
DRA Operations Guide

Table of Contents

1. Standard Diameter Routing

2. Base DRA Configuration

3. SCTP Multihoming

4. Reference Tables

Common 3GPP Application IDs

Common AVP Codes

5. Advanced Routing Module

6. Advanced Transform Module

7. Rule Processing

8. Extended Metrics Module

9. Prometheus Metrics

Core Diameter Metrics

Advanced Routing Module Metrics

10. Troubleshooting

DRA Architecture Overview

Standard Diameter Routing

Without the Advanced Routing or Advanced Transform modules, the DRA

performs standard Diameter routing based on the Diameter Base Protocol (RFC

6733):

https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc6733

Yes

No

:drop error, code

peers :destination_host

No Match

Yes No

Yes

No

Yes

:random :failover

No

Yes

No

Incoming Diameter

Request

Advanced Routing

Enabled?

Evaluate Routing Rules

Destination-Host

AVP Present?

Rule

Matches?

Drop Message

No Response

Generate Error Answer

with Result-Code

Route to Specified Peers
Route to Destination-

Host AVP

Route to Selected Peer

Route to Specified Host
Destination-Realm

AVP Present?

Filter Peers by Realm

Routing Fails Filter by Application-Id

Multiple Peers

Match?

Peer Selection

Algorithm

Random Selection First Peer Single Peer

Peer

Connected?

Request Routing

The DRA routes request messages using a priority-based mechanism defined in

RFC 6733 Section 6.1:

1. Destination-Host AVP (293) - If present, the DRA routes directly to the

specified peer

This is the highest priority routing mechanism

If the peer is not connected, routing fails

Provides explicit, host-level routing control

2. Destination-Realm AVP (283) - If Destination-Host is absent, routes

based on realm

The DRA selects a connected peer that advertises support for the

target realm

Load balancing is applied when multiple peers match the realm

Realm-based routing allows flexibility across multiple hosts

3. Application-Id - Peers are filtered by supported Diameter applications

Only peers advertising support for the message's Application-Id are

considered

Based on Capabilities Exchange (CER/CEA) during peer connection

establishment

See Common 3GPP Application IDs for reference

Answer Routing

Answer packets use a fundamentally different routing mechanism than

requests:

https://datatracker.ietf.org/doc/html/rfc6733#section-6.1
https://datatracker.ietf.org/doc/html/rfc6733#section-6.5
https://datatracker.ietf.org/doc/html/rfc6733#section-6.4
https://datatracker.ietf.org/doc/html/rfc6733#section-6.3

Session-based routing: Answer packets always follow the reverse path of

the request

End-to-End ID preservation: The End-to-End Identifier remains

unchanged across all hops

Hop-by-Hop routing: The DRA uses the Hop-by-Hop Identifier to maintain

routing state (changes at each hop)

No rule evaluation: The DRA does not evaluate routing rules or AVP

contents for answers

Stateful correlation: Internal routing tables track which peer sent each

request

Why answers are not routed by advanced modules:

Answer routing is deterministic and must return to the originating peer

The Diameter protocol requires answers to follow the established request

path

Routing decisions for answers are made based on the original request

context, not answer content

This ensures proper session management and prevents routing loops

See RFC 6733 Section 6.2 for answer message routing details.

Peer Selection

When multiple peers match the routing criteria, the configured

peer_selection_algorithm determines selection:

:random - Randomly selects from available peers (default)

:failover - Always selects the first peer in the list (priority-based)

Peers must be in connected state to be selected

Disconnected or down peers are automatically excluded

Limitations of Standard Routing

No custom routing rules based on AVP values (e.g., IMSI patterns)

No realm translation or AVP modification

Cannot route based on originating peer

Limited control over traffic distribution

https://datatracker.ietf.org/doc/html/rfc6733#section-6.2

The Advanced Routing and Advanced Transform modules extend this standard

behavior with rule-based routing and packet manipulation capabilities.

Base DRA Configuration

The DRA requires base configuration defining its identity, network settings, and

peer connections. This configuration establishes the foundation for all routing

operations.

Configuration Structure

%{

 host: "dra01.example.com",

 realm: "example.com",

 listen_ip: "192.168.1.10",

 listen_port: 3868,

 service_name: :example_dra,

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 log_unauthorized_peer_connection_attempts: true,

 peers: [

 # Peer configurations...

]

}

DRA Identity Parameters

Parameter Type Description

host String
The DRA's Diameter Identity (fully qualified

domain name)

realm String The DRA's Diameter realm

product_name String Product name advertised in CER/CEA messages

vendor_id Integer
Vendor-ID as defined in RFC 6733 Section 5.3.3

(10415 = 3GPP)

Network Settings

Parameter Type Description

listen_ip
String or

List

IP address(es) the DRA listens on. For SCTP

multihoming, use a list of IP strings (see

SCTP Multihoming)

listen_port Integer
TCP/SCTP port for Diameter connections

(standard: 3868)

service_name Atom Internal Erlang service identifier

request_timeout Integer
Timeout in milliseconds for request/answer

pairs (default: 5000)

https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-4.3
https://datatracker.ietf.org/doc/html/rfc6733#section-5.3.3

