

OmniTWAG Operations and Deployment Guide

Created by Omnitouch

 $This \ guide \ is \ for \ network \ operators, \ system \ administrators, \ and \ customers \ deploying \ OmniTWAG.$

Table of Contents

- Introduction
 What is WiFi Offload2
 Deployment Architectur
 Charging Flow
 Authentication Flow
 Configuration Guide
 Access Point Setup
 Hotspot 2.0 Integration
 Monitoring and Manage
 Troubleshooting
 Standards Compliance

Introduction

OmniTWAG (Trusted WiFi Access Gateway) is a standards-compliant implementation of a 3GPP TWAG that enables mobile network operators to securely offload subscriber traffic from cellular networks to WiFi access points while maintaining secure. SIM-based authentication

The TWAG authenticates WiFi subscribers using their SIM credentials via EAP-AKA (Extensible Authentication Protocol - Authentication and Key Agreement), the same authentication mechanism used in cellular networks. This provides seamless, secure WiFi access for mobile subscribers without requiring separate WiFi passwords.

- Zero Configuration: Works out of the box with compatible SIM
 Seamless Experience: Automatic connection like cellular
 Secure: Always uses encrypted WiFi (WPA2)
 No Passwords: SIM-based authentication

- Network Capacity Relief: Reduces load on cellular base stations
 Controlled Offload: Only authorized subscribers can connect
 Improved User Experience: WiFi typically offers higher bandwidth
 Cost Efficiency: WiFi infrastructure is less expensive than cellular
 Consistent Identity: Same IMSI used for WiFi and cellular
 Billing Integration: Can charge for WiFi usage if desired

For Venues/Enterprises:

- Operator-Grade Security: No risk of password sharing
 Scalability: Support thousands of users without manual provisioning
 Simplified Management: No need to distribute WiFi passwords

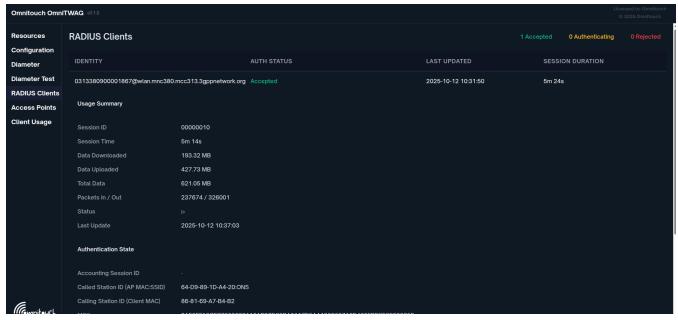
What is WiFi Offload?

WiFi offload allows mobile network operators to redirect subscriber data traffic from congested cellular networks to WiFi networks

How TWAG Enables Offload

The TWAG acts as the authentication gateway between:

When a subscriber's device connects to a WiFi AP configured for offload:


- The device identifies itself using its IMSI (from the SIM card)
 The WiFi AP forwards authentication requests to the TWAG via RADIUS
 The TWAG communicates with the operator's HSS to retrieve authentication vectors
 EAP-AKA challenge-response authentication occurs between the device and TWAG
 Upon successful authentication, the device is granted wifir access
 Optionally, traffic can be tunneled back to the mobile core or break out locally

Deployment Architecture

Network Topology

Interface Legend:

- STa*: RADIUS/Diameter interface between WiFi AP and TWAG (non-3GPP to AAA)
 SWx: Diameter interface between TWAG (3GPP AAA Server) and HSS
 S2a/S2b. GTP tunnel interface for backhaul to home network (optional)
 SGI: Interface to external packet data networks (Internet)
 802.11: WiFi radio interface
 EAPOL: EAP over LAN (802.1X authentication)

Deployment Scenarios

Scenario 1: Local Breakout (Recommended for Performance)

Benefits:

- Lower latency (no hairpinning to core)
 Reduced core network load
 Better user experience for high-bandwidth applications
 Cost savings on backhaul capacity

Scenario 2: Home Network Routing (GTP Tunnel)

- Consistent policy enforcement
 Centralized charging/billing
 Corporate VPN/security policies apply
 Seamless mobility between WiFi and cellular

