API Error Handling

Table of Contents

Common Error Responses
400 Bad Request

{

"error": "Invalid JSON format"

}

Causes:

¢ Malformed JSON
e Missing required fields

e Invalid data types

404 Not Found

{

"error": "Resource not found"

}

Causes:

e Subscriber/profile/entity doesn't exist

e |ncorrect ID in URL

422 Unprocessable Entity

{
"errors": {
"imsi": ["has already been taken"],
"key set id": ["does not exist"]
}
}
Causes:

¢ Validation failures
e Database constraints violated

e Foreign key references don't exist

500 Internal Server Error

{
"error": "Internal server error"
}
Causes:

e Database connectivity issues

e Unexpected application errors

Error Handling Flow

APl Request

OmniCharge OmniRAN)
Downloads ¥ English =
Invalid JSOM Valid

‘ 400 Bad Request

Autho K

401 Unauthorized Resource Exists?

MNo

[:

l

‘ 404 Mot Found ‘

Data Valid?

/

{ID

422 Validation Error ‘

Error

Omnitouch Website (4

l5

Process Reguest

Database OK?

AN
N\

Success

« Back to API Reference

APl Usage Examples

Table of Contents

Complete Subscriber Provisioning

This example demonstrates the complete workflow for provisioning a new
subscriber from scratch. The process involves creating all required profiles and
components before creating the subscriber.

Prerequisites: This example uses jq for JSON parsing. Install with apt-get
install jq or brew install jq.

Related Sections:

1. Create Key Set
KEY SET ID=$(curl -k -X POST
https://hss.example.com:8443/api/key set \
-H "Content-Type: application/json" \
-d '{
"ki": "0123456789ABCDEF0123456789ABCDEF",
"opc": "FEDCBA9876543210FEDCBA9876543210",
"authentication algorithm": "milenage",
"amf": "8000",
"sgn": 0O
' | jg -r '.response.id')

2. Create APN QoS Profile
APN QOS ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/qos profile \
-H "Content-Type: application/json" \
-d '{
"name": "Default Internet QoS",
"allocation retention priority": 8,
"apn _ambr dl kbps": 50000,
"apn_ambr ul kbps": 25000,
"pre _emption capability": true,
"pre emption vulnerability": true,
"gci": 9
}' | jg -r '.response.id"')

3. Create APN Identifier
APN ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/identifier \
-H "Content-Type: application/json" \
-d '{

"apn": "internet",
"ip version": "ipv4v6"
}' | jg -r '.response.id")

4. Create APN Profile
APN PROFILE ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/profile \
-H "Content-Type: application/json" \
L
\"apn identifier id\": $APN 1ID,
\"apn_qos profile id\": $APN QOS ID,
\"name\": \"Internet APN\"

}" | jq -r '.response.id")

5. Create EPC Profile
EPC PROFILE ID=$(curl -k -X POST
https://hss.example.com:8443/api/epc/profile \
-H "Content-Type: application/json" \
@l "]
\"apn profiles\": [$APN_PROFILE ID],
\"name\": \"Standard Data Plan\",
\"network access mode\": \"packet only\",
\"tracking area update interval seconds\": 600,
\"ue _ambr dl kbps\": 100000,
\"ue ambr ul kbps\": 50000
¥ | jqg -r '.response.id')

6. Create Subscriber
SUBSCRIBER ID=$(curl -k -X POST
https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
L
\"imsi\": \"001001123456789\",
\"key set id\": $KEY SET ID,
\"epc profile id\": $EPC PROFILE ID
" | jg -r '.response.id"')

echo "Subscriber provisioned successfully with ID: $SUBSCRIBER ID"

What This Creates:

This provisioning workflow creates a complete subscriber with:

1. Cryptographic keys () - For authentication

2. Data service profile () - Bandwidth and network access
settings

3. APN configuration () - Access point with QoS

4. Subscriber record () - The actual subscriber entity

Next Steps:

e Add phone numbers: See

e Enable voice services: Create and assign

e Configure roaming: Create and assign

e Link physical SIM: Create and assign

See Also:
. - Assigning multiple phone numbers
. - Advanced profile configuration

Complete Static IP Provisioning

This example demonstrates provisioning a subscriber with a static IP address
from scratch.

Scenario: Provision an lIoT device subscriber that needs a static IPv4 address
on the "internet" APN.

Prerequisites: jq must be installed (apt-get install jq or brew
install jq)

1. Create Key Set
KEY SET ID=$(curl -k -X POST
https://hss.example.com:8443/api/key set \
-H "Content-Type: application/json" \
-d '{
"ki": "0123456789ABCDEF0123456789ABCDEF",
"opc": "FEDCBA9876543210FEDCBA9876543210",
"authentication algorithm": "milenage",
"amf": "8000",
"sqn": 0O
}' | jqg -r '.response.id"')

2. Create APN QoS Profile
APN QO0S ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/qos profile \
-H "Content-Type: application/json" \
-d '{
"name": "IoT Best Effort",
"allocation retention priority": 8,
"apn_ambr dl kbps": 10000,
"apn _ambr ul kbps": 5000,
"pre _emption capability": false,
"pre emption vulnerability": false,
"gci": 9
}' | jg -r '.response.id"')

3. Create APN Identifier

APN ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/identifier \
-H "Content-Type: application/json" \

-d '{
"apn": "internet",
"ip version": "ipv4"
}' | jq -r '.response.id')

4. Create APN Profile
APN PROFILE ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/profile \
-H "Content-Type: application/json" \
gl

\"apn identifier id\": $APN_ID,
\"apn gos profile id\": $APN QOS ID,
\"name\": \"IoT Internet APN\"

" | jg -r '.response.id"')

5. Create Static IP for the APN
STATIC IP ID=$(curl -k -X POST
https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
@ Of
\"apn profile id\": $APN PROFILE 1ID,
\"ipv4 static ip\": \"100.64.1.100\"
" | jg -r '.response.id"')

6. Create EPC Profile
EPC PROFILE ID=$(curl -k -X POST
https://hss.example.com:8443/api/epc/profile \
-H "Content-Type: application/json" \
@ T
\"apn profiles\": [$APN_PROFILE ID],
\"name\": \"IoT Data Plan\",
\"network access mode\": \"packet only\",
\"tracking area update interval seconds\": 600,
\"ue ambr dl kbps\": 10000,
\"ue ambr ul kbps\": 5000
" | jg -r '.response.id"')

7. Create MSISDN (phone number)

MSISDN ID=$(curl -k -X POST
https://hss.example.com:8443/api/msisdn \
-H "Content-Type: application/json" \

-d '{
"msisdn": "14155551000"
' | jg -r '.response.id"')

8. Create Subscriber with Static IP
SUBSCRIBER ID=$(curl -k -X POST
https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
L
\"imsi\": \"001001999999999\",
\"key set id\": $KEY SET ID,
\"epc profile id\": $EPC PROFILE ID,
\"msisdns\": [$MSISDN ID],

\"static ips\": [$STATIC IP ID]
}" | jq -r '.response.id")

echo "IoT Subscriber provisioned successfully!"

echo " Subscriber ID: $SUBSCRIBER ID"

echo " 1IMSI: 001001999999999"

echo " MSISDN: 14155551000"

echo " Static IPv4: 100.64.1.100 (on 'internet' APN)"

What This Creates:

This provisioning workflow creates a complete loT subscriber with:

1. Cryptographic keys () - For authentication

2. APN configuration () - "internet" access point

3. Static IP assignment () - Fixed IPv4 address 100.64.1.100

4. Data service profile () - loT-optimized bandwidth limits

5. Phone number () - For device identification

6. Subscriber record () - The complete subscriber entity
Result:

When this subscriber attaches to the network and connects to the "internet"
APN, they will receive the static IP address 100.64.1.100 instead of a dynamic
DHCP address.

Next Steps:

Add additional APNs with static IPs: Repeat steps 2-5 for each APN

Enable voice services: Create and assign

Configure roaming: Create and assign

Link physical SIM: Create and assign

See Also:
. - Detailed static IP documentation
. - Basic provisioning without static IP

. - Assigning multiple phone numbers

« Back to APl Reference

OmniHSS API
Reference

Table of Contents

APl Overview

Base URL

https://[hostname] :8443/api

Request Format

e Content-Type: application/json
e Protocol: HTTPS only
e Port: 8443 (configurable)

Important: All API endpoints expect “flat" JSON payloads without wrapper
objects.

Correct Format:

"name": "value",
"field": "value"

Incorrect Format (Do Not Use):

{

"subscriber": {
“name": "value",
"field": "value"

}

}
Example:

v Correct

curl -X POST https://hss.example.com:8443/api/ims/profile \
-H "Content-Type: application/json" \
-d '{"name": "default", "ifc template": "..."}'

x Incorrect
curl -X POST https://hss.example.com:8443/api/ims/profile \
-H "Content-Type: application/json" \
-d '{"ims profile": {"name": "default", "ifc template": "..."}}'

Response Format
All responses are JSON with the following structure:

Success Response:

{

"status": "success",
"response": { ... }

}

Error Response:

{
"status": "error",
"response": {
"invalid fields": {
"field name": "error message"
}
}
}

HTTP Status Codes

Code Meaning Use Case

200 OK Successful GET, PUT, DELETE
201 Created Successful POST

400 Bad Request Invalid input data

404 Not Found Resource doesn't exist

422 Unprocessable Entity = Validation error

500 Internal Server Error Server-side error

API Request Flow

Client APl Validation Database

HTTPS Request (JSON)

L4

Validate Input

alt [Validation Fails]

.d ..
[Validation Success]
Execute Operation
alt [Database Error]
Error
.‘ ..
500 Error Response
.‘ S ——
[Success]
Result
- D
200/201 Success Response
.q ..
Client AP Validation Database

Subscriber Management

List Subscribers
Retrieve all subscribers or filter by criteria.
Endpoint: GET /api/subscriber

Query Parameters:

Parameter Type Description

enabled boolean Filter by enabled status

ims enabled boolean Filter by IMS enabled status

Example Request:

curl -k https://hss.example.com:8443/api/subscriber

Example Response:

{
"data": [
{
"id": 1,
"imsi": "001001123456789",
"enabled": true,
"ims_enabled": true,
“sim id": 1,
"key set id": 1,
"epc profile id": 1,
“ims profile id": 1,
"roaming profile id": 1,
"custom attributes": {},
"inserted at": "2025-10-15T10:30:00Z",
"updated at": "2025-10-15T10:30:00Z"
}
]
}

Get Subscriber by ID

Retrieve a specific subscriber by database ID.
Endpoint: GET /api/subscriber/:id

Path Parameters:

Parameter Type Description

id integer Subscriber database ID

Example Request:

curl -k https://hss.example.com:8443/api/subscriber/1

Get Subscriber by IMSI

Retrieve a subscriber by their IMSI.
Endpoint: GET /api/subscriber/imsi/:imsi
Path Parameters:

Parameter Type Description

. _ International Mobile Subscriber
imsi string)
Identity

Example Request:

curl -k

Format

14-15
digits

https://hss.example.com:8443/api/subscriber/imsi/001001123456789

Use Case: Troubleshooting a specific subscriber by their IMSI.

Get Subscriber by MSISDN

Retrieve a subscriber by their phone number.
Endpoint: GET /api/subscriber/msisdn/:msisdn

Path Parameters:

Parameter Type Description Format
msisdn string Mobile Station ISDN Number 1-15 digits (E.164)

Example Request:

curl -k
https://hss.example.com:8443/api/subscriber/msisdn/14155551234

Use Case: Looking up subscriber information when you only have their phone
number.

Create Subscriber
Provision a new subscriber.
Endpoint: POST /api/subscriber

Request Body:

"subscriber": {
"imsi": "001001123456789",
“enabled": true,
"ims enabled": true,
"sim id": 1,
"key set id": 1,
"epc_profile id": 1,
"ims profile id": 1,
"roaming profile id": 1,
"custom attributes": {

“note": "Test subscriber"

}

}

}

Required Fields:

e imsi - Must be 14-15 digits, unique
e key set id - Must reference existing

e epc profile id - Must reference existing

Optional Fields:

enabled - Default: true

e ims enabled - Default: true

* sim id - Reference to

e ims profile id - Reference to (required for IMS services)

e roaming profile id - Reference to (required for roaming
control)

e msisdns - Array of IDs (phone numbers)
e static ips - Array of IDs for APN assignments

e custom attributes - Custom key-value pairs

See Also:
. - End-to-end workflow
. - Assigning phone numbers to subscribers
. - Assigning static IPs to APNs

Example Request:

curl -k -X POST https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
"imsi": "001001123456789",
"key set id": 1,
"epc_profile id": 1
¥
}

Provisioning Flow:

®

Error: Key Set Not Found

No

Error: EPC Profile Not
Found

\es
Error: IMSI Already
Exists

201 Created

Update Subscriber
Modify an existing subscriber.
Endpoint: PUT /api/subscriber/:id

Path Parameters:

Parameter Type Description

id integer Subscriber database ID

Request Body:

{

"subscriber": {
"enabled": false,
"ims_enabled": false,
"epc profile id": 2,
"custom attributes": {
“note": "Temporarily disabled"

}
}
}

Updatable Fields:

e enabled - Enable/disable all services

e ims enabled - Enable/disable IMS services

* sim id - Change assignment

e key set id - Change (be careful!)
e epc profile id - Change

e ims profile id - Change

e roaming profile id - Change

e msisdns - Update assigned to subscriber

e static ips - Update assignments to APNs

e custom attributes - Update custom data

Not Updatable:

e imsi - Cannot change IMSI (delete and recreate instead)
See Also:

. - Managing service profiles

Example Request:

curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
“enabled": false
}
}

Use Cases:

Temporarily disable subscriber: {"enabled": false}

Disable voice services only: {"ims _enabled": false}

Change service profile: {"epc profile id": 2} (see)

Update roaming policy: {"roaming profile id": 3} (see

)

Delete Subscriber

Remove a subscriber from the system.
Endpoint: DELETE /api/subscriber/:1id
Path Parameters:

Parameter Type Description

id integer Subscriber database ID

Example Request:

curl -k -X DELETE https://hss.example.com:8443/api/subscriber/1

Warning: This permanently deletes the subscriber and all associated state
data (PDN sessions, calls, etc.). The IMSI can be reused after deletion.