Peer Selection Settings

Parameter Type Description

peer_selection_algorithm Atom

Load balancing

algorithm:

:random

(random

selection) or

:failover

(first peer

priority)

allow_undefined_peers_to_connect Boolean

Allow

connections

from peers not

in

configuration

(default:

false)

log_unauthorized_peer_connection_attempts Boolean

Log connection

attempts from

unauthorized

peers

Peer Configuration

Each peer in the peers list defines a Diameter connection:

Peer Parameters

Parameter Type Description

host String
Peer's Diameter Identity (FQDN) - must

match exactly for routing

realm String Peer's Diameter realm

ip String
Peer's primary IP address for

connection (required)

ips List

List of IP addresses for SCTP

multihoming (optional, see SCTP

Multihoming)

port Integer Peer's Diameter port (typically 3868)

transport Atom
Transport protocol: :diameter_tcp or

:diameter_sctp

tls Boolean
Enable TLS encryption (if true ,

typically use port 3869)

initiate_connection Boolean
true : DRA connects to peer, false :

DRA waits for peer to connect

%{

 host: "mme01.operator.com",

 realm: "operator.com",

 ip: "192.168.1.20",

 port: 3868,

 transport: :diameter_tcp,

 tls: false,

 initiate_connection: false

}

https://datatracker.ietf.org/doc/html/rfc6733#section-4.3

Connection Modes

Initiate Connection (initiate_connection: true)

DRA acts as Diameter client

DRA initiates TCP/SCTP connection to peer

Used for connecting to HSS, PCRF, or other backend systems

DRA will retry connections if peer is unreachable

Accept Connection (initiate_connection: false)

DRA acts as Diameter server

DRA waits for peer to connect

Used for MME, SGSN, P-GW connections

Peer must be in configuration or allow_undefined_peers_to_connect:

true

Configuration Example

%{

 host: "dra01.mvno.example.com",

 realm: "mvno.example.com",

 listen_ip: "10.100.1.10",

 listen_port: 3868,

 service_name: :mvno_dra,

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 log_unauthorized_peer_connection_attempts: true,

 peers: [

 # MME - waits for MME to connect

 %{

 host: "mme01.operator.example.com",

 realm: "operator.example.com",

 ip: "10.100.2.15",

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: false

 },

 # HSS - DRA initiates connection

 %{

 host: "hss01.mvno.example.com",

 realm: "mvno.example.com",

 ip: "10.100.3.141",

 port: 3868,

 transport: :diameter_tcp,

 tls: false,

 initiate_connection: true

 },

 # PCRF with TLS - DRA initiates secure connection

 %{

 host: "pcrf01.mvno.example.com",

 realm: "mvno.example.com",

 ip: "10.100.3.22",

 port: 3869,

 transport: :diameter_tcp,

 tls: true,

Important Notes

Hostname Matching: Peer hostnames in Advanced Routing rules must

exactly match the host value configured here (case-sensitive)

Capabilities Exchange: On connection, peers exchange supported

applications via CER/CEA messages

Application Support: The DRA advertises all supported 3GPP applications

(see Common 3GPP Application IDs)

Vendor-ID 10415: Standard value for 3GPP applications

Request Timeout: Affects Extended Metrics TTL (timeout + 5 seconds)

Peer Selection: When multiple peers match routing criteria,

peer_selection_algorithm determines which is chosen

Security Considerations

Set allow_undefined_peers_to_connect: false in production

Enable log_unauthorized_peer_connection_attempts: true for security

monitoring

Ensure firewall rules match listen_ip and listen_port settings

Validate peer certificates when using TLS

SCTP Multihoming

SCTP multihoming provides network redundancy by allowing endpoints to bind

to multiple IP addresses. If the primary network path fails, SCTP automatically

fails over to an alternative path without disrupting the Diameter session.

 initiate_connection: true

 }

]

}

How It Works

HSS (Multihomed)DRA (Multihomed)

Primary Path

Backup Path

Cross Path

Cross Path

192.168.1.10

10.0.0.10

192.168.1.20

10.0.0.20

SCTP heartbeats monitor all network paths

Automatic failover occurs if the primary path becomes unreachable

No Diameter session disruption during path switchover

The kernel handles path selection automatically

Configuration

DRA Listen Addresses

Configure multiple local IP addresses for the DRA to bind to:

Notes:

%{

 # Single IP (backward compatible)

 listen_ip: "192.168.1.10",

 # Multiple IPs for SCTP multihoming

 listen_ip: ["192.168.1.10", "10.0.0.10"],

 listen_port: 3868,

 ...