SWx Connection Options

Option 1: Direct Connection to HSS

Use Case: Simple deployments, lab environments, single HSS

Benefits:

- Lower latency (no hop through DRA)
 Simplified configuration
 Easier troubleshooting

Option 2: Via DRA (Diameter Routing Agent)

Use Case: Multi-HSS deployments, roaming scenarios, large-scale networks

- Centralized routing logic
 Load balancing across multiple HSS
 Roaming support (routes to home HSS)
 Redundancy and failover
 Session stickiness

Charging Flow

The TWAG can be fully integrated to send Diameter Gy based online charging requests to an Online Charging System (OCS).

This allows for accounting of all data consumed on WiFi, against the balance of the customer, and is delivered via the AP on RADIUS and converted to 69 by the TWAG and forwarded to the DRA/OCS.

In all modes, usage is traced by the TWAG metrics

Omnitouch Omni	TWAG v0.1.0						
Resources	Client Usage 8	& Accounting		3 Sessions	0 Active	↓ 204.4 ME	3 / ↑ 623.07 MB
Configuration							
Diameter	SESSION ID	USER	CLIENT MAC	AP / SSID	STATUS	DURATION	DATA USAGE
Diameter Test	00000010	0313380900001867@wla.	96 91 60 A7 D4 D2	10 7 15 70	D	4m 10s	193.3 MB /
RADIUS Clients	00000010	0313300900001007@wia.	00-0 I-09-A7-B4-B2	10.7.15.72	D	4111 105	↑427.72 MB
Access Points	0000000F	0313380900001867@wla.	86-81-69-A7-B4-B2	10 7 15 72	⊴	8h 27m	↓4.12 MB /
Client Usage	00000001	03 1330030000 1007 @wia.	00 01 03 A7 B4 B2	10.7.10.72	72	011 27111	146.5 MB
	0000000E	0313380900001867@wla.	86-81-69-A7-B4-B2	10.7.15.72		16m 9s	16.98 MB / 148.85 MB

Charging Modes

The TWAG supports three online charging modes:

1. Charging Disabled

No credit control requests are sent. No authorization of balance is performed.

Use Cases:

- Open/free WiFi networks
- Lab/testing environments
 Networks with offline charging only (RADIUS accounting to billing)

2. Authorization Only

A CCR-Initial (Credit-Control-Request) is sent to the OCS at the start of the WiFi session to validate the subscriber has balance, but the balance is not drawn down during the session.

Use Cases:

- Validate subscriber has active account/balance
 Prevent WiFi access for suspended accounts
 Check service eligibility without quota tracking
 Allow WiFi as bonus/unlimited service for paying customers

Configuration:

- OCS is queried at session start (CCR-I) and end (CCR-T)
 No CCR-Update messages sent during session
 Subscriber authorized based on account status, not quota
 Usage reported at end of session for informational purposes only

3. Fully Gy Online Charging (Full Implementation)

Standard 3GPP online charging flow is followed. All usage on WiFi is passed to the OCS for charging, with the subscriber cut off once they have exceeded their quota.

Use Cases:

- Prepaid data services
 Pay-per-use WiFi
 Quota-based plans (e.g., 10GB monthly allowance)
 Real-time charging and cutoff

Flow:

Configuration:

- OCS queried at session start (CCR-I), during session (CCR-U), and at end (CCR-T)
 Quota requested in configurable chunks (e.g., 10MB, 50MB, 100MB)
 CCR-Update triggered at configurable threshold (e.g., 80% of granted quota)
 Validity timer triggers re-authorization if quota not exhausted
 Forced disconnection when quota exhausted
 Real-time balance deduction

Authentication Flow

Complete EAP-AKA Authentication Sequence

Key Points in Authentication Flow

- 1. MAR/MAA is the end of HSS communication: After receiving the MAA (Multimedia-Auth-Answer) with XRES, the TWAG handles all subsequent verification locally
- 2. TWAG performs RES verification: The HSS provides the expected response (XRES), but the TWAG compares it against the actual RES from the UE. The HSS is NOT involved in this comparison.
- 3. Authentication happens at TWAG: This is different from some diagrams that show HSS doing verification—in the actual 3GPP architecture, the AAA server (TWAG) performs the comparison

The device responds with its permanent identity (IMSI) in NAI format:

 $Format: \ 0\< IMSI>@wlan.mnc< MNC>.mcc< MCC>.3gppnetwork.org$

Note - The first digit, before the IMSI is the identity, this is generally 0 but may be another single digit number for multi-IMSI SIMs / handsets.

