-U sent (buffer = 2s)

T+8.1s: OCS returns 0 seconds → Immediate transfer to

credit_exhausted dialplan

T+8.2s: Announcement plays to caller

T+10s: Call terminated (scheduled timer irrelevant)

[warning] Credit exhausted (zero seconds allocated) - triggering

immediate hangup

[warning] Hanging up call <id> (UUID: <uuid>) due to credit

exhaustion

[info] Credit exhaustion announcement config:

"${base_dir}/sounds/..."

[info] Playing announcement before hangup: ...

[info] Setting tas_call_reason=credit_exhausted for <uuid>

[info] Transferring to credit exhausted dialplan: uuid_transfer

<uuid> credit_exhausted XML ims_as

Both mechanisms respect the credit_exhaustion_announcement configuration

and will play the configured audio before terminating calls when configured.

AVP Parsing and Variable Mapping

Overview

OmniTAS automatically extracts Attribute-Value Pairs (AVPs) from Credit-

Control-Answer messages and makes them available to FreeSWITCH as channel

variables. This enables dialplan logic to use OCS-provided data for routing

decisions, billing purposes, or call treatment.

Supported AVP Types:

Simple values (UTF8String, Unsigned32, Integer32)

Grouped AVPs with nested structures

Vendor-specific AVPs (e.g., 3GPP Service-Information)

Variable Naming Convention: AVPs are flattened into dot-notation channel

variables with the prefix CCA :

Common AVP Mappings

Service-Information AVP (3GPP)

The Service-Information grouped AVP (AVP Code 873, Vendor-ID 10415)

contains IMS-specific charging details:

Example OCS Response:

CCA.<AVP-Name>.<Nested-AVP-Name>.<Value-AVP-Name> = "value"

Resulting FreeSWITCH Variables:

Accessing in Dialplan: Variables use dot notation and hyphens as shown

above:

Viewing with uuid_dump: In FreeSWITCH console or ESL, variables appear

with the variable_ prefix:

Note: FreeSWITCH preserves dots and hyphens in variable names. The

variables work in all dialplan contexts and applications.

Granted-Service-Unit AVP

Time quotas are extracted and made available:

OCS Response:

Service-Information

 ├── IMS-Information

 │ ├── Carrier-Select-Routing-Information: "1408"

 │ └── Node-Functionality: 6

 └── Alternate-Charged-Party-Address: "NickTest"

CCA.Service-Information.Carrier-Select-Routing-Information =

"1408"

CCA.Service-Information.Alternate-Charged-Party-Address =

"NickTest"

<action application="log" data="INFO Carrier: ${CCA.Service-

Information.Carrier-Select-Routing-Information}"/>

variable_CCA.Service-Information.Carrier-Select-Routing-

Information: 1408

variable_CCA.Service-Information.Alternate-Charged-Party-Address:

NickTest

Variable:

Granted-Service-Unit

 └── CC-Time: 600

allocated_time = 600

AVP Processing Logic

No Yes

Grouped Value

Receive CCA

Extract AVP List

More AVPs?

Variables Ready AVP Type?

Process Children

with Prefix
Map to Variable

Recursively Parse

Nested AVPs

Build Variable Name

CCA.Parent.Child.Name

Store Value

Pass to FreeSWITCH

Processing Rules:

1. Grouped AVPs add a level to the variable name hierarchy but have no

value themselves

2. Simple AVPs are mapped to variables with their full dotted path

3. Vendor-Specific AVPs are processed identically to standard AVPs

4. Unknown AVPs are safely skipped without errors

Example: Multi-Level Nesting

OCS CCA Structure:

FreeSWITCH Variables Created:

Service-Information (Grouped)

 ├── IMS-Information (Grouped)

 │ ├── Node-Functionality: 6

 │ ├── Role-Of-Node: 1

 │ ├── Calling-Party-Address: "tel:+313380000000670"

 │ └── Time-Stamps (Grouped)

 │ ├── SIP-Request-Timestamp: "2026-01-24T22:40:18Z"

 │ └── SIP-Response-Timestamp: "2026-01-24T22:40:18Z"

 └── IN-Information (Grouped)

 └── Real-Called-Number: "24724741234"

CCA.Service-Information.IMS-Information.Node-Functionality = "6"

CCA.Service-Information.IMS-Information.Role-Of-Node = "1"

CCA.Service-Information.IMS-Information.Calling-Party-Address =

"tel:+313380000000670"

CCA.Service-Information.IMS-Information.Time-Stamps.SIP-Request-

Timestamp = "2026-01-24T22:40:18Z"

CCA.Service-Information.IMS-Information.Time-Stamps.SIP-Response-

Timestamp = "2026-01-24T22:40:18Z"

CCA.Service-Information.IN-Information.Real-Called-Number =

"24724741234"

Configuration

Online Charging Parameters

Parameter Type Required Default

enabled Boolean No false

En

W

au

periodic_ccr_time_seconds Integer No 60

In

Up

ca

sc

(d

cr

30

ccr_update_buffer_seconds Integer No 2

Sa

cr

Up

(a

en

ex

se

schedule_hangup_auth Boolean No false

En

ha

cr

Om

tim

fro

re

re

c

Parameter Type Required Default

credit_exhaustion_announcement String No nil

Au

ex

co

sc

sc

an

W

sc

an

cr

us

"$

ni

an

skipped_regex List[String] No []

Li

de

OC

nu

Diameter Connection Parameters

Parameter Type Required Default Des

origin_host String Yes -

OmniTAS Diameter Ide

unique across your Di

Example:

"tas01.epc.mnc123.m

origin_realm String Yes -

OmniTAS Diameter Re

decisions. Example:

"epc.mnc123.mcc456.

destination_realm String Yes -
OCS Diameter Realm.

peers in this realm.

destination_host String No nil

Specific OCS Diamete

routing based on dest

when direct routing to

required.

Configuration Example

How it works:

When a call is received:

1. Destination number is checked against skipped_regex patterns

2. If matched, call bypasses OCS (useful for emergency services)

3. If not matched, CCR-Initial sent to OCS at destination_realm

4. CCA response is parsed for granted units and AVPs

config :tas, :online_charging,

 # Enable online charging

 enabled: true,

 # Send CCR-Update every 60 seconds

 periodic_ccr_time_seconds: 60,

 # Schedule hangup based on granted credit

 schedule_hangup_auth: true,

 # Play announcement before credit exhaustion hangup

 credit_exhaustion_announcement: "ivr/ivr-

account_balance_low.wav",

 # Skip OCS for emergency calls and voicemail

 skipped_regex: [

 "^911$", # Emergency (US)

 "^000$", # Emergency (AU)

 "^*86$" # Voicemail access

]

config :tas, :diameter,

 # Service identity

 origin_host: "tas01.epc.mnc380.mcc313.3gppnetwork.org",

 origin_realm: "epc.mnc380.mcc313.3gppnetwork.org",

 # OCS routing

 destination_realm: "epc.mnc380.mcc313.3gppnetwork.org",

 destination_host: nil # Realm-based routing

5. AVPs are mapped to FreeSWITCH variables (see AVP Mapping)

6. Call proceeds with allocated_time and AVP data available

7. CCR-Update sent every periodic_ccr_time_seconds during call

8. If schedule_hangup_auth enabled, automatic hangup when credit expires

9. CCR-Terminate sent on call completion

Use cases:

Basic OCS: Enable with defaults for standard credit control

High-value calls: Reduce periodic_ccr_time_seconds to 30s for frequent

re-auth

Prepaid service: Enable schedule_hangup_auth and set

credit_exhaustion_announcement

Emergency compliance: Add emergency numbers to skipped_regex to

ensure always connected

FreeSWITCH Integration

Accessing AVP Variables in Dialplan

AVP data extracted from CCA messages is available as channel variables in

FreeSWITCH dialplan:

Variable Availability

Timing:

Variables are set before FreeSWITCH call setup

Available throughout entire call duration

Persist across call transfers and updates

Scope:

Channel-scoped (specific to individual call leg)

<extension name="Route_with_OCS_Data">

 <condition field="destination_number" expression="^(.+)$">

 <!-- Access carrier routing info from OCS -->

 <action application="log"

 data="INFO Carrier Code: ${CCA.Service-

Information.Carrier-Select-Routing-Information}"/>

 <!-- Access charged party from OCS -->

 <action application="log"

 data="INFO Charged Party: ${CCA.Service-

Information.Alternate-Charged-Party-Address}"/>

 <!-- Access granted time -->

 <action application="log"

 data="INFO Allocated Time: ${allocated_time}

seconds"/>

 <!-- Route based on carrier code -->

 <action application="set"

 data="carrier_code=${CCA.Service-Information.Carrier-

Select-Routing-Information}"/>

 <action application="bridge"

data="sofia/external/$1@carrier-${carrier_code}.sip.example.com"/>

 </condition>

</extension>

Not inherited by bridged/transferred legs

Safe to use in all dialplan applications

Example Use Cases

1. Carrier Selection Based on OCS Data

Use OCS-provided carrier code to route calls:

How it works: OCS returns carrier code "1408" in Service-Information AVP.

FreeSWITCH routes call to carrier-1408.example.com gateway based on this

data.

2. Alternate Billing Party

Route billing to a different party based on OCS response:

<extension name="Carrier_Selection">

 <condition field="${CCA.Service-Information.Carrier-Select-

Routing-Information}" expression="^(.+)$">

 <action application="bridge"

data="sofia/external/${destination_number}@carrier-$1.example.com"/>

 </condition>

 <!-- Fallback if no carrier specified -->

 <condition field="${CCA.Service-Information.Carrier-Select-

Routing-Information}" expression="^$">

 <action application="bridge"

 data="sofia/external/${destination_number}@default-

carrier.example.com"/>

 </condition>

</extension>

How it works: OCS specifies alternate charged party (e.g., corporate account).

OmniTAS extracts "NickTest" from AVP and makes it available to dialplan for

CDR recording and SIP header insertion.

3. Time-Limited Calls with Warnings

Provide warnings before credit expires:

<extension name="Alternate_Billing">

 <condition field="${CCA.Service-Information.Alternate-Charged-

Party-Address}" expression="^(.+)$">

 <!-- Log billing party for CDRs -->

 <action application="set"

 data="billed_party=$1"/>

 <action application="export"

 data="billed_party=$1"/>

 <!-- Include in SIP headers -->

 <action application="set"

 data="sip_h_X-Billed-Party=$1"/>

 <action application="bridge"

data="sofia/external/${destination_number}@trunk.example.com"/>

 </condition>

</extension>

How it works: Uses allocated_time from OCS to schedule automatic hangup

and plays warning announcement 30 seconds before disconnection.

Diameter Messages

CCR-Initial (Request Type 1)

Sent before call setup to request authorization and initial credit allocation.

Key AVPs Sent:

<extension name="Credit_Warnings">

 <condition field="destination_number" expression="^(.+)$">

 <!-- Schedule warning 30 seconds before hangup -->

 <action application="set"

 data="warning_time=${expr(${allocated_time} - 30)}"/>

 <action application="sched_hangup"

 data="+${allocated_time} ALLOTTED_TIMEOUT"/>

 <action application="sched_broadcast"

 data="+${warning_time} playback::ivr/ivr-

account_balance_low.wav"/>

 <action application="bridge"

 data="sofia/external/$1@trunk.example.com"/>

 </condition>

</extension>

AVP Code Type Description

Session-Id 263 UTF8String

Unique session identifier:

<origin_host>;<timestamp>;

<random>

Auth-

Application-Id
258 Unsigned32

Value 4 for Diameter Credit

Control Application per RFC 4006

Service-

Context-Id
461 UTF8String

"000.000.12.32260@3gpp.org" for

IMS charging per TS 32.299

CC-Request-

Type
416 Enumerated Value 1 (INITIAL_REQUEST)

CC-Request-

Number
415 Unsigned32 Sequence number, starts at 1

Subscription-

Id
443 Grouped Subscriber MSISDN or IMSI

Requested-

Service-Unit
437 Grouped Requested credit (time or units)

Service-

Information
873 Grouped

IMS-specific call details

(calling/called party, timestamps)

Example CCR-I:

https://datatracker.ietf.org/doc/html/rfc4006
https://www.3gpp.org/DynaReport/32299.htm

CCA (Credit-Control-Answer)

Response from OCS with authorization decision and granted credit.

