DRA Operations Guide

Table of Contents

1.
2
3.
4

© ©® N o u

10.

DRA Architecture Overview



Standard Diameter Routing

Without the or modules, the DRA
performs standard Diameter routing based on the


https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc6733

Incoming Diameter
Request

Evaluate Routing Rules

:drop error, ¢

Drop Message Generate Error Answer
No Response with Result-Code

o
Y
3

rani

Route to Selected Peer

peers ion_host

Routing Fails

~




Request Routing

The DRA routes request messages using a priority-based mechanism defined in

1. - If present, the DRA routes directly to the
specified peer

o This is the highest priority routing mechanism
o If the peer is not connected, routing fails

o Provides explicit, host-level routing control

2. - If Destination-Host is absent, routes
based on realm

o The DRA selects a connected peer that advertises support for the
target realm

o Load balancing is applied when multiple peers match the realm

o Realm-based routing allows flexibility across multiple hosts

3. - Peers are filtered by supported Diameter applications

o Only peers advertising support for the message's Application-Id are
considered

o Based on Capabilities Exchange (CER/CEA) during peer connection
establishment

o See for reference

Answer Routing

Answer packets use a fundamentally different routing mechanism than
requests:


https://datatracker.ietf.org/doc/html/rfc6733#section-6.1
https://datatracker.ietf.org/doc/html/rfc6733#section-6.5
https://datatracker.ietf.org/doc/html/rfc6733#section-6.4
https://datatracker.ietf.org/doc/html/rfc6733#section-6.3

OmniCharge  OmniRAN

- -

Evaluwis Routing Rulss

Ruls
~. Mmicha?
sdrep artoe, zoda
zeann

Routs bo Specfied Pesrs

* Session-based routing:
the request

Downloads % English+ Omnitouch Website (%

Aavanced Routing

Eraisiad?
He
Mz Haizh |
*
T
Chsabinabon-Haal
NP Branant?
| Mo
.. L
1
.
Erasta o Gpecifed Hoat Frasbimatics Raais
&4 PrassntT
T
L
Eear
- . Filbar Pears £y Rsaler M
ha
sduntirastion_tast \
bl . —= -
L
Routng Pais fiftar by Apphcatmndd
T
Muiticls Pasry
Muaich?
s ima
-
Paar Salsch
= e
Algznttm
‘ransom Audlzsar
| i
. . .
oute b2 Dastination Eardom Salschor irik B Tngls Par

Foat SR

T
w
b

-
Routs io Selecied Peer

Answer packets always follow the reverse path of



e End-to-End ID preservation: The End-to-End Identifier remains
unchanged across all hops

e Hop-by-Hop routing: The DRA uses the Hop-by-Hop Identifier to maintain
routing state (changes at each hop)

* No rule evaluation: The DRA does not evaluate routing rules or AVP
contents for answers

o Stateful correlation: Internal routing tables track which peer sent each
request

Why answers are not routed by advanced modules:

e Answer routing is deterministic and must return to the originating peer

e The Diameter protocol requires answers to follow the established request
path

e Routing decisions for answers are made based on the original request
context, not answer content

e This ensures proper session management and prevents routing loops

See for answer message routing details.

Peer Selection

When multiple peers match the routing criteria, the configured
peer selection algorithm determines selection:

e :random - Randomly selects from available peers (default)
e :failover - Always selects the first peer in the list (priority-based)
e Peers must be in connected state to be selected

e Disconnected or down peers are automatically excluded

Limitations of Standard Routing

No custom routing rules based on AVP values (e.qg., IMSI patterns)

No realm translation or AVP modification

Cannot route based on originating peer

Limited control over traffic distribution


https://datatracker.ietf.org/doc/html/rfc6733#section-6.2

The and modules extend this standard
behavior with rule-based routing and packet manipulation capabilities.

Base DRA Configuration

The DRA requires base configuration defining its identity, network settings, and
peer connections. This configuration establishes the foundation for all routing
operations.

Configuration Structure

o°
-~

host: "dra0l.example.com",
realm: "example.com",
listen ip: "192.168.1.10",
listen port: 3868,
service name: :example dra,
product name: "OmniDRA",
vendor_id: 10415,
request timeout: 5000,
peer selection algorithm: :random,
allow undefined peers to connect: false,
log unauthorized peer connection attempts: true,
peers: [
# Peer configurations...

]



DRA Ildentity Parameters

Parameter

host

realm

product name

vendor_ id

Type

String

Description

The DRA's (fully qualified

domain name)

String The DRA's

String Product name advertised in CER/CEA messages

Vendor-ID as defined in
(10415 = 3GPP)

Integer

Network Settings

Parameter

listen ip

listen port

service name

request timeout

Type

String or
List

Integer

Atom

Integer

Description

IP address(es) the DRA listens on. For SCTP
multihoming, use a list of IP strings (see

)

TCP/SCTP port for Diameter connections
(standard: 3868)

Internal Erlang service identifier

Timeout in milliseconds for request/answer
pairs (default: 5000)


https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-5.3.3

Peer Selection Settings

Parameter Type
peer selection algorithm Atom
allow undefined peers to connect Boolean
log unauthorized peer connection attempts Boolean

Peer Configuration

Each peer in the peers list defines a Diameter connection:

Description

Load balancing
algorithm:
:random
(random
selection) or
:failover
(first peer
priority)

Allow
connections
from peers not
in
configuration
(default:
false)