Master Session Key (MSK)

The Master Session Key (MSK) is a 512-bit (64-byte) cryptographic key derived during EAP-AKA authentication. It serves as the root key material for securing the WiFi connection.

- Both UE and TWAG independently derive the same MSK
 UE derives from CK/IK computed by SIM
 TWAG derives from CK/IK received from HSS
 MSK = PRF'(CK || IK, "Full Authentication", IMSI, ...)

MSK Usage:

- 1. PMK Derivation: PMK = first 256 bits (32 bytes) of MSK
 2. WPA2 4-Way Handshake: Both UE and AP use PMK to derive PTK
 3. Data Encryption: All WiFi data frames encrypted with Temporal Key (TK) from PTK

Why MSK is Critical:

· Confidentiality: Without MSK, WiFi traffic would be unencrypted

- Integrity: Prevents tampering with WiFi frames
 Authentication Binding: Links EAP authentication to WiFi encryption
 Replay Protection: Fresh MSK prevents replay attacks
 Perfect Forward Secrecy: Compromise of one MSK doesn't affect others

Resynchronization Recovery

If the device detects a sequence number mismatch (SQN out of sync), it initiates resynchronization:

- Device computes AUTS (Authentication Token Synchronization)
 Sends EAP-AKA Synchronization-Failure with AT-AUTS
 TWAG forwards AUTS to HSS
 HSS resyncs sequence number and generates new vectors
 Authentication retried with fresh vectors

This is transparent to the end user and requires no operator intervention.

Configuration Guide

 $The TWAG is configured via Elixir configuration files in the \verb|config|/| directory|. The main runtime configuration is in \verb|config|/| runtime.exs|.$

For production deployments, configuration is centrally managed. The below is a reference only, any values changed on a production node will be lost next time the automated orchestration is run.

Diameter Configuration

Located in config :diameter ex:

```
config :diameter_ex,
   diameter: %{
    # Service name for the Diameter stack
   service_name: :omnitouch_twag,
     # Local IP address to bind Diameter service
listen_ip: "10.5.198.200",
     \ensuremath{\mbox{\#}} Local port for Diameter connections (standard is 3868) listen_port: 3868,
     # Diameter Origin-Host
host: "omnitwag",
     # Diameter Origin-Realm (matches your network realm)
realm: "epc.mnc057.mcc505.3gppnetwork.org",
      # Diameter peers (HSS, DRA, AAA servers)
     # Peer Diameter Origin-Realm
realm: "epc.mnc057.mcc505.3gppnetwork.org",
           # Peer IP address (can be HSS directly or DRA)
ip: "10.179.2.140",
           # Peer port (standard is 3868)
port: 3868,
           # Use TLS for transport security tls: false,
            # Transport protocol (:diameter_tcp or :diameter_sctp)
transport: :diameter_tcp,
           \mbox{\# Initiate connection to peer (true) or wait for peer to connect (false) initiate\_connection: true
```

Realm Format follows 3GPP TS 23.003:

epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org

Where:

- MNC = Mobile Network Code (e.g., 057)
 MCC = Mobile Country Code (e.g., 505 for Australia)

Omnitouch Omni	TWAG v0.1.0					Licensed to: Omnitouch © 2025 Omnitouch
Resources	Diameter Peers					
Configuration						
Diameter	PEER		REALM	IP ADDRESS	STATUS	
Diameter Test	omni-nick2-hss01.epc.mnc380.mcc	:313.3gppnetwork.org	epc.mnc380.mcc313.3gppnetwork.org	tcp://10.179.2.140:3868		
RADIUS Clients						
Access Points	Basic Information					
Client Usage	Connection Initiation	OmniTWAG -> Peer				
	Transport	tcp				
	Product Name	pyHSS				
	Advertised Applications	3GPP_cx, 3GPP_gx, 3G	PP_rx, 3GPP_s13, 3GPP_s6a, 3GPP_sh, 3GPP_slh			

Note on DRA Usage: To use OmniDRA, configure the peer IP to point to the DRA instead of directly to the HSS. The DRA will then route messages to the appropriate HSS based on routing rules (Destination-Realm, IMSI range, etc.).