Key AVPs Received:

AVP Code Type Description

Result-Code 268 Unsigned32
2001 for success. See Result

Codes for error values.

Granted-

Service-Unit
431 Grouped Allocated credit (time in seconds)

Service-

Information
873 Grouped

Additional charging data (carrier

info, charged party, etc.)

Example CCA with AVPs:

Session-Id: "tas01.example.org;1769294418268;8a078232"

Auth-Application-Id: 4

CC-Request-Type: 1 (INITIAL_REQUEST)

CC-Request-Number: 1

Subscription-Id:

 - Subscription-ID-Type: 0 (END_USER_E164)

 Subscription-ID-Data: "313380000000670"

Requested-Service-Unit:

 - CC-Time: 0 (Request maximum available)

Service-Information:

 - IMS-Information:

 - Calling-Party-Address: "tel:+313380000000670"

 - Called-Party-Address: "tel:+24724741234"

 - Node-Functionality: 6 (AS)

Resulting Variables:

CCR-Update (Request Type 2)

Sent during active calls for periodic re-authorization or interim usage reporting.

When Sent:

Every periodic_ccr_time_seconds (default: 60s)

On call answer (transition from setup to active)

When explicitly triggered (e.g., service change)

Key Differences from CCR-I:

CC-Request-Type : 2 (UPDATE_REQUEST)

CC-Request-Number : Increments with each update

Used-Service-Unit : Reported usage since last request

Requested-Service-Unit : Additional credit requested

Session-Id: "tas01.example.org;1769294418268;8a078232"

Result-Code: 2001 (DIAMETER_SUCCESS)

CC-Request-Type: 1

CC-Request-Number: 1

Granted-Service-Unit:

 - CC-Time: 600 (10 minutes granted)

Service-Information:

 - IMS-Information:

 - Carrier-Select-Routing-Information: "1408"

 - Alternate-Charged-Party-Address: "NickTest"

allocated_time = 600

CCA.Service-Information.Carrier-Select-Routing-Information =

"1408"

CCA.Service-Information.Alternate-Charged-Party-Address =

"NickTest"

CCR-Terminate (Request Type 3)

Sent on call termination with final usage reporting.

Key AVPs:

CC-Request-Type : 3 (TERMINATION_REQUEST)

Used-Service-Unit : Total call duration

Termination-Cause : Reason for session end

Result Codes

Code Name Description OmniTA

2001 DIAMETER_SUCCESS
Request

approved
Parse AVPs

4010 DIAMETER_END_USER_SERVICE_DENIED

Service

denied for

subscriber

Reject call

CALL_REJE

4012 DIAMETER_CREDIT_LIMIT_REACHED
Insufficient

credit

Reject call

OUTGOING_

5003 DIAMETER_AUTHORIZATION_REJECTED
OCS policy

denied

Reject call

CALL_REJE

5xxx Permanent failures

OCS

configuration

or system

error

Reject call

Reference: RFC 6733 §7.1 and 3GPP TS 32.299

https://datatracker.ietf.org/doc/html/rfc6733#section-7.1
https://www.3gpp.org/DynaReport/32299.htm

Metrics

Diameter Request Metrics

Metric: diameter_requests_total Type: Counter Description: Total Diameter

requests sent by application and request type Labels:

application - Diameter application: ro (online charging)

command - Request type: ccr

status - Result: success , error , timeout

Example queries:

Diameter Response Metrics

Metric: diameter_responses_total Type: Counter Description: Diameter

responses received by result code Labels:

application - ro

command - ccr

result_code - Diameter result code (2001, 4012, etc.)

Example queries:

CCR success rate

sum(rate(diameter_requests_total{application="ro",command="ccr",statu

[5m]))

 / sum(rate(diameter_requests_total{application="ro",command="ccr"}[

CCR timeout rate

rate(diameter_requests_total{application="ro",command="ccr",status="t

[5m])

OCS Authorization Metrics

Metric: ocs_authorizations_total Type: Counter Description: OCS

authorization attempts and outcomes Labels:

result - success , nocredit , timeout , error

skipped - true if bypassed via regex, false otherwise

Example queries:

Diameter Duration Metrics

Metric: diameter_request_duration_seconds Type: Histogram Description:

Diameter request round-trip time Labels:

application - ro

command - ccr

status - success , error , timeout

Example queries:

Responses by result code

sum by (result_code)

(rate(diameter_responses_total{application="ro"}[5m]))

Credit limit rejections (4012)

rate(diameter_responses_total{application="ro",result_code="4012"}

[5m])

Authorization success rate (excluding skipped)

sum(rate(ocs_authorizations_total{result="success",skipped="false"}

[5m]))

 / sum(rate(ocs_authorizations_total{skipped="false"}[5m]))

No-credit rejections

rate(ocs_authorizations_total{result="nocredit"}[5m])

Troubleshooting

AVP Variables Not Available in FreeSWITCH

Symptoms:

FreeSWITCH dialplan cannot access ${CCA.Service-Information.*}

variables

Variables show as empty or undefined

Possible causes:

1. OCS not returning Service-Information AVPs in CCA

2. AVP parsing failed due to unexpected structure

3. Variables not exported to FreeSWITCH channel

Resolution:

1. Verify OCS Response Contains AVPs

Check OmniTAS logs for CCA message:

95th percentile CCR latency

histogram_quantile(0.95,

sum(rate(diameter_request_duration_seconds_bucket{application="ro"}

[5m])) by (le)

)

Average latency by status

avg(rate(diameter_request_duration_seconds_sum{application="ro"}

[5m]))

 by (status)

 /

avg(rate(diameter_request_duration_seconds_count{application="ro"}

[5m]))

 by (status)

If "Parsed AVP variables" is empty %{} , OCS is not returning the expected

AVPs.

2. Check for AVP Parsing Errors

Look for warnings in logs:

This indicates AVP structure doesn't match expected format. Check

Diameter packet structure.

3. Verify FreeSWITCH Variable Export

In FreeSWITCH console or ESL:

Look for variables with the variable_ prefix and CCA. in the name:

Note: FreeSWITCH preserves dots and hyphens in variable names. They

work correctly in dialplan:

[debug] Credit Control Answer: {:diameter_packet, ...}

[debug] Parsed AVP variables: %{

 "CCA.Service-Information.Carrier-Select-Routing-Information"

=> "1408",

 "CCA.Service-Information.Alternate-Charged-Party-Address" =>

"NickTest"

}

[warning] got back another type of reply: {...}

freeswitch> uuid_dump <call-uuid>

variable_CCA.Service-Information.Carrier-Select-Routing-

Information: 1408

variable_CCA.Service-Information.Alternate-Charged-Party-

Address: NickTest

variable_CCA.Auth-Application-Id: 4

variable_CCA.Result-Code: 2001

Call Rejected with "unhandled" Error

Symptoms:

Logs show: [warning] Could not authorize call: :unhandled

Valid CCA responses (Result-Code 2001) are rejected

Calls fail despite OCS approving them

Possible causes:

CCA message structure doesn't match expected pattern

Vendor-specific AVPs in unexpected positions

AVP position index mismatch

Resolution:

This was a known issue fixed in recent releases. Ensure you're running current

version.

Previous behavior: Pattern matching required:

Granted-Service-Unit AVP at position 7 exactly

Empty vendor-specific AVP list []

Current behavior: Pattern matching accepts:

Granted-Service-Unit AVP at any position

Non-empty vendor-specific AVP lists

If issue persists:

1. Capture CCA packet structure from logs

2. Check if AVPs are in expected Diameter format

3. Verify Result-Code is 2001

<action application="log" data="Carrier: ${CCA.Service-

Information.Carrier-Select-Routing-Information}"/>

OCS Timeout on All Requests

Symptoms:

All CCR requests timeout

Logs show: [debug] Got back response for authorize: {:error,

:timeout}

No CCA received within 5 seconds

Possible causes:

Network connectivity to OCS/DRA

Firewall blocking Diameter port (3868)

Incorrect destination_realm or destination_host

OCS not responding to requests

Resolution:

1. Verify Network Connectivity

Test TCP connection to OCS:

Should connect successfully. If connection refused or timeout, check

firewall rules.

2. Check Diameter Configuration

Verify destination_realm matches OCS configuration:

3. Review OCS Logs

telnet ocs.example.com 3868

config :tas, :diameter,

 destination_realm: "epc.mnc380.mcc313.3gppnetwork.org" #

Must match OCS realm

Check OCS for incoming CCR messages. If OCS receives requests but

doesn't respond:

Verify OmniTAS origin_host is recognized by OCS

Check OCS peer configuration allows connections from OmniTAS

Verify Service-Context-Id and Application-Id match OCS expectations

Credit Exhaustion Not Hanging Up Calls

Symptoms:

Calls continue beyond granted credit time

No automatic hangup when allocated_time expires

schedule_hangup_auth enabled but not working

Possible causes:

FreeSWITCH scheduled hangup not configured

schedule_hangup_auth is false

Call state not tracked properly

Resolution:

1. Verify Configuration

Ensure schedule_hangup_auth is enabled:

2. Check FreeSWITCH ESL Connection

Verify OmniTAS can send commands to FreeSWITCH:

If error or no response, check FreeSWITCH Event Socket configuration.

config :tas, :online_charging,

 schedule_hangup_auth: true

[debug] Schedule Hangup Response: {:ok, "+OK"}

3. Monitor Call State

Check that call UUID is tracked in call state:

If UUID not found, call state tracking may have issues.

Skipped Regex Not Bypassing OCS

Symptoms:

Emergency calls (911, 000) still go through OCS authorization

Numbers matching skipped_regex patterns are not bypassed

Delays on emergency calls

Possible causes:

Regex pattern syntax error

Destination number format mismatch

Regex not properly escaped

Resolution:

1. Verify Regex Patterns

Test regex compilation:

Common mistakes:

Missing anchors: Use ^911$ not 911

Escaping: Use * for literal asterisk, not *

2. Check Number Format

Verify destination number format matches pattern:

[debug] Setting Scheduled Hangup for call in 600 seconds

Regex.compile("^911$") # Should return {:ok, ~r/^911$/}

If number is formatted as "+1911" but pattern is "^911$", it won't match.