Note: Deleting a subscriber does NOT delete the associated:

. - Can be reused for other subscribers

. - Can be reassigned to a new subscriber

. - Shared resources used by multiple subscribers
. - Must be deleted separately if desired

Cancel Location Request (Force Detach)

Send a Cancel Location Request (CLR) to force detach a subscriber from their
currently registered MME.

Endpoint: POST /api/subscriber/cancel location

Request Body:

{
"imsi": "001001123456789"
}
Parameters:
Parameter Type Required Description
o . IMSI of subscriber to detach (14-15
imsi string Yes

digits)

Example Request:

curl -k -X POST
https://hss.example.com:8443/api/subscriber/cancel location \
-H "Content-Type: application/json" \
-d '{"imsi": "001001123456789"}"

Success Response (200 OK):

{
"data": {
"message": "Cancel Location Request sent successfully",
"imsi": "001001123456789",
"destination host": "mme@l.operator.com",
"destination realm": "epc.operator.com"
}
}

Error Response (404 Not Found):

"error": "Subscriber not found or not currently registered at
any MME"

}

Behavior:

e Sends S6a CLR to the MME where subscriber is currently registered
(subscriber state.last seen mme)

e Uses Cancellation-Type: subscription withdrawal (forces full detach)

e Sets CLR-Flags: {s6a_indicator: 1, reattach required: 1} (UE must
re-authenticate)

* Returns 404 if subscriber has never registered or last seen _mme is null

e Affects all MSISDNs associated with the IMSI (same physical device/SIM)
Use Cases:

* Fraud Prevention: Immediately detach suspicious subscriber

e Subscription Termination: Force logout when account is disabled

e Troubleshooting: Clear stale MME registration for debugging
e Migration: Force re-authentication to apply new profile settings

e Security: Immediately disconnect compromised subscriber
Multi-IMSI Considerations:
When using CLR with multi-MSISDN scenarios:

1. Multiple MSISDNs, Single IMSI:

// Subscriber has IMSI 001001123456789 with MSISDNs
["+1234567890", "+9876543210"]

POST /api/subscriber/cancel location

{"imsi": "001001123456789"}

// Result: One CLR sent, both MSISDNs affected (same device)

2. Different IMSIs (Different Devices):

// Two subscribers with same MSISDN but different IMSIs (number
porting scenario)

// Subscriber A: IMSI 001001111111111, MSISDN "+1234567890"
// Subscriber B: IMSI 001001222222222, MSISDN "+1234567890"

POST /api/subscriber/cancel location
{"imsi": "001l6G61111111111"}

// Result: Only Subscriber A detached, Subscriber B unaffected

Important Notes:

e IMSI-based: CLR is always sent per IMSI, not per MSISDN

e Asynchronous: CLR is sent asynchronously; success response means CLR
was sent, not that MME processed it

e No validation of MME status: CLR is sent even if MME is unreachable
(standard HSS behavior)

e Ildempotent: Safe to call multiple times for same IMSI

Related Documentation:

MSISDN Management

MSISDNs (phone numbers) can be assigned to subscribers to enable voice
services. See for details on assigning multiple
numbers to a single subscriber.

List MSISDNs

Retrieve all phone numbers.
Endpoint: GET /api/msisdn

Example Request:
curl -k https://hss.example.com:8443/api/msisdn

Get MSISDN

Retrieve a specific phone number.
Endpoint: GET /api/msisdn/:id

Example Request:

curl -k https://hss.example.com:8443/api/msisdn/1

Create MSISDN

Create a new phone number.
Endpoint: POST /api/msisdn

Request Body:

"msisdn": {
"msisdn": "14155551234"

Validation:

e Must be 1-15 digits
e Must be unique

e Must follow E.164 format (international format without + sign)

Example Request:

curl -k -X POST https://hss.example.com:8443/api/msisdn \
-H "Content-Type: application/json" \
-d '{
"msisdn": {
"msisdn": "14155551234"

Assign MSISDN to Subscriber

To assign a phone number to a subscriber, you need to create a join record.

This is typically done through the subscriber update endpoint or via direct
database manipulation.

Multi-MSISDN Pattern:

‘ Start Provisioning

OmniCharge OmniRAN

-

Downloads % English+ Omnitouch Website (2

Key Set Exists?

Error: Key Set Not Found EPC Profile Exists?

Error: EPC Profile Not

IMSI Unique?
Found 9

Yes

}

Create Subscriber

Error: IMSI Already
Exists

Auto-Create Subscriber
State

l

201 Created ‘

See Multi-MSISDN and Multi-IMSI Features for detailed usage.

Delete MSISDN

Remove a phone number.
Endpoint: DELETE /api/msisdn/:id

Example Request:

curl -k -X DELETE https://hss.example.com:8443/api/msisdn/1

SIM Management

SIM card records store physical SIM card information including ICCID, vendor
details, PIN/PUK codes, and OTA keys. SIM records can optionally be linked to

See Also:

. - Multiple subscribers on one physical SIM

List SIMs

Retrieve all SIM cards.
Endpoint: GET /api/sim

Example Request:
curl -k https://hss.example.com:8443/api/sim

Get SIM

Retrieve a specific SIM card.

Endpoint: GET /api/sim/:id

Example Request:

curl -k https://hss.example.com:8443/api/sim/1

Create SIM

Create a new SIM card record.
Endpoint: POST /api/sim

Request Body:

{
"sim": {
"iccid": "8991101200003204510",
"sim vendor": "Gemalto",
“batch name": "2025-Ql-Batch-01",
"is esim": false,
"pinl": "1234",
"pin2": "5678",
"pukl": "12345678",
"puk2": "87654321",
"adml": "admin-code-1",
"kic": "0123456789ABCDEF0123456789ABCDEF",
"kid": "FEDCBA9876543210FEDCBA9876543210"
}
}

Required Fields:
e iccid - 19-20 digits, unique
Optional but Important Fields:

* sim vendor - Manufacturer name
* batch name - For tracking
* is esim - Boolean flag for eSIM

e pinl, pin2 - End-user PIN codes

* pukl, puk2 - PIN unlock codes
e adml-adml@ - Administrative codes

e kic, kid - OTA security keys (hex string)

Example Request:

curl -k -X POST https://hss.example.com:8443/api/sim \
-H "Content-Type: application/json" \

-d '{
"sim": {
"iccid": "8991101200003204510",
"sim vendor": "Gemalto"
}
3
Update SIM

Modify SIM card data.
Endpoint: PUT /api/sim/:id

Example Request:

curl -k -X PUT https://hss.example.com:8443/api/sim/1 \
-H "Content-Type: application/json" \
-d '{
"sim": {
"batch name": "Updated-Batch-Name"
}

}I
Delete SIM
Remove a SIM card record.
Endpoint: DELETE /api/sim/:id

Warning: Ensure no subscribers reference this SIM before deleting.

Key Set Management

Key sets contain the cryptographic material (Ki, OPC/OP, AMF, SQN) used for
subscriber authentication via the Milenage algorithm. Each must
reference a key set.

See Also:

. - Authentication procedures using key sets

List Key Sets

Retrieve all cryptographic key sets.
Endpoint: GET /api/key set

Example Request:
curl -k https://hss.example.com:8443/api/key set

Get Key Set

Retrieve a specific key set.
Endpoint: GET /api/key set/:id

Example Request:
curl -k https://hss.example.com:8443/api/key set/1

Response Example:

"data": {
"id": 1,
"ki": "0123456789ABCDEF0123456789ABCDEF",
"opc": "FEDCBA9876543210FEDCBA9876543210",
op": null,
"amf": "8000",
“sgn": 0O,
"authentication algorithm": "milenage",
"ota counter": 0

Create Key Set
Create a new cryptographic key set.
Endpoint: POST /api/key set

Request Body:

{
"key set": {
"ki": "0123456789ABCDEF0123456789ABCDEF",
"opc": "FEDCBA9876543210FEDCBA9876543210",
"amf": "8000",
"sgn": 0O,
"authentication algorithm": "milenage"
}
}

Required Fields:

e ki - 128-bit key (32 hex characters)
e Either opc OR op (OPC can be derived from OP)

e authentication algorithm - Currently only "milenage"

Optional Fields:

e amf - Default: "8000"
e sqgn - Default: 0

e ota counter - Default: 0
Key Format:

e All keys are hexadecimal strings
¢ Ki, OPC, OP: 32 hex characters (128 bits)
e AMF: 4 hex characters (16 bits)

Example Request:

curl -k -X POST https://hss.example.com:8443/api/key set \
-H "Content-Type: application/json" \
-d '{
"key set": {
"ki": "0123456789ABCDEF0123456789ABCDEF",
"opc": "FEDCBA9876543210FEDCBA9876543210",
"authentication algorithm": "milenage"

}
} 1

Security Warning: Key sets contain highly sensitive cryptographic material.
Protect API access accordingly.

Update Key Set
Modify an existing key set.
Endpoint: PUT /api/key set/:id

Warning: Changing keys for an active will cause authentication
failures. Only update keys during maintenance windows or for new subscribers.

Impact: Updates affect all subscribers using this key set immediately. Active
subscribers will fail authentication on next attach attempt.

Delete Key Set
Remove a key set.
Endpoint: DELETE /api/key set/:id

Warning: Ensure no reference this key set before deleting. Query
subscribers first to check for references.

Profile Management

EPC Profiles

EPC (Evolved Packet Core) profiles define data service parameters for
subscribers. These profiles are referenced when creating

List EPC Profiles

Endpoint: GET /api/epc/profile
Get EPC Profile

Endpoint: GET /api/epc/profile/:id
Create EPC Profile

Endpoint: POST /api/epc/profile

Request Body:

"apn profiles": [],

"name": "Standard Data Plan",

"network access mode": "packet only",
"tracking area update interval seconds
"ue ambr dl kbps": 100000,

"ue ambr ul kbps": 50000

Fields:

Field

name

ue ambr dl kbps

ue ambr ul kbps

network access mode

tracking area update interval seconds

apn _profiles

Example Request:

"1 600,

Description
Profile name
Download
bandwidth
limit

Upload

bandwidth
limit

Access type

TAU timer

List of APN
profile IDs

Units

Text

Kbps

Kbps

String

Seconds

Array

Tyl

Uniqt

1000

5000

“pack
“pack

600 (

[]or|

curl -k -X POST https://hss.example.com:8443/api/epc/profile \
-H "Content-Type: application/json" \
-d '{
"apn profiles": [],
"name": "Premium 100Mbps",
"network access mode": "packet only",
“tracking area update interval seconds": 600,
"ue ambr dl kbps": 100000,
"ue ambr ul kbps": 50000

}I
See Also:
. - Detailed profile configuration guide
. - Using EPC profiles in provisioning

Update EPC Profile
Endpoint: PUT /api/epc/profile/:id

Note: Changes to EPC profiles affect all using this profile. Active
sessions may need to be re-established.

Delete EPC Profile
Endpoint: DELETE /api/epc/profile/:id

Warning: Ensure no reference this profile before deleting.

IMS Profiles

IMS (IP Multimedia Subsystem) profiles define voice service parameters and
Initial Filter Criteria (IFC) for subscribers. These profiles are referenced when
creating with IMS services enabled.

List IMS Profiles
Endpoint: GET /api/ims/profile

Create IMS Profile

Endpoint: POST /api/ims/profile

Request Body:

"name": "Standard VoLTE",
"ifc template": "<IMS-XML-Template-Here>"
}

Required Fields:

e name - Profile name (must be unique)

e ifc template - IFC (Initial Filter Criteria) XML template with Liquid
template variables

IFC Template Variables:

The IFC template supports the following Liquid template variables that are
dynamically substituted:

Variable Description Example Value
{{ imsi }} Subscriber IMSI 001001123456789
{{ msisdns Array of MSISDNs (for ["14155551234",
1} loops) "14155555678"]
{{ mcc }} Mobile Country Code 001
{{ mnc }} Mobile Network Code 001

How Template Rendering Works:

The IFC template is stored as a Liquid template (similar to Jinja2) and is
rendered dynamically during IMS operations:

1. Storage: When you create an IMS profile, the template is stored as-is with
variables like {{ imsi }} and {% for msisdn in msisdns %}

2. Validation: The API validates the template by rendering it with test data to
ensure valid XML syntax

3. Runtime Rendering: When a subscriber performs IMS registration
(MAA/SAA), the HSS:
o Retrieves the subscriber's IMS profile

o Renders the template with the subscriber's actual data:
= {{ imsi }} - subscriber's IMSI

= {{ msisdns }} — subscriber's phone numbers
= {{ mcc }} - configured Mobile Country Code
= {{ mnc }} - configured Mobile Network Code
o Returns the rendered XML to the S-CSCF via Cx/Diameter

Template Syntax:

<!-- Simple variable substitution -->
{{ imsi }}
<!-- For loops over arrays -->

{% for msisdn in msisdns %}
<MSISDN>{{ msisdn }}</MSISDN>
{% endfor %}

<!-- Combining variables -->
{{ imsi }}@ims.mnc{{ mnc }}.mcc{{ mcc }}.3gppnetwork.org

IFC Template Example:

<IMSSubscription>

<PrivatelID>{{ imsi }}@ims.mnc{{ mnc }}.mcc{{ mcc
}}.3gppnetwork.org</PrivatelID>
<ServiceProfile>

{% for msisdn in msisdns %}
<PublicIdentity>

<Identity>sip:{{ msisdn }}@ims.mnc{{ mnc }}.mcc{{ mcc
}}.3gppnetwork.org</Identity>
<Extension>
<IdentityType>0</IdentityType>
</Extension>

</PublicIdentity>

<PublicIdentity>

<Identity>tel:{{ msisdn }}</Identity>
<Extension>
<IdentityType>0</IdentityType>
</Extension>

</PublicIdentity>

% endfor %}

<InitialFilterCriteria>
<Priority>10</Priority>

<TriggerPoint>
<ConditionTypeCNF>0</ConditionTypeCNF>
<SPT>
<ConditionNegated>0</ConditionNegated>
<Group>0</Group>
<Method>REGISTER</Method>

</SPT>

</TriggerPoint>

<ApplicationServer>
<ServerName>sip:as.ims.mnc{{ mnc }}.mcc{{ mcc
}}.3gppnetwork.org</ServerName>
<DefaultHandling>0</DefaultHandling>
</ApplicationServer>
</InitialFilterCriteria>
</ServiceProfile>

</IMSSubscription>

Example Request (curl):

curl -k -X POST https://hss.example.com:8443/api/ims/profile \
-H "Content-Type: application/json" \

-d '{
"name": "default",
"ifc template": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<IMSSubscription><ServiceProfile>...</ServiceProfile>
</IMSSubscription>"
} 1

Example Request (Python):

import requests

response = requests.post(
"https://hss.example.com:8443/api/ims/profile",
json={
"name": "default",
"ifc template": ifc template string

}

verify=False # For self-signed certificates

Success Response (201 Created):

{
“status"”: "success",
"response": {
"id": 1,
"name": "default",
"ifc template": "<?xml version=\"1.0\" encoding=\"UTF-8\"?
>, ..
}
}
Validation:

e The API validates that the IFC template is valid XML
e Template variables are rendered with test data to verify syntax

e The name field must be unique and non-empty

See Also:

. - IFC template details and examples
. - IMS registration and call flows
. - Reference implementation

APN Profiles

APN (Access Point Name) profiles consist of three components that work
together:

1. APN Identifier - Defines the APN name and IP version
2. APN QoS Profile - Defines Quality of Service parameters
3. APN Profile - Combines identifier and QoS, linked to

See for detailed policy configuration, QoS
management, and automatic re-auth. See also for
APN configuration examples.