Log connection
attempts from
unauthorized
peers



o®
-~

host: "mmeOl.operator.com",
realm: "operator.com",

ip: "192.168.1.20",

port: 3868,

transport: :diameter tcp,

tls: false,

initiate connection: false

Peer Parameters

Parameter

host

realm

ip

ips

port

transport

tls

initiate connection

Type

String

String

String

List

Integer

Atom

Boolean

Boolean

Description

Peer's (FQDN) - must
match exactly for routing

Peer's Diameter realm

Peer's primary IP address for
connection (required)

List of IP addresses for SCTP
multihoming (optional, see

)

Peer's Diameter port (typically 3868)

Transport protocol: :diameter tcp or
:diameter sctp

Enable TLS encryption (if true,
typically use port 3869)

true: DRA connects to peer, false:
DRA waits for peer to connect


https://datatracker.ietf.org/doc/html/rfc6733#section-4.3

Connection Modes

Initiate Connection (initiate connection: true)

DRA acts as Diameter client
DRA initiates TCP/SCTP connection to peer

Used for connecting to HSS, PCRF, or other backend systems

DRA will retry connections if peer is unreachable
Accept Connection (initiate_connection: false)

e DRA acts as Diameter server
e DRA waits for peer to connect
e Used for MME, SGSN, P-GW connections

* Peer must be in configuration or allow undefined peers to connect:
true



Configuration Example

o°
~

host: "draOl.mvno.example.com",
realm: "mvno.example.com",
listen ip: "10.100.1.10",
listen port: 3868,
service name: :mvno dra,
product name: "OmniDRA",
vendor_id: 10415,
request timeout: 5000,
peer selection algorithm: :random,
allow undefined peers to connect: false,
log unauthorized peer connection attempts: true,
peers: [
# MME - waits for MME to connect
%{
host: "mmeOl.operator.example.com",
realm: "operator.example.com",
ip: "10.100.2.15",
port: 3868,
transport: :diameter sctp,
tls: false,
initiate connection: false

’

}

# HSS - DRA initiates connection
{

host: "hssOl.mvno.example.com",
realm: "mvno.example.com",

ip: "10.100.3.141",

port: 3868,

transport: :diameter tcp,

tls: false,

initiate connection: true

o

’

¥

# PCRF with TLS - DRA initiates secure connection
{

host: "pcrfO@l.mvno.example.com",

realm: "mvno.example.com",

ip: "10.100.3.22",

port: 3869,

transport: :diameter tcp,

tls: true,

o®



initiate connection: true

}

Important Notes

e Hostname Matching: Peer hostnames in rules must
exactly match the host value configured here (case-sensitive)

e Capabilities Exchange: On connection, peers exchange supported
applications via CER/CEA messages

e Application Support: The DRA advertises all supported 3GPP applications

(see )
e Vendor-ID 10415: Standard value for 3GPP applications
e Request Timeout: Affects TTL (timeout + 5 seconds)

e Peer Selection: When multiple peers match routing criteria,
peer selection algorithm determines which is chosen

Security Considerations

e Set allow undefined peers to connect: false in production

* Enable log unauthorized peer connection attempts: true for security
monitoring

* Ensure firewall rules match listen ip and listen port settings

e Validate peer certificates when using TLS

SCTP Multihoming

SCTP multihoming provides network redundancy by allowing endpoints to bind
to multiple IP addresses. If the primary network path fails, SCTP automatically
fails over to an alternative path without disrupting the Diameter session.



How It Works

192.168.1.10 Primary Path 192.168.1.20

10.0.0.10
10.0.0.20

Automatic failover occurs if the primary path becomes unreachable

SCTP heartbeats monitor all network paths

No Diameter session disruption during path switchover

The kernel handles path selection automatically

Configuration

DRA Listen Addresses

Configure multiple local IP addresses for the DRA to bind to:

o®
~

# Single IP (backward compatible)
listen ip: "192.168.1.10",

# Multiple IPs for SCTP multihoming
listen ip: ["192.168.1.10", "10.0.0.10"],

listen port: 3868,

Notes:



e TCP transport uses only the first IP in the list
e SCTP transport binds to all specified IPs

¢ Single IP string format remains fully supported

Peer Configuration

Configure multiple remote IP addresses for peer connections:

peers: [
%{
host: "hssOl.example.com",
realm: "example.com",

ip: "192.168.1.20", # Primary IP
(required)

additional ips: ["192.168.1.20", "10.0.0.20"], # All
IPs for multihoming

port: 3868,

transport: :diameter sctp,

tls: false,

initiate connection: true

}
]
Notes:

e 1ip field is required for backward compatibility

e 1ips field is optional; if omitted, only ip is used

e For SCTP, include the primary IP in the ips list

e For TCP, only ip is used (TCP does not support multihoming)



Complete Example

config :dra,
diameter: %{

service name: :omnitouch dra,
listen ip: ["192.168.1.10", "10.0.0.10"], # Multihomed DRA
listen port: 3868,
host: "dra0l",
realm: "example.com",
product name: "OmniDRA",
vendor id: 10415,
request timeout: 5000,
peer selection algorithm: :random,
allow undefined peers to connect: false,

peers: [
# Multihomed HSS connection
%{

host: "hss0l.example.com",

realm: "example.com",

ip: "192.168.1.20",

additional ips: ["192.168.1.20", "10.0.0.20"],
port: 3868,

transport: :diameter sctp,

tls: false,

initiate connection: true

’

}

# Single-homed MME (backward compatible)
{

host: "mmeOl.example.com",

realm: "example.com",

ip: "192.168.1.30",

o°

port: 3868,

transport: :diameter sctp,

tls: false,

initiate connection: false
}



Requirements

SCTP kernel module must be loaded ( lksctp-tools package on Linux)