3. Example Patterns

Reference

3GPP Specifications

Specification Title Relevant Sections

TS 32.299
Diameter charging

applications

§6.3 (Ro interface), §7.2 (AVP

definitions)

TS 32.240
Charging architecture and

principles
§5 (Online charging)

TS 29.229 Cx and Dx interfaces
Service-Information AVP

usage in IMS

[debug] Checking if dialled number "911" matches skipped

regex...

config :tas, :online_charging,

 skipped_regex: [

 "^911$", # US Emergency

 "^000$", # AU Emergency

 "^112$", # International Emergency

 "^*86$", # Voicemail (escaped asterisk)

 "^1?800\d{7}$" # Toll-free numbers

]

https://www.3gpp.org/DynaReport/32299.htm
https://www.3gpp.org/DynaReport/32240.htm
https://www.3gpp.org/DynaReport/29229.htm

IETF RFCs

RFC Title Relevant Sections

RFC

6733
Diameter Base Protocol

§3 (Protocol overview), §7 (Error

handling)

RFC

4006

Diameter Credit-Control

Application
§8 (Credit-Control messages)

AVP Codes Reference

Common AVPs used in OCS integration:

https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc4006
https://datatracker.ietf.org/doc/html/rfc4006

AVP Name Code
Vendor-

ID
Type Description

Session-Id 263 0 UTF8String
Unique session

identifier

Auth-

Application-Id
258 0 Unsigned32

Diameter

application ID (4 for

CC)

CC-Request-Type 416 0 Enumerated

1=Initial,

2=Update,

3=Terminate

CC-Request-

Number
415 0 Unsigned32 Sequence number

Result-Code 268 0 Unsigned32
Request result

(2001=success)

Granted-Service-

Unit
431 0 Grouped Allocated credit

CC-Time 420 0 Unsigned32
Time quota in

seconds

Service-

Information
873 10415 Grouped

3GPP service-

specific data

IMS-Information 876 10415 Grouped
IMS charging

information

Carrier-Select-

Routing-

Information

2023 10415 UTF8String Carrier routing code

AVP Name Code
Vendor-

ID
Type Description

Alternate-

Charged-Party-

Address

1280 10415 UTF8String
Billing party

identifier

Vendor-ID 10415 = 3GPP

FreeSWITCH Channel Variables

All extracted AVP data is available as FreeSWITCH channel variables:

Variable Name Source Example Value

${allocated_time}

Granted-

Service-

Unit / CC-

Time

600

${CCA.Session-Id}
Session-Id

AVP
omni-as01.epc...;1769299669873;

${CCA.Result-Code}
Result-

Code AVP
2001

${CCA.Auth-

Application-Id}

Auth-

Application-

Id AVP

4

${CCA.CC-Request-

Type}

CC-

Request-

Type AVP

1

${CCA.CC-Request-

Number}

CC-

Request-

Number

AVP

1

${CCA.CC-Time}

CC-Time

AVP (if

present)

600

${CCA.Origin-Host}
Origin-Host

AVP
ocs01.epc.mnc380.mcc313.3gppnet

${CCA.Origin-Realm}
Origin-

Realm AVP
epc.mnc380.mcc313.3gppnetwork.o

Variable Name Source Example Value

${CCA.Service-

Information.Carrier-

Select-Routing-

Information}

Service-

Information

→ Carrier-

Select-

Routing-

Information

1408

${CCA.Service-

Information.Alternate-

Charged-Party-Address}

Service-

Information

→

Alternate-

Charged-

Party-

Address

NickTest

Variable Format:

All CCA AVPs use the prefix CCA.

Nested AVPs use dot notation: CCA.Parent.Child

Dots and hyphens are preserved in variable names

In uuid_dump, variables appear with variable_ prefix

Example uuid_dump output:

variable_allocated_time: 600

variable_CCA.Service-Information.Carrier-Select-Routing-

Information: 1408

variable_CCA.Service-Information.Alternate-Charged-Party-Address:

NickTest

variable_CCA.Result-Code: 2001

Operations Guide

� Back to Main Documentation

This document covers operational monitoring and management features

available in the Control Panel.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - System configuration reference

📊 Metrics Reference - Prometheus metrics and monitoring

Monitoring & Testing Tools

🧪 HLR & Call Simulator - Testing tools for HLR and call simulation

👥 IMS Conference Server - Conference management and monitoring

📈 Dialplan Metrics - Dialplan-specific metrics

Call Processing & Services

🔀 Dialplan Configuration - Call routing and dialplan reference

👥 Sh Interface - Subscriber data testing

💳 Online Charging - OCS testing

🔢 Number Translation - Number translation testing

📞 Voicemail - Voicemail management

Integration Interfaces

📡 SS7 MAP - HLR/MAP testing

⚙️ Supplementary Services - Emergency calling, call forwarding

Operations

This section covers operational monitoring and management features available

in the OmniTAS Control Panel.

Table of Contents

Subscribers View

Call Detail Records (CDR)

Active Calls Monitoring

IMS Conference Server

Gateway Status

Diameter Peer Status

Logs Viewer

Cell Tower Database

Call Simulator

HLR/MAP Testing

Other Views

Subscribers View

The Subscribers view provides real-time monitoring of IMS subscriber

registrations stored in the Sofia SIP registration database.

Access: Navigate to /subscribers in the Control Panel

Features

Registration List: View all active subscriber registrations

Registration Details: Click on any registration to view complete details

including:

SIP User and Realm

Contact URI

Registration status and expiration

Network information (IP, port, hostname)

Authentication details

Cell tower location (when available via P-Access-Network-Info)

MCC/MNC, Radio Type, TAC/LAC, Cell ID

Geographic coordinates and coverage range

Interactive map view powered by OpenStreetMap and OpenCellID

data

Data Source

Registration data is queried directly from the Sofia registration database,

providing real-time visibility into subscriber attachment status. Cell tower

locations are resolved using the OpenCellID database when subscribers provide

P-Access-Network-Info headers in their SIP REGISTER messages.

Use Cases

Monitor active subscriber registrations

Verify subscriber attachment status

Troubleshoot registration issues

Audit subscriber connectivity

Call Detail Records (CDR)

The CDR view provides access to call detail records stored by TAS for billing,

troubleshooting, and analytics purposes.

Access: Navigate to /cdr in the Control Panel

Features

Paginated View: Browse through call records (100 per page with

Previous/Next controls)

Advanced Search: Powerful search with support for exact match,

inverse/exclude, and multiple terms

Column Selection: Customize which fields to display

Click "Columns" button to open column picker modal

Select/deselect individual columns

Select All / Deselect All quick actions

Selection persists across sessions (saved to browser localStorage)

Shows "X / Y columns" counter

Sortable Columns: Click any column header to sort

(ascending/descending)

Visual indicators (▲ ascending, ▼ descending)

Sorted column highlighted in blue

Resets to page 1 when sorting changes

Multiple Filter Options:

Text Search: Search across all fields with advanced operators

Date Range Filter: Filter by start/end date and time (datetime picker)

Field-Specific Filter: Filter by exact field value (hangup cause, caller

ID, destination, context)

Active Filter Display: Visual chips show currently active filters

Clear All: One-click removal of all active filters

Detailed Information: Click on any CDR row to expand and view all fields:

Call parties (caller ID name/number, destination number)

Timestamps (start, answer, end)

Duration and billed seconds

Hangup cause (color-coded: green=normal, yellow=cancel, red=error)

Call UUIDs (A-leg and B-leg)

Context and account code

All available database fields in alphabetical order

Color-Coded Hangup Causes:

🟢 Green: NORMAL_CLEARING

🟡 Yellow: Cancelled calls

🔴 Red: Error conditions

Total Count: Real-time display of total matching records

Responsive Layout: Filters wrap appropriately on smaller screens

How to Use

1. Basic Viewing:

Page loads with latest 100 CDR records (sorted by start_stamp

descending)

Total record count shown in top-right

Use Previous / Next buttons to navigate pages

Click any row to expand and see all fields

2. Customize Columns:

Click "Columns" button in top-right

Modal shows all available fields

Check/uncheck fields to show/hide columns

Use "Select All" or "Deselect All" for quick selection

Settings automatically saved to browser

Close modal to apply changes

3. Sort Data:

Click any column header to sort by that field

First click: Descending (▼)

Second click: Ascending (▲)

Third click: Back to descending

Sorted column highlighted in blue

4. Search Records:

Enter search query in "Search" box

Supports advanced operators (see Search Syntax below)

Searches across multiple fields: caller_id_number ,

destination_number , uuid , caller_id_name , hangup_cause

Click "Apply" to execute search

5. Filter by Date Range:

Use "Start Date" and "End Date" datetime pickers

Both dates required for date filtering

Supports date and time selection

Click "Apply" to filter

6. Filter by Specific Field:

Select field from "Select Field to Filter" dropdown:

Hangup Cause

Caller ID

Destination

Context

Enter exact value in "Enter Filter Value"

Click "Apply" to filter

7. Combine Filters:

All filters can be used simultaneously:

Text search + Date range + Field filter all work together

Active filters shown as chips below the filter form

Click "Clear All" to remove all filters at once

8. View Details:

Click any CDR row to expand

Shows all database fields in a grid layout

Fields displayed in alphabetical order

Hangup cause color-coded for quick identification

Click row again to collapse

Advanced Search Syntax

The search box supports powerful query syntax for precise record filtering

across multiple fields simultaneously.

How Search Works:

The search engine checks all searchable fields in each CDR record. A record

is included in results when it matches your search criteria in any of these

fields:

caller_id_number

destination_number

uuid

caller_id_name

hangup_cause

Search Operators (can be combined):

1. Contains Search (default):

Syntax: term (no quotes)

Matches: Records where any field contains the term anywhere within

it

SQL: Uses LIKE '%term%' across all searchable fields joined with OR

Example: 61480 matches "61480123456", "55561480999", etc.

2. Exact Match:

Syntax: "term" (with double quotes)

Matches: Records where any field exactly equals the term

SQL: Uses = 'term' across all searchable fields joined with OR

Example: "911" matches only exactly "911", not "9115" or "1911"

3. Inverse/Exclude:

Syntax: !term (exclamation mark prefix, no quotes)

Matches: Records where no field contains the term

SQL: Uses NOT LIKE '%term%' across all searchable fields joined with

AND

Example: !NORMAL excludes any record with "NORMAL" in any field

4. Exact Inverse/Exclude:

Syntax: !"term" (exclamation mark + double quotes)

Matches: Records where no field exactly equals the term

SQL: Uses != 'term' across all searchable fields joined with AND

Example: !"NORMAL_CLEARING" excludes records where any field is

exactly "NORMAL_CLEARING"

5. Multiple Terms with AND:

Syntax: term1 AND term2 (case-insensitive AND)

Matches: Records matching all terms (each term can match different

fields)

Each term is processed with its own operator (quotes, !, etc.)

Terms are combined with AND in SQL

Example: "911" AND "12345" finds records with "911" in one field AND

"12345" in another

Search Execution Logic:

Complex Search Examples:

For each CDR record:

 For normal search (no !):

 - Check if ANY field contains/equals the term → Include if

TRUE

 - SQL: field1 LIKE '%term%' OR field2 LIKE '%term%' OR ...

 For inverse search (!):

 - Check if ALL fields do NOT contain/equal the term → Include

if TRUE

 - SQL: field1 NOT LIKE '%term%' AND field2 NOT LIKE '%term%'

AND ...

 For AND searches:

 - Each term is evaluated separately

 - All term conditions must be TRUE → Include if TRUE

 - SQL: (term1_conditions) AND (term2_conditions) AND ...

Query How It Works Result

61480
Contains search across

all fields

All records with "61480"

anywhere (caller,

destination, UUID, etc.)

"911"
Exact match across all

fields

Records where any field

is exactly "911"

!NORMAL_CLEARING Inverse contains search

Excludes records with

"NORMAL_CLEARING" in

ANY field (failed calls)

!"NORMAL_CLEARING" Exact inverse

Excludes records where

any field exactly equals

"NORMAL_CLEARING"

"911" AND "12345"
Exact "911" AND exact

"12345"

Records with both

values (e.g.,

caller="12345",

destination="911")

!NORMAL AND 61480

Inverse contains

"NORMAL" AND

contains "61480"

Non-normal calls

involving "61480"

!"ANSWER" AND

!NORMAL

Exact inverse

"ANSWER" AND inverse

contains "NORMAL"

Exclude answered calls

and anything with

"NORMAL"

61480 AND

!NORMAL_CLEARING

Contains "61480" AND

inverse contains

"NORMAL_CLEARING"

Failed calls involving

"61480"

Practical Use Cases:

Find specific number: 61480123456 - Contains search finds partial

matches

Find exact emergency calls: "911" - Only calls to exactly "911"

All failed calls: !NORMAL_CLEARING - Exclude successful calls

Specific caller's failed calls: "61480123456" AND !NORMAL - Combine

exact caller with inverse

Exclude test numbers: !test AND !demo - Multiple inverse searches

Complex debugging: 61480 AND !"ANSWER" AND !CANCEL - Contains one

term, exclude exact and partial others

Data Source

CDR data is queried directly from the TAS CDR SQLite database.

The schema may vary between deployments based on specific requirements.