List APN Identifiers

Endpoint: GET /api/apn/identifier
Create APN Identifier

Endpoint: POST /api/apn/identifier

Request Body:

"apn": "internet",
"ip version": "ipv4vo"

}

IP Version Values:

e "ipv4" - IPv4 only
e "ipv6" - IPv6 only

https://docs.omnitouch.com.au/assets/files/common-73113cdf0d22db479272ae425281a7f6.ex/#L770-L925

e "ipv4ve" - IPv4v6 (dual stack)

e "ipv4 or ipv6" - IPv4 or IPv6 (network choice)
List APN QoS Profiles
Endpoint: GET /api/apn/qos profile
Create APN QoS Profile
Endpoint: POST /api/apn/qos profile

Request Body:

"name": "Best Effort Internet",
"allocation retention priority": 8,
"apn_ambr dl kbps": 50000,
"apn_ambr ul kbps": 25000,

"pre emption capability": false,
"pre _emption vulnerability": true,
"qci": 9

List APN Profiles

Endpoint: GET /api/apn/profile
Create APN Profile

Endpoint: POST /api/apn/profile

Request Body:

{
"apn_identifier id": 1,
"apn qos profile id": 1,
"name": "Internet APN"

}

Required Fields:

e apn identifier id - Must reference existing

e apn_qos profile id - Must reference existing

See Also:
. - Full example including APN setup
. - APN profiles are linked to EPC profiles

Static IP Management

Static IP addresses can be assigned to specific APNs for individual subscribers.
This allows subscribers to receive a predetermined IPv4 and/or IPv6 address
when connecting to a particular APN, rather than receiving a dynamic address
from a DHCP pool.

Architecture:

Subscriber
IMSI: 001001123456789
MSISDN: +1234567890

Static IP
IPv4: 100.64.1.1
IPv6: 2606:4700::1111

EPC Profile
Bandwidth Limits
TAU Settings

Static IP
IPv4: 100.64.2.1
A y | to APN
APN Profile: ims
QCI: 5, ARP: 2

APN Profile: internet
QCI: 9, ARP: 8

Data Flow When Subscriber Connects:

MME OmniHSS PGW/GGSN

Subscriber Attaches and Requests "internet" APN

UE/Device
(IMSI: 001001123456789)
T

Attach Request (IMSI + APN: "internet")

Update Location Request (IMSI)

HSS Looks Up Subscriber
Finds EPC Profile with APNs
Checks for Static IP on "internet" APN

Update Location Answer
(APN: "internet”, QoS, Static IP: 100.64.1.1)

Create Session Request
(Static IP: 100.64.1.1

PGW Assigns Static IP
100.64.1.1 to PDN Session

Create Session Response
(IP: 100.64.1.1)

Attach Accept (IP: 100.64.1.1)

Device now has
100.64.1.1 on "internet" APN

UE/Device "
(IMSI: 001001123456789) RINE QiR RGW/GGSN

Update Location Answer - APN Configuration Data Mapping:

This diagram shows exactly where each field in the S6a Update Location
Answer APN-Configuration AVP comes from in the database:

Subscriber Configuration

Subscriber
IMSI: 001001123456789
MSISDM: +1234567890

belongs t assi;gned assigned

' Static IP Assignments

EPC Profile e Static IP . .

) - - Static IP
Bandwidth Limits IPv4: 100.64.1.1 IPvad: 100.64.2.1
TALU Settings IPwE: 2606:4700::1111 ’ o

]]
| ----"'—\.___ ___a-"".

includes assignet_:l to APf“;.I---.incIudes assigned to APN
| rd T, |
I‘. _.___i_,.x : MH_._% .!-
y __ APN Configuration &

APN Profile: internet APN Profile: ims
QClI: 9, ARP: B QCI: 5, ARP: 2

Key Observations:

1. Context-ldentifier: Sequential index (0, 1, 2...) for each APN in the profile

2. Service-Selection: Comes directly from apn identifier.apn (e.g.,
“internet"”, "ims")

3. PDN-Type: Encoded from apn _identifier.ip version (ipv4=0, ipv6=1,
ipvdv6=2, ipv4_or_ipv6=3)

4. QoS Parameters: All from apn_qos profile table

5. AMBR Bandwidth: Values are multiplied by 1000 (kbps = bps conversion)

6. Served-Party-IP-Address: Only included if static IP exists for this
subscriber+APN combination

o Lookup process: subscriber.static ips - filter by apn profile id -
extract IPs

o |P version compatibility checked against apn identifier.ip version

7. VPLMN-Dynamic-Address-Allowed: Hardcoded to O (not allowed) -
forces use of static IP if provided

Relationship Hierarchy:

Subscriber
IMSI: 001001123456789

Static IP #1
100.64.1.1
for 'internet' APN

APN Identifier
Name: internet
IP Version: IPv4v6

APN QoS Profile
QCl: 9, Bandwidth:
50Mbps

Static IP #2
100.64.2.1
for 'ims' APN

Key Set
Ki, OPC, AMF

APN Profile

EPC Profile
UE Bandwidth
Network Access Mode

Key Concepts:

e Per-APN Assignment: Each Static IP is linked to a specific

e One IP per APN per Subscriber: A subscriber can only have one static IP
assignment per APN

e IPv4 and IPv6 Support: Static IPs can be IPv4-only, IPv6-only, or dual-
stack

e Global IP Uniqueness: Each IP address must be globally unique across all
static IP records in the system

o The same IPv4 or IPv6 address cannot be assigned to multiple
subscribers (even on different APNs)

o This prevents routing conflicts and IP address ambiguity

o Enforced by database unique indexes on ipv4 static ip and
ipv6 static ip fields

e Many-to-Many Relationship: Subscribers and Static IPs are linked via a
join table

Use Cases:

¢ Fixed IP addresses for loT devices

e Server hosting on mobile devices (requires static IP for inbound
connections)

e Legacy applications that require specific IP addresses
e Network policy routing based on source IP

e Regulatory compliance requiring IP address tracking

List Static IPs

Retrieve all static IP assignments.
Endpoint: GET /api/epc/static ip

Example Request:

curl -k https://hss.example.com:8443/api/epc/static ip

Example Response:

"data": [
{
"id": 1,
"apn profile id": 5,
"ipv4 static ip": "100.64.1.1",
"ipv6 static ip": "26006:4700:4700::1111",
"apn profile": {
"id": 5,
"name": "Internet APN",
"apn_identifier": {
"apn": "internet",
"ip version": "ipv4ve"
}
},
"inserted at": "2025-11-15T10:30:00Z",

"updated at": "2025-11-15T10:30:00Z"

Get Static IP

Retrieve a specific static IP assignment.
Endpoint: GET /api/epc/static ip/:id

Path Parameters:

Parameter Type Description
id integer Static IP database ID

Example Request:

curl -k https://hss.example.com:8443/api/epc/static ip/1

Create Static IP

Create a new static IP assignment for an APN.
Endpoint: POST /api/epc/static ip

Request Body:

{
"static ip": {
"apn profile id": 5,
"ipv4 static ip": "100.64.1.1",
"ipv6 static ip": "2606:4700:4700::1111"
}
}

Required Fields:

e apn profile id - Must reference an existing

e At least one of ipv4 static ip OR ipv6 static ip must be specified
Optional Fields:

e ipv4 static ip - IPv4 address (dotted decimal notation)

e ipv6 static ip - IPv6 address (standard notation)
IP Format Validation:

e |Pv4: Standard dotted decimal format (e.g., 100.64.1.1)

e |IPv6: Standard colon-separated hexadecimal format (e.q.,
2606:4700:4700::1111)

e Both IPv4 and IPv6 addresses must be globally unique across all static
IP records
o This prevents IP address conflicts in the network

o The same IP cannot be assigned to multiple subscribers, even on
different APNs

o This is a database-level constraint enforced by unique indexes

Configuration Options:

Configuration IPv4 IPv6 Example
IPv4 Only v - {"ipv4 static ip": "100.64.1.1"}

{"ipv6 static ip":

IPV6 Only - Y
"2606:4700:4700: :1111"}

Dual Stack v v Both fields specified

Example Requests:

IPv4-only Static IP:

curl -k -X POST https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
“static ip": {
"apn profile id": 5,
"ipv4 static ip": "100.64.1.1"
}
}

IPv6-only Static IP:

curl -k -X POST https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
"static_ip": {
"apn profile id": 6,
"ipv6 static ip": "2606:4700:4700::1111"
}
}

Dual-stack Static IP:

curl -k -X POST https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
"static ip": {
"apn_profile id": 5,
"ipv4 static ip": "100.64.1.1",
"ipv6 static ip": "2606:4700:4700::1111"
}
}

Success Response (201 Created):

{
"data": {
"id": 1,
"apn _profile id": 5,
"ipv4 static ip": "100.64.1.1",
"ipv6 static ip": "2606:4700:4700::1111",
“inserted at": "2025-11-15T10:30:00Z",
"updated at": "2025-11-15T10:30:00Z"
}
}
See Also:
. - How to link this to a subscriber
. - Managing APN configurations

Update Static IP
Modify an existing static IP assignment.
Endpoint: PUT /api/epc/static ip/:id

Path Parameters:

Parameter Type Description

id integer Static IP database ID

Request Body:

{
"static_ip": {
"ipv4 static ip": "100.64.1.2",
"ipv6 static ip": "2606:4700:4700::1112"
}
}

Updatable Fields:

e ipv4 static ip - Change IPv4 address
* ipv6 static ip - Change IPv6 address

e apn profile id - Change APN assignment
Not Updatable:
e id - Primary key (read-only)

Warning: Changing the IP address for an active subscriber will affect their next
PDN connection. Active PDN sessions will continue to use the old IP until they
disconnect and reconnect.

Example Request:

curl -k -X PUT https://hss.example.com:8443/api/epc/static ip/1 \
-H "Content-Type: application/json" \
-d '{
"static ip": {
"ipv4 static ip": "100.64.1.2"
¥
}

Delete Static IP

Remove a static IP assignment.
Endpoint: DELETE /api/epc/static ip/:id

Path Parameters:

Parameter Type Description

id integer Static IP database ID

Example Request:
curl -k -X DELETE https://hss.example.com:8443/api/epc/static ip/1

Behavior:

e Removes the static IP assignment

e Does NOT affect the (APN remains available for other
subscribers)
e Subscribers using this static IP will receive dynamic IPs on next connection

e The IP address becomes available for reuse after deletion

Warning: If a subscriber is actively using this static IP, deleting it will cause
them to receive a dynamic IP on their next PDN connection. Ensure subscribers
are offline or send a before deleting.

Assign Static IP to Subscriber

To assign a static IP to a subscriber, you need to associate the Static IP record
with the during creation or update.

Assignment Pattern:

1. Create the Static IP (see)
2. Assign to Subscriber using the static ips field

Create Subscriber with Static IP:

Step 1: Create static IP for "internet" APN
STATIC IP ID=$(curl -k -X POST
https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
"static ip": {
"apn profile id": 5,
"ipv4 static ip": "100.64.1.1",
"ipv6 static ip": "2606:4700:4700::1111"
¥
}' | jg -r '.data.id')

Step 2: Create subscriber with static IP assigned
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
-d "{
\"subscriber\": {
\"imsi\": \"001001123456789\",
\"key set id\": 1,
\"epc profile id\": 1,
\"static ips\": [$STATIC IP ID]
¥
}o

Update Existing Subscriber with Static IP:

curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
"static ips": [1, 2]
}
}

Multiple Static IPs (Different APNs):

A subscriber can have multiple static IPs as long as each is for a different APN:

Create static IP for "internet" APN
INTERNET IP=$(curl -k -X POST
https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
"static _ip": {
"apn_profile id": 5,
"ipv4 static ip": "100.64.1.1"

}
} | jq -r '.data.id')

Create static IP for "ims" APN
IMS IP=$(curl -k -X POST
https://hss.example.com:8443/api/epc/static ip \
-H "Content-Type: application/json" \
-d '{
"static ip": {
"apn profile id": 6,
"ipv4 static ip": "100.64.2.1"

}
}' | jg -r '.data.id')

Assign both to subscriber
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
-d "{
\"subscriber\": {
\"imsi\": \"001001123456789\",
\"key set id\": 1,
\"epc profile id\": 1,
\"static ips\": [$INTERNET IP, $IMS IP]
}
3

Validation Rules:

e v Allowed: Multiple static IPs for different APNs
e X Rejected: Multiple static IPs for the same APN

Error Example - Duplicate APN:

This will FAIL if both static IPs reference the same APN
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
"imsi": "001001123456789",
“static ips": [1, 2]
}
}

Error Response:
{
"errors": {
"static ips": [
“static ips per apn per subscriber must be unique. eg a
subscriber may not be assigned static ip 100.64.1.1 for internet
and also 100.64.1.2 for internet"

]

}
}
See Also:
. - Subscriber provisioning
. - Modifying subscriber configuration
. - End-to-end workflow

Roaming Management

Roaming profiles control whether subscribers can access data and IMS services
on visited networks. Profiles are assigned to and consist of rules
matched by MCC/MNC.