All IP addresses must be routable from/to the peer

Firewall rules must allow SCTP traffic on all configured IPs

Both endpoints should be configured for multihoming for full redundancy

Limitations

e TCP transport does not support multihoming (only uses primary IP)
e TLS over SCTP multihoming may have compatibility limitations

e Path failover timing depends on kernel SCTP parameters



Reference Tables

Common 3GPP Application IDs

Applilc:tion- Interface Description

16777951 S6a/56d MME/S.GS.N to HSS authentication and
subscription data

16777252 S13/S13! MME to EIR equipment identity check

16777238 Gx PCEF to PCRF policy and charging control

16777267 S9 Home PCRF to Visited PCRF roaming policy

16777272 Sy PCRF to OCS session binding

16777216 Cx I-CSCF/S-CSCF to HSS IMS registration

16777217 Sh AS to HSS IMS user data

16777236 SLg MME/SGSN to GMLC location services

16777291 SLh GMLC to HSS location subscriber info

16777302 Sém MTC-IWF to HSS/HLR for M2M devices

16777308 S6¢C SMS-SC/IP-SM-GW to HSS SMS routing

16777343 S6t SCEF to HSS monitoring events

16777334 Rx AF to PCRF media authorization



Common AVP Codes

Code

264

268

283

293

296

297

AVP Name

User-Name

Origin-Host

Result-Code

Destination-
Realm

Destination-Host

Origin-Realm

Experimental-
Result

Type

UTF8String

Diameterldentity

Unsigned32

Diameterldentity

Diameterldentity

Diameterldentity

Grouped

Common Command Codes

Usage

Subscriber identifier (IMSI
in 3GPP)

Originating peer
hostname

Standard result code

Target realm

Target host (optional)

Source realm

Vendor-specific result code

Command codes are part of the Diameter message header, not AVPs:



Command

Code s Description

257 CER/CEA Capabilities-Exchange-Request/Answer
258 RAR/RAA Re-Auth-Request/Answer

274 ASR/ASA Abort-Session-Request/Answer

275 STR/STA Session-Termination-Request/Answer
280 DWR/DWA Device-Watchdog-Request/Answer

282 DPR/DPA Disconnect-Peer-Request/Answer

316 ULR/ULA Update-Location-Request/Answer (S6a)
317 CLR/CLA Cancel-Location-Request/Answer (S6a)

Authentication-Information-Request/Answer

318 AIR/AIA
(S6a)

321 PUR/PUA Purge-UE-Request/Answer (S6a)

Advanced Routing Module

The Advanced Routing module provides flexible, rule-based message routing
capabilities with support for complex matching conditions.

Important: This module evaluates inbound Diameter request packets
only (not answer packets). Answer packets follow the established session
routing back to the originating peer - see for details.



Configuration

Enable the module and define routing rules in your configuration:

dra module advanced routing:
enabled: True
rules:

- rule name: <rule identifier>
match: <match scope>
filters: [<filter list>]
route:

peers: [<peer list>]

Parameters
Parameter Description
enabled Set to True to activate the module

rule name Unique identifier for the routing rule
How filters are combined: :all (AND logic - all filters must
match match), :any (OR logic - at least one filter must match),
:none (NOR logic - no filters can match)

filters List of filter conditions (see )

route Routing action (see below)

Route Actions
The route parameter supports multiple actions:

Route to Peers



route:
peers: [peerQl.example.com, peer02.example.com]

Routes to specified peer hostnames. Peers must be:

e Defined in the DRA's Diameter peer configuration
e The exact hostname as configured (case-sensitive)

e Currently connected for routing to succeed (disconnected peers are
skipped)

Route to Destination-Host AVP

route: :destination host

Routes to the peer specified in the message's
Destination-Host AVP is missing, routing falls back to normal behavior.

Drop Traffic

route: :drop

Silently discards the message without sending any response. Use for:

e Traffic filtering and blackholing
e Blocking unwanted requests

e Rate limiting by dropping excess traffic

Behavior:

Message is dropped at DRA (not forwarded)

No answer message is sent to requesting peer

Implements Erlang Diameter :discard behavior

Metric: diameter advanced routing drop count total (see

)

Generate Error Response


https://datatracker.ietf.org/doc/html/rfc6733#section-6.5

route: {:error, 3004}

Generates a Diameter error answer with the specified Result-Code and sends it
back to the requesting peer. Common result codes:

e 3002 - DIAMETER _UNABLE TO DELIVER (routing unavailable)

e 3003 - DIAMETER_REALM_NOT_SERVED (realm not supported)

e 3004 - DIAMETER TOO BUSY (overload protection, rate limiting)
e 5012 - DIAMETER _UNABLE TO COMPLY (general rejection)

Behavior:

* DRA generates error answer with specified Result-Code

¢ Answer includes Origin-Host, Origin-Realm, Session-Id (auto-populated by
Diameter)

Message is NOT forwarded to any peer

Implements Erlang Diameter {:protocol error, code} (equivalent to
{:answer message, code})

Metric: diameter advanced routing error count total (see

)