CDR Export Options

Important: CDR records can be exported in various formats to support

integration with billing systems, analytics platforms, and reporting tools.

The CDR database schema and export formats are deployment-specific. When

setting up your system, please request the specific CDR output formats

you need from your integration engineer. Common export formats

include:

CSV (Comma-Separated Values)

JSON (for API integration)

XML

Direct database access

Custom formatted exports

Your integration engineer can configure CDR export mechanisms tailored to

your operational and billing requirements.

Use Cases

Call Troubleshooting: Search for specific calls by number or UUID to

debug issues

Billing Reconciliation: Filter by date range to match billing periods

Quality Analysis: Filter by hangup cause to identify problem patterns

Emergency Call Auditing: Search for "911" to verify emergency call

handling

Customer Support: Look up specific customer calls by caller ID or

destination

Pattern Analysis: Sort by duration or timestamps to identify anomalies

Compliance & Record Keeping: Date range filters for regulatory

reporting

Failed Call Analysis: Use !NORMAL_CLEARING to find all failed calls

Context-Based Reports: Filter by context to analyze specific call flows

Configuration

Default Visible Columns

You can configure which CDR fields are shown by default in the LiveView by

setting cdrs_field_list in your config/runtime.exs :

Behavior:

If cdrs_field_list is not set: All available CDR fields are shown by

default

If cdrs_field_list is set: Only the specified fields are shown by default,

but all other fields remain available in the column picker

config :tas,

 cdrs_field_list: [

 "caller_id_number",

 "destination_number",

 "start_stamp",

 "duration",

 "hangup_cause"

]

If a field in the list doesn't exist in the CDR data, it will be automatically

skipped

Field names can be specified as strings or atoms

Users can manually select additional columns from the column picker at

any time

Use Cases:

Set a clean default view with only essential fields visible

Reduce information overload for new users

Standardize the initial column layout across all users

Keep advanced fields hidden by default but still accessible

Example Configuration:

Note: This configuration sets the default visible columns. All CDR fields remain

available in the "Columns" picker - users can manually show/hide any field they

need.

Troubleshooting

No Results Found

1. Check for typos in search terms

2. Try removing quotes for broader search

3. Verify the term exists in searchable fields

4. Check date range isn't too restrictive

Too Many Results

Show only essential call information by default

cdrs_field_list: [

 "start_stamp",

 "caller_id_number",

 "destination_number",

 "duration",

 "billsec",

 "hangup_cause"

]

1. Add more AND terms to narrow

2. Use exact match with quotes

3. Apply date range filters

4. Use field-specific filters

Unexpected Results

1. Remember search applies to ALL searchable fields

2. Check if term appears in unexpected field (like UUID)

3. Use exact match to avoid partial matches

4. Verify inverse logic (AND vs OR)

Tips

Column Selection: Hide unused columns to focus on relevant data and

improve performance

Combine Filters: Use search + date range + field filter together for

precise queries

Date Range Performance: Narrow date ranges return results faster for

large databases

Sort for Analysis: Sort by duration to find long/short calls, or by

timestamp to see call patterns

Active Filter Chips: Use visual chips to verify which filters are currently

active

Persistent Settings: Column selections are saved per browser, useful for

different analysis tasks

Color Coding: Quickly scan hangup causes - green is good, red needs

investigation

Expandable Details: Click rows to see all fields without cluttering the

main view

Search Operators: Master the search syntax for powerful filtering:

Use quotes for exact matches: "911"

Use ! to exclude: !NORMAL_CLEARING

Combine with AND: "61480" AND !NORMAL

Pagination: Remember filters persist across pages - use pagination to

review large result sets

Active Calls Monitoring

The Active Calls view shows real-time information about ongoing calls through

the system.

Access: Navigate to /calls in the Control Panel

Features

Real-time Status: Live view of active call sessions

Call Details: View channel variables and call state information

UUID Tracking: Monitor both A-leg and B-leg call identifiers

IMS Conference Server

The IMS Conference Server provides multi-party conferencing capabilities

compliant with 3GPP IMS standards (RFC 4579, RFC 4575, TS 24.147).

Access: Navigate to /conference in the Control Panel

Documentation: See IMS Conference Server User Guide for detailed

documentation

Features

Real-time Monitoring: Live view of active conferences and participants

Conference Statistics Dashboard:

Active conference count

Total participants across all conferences

Video conference count

Locked conference count

Server configuration details (domain, MNC/MCC, max participants)

Conference List: View all active conferences with:

Conference ID and SIP URI

Current participant count

Conference creator identity

Conference Details: Click any conference to expand and view:

Full conference information (state, video status, locked status,

recording status)

Complete participant list with roles and states

Participant video status

Conference Control Actions:

Lock/Unlock conferences to control access

Enable/Disable video for conferences

Real-time status updates with action feedback

Auto-Refresh: Configurable auto-refresh (default: 5 seconds) for real-time

monitoring

OmniTAS Console Management

All conference operations are also available through the OmniTAS console using

the ims_conference command:

Use Cases

Operational Monitoring: Real-time visibility into active conferences and

resource usage

Capacity Management: Monitor participant counts and video usage to

manage bandwidth

Troubleshooting: Diagnose conference access issues, participant

connection problems

ims_conference list # List all active

conferences

ims_conference info <conf_id> # Show conference details

ims_conference stats # Show server statistics

ims_conference lock <conf_id> # Lock a conference

ims_conference unlock <conf_id> # Unlock a conference

ims_conference video <conf_id> on|off # Control video

ims_conference record <conf_id> start|stop # Control recording

ims_conference add <conf_id> <sip_uri> # Add participant

ims_conference remove <conf_id> <uuid> # Remove participant

ims_conference destroy <conf_id> # Terminate conference

Conference Control: Lock conferences for privacy, manage video to

control bandwidth

Compliance: Monitor and record conferences for regulatory compliance

3GPP Compliance

The conference server implements key 3GPP IMS conferencing specifications:

TS 24.147: Conferencing using IM Core Network subsystem

RFC 4579: SIP Call Control - Conferencing for User Agents

RFC 4575: SIP Event Package for Conference State

RFC 5239: Framework for Centralized Conferencing

Gateway Status

Monitor the status and health of SIP gateways/trunks connected to the TAS.

Access: Navigate to /gw in the Control Panel

Features

Registration Status: View gateway registration state

Call Statistics: Track incoming/outgoing calls and failures

Ping Monitoring: SIP OPTIONS ping times and reachability

Gateway Details: Complete configuration and status information

Monitored Metrics

SIP Registration status

Ping time (average SIP OPTIONS response time)

Uptime (seconds since profile restart)

Calls In / Calls Out

Failed Calls In / Failed Calls Out

Last ping time and frequency

Diameter Peer Status

Monitor Diameter peer connectivity for Sh and Ro interfaces.

Access: Navigate to /diameter in the Control Panel

Features

Peer Status: Connection state for each configured peer

Application Support: View supported Diameter applications (Sh, Ro)

Watchdog Status: Diameter watchdog monitoring

System Logs Viewer

Real-time unified log viewer for both TAS Backend (Elixir) and TAS Call

Processing (FreeSWITCH) logs.

Access: Navigate to /logs in the Control Panel

Features

Unified Log Stream: View logs from both TAS Backend and Call

Processing in one interface

Real-time Updates: Live streaming of log messages as they occur (auto-

refresh every 1 second)

Color-Coded Log Levels:

🟣 Console - Console messages (purple/magenta)

🔴 Alert/Critical - Urgent issues requiring immediate attention (red)

🟠 Error - Error conditions (light red)

🟡 Warning - Warning messages (yellow)

🔵 Notice - Notable informational messages (cyan)

🔵 Info - General informational messages (blue)

⚪ Debug - Debug/verbose logging (gray)

Source Badges:

🔵 TAS Backend - Elixir application logs (blue badge)

🟣 TAS Call Processing - FreeSWITCH logs (purple badge)

Left Border Indicators: Color-coded left border matching log level for

quick visual scanning

Multiple Filters:

Source Filter: All Sources / TAS Backend / TAS Call Processing

Level Filter: All / Console / Alert / Critical / Error / Warning / Notice /

Info / Debug

Text Search: Real-time keyword search across log messages

Pause/Resume: Freeze log streaming to analyze specific entries without

losing context

Clear Logs: Remove all current log entries from display

Log Counter: Shows filtered logs vs total logs (e.g., "Showing 150 of 500

logs")

Tail Behavior: Maintains last 500 log entries for performance

Metadata Display: File name and line number for source code references

(when available)

Scrollable View: Fixed-height container with auto-scroll for latest logs

How to Use

1. Basic Viewing:

Page loads with latest 500 log entries from both sources

Logs appear in real-time as they're generated

Most recent logs appear at the top

Auto-refreshes every 1 second

2. Filter by Source:

Select from "Source" dropdown:

All Sources - Show both TAS Backend and Call Processing logs

TAS Backend - Only Elixir application logs

TAS Call Processing - Only FreeSWITCH/dialplan logs

Filter applies immediately

3. Filter by Log Level:

Select from "Level" dropdown:

All - Show all log levels

Console through Debug - Show only that specific level

Useful for focusing on errors or debugging specific issues

4. Search for Keywords:

Type in the "Search logs..." box

Case-insensitive search across log messages

Filters in real-time as you type

Combines with source and level filters

5. Pause/Resume Stream:

Click "Pause" button (orange) to freeze log updates

"PAUSED" indicator appears in header

Review specific log entries without new logs interrupting

Click "Resume" button (green) to restart live streaming

6. Clear Logs:

Click "Clear" button (red) to remove all displayed logs

Clears both TAS Backend and Call Processing logs

Fresh logs will appear as they're generated

7. Read Log Entries:

Timestamp: Shows time in HH:MM:SS.milliseconds format

Source Badge: Indicates TAS Backend (blue) or Call Processing

(purple)

Log Level: Color-coded level in brackets [ERROR], [INFO], etc.

File/Line: Source code location (when available)

Message: The actual log message content

Log Levels Explained

Level Color When Used Example

Console Purple
Console-specific

messages

High-priority FreeSWITCH

console output

Alert Red
Immediate action

required
System component failure

Critical Red Critical conditions Database connection lost

Error
Light

Red
Error conditions

Failed to process call, invalid

configuration

Warning Yellow Warning conditions
Deprecated function used,

retry attempt

Notice Cyan
Notable normal

events

Configuration reloaded,

service started

Info Blue
Informational

messages

Call connected, Diameter

request sent

Debug Gray
Debug-level

messages

Function entry/exit, variable

values

Use Cases

Real-time Troubleshooting: Monitor logs during active call to debug

issues

Error Investigation: Filter by Error/Critical levels to find problems

Call Flow Analysis: Search for Call-ID or phone number to trace call path

Performance Monitoring: Watch for warnings and errors during load

testing

Integration Debugging: Filter TAS Backend to see Diameter/Sh/Ro

messages

Dialplan Debugging: Filter TAS Call Processing to see FreeSWITCH call

routing

System Health Monitoring: Keep logs open to watch for anomalies

Development & Testing: Use Debug level to see verbose application

behavior

Tips

Combine Filters: Use Source + Level + Search together for precise

filtering

Example: Source="TAS Backend" + Level="Error" +

Search="Diameter" → Find Diameter errors

Pause Before Searching: Pause stream before typing search query to

avoid logs scrolling

Use Debug Wisely: Debug level is verbose - filter to specific source to

reduce noise

Color Scanning: Quickly scan left borders - red borders indicate problems

Source Badges: Blue badges (Backend) for app logic, Purple badges (Call

Processing) for calls

Timestamp Precision: Millisecond timestamps help correlate events

across systems

File References: Click/note file:line references to jump to source code

Clear Regularly: Clear logs when switching investigation contexts for

clarity

Search for UUIDs: Search for Call-ID/UUID to follow a specific call through

entire system

Emergency Search: Search "911" or "emergency" to quickly find

emergency call handling

Technical Details

Log Limit: Maximum 500 logs displayed (oldest discarded when limit

reached)

Refresh Rate: Auto-refresh every 1000ms (1 second)

Search: Case-insensitive substring matching on message field only

Empty Filtering: Automatically filters out empty/placeholder log

messages

Source Detection: Logs tagged with :elixir or :freeswitch source

Sorting: Logs sorted by timestamp descending (newest first)

PubSub: Elixir logs delivered via Phoenix PubSub for real-time updates

FreeSWITCH Logs: Collected via Event Socket Interface (ESI) log listener

Cell Tower Database

Manage and query the OpenCellID cell tower location database for emergency

services and location-based features.