RADIUS Configuration

Located in config :omnitwag:

```
config :omnitwag,
  radius_config: %{
  # List of allowed source IP subnets for RADIUS clients
  # Empty list = allow all (not recommended for production)
  allowed_source_subnets: [10.7.15.0/24*], "192.168.1.0/24*],
   # Shared secret for RADIUS clients
# All APs must use this secret
secret: "YOUR_STRONG_SECRET_HERE"
}
```


Security Best Practices:

- Use strong RADIUS shared secrets (20+ characters)
 Configure allowed_source_subnets to restrict AP access
 Use firewall rules to further restrict access to ports 1812/1813

Example subnet configuration:

allowed_source_subnets: ["10.7.15.0/24", "192.168.1.0/24"]

If empty, all sources are allowed (only suitable for lab/testing)

Prometheus Monitoring Configuration

Located in config :omnitwag:

```
config :omnitwag,
  prometheus: %{
    # Port for Prometheus metrics endpoint
    port: 9568
}
```

Access metrics at: http://<twag-ip>:9568/metrics

Port Summary

Port Protocol	Purpose
1812 UDP	RADIUS Authentication
1813UDP	RADIUS Accounting
3868TCP	Diameter (SWx to HSS/DRA)
443 TCP	HTTPS Web Dashboard
B444TCP	HTTPS REST API
9568TCP	Prometheus Metrics

Access Point Setup

Supported Access Points

OmniTWAG works with any WiFi AP that supports:

- WPA2-Enterprise (802.1X authentication)
 RADIUS client functionality
 EAP-AKA authentication method

Tested platforms: Cisco Aironet, Aruba, Ubiquiti UniFi, Ruckus, hostapd-based APs

General AP Configuration Requirements

- WPA2-Enterprise (802.1X) security mode
 RADIUS server pointing to TWAG IP address
 RADIUS server pointing to TWAG IP address
 RADIUS authentication port: 1813 (optional but recommended)
 RADIUS accounting port: 1813 (optional but recommended)
 RADIUS shared secret: Must match TWAG configuration
 EAP method: EAP-AKA (or "All")

Cisco AP Configuration Example

CLI Configuration:

```
! Configure RADIUS server radius-server host 10.5.198.200 auth-port 1812 acct-port 1813 key YOUR_SHARED_SECRET
! Configure SSID with 802.1X
dot11 ssid OPERATOR-WIFI
vlan 10
authentication open eap eap_methods
authentication network-eap eap_methods
authentication key-management wpa version 2
 ! Associate SSID with radio interface interface Dot11Radio0
      encryption mode ciphers aes-ccm
ssid OPERATOR-WIFI
```

Web Interface:

- Navigate to Security AAA RADIUS Server
 Add RADIUS server: 10. 5. 198. 200: 1812 with shared secret
 Navigate to WIAN configuration
 Set Security to WPA2-Enterprise
 Set EAP method to EAP-AKA or All
 Assign RADIUS server group

hostapd Configuration Example

For Linux-based APs (OpenWrt, embedded systems):

/etc/hostapd/hostapd.conf

```
interface=wlan0
driver=nl80211
ssid=0PERATOR-WIFI
     # WPA2-Enterprise
     wpa=2
wpa_key_mgmt=WPA-EAP
wpa_pairwise=CCMP
ieee8021x=1
     # RADIUS configuration
auth_server_addr=10.5.198.200
auth_server_port=1812
auth_server_shared_secret=YOUR_SHARED_SECRET
     acct_server_addr=10.5.198.200
acct_server_port=1813
acct_server_shared_secret=YOUR_SHARED_SECRET
     # EAP configuration
eap_server=0
     \# Hotspot 2.0 (Optional - for automatic offload) interworking=1 internet=1
internet=1 of and and an analysis of an angular angula
```