Available Filters

Standard Filters

Available in both and

e :application_id - Match Diameter application ID (see

)

o Single value: {:application id, 16777251} (S6a/S6d)

o Multiple values: {:application id, [16777251, 167772521} (S6a or
S6b)

e :command_code - Match Diameter command code

o Single value: {:command code, 318} (AIR request)



o Multiple values: {:command code, [317, 318]} (ULR or AIR)

e :avp - Match AVP value (see )

o Exact match: {:avp, {296, "epc.mnc001l.mcc001.3gppnetwork.org"}}
o Regex match: {:avp, {1, ~r"999001.*"}}

o Multiple patterns: {:avp, {1, ["505057001313606", ~r"999001.*",
~r"505057.*"]1}}

o Any value (presence check): {:avp, {264, :any}}

Routing-Specific Filter
Only available in

e :via_peer - Match the peer where the request was received from
o Single peer: {:via peer, "omnitouch-lab-
drafl.epc.mnc001.mccOOl.3gppnetwork.org"}

o Multiple peers: {:via peer, ["omnitouch-lab-
draOl.epc.mnc001l.mccOOl.3gppnetwork.org", "omnitouch-lab-
dra02.epc.mnc001l.mccOOl.3gppnetwork.org"]1}

o Any peer: {:via peer, :any}

Transform-Specific Filters
Only available in

* :to_peer - Match on predetermined destination peer (request packets
only)

o Single peer: {:to peer, "draOl.omnitouch.com.au"}

o Multiple peers: {:to peer, ["dra®l.omnitouch.com.au",
"dra@2.omnitouch.com.au"]}

e :from_peer - Match peer who sent the answer (answer packets only)

o Single peer: {:from peer, "hss-01l.example.com"}

o Multiple peers: {:from peer, ["hss-01.example.com", "hss-
02.example.com"]}

* :packet_type - Match packet direction



o Request: {:packet type, :request}

o Answer: {:packet type, :answer}

Important Filter Notes

e AVP Filters: Recommended for simple AVPs only (User-Name, Origin-Host,
Destination-Realm, etc.)

o Grouped AVPs are not supported and will not match
o Complex binary values are not supported

o Use format: {:avp, {code, value}}

e List Operators: Supported for all filter values except :packet type

o When a list is used, it applies OR logic within the list

o Example: {:command code, [317, 318]} matches command code 317
OR 318

e Special Values:

o :any - Matches any value (checks for AVP presence)

o Example: {:avp, {264, :any}} matches if Origin-Host AVP exists with
any value

Routing Examples

Example 1: Via Peer Routing

Route messages based on which DRA they arrived from:



dra module advanced routing:
enabled: True
rules:
- rule name: temporary until cutover s6a via to local hss
match: ":all"
filters:

- '"{:application id, 16777251}"'

- '"{:via peer, ["omnitouch-lab-
dra®l.epc.mnc001l.mcc001.3gppnetwork.org"”, "omnitouch-lab-
dra02.epc.mnc001l.mccOOl.3gppnetwork.org"]}"

- '{:avp, {296, "epc.mncO@O1l.mccOO1l.3gppnetwork.org"}}"'

route:

peers: [omnitouch-lab-
hss0l.epc.mncOO1l.mccOO1.3gppnetwork.org, omnitouch-lab-
hss02.epc.mncO01.mccOO1.3gppnetwork.org]

How it works: Routes S6a traffic that arrives via specific DRA peers to local
HSS nodes.

Example 2: Inbound Roaming with Pattern Matching

Route roaming traffic based on IMSI patterns:

dra module advanced routing:
enabled: True
rules:
- rule name: inbound s6a roaming to dcc
match: ":all"
filters:
- '"{:application id, 16777251}
- '"{:avp, {296, "epc.mncOOl.mccOOl.3gppnetwork.org"}}"'

- '{:avp, {1, ["505571234567", ~r"999001.*"]}}"
route:

peers: [dra@l.omnitouch.com.au, dra02.omnitouch.com.au]

How it works: Routes S6a messages from specific Origin-Realm with matching
IMSI patterns to designated DRA peers.

Example 3: Dynamic Routing with :destination_host



Route to the Destination-Host AVP value in the message:

dra module advanced routing:
enabled: True
rules:

- rule name: route to specified destination host
match: ":all"

filters:

- "{:avp, {1, [~r"90199.*"]}}' # Match IMSI pattern
route: :destination host

How it works:

e When filters match, routes to the peer specified in the Destination-Host AVP
(293)

e |f Destination-Host AVP is missing, the match is considered a failure and
falls back to normal routing

e Useful for honor routing when the sender specifies the exact destination

Example 4: Drop Unwanted Traffic

Drop traffic from specific IMSI ranges:

dra module advanced routing:
enabled: True
rules:
- rule name: drop test subscribers
match: ":all"
filters:
- '"{:application id, 16777251}' # S6a
- '"{:avp, {1, [~r"999999.*"]1}}' # Test IMSI range
route: :drop

How it works:

e Matches S6a messages with IMSI starting with 999999
e Silently drops the message without sending any response

e Useful for filtering test traffic or blocking specific subscriber ranges



e See for monitoring dropped traffic

Example 5: Rate Limiting with Error Responses

Return DIAMETER_TOO_BUSY for specific traffic patterns:

dra module advanced routing:
enabled: True
rules:
- rule name: rate limit high volume peer
match: ":all"
filters:
- '"{:via peer, "mme-overloaded-01l.example.com"}"
- '"{:application id, 16777251}
route: {:error, 3004}

How it works:

e Matches S6a traffic from specific overloaded peer

e Returns DIAMETER_TOO_BUSY (3004) error response
e Requesting peer receives error and should back off
e Useful for overload protection and rate limiting

e See for monitoring error responses

Example 6: Conditional Error Responses by Command

Block specific command types with appropriate error codes:

dra module advanced routing:
enabled: True
rules:
- rule name: block purge requests
match: ":all"

filters:
- '"{:application id, 16777251}' # S6a
- '"{:command code, 321}’ # PUR (Purge-UE-Request)

route: {:error, 5012}

How it works:



Matches S6a Purge-UE-Request messages
Returns DIAMETER_UNABLE_TO_COMPLY (5012) error

Blocks specific operations without dropping traffic silently

Useful for selectively disabling certain Diameter commands

Advanced Transform Module

The Advanced Transform module enables dynamic modification of Diameter
message AVPs based on matching criteria. See for details on
how rules are evaluated.