Access: Navigate to /cell_towers in the Control Panel

Features

Database Statistics: View total records, coverage by country/network

Search & Query:

Search by MCC (Mobile Country Code)

Search by MNC (Mobile Network Code)

Search by radio type (GSM, UMTS, LTE)

Search by location string

Database Management:

Import cell tower data

Re-download latest dataset from OpenCellID

View import status and progress

Location Resolution: Resolve cell IDs to geographic coordinates

Use Cases

Emergency call location determination

Subscriber location tracking (with consent)

Network coverage analysis

Troubleshooting roaming location issues

Cell tower database maintenance

Data Source

Cell tower data is sourced from OpenCellID (https://opencellid.org/), a

collaborative community project to create a free database of cell tower

locations worldwide.

Call Simulator

Interactive call simulation tool for testing dialplan logic without making real

calls.

Access: Navigate to /simulator in the Control Panel

Detailed Documentation: See HLR and Call Simulator Guide

Features

Simulate Call Types: Test MO, MT, and Emergency calls

Configurable Parameters:

Source and destination numbers

Source IP address (to simulate SBC/CSCF)

Force specific call disposition

Skip OCS authorization for faster testing

https://opencellid.org/

Comprehensive Results:

Complete dialplan variable output

Sh/HLR lookup results

OCS authorization result

SS7 MAP query results (if applicable)

Generated dialplan XML

Step-by-Step Processing: View each stage of call processing

Use Cases

Test dialplan changes before deployment

Verify subscriber provisioning

Debug call routing issues

Train staff on call flow

Validate OCS/HLR integration

Test emergency call handling

HLR/MAP Testing

Test SS7 MAP operations including Send Routing Info (SRI) and Provide Roaming

Number (PRN) queries.

Access: Navigate to /hlr in the Control Panel

Detailed Documentation: See HLR and Call Simulator Guide

Features

SRI Query: Test Send Routing Info for call routing

PRN Query: Test Provide Roaming Number for roaming subscribers

Real Results: Actual queries to configured MAP gateway

Response Display: View MSRN, MSC address, and forwarding status

Error Handling: Clear display of MAP errors and timeouts

Use Cases

Verify HLR connectivity

Test roaming number allocation

Debug call routing to roaming subscribers

Validate MAP gateway configuration

Troubleshoot call forwarding issues

OCS Testing

Test Diameter Ro (Online Charging) Credit-Control-Request (CCR) operations

directly against your OCS.

Access: Navigate to /ocs_test in the Control Panel

Features

Flexible CCR Types: Send INITIAL, UPDATE, TERMINATION, or EVENT

requests

Session Simulation: Reuse the same Call ID to simulate a complete

session lifecycle

Event Type Selection: Test both SMS (event-based) and Call (session-

based) charging

Direction Control: Test both outgoing (MO) and incoming (MT) scenarios

Optional Parameters: Specify Destination-Host and Username for

advanced testing

Real-time Results: View complete CCA (Credit-Control-Answer) responses

How to Use

1. Enter Test Parameters:

Called MSISDN: The destination number (e.g., 61400123456)

Calling MSISDN: The originating number (e.g., 61400987654)

Event Type: Choose sms or call

SMS defaults to EVENT_REQUEST (type 4)

Call defaults to INITIAL_REQUEST (type 1)

Direction: out for MO or in for MT

2. Configure CCR Type:

Request-Type: Select the CCR type:

1 — INITIAL_REQUEST - Start a new session

2 — UPDATE_REQUEST - Mid-session re-authorization

3 — TERMINATION_REQUEST - End session and report usage

4 — EVENT_REQUEST - One-time event (SMS, immediate event)

Request-Number: Starts at 1, increment for each request in the same

session

3. Session Testing:

Call ID: Auto-generated unique identifier for correlation

Click "New ID" to generate a fresh Call ID for a new test session

Keep the same Call ID to simulate a complete session:

First request: INITIAL_REQUEST (type 1, number 1)

Mid-session: UPDATE_REQUEST (type 2, number 2, 3, 4...)

Final request: TERMINATION_REQUEST (type 3, number N+1)

4. Advanced Options:

Destination-Host: Target a specific OCS node (optional)

Username: Override the subscriber identifier (optional)

5. Run and Review:

Click "Run CCR" to send the request

View the complete CCA response with all AVPs

Check result code, granted units, and validity time

Last run timestamp shown in top-right corner

Use Cases

OCS Connectivity Testing: Verify Diameter Ro connection and

authentication

Credit Control Logic: Test credit allocation, consumption, and exhaustion

scenarios

Session Flow Testing: Simulate complete call lifecycle (INITIAL → UPDATE

→ TERMINATION)

Rating Validation: Verify correct charging rates for different number

ranges

Failover Testing: Test OCS redundancy by targeting specific Destination-

Host

Integration Debugging: Troubleshoot OCS integration issues with

detailed AVP inspection

Load Testing Preparation: Validate OCS behavior before load testing

Emergency Number Bypass: Verify that emergency numbers bypass

charging correctly

Tips

Use the same Call ID with incrementing Request-Numbers to test session

continuity

Monitor OCS logs simultaneously to correlate test requests

Test UPDATE requests to verify mid-session re-authorization logic

Verify that TERMINATION requests properly close sessions and prevent

leaks

Test credit exhaustion by sending UPDATE requests after consuming

granted units

Sh Interface Testing

Test Diameter Sh User-Data-Request (UDR) operations to retrieve subscriber

profile data from the HSS.

Access: Navigate to /sh_test in the Control Panel

Features

Multiple Data References: Query over 20 different subscriber data types

Real HSS Queries: Live Diameter Sh requests to your configured HSS

Complete Response Display: View full XML subscriber data and AVPs

Session Tracking: Shows HSS hostname, realm, and session ID

Error Handling: Clear display of Diameter result codes and error

conditions

How to Use

1. Enter Public Identity:

Public Identity: The subscriber's IMS Public Identity

Format: sip:61400123456@ims.mncXXX.mccXXX.3gppnetwork.org

Can also use tel:+61400123456 format

2. Select Data Reference: Choose the type of subscriber data to retrieve:

RepositoryData (0): Complete subscriber profile

IMSPublicIdentity (10): List of public identities

IMSUserState (11): Registration state

S-CSCFName (12): Assigned S-CSCF

InitialFilterCriteria (13): iFC triggers for application servers

LocationInformation (14): Current location

ChargingInformation (16): P-Charging addresses

MSISDN (17): Phone number

IMSI (32): International Mobile Subscriber Identity

IMSPrivateUserIdentity (33): Private user identity

And many more...

3. Run and Review:

Click "Fetch SH Data" to send the UDR request

View the complete User-Data-Answer (UDA) response

Check subscriber profile XML, service data, and iFC rules

Session metadata shows which HSS responded

Use Cases

Subscriber Verification: Confirm subscriber is provisioned in HSS

iFC Debugging: Review Initial Filter Criteria and trigger points

Registration Troubleshooting: Check user state and S-CSCF assignment

Charging Configuration: Verify P-Charging-Function-Addresses

HSS Connectivity Testing: Validate Diameter Sh connection

Profile Validation: Ensure correct service profile is assigned

Integration Testing: Test HSS integration after provisioning changes

Roaming Analysis: Check location information and serving network

Tips

Use IMSPublicIdentity (10) to see all aliases for a subscriber

Use RepositoryData (0) to get the complete subscriber profile in one

query

Check IMSUserState (11) to verify if a subscriber is registered

InitialFilterCriteria (13) shows which application servers will be triggered

The session ID can be used to correlate queries in HSS logs

Error responses include Diameter result codes (e.g., 5001 = User Unknown)

Number Translation Testing

Test number translation rules and formatting without making actual calls.

Access: Navigate to /translate in the Control Panel

Features

Real-time Translation: Auto-translates as you type

Country Code Support: Test different country code contexts

Disposition-Aware: Apply different rules based on call disposition

Live Results: Immediate feedback with translated number

Debug Information: View raw return values for troubleshooting

How to Use

1. Configure Parameters:

Country Code: The dialing context (e.g., AU , US , NZ)

Defaults to the configured country code in config/runtime.exs

Accepts formats: AU , :AU , au

Phone Number: The number to translate

Examples: +61400111222 , 0400111222 , 61400111222

Disposition: (Optional) Call context for conditional rules

Examples: originate , route , emergency

2. Test Translation:

Enter values in the form

Translation runs automatically as you type

Or click "Translate" to manually trigger

View the translated result immediately

3. Review Results:

Translated: Shows the formatted output number

Error: Displays validation errors or translation failures

Raw return (debug): Shows the complete Elixir tuple for debugging

Use Cases

Dialplan Development: Test number formatting rules before deployment

Format Validation: Verify E.164 conversion is working correctly

Country Code Testing: Ensure correct handling of international prefixes

Emergency Number Detection: Verify emergency numbers are properly

identified

Short Code Handling: Test special service codes (voicemail, etc.)

Trunk Preparation: Format numbers correctly for SIP trunk requirements

Disposition Logic: Test different rules for MO vs MT scenarios

Debugging Translation Issues: Troubleshoot why specific numbers fail

routing

Tips

Test both local format (0400111222) and international format

(+61400111222)

Verify emergency numbers (000 , 112) are detected correctly

Use disposition field to test different call scenarios (MO, MT, emergency)

Check that short codes and internal numbers are handled appropriately

The debug output shows the raw return value - useful for investigating

issues

Test edge cases like leading zeros, international prefixes, and special

characters

Voicemail Management

Manage and listen to voicemail messages stored in the system.

Access: Navigate to /voicemail in the Control Panel

Features

Complete Voicemail List: View all voicemail messages across all

mailboxes

In-Browser Playback: Listen to voicemail recordings directly in the web

interface

Message Details: View username, UUID, timestamps, file paths, and

metadata

Delete Functionality: Remove individual voicemail messages

Auto-Refresh: Refresh button to reload latest voicemail data

Dynamic Columns: Automatically displays all available database fields

How to Use

1. View Voicemail List:

Page loads automatically with all voicemail records

Table shows all fields from the voicemail database

Timestamps are automatically formatted from epoch values

File paths are shortened for readability

2. Listen to Messages:

Click "▶ Play" button next to any voicemail

Audio player appears with controls (play, pause, seek, volume)

Supports WAV, MP3, and OGG formats

Click "Stop" to close the audio player

3. Delete Messages:

Click "Delete" button to remove a voicemail

Confirmation prompt prevents accidental deletion

Page automatically refreshes after successful deletion

4. Refresh Data:

Click "Refresh" button in top-right to reload voicemail list

Useful after new voicemails are left

Message Details Displayed

The table dynamically shows all available fields, typically including:

Username: Mailbox owner

UUID: Unique message identifier

Created Epoch: When the message was left (auto-formatted to readable

date/time)

Read Epoch: When the message was accessed (if applicable)

File Path: Location of the audio file

Additional metadata from the voicemail database

Use Cases

Subscriber Support: Listen to voicemail messages for troubleshooting

Testing Voicemail Delivery: Verify voicemails are being stored correctly

Message Management: Clean up old or test voicemail messages

Troubleshooting Recording Issues: Check file paths and verify audio

files exist

Mailbox Maintenance: Monitor voicemail storage and usage

Quality Assurance: Review recorded messages for audio quality

Tips

File paths are automatically shortened to show only the relevant portion

Epoch timestamps are automatically converted to human-readable format

Empty voicemail database shows "No voicemail records found"

Audio playback uses HTML5 audio element - supported in all modern

browsers

Delete confirmation prevents accidental removal of important messages

TTS Prompt Management

Manage Text-to-Speech (TTS) generated audio prompts used throughout the

system.