List Roaming Profiles

Endpoint: GET /api/roaming/profile

Create Roaming Profile
Endpoint: POST /api/roaming/profile

Request Body:

{
"roaming profile": {
"name": "US Carriers Only",
"data action if no rules match": "deny",
"ims action if no_rules match": "deny",
“roaming rules": T[]
}
}

Action Values:

e "allow" - Allow

° Ildenyll - Deny
Default Actions:

e data action if no rules match - Action when no matches

e ims action if no rules match - IMS-specific default action

List Roaming Rules

Endpoint: GET /api/roaming/rule

Create Roaming Rule
Endpoint: POST /api/roaming/rule

Request Body:

"roaming rule": {
“name": "Allow AT&T",

"mcc": "310",
"mnc": "410",
"data action": "allow",
"ims action": "allow"
}
}
Fields:

* mcc - Mobile Country Code (3 digits)
e mnc - Mobile Network Code (2-3 digits)
e data action - "allow" or "deny" data services

e ims action - "allow" or "deny" IMS/voice services

See Also:
. - Detailed configuration and examples
. - How roaming control works in Diameter flows

EIR Management

OmniHSS functions as an Equipment Identity Register (EIR) via the S13
Diameter interface. EIR rules control device access based on IMEI patterns.

See for detailed equipment identity checking, S13
interface flows, and IMEI validation.

List EIR Rules

Endpoint: GET /api/eir/rule

Create EIR Rule
Endpoint: POST /api/eir/rule

Request Body:

{
"eir rule": {
"name": "Block iPhone 6",
"imei regex": "735[0-9]{6}0[0-9]1{7}%$",
"action": 1
}
}
Fields:

e name - Descriptive name for the rule
e imei regex - Regular expression to match IMEI numbers
e action - Whitelist (0), Blacklist (1), or Greylist (2)

Action Values:

e 0 - Whitelist (allow)
e 1 - Blacklist (deny)
e 2 - Greylist (allow but track)

Use Cases:

e Block stolen devices (blacklist specific IMEIs)
e Restrict device types (blacklist by TAC pattern)

e Allow only approved devices (whitelist pattern with deny-all default)
See Also:

o - S13 interface and EIR check flow
o - OmniHSS EIR function

Additional Documentation

For more information, see the following documentation:

. - APl health check endpoints
. - Common errors and troubleshooting

. - Complete provisioning workflows

APl Status and Health

System Status

Check if the API is responding.
Endpoint: GET /api/status

Example Request:
curl -k https://hss.example.com:8443/api/status

Example Response:

{

"status": "ok"

}

Use Case: Health check for load balancers and monitoring systems.

OmniHSS Architecture
Overview

Table of Contents

System Overview

OmniHSS is built on Elixir and the Erlang/OTP platform, providing a highly
concurrent, fault-tolerant system designed for telecommunications workloads.
The architecture follows a layered approach with clear separation of concerns.

Component Architecture
Core Components

Hss.Application

API Endpoint Control Panel Endpoint

Diameter Application Handlers

Each Diameter application (S6a, Cx, Sh, S13, Gx, Rx) is implemented as a
DiameterEx handler module that:

1. Registers with DiameterEx - Subscribes to specific Diameter Application
IDs

. Validates Requests - Extracts AVPs, validates subscriber state
. Processes Business Logic - Calls appropriate business logic modules

. Constructs Responses - Builds Diameter answer messages with AVPs

o A~ W N

. Handles Errors - Returns appropriate Diameter result codes

Diameter Stack

Diameter Service Configuration

OmniHSS configures a single Diameter service with multiple supported
applications:

S6a
App ID: 16777251

513
App ID: 16777252

Cx
16777216

Transport Layer Application Layer
TCP/SCTP :3868 PP y

Sh
16777217

Gx
16777238

Rx
16777236

Peer Connection Management

Peer Added

Configured

Initiate Connection

‘ Connecting}

Handshake Success

Handshake Failure Reconnect Timer

Peer Removed Connection Lost

Diameter messages
s e
can be exchanged

Automatic reconnection
attempts continue

Diameter Message Flow

Diameter Service:
:omnitouch_hss

>
r
.-'{-’
.'r.’
.-"r.
/
/ ™
! -
/ s
g A
/ o
.'l i
z
I
P
."'l _.-f
.-'III ’
£/ oy
lll.-'/x T
¥ T
Transport Layer .
P y ——— Application Layer
TCP/SCTP :3868
) ~
LY iy
LY T
L =
LY
LY ,
L1 *
L
!
LY .
% .}
L A
Y Y
\ ™,
' hS
'-._. \'H-_.,
\
\
\
\'-\.
\'\
\'-\.
-

Application Layer

S6a Interface (LTE/EPC)

S6a
App ID: 16777251

513
App ID: 16777252

Cx
App ID: 16777216

Sh
App ID: 16777217

Gx
App ID: 16777238

Rx
App ID: 16777236

Handles authentication and mobility management for LTE networks.

Cx Interface (IMS)

Handles IMS registration and authentication.

7

Peer Added

v

‘ Configured

e

Initiate Connection

b

Connecting ‘

Handshake Success

A

[Connected lwke Failure Reconnect Timer

Peer Removed HCnnnectiun Lost

¥

]
1
L
L
|

Diameter messages
can be exchanged

e —

Automatic reconnection
attempts continue

Sh Interface (IMS Profile Data)

Provides IMS application servers access to subscriber profile data.

Gx Interface (Policy Control)

Manages policy and charging control for data sessions. See
for details.

Rx Interface (IMS Media)

Controls IMS media policy and dedicated bearers for VoLTE. See
for details.

% MME R
g S
e

AlIR—-ULR=PUR-NOR™™

(\ lf f’ (AlA JMVPUA NDA CLH
S6a Handler T, 5
e T
_,-'-"-'-"'-'_Ff .»/ hh"’“‘m _Hq_-_q_““-hq,_
- - T Automatic on
(’jﬂ 1/ \ ﬂ“_ MME c_hange
Authentication Location State
Module Update E Management
L] —~_
v H:r“,_q_ v
Key Set Roaming EPC Profile Cancel Location
Milenage Check AMBR. APNs Sender

v

CLR sent automatically
during ULR when MME
changes
or via AP for forced
detach

S13 Interface (EIR)

Validates device IMEI against equipment identity rules. See
for details.

Data Layer

Database Schema Overview

Ecto Repository Pattern

Application Server

..-"'-- _.-'"'. ’ | 3 Y. T
T I “ e
7 .,
- L .,

UDR (PUR(SNR UDA PUA)SNA) PNR
- Y F 7

\'\-\. .—’f'

h - N\ S
HH"“*A“‘* « | Yy
Sh Handler
— T

™~

Y ¥
Sh Repository Subscription
Data Access Management

Subscriber State PubSub

sh_repository data Notifications

Optimized Query Strategy

Each Diameter procedure uses optimized queries that preload only necessary

S6a Al S6a / \SAR CCR-I

associations:

Minimal Data Moderate Data Full IMS Data Session Data
Fast Response Profile Info Complete Profile QoS Rules

External Interfaces

API Architecture

P-GW

RN
CCR-l cCR-U{ CCRT CCA-l CCA-U)CCAT RAR

p-C
|

PDN Session

‘ QoS Rules Roaming Check
Management

Charging Rules

APN Profile
AMBR, QCI

Control Panel Architecture

Overview Live Diameter Live Application Live
Subscribers Peers Resources

Deployment Architecture

Single Node Deployment

Process Flow Example:
Authentication

This example shows the complete flow for an authentication request:

EIR

IR
[
ECR ECA
N/
‘ $13 Handler
EIR Rules
Engine
Regex
s Matching .
f"xﬁfﬁ / \ EH"H
v - . E | v
Whitelist Blacklist Greylist Unknown
Result Result Result Config

Key Architectural Principles

1. Fault Tolerance

e Erlang/OTP supervision trees automatically restart failed processes
e Isolated Diameter handlers prevent cascading failures

e Database connection pooling with automatic reconnection

2. Concurrency

e Each Diameter request handled in its own process

¢ No shared state between request handlers

Database connection pooling for parallel queries

Modularity

Each Diameter application in separate module
Clear separation between interface, business logic, and data layers

Pluggable authentication algorithms

Performance

Optimized database queries with selective preloading
Minimal data transfer for each procedure type

Connection pooling and keepalive

Observability

Real-time monitoring via Control Panel
Structured logging throughout application
Diameter peer status tracking

Subscriber state tracking with timestamps

OmniHSS Configuration
Guide

Table of Contents

Configuration File Overview

OmniHSS uses two primary configuration files:

Compile Time

configiconfig.exs
—y

Application Start = OmniH5S Running

Environment Funtime -

Enwvironment Variables - e configfruntime.exs

config/config.exs (Compile Time)
Contains static configuration that doesn't change between environments:

e Control Panel page configuration
e API endpoint configuration

e Telemetry settings

config/runtime.exs (Runtime)
Contains environment-specific configuration that changes per deployment:

e Database connection parameters

Diameter peer configuration

Home PLMN settings
IMS S-CSCF selection

Network interface bindings

License Client Configuration

The License Client validates the HSS license with a remote license server:

config/runtime.exs

config :license client,
License server API endpoints (list for failover)
license server api urls:
["https://license.example.com:8443/api"],

Licensed organization name
licensee: "Your Organization Name",

Product identifier
product name: "omnihss"

License Configuration Parameters:

Parameter Description Required Examp
List of
license server api urls license Yes ["https://10.0.0.

server URLs

Organization

licensee name on Yes "ACME Telecom"
license
Product

product name identifier for Yes "omnihss"
license

Important Notes:

License server must be reachable from HSS

Use HTTPS for secure license validation

Multiple URLs provide failover capability

License validation occurs at startup and periodically

Runtime Configuration

Configuration Priority

Environment Variables

B
N S

Final Configuration

Environment Variable Pattern
OmniHSS follows this pattern for configuration:

e Environment variable names are UPPERCASE with underscores
e Default values are provided in runtime.exs

e Database credentials should use environment variables in production

Database Configuration

Basic Database Configuration

config/runtime.exs

config :hss, Hss.Repo,
Database connection parameters
username: System.get env("DATABASE USERNAME", "root"),
password: System.get env("DATABASE PASSWORD", "password"),
hostname: System.get env("DATABASE HOSTNAME", "localhost"),
database: System.get env("DATABASE NAME", "omnihss"),

Connection pool settings
pool size:
String.to integer(System.get env("DATABASE POOL SIZE", "20")),

Timeouts (in milliseconds)
timeout: 15 000,
connect timeout: 15 000,

Additional options
show sensitive data on connection error: false

Database Configuration Parameters

Parameter

username

password

hostname

database

pool size

Description

SQL Database
username

SQL Database
password

SQL Database
server hostname

Database name

Connection pool
size

Default

"root"

"password"

"localhost"

"omnihss™"

20

Recommendation

Use dedicated user in
production

Use strong password,
store in env var

Use FQDN or IP in
production

Keep default unless
multiple instances

Adjust based on load
(10-50 typical)

Pool Size Tuning

Environment Variables ‘

|

)\f&i&ble Set?
Yes \No
‘ '

Use Environment Value Use Default Value

S -

Final Configuration

Guidelines:

Start with 20 connections

Monitor for "connection pool timeout" errors

Increase by 10 if timeouts occur under normal load

Each connection uses ~4MB of memory

Too many connections can degrade SQL Database performance

Example: Production Database Configuration

config/runtime.exs - Production example

config :hss, Hss.Repo,

username: System.fetch env! ("DATABASE USERNAME"), #
Required in production
password: System.fetch env!("DATABASE PASSWORD"), #

Required in production
hostname: System.get env("DATABASE HOSTNAME",
"db.internal.example.com"),
database: System.get env("DATABASE NAME", "omnihss"),
port: String.to integer(System.get env("DATABASE PORT",
“3306")),
pool size:
String.to integer(System.get env("DATABASE POOL SIZE", "30")),
ssl: true,
ssl opts: [
cacertfile: "/etc/ssl/certs/mysql-ca.pem",
verify: :verify peer

]

Diameter Configuration

Diameter Service Configuration

config/runtime.exs

diameter config = %{
service name: :omnitouch hss,

Network binding
listen ip: System.get env("DIAMETER LISTEN IP", "10.7.25.186"),
listen port:

String.to _integer(System.get env("DIAMETER LISTEN PORT", "3868")),

Diameter identity

host: System.get env("DIAMETER HOST", "omnihss"),

realm: System.get env("DIAMETER REALM",
"epc.mncOO01l.mccOO1.3gppnetwork.org"),

Product identification

product name: "OmniHSS",

vendor id: 10415, # 3GPP

supported vendor ids: [5535, 10415],

Protocol settings
request timeout: 5000,

Peer configuration
peers: [
Add peer configurations here

]

config :hss, :diameter, diameter config

Diameter Identity Configuration

Diameter Host FQDN Full Identity

/ \ Constructed

Example Example
Guidelines:

e Host: Short hostname of the HSS (e.g., "omnihss", "hss01")

¢ Realm: Diameter realm matching your PLMN (e.qg.,
"epc.mnc001.mcc001.3gppnetwork.org")

e Full Identity: Constructed as {host}.{realm}

Adding Diameter Peers

Static Peer Configuration (Connect Mode)

config/runtime.exs

peers: [

MME Peer Example

%q{
host: "mmeOl.epc.mnc00l.mccOOl.3gppnetwork.org",
realm: "epc.mnc00l.mcc@Ol.3gppnetwork.org",
ip: "10.7.25.100",
port: 3868,
transport: :sctp, # or :tcp
applications: [:s6a]

}I

P-GW Peer Example

{
host: "pgw0l.epc.mncOOl.mccO0l.3gppnetwork.org",

realm: "epc.mnc@Ol.mcc001.3gppnetwork.org",
ip: "10.7.25.101",

port: 3868,

transport: :sctp,

applications: [:gx]

}

o°

I-CSCF Peer Example
{

host: "icscf0l.ims.mnc001.mcc001.3gppnetwork.org",
realm: "ims.mnc@O1l.mcc001.3gppnetwork.org",

ip: "10.7.25.102",

port: 3868,

transport: :tcp,

applications: [:cx]

o°

Listen-Only Mode

For environments where peers initiate connections to the HSS:

config/runtime.exs
diameter config = %{

... other config ...
peers: [] # Empty - accept incoming connections only

}

Diameter Peer Connection Modes

OmniHSS OmniHSS OmniHSS

Transport Protocol Selection

Transport Advantages Disadvantages Recommendation

Multi-streaming, Requires kernel

_ , Preferred for
SCTP better failure support, firewall _
. . Diameter
detection config
Universal Single stream, _
_) Use if SCTP