Configuration

Enable the module and define transformation rules:

dra module advanced transform:
enabled: True
rules:
- rule name: <rule identifier>
match: <match scope>
filters: [<filter list>]
transform:
action: <transform action>
avps: [<avp modifications>]



Parameters

Parameter Description
enabled Set to True to activate the module
rule name Unique identifier for the transform rule

How filters are combined: :all (AND logic), :any (OR
logic), :none (NOR logic) - see

match

filters List of filter conditions (see )

Type of transformation ( :edit, :remove, or
roverwrite)

transform.action

List of AVP modifications to apply (see
)

transform.avps

Transform Actions

Request Packets (Diameter Requests)

e :edit - Modify existing AVP values
o Only modifies AVPs that exist in the message

o |If the AVP doesn't exist, no change is made
e :remove - Remove AVPs from the message

e :overwrite - Replace entire AVP structures
o Requires dictionary parameter specifying the Diameter dictionary
(e.g., :diameter gen 3gpp s6a)

Answer Packets (Diameter Answers)

* :remove - Remove AVPs from the message

e :overwrite - Replace entire AVP structures
o Requires dictionary parameter



Important: If no rules match, the packet is passed through transparently
without any transformations.

AVP Modification Syntax

Standard modification:
e {:avp, {<code>, <new value>}} - Set AVP to new value
Removing AVPs:

e {:avp, {<code>, :any}} - Remove AVP by ID (removes regardless of
current value)

* Note: Removing based on avp _id is supported; removing based on AVP
contents is not supported

Overwrite with dictionary:

transform: %{

action: :overwrite,

dictionary: :diameter gen 3gpp sb6ba,

avps: [{:avp, {:"sb6ba Supported-Features", {:"sba Supported-
Features", 10415, 1, 3221225470, []1}}}]

}

Transform Examples

Example 1: To-Peer Based Realm Rewriting

Rewrite Destination-Realm based on where the message is being routed:



dra module advanced transform:
enabled: True
rules:
- rule name: rewrite s6a destination realm for Operator X
match: ":all"
filters:
- '{:to_peer, ["draOl.omnitouch.com.au",
"dra0@2.omnitouch.com.au"]1}'
- '{:avp, {296, "epc.mncOOl.mccOOl.3gppnetwork.org"}}"'
- '{ravp, {1, [~r"9999999.*"]1}}"
transform:
action: ":edit"
avps:
- '{:avp, {283, "epc.mnc999.mcc999.3gppnetwork.org"}}"

How it works: When S6a requests are routed to specific DRA peers and match
the IMSI pattern, rewrites the Destination-Realm for Operator X network.

Example 2: Multiple Carrier Routing with Transforms

dra module advanced transform:
enabled: True
rules:
- rule name:
rewrite s6a destination realm for roaming partner ausie
match: ":all"
filters:
- '{:to peer, ["draOl.omnitouch.com.au",
"dra@2.omnitouch.com.au"]1}"'
- '{:avp, {296, "epc.mncO57.mcc505.3gppnetwork.org"}}"
- '"{:avp, {1, [~r"50557.*"]}}"'
transform:
action: ":edit"
avps:
- '{:avp, {283, "epc.mncO030.mcc310.3gppnetwork.org"}}"'

How it works: Routes different IMSI subscriber ranges to appropriate network
realms based on IMSI patterns. First matching rule wins (see ).

Example 3: MVNO Realm Rewriting



dra module advanced transform:
enabled: True
rules:
- rule name: rewrite s6a destination realm for single sub
match: ":all"
filters:
- '{:to_peer, ["draOl.omnitouch.com.au",
"dra0@2.omnitouch.com.au"]1}'
- '{:avp, {296, "epc.mncOOl.mccOOl.3gppnetwork.org"}}"'
- '{:avp, {1, ["505057000003606"]}}"' # Exact IMSI match
transform:
action: ":edit"
avps:
- '{:avp, {283, "epc.mncOO1l.mccOO1l.3gppnetwork.org"}}"'

How it works: Transforms Destination-Realm for specific MVNO subscriber to

their hosted core network.

Example 4: Request-Only Transform with Packet Type Filter

Transform only request packets (not answers):

dra module advanced transform:
enabled: True

rules:
- rule name: Tutorial Rule AIR

match: ":all"

filters:
- '{:application id, 16777251}
- '{:command code, 318}
- '"{:packet type, :request}'
- '"{:avp, {1, "999999000000001"}}"
- '{:avp, {264, :any}}' # Origin-Host must exist with any

value

transform:
action: ":edit"
avps:

- '{ravp, {1, "999999000000002"}}"

How it works:



Matches only S6a AIR request packets (not answer packets)
Checks User-Name (AVP 1) equals "999999000000001"
Verifies Origin-Host (AVP 264) exists with any value

Rewrites User-Name to "999999000000002"

If AVP doesn't exist, no change is made

Example 5: Remove AVP

Remove specific AVP from messages:

dra module advanced transform:
enabled: True
rules:
- rule name: remove user name_ avp
match: ":all"

filters:

- '"{:application id, 16777251}"'
transform:

action: ":remove"

avps:

- '"{:avp, {1, :any}}' # Remove User-Name regardless of
value

How it works: Removes User-Name AVP (code 1) from all S6a messages,
regardless of its current value.