Access: Navigate to /prompts in the Control Panel

Features

Prompt Settings Display: View current TTS voice, response format, and

instructions

Recording Status: See which prompts exist and which are missing

File Details: View file size, modification time, and path for each prompt

In-Browser Playback: Listen to prompts directly in the web interface

Generate Missing: Automatically create all missing prompt files

Re-record Individual: Regenerate a specific prompt with updated settings

Re-record All: Regenerate all prompts (useful after changing voice or

settings)

How to Use

1. Review Prompt Settings:

Voice: TTS voice being used (e.g., alloy , nova , shimmer)

Response Format: Audio format (e.g., wav , mp3 , opus)

Instructions: Special instructions passed to TTS engine

2. Check Recording Status:

Text: The prompt text to be spoken

Relative Path: Where the audio file is stored

Exists: Green "Yes" if file exists, Yellow "No" if missing

Size: File size in bytes/KiB/MiB

Modified: Last modification timestamp

3. Generate Prompts:

Generate Missing: Creates only prompts that don't exist yet

Useful for initial setup or after adding new prompts

Re-record All: Regenerates all prompts regardless of existence

Useful after changing voice, format, or instructions

Use with caution as it regenerates everything

4. Manage Individual Prompts:

▶ Play: Listen to the prompt (only enabled if file exists)

� Re-record: Regenerate just this one prompt

Useful if one prompt sounds incorrect

Uses current voice and settings

5. Listen to Prompts:

Click "▶ Play" to hear the prompt

Audio player appears at bottom with full controls

Click "Stop" to close the player

Prompt Configuration

Prompts are configured in your application config:

Use Cases

Initial Setup: Generate all prompts after system installation

Voice Changes: Re-record all prompts with a different TTS voice

Quality Improvement: Fix individual prompts that don't sound right

Format Updates: Regenerate prompts in different audio format (wav →

mp3)

Text Updates: Re-record after changing prompt text in config

Testing TTS: Preview how prompts will sound before deployment

Troubleshooting Playback: Verify prompt files exist and are accessible

Storage Management: Check file sizes and manage disk usage

Tips

Use "Generate Missing" for initial setup - it won't overwrite existing

prompts

Use "Re-record All" after changing voice or format in config

Individual "Re-record" is useful for iterating on specific prompts

Listen to prompts before deployment to ensure quality

Larger response formats (wav) have better quality but use more disk space

The instructions field can guide TTS engine for tone and pacing

Re-recording can take time if you have many prompts - be patient

Prompts are stored in FreeSWITCH sounds directory for easy access

config :tas, :prompts,

 voice: "nova",

 response_format: "wav",

 instructions: "Speak clearly and professionally.",

 recordings: [

 %{path: "/sounds/en/us/callie/voicemail/vm-enter_id.wav",

 text: "Please enter your mailbox ID followed by pound"},

 # ... more prompts

]

Dialplan XML Templates

View and inspect FreeSWITCH dialplan XML templates used for call routing.

Access: Navigate to /routing in the Control Panel

Features

Template List: View all XML dialplan templates from priv/templates/

directory

File Details: See filename and last modified timestamp for each template

Syntax Highlighting: Color-coded XML display for easy reading

Tags in teal

Attributes in light blue

Values in orange/tan

Comments in green

Expandable View: Click any template to view its full XML content

Read-Only View: Safe inspection without risk of accidental modification

Scrollable Content: Large templates scroll within fixed-height container

(max 600px)

How to Use

1. View Template List:

Page loads with all .xml files from the templates directory

Sorted alphabetically by filename

Shows modification timestamp for each file

2. Inspect Template:

Click any row to expand and view the XML content

Template displays with syntax highlighting

Click again to collapse

3. Read XML Content:

Tags (teal): XML element names like <extension> , <condition>

Attributes (light blue): Attribute names like name= , field=

Values (orange): Attribute values like "public" ,

"destination_number"

Comments (green): XML comments <!-- ... -->

Use Cases

Review Dialplan Logic: Inspect routing rules and call flow templates

Troubleshoot Call Routing: Understand which templates are used for

different call types

Verify Template Syntax: Check XML structure before deployment

Training & Documentation: Share template contents with team

members

Change Auditing: Compare modification timestamps to track updates

Template Development: Reference existing templates when creating new

ones

Tips

Templates are loaded from priv/templates/ within the TAS application

Only .xml files are displayed

Templates are read-only through the web interface

Modification timestamps help identify recent changes

Use this view to verify templates match your dialplan expectations

Syntax highlighting makes complex XML easier to parse visually

Combine with /logs view to correlate routing behavior with templates

Technical Details

Location: Templates stored in priv/templates/ directory

Format: FreeSWITCH XML dialplan format

File Extension: Only .xml files listed

Sorting: Alphabetical by filename

Syntax Highlighting: Client-side colorization using regex patterns

Max Display Height: 600px with scroll for large files

ESL Command Runner

Execute FreeSWITCH Event Socket Layer (ESL) commands directly from the web

interface.

Access: Navigate to /command in the Control Panel

Features

Command Execution: Run any ESL/FreeSWITCH API command

Live Output: See command results in real-time

Command History: Recent commands dropdown (last 10 commands)

Auto-Complete Ready: Monospace input for precise command entry

Error Handling: Clear display of command errors and exceptions

No Auto-Execute: Selecting history fills input but requires explicit "Run"

click

How to Use

1. Enter Command:

Type ESL command in the input box

Examples:

status - Show FreeSWITCH status

show channels - List active calls

uuid_dump <uuid> - Dump all variables for a call

sofia status - Show SIP profile status

reloadxml - Reload XML dialplan

version - Show FreeSWITCH version

2. Run Command:

Click "Run" button to execute

Button shows "Running…" while executing

Cannot run multiple commands simultaneously

3. View Output:

Results appear in the "Output" section below

Successful commands show raw response

Errors prefixed with "ERROR:"

Output is scrollable with max height of 600px

Monospace font for aligned data

4. Use Command History:

Recent commands appear in dropdown after first execution

Select from "Recent:" dropdown to fill input field

History maintains last 10 unique commands

Most recent command at top

Selecting history does NOT auto-execute (safety feature)

Common Commands

Command Description Example Output

status
System status and

uptime

FreeSWITCH running

info

show channels List all active calls
Channel list or "0

total"

show calls
Summary of active

calls
Call count summary

uuid_dump <uuid> All variables for a call
Complete variable

dump

uuid_kill <uuid> Hangup specific call "+OK" or error

sofia status SIP profile status Profile list and states

sofia status profile

<name>
Specific profile details

Registration count,

etc

reloadxml Reload dialplan XML "+OK" confirmation

version
FreeSWITCH version

info
Version string

global_getvar <var> Get global variable Variable value

api help
List available

commands
Command reference

Use Cases

Call Debugging: Get detailed info about active call with uuid_dump

System Status: Check FreeSWITCH health with status and show calls

SIP Troubleshooting: Inspect SIP profiles with sofia status

Dialplan Reload: Apply config changes with reloadxml

Emergency Actions: Kill stuck calls with uuid_kill

Variable Inspection: Check global or channel variables

Troubleshooting

Subscribers Not Showing

Verify OmniTAS is running

Check Sofia profile is active: sofia status profile internal

Verify database path in configuration matches actual database location

CDR Records Not Appearing

Confirm OmniTAS CDR module is loaded

Check CDR database exists at configured path

Verify CDR module configuration in OmniTAS

Performance Considerations

Large CDR databases (>1M records) may require additional indexing for

optimal performance

Consider archiving old CDR records periodically

Subscriber registration queries are typically fast as the registration

database is small

Configuration

Access Control

The Control Panel should be deployed behind appropriate access controls

(firewall, VPN, authentication) as it provides visibility into subscriber activity

and call records.

TTS Prompt

Configuration

� Back to Main Documentation

Configuration for Text-to-Speech (TTS) prompts using OpenAI's TTS engine.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - TTS prompts configuration (voice, instructions,

recordings)

🔧 Operations Guide - TTS prompt management in Control Panel

Integration & Usage

🔀 Dialplan Configuration - Using prompts in dialplan with playback

application

📞 Voicemail - Voicemail greeting and instruction prompts

⚙️ Supplementary Services - Service announcement prompts

💳 Online Charging - Out-of-credit prompts

Prompt Configuation

You can define prompts in the config that are then generated with Text to

Speech.

You can then use these in your dialplan with the playback commands.

For the prompts we can define "instructions" for tone, language, accent, etc,

and pick the voice. The TTS engine uses OpenAI's text to speech engine, which

you can test from openai.fm

config :tas,

 ...

 prompts: %{

 voice: "alloy",

 instructions: "Speak with a prim, British accent.",

 response_format: "wav",

 recordings: [

 %{

 text:

 "You do not have sufficient credit to make that call,

please topup your service and then try again ",

 path: "/sounds/en/us/callie/misc/8000/out_of_credit.wav"

 },

 %{

 text: "The destination you have called is unabled to be

reached",

 path:

"/sounds/en/us/callie/misc/8000/unable_to_be_reached.wav"

 },

 %{

 text: "Your call is being transferred to emergency

services",

 path:

"/sounds/en/us/callie/misc/8000/emergency_services_transfer.wav"

 }

]

 }

https://www.openai.fm/

Sh Interface

(Subscriber Data

Retrieval)

� Back to Main Documentation

The Sh interface provides access to subscriber profile data from the

HSS/Repository via Diameter.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - Diameter peer configuration

🔧 Operations Guide - Sh interface testing in Control Panel

Call Processing Integration

🔀 Dialplan Configuration - Using Sh data in dialplan variables

⚙️ Supplementary Services - MMTel-Config for call forwarding

📡 SS7 MAP - HLR data vs Sh data priority

Related Interfaces

💳 Online Charging - Ro interface (also uses Diameter)

🔢 Number Translation - Number normalization before Sh lookup

Monitoring

📊 Metrics Reference - Sh interface metrics and monitoring

Sh Interface (Subscriber Data

Retrieval)

The Sh interface is used to retrieve subscriber profile data from the

HSS/Repository before processing calls. This data includes subscriber identities,

services, and MMTel configuration.

What is the Sh Interface?

The Sh interface is a 3GPP-standardized Diameter interface between the TAS

and HSS/Repository (Repo). It provides real-time access to:

IMS subscriber identities (IMPI/IMPU)

Call forwarding settings (MMTel-Config)

Subscriber service authorization

S-CSCF assignment

When Sh Lookups Occur

Sh Lookups Happen On:

MT Calls: Lookup called party (destination subscriber)

MO Calls: Lookup calling party (source subscriber)

Emergency Calls: Lookup calling party (for location/identity)

Data Retrieved from Sh Interface

The TAS queries for Sh-User-Data which returns an XML document containing:

1. IMS Identities:

IMPI (Private Identity): username@domain - used for authentication

Format: {IMSI}@ims.mnc{MNC}.mcc{MCC}.3gppnetwork.org

Example: 505014001234567@ims.mnc001.mcc505.3gppnetwork.org

IMPU (Public Identity): sip:+number@domain - used for routing

Format: sip:+{MSISDN}@ims.mnc{MNC}.mcc{MCC}.3gppnetwork.org

Example: sip:+61403123456@ims.mnc001.mcc505.3gppnetwork.org

2. S-CSCF Assignment:

S-CSCF server name and domain where subscriber is registered

Used for routing on-net calls back to IMS core

3. MMTel Services (Multimedia Telephony Configuration):

Call Forward All (CFA): Unconditional forwarding to another number

Call Forward Busy (CFB): Forward when subscriber is busy

Call Forward No Reply (CFNRy): Forward after timeout (includes timer

value)

Call Forward Not Reachable (CFNRc): Forward when subscriber is

offline/unregistered

What is MMTel-Config?