}

TCP transport uses only the first IP in the list

SCTP transport binds to all specified IPs

Single IP string format remains fully supported

Peer Configuration

Configure multiple remote IP addresses for peer connections:

Notes:

ip field is required for backward compatibility

ips field is optional; if omitted, only ip is used

For SCTP, include the primary IP in the ips list

For TCP, only ip is used (TCP does not support multihoming)

peers: [

 %{

 host: "hss01.example.com",

 realm: "example.com",

 ip: "192.168.1.20", # Primary IP

(required)

 additional_ips: ["192.168.1.20", "10.0.0.20"], # All

IPs for multihoming

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: true

 }

]

Complete Example

config :dra,

 diameter: %{

 service_name: :omnitouch_dra,

 listen_ip: ["192.168.1.10", "10.0.0.10"], # Multihomed DRA

 listen_port: 3868,

 host: "dra01",

 realm: "example.com",

 product_name: "OmniDRA",

 vendor_id: 10415,

 request_timeout: 5000,

 peer_selection_algorithm: :random,

 allow_undefined_peers_to_connect: false,

 peers: [

 # Multihomed HSS connection

 %{

 host: "hss01.example.com",

 realm: "example.com",

 ip: "192.168.1.20",

 additional_ips: ["192.168.1.20", "10.0.0.20"],

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: true

 },

 # Single-homed MME (backward compatible)

 %{

 host: "mme01.example.com",

 realm: "example.com",

 ip: "192.168.1.30",

 port: 3868,

 transport: :diameter_sctp,

 tls: false,

 initiate_connection: false

 }

]

 }

Requirements

SCTP kernel module must be loaded (lksctp-tools package on Linux)

All IP addresses must be routable from/to the peer

Firewall rules must allow SCTP traffic on all configured IPs

Both endpoints should be configured for multihoming for full redundancy

Limitations

TCP transport does not support multihoming (only uses primary IP)

TLS over SCTP multihoming may have compatibility limitations

Path failover timing depends on kernel SCTP parameters

Reference Tables

Common 3GPP Application IDs

Application-

Id
Interface Description

16777251 S6a/S6d
MME/SGSN to HSS authentication and

subscription data

16777252 S13/S13' MME to EIR equipment identity check

16777238 Gx PCEF to PCRF policy and charging control

16777267 S9 Home PCRF to Visited PCRF roaming policy

16777272 Sy PCRF to OCS session binding

16777216 Cx I-CSCF/S-CSCF to HSS IMS registration

16777217 Sh AS to HSS IMS user data

16777236 SLg MME/SGSN to GMLC location services

16777291 SLh GMLC to HSS location subscriber info

16777302 S6m MTC-IWF to HSS/HLR for M2M devices

16777308 S6c SMS-SC/IP-SM-GW to HSS SMS routing

16777343 S6t SCEF to HSS monitoring events

16777334 Rx AF to PCRF media authorization

Common AVP Codes

Code AVP Name Type Usage

1 User-Name UTF8String
Subscriber identifier (IMSI

in 3GPP)

264 Origin-Host DiameterIdentity
Originating peer

hostname

268 Result-Code Unsigned32 Standard result code

283
Destination-

Realm
DiameterIdentity Target realm

293 Destination-Host DiameterIdentity Target host (optional)

296 Origin-Realm DiameterIdentity Source realm

297
Experimental-

Result
Grouped Vendor-specific result code

Common Command Codes

Command codes are part of the Diameter message header, not AVPs:

Code
Command

Name
Description

257 CER/CEA Capabilities-Exchange-Request/Answer

258 RAR/RAA Re-Auth-Request/Answer

274 ASR/ASA Abort-Session-Request/Answer

275 STR/STA Session-Termination-Request/Answer

280 DWR/DWA Device-Watchdog-Request/Answer

282 DPR/DPA Disconnect-Peer-Request/Answer

316 ULR/ULA Update-Location-Request/Answer (S6a)

317 CLR/CLA Cancel-Location-Request/Answer (S6a)

318 AIR/AIA
Authentication-Information-Request/Answer

(S6a)

321 PUR/PUA Purge-UE-Request/Answer (S6a)

Advanced Routing Module

The Advanced Routing module provides flexible, rule-based message routing

capabilities with support for complex matching conditions.

Important: This module evaluates inbound Diameter request packets

only (not answer packets). Answer packets follow the established session

routing back to the originating peer - see Answer Routing for details.

Configuration

Enable the module and define routing rules in your configuration:

Parameters

Parameter Description

enabled Set to True to activate the module

rule_name Unique identifier for the routing rule

match

How filters are combined: :all (AND logic - all filters must

match), :any (OR logic - at least one filter must match),

:none (NOR logic - no filters can match)

filters List of filter conditions (see Available Filters)

route Routing action (see Route Actions below)

Route Actions

The route parameter supports multiple actions:

Route to Peers

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: <rule_identifier>

 match: <match_scope>

 filters: [<filter_list>]

 route:

 peers: [<peer_list>]

Routes to specified peer hostnames. Peers must be:

Defined in the DRA's Diameter peer configuration

The exact hostname as configured (case-sensitive)

Currently connected for routing to succeed (disconnected peers are

skipped)

Route to Destination-Host AVP

Routes to the peer specified in the message's Destination-Host AVP (293). If

Destination-Host AVP is missing, routing falls back to normal behavior.