Network Architecture Best Practices

Important: Place APs and TWAG on trusted network segments. Use firewall rules to:

- Allow only APs to reach TWAG ports 1812/1813
 Allow TWAG to reach HSS port 3868
 Restrict management access to TWAG dashboard (port 443)

Hotspot 2.0 Integration

Hotspot 2.0 (Passpoint) Overview

Hotspot 2.0 (also called Passpoint or 802.11u) is a WiFi Alliance standard that enables automatic, secure WiFi network discovery and connection without user interaction. It's the key technology for seamless WiFi offload.

Key Features:

- Automatic Network Discovery: Device finds compatible networks based on criteria
 Automatic Authentication: Uses SIM credentials (EAP-AKA) without user input
 Encrypted Initial Association: OSEN (OSU Server-only Authentication) for secure provisioning
 Roaming Agreements: Supports visited networks (like cellular roaming)
 Prioritization: Device prefers operator-owned networks

Hotspot 2.0 AP Configuration

Requirements for AP:

- 802.11u Support: ANQP query/response capability
 WPA2-Enterprise: 802.1X authentication
 SAP-AKS Support: Must support EAP-AKS method
 ANQP Configuration: Advertise correct operator information

Example Configuration (hostapd-based AP):

```
# Hotspot 2.0 / Passpoint Configuration
interworking=1
intermet=1
asra=0
esr=0
uesa=0
 # ANQP Configuration
anqp_3gpp_cell_net=505,057
domain_name=omnitouchns.com,wlan.mnc057.mcc505.3gppnetwork.org
# NAI Realm configuration
nai_realm=0,wlan.mnc057.mcc505.3gppnetwork.org,0,21[2:1][5:7]
# Format: -encoding>,<realm>,<eap-method>[auth-id:auth-val]
# 21 = EAP-AKA
# 2:1 = Credential Type: SIM
# 5:7 = Tunneled EAP Method: None (direct EAP-AKA)
# Roaming Consortium
roaming_consortium=505057
# MCC=505 (USA), MNC=057 (operator specific)
 # Venue Information (optional)
 venue_group=1
venue_type=8
venue_name=eng:Operator Public WiFi
 # WPA2-Enterprise Configuration
 wpa=2
wpa_key_mgmt=WPA-EAP
rsn_pairwise=CCMP
ieee8021x=1
 # RADIUS Configuration (points to OmniTWAG) auth_server_addr=10.5.198.200 auth_server_port=1812 auth_server_shared_secret=YOUR_SHARED_SECRET auth_server_shared_secret=YOUR_SHARED_SECRET
 acct_server_addr=10.5.198.200
acct_server_port=1813
acct_server_shared_secret=YOUR_SHARED_SECRET
 # SSID Configuration
ssid=OperatorWiFi
utf8_ssid=1
# Hotspot 2.0 Indication
hs20=1
hs20_oper_friendly_name=eng:Operator WiFi Network
```

Automatic Offload Behavior

How Automatic Offload Works:

- 1. Device with Passpoint profile performs periodic WiFi scan
 2. Sends ANQP query to detected APs
 3. If ANQP response matches profile (MCC/MNC, roaming consortium):
 Priority is HIGH (home network) or MEDIUM (roaming partner)
 4. If priority ≥ threshold and signal > minimum:
 Automatic EAP-AKA authentication
 5. If authentication successful and priority > current connection:
 Switch to WiFi, disconnect cellular data
 6. Monitor signal quality and maintain connectivity

Priority Factors:

- Home vs. Roaming: Home network (MCC/MNC match) preferred over roaming
 Signal Strength: Stronger signal preferred
 Security: WPA2-Enterprise preferred over open/WPA2-PSK
 Polloy: Operator can configure preferred networks
 User Override: User can manually disable WiFi or prefer cellular

Monitoring and Management

Web Dashboard

Access the real-time monitoring dashboard at: https://<twag-ip>/

- RADIUS Clients View: Active subscribers, authentication status, session details
 Access Points View: Connected APs, client counts, SSID information
 Client Usage View: Accounting data, session time, data usage
 Diameter Peers View: HSS/DRA connection status