MMTel-Config is the subscriber's Multimedia Telephony service configuration

stored in the HSS/Repository. It contains:

Common MMTel Services:

CDIV (Communication Diversion): Call forwarding rules

OIP (Originating Identity Presentation): Caller ID presentation rules

<MMTelSS>

 <CDIV>

 <SS-ActivationState>active</SS-ActivationState>

 <Ruleset>

 <Rule>

 <RuleCondition>communication-diverted</RuleCondition>

 <ForwardTo>+61403555123</ForwardTo>

 <NotificationType>notify</NotificationType>

 </Rule>

 </Ruleset>

 </CDIV>

</MMTelSS>

TIP (Terminating Identity Presentation): Called party number rules

Dialplan Variables Set from Sh Data

After a successful Sh lookup, these variables are populated:

Variable Source Exampl

ims_private_identity IMPI 505014001234567@

ims_public_identity IMPU sip:+61403123456@

msisdn
IMPU

(parsed)
61403123456

imsi
IMPI

(parsed)
505014001234567

ims_domain IMPI/IMPU ims.mnc001.mcc50

scscf_address
S-CSCF

name
scscf01.ims.doma

scscf_domain
S-CSCF

domain
ims.domain or "no

call_forward_all_destination
MMTel

CDIV
61403555123 or "n

call_forward_not_reachable_destination
MMTel

CDIV
2222 or config defa

no_reply_timer
MMTel

CDIV
30 or config defau

Priority: Sh Data vs Configuration Defaults

The TAS uses this priority for call forwarding data:

1. MMTel-Config from Sh (highest priority - subscriber-specific settings)

2. HLR Data from SS7 MAP (overrides Sh for MT calls if roaming/forwarding

active)

3. Configuration Defaults (lowest priority - used when no Sh data available)

Example:

What Happens When Sh Lookup Fails

Failure Scenarios:

1. Subscriber Not Provisioned in HSS:

Sh returns "User Unknown" error

hangup_case variable set to "UNALLOCATED_NUMBER"

Call rejected with appropriate SIP response

2. HSS Unreachable / Timeout:

Sh request times out (default: 5000ms)

Error logged and metric recorded

Call may be rejected or routed with defaults (deployment-specific)

3. No MMTel-Config in Response:

Subscriber exists but has no call forwarding configured

Configuration defaults are used for

call_forward_not_reachable_destination and no_reply_timer

Call proceeds normally with default values

Configuration defaults (used only if Sh returns no MMTel-Config)

config :tas,

 call_forward_not_reachable_destination: "2222", # Voicemail

 default_no_reply_timer: 30

Monitoring Sh Interface

Key Metrics:

Alert Thresholds:

P95 latency > 100ms: Slow HSS responses

Error rate > 5%: HSS connectivity issues

Error rate > 20%: Critical HSS failure

Troubleshooting:

1. Check Diameter peer status in Web UI (/diameter)

2. Test Sh lookup in Web UI (/sh_test) with known subscriber

3. Review logs for "Subscriber Data" errors

4. Verify HSS/Repository is reachable from TAS

5. Check subscriber_data_lookups_total metric for patterns

Testing Sh Interface

Use the Web UI Sh Test tool (/sh_test):

1. Navigate to /sh_test in Control Panel

2. Enter subscriber MSISDN (e.g., +61403123456)

3. Click "Query Sh"

4. Review returned data:

IMPI/IMPU identities

Sh lookup success rate

rate(subscriber_data_lookups_total{result="success"}[5m]) /

rate(subscriber_data_lookups_total[5m]) * 100

Sh lookup latency (P95)

histogram_quantile(0.95,

 rate(subscriber_data_duration_milliseconds_bucket[5m]))

Sh error rate

rate(subscriber_data_lookups_total{result="error"}[5m])

S-CSCF assignment

MMTel services

Call forwarding configuration

Common Test Scenarios:

Verify newly provisioned subscribers are in HSS

Check call forwarding settings for specific subscriber

Validate S-CSCF assignment after IMS registration

Test HSS connectivity and response times

SS7 MAP / Gateway-

MSC Configuration

� Back to Main Documentation

Configuration for HLR queries to retrieve MSRN (roaming numbers) and call

forwarding information via SS7 MAP.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - SS7 MAP configuration (ss7_map parameters)

🔧 Operations Guide - HLR/MAP testing in Control Panel

Call Processing Integration

🔀 Dialplan Configuration - Using MSRN and forwarded_to_number in

dialplan routing

⚙️ Supplementary Services - HLR-based call forwarding (alternative to

Sh/MMTel)

👥 Sh Interface - Sh vs MAP data priority

🔢 Number Translation - Number format for HLR queries

Testing & Monitoring

🧪 HLR & Call Simulator - Testing HLR/MAP integration

📊 Metrics Reference - HLR/MAP query metrics

Gateway-MSC Configuration

The TAS can query an HLR to retrieve the roaming number (MSRN) or MSC

when a subscriber is roaming on 2G/3G networks, and can also retrieve call

forwarding information.

This will set the msrn or forwarded_to_number dialplan variables which can

then be used to route the call appropriately.

Configuration Parameters:

enabled - Enable/disable SS7 MAP functionality

http_map_server_url_base - Base URL of the MAP gateway HTTP API

gmsc - Gateway MSC address used for SRI/PRN queries

timeout_ms - HTTP timeout for MAP operations in milliseconds (default:

5000)

config :tas,

 ...

 ss7_map: %{

 enabled: true,

 http_map_server_url_base: "http://10.5.1.216:8080",

 gmsc: "55512411506",

 timeout_ms: 5000 # Optional, defaults to 5000ms

 },

Functionality: The TAS performs SRI (Send Routing Information) and handles

routing based on the following priority:

1. Call Forwarding Active - If the SRI response contains a forwarded

number, it is treated as an MSRN (no PRN is performed). The forwarded

number is set in the msrn variable and used for routing.

2. Roaming (2G/3G) - If the subscriber is roaming (VLR present) and no call

forwarding is active, performs PRN (Provide Roaming Number) to get the

MSRN for routing to the V-MSC

3. Normal - If neither forwarding nor roaming applies, the call proceeds with

standard routing

The msrn and tas_destination_number dialplan variables are set appropriately

for routing (either from PRN or from the forwarded number)

Supplementary

Services

� Back to Main Documentation

Configuration and implementation of call forwarding, CLI blocking, and

emergency calling services.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - Service configuration parameters (emergency

codes, CLI blocking, default call forward)

🔧 Operations Guide - Testing supplementary services

Call Processing & Data Sources

🔀 Dialplan Configuration - Implementing services in dialplan logic

👥 Sh Interface - MMTel-Config for call forwarding settings

📡 SS7 MAP - HLR-based call forwarding (alternative to Sh)

🔢 Number Translation - CLI blocking prefix handling

Service Interactions

💳 Online Charging - Emergency calls bypass OCS

📞 Voicemail - Call forward on busy/no-answer routes to voicemail

Monitoring

📊 Metrics Reference - Call forwarding and service metrics

📈 Dialplan Metrics - Service usage metrics

Supplementary Services (Call

Forward / Blocked CLI / Emergency

Codes)

Config for blocked CLI prefixes, emergency call codes, and default Call Forward

data (Call Forward / No Reply data is only used when no MMTel-Config data is

returned from the Repository on Sh).

Configuration Parameters:

blocked_cli_prefix (list of strings): Prefixes that trigger CLI (Calling Line

ID) withholding

Example: ["*67"] - dialing *67 before a number hides caller ID

Used in dialplan to set cli_withheld variable

call_forward_not_reachable_destination (string): Default destination for

Call Forward Not Reachable (CFNRc)

Only used when no MMTel-Config is returned from Sh interface

Example: "2222" - forwards to voicemail

default_no_reply_timer (integer): Default timeout in seconds before

CFNRc activates

Only used when no MMTel-Config is returned from Sh interface

config :tas,

 ...

 blocked_cli_prefix: ["*67"],

 call_forward_not_reachable_destination: "2222",

 default_no_reply_timer: 30,

 emergency_call_codes: ["911", "912", "913", "sos"],

 ...

Example: 30 - rings for 30 seconds before forwarding

emergency_call_codes (list of strings): Emergency service numbers for

your jurisdiction

Checked during call authorization to detect emergency calls

SIP emergency URNs (e.g., <urn:service:sos>) are always checked in

addition to these codes

Common examples: ["911", "112", "000", "999", "sos"]

See Emergency Calling section for detailed usage

How Caller ID Blocking Works

The TAS supports two methods for blocking caller ID (CLI withholding), both of

which set the cli_withheld dialplan variable to "true":

Method 1: Prefix-Based Blocking

When a subscriber dials a destination number prefixed with a code from

blocked_cli_prefix :

1. The number translation module detects the prefix (e.g., caller dials

*67555123456)

2. The prefix is stripped from the destination number (becomes 555123456)

3. The cli_withheld variable is set to "true"

4. The dialplan can then use this variable to hide the caller's identity

Example configuration:

Method 2: SIP From Header Detection

When the UE/handset requests privacy via SIP headers:

1. The TAS checks if the SIP From header display name contains "anonymous"

(case-insensitive)

2. If found, the cli_withheld variable is set to "true"

3. This honors the subscriber's privacy request set at the device level

Implementing CLI Blocking in Dialplan

The TAS sets the cli_withheld variable, but your dialplan XML must

implement the actual blocking behavior:

Variables Set by TAS for CLI Blocking:

The TAS sets these variables before dialplan execution:

blocked_cli_prefix: ["*67"] # US-style blocking

blocked_cli_prefix: ["#31#"] # European GSM-style blocking

blocked_cli_prefix: ["*67", "#31#"] # Support both

<extension name="CLI-Privacy" continue="true">

 <condition field="${cli_withheld}" expression="true">

 <!-- Hide caller identity -->

 <action application="set"

data="effective_caller_id_name=anonymous"/>

 <action application="set"

data="effective_caller_id_number=anonymous"/>

 <action application="set"

data="origination_privacy=hide_number"/>

 <!-- Optionally set P-Asserted-Identity privacy -->

 <action application="set" data="sip_h_Privacy=id"/>

 </condition>

</extension>

Variable Type Values Description

cli_withheld string
"true" or

"false"

Indicates if CLI blocking

was requested via prefix

OR From header

tas_destination_number string
normalized

number

Destination with blocking

prefix removed (e.g.,

555123456)

destination_number string
normalized

number

Same as

tas_destination_number

(both are set)

Variables Your Dialplan Should Set (when cli_withheld="true"):

These variables control how caller identity is presented:

Variable
Recommended

Value
Purpose

effective_caller_id_number "anonymous"
Hides the caller's

phone number

effective_caller_id_name "anonymous"
Hides the caller's

display name

origination_privacy "hide_number"
SIP privacy flag for

outbound leg

sip_h_Privacy "id"
SIP Privacy header

(RFC 3323)

sip_h_P-Asserted-Identity (unset or remove)

Optional: Remove P-

Asserted-Identity

header

Complete Dialplan Example:

Important Notes:

<extension name="CLI-Privacy-Handler" continue="true">

 <condition field="${cli_withheld}" expression="true">

 <!-- Log for troubleshooting -->

 <action application="log" data="INFO CLI blocking requested

for call to ${tas_destination_number}"/>

 <!-- Hide caller identity on outbound call -->

 <action application="set"

data="effective_caller_id_name=anonymous"/>

 <action application="set"

data="effective_caller_id_number=anonymous"/>

 <action application="set"

data="origination_privacy=hide_number"/>

 <!-- Set SIP Privacy headers -->

 <action application="set" data="sip_h_Privacy=id"/>

 <!-- Optional: Remove P-Asserted-Identity if present -->

 <action application="unset" data="sip_h_P-Asserted-Identity"/>

 <!-- Anti-action runs if cli_withheld is false -->

 <anti-action application="log" data="DEBUG Using normal caller

ID: ${msisdn}"/>

 <anti-action application="set"

data="effective_caller_id_number=${msisdn}"/>

 </condition>

</extension>

<!-- This extension continues to the actual call routing -->

<extension name="Route-Outbound-Call">

 <condition field="${tas_destination_number}"

expression="^(.+)$">

 <action application="bridge"

data="sofia/gateway/trunk/${tas_destination_number}"/>

 </condition>

</extension>

Both methods can work simultaneously (prefix OR SIP header triggers

blocking)

The prefix is always stripped from the destination number, even if

dialplan doesn't implement privacy

The cli_withheld variable is a string ("true" or "false"), not a boolean

Call Forwarding / Blocked CLI behavior is implemented in your dialplan XML

The example config includes these features, but if you do not define them

in your dialplan, they will not function

Variables are set during the MO (Mobile Originating) call flow only

How Call Forwarding Works

Call forwarding (also known as Communication Diversion or CDIV) allows

subscribers to redirect incoming calls to another destination. The TAS supports

multiple types of call forwarding with configurable behavior.