Drop Traffic

Silently discards the message without sending any response. Use for:

Traffic filtering and blackholing

Blocking unwanted requests

Rate limiting by dropping excess traffic

Behavior:

Message is dropped at DRA (not forwarded)

No answer message is sent to requesting peer

Implements Erlang Diameter :discard behavior

Metric: diameter_advanced_routing_drop_count_total (see Prometheus

Metrics)

Generate Error Response

route:

 peers: [peer01.example.com, peer02.example.com]

route: :destination_host

route: :drop

https://datatracker.ietf.org/doc/html/rfc6733#section-6.5

Generates a Diameter error answer with the specified Result-Code and sends it

back to the requesting peer. Common result codes:

3002 - DIAMETER_UNABLE_TO_DELIVER (routing unavailable)

3003 - DIAMETER_REALM_NOT_SERVED (realm not supported)

3004 - DIAMETER_TOO_BUSY (overload protection, rate limiting)

5012 - DIAMETER_UNABLE_TO_COMPLY (general rejection)

Behavior:

DRA generates error answer with specified Result-Code

Answer includes Origin-Host, Origin-Realm, Session-Id (auto-populated by

Diameter)

Message is NOT forwarded to any peer

Implements Erlang Diameter {:protocol_error, code} (equivalent to

{:answer_message, code})

Metric: diameter_advanced_routing_error_count_total (see Prometheus

Metrics)

Available Filters

Standard Filters

Available in both Advanced Routing and Advanced Transform:

:application_id - Match Diameter application ID (see Application ID

reference)

Single value: {:application_id, 16777251} (S6a/S6d)

Multiple values: {:application_id, [16777251, 16777252]} (S6a or

S6b)

:command_code - Match Diameter command code

Single value: {:command_code, 318} (AIR request)

route: {:error, 3004}

Multiple values: {:command_code, [317, 318]} (ULR or AIR)

:avp - Match AVP value (see AVP code reference)

Exact match: {:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}

Regex match: {:avp, {1, ~r"999001.*"}}

Multiple patterns: {:avp, {1, ["505057001313606", ~r"999001.*",

~r"505057.*"]}}

Any value (presence check): {:avp, {264, :any}}

Routing-Specific Filter

Only available in Advanced Routing:

:via_peer - Match the peer where the request was received from

Single peer: {:via_peer, "omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org"}

Multiple peers: {:via_peer, ["omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org", "omnitouch-lab-

dra02.epc.mnc001.mcc001.3gppnetwork.org"]}

Any peer: {:via_peer, :any}

Transform-Specific Filters

Only available in Advanced Transform:

:to_peer - Match on predetermined destination peer (request packets

only)

Single peer: {:to_peer, "dra01.omnitouch.com.au"}

Multiple peers: {:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}

:from_peer - Match peer who sent the answer (answer packets only)

Single peer: {:from_peer, "hss-01.example.com"}

Multiple peers: {:from_peer, ["hss-01.example.com", "hss-

02.example.com"]}

:packet_type - Match packet direction

Request: {:packet_type, :request}

Answer: {:packet_type, :answer}

Important Filter Notes

AVP Filters: Recommended for simple AVPs only (User-Name, Origin-Host,

Destination-Realm, etc.)

Grouped AVPs are not supported and will not match

Complex binary values are not supported

Use format: {:avp, {code, value}}

List Operators: Supported for all filter values except :packet_type

When a list is used, it applies OR logic within the list

Example: {:command_code, [317, 318]} matches command code 317

OR 318

Special Values:

:any - Matches any value (checks for AVP presence)

Example: {:avp, {264, :any}} matches if Origin-Host AVP exists with

any value

Routing Examples

Example 1: Via Peer Routing

Route messages based on which DRA they arrived from:

How it works: Routes S6a traffic that arrives via specific DRA peers to local

HSS nodes.

Example 2: Inbound Roaming with Pattern Matching

Route roaming traffic based on IMSI patterns:

How it works: Routes S6a messages from specific Origin-Realm with matching

IMSI patterns to designated DRA peers.

Example 3: Dynamic Routing with :destination_host

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: temporary_until_cutover_s6a_via_to_local_hss

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:via_peer, ["omnitouch-lab-

dra01.epc.mnc001.mcc001.3gppnetwork.org", "omnitouch-lab-

dra02.epc.mnc001.mcc001.3gppnetwork.org"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 route:

 peers: [omnitouch-lab-

hss01.epc.mnc001.mcc001.3gppnetwork.org, omnitouch-lab-

hss02.epc.mnc001.mcc001.3gppnetwork.org]

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: inbound_s6a_roaming_to_dcc

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, ["505571234567", ~r"999001.*"]}}'

 route:

 peers: [dra01.omnitouch.com.au, dra02.omnitouch.com.au]

Route to the Destination-Host AVP value in the message:

How it works:

When filters match, routes to the peer specified in the Destination-Host AVP

(293)

If Destination-Host AVP is missing, the match is considered a failure and

falls back to normal routing

Useful for honor routing when the sender specifies the exact destination

Example 4: Drop Unwanted Traffic

Drop traffic from specific IMSI ranges:

How it works:

Matches S6a messages with IMSI starting with 999999

Silently drops the message without sending any response

Useful for filtering test traffic or blocking specific subscriber ranges

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: route_to_specified_destination_host

 match: ":all"

 filters:

 - '{:avp, {1, [~r"90199.*"]}}' # Match IMSI pattern

 route: :destination_host

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: drop_test_subscribers

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a

 - '{:avp, {1, [~r"999999.*"]}}' # Test IMSI range

 route: :drop

See Prometheus Metrics for monitoring dropped traffic

Example 5: Rate Limiting with Error Responses

Return DIAMETER_TOO_BUSY for specific traffic patterns:

How it works:

Matches S6a traffic from specific overloaded peer

Returns DIAMETER_TOO_BUSY (3004) error response

Requesting peer receives error and should back off

Useful for overload protection and rate limiting

See Prometheus Metrics for monitoring error responses

Example 6: Conditional Error Responses by Command

Block specific command types with appropriate error codes:

How it works:

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: rate_limit_high_volume_peer

 match: ":all"

 filters:

 - '{:via_peer, "mme-overloaded-01.example.com"}'

 - '{:application_id, 16777251}'

 route: {:error, 3004}

dra_module_advanced_routing:

 enabled: True

 rules:

 - rule_name: block_purge_requests

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a

 - '{:command_code, 321}' # PUR (Purge-UE-Request)

 route: {:error, 5012}

Matches S6a Purge-UE-Request messages

Returns DIAMETER_UNABLE_TO_COMPLY (5012) error

Blocks specific operations without dropping traffic silently

Useful for selectively disabling certain Diameter commands

Advanced Transform Module

The Advanced Transform module enables dynamic modification of Diameter

message AVPs based on matching criteria. See Rule Processing for details on

how rules are evaluated.

Configuration

Enable the module and define transformation rules:

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: <rule_identifier>

 match: <match_scope>

 filters: [<filter_list>]

 transform:

 action: <transform_action>

 avps: [<avp_modifications>]

Parameters

Parameter Description

enabled Set to True to activate the module

rule_name Unique identifier for the transform rule

match
How filters are combined: :all (AND logic), :any (OR

logic), :none (NOR logic) - see Filter Logic

filters List of filter conditions (see Available Filters)

transform.action
Type of transformation (:edit , :remove , or

:overwrite)

transform.avps
List of AVP modifications to apply (see AVP code

reference)

Transform Actions

Request Packets (Diameter Requests)

:edit - Modify existing AVP values

Only modifies AVPs that exist in the message

If the AVP doesn't exist, no change is made

:remove - Remove AVPs from the message

:overwrite - Replace entire AVP structures

Requires dictionary parameter specifying the Diameter dictionary

(e.g., :diameter_gen_3gpp_s6a)

Answer Packets (Diameter Answers)

:remove - Remove AVPs from the message

:overwrite - Replace entire AVP structures

Requires dictionary parameter

Important: If no rules match, the packet is passed through transparently

without any transformations.

AVP Modification Syntax

Standard modification:

{:avp, {<code>, <new_value>}} - Set AVP to new value

Removing AVPs:

{:avp, {<code>, :any}} - Remove AVP by ID (removes regardless of

current value)

Note: Removing based on avp_id is supported; removing based on AVP

contents is not supported

Overwrite with dictionary:

Transform Examples

Example 1: To-Peer Based Realm Rewriting

Rewrite Destination-Realm based on where the message is being routed:

transform: %{

 action: :overwrite,

 dictionary: :diameter_gen_3gpp_s6a,

 avps: [{:avp, {:"s6a_Supported-Features", {:"s6a_Supported-

Features", 10415, 1, 3221225470, []}}}]

}

How it works: When S6a requests are routed to specific DRA peers and match

the IMSI pattern, rewrites the Destination-Realm for Operator X network.

Example 2: Multiple Carrier Routing with Transforms

How it works: Routes different IMSI subscriber ranges to appropriate network

realms based on IMSI patterns. First matching rule wins (see Execution Order).

Example 3: MVNO Realm Rewriting

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: rewrite_s6a_destination_realm_for_Operator_X

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, [~r"9999999.*"]}}'

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc999.mcc999.3gppnetwork.org"}}'

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name:

rewrite_s6a_destination_realm_for_roaming_partner_ausie

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc057.mcc505.3gppnetwork.org"}}'

 - '{:avp, {1, [~r"50557.*"]}}'

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc030.mcc310.3gppnetwork.org"}}'

How it works: Transforms Destination-Realm for specific MVNO subscriber to

their hosted core network.

Example 4: Request-Only Transform with Packet Type Filter

Transform only request packets (not answers):

How it works:

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: rewrite_s6a_destination_realm_for_single_sub

 match: ":all"

 filters:

 - '{:to_peer, ["dra01.omnitouch.com.au",

"dra02.omnitouch.com.au"]}'

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}'

 - '{:avp, {1, ["505057000003606"]}}' # Exact IMSI match

 transform:

 action: ":edit"

 avps:

 - '{:avp, {283, "epc.mnc001.mcc001.3gppnetwork.org"}}'

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: Tutorial_Rule_AIR

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 - '{:command_code, 318}'

 - '{:packet_type, :request}'

 - '{:avp, {1, "999999000000001"}}'

 - '{:avp, {264, :any}}' # Origin-Host must exist with any

value

 transform:

 action: ":edit"

 avps:

 - '{:avp, {1, "999999000000002"}}'

Matches only S6a AIR request packets (not answer packets)

Checks User-Name (AVP 1) equals "999999000000001"

Verifies Origin-Host (AVP 264) exists with any value

Rewrites User-Name to "999999000000002"

If AVP doesn't exist, no change is made

Example 5: Remove AVP

Remove specific AVP from messages:

How it works: Removes User-Name AVP (code 1) from all S6a messages,

regardless of its current value.