Example 6: Overwrite Grouped AVP on Answer Packets

Modify complex grouped AVPs in answer packets using the :overwrite action
with dictionary support:



dra module advanced transform:

enabled: True

rules:

- rule name: add sos apn to ula

match:
filters:

"rall”

- '"{:application id, 16777251}"'
- '"{:command code, 316}

Location Answer)

- '{:packet type,

only

:answer}'

# Sb6a/Sod
# ULA (Update

# Answer packets

- "{:avp, {296, "epc.mncOO1l.mccOO1.3gppnetwork.org"}}"

Origin-Realm

transform:
action: ":overwrite"
dictionary: ":diameter gen 3gpp s6a"
avps:

- '{:avp, {:"sba APN-Configuration-Profile",
{:"s6a APN-Configuration-Profile", 1, O,
{:"sba APN-Configuration", 1, 0, "internet",

(01, 1}, [1}1,

[1}1,

(1, 01, [1},

(11, [1}, [1}1,

[1}1,

(1, 1, [1},

(11, [1}, [1}1,

[

[{:"s6ba EPS-Subscribed-QoS-Profile", 9,
{:"s6a Allocation-Retention-Priority", 1,

[1],

{:"s6a APN-Configuration", 2, 0, "ims",

(1,

[1,

[1],
[{:s6a AMBR, 4200000000, 4200000000,

["0800"],

(1, [I,

[1,

[{:"s6ba EPS-Subscribed-QoS-Profile", 5,
{:"sba Allocation-Retention-Priority", 1,

(o1,

{:"s6a APN-Configuration", 3, 0, "sos",

[1,

[1,

[1],
[{:s6a AMBR, 4200000000, 4200000000,

["0800"],

(1, [1,

[1,

[{:"sba EPS-Subscribed-QoS-Profile", 5,
{:"s6a Allocation-Retention-Priority", 1,

[1],

[1,

[1,

[1],
[{:s6a AMBR, 4200000000, 4200000000,

["0800"],

(1, [1,

#

[1,

(o1,

(01,

(01,



[1}1,

(1, 1, [1}

1, [1}

How it works:

Matches S6a Update Location Answer (ULA) packets from a specific Origin-
Realm

Uses :overwrite action to replace the entire APN-Configuration-Profile
grouped AVP

Requires dictionary parameter to properly encode complex grouped
AVP structures

Adds three APN configurations: "internet" (context 1), "ims" (context 2),
and "sos" (context 3)

Each APN includes QoS profiles, bandwidth limits (AMBR), and PDN type
settings

The transformation ensures emergency services (SOS) APN is provisioned
for all subscribers from this realm

When to use :overwrite with dictionary:

Modifying grouped AVPs with nested structures (like APN-Configuration-
Profile)

Adding or restructuring complex 3GPP subscription data
When :edit action cannot handle the AVP complexity

Dictionary must match the Diameter application ( :diameter gen 3gpp sb6a
for S6a, etc.)

Important notes:

:overwrite replaces the entire AVP, not just individual fields
The AVP structure must match the dictionary definition exactly
Incorrect structure will cause encoding failures and dropped packets

This is an advanced feature - validate thoroughly in test environment first



Use Cases

e MVNO Support: Route virtual operator traffic to hosted core networks
* Network Migration: Gradually redirect subscribers to new infrastructure

e Realm Translation: Convert between different naming schemes for
roaming partners

¢ Multi-tenancy: Isolate subscriber populations by realm

e Carrier Routing: Direct traffic to correct carrier networks based on IMSI
ranges

Rule Processing

Applies to both and modules.



Execution Order

Incoming Diameter
Message

¢

Ye
Ye
Ye

®

Apply Rule 1 Action Apply Rule 2 Action Apply Rule 3 Action -
/ Default Behavior:
Stop Processing Standard Routing

or Passthrough



1. Rules are evaluated in order from top to bottom as defined in
configuration

2. Filters within a rule are evaluated based on the match parameter (:all,
:any, or :none)

3. First matching rule wins - subsequent rules are not evaluated

4. If no rules match, default routing/passthrough behavior is used

Filter Logic

The match parameter determines how filters are combined:

match: :all (AND Logic)

All filters must match for the rule to succeed.

DRA (Multihomed) HSS (Multihomed)
192.168.1.10 —— Primary Path—— 192.168.1.20
tiCTOSS Path“""""'”.
10.0.0.10

Backup Path——— |
10.0.0.20

"Cross Path-—-"

Example: With 3 filters, filterl AND filter2 AND filter3 must all be true.

match: :any (OR Logic)

At least one filter must match for the rule to succeed.



Filter 1

*

Filter 2

Yo o)
Filter 3
Y
Yes
/ No

Rule Matches
Apply Action

Rule Fails



Example: With 3 filters, filterl OR filter2 OR filter3 (any one passes).

match: :none (NOR Logic)

No filters can match for the rule to succeed (inverse matching).