Yes

No

Yes

No

Answered No Answer Busy Not Reachable

Yes Yes YesNo No No

MT Call Received

To: +61403123456

Sh Lookup for

Called Subscriber

HLR Lookup

(if SS7 MAP enabled)

HLR returned

forwarding number?

Use HLR forwarding

(highest priority)

Set msrn =

forwarded_number

call_forward_all_destination

!= 'none'?

Call Forward All

(unconditional)

Route to CFA destination

Attempt to bridge call

to subscriber

Call

Result?

Call Connected
no_reply_timer

expired?
CFB configured?

call_forward_not_reachable

!= 'none'?

Call Forward No Reply

Route to CFNRy

destination

Call Forward Busy

Route to CFB destination

Call Forward Not

Reachable

Route to CFNRc

destination

(usually voicemail)

Route to default

voicemail/hangup
Return SIP 486 Busy

Return SIP 480

Temporarily Unavailable

Forward Call

Call Forwarding Decision Flow (MT Calls)

Types of Call Forwarding

1. Call Forward All (CFA) - Unconditional Forwarding

Variable: call_forward_all_destination

When Active: All incoming calls are immediately forwarded

Priority: Checked first (after HLR forwarding)

Common Use: Subscriber wants all calls sent to another number

Example: Business calls forwarded to personal phone

2. Call Forward Busy (CFB)

When Active: Call forwarded when subscriber is already on a call

SIP Response: 486 Busy triggers forwarding

Common Use: Forward to voicemail when on another call

3. Call Forward No Reply (CFNRy)

Variable: no_reply_timer

When Active: Call forwarded after ringing for specified seconds with no

answer

Timeout: Typically 15-30 seconds

Common Use: Forward to voicemail if not answered

4. Call Forward Not Reachable (CFNRc)

Variable: call_forward_not_reachable_destination

When Active: Subscriber is offline, unregistered, or unreachable

SIP Response: 480 Temporarily Unavailable

Common Use: Forward to voicemail when phone is off

Default: Configuration parameter used if no MMTel-Config

Data Source Priority

Call forwarding data is retrieved from multiple sources with this priority:

Why This Priority?

HLR Data: Real-time forwarding status for roaming/network scenarios

MMTel-Config: Subscriber-configured preferences in IMS

Config Defaults: Network-wide fallback (typically voicemail)

Dialplan Variables for Call Forwarding

1. HLR Data (SS7 MAP) [Highest Priority - overrides all]

 ↓ (if no HLR forwarding active)

2. MMTel-Config (Sh Interface) [Subscriber-specific settings from

HSS]

 ↓ (if no MMTel-Config returned)

3. Configuration Defaults [Lowest Priority - fallback

values]

Variable Type Source
Exam

Va

call_forward_all_destination string
Sh/MMTel

or "none"
"614035

call_forward_not_reachable_destination string
Sh/MMTel

or config
"2222"

no_reply_timer integer
Sh/MMTel

or config
30

msrn string
HLR (MT

only)
"614001

tas_destination_number string Calculated "2222"

Implementing Call Forwarding in Dialplan

Example MT Dialplan with Call Forwarding:

Configuring Default Call Forwarding

Set network-wide defaults in config/runtime.exs :

<!-- Check for Call Forward All (highest priority after HLR) -->

<extension name="Check-CFA" continue="true">

 <condition field="${call_forward_all_destination}"

expression="^(?!none$).+$">

 <action application="log" data="INFO Call Forward All active to

${call_forward_all_destination}"/>

 <action application="set"

data="tas_destination_number=${call_forward_all_destination}"/>

 </condition>

</extension>

<!-- Attempt to bridge to subscriber -->

<extension name="Bridge-To-Subscriber">

 <condition field="${msrn}" expression="^none$">

 <!-- No MSRN, route to local subscriber -->

 <action application="set" data="call_timeout=${no_reply_timer}"/>

 <action application="bridge"

data="sofia/internal/${tas_destination_number}@${scscf_address}"/>

 <!-- If bridge fails, check forwarding -->

 <action application="log" data="INFO Bridge failed, checking call

forwarding"/>

 <!-- Call Forward Not Reachable -->

 <action application="set"

data="forward_destination=${call_forward_not_reachable_destination}"/

 <action application="log" data="INFO Forwarding to

${forward_destination}"/>

 <action application="answer"/>

 <action application="voicemail" data="default default

${msisdn}"/>

 </condition>

</extension>

When Defaults Are Used:

Subscriber exists in HSS but has no MMTel-Config provisioned

Sh lookup succeeds but returns no call forwarding settings

New subscribers before call forwarding is configured

Troubleshooting Call Forwarding

Problem: Calls not forwarding as expected

1. Check Sh Data:

Use Web UI /sh_test to query subscriber

Verify MMTel-Config contains CDIV rules

Check call_forward_all_destination value

2. Check Dialplan Variables:

Review call logs for variable values

Confirm call_forward_all_destination != "none"

Verify tas_destination_number is set to forwarding destination

3. Check HLR Data (if SS7 MAP enabled):

Use Web UI /hlr to query subscriber

HLR forwarding overrides Sh data

Verify msrn variable doesn't contain unexpected forwarding number

4. Check Configuration Defaults:

config :tas,

 # Default CFNRc destination (used when no MMTel-Config)

 call_forward_not_reachable_destination: "2222", # Voicemail

access number

 # Default timeout before CFNRy activates (used when no MMTel-

Config)

 default_no_reply_timer: 30 # Ring for 30 seconds

Verify call_forward_not_reachable_destination in config

Confirm default_no_reply_timer is appropriate

These only apply when no MMTel-Config exists

Problem: Forwarding loops

Symptoms: Call forwards to a number that forwards back, creating a loop

Prevention in Dialplan:

Monitoring Call Forwarding

Key Indicators:

High rate of calls to voicemail numbers

Pattern of calls timing out at no_reply_timer value

Calls consistently routed to same forwarding destinations

Useful Logs:

<!-- Track forwarding hop count -->

<extension name="Prevent-Forward-Loop" continue="true">

 <condition field="${sip_h_X-Forward-Hop-Count}" expression="^$">

 <action application="set" data="sip_h_X-Forward-Hop-Count=1"/>

 <anti-action application="set" data="sip_h_X-Forward-Hop-

Count=${expr(${sip_h_X-Forward-Hop-Count}+1)}"/>

 </condition>

</extension>

<extension name="Check-Forward-Hop-Limit">

 <condition field="${sip_h_X-Forward-Hop-Count}"

expression="^([3-9]|[1-9][0-9]+)$">

 <action application="log" data="ERROR Forwarding loop

detected, hop count: ${sip_h_X-Forward-Hop-Count}"/>

 <action application="hangup" data="LOOP_DETECTED"/>

 </condition>

</extension>

Business Intelligence:

Track forwarding activation rates by subscriber

Monitor voicemail usage patterns

Identify subscribers with unconditional forwarding

INFO Call Forward All active to 61403555123

INFO Forwarding to 2222

INFO Bridge failed, checking call forwarding

Voicemail & Missed Call

Service

� Back to Main Documentation

Configuration and implementation of voicemail service with SMS notifications.

Related Documentation

Core Documentation

📋 Main README - Overview and quick start

🔧 Configuration Guide - Voicemail configuration (timezone, SMSc,

notification templates)

🔧 Operations Guide - Voicemail management in Control Panel

Call Processing Integration

🔀 Dialplan Configuration - Voicemail deposit/retrieval in dialplan

⚙️ Supplementary Services - Call forward on busy/no-answer to

voicemail

🔊 TTS Prompts - Voicemail greeting prompts

Related Services

🔢 Number Translation - Voicemail access number translation

Monitoring

📊 Metrics Reference - Voicemail usage metrics

Voicemail / Missed Call Service

Voicemail is added in the XML dialplan as needed and is not turned on unless

you call it in your dialplan.

You can view the voicemail box usage and message status from the Control

Pannels' voicemail tab, for example putting this after your bridge command, to

be called if the bridge fails:

You can also access voicemails with a block like this:

You can also enable missed call (but no voicemail left) SMS notifications and

voicemail MWI notification SMS from the configuration.

Variables available in the missed call notification include:

 <action application="log"

 data="INFO Failed to bridge Call - Routing to Call Forward No-Ans

 <action application="set"

 data="sip_h_History-Info=<sip:${destination_number}@${ims_domain}

 <action application="set" data="sip_call_id=${sip_call_id};CALL_FOR

 <action application="log" data="DEBUG Called Voicemail Deposit Numb

 <action application="set" data="default_language=fr"/>

 <action application="answer" />

 <action application="sleep" data="500"/>

 <!--This notifies the TAS of missed calls or deposited voicemails s

notifications after the call hangs up-->

 <action application="set"

data='vm_post_body=mailbox=${msisdn}&caller=${effective_caller_id_num

 <action application="set" data='api_hangup_hook=curl http://localho

type application/x-www-form-urlencoded post ${vm_post_body}'/>

 <action application="voicemail" data="default default ${msisdn}"/>

 <extension name="Static-Route-Voicemail-Check">

 <condition field="${tas_destination_number}"

expression="^(2222|55512411520)$">

 <action application="log" data="DEBUG Called Voicemail Check

Number" />

 <action application="set" data="default_language=fr"/>

 <action application="answer" />

 <action application="set" data="voicemail_authorized=true"/>

 <action application="set"

data='vm_post_body=mailbox=${msisdn}&action="clear"'/>

 <action application="set" data='api_hangup_hook=curl

http://localhost:8080/vm_end content-type application/x-www-form-

urlencoded post ${vm_post_body}'/>

 <action application="voicemail" data="check auth default

default ${msisdn}"/>

 </condition>

 </extension>

NB: message_count is only set when message count is greater than 1.

 bindings = [

 caller: caller,

 day: day,

 month: month,

 hour: hour,

 minute: minute,

 message_count: message_count

]

config :tas,

 ...

 voicemail: %{

 timezone: "Pacific/Tahiti", #Timezone

used in Timestamps

 smsc: %{

 smsc_url: "http://10.8.81.215", #SMSc API

Base URL

 smsc_api_key: "nicktestkey123", #API key

on SMSc

 source_msisdn: "2222" #Source

(Sender) for the notification messages

 },

 #For usage of variables in this section see docs.

 voicemail_notification_text: %{

 not_left:

 "Vous avez 1 appel manqué du <%= caller %> le <%= day

%>/<%= month %> à <%= hour %>:<%= minute %>",

 single_voicemail:

 "Vous avez un nouveau message vocal du <%= caller %> le

<%= day %>/<%= month %> à <%= hour %>:<%= minute %>. Pour le

consulter, composez le 2222.",

 multiple_voicemails:

 "Vous avez <%= message_count %> nouveaux messages vocaux.

Pour les consulter, composez le 2222."

 }

 }