TCP support, simpler slower failure)

: _ unavailable

firewall rules detection

Network Configuration

Home PLMN Configuration

The home PLMN identifies your network operator:

config/runtime.exs

config :hss, :home plmn, %{

mcc: System.get env("HOME PLMN MCC", "001"), # Mobile Country
Code

mnc: System.get env("HOME PLMN MNC", "001") # Mobile Network
Code
}

HSS Core Configuration

These settings control HSS behavior and features:

config/runtime.exs

config :hss,
Ecto repositories for database operations
ecto repos: [Hss.Repo],

CLR (Cancel Location Request) on MME change
send clr on mme change: true,

Stop Diameter service during database outages
stop diameter on database failure: true,

License enforcement configuration

license _enforced: true,
license module: LicenseClient

HSS Core Parameters:

Parameter

ecto_repos

send clr on mme change

stop diameter on database failure

license enforced

license module

Description

List of Ecto
repositories
used by the
application

Send Cancel
Location
Request
when
subscriber
changes
MME

Disable
Diameter
service if
database
becomes
unavailable

Enable
license
enforcement

Module
handling
license
checks

Default

[Hss.Repo]

true

true

true

LicenseClient

Re

Re
da

op

Ke
pre

En
co

Re
prc

Do

PLMN Code Format

Diameter Host FQDMN Full ldentity
/ \ Constructed
L L . ¥
Host Realm omnihss.epc.mnc001l.mec00l.3gppnetwork.org
Example Example
S '
omnihss epc.mnc001l.mcc001. 3gppnetwork.org
Examples:

AT&T (USA): MCC=310, MNC=410
Verizon (USA): MCC=311, MNC=480
Vodafone (UK): MCC=234, MNC=15
Test Network: MCC=001, MNC=01

Network Interface Binding

config/runtime.exs

Diameter interface

listen ip: System.get env("DIAMETER LISTEN IP", "0.0.0.0"), # All
interfaces

Or specific interface:

listen ip: "10.7.25.186",

API interface
config :hss, HssWeb.Api.Endpoint,

http: [
ip: {06, 0, 0, 0}, # All interfaces
port: 8443

]

Control Panel interface
config :hss, HssWeb.ControlPanel.Endpoint,

http: [
ip: {0, 0, 0, 0}, # ALl interfaces
port: 7443

]

Interface Binding Options:

0.0.0.0 Management IP 127.0.0.1
(All Interfaces) (e.g., 192.168.1.10) (Localhost Only)

IMS Configuration

S-CSCF Selection Configuration

config/runtime.exs

config :hss, :ims, %{
scscf: %{

Selection method: :random peer or :round robin
selection method: :random peer,

List of available S-CSCF peers
peers: [

%{
host:
"sip:scscf0l.ims.mnc@O1.mccOO1l.3gppnetwork.org:5060",
capabilities: [] # Optional: capability matching

host:

"sip:scscf02.ims.mnc@O1.mccOOLl.3gppnetwork.org:5060",
capabilities: []

}

S-CSCF Selection Methods

Bidirectiona Listen Mode Connect Miode

OmnlHSS I Either Can Inkiate al Peir Peer initistes ¥ DmriHSS OmnH55. nitiates: ol Peer

Selection Methods:

Method Description
:random _peer Randomly selects an S-CSCF

:round robin Sequentially assigns S-CSCFs

IMS Realm Configuration

Typically, IMS uses a separate realm from EPC:

EPC Realm
"epc.mncO01.mccOO1.3gppnetwork.org"”

IMS Realm
"ims.mnc001.mccOO1.3gppnetwork.org"”

EIR Configuration

Use Case

Even load distribution

Predictable distribution

See for complete equipment identity checking

details.

Equipment Identity Register Settings

config/runtime.exs

config :hss, :eir, %{

Behavior for unknown equipment (no matching rule)

unknown equipment behaviour: :whitelist
Options:

:whitelist - Allow unknown equipment
:blacklist - Block unknown equipment

#
:greylist - Track but allow unknown equipment
:reject _unknown equipment - Reject with specific result code

Unknown Equipment Behavior

ylist
Allow Deny Allow
Equipment Unknown Equipment Blacklisted Equipment Greylisted
Behavior Options:
Option Result
:whitelist Allow all unknown IMEI
:blacklist Block all unknown IMEI
_ Allow but track
:greylist

:reject unknown equipment

Recommendation: Start with

unknown IMEI

Reject with specific
code

t unknown

Deny
Equipment Not Known

Use Case

Open network,
testing

Moderate security

Monitoring mode

High security

:whitelist during testing, move to :greylist
for production monitoring, then :blacklist for strict security.

APl and Control Panel
Configuration

API Endpoint Configuration

config/config.exs

config :hss, HssWeb.Api.Endpoint,
url: [host: "localhost"],
render _errors: [view: HssWeb.ErrorView, accepts: ~w(json)],
pubsub server: Hss.PubSub,

HTTPS configuration
https: [
port: 8443,
cipher suite: :strong,
certfile: "priv/cert/omnitouch.crt",
keyfile: "priv/cert/omnitouch.pem"”

Control Panel Configuration

config/config.exs

config :hss, HssWeb.ControlPanel.Endpoint,
url: [host: "localhost"],
render errors: [view: HssWeb.ErrorView, accepts: ~w(html json)],
pubsub server: Hss.PubSub,
live view: [signing salt: "some-secret"],

HTTPS configuration
https: [
port: 7443,
cipher suite: :strong,
certfile: "priv/cert/omnitouch.crt",
keyfile: "priv/cert/omnitouch.pem”

TLS Certificate Configuration

Certificate Files

r N\

omnitouch.crt omnitouch.pem
Public Certificate Private Key

/
B

Certificate Requirements:

Valid X.509 certificate

Matching private key

Include intermediate certificates if needed

CN or SAN must match hostname

For Production:

https: [

port: 8443,

cipher suite: :strong,

certfile: System.get env("TLS CERT FILE",
"/etc/ssl/certs/omnihss.crt"),

keyfile: System.get env("TLS KEY FILE",
"/etc/ssl/private/omnihss.key"),

cacertfile: System.get env("TLS CA FILE", "/etc/ssl/certs/ca-
bundle.crt")
|

Configuration Workflow

Initial Deployment Configuration

Binding Choice

-d____.-"- ""-\-\.____h
— T~
f,,--""' l x“‘“mh
e i
v ¥
0.0.0.0 Management IP 127.0.0.1

(All Interfaces) (e.g., 192.168.1.10) (Localhost Only)

l l h J
Accessible from Accessible only from Accessible only

any network management network from server itself

Configuration Checklist

Essential Configuration

Database connection (hostname, credentials)

Home PLMN (MCC, MNC)

Diameter host and realm

Diameter listen IP and port

TLS certificates for APl and Control Panel

License client configuration (server URLs, licensee, product_name)

HSS core settings (send_clr_ on_mme_change,
stop_diameter_on_database_failure)

Network Element Integration

Diameter peers configured (if using connect mode)

Firewall rules allow Diameter traffic (port 3868)
Firewall rules allow HTTPS traffic (ports 7443, 8443)

DNS resolution for Diameter identities

IMS Configuration (if using IMS features)

S-CSCF peer list configured
S-CSCF selection method chosen

IMS realm configured

Optional Configuration

EIR behavior configured
Database pool size tuned

Network interface binding restricted

Verifying Configuration
After modifying configuration:

1. Syntax Check:
Check logs for configuration loading errors
2. Control Panel Access:

Access https://[hostname]:7443
Verify Overview page loads

3. APl Access:
curl -k https://[hostname]:8443/api/status

4. Diameter Status:

Check Control Panel Diameter page
Verify peer connections

5. Database Connectivity:

Check Control Panel for subscriber data
Or connect directly to SQL Database

Complete Runtime Configuration

Example

config/runtime.exs - Complete production example
import Config

#

DATABASE CONFIGURATION
#

config :hss, Hss.Repo,
username: System.fetch env!("DATABASE USERNAME"),
password: System.fetch env!("DATABASE PASSWORD"),
hostname: System.get env("DATABASE HOSTNAME", "db.omnihss.internal'
database: System.get env("DATABASE NAME", "omnihss"),
port: String.to integer(System.get env("DATABASE PORT", "3306")),
pool size: String.to integer(System.get env("DATABASE POOL SIZE", '
timeout: 15 000,
connect timeout: 15 000,
ssl: true,
ssl opts: [
cacertfile: "/etc/ssl/certs/mysql-ca.pem",
verify: :verify peer

]

LICENSE CLIENT CONFIGURATION
#

config :license client,
license server api urls: [System.get env("LICENSE SERVER URL",
"https://license.example.com:8443/api")],
licensee: System.get env("LICENSE ORGANIZATION", "Your Organizatior
product name: "omnihss"

#

HOME PLMN AND HSS CORE CONFIGURATION
#

config :hss,

ecto repos: [Hss.Repo],

home plmn: S%{
mcc: System.get env("HOME PLMN MCC", "001"),
mnc: System.get env("HOME PLMN MNC", "001")

}

send clr on mme change: true,

stop diameter on database failure: true,

license enforced: true,

license module: LicenseClient

#

DIAMETER CONFIGURATION
#

diameter config = %{
service name: :omnitouch hss,
listen ip: System.get env("DIAMETER LISTEN IP", "10.7.25.186"),
listen port: String.to integer(System.get env("DIAMETER LISTEN PORT
"3868")),
host: System.get env("DIAMETER HOST", "omnihss01"),
realm: System.get env("DIAMETER REALM",
“epc.mncO01l.mccOO1.3gppnetwork.org"),
product name: "OmniHSS",
vendor id: 10415,
supported vendor ids: [5535, 10415],
request timeout: 5000,
peers: [
%{
host: "mmeOl.epc.mnc@Ol.mccOOl.3gppnetwork.org",
realm: "epc.mnc0O0l.mcc001.3gppnetwork.org",
ip: "10.7.25.100",
port: 3868,
transport: :sctp,
applications: [:s6al

config :hss, :diameter, diameter config

#

IMS CONFIGURATION
#

config :hss, :ims, %{
scscf: %{
selection method: :random peer,
peers: [
%{host: "sip:scscf@l.ims.mnc001l.mccOO1.3gppnetwork.org:5060"},
%{host: "sip:scscf02.ims.mnc001.mccOO1.3gppnetwork.org:5060"}
]

#

EIR CONFIGURATION
#

config :hss, :eir, %{
unknown equipment behaviour: :whitelist

}

#

API ENDPOINT CONFIGURATION
#

config :hss, HssWeb.Api.Endpoint,
http: [ip: {0, 0, O, 0}, port: 8443],
https: [
port: 8443,
cipher suite: :strong,
certfile: System.get env("TLS CERT FILE", "/etc/ssl/certs/omnihss
keyfile: System.get env("TLS KEY FILE", "/etc/ssl/private/omnihss
1,
url: [host: System.get env("API HOST", "api.omnihss.internal"), pot
8443]

#

CONTROL PANEL ENDPOINT CONFIGURATION
#

config :hss, HssWeb.ControlPanel.Endpoint,

http: [ip: {0, 0, O, 0}, port: 7443],
https: [
port: 7443,
cipher suite: :strong,
certfile: System.get env("TLS CERT FILE", "/etc/ssl/certs/omnihss
keyfile: System.get env("TLS KEY FILE", "/etc/ssl/private/omnihss
1,
url: [host: System.get env("CP _HOST", "hss.omnihss.internal"), port

OmniHSS Control Panel
Guide

Table of Contents

Control Panel Overview

The OmniHSS Control Panel is a web-based monitoring interface that provides
real-time visibility into system status, subscriber activity, and Diameter
connectivity. Built with Phoenix LiveView, it automatically updates without
requiring page refreshes.

Key Features

* Real-time Updates - Auto-refreshes every second

Subscriber Monitoring - View active subscribers and their current state

Diameter Status - Monitor peer connections in real-time

System Resources - Track application performance

Configuration Viewer - Inspect runtime configuration

Access Information

URL: https://[hostname]:7443

Protocol: HTTPS Only

Port: 7443 (configurable)

Certificate: Configured in config/config.exs

Control Panel Architecture

Web Browser

|
HTTPS : 7443
|
¥
Control Panel
Phoenix LiveView

\'.

'3 _ v v _ ¥
Overview Live Diameter Live Application Live Configuration Live
| |
Real-time Real-time Real-time Real-time
|
| !
¥
v k&

Diameter Service)))
Database System Metrics Configuration

Subscriber Data Peer Status

Accessing the Control Panel

Initial Access

1. Open a web browser
2. Navigate to https://[hostname] :7443
3. Accept the TLS certificate (if self-signed)

4. You will be presented with the Overview page by default

TLS Certificate Warnings

If using self-signed certificates, browsers will show security warnings. This is
expected for internal deployments.

For Production: Use certificates signed by a trusted Certificate Authority.

Network Requirements

e Port 7443 must be accessible from your management network
e HTTPS is mandatory - HTTP is not supported

e Firewall rules must allow traffic to port 7443

Browser Compatibility

The Control Panel uses modern web technologies (LiveView, WebSockets):

Chrome/Chromium (recommended)

Firefox
Safari
Edge

Note: Internet Explorer is not supported.

Overview Page

URL: https://[hostname]:7443/overview

The Overview page displays all subscribers and their real-time state
information.