Example 6: Overwrite Grouped AVP on Answer Packets

Modify complex grouped AVPs in answer packets using the :overwrite action

with dictionary support:

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: remove_user_name_avp

 match: ":all"

 filters:

 - '{:application_id, 16777251}'

 transform:

 action: ":remove"

 avps:

 - '{:avp, {1, :any}}' # Remove User-Name regardless of

value

dra_module_advanced_transform:

 enabled: True

 rules:

 - rule_name: add_sos_apn_to_ula

 match: ":all"

 filters:

 - '{:application_id, 16777251}' # S6a/S6d

 - '{:command_code, 316}' # ULA (Update

Location Answer)

 - '{:packet_type, :answer}' # Answer packets

only

 - '{:avp, {296, "epc.mnc001.mcc001.3gppnetwork.org"}}' #

Origin-Realm

 transform:

 action: ":overwrite"

 dictionary: ":diameter_gen_3gpp_s6a"

 avps:

 - '{:avp, {:"s6a_APN-Configuration-Profile",

 {:"s6a_APN-Configuration-Profile", 1, 0, [

 {:"s6a_APN-Configuration", 1, 0, "internet", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 9,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[0], []}, []}],

 [1], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []},

 {:"s6a_APN-Configuration", 2, 0, "ims", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 5,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[1], []}, []}],

 [0], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []},

 {:"s6a_APN-Configuration", 3, 0, "sos", [],

 [{:"s6a_EPS-Subscribed-QoS-Profile", 5,

 {:"s6a_Allocation-Retention-Priority", 1, [0],

[1], []}, []}],

 [1], [], [], [1], ["0800"],

 [{:s6a_AMBR, 4200000000, 4200000000, [], [],

How it works:

Matches S6a Update Location Answer (ULA) packets from a specific Origin-

Realm

Uses :overwrite action to replace the entire APN-Configuration-Profile

grouped AVP

Requires dictionary parameter to properly encode complex grouped

AVP structures

Adds three APN configurations: "internet" (context 1), "ims" (context 2),

and "sos" (context 3)

Each APN includes QoS profiles, bandwidth limits (AMBR), and PDN type

settings

The transformation ensures emergency services (SOS) APN is provisioned

for all subscribers from this realm

When to use :overwrite with dictionary:

Modifying grouped AVPs with nested structures (like APN-Configuration-

Profile)

Adding or restructuring complex 3GPP subscription data

When :edit action cannot handle the AVP complexity

Dictionary must match the Diameter application (:diameter_gen_3gpp_s6a

for S6a, etc.)

Important notes:

:overwrite replaces the entire AVP, not just individual fields

The AVP structure must match the dictionary definition exactly

Incorrect structure will cause encoding failures and dropped packets

This is an advanced feature - validate thoroughly in test environment first

[]}],

 [], [], [], [], [], [], [], [], [], [], [], [],

[], [], []}

], []}

 }}'

Use Cases

MVNO Support: Route virtual operator traffic to hosted core networks

Network Migration: Gradually redirect subscribers to new infrastructure

Realm Translation: Convert between different naming schemes for

roaming partners

Multi-tenancy: Isolate subscriber populations by realm

Carrier Routing: Direct traffic to correct carrier networks based on IMSI

ranges

Rule Processing

Applies to both Advanced Routing and Advanced Transform modules.

Execution Order

Yes

No

Yes

No

Yes No

Incoming Diameter

Message

Rule 1

Filters Match?

Apply Rule 1 Action

Rule 2

Filters Match?

Apply Rule 2 Action

Rule 3

Filters Match?

Apply Rule 3 Action No Rules Match

Default Behavior:

Standard Routing

or Passthrough

Stop Processing

1. Rules are evaluated in order from top to bottom as defined in

configuration

2. Filters within a rule are evaluated based on the match parameter (:all ,

:any , or :none)

3. First matching rule wins - subsequent rules are not evaluated

4. If no rules match, default routing/passthrough behavior is used

Filter Logic

The match parameter determines how filters are combined:

match: :all (AND Logic)

All filters must match for the rule to succeed.

Example: With 3 filters, filter1 AND filter2 AND filter3 must all be true.

match: :any (OR Logic)

At least one filter must match for the rule to succeed.

Yes

No

Yes

No

Yes
No

Filter 1

Pass?

Rule Matches

Apply Action

Filter 2

Pass?

Filter 3

Pass?

Rule Fails

Example: With 3 filters, filter1 OR filter2 OR filter3 (any one passes).

match: :none (NOR Logic)

No filters can match for the rule to succeed (inverse matching).

Example: With 3 filters, NOT filter1 AND NOT filter2 AND NOT filter3 (all

must fail).

Additional Notes:

When using list operators within a filter value (e.g., {:avp, {1, ["value1",

"value2"]}}), the values use OR logic (any can match).