Incoming Diameter

Message
OmniCharge  OmniRAN i i i
Downloads % English+ Omnitouch Website (%
- -
Filters Match?
_— <
_— \\
,f"'xl’ “No
-/r"’-f .I
f T
Rule 2
b
Filters Match?
-
- =
— ™
e AN
Yes yd “No
/ B T
Rule 3
Yes
L 4
Filters Match?
"IES/ \'Nu
v _ v r .'.
Apply Rule 1 Action Apply Rule 2 Action Apply Rule 3 Action No Rules Match
', [ T
~ | S
'--._\_\_\___ | _Fﬂ_'__.,-o-"" v

— ] Y
W Stop Processing

Default Behavior:
Standard Routing
or Passthrough

Example: With 3 filters, NOT filterl AND NOT filter2 AND NOT filter3 (all

must fail).



Additional Notes:

When using list operators within a filter value (e.g., {:avp, {1, ["valuel",
"value2"]}}), the values use OR logic (any can match).

Regular Expression Patterns

Use ~r"pattern" syntax for regex matching:

e ~r"999001.*" - Matches IMSI starting with 999001
e ~r"”310[0-9]1{3}.*" - Matches IMSI with specific MNC patterns

e ~r" *test$" - Matches values ending with "test"

Best Practices

1. Specificity: Order rules from most specific to most general

2. Performance: Place most common matches first to reduce processing
overhead

3. Testing: Validate regex patterns before deployment
4. Documentation: Use descriptive rule name values for operational clarity

5. Monitoring: Track rule match rates to verify expected behavior

Extended Metrics Module

The Extended Metrics module provides advanced telemetry and analytics

capabilities for analyzing Diameter traffic patterns beyond the standard
metrics.

Configuration

Enable the module and configure specific metric types:



module extended metrics:
enabled: true
attach attempt reporting enabled: true

Parameters

Parameter Description

Set to true to activate the

enabled
extended metrics module

Enable tracking and reporting of LTE

attach attempt reporting enabled
attach attempts (S6a AIR/AIA)

Available Metrics

Attach Attempt Tracking

Tracks LTE subscriber attach attempts by monitoring Authentication Information
Request (AIR) and Answer (AIA) message pairs:

Parse error on line 36: ... style Metrics fill: #f3e5f5 style E ---------=----meeemu-
Expecting 'SOLID OPEN_ARROW!', 'DOTTED_OPEN_ARROW!, 'SOLID _ARROW!',
'BIDIRECTIONAL_SOLID _ARROW!', 'DOTTED_ARROW!,
'BIDIRECTIONAL_DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

Measurement: attach attempt count
Fields:
e imsi - The subscriber IMSI (from User-Name AVP - see )

Tags:



e origin host - The peer that originated the attach request

e result code - The Diameter result code from the HSS response

How it works:

1. When an AIR (command code 318, S6a application 16777251 - see
) is received, the module extracts:
o End-to-End-ID for request/response correlation

o IMSI (User-Name AVP code 1)
o Origin-Host (AVP code 264)
2. Request metadata is stored in ETS with TTL

3. When the matching AlA is received, the module:
o Correlates using End-to-End-ID

o Extracts the result code (AVP 268 or experimental result code AVP 297)

o Emits the metric with IMSI, origin host, and result code

Use Cases

e Attach Success Rate Analysis - Track successful vs failed attach
attempts by result code

e IMSI-Level Troubleshooting - Identify subscribers experiencing attach
failures

e Network Performance Monitoring - Monitor attach attempt patterns by
origin (MME/SGSN)

¢ Roaming Analytics - Analyze inbound roaming attach success rates

Integration

Extended metrics are exported via InfluxDB integration:

DRA.Metrics.InfluxDB.write(%{
measurement: "attach attempt count",
fields: %{imsi: "505057000000001"},
tags: %{origin host: "mme-01l.example.com", result code: 2001}

})



Result codes are standard Diameter codes:

2001 - Success (DIAMETER_SUCCESS)
5001 - Authentication failure (DIAMETER_AUTHENTICATION_REJECTED)
5004 - Diameter AVP unsupported

See RFC 6733 for complete result code list

Important Notes

e Attach attempt metrics only track S6a AIR/AIA pairs (Application-ld
16777251, Command-Code 318)

e Request metadata expires based on configured request timeout + 5
seconds

e Metric processing is asynchronous (spawned process) to avoid blocking
message flow

e The module operates independently from routing and transform modules

Prometheus Metrics

The DRA exposes comprehensive Prometheus metrics for monitoring Diameter
traffic, peer health, and module operations. All metrics are available at the
/metrics endpoint.

Core Diameter Metrics

Peer Status

Metric: diameter peer status Type: Gauge Description: Whether the peer
is connected (1) or not (0) Tags:

e origin host - Peer's Diameter Identity

e 1ip - Peer's IP address

Example:



# Check if specific peer is connected
diameter peer status{origin host="hss0l.example.com"}

# Count disconnected peers
count(diameter peer status == 0)

Message Count

Metric: diameter peer message count total Type: Counter Description:
Total number of Diameter messages exchanged with peers Tags:

e origin host - Peer's Diameter Identity

* received from - Peer the message was received from

e application_id - Diameter Application-ld (see )

e cmd code - Diameter Command-Code (see )

e application name - Human-readable application name (e.g., "3GPP_S6a")
e cmd_name - Human-readable command name (e.g., "AIR")

e direction - "request" or "response"

Example:

# S6a AIR request rate from specific MME
rate(diameter peer message count total{
cmd code="318",
direction="request",
origin host="mme0Ol.example.com"

}[5m])
# Total message rate by application

sum by (application name)
(rate(diameter peer message count total[5m]))