Prometheus Integration

Configure Prometheus to scrape TWAG metrics:

Available Metrics:

RADIUS Server Metrics:

- radius_access_request_count Total AADIUS Access-Request packets received
 radius_access_accept_count Total Access-Accept packets sent
 radius_access_reject_count Total Access-Reject packets sent
 radius_access_reject_count Total Access-Reject packets sent
 radius_access_counting_request
 radius_access_points_count Registered access points (polled every 5 seconds)
 radius_access_points_count Registered access points (polled every 5 seconds)

EAP-AKA Authentication Metrics:

- eap_aka_identity_count EAP-AKA Identity exchanges eap_aka_challenge_count EAP-AKA Challenge exchanges eap_aka_ync_failure_count Synchronization failures (SQN resync events) eap_aka_auth_success_count Successful authentications eap_aka_auth_reject_count Rejected authentications

• diameter_message_count{application, command, direction} - Total Diameter messages (tagged by application, command type, and direction)

Erlang VM Memory Metrics:

- vm_memory_total·Total amount of memory allocated (bytes)

 vm_memory_processes Memory used by Erlang processes (bytes)

 vm_memory_processes Memory used by Erlang processes excluding unused allocated memory (bytes)

 vm_memory_system Memory used by the Erlang runtime system (bytes)

 vm_memory_astom Memory used by atoms (bytes)

 vm_memory_atom Memory used by atoms excluding unused allocated memory (bytes)

 vm_memory_binary- Memory used by binaries (bytes)

 vm_memory_code Memory used by binaries (bytes)

 vm_memory_code Memory used by binaries (bytes)

 vm_memory_ets Memory used by binaries (bytes)

Erlang VM System Metrics:

- vm_system_info_process_count Current number of Erlang processes
 vm_system_info_port_count Current number of ports
 vm_system_info_atom_count Current number of atoms
 vm_system_info_atom_count Current number of scheduler threads
 vm_system_info_schedulers Number of schedulers currently online
 vm_system_info_schedulers_online Number of schedulers currently online

Erlang VM Scheduler Metrics:

- vm_statistics_run_queue · Total length of all run queues
 vm_total_run_queue_lengths_total · Total length of all run queues (total schedulers)
 vm_total_run_queue_lengths_cpu · Total length of CPU scheduler run queues
 vm_total_run_queue_lengths_io · Total length of 10 scheduler run queues

Metric Collection:

- RADIUS and EAP-AKA metrics are emitted in real-time as events occur
 Active clients and access points counts are polled every 5 seconds
 W metrics are polled every 5 seconds from the Erlang runtime
 All metrics are exposed in Prometheus format at http://<twag-ip>:9568/metrics

Logging

The TWAG uses Elixir's Logger for structured logging

View Logs (systemd):

```
# Real-time log tail
journalctl -u twag -1
# Last 100 lines
journalctl -u twag -n 100
# Logs since last boot
journalctl -u twag -b
# Logs for specific time range
journalctl -u twag --since "2025-10-12 10:00:00" --until "2025-10-12 11:00:00"
```

Key Log Messages:

- RADIUS server listening on port 1812-Server started
 From {IP}: Access-Request received-RADIUS request from AP
 Phase 1: Identity Response-Initial EAP identity
 Phase 2: AKA Challenge-Challenge sent to device
 Authentication ACCEPTED-Successful authentication
 Authentication REJECTED-Failed authentication
 Registered AP: {IP}-New AP detected

Troubleshooting

Authentication Failures

Symptom: Client cannot connect to WiFi

Diagnostic Steps:

- 1. Check TWAG logs: journalctl ·u twag ·f 2. Verify RADIUS shared secret matches between AP and TWAG 3. Confirm RADIUS packets reaching TWAG: tcpdump ·i eth0 port 1812 4. Check subscriber provisioning in HSS/configuration

- Incorrect RADIUS shared secret
 Firewall blocking UDP 1812/1813
 RES/RRES mismatch (wrong SIM Ki or HSS configuration)
 Sequence number (SQN) out of sync (should auto-recover v
 Network connectivity issues between AP and TWAG recover via resvnc)