Page Layout

e
H B B

Overview Page

Subscriber Table

Table Columns

Column

ID

Enabled

IMSI

ICCID

EPC Profile

IMS Profile

Roaming
Profile

Description

Subscriber database ID

Service status

International Mobile Subscriber
Identity

SIM card ID

Data service profile name

Voice service profile name

Roaming policy name

Expandable Row Details

Values

Integer

v (enabled) / X
(disabled)

14-15 digits

19-20 digits or "N/A"

Profile name or ID

Profile name, ID, or
IIN/AII

Profile name, ID, or
IIN/AII

Click on any row to expand and view detailed subscriber state:

Location Information

Owerview Page

Subscriber Table

Table Columns Expardabls Rows

¥ ¥ L} L} L] * L]

o Enabied IK15] OO EPC Profile M= Profile Rowemireg Profile Subscriber State Detals

Fields:

e MCC - Mobile Country Code (3 digits)

e MNC - Mobile Network Code (2-3 digits)
e TAC - Tracking Area Code

e Cell ID - Serving cell identifier
 eNodeB ID - Base station identifier

e ECI - E-UTRAN Cell Identifier

Network Information

Fields:

e Last Seen MME - Current serving MME hostname
e Last Seen Realm - Diameter realm of MME
* RAT Type - Radio Access Technology (e.g., "E-UTRAN" for LTE)

e Last Seen At - Timestamp of last Diameter message

IMS Information

Fields:

Assigned S-CSCF - Currently assigned S-CSCF SIP URI
IMS Public Identity - SIP URI (e.qg.,

sip:)

Last Seen P-CSCF - Last P-CSCF that contacted HSS
Last Seen I-CSCF - Last I-CSCF that contacted HSS

Session Information

Fields:

mailto:+14155551234@ims.example.com

e PDN Sessions - Number of active data connections

e Active Calls - Number of active VOLTE calls

State Indicators

Idle Attached PDN Active IMS Registered In Call
Not Attached Registered to MME Data Connection Voice Ready Active VOLTE Call

How to identify state:

e Idle: No location information, no MME

e Attached: Last Seen MME present, location info available
e PDN Active: PDN sessions count > 0

e IMS Registered: Assigned S-CSCF present

¢ In Call: Active calls count > 0

Auto-Refresh

The Overview page automatically refreshes every 1 second to show real-time
updates.

Visual indicators:

e New data appears without page reload
e Timestamps update in real-time

¢ No manual refresh needed

Use Cases
1. Monitor Active Subscribers

o See which subscribers are currently attached

o Check current serving network (for roaming)

o Verify IMS registration status

2. Troubleshooting

o

Verify subscriber is enabled
Check last seen timestamp (is subscriber responsive?)

(o]

[e]

Confirm profile assignments

o View current location information
3. Capacity Monitoring

o Count total attached subscribers
o Monitor PDN session counts

o Track active VOLTE calls

Diameter Page

URL: https://[hostname]:7443/diameter

The Diameter page shows real-time status of all Diameter peer connections.

Page Layout

Diameter Page

—_— ~N T~
B El El E El B

Table Columns

Column Description Values

Hostname Diameter peer hosthame FQDN

Realm Diameter realm Domain name

IP:Port Network address IP address and port
Transport Transport protocol TCP or SCTP

Status Connection status Connected / Disconnected

Connection Status

Subscriber State

¥ ¥ kL L

Idle Attached PDMN Active IMS Registered
Not Attached Registered to MME Data Connection Vioice Ready

Expandable Row Details
Click on any peer to view additional information:
Connection Information:

e Connection Type - Initiated by HSS or peer
* Product Name - Peer's product identification

e Application IDs - Supported Diameter applications

Application ID Examples:

In Cal
Active VolTE Call

16777251 - S6a (MME)

16777238 - Gx (P-GW)

16777216 - Cx (I-CSCF, S-CSCF)
16777217 - Sh (Application Server)
16777236 - Rx (P-CSCF)

16777252 - S13 (EIR client, if external)

Peer Connection Flow

OmniHSS Diameter Peer

- [HSS Initiates (Connect Mode)]

CER (Capabilities Exchange Request)

CEA (Capabilities Exchange Answer)

Status: Connected

[Peer Initiates (Listen Mode)]

CER

CEA

Status: Connected

- [Keepalive]

DWR (Device Watchdog Request)

DWA (Device Watchdog Answer)
- [Connection Loss]

DWR

No response - Status: Disconnected

Automatic reconnection attempts

OmniHSS Diameter Peer

Auto-Refresh

The Diameter page automatically refreshes every 1 second.

Use Cases
1. Verify Connectivity

o Ensure all expected peers are connected
o |dentify disconnected peers immediately

o Monitor for flapping connections

2. Troubleshooting

(o]

Check if peer is reachable

[e]

Verify transport protocol (TCP vs SCTP)

[e]

Confirm application IDs match expectations

(o]

Identify which side initiated connection

3. Capacity Planning

o Count total connected peers
o Monitor for connection stability

o Plan for additional peer capacity

Common Issues

Peer Shows Disconnected
Possible Causes:
. Network connectivity issue

. Peer is down or restarting

1

2

3. Firewall blocking traffic

4. Diameter configuration mismatch
5

. Certificate issue (if using TLS)

Troubleshooting Steps:

1. Check network connectivity: ping [peer-ip]

2. Verify port is reachable: telnet [peer-ip] 3868
3. Check firewall rules

4. Review HSS logs for error messages

5. Verify peer's Diameter configuration matches HSS

Peer Connects and Disconnects Repeatedly

Possible Causes:

1. Network instability
2. Keepalive timeout mismatch
3. Peer resource issues

4. Diameter application mismatch

Troubleshooting Steps:

1. Check network stability

2. Review keepalive timers on both sides

3. Check peer system resources

4. Verify application IDs match on both sides

Application Page
URL: https://[hostname]:7443/application

The Application page provides system-level monitoring and resource usage
information.

Features

Process Information - Erlang VM process count and memory

System Memory - Total and used memory

Application Uptime - How long OmniHSS has been running

Erlang VM Version - Runtime version information

Key Metrics

Diameter Page

L

Peer Table

L ¥

Table Columns Expandable Rows
* L] r r L] v
Hostname Realm IP-Port Transport Status Connection Details

Use Cases
1. Health Monitoring

o Verify application is running
o Check for memory leaks (increasing memory over time)

o Monitor process count growth

2. Capacity Planning

o Track memory usage trends
o Plan for scale-out based on process count

o Verify adequate system resources

3. Troubleshooting

o |dentify resource exhaustion
o Check if restart is needed

o Verify Erlang VM version

Configuration Page

URL: https://[hostname]:7443/configuration

The Configuration page displays the current runtime configuration of OmniHSS.

Features

e View Configuration - Inspect all configuration parameters
e Search Configuration - Find specific settings

¢ Environment Variables - See resolved values

Configuration Categories

Use Cases
1. Configuration Verification

o Verify runtime.exs settings are applied
o Confirm database connection parameters

o Check Diameter peer configuration

2. Troubleshooting

o |dentify misconfiguration
o Verify environment variables are set correctly

o Compare expected vs actual configuration

3. Documentation

o Export current configuration for documentation

o Share configuration with support team

Security Note: Configuration page may display sensitive information
(database passwords, keys). Restrict access appropriately.

Navigation and Interface

Top Navigation Bar

—
Navigation Bar
—~

Navigation is always visible at the top of the page for quick access.

Keyboard Shortcuts

While the Control Panel doesn't implement custom keyboard shortcuts,
standard browser shortcuts work:

e Ctrl+R / F5 - Manual page refresh (though auto-refresh makes this
unnecessary)

e Ctrl+F - Search on page
e Ctrl+T - Open new tab (for multiple pages)

Multi-Tab Monitoring

You can open multiple Control Panel pages in separate browser tabs for
simultaneous monitoring:

Example Setup:

e Tab 1: Overview page (monitor subscribers)
e Tab 2: Diameter page (monitor connectivity)

e Tab 3: Application page (monitor resources)

All tabs will auto-update independently.

Responsive Design

The Control Panel is optimized for desktop browsers. Mobile browsers are
supported but may require horizontal scrolling for tables.

Recommended Resolution: 1920x1080 or higher for comfortable viewing.

Monitoring Best Practices

Daily Operations
1. Start of Shift

o Open Control Panel Overview page
o Verify expected number of subscribers are attached

o Check Diameter page - all peers connected

2. During Shift

o Keep Overview page open for real-time monitoring
o Watch for unusual state changes

o Monitor for disconnected peers on Diameter page

3. End of Shift

o Verify system is stable
o Check Application page for resource usage trends

o Document any anomalies

Troubleshooting Workflow

OmniCharge OmniRAN

- -

alt [HSS Initiates (Connect Mode)]

CER (Capabilities Exchange Request)

>
CEA (Capabilities Exchange Answer)
.‘.__________._.__________._.__________._.__________._.______

Status: Connected
[Peer Initiates (Listen Mode)]

CER

CEA

sessrssnnenes

Status: Connected

loop [Keepalive]

DWR (Device Watchdog Request)

DWA (Device Watchdog Answer)

lfzssasa

alt [Connection Loss]

DWR

MNo response - Status: Disconnected

Automatic reconnection attempts

OmniHSS Diameter Peer

Downloads % English+ Omnitouch Website (%

Alert Thresholds

Establish monitoring thresholds for proactive alerting:

Metric Warning Critical

2+ peers or critical

Disconnected Diameter Peers 1 peer
peer

Memory Usage > 80% > 90%
Subscriber Authentication

. > 5% > 10%
Failures

> 80% of e

Process Count > 959% of limit

limit

EIR (Equipment
Identity Register)

Overview

The HSS includes a built-in EIR (Equipment Identity Register) that provides
equipment identity verification for mobile devices. The EIR validates IMEI
(International Mobile Equipment Identity) numbers to determine if mobile
equipment is authorized, stolen, or under observation before allowing network
access.

Key Capabilities

e S13 Interface: Equipment identity checking via Diameter protocol

e IMEI Validation: Verify equipment identity using IMEI/IMEISV

* Flexible Matching: Regex-based pattern matching for IMEI, IMEISV, and
IMSI

* Three-Tier Classification: Whitelist, blacklist, and greylist support

e Configurable Policies: Customizable behavior for unknown equipment

e REST API: Full CRUD operations for EIR rule management

Architecture

Diameter Interface

Application
Interface ID Peer Purpose

Equipment identity
S13 16,777,252 MME/SGSN L
verification

Equipment Rules Database

The EIR uses a flexible rule-based matching system:

EIR_ RULE
int id PK
string action
string regex

timestamp | inserted at

timestamp | updated at

Rule Actions:

e whitelist - Allow equipment
* blacklist - Block equipment

e greylist - Monitor equipment

Regex Patterns: Match against IMEI, IMEISV, or IMSI

Equipment Status Values

Status Code Meaning
Whitelist 0 Equipment approved
Blacklist 1 Equipment stolen/blocked

Greylist 2 Equipment under observation

Network Action

Allow network access

Deny network access

Allow with monitoring

S13 Interface

Supported Operations

Equipment Identity Check Request (ECR) / Equipment Identity Check
Answer (ECA)

Direction: MME/SGSN - HSS (EIR)
Trigger: MME verifies equipment identity during attach or tracking area update
Request AVPs:

e Session-Id
e Origin-Host, Origin-Realm
e Destination-Realm
e Auth-Session-State
e Terminal-Information
o |IMEI (15 digits)
o Software-Version (2 digits, optional)

e User-Name (IMSI, optional)

Vendor-Specific-Application-Id
EIR Actions:

1. Extract IMEI, Software-Version (if present), and IMSI (if present)

2. If IMSI provided:
o Validate subscriber exists and is enabled

o Update subscriber state with last seen information

3. Attempt equipment lookup in priority order:
o IMEISV match (IMEI + Software-Version concatenated)

o IMEI match (IMEI only)
o IMSI match (if provided in request)
o Unknown equipment policy (configured default behavior)

4. Return equipment status

Response AVPs:

e Session-ld (echoed from request)
¢ Result-Code: 2001 (success)
e Equipment-Status: 0 (whitelist) / 1 (blacklist) / 2 (greylist)

Error Responses:

e Experimental-Result: 5422 (equipment/subscriber not found)

e Experimental-Result: 5012 (general error)

Equipment Matching Logic

Priority Order

The EIR uses a cascading lookup strategy to maximize matching flexibility:

1. IMEISV (IMEI + Software-Version)
L (if no match)

2. IMEI only
L (if no match)

3. IMSI (if provided in request)
L (if no match)

4. Unknown Equipment Policy

Matching Algorithm

Step 1: IMEISV Matching

e Concatenate IMEI| + Software-Version: "35979139461611" + "08" =
"3597913946161108"

e Test against all EIR rule regex patterns

e Return action ("whitelist", "blacklist", "greylist") of first matching rule

Step 2: IMEI Matching (fallback)

* Use IMEI only: "35979139461611"

e Test against all EIR rule regex patterns

e Return action of first matching rule
Step 3: IMSI Matching (fallback if IMSI provided)

e Use IMSI from request: "999999876543210"
e Test against all EIR rule regex patterns
e Return action of first matching rule

e Use case: Block all equipment for a specific subscriber
Step 4: Unknown Equipment Policy (final fallback)

* Configuration setting: eir unknown equipment behaviour

e Options:
o :whitelist - Allow unknown equipment (permissive)

o :blacklist - Block unknown equipment (restrictive)
o :greylist - Observe unknown equipment (moderate)

o :reject unknown equipment - Return error 5422 (strict)

Regex Pattern Examples

Pattern Matches Use Case
"35979139461650" Exact IMEI Single device whitelist/blacklist
IMEI prefix
"3597913946165.*" _ Manufacturer/model range
wildcard

Specific device with software
"3597913946161108" Exact IMEISV _
version
Block all equipment for
"999999876543210" IMSI :
subscriber

"359791.*" TAC wildcard Entire device type allocation

Common Message Flows

Flow 1: Equipment Check - Known Whitelisted
IMEI

MME/SGSN EISRS) Database

S13 ECR
(IMEI: 35979139461650,
IMSI: 999999876543210)

Query subscriber by IMSI
Subscriber data

Update subscriber state
(last_seen_realm,
last_received_message_type)

Updated
Query EIR rules
All rules
Match IMEISV "35979139461650"

- No match

Match IMEI "35979139461650"
- Matches regex "3597913946165.*"
- Action: "whitelist"

S13 ECA
(Result-Code: 2001,
Equipment-Status: 0)

Equipment approved,
allow network access

MME/SGSN (FéISRS) Database

Flow 2: Equipment Check - Blacklisted IMEI
(Stolen Device)

[AWE LR ERFLW LW) f'ﬂ | . | |H||-J‘|| - RSN I IR L I WV P
- -
MME/SGSN ["E’f’RS} Database
513 ECR

(IMEI: 35979139461650,
IMSI: 999999876543210)

L

Query subscriber by IMSI

L J

Subscriber data

S
Update subscriber state
(last_seen_realm,
last_received _message type)
Updated
e nemamasssss s ssssssssssesassssmse e ..
Query EIR rules
All rules
+ ..