Response Result Codes

Metric: diameter peer message result code count total Type: Counter
Description: Total number of Diameter responses by result code Tags:

e origin host - Original requester



* routed to - Peer that sent the answer

e application id - Diameter Application-ld
* cmd code - Diameter Command-Code

* application name - Application name

e cmd _name - Command name

* result code - Diameter Result-Code or Experimental-Result-Code

Example:

# Success rate for S6a AIR requests
rate(diameter peer message result code count total{
cmd code="318",
result code="2001"
}[5m])

# Error rate by result code
sum by (result code) (
rate(diameter peer message result code count total{
result code!="2001"
}[5m])

Common Result Codes:

« 2001 - DIAMETER_SUCCESS

« 3002 - DIAMETER_UNABLE_TO DELIVER

« 3003 - DIAMETER_REALM_NOT SERVED

« 3004 - DIAMETER_TOO BUSY

« 5001 - DIAMETER_AUTHENTICATION_REJECTED
+ 5004 - DIAMETER_INVALID AVP_ VALUE

* 5012 - DIAMETER_UNABLE_TO_COMPLY

Response Delay

Metric: diameter peer last response delay Type: Gauge Description: Most
recent response delay in milliseconds (DRA —» Peer - DRA) Tags:

e origin host - Original requester



* routed to - Peer that sent the answer
e application name - Application name

e cmd name - Command name

Example:

# Average response time from HSS
avg(diameter peer last response delay{routed to="hssOl.example.com"})

# P95 response time for S6a
histogram quantile(0.95,
rate(diameter peer last response delay{application name="3GPP S6a")
[5m])
)

Unanswered Requests

Metric: diameter peer unanswered request count total Type: Counter
Description: Requests sent but not answered within timeout period Tags:

e origin host - Original requester

e routed to - Peer that didn't answer

e application id - Diameter Application-ld
* cmd code - Diameter Command-Code

e application name - Application name

e cmd name - Command name

Example:

# Unanswered request rate
rate(diameter peer unanswered request count total[5m])

# Identify problematic peers
topk(5, sum by (routed to) (

rate(diameter peer unanswered request count total[5m])
))

Unauthorized Connection Attempts



Metric: diameter peer unauthorized connection count total Type: Counter
Description: Connection attempts from unauthorized peers Tags:

e origin host - Unauthorized peer's claimed identity
* supported applications - Applications advertised by peer

e peer ip - IP address of connection attempt

Example:

# Unauthorized connection attempts
rate(diameter peer unauthorized connection count total[5m])

# Alert on unauthorized access
diameter peer unauthorized connection count total > 0

Advanced Routing Module Metrics

Dropped Traffic

Metric: diameter advanced routing drop count total Type: Counter
Description: Requests dropped by advanced routing :drop action (no
response sent) Tags:

e application id - Diameter Application-ld
e cmd code - Diameter Command-Code
* application name - Application name

e cmd name - Command name

Example:

# Drop rate by command
sum by (cmd name) (
rate(diameter advanced routing drop count total[5m])

)

# Total dropped traffic
sum(rate(diameter advanced routing drop count total[5m]))



When traffic is dropped:

Advanced routing rule matches with route: :drop

Message is silently discarded per Erlang Diameter :discard behavior

No answer message is sent to the requesting peer

e See for configuration

Error Responses

Metric: diameter advanced routing error_count total Type: Counter
Description: Error responses generated by advanced routing {:error,
result code} action Tags:

* result code - Diameter Result-Code sent in error response
e application id - Diameter Application-ld

* cmd code - Diameter Command-Code

* application name - Application name

e cmd_name - Command name

Example:

# Error responses by result code
sum by (result code) (
rate(diameter advanced routing error count total[5m])

# DIAMETER TOO BUSY responses

rate(diameter advanced routing error count total{
result code="3004"

}[5m])

# Rate limiting or overload detection
diameter advanced routing error_count total{

result code="3004"
} > 100

When error responses are generated:

* Advanced routing rule matches with route: {:error, result code}



DRA generates Diameter answer with specified Result-Code

Answer is sent back to requesting peer (not forwarded)

Per Erlang Diameter: {:protocol error, code} equivalent to
{:answer message, code}

e See for configuration
Common Error Codes Used:

e 3002 - DIAMETER _UNABLE TO DELIVER (routing failure)

e 3003 - DIAMETER_REALM_NOT_SERVED (realm not supported)
* 3004 - DIAMETER_TOO_BUSY (overload protection)

e 5012 - DIAMETER UNABLE TO_COMPLY (general error)

Important Notes

e All metrics are available at the /metrics endpoint in Prometheus format

Extended Metrics Module provides additional S6a-specific metrics (see
)
e BEAM/Erlang metrics are also exposed but not documented here

¢ All counters are cumulative and should be queried with rate() for per-
second rates

e High cardinality tags (like IMSI) are only used in Extended Metrics module
to avoid metric explosion

Troubleshooting

Rule Not Matching

e Verify all filter conditions are correct
e Check AVP codes match your Diameter application (see
)
e Test regex patterns independently (see )

e Ensure message type matches match scope (see )



e Review to ensure you're using the correct filter type for
your module

Unexpected Routing

e Review rule ordering -
e Verify peer names are correct and reachable
e Check for conflicting rules with overlapping filters

e Confirm behavior when no rules match

Transform Not Applied

e Confirm AVP codes are correct for your use case (see )

e For :edit action: Verify the AVP exists in the message (edit won't create
new AVPs)

e Check that filters match the intended message flow
» Verify packet type filter if used ( : request vs :answer)

e Ensure action is supported for packet type ( :edit only works on requests -
see )

e Review for execution order