Regular Expression Patterns

Use ~r"pattern" syntax for regex matching:

~r"999001.*" - Matches IMSI starting with 999001

~r"^310[0-9]{3}.*" - Matches IMSI with specific MNC patterns

~r".*test$" - Matches values ending with "test"

Best Practices

1. Specificity: Order rules from most specific to most general

2. Performance: Place most common matches first to reduce processing

overhead

3. Testing: Validate regex patterns before deployment

4. Documentation: Use descriptive rule_name values for operational clarity

5. Monitoring: Track rule match rates to verify expected behavior

Extended Metrics Module

The Extended Metrics module provides advanced telemetry and analytics

capabilities for analyzing Diameter traffic patterns beyond the standard

metrics.

Configuration

Enable the module and configure specific metric types:

Parameters

Parameter Description

enabled
Set to true to activate the

extended metrics module

attach_attempt_reporting_enabled
Enable tracking and reporting of LTE

attach attempts (S6a AIR/AIA)

Available Metrics

Attach Attempt Tracking

Tracks LTE subscriber attach attempts by monitoring Authentication Information

Request (AIR) and Answer (AIA) message pairs:

Parse error on line 36: ... style Metrics fill:#f3e5f5 style E -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Measurement: attach_attempt_count

Fields:

imsi - The subscriber IMSI (from User-Name AVP - see AVP codes)

Tags:

module_extended_metrics:

 enabled: true

 attach_attempt_reporting_enabled: true

origin_host - The peer that originated the attach request

result_code - The Diameter result code from the HSS response

How it works:

1. When an AIR (command code 318, S6a application 16777251 - see

Application IDs) is received, the module extracts:

End-to-End-ID for request/response correlation

IMSI (User-Name AVP code 1)

Origin-Host (AVP code 264)

2. Request metadata is stored in ETS with TTL

3. When the matching AIA is received, the module:

Correlates using End-to-End-ID

Extracts the result code (AVP 268 or experimental result code AVP 297)

Emits the metric with IMSI, origin host, and result code

Use Cases

Attach Success Rate Analysis - Track successful vs failed attach

attempts by result code

IMSI-Level Troubleshooting - Identify subscribers experiencing attach

failures

Network Performance Monitoring - Monitor attach attempt patterns by

origin (MME/SGSN)

Roaming Analytics - Analyze inbound roaming attach success rates

Integration

Extended metrics are exported via InfluxDB integration:

DRA.Metrics.InfluxDB.write(%{

 measurement: "attach_attempt_count",

 fields: %{imsi: "505057000000001"},

 tags: %{origin_host: "mme-01.example.com", result_code: 2001}

})

Result codes are standard Diameter codes:

2001 - Success (DIAMETER_SUCCESS)

5001 - Authentication failure (DIAMETER_AUTHENTICATION_REJECTED)

5004 - Diameter AVP unsupported

See RFC 6733 for complete result code list

Important Notes

Attach attempt metrics only track S6a AIR/AIA pairs (Application-Id

16777251, Command-Code 318)

Request metadata expires based on configured request timeout + 5

seconds

Metric processing is asynchronous (spawned process) to avoid blocking

message flow

The module operates independently from routing and transform modules

Prometheus Metrics

The DRA exposes comprehensive Prometheus metrics for monitoring Diameter

traffic, peer health, and module operations. All metrics are available at the

/metrics endpoint.

Core Diameter Metrics

Peer Status

Metric: diameter_peer_status Type: Gauge Description: Whether the peer

is connected (1) or not (0) Tags:

origin_host - Peer's Diameter Identity

ip - Peer's IP address

Example:

Message Count

Metric: diameter_peer_message_count_total Type: Counter Description:

Total number of Diameter messages exchanged with peers Tags:

origin_host - Peer's Diameter Identity

received_from - Peer the message was received from

application_id - Diameter Application-Id (see Application ID reference)

cmd_code - Diameter Command-Code (see Common Command Codes)

application_name - Human-readable application name (e.g., "3GPP_S6a")

cmd_name - Human-readable command name (e.g., "AIR")

direction - "request" or "response"

Example:

Response Result Codes

Metric: diameter_peer_message_result_code_count_total Type: Counter

Description: Total number of Diameter responses by result code Tags:

origin_host - Original requester

Check if specific peer is connected

diameter_peer_status{origin_host="hss01.example.com"}

Count disconnected peers

count(diameter_peer_status == 0)

S6a AIR request rate from specific MME

rate(diameter_peer_message_count_total{

 cmd_code="318",

 direction="request",

 origin_host="mme01.example.com"

}[5m])

Total message rate by application

sum by (application_name)

(rate(diameter_peer_message_count_total[5m]))

routed_to - Peer that sent the answer

application_id - Diameter Application-Id

cmd_code - Diameter Command-Code

application_name - Application name

cmd_name - Command name

result_code - Diameter Result-Code or Experimental-Result-Code

Example:

Common Result Codes:

2001 - DIAMETER_SUCCESS

3002 - DIAMETER_UNABLE_TO_DELIVER

3003 - DIAMETER_REALM_NOT_SERVED

3004 - DIAMETER_TOO_BUSY

5001 - DIAMETER_AUTHENTICATION_REJECTED

5004 - DIAMETER_INVALID_AVP_VALUE

5012 - DIAMETER_UNABLE_TO_COMPLY

Response Delay

Metric: diameter_peer_last_response_delay Type: Gauge Description: Most

recent response delay in milliseconds (DRA → Peer → DRA) Tags:

origin_host - Original requester

Success rate for S6a AIR requests

rate(diameter_peer_message_result_code_count_total{

 cmd_code="318",

 result_code="2001"