Match IMEISY "35979139461650"
- No match

<

Match IMEI "35979139461650"
- Matches regex "3597913946165 %"
- Action: "whitelist"

—

513 ECA
(Result-Code: 2001,
Equipment-Status: 0)

Equipment approved,
allow network access

MME/SGSN ['Ef’ﬂs}l Database

Flow 3: Equipment Check - Unknown
Equipment (Whitelist Policy)

MME/SGSN (Félsp?) Database Configuration

S13 ECR
(IMEI: 99999999999999,
IMSI: 999999876543210)

Query subscriber by IMSI
Subscriber data
Update subscriber state
Updated
Query EIR rules
All rules
Match IMEISV "99999999999999"

- No match

Match IMEI "99999999999999"
- No match

Match IMSI "999999876543210"

— No match

Get unknown_equipment_behaviour

:whitelist

Apply policy: "whitelist"

S13 ECA

(Result-Code: 2001,
Equipment-Status: 0)

Equipment unknown but
policy allows, grant access

MME/SGSN (I'éf’s) Database Configuration

Flow 4: Equipment Check - Unknown
Equipment (Reject Policy)

MME/SGSN

S13 ECR
(IMEI: 99999999999999,
IMSI: 999999876543210)

HSS

(EIR) Database Configuration

Query subscriber by IMSI

Subscriber data

Update subscriber state

Updated

Query EIR rules

All rules

Match IMEISV "99999999999999"

- No match

Match IMEI "99999999999999"

- No match

Match IMSI "999999876543210"

S13 ECA

(Experimental-Result: 5422,
DIAMETER_ERROR_EQUIPMENT_UNKNOWN)

Equipment unknown,
deny network access

MME/SGSN

- No match

Get unknown_equipment_behaviour

:reject_unknown_equipment

(l'élsé) Database Configuration

Flow 5: Equipment Check - Unknown
Subscriber

LAWIEVI NI D L - L LY LEE=1 B WAL WV SR DL L
- -
MME/SGSN {'ﬁ'ﬁ'} Database Configuration

513 ECR
(IMEI: 99999993999993,
IM5I: 999999876543210)

Query subscriber by IM51

L

Subscriber data

Update subscriber state

kA

Updated

Query EIR rules

¥

All rules

Match IMEISY "9999%9099999999"
-+ Mo match

—

Match IMEI "99999999999999"
-+ No match

Match IMSI *9999%99876543210"
-+ Mo match

—

Get unknown_eguipment_behawviour

L 3

-whitelist

Apply policy: "whitelist"

S13 ECA
{Result-Code: 2001,
Equipment-5tatus: 0}

Equipment unknown but
policy allows, grant access

MME/SGSN {"E"I—:‘E'} Database Configuration

Flow 6: Equipment Check - IMEISV Match

HSS

MME/SGSN (EIR)

Database

S13 ECR
(IMEI: 35979139461630,
Software-Version: 08,
IMSI: 999999876543210)

Query subscriber by IMSI

Subscriber data

Update subscriber state

Updated

Query EIR rules

All rules

Concatenate IMEISV:
"35979139461630" + "08"
= "3597913946163008"

Match IMEISV "3597913946163008"
- Matches regex "3597913946163008"
- Action: "greylist"

S13 ECA
(Result-Code: 2001,
Equipment-Status: 2)

Equipment greylisted,
allow with monitoring

HSS
MME/SGSN (EIR)

Database

Flow 7: Equipment Check - IMSI Blocking

H55

MME/SGSN {EIR) Database

513 ECR
{IMEI: 999999999093999,
IM5I: 9099008T6543210)

CQuery subscriber by IMSI

Subscriber data

L i

e ma s aa s e e A
Update subscriber state
Updated
Al e mn e m e e s
CQuery EIR rules
All rules
Match IMEISW "99099939030500"
— Mo match
™
‘__.-'

Match IMEI "99999009099990"
— Mo match

-

Match IMSI "99909998T765432107
— Mo match

o

Get unknown_equipment_behaviour

Configuration

rreject_unknown_sguipment

513 ECA
(Experimental-Result: 5422,
DIAMETER_ERROR_EQUIPMENT_UNEKNCWRN)
-

Equipment unknown,
deny network access

HSS
MME/SGSN (B

REST API

EIR Rule Management
Base path: /api/eir/rule
List All EIR Rules

Request:

Database

L J

Configuration

GET /api/eir/rule

Response (HTTP 200):

{
"data": [
{
"id": 1,
"action": "whitelist",
"regex": "3597913946165.*",
"inserted at": "2025-01-15T10:30:00Z",
"updated at": "2025-01-15T10:30:00Z"
o
{
"id": 2,
"action": "blacklist",
"regex": "35979139461640",
"inserted at": "2025-01-16T14:20:00Z",
"updated at": "2025-01-16T14:20:00Z"
}
]
}

Get Specific EIR Rule

Request:

GET /api/eir/rule/{id}

Response (HTTP 200):

{
"data": {
"id": 1,
"action": "whitelist",
"regex": "3597913946165.*"
}

}

Create EIR Rule

Request:

POST /api/eir/rule
Content-Type: application/json

{
"action": "blacklist",
"regex": "35979139461640"
}
Validation:

e action: Required, must be "whitelist", "blacklist", or "greylist"

* regex: Required, must be valid regex pattern, unique across all rules

Response (HTTP 201):

{
"data": {
"id": 3,
"action": "blacklist",
"regex": "35979139461640"
}
}

Error Response (HTTP 400):

"errors": {
"regex": ["has already been taken"]

}
}

Update EIR Rule (Partial)

Request:

PATCH /api/eir/rule/{id}
Content-Type: application/json

"action": "greylist"

}

Response (HTTP 200):

{
"data": {
"id": 3,
"action": "greylist",
"regex": "35979139461640"
}
}

Replace EIR Rule

Request:

PUT /api/eir/rule/{id}
Content-Type: application/json

"action": "whitelist",
"regex": "359791394616.*"
}

Response (HTTP 200):

{
"data": {
"id": 3,
"action": "whitelist",
"regex": "359791394616.*"
}

}

Delete EIR Rule

Request:
DELETE /api/eir/rule/{id}

Response (HTTP 204 No Content)

Configuration

Diameter Service Setup

S13 Application (config/runtime.exs):

o°
-~

application name: :s13,
application dictionary: :diameter gen 3gpp s13,
vendor specific application ids: [

%s{vendor id: 10415, auth application id: 16 777 252}
]

Unknown Equipment Behavior

Configure the default behavior for equipment not matching any rules in
config/runtime.exs:

Example:

config :hss, :eir,
unknown equipment behaviour: :whitelist

Valid Values:

e :whitelist - Allow unknown equipment (default, permissive)

e :blacklist - Block unknown equipment (restrictive)

e :greylist - Monitor unknown equipment (moderate)

e :reject unknown equipment - Return Diameter error 5422 (strict)
Use Cases:

* Development/Testing: :whitelist - Allow all devices
* Production (permissive): :whitelist - Only block known bad devices
* Production (moderate): :greylist - Log unknown devices for review

* Production (strict): :reject unknown equipment - Only allow registered
devices

Error Handling

Result

Type Meanin Cau
Code yP 9

Equip!

2001 Success DIAMETER_SUCCESS check
compl

Subsc
not fo
or

5422 Experimental DIAMETER_ERROR_EQUIPMENT_UNKNOWN K
unkna

equip!
reject

Proce:

5012 Experimental DIAMETER_ERROR_UNKNOWN
error

Use Cases

1. Stolen Device Management
Scenario: Device reported stolen

Action:

POST /api/eir/rule
{

"action": "blacklist",
"regex": "35979139461640" # Exact IMEI

}

Result: Device denied network access on next attachment

2. Manufacturer Whitelist

Scenario: Pre-approve entire device model range

Action:

POST /api/eir/rule
{

"action": "whitelist",
"regex": "359791394.*" # TAC for manufacturer/model

}

Result: All devices in TAC range approved

3. Subscriber Equipment Lock

Scenario: Block all equipment for specific subscriber (SIM lock)

Action:

POST /api/eir/rule
{

"action": "blacklist",
"regex": "999999876543210" # IMSI

}

Result: Any equipment used with this SIM is blocked

4. Test Equipment Greylist
Scenario: Monitor test equipment in production

Action:

POST /api/eir/rule
{

"action": "greylist",
"regex": "35979139.*" # Test equipment TAC range

}

Result: Equipment allowed but flagged for monitoring

5. Software Version Control
Scenario: Block specific vulnerable firmware version

Action:

POST /api/eir/rule
{

"action": "blacklist",
"regex": "359791394616.*05" # IMEI range + Software Version 05

}

Result: Only devices with Software-Version "05" in IMEI range blocked

Implementation Details

Internal Components

The EIR functionality is implemented using several internal modules:

S13 Protocol Handler - ECR/ECA message processing

Equipment Matching Engine - Regex-based IMEI/IMEISV/IMSI matching

EIR Rules Database - Pattern storage and lookup

REST API Controller - Rule management endpoints

Equipment Status Lookup Function

The equipment status lookup follows this cascading logic:

1. IMEISV Matching: Check IMEI + Software-Version concatenated
2. IMEI Matching: Check IMEI only

3. IMSI Matching: Check IMSI (if provided)

4. Unknown Equipment: Apply configured default policy

Possible Results:

whitelist - Equipment allowed

blacklist - Equipment blocked

greylist - Equipment under observation

reject unknown equipment - Strict rejection

Security Considerations

IMEI Privacy

IMElI numbers are sensitive identifiers. The EIR:

e Does not log IMEI values in plaintext by default

¢ Uses hashed database lookups (if configured)

e Restricts API access to authenticated administrators

Rule Ordering

EIR rules are evaluated in database order (by ID). For conflicting patterns:

Rule 1: regex "359791.*" action "whitelist" (broad)
Rule 2: regex "35979139461640" action "blacklist" (specific)

Recommendation: Create specific rules before broad wildcards to ensure
blacklist takes precedence.

Rate Limiting
Consider implementing rate limiting on:

e S13 ECR requests from untrusted peers
e REST API EIR rule modifications

e IMEI lookup queries to prevent enumeration attacks

Related Documentation

. - 513 protocol specification
. - Complete API documentation
. - Overall HSS architecture

. - Operational procedures

Appendix: IMEI Structure

IMEI Format (15 digits)

35 9791 394616 1

|| | L Check digit (Luhn algorithm)

| L Serial Number (6 digits)

| L FAC (Final Assembly Code, 4 digits)

L- TAC (Type Allocation Code, 8 digits total including RBI)
| L RBI (Reporting Body Identifier, 2 digits)
L Manufacturer/Model (6 digits)

IMEISV Format (16 digits)

35 9791 394616 1 08

|| | | L Software Version (2 digits)
L- IMEI (15 digits)

Example Patterns

IMEI/IMEISV Pattern Matches

All devices with
359791394616108 3597913946161.* TAC+FAC+Serial

359791394616*

All check digits for Serial
359791394616141-9

359791394616140 35979139461614.

35979139461640 35979139461640 Exact IMEI match

Exact IMEISV (IMEI + SV)
match

3597913946163008 3597913946163008

OmniHSS Entity
Relationships

Table of Contents

Entity Overview

OmniHSS organizes subscriber data into logical entities with clear relationships.
Understanding these entities is crucial for operational tasks like provisioning,
troubleshooting, and capacity planning.

Entity Categories

EFC Frofile IMS Profile Fosming Profile APN Frofile

Core Entities

Subscriber

The Subscriber is the central entity representing a mobile user.

14-15 digits

SUBSCRIBER

bigint | id PK

Fields:

Field

id

enabled

ims enabled

imsi

custom attributes

sim id

key set id

epc profile id

ims profile id

roaming profile id

subscriber state id

Key Points:

Type

bigint

boolean

boolean

string

map

bigint

bigint

bigint

bigint

bigint

bigint

Description

Primary key

Service enabled flag

IMS services enabled

International Mobile
Subscriber Identity

Custom key-value
data

Foreign key to SIM

Foreign key to Key
Set

Foreign key to EPC
Profile

Foreign key to IMS
Profile

Foreign key to
Roaming Profile

Foreign key to
Subscriber State

e Each subscriber must have exactly one IMSI

e IMSI must be 14-15 digits (no letters or special characters)

e A subscriber can have multiple MSISDNs (phone numbers)

Constraints

Auto-
increment

Default: true

Default: true

14-15 digits,
unique

Optional

Optional

Required

Required

Optional

Optional

Auto-created

e Subscriber state is automatically created when subscriber is created
e enabled flag controls all services (data and IMS)

e ims enabled flag controls only IMS services

SIM

The SIM entity represents a physical or embedded SIM card.

- EEY _SET EPC FROMLE M% PROMLE ROAMING PROFLE SUNSCRIBER STATE 0N SUS MSISDN

Fields:
Field Type Description Security Level
iccid string Integrated Circuit Card ID Public
sim vendor string SIM manufacturer Public
batch name string Manufacturing batch Public
is _esim boolean @ Embedded SIM flag Public
pinl, pin2 string PIN codes Sensitive
pukl, puk2 string PUK codes Sensitive
adml - adml® string Administrative codes Highly Sensitive
kic, kid binary OTA security keys Highly Sensitive

Key Points:

e |ICCID uniquely identifies the SIM card

Key Set

One SIM can be assigned to one subscriber at a time
PIN/PUK codes are for end-user SIM locking

ADM codes are for administrative SIM operations
KIC/KID are for SIM OTA (Over-The-Air) updates

The Key Set contains cryptographic keys for authentication.

KEY SET
bigint id PK
binary | ki 128-bit
binary | opc 128-bit
binary | op 128-bit
binary | amf 16-bit
bigint | sgn 48-bit sequence
string | authentication_algorithm

Fields:

used b

Field

ki

opc

op

amf

sgn

authentication algorithm

ota counter

Key Points:

Type

binary

binary

binary

binary

bigint

string

bigint

Description

Secret key

Operator variant
key (derived)

Operator key (for
deriving OPC)

Authentication
Management Field

Sequence number
(anti-replay)

Algorithm name

OTA operation
counter

e Multiple subscribers can share the same key set

¢ Kiis the master secret shared with the SIM
e Either OPC or OP must be provided (OPC can be derived from OP)

¢ SQN is incremented with each authentication

e Milenage is currently the only supported algorithm

Authentication Algorithm:

Size

128 bits (16
bytes)

128 bits

128 bits

16 bits (2
bytes)

48 bits

Currently
"milenage"

Integer

Secret Key

XRES
Response

KASME
Key

Milenage
Algorithm

MSISDN

The MSISDN represents a phone number.