Diameter Connection Issues

Symptom: Diameter peer not connecting to HSS/DRA

Diagnostic Steps

- Verify network connectivity: telnet <hss-ip> 3868
 Check Diameter configuration (Origin-Host, Origin-Realm, peer IP)
 Review HSS/DRA logs for connection attempts
 Verify firewall allows TCP 3868

Common Causes:

- Incorrect peer IP/port in configuration
 Firewall blocking TCP 3868
 Origin-Host/Realm mismatch
 HSS/DRA not accepting connection from ection from TWAG

Performance Issues

Symptom: Slow authentication (>5 seconds)

Diagnostic Steps:

- Check HSS response time
 Measure network latency: ping <hss-ip>, mtr <hss-ip>
 Monitor TWAG resource usage: top, htop
 Review Diameter request timeout settings

- HSS query timeout or slow response
 High network latency
 TWAG resource exhaustion (CPU/memory)
 Too many concurrent authentications

Debug Tools

```
# Capture RADIUS traffic tcpdump -i eth0 -n port 1812 or port 1813 -w radius.pcap
# Capture Diameter traffic
tcpdump -i eth0 -n port 3868 -w diameter.pcap
# Capture from specific AP tcpdump -i eth0 -n host 10.7.15.72 and port 1812 -w radius-ap1.pcap
```

Analyze with Wireshark (supports RADIUS and Diameter dissectors).

Interactive Console

Attach to running TWAG for live debugging:

```
# Remote shell to running TWAG iex --sname debug --remsh twag@hostname --cookie <cookie>
```

From IEx console:

```
# List all authenticated clients
CryptoState.keys()
# Get specific client state
CryptoState.get("0505338057900001867@wlan.mnc057.mcc505.3gppnetwork.org")
# List accounting sessions
ClientUsage.list()
```

Common Error Messages

Error Message	Meaning	Solution
Message-Authenticator validation failed	Shared secret mismatch	Verify RADIUS secret matches on AP and TWAG
RES verification failed: expected <xres>, got <</xres>	RES>Authentication response incorre	ctCheck SIM Ki, verify HSS provisioning
Diameter peer connection timeout	Can't reach HSS	Check network, firewall, HSS configuration
Failed to decode EAP message	Malformed EAP packet	Check AP firmware, may need AP update
Unknown EAP-AKA subtype	Unsupported EAP-AKA message	Device using non-standard EAP-AKA variant
Sequence number synchronization required	SQN out of sync	Normal, device will resync automatically

Standards Compliance

OmniTWAG implements the following 3GPP and IETF specifications:

- 3GPP TS 23.402: Architecture enhancements for non-3GPP accesses
 3GPP TS 24.302: Architecture enhancements for non-3GPP accesses
 3GPP TS 24.302: Access to EPC via non-3GPP access networks
 3GPP TS 29.273: Diameter-based SW/SWm interfaces
 3GPP TS 33.402: Security aspects of non-3GPP accesses
 3GPP TS 35.206: Milenage algorithm specification
 RFC 2865: RADIUS Authentication
 RFC 2866: RADIUS Accounting
 RFC 2879: RADIUS Support for EAP
 RFC 4187: EAP-AKA withentication protocol
 RFC 5448: EAP-AKA' (enhanced version)

Summary

OmniTWAG, created by Omnitouch, provides a complete, standards-compliant solution for 3GPP WiFi offload:

- Flexible Deployment: Supports local breakout or home-routed traffic
 Standards-Based: Implements 3GPP SWx, EAP-AKA, RADIUS protocols
 Secure Authentication: SIM-based mutual authentication with automatic resync
 Strong Encryption: MSK-derived keys provide WPA2 encryption
 Hotspot 2.0 Ready: Enables fully automatic, zero-touch offload
 Operator Control: Maintains identity, policy, and optionally billing
 Flexible Connectivity: Direct HSS connection or via OmniDRA for routing/load balancing

Document Version: 2.0 Last Updated: 2025 OmniTWAG - Trusted WiFi Access Gateway Copyright © 2025 Omnitouch. All rights reserved.