}[5m])

Error rate by result code

sum by (result_code) (

 rate(diameter_peer_message_result_code_count_total{

 result_code!="2001"

 }[5m])

)

routed_to - Peer that sent the answer

application_name - Application name

cmd_name - Command name

Example:

Unanswered Requests

Metric: diameter_peer_unanswered_request_count_total Type: Counter

Description: Requests sent but not answered within timeout period Tags:

origin_host - Original requester

routed_to - Peer that didn't answer

application_id - Diameter Application-Id

cmd_code - Diameter Command-Code

application_name - Application name

cmd_name - Command name

Example:

Unauthorized Connection Attempts

Average response time from HSS

avg(diameter_peer_last_response_delay{routed_to="hss01.example.com"})

P95 response time for S6a

histogram_quantile(0.95,

 rate(diameter_peer_last_response_delay{application_name="3GPP_S6a"}

[5m])

)

Unanswered request rate

rate(diameter_peer_unanswered_request_count_total[5m])

Identify problematic peers

topk(5, sum by (routed_to) (

 rate(diameter_peer_unanswered_request_count_total[5m])

))

Metric: diameter_peer_unauthorized_connection_count_total Type: Counter

Description: Connection attempts from unauthorized peers Tags:

origin_host - Unauthorized peer's claimed identity

supported_applications - Applications advertised by peer

peer_ip - IP address of connection attempt

Example:

Advanced Routing Module Metrics

Dropped Traffic

Metric: diameter_advanced_routing_drop_count_total Type: Counter

Description: Requests dropped by advanced routing :drop action (no

response sent) Tags:

application_id - Diameter Application-Id

cmd_code - Diameter Command-Code

application_name - Application name

cmd_name - Command name

Example:

Unauthorized connection attempts

rate(diameter_peer_unauthorized_connection_count_total[5m])

Alert on unauthorized access

diameter_peer_unauthorized_connection_count_total > 0

Drop rate by command

sum by (cmd_name) (

 rate(diameter_advanced_routing_drop_count_total[5m])

)

Total dropped traffic

sum(rate(diameter_advanced_routing_drop_count_total[5m]))

When traffic is dropped:

Advanced routing rule matches with route: :drop

Message is silently discarded per Erlang Diameter :discard behavior

No answer message is sent to the requesting peer

See Advanced Routing Module for configuration

Error Responses

Metric: diameter_advanced_routing_error_count_total Type: Counter

Description: Error responses generated by advanced routing {:error,

result_code} action Tags:

result_code - Diameter Result-Code sent in error response

application_id - Diameter Application-Id

cmd_code - Diameter Command-Code

application_name - Application name

cmd_name - Command name

Example:

When error responses are generated:

Advanced routing rule matches with route: {:error, result_code}

Error responses by result code

sum by (result_code) (

 rate(diameter_advanced_routing_error_count_total[5m])

)

DIAMETER_TOO_BUSY responses

rate(diameter_advanced_routing_error_count_total{

 result_code="3004"

}[5m])

Rate limiting or overload detection

diameter_advanced_routing_error_count_total{

 result_code="3004"

} > 100

DRA generates Diameter answer with specified Result-Code

Answer is sent back to requesting peer (not forwarded)

Per Erlang Diameter: {:protocol_error, code} equivalent to

{:answer_message, code}

See Advanced Routing Module for configuration

Common Error Codes Used:

3002 - DIAMETER_UNABLE_TO_DELIVER (routing failure)

3003 - DIAMETER_REALM_NOT_SERVED (realm not supported)

3004 - DIAMETER_TOO_BUSY (overload protection)

5012 - DIAMETER_UNABLE_TO_COMPLY (general error)

Important Notes

All metrics are available at the /metrics endpoint in Prometheus format

Extended Metrics Module provides additional S6a-specific metrics (see

Extended Metrics Module)

BEAM/Erlang metrics are also exposed but not documented here

All counters are cumulative and should be queried with rate() for per-

second rates

High cardinality tags (like IMSI) are only used in Extended Metrics module

to avoid metric explosion

Troubleshooting

Rule Not Matching

Verify all filter conditions are correct

Check AVP codes match your Diameter application (see AVP code

reference)

Test regex patterns independently (see Regular Expression Patterns)

Ensure message type matches match scope (see Filter Logic)

Review Available Filters to ensure you're using the correct filter type for

your module

Unexpected Routing

Review rule ordering - first match wins

Verify peer names are correct and reachable

Check for conflicting rules with overlapping filters

Confirm Standard Diameter Routing behavior when no rules match

Transform Not Applied

Confirm AVP codes are correct for your use case (see AVP code reference)

For :edit action: Verify the AVP exists in the message (edit won't create

new AVPs)

Check that filters match the intended message flow

Verify packet type filter if used (:request vs :answer)

Ensure action is supported for packet type (:edit only works on requests -

see Transform Actions)

Review Rule Processing for execution order