KEY SET
bigint | id PK
binary | ki 128-bit
binary | opc 128-bit
binary | op 128-bit
binary | amf 16-bit
bigint sgn 48-bit sequence
string authentication_algorithm

T

used by
SUBSCRIBER
Fields:
Field Type Description Format

msisdn string Mobile Station ISDN Number 1-15 digits, E.164 format

Key Points:

e MSISDN is the phone number in international format
e Multiple MSISDNs can be assigned to one subscriber
e One MSISDN cannot be shared between multiple subscribers

e Format: Country code + National number (e.g., "14155551234" for +1 415-
555-1234)

Multi-MSISDN Pattern:

Subscriber
IMSI: 001001123456789

— TN

MSISDN: 14155551001 MSISDN: 14155551002 MSISDN: 14155551003
Primary Work Fax

Profile Entities

EPC Profile

The EPC Profile defines data service characteristics for LTE.

Ki

Fields:

Secret Key
XRES
Response
OPC
Operator Key
KASME
RAND Milenage
e
Random Challenge Algorithm
S, AUTN
Token
AMF
Auth Field
CK/K
IMS Keys
SQN
Sequence

Field

name

ue ambr dl kbps

ue ambr ul kbps

network access mode

tracking area update interval seconds

Network Access Modes:

0: Packet Only
Data Services

1: Reserved

AMBR (Aggregate Maximum Bit Rate):

Type

string

integer

integer

string

integer

Description
Profile name
Download
bandwidth
limit

Upload
bandwidth

limit

Access
restrictions

TAU interval

Text

Kbps

Kbps

"packe
"packe

Secon:

2: Packet + Reserved
Data + Circuit

APN 1: Internet
Uses up to UE-AMBR

UE-AMBR APN 2: IMS
Total Bandwidth Limit Uses up to UE-AMBR

APN 3: MMS
Uses up to UE-AMBR

IMS Profile

The IMS Profile defines voice/video service characteristics.

Subscriber
IMSI: 001001123456789

MSISDN: 14155551001 MSISDN: 14155551002 MSISDN: 14155551003
Primary Work Fax
Fields:
Field Type Description Format
name string Profile name Text
Initial Filter Criteria XML XML with

ifc_template text .
- template variables

IFC Template Variables:

IFC Template

~—

_ Rendered XML
— N ———

Key Points:

e |FC (Initial Filter Criteria) controls call routing in IMS
e Template is rendered when subscriber registers
e Variables are substituted with actual subscriber data

e Sent to S-CSCF during IMS registration

APN Profile

The APN Profile defines characteristics for a specific data access point.

APN_PROFILE

bigint | id PK

string | name | UK
usi ided i used b

uses

Related Entities:

APN Identifier

Network Access Mode

~ .
"f H“mh.
__.—"/”f HHHHHH
e f M\H
-~ .,
- v

0: Packet Only 1- Reserved 2: Packet + Reserved

Data Services) Data + Circuit

Field Type Description Example
apn string APN name “internet", "ims", "mms"

ip version string IP protocol support See below

IP Version Options:

P

ipv4_or_ipv6: IPv4
ipv4v6: IPv4Av6 ipv4_or_ipvé: IPv4 or

Dual Stack IPve
Network Choice

ipv4: IPv4 Only ipv6: IPv6 Only

APN QoS Profile

UE-AMBR.

User Equipment — >

QoS Parameters:

Parameter

gci

allocation retention priority

apn_ambr dl kbps

apn_ambr ul kbps

pre emption capability

pre emption vulnerability

QCI Values:

Total Bandwidth Limit

Description

QoS Class
Identifier

ARP priority

APN
download
[imit

APN upload
limit

Can preempt
others

Can be
preempted

APN 1: Internet
Uses up to UE-AMBR

APM 2: IMS
Uses up to UE-AMBR

APN 3: MMS
Uses up to UE-AMBR

Range

1-9

1-15

0+

0+

true/false

true/false

Default
Bearer

QCl 9
(Internet)

8 (lower

priority)

Varies

Varies

false

true

QCl 1-4 QCl 5-9
Guaranteed Bit Rate Non-Guaranteed
Voice, Video Data Services

/
e A, =

Roaming Profile

The Roaming Profile controls access when subscriber visits other networks.

ROAMING_PROFILE

bigint | id PK
string | name UK
string | data_action_if no_rules _match allow or deny
string | ims_action_if no_rules match allow or deny

incl

reference

Roaming Rule:

IFC Template

" L J
Template Variables Rendered XML
L L d L L3
¥
[Limsi}} { [msisdns}} {{mcc}} {{mnc}} g 5.CSCF
Subscriber IMSI List of phone numbsers Home country code Home nebwork code sentto S-C5C

Rule Evaluation:

R I
7/ \ -~ "N\

Allow Deny Allow if default=allow Deny if default=deny

State Entities

Subscriber State

The Subscriber State tracks real-time subscriber status.

APN_PROFILE

bigint | id PE |

string | mame | UK I

USes -~ - uses inclyded in - .. rsed by
APMN_IDENTIFIER APN_0QO5_PROFILE JOIN_EPC_APN PDMN_SESSION
Key Fields:

Location Information:

* last seen mcc, last seen mnc - Visited network
e last seen tac - Tracking Area Code

e last seen cell id - Cell ID

e last seen enodeb id - eNodeB ID

e last seen eci - E-UTRAN Cell Identifier

Network Elements:

e last seen mme - Current MME serving subscriber
* last seen realm - Diameter realm of MME

* last seen rat type - Radio Access Technology (LTE, 5G, etc.)
IMS Information:

e assigned scscf - Current S-CSCF serving subscriber
e ims public identity - SIP URI (e.qg.,

sip:)
* sh repository data - Custom IMS profile data

Timestamps:

e last seen at - Last Diameter message received

* Various last * at timestamps for different procedures

mailto:+14155551234@ims.example.com

PDN Session

The PDN Session represents an active data connection.

PDN_SESSION
bigint id PK
string pgw_session_id

integer rat_type

string ip_address

string assigned_pgw_host
boolean emergency
boolean roaming

datetime | created_at

uses

PDN Session Lifecycle:

Gx CCR-I

Gx CCA-I (Success)

Gx CCR-U Gx CCA-U

Subscriber has active
data connection

Modified

LTE Call

The LTE Call represents an active VoLTE voice/video call.

IP Version
fz'
- ‘-\
o .,
= - .-/
..l')

{ |' J'

v L] |
)) ipvdvb: IPvdve

4: IPv4 Onil 6: IPve Onl

L = il S Dual Stack

Call Types:

Gx CCR-T

[Terminating]

Gx CCA-T

-
L
ipvd_or_ipve: IPv4 or
IPwE
Network Choice

0: Voice Call 1: Video Call 2: Emergency Call
Audio Only Audio + Video E911
VoLTE Call Flow:
SIP INVITE
Rx AAR (Authorize Media)
Create LTE Call Record
Rx AAA (Authorized)
Gx RAR (Setup Dedicated Bearer)
Gx RAA
Create Dedicated Bearer
SIP 200 OK

Entity Relationship Diagrams

Complete Entity Relationships

OC1 1-4 1 3.5
- I

Yaice, Video Dsta Services

Provisioning Relationships

This diagram shows what must exist before creating a subscriber:

EPC Profile
Data Service Config

Session State Relationships

ROAMING_PROFILE
bigint | id PK
string | name UK
string | data_action_if no _rules match allow or deny
string | ims_action if no rules match allow or deny

/K

includes

%

JOIN._ROAM RULE

o

references

:

ROAMING _RULE

5\

assigned to

X

SUBSCRIBER

Entity Lifecycle

Subscriber Provisioning Lifecycle

Provision Supporting
Data

Create_Prerequisites

All Required Data Exists

Create Key Set
Create EPC Profile (with
APNs)

Create IMS Profile
(optional)
Create Roaming Profile
(optional)
Create SIM (optional)

Create_Subscriber

enabled=false

enabled=true Disabled

Update enabled=true

Update enabled=false

Enabled Delete Subscriber

Subscriber Attaches to Delete Subscriber

Subscriber Detaches
Network

0

IMS Registration |MS Deregistration

[IMS_Registered ’

VOLTE Call Starts Call Ends

In_Call

Session Lifecycle

Subscriber Idle

No Sessions

Data Connection Starts Data Connection Ends

PDN_Active

VOLTE Call Starts

PDN Session record

exists PDN_And_Call

in database

Second Call Starts Second Call Ends

Multiple_Calls

VOLTE Call Ends

PDN Session + LTE Call
records exist

Data Flow Patterns

Authentication Flow

Subscriber Visits
Network
MCC: 310, MNC: 410

l

Match Rule?
"- - H\HH\"‘-\‘
'-.-Jf o
Match Found No Match
v v
Apply Rule Action Apply Default Action
z/"-' -'\'\\ - -"--- - - -
.r/ l/,,-' ~
L]) ¥ r ¥

Allow Deny

Allow if default=allow Deny if default=deny

Location Update Flow

S6a ULR Request

Load EPC Profile
+ APN Profiles

Update Subscriber State
Location, MME, etc.

S6a ULA Response

IMS Registration Flow

Cx SAR Request

Load IMS Profile
+ MSISDNs

Select S-CSCF
Random/Round-Robin

Render IFC Template
with Variables

Cx SAA Response

Session Establishment Flow

belongsto

SUBSCRIBER_STATE

PDN_SESSION
bigint id PK
string pgw_session_id
integer rat_type
string ip_address
string assigned pgw_host
“b‘-:-:-ﬂlean emergency
boolean roaming
X
datetime | created at e
\ g \
LIE:ES \\haﬁ
|
+ A
APN_PROFILE LTE_CALL

Query Optimization Patterns

OmniHSS optimizes database queries by selectively preloading only the
necessary associations for each operation:

Minimal Query (Authentication)

—

Query Subscriber

~

Use Case: S6a AIR - Only needs crypto keys and roaming rules

Moderate Query (Location Update)

Fidil TOUr MiopiiE NELWUIrK

Use our free tools to dimension your network and get
instant pricing estimates, or contact us for a tailored

solution to your needs.

Dimensioning Tool

Pricing Calculator

Get in Touch

Use Case: S6a ULR - Needs complete EPC profile data

Full Query (IMS Registration)

Query Subscriber

Use Case: Cx SAR - Needs IMS profile and all phone numbers

Diameter Response
Data Mapping

This document provides detailed mermaid diagrams showing where each field
in Diameter protocol responses is sourced from in the OmniHSS system.

Table of Contents

Update Location Answer (S6a ULA)

The Update Location Answer is sent by the HSS to the MME during LTE attach
procedures. This diagram shows the complete data flow from database tables
to Diameter AVPs.

Data Source Mapping

DHameter Response

Updiste Location Answer % Subscription Dats o
= APN Configurstion

- | s

QusS Profilke
Datsbaze Tahles
" EPC Proflie

Subscriber

= MSISDH
" APN Profile L APN identifier
L Static IF

- APH Qo=

Detailed Field Mapping

Database Source

subscriber.enabled

msisdn.msisdn

epc_profile.ue_ambr_ul_kbps

epc_profile.ue_ambr_dl_kbps

epc_profile.network_access_mode

apn_identifier.apn

apn_identifier.ip_version

apn_qgos_profile.qci

apn_qos_profile.allocation_retention_priority

Field

true/false

'14155551234"

50000

100000

"packet only'

'internet'

"ipv4ve'

8

SL
St

M

M:
Re

UL

M:
Re

DL
Ne
Ac
M
Se

Se

PL

Qc

Id

Pr
Le

Database Source

apn_qos_profile.pre_emption_capability

apn_qos_profile.pre_emption_vulnerability

apn_qos_profile.apn_ambr_ul_kbps

apn_qos_profile.apn_ambr_dl _kbps

static_ip.ipv4_static_ip

static_ip.ipv6_static_ip

Key Transformations:

Field

false

true

25000

50000

'100.64.1.1"

'2606:4700::1111"

1. AMBR bandwidth: Database stores in kbps, Diameter expects bps

(multiply by 1000)

2. IP Version encoding: 0=IPv4, 1=IPv6, 2=IPv4v6, 3=IPv4 or IPv6

3. Subscriber Status: enabled: true - 0 (SERVICE GRANTED), enabled:

false - 1 (OPERATOR DETERMINED BARRING)

4. Context-ldentifier: Sequential numbering (0, 1, 2...) for each APN in

profile

Pr:
en

Pr:
en
Vi

AF
Ul

AF
Dl

Se
Pa
Ac

Se
Pa
Ac

5. Static IP: Only included if assigned via static ips many-to-many
relationship

Business Logic Validation:

e Roaming check: Match visited PLMN against
roaming profile.roaming rules

e Subscriber enabled check: subscriber.enabled == true

e Filter APNs: May exclude IMS APNs if roaming policy denies IMS

Authentication Information Answer
(S6a AIA)

The Authentication Information Answer provides authentication vectors for
LTE/EPC subscribers.

Data Source Mapping

ey set .

Key Components:

1. Cryptographic Keys: All keys stored as hex strings in key set table

2. SQN Management: Sequence number incremented after each auth vector
generation (prevents replay attacks)

3. Milenage Algorithm: 3GPP TS 35.206 - generates authentication vectors
4. KASME Derivation: Key derived from CK||IK using KDF per TS 33.401

Security Features:

e SQN stored per subscriber (not global)
e Ki/OPc never leave HSS (only derived values transmitted)
e AUTN includes sequence number (SQN) and AMF for network authentication

e Milenage algorithm provides mutual authentication between UE and
network

Server Assighment Answer (Cx
SAA)

The Server Assignment Answer is sent by the HSS to the S-CSCF during IMS
registration.

Data Source Mapping

Milenage Algonith —=rr
tenage Algamthm Authentication Answer

= RAND
a
e W AN puth Vectors . A
Subrscriber » Eey Set - + Milenage 7
* XRES
Subscriber State
= KASME

Key Features:

1. IFC Template: XML template stored in ims profile.ifc template

2. Dynamic Substitution: Replaces {{msisdn}}, {{imsi}}, {{impu}} at
runtime

3. S-CSCF Assignment: Stores assigned S-CSCF in
subscriber state.assigned scscf

4. IMS Public ldentity: Format: sip:+{msisdn}@{ims domain} or tel:+
{msisdn}

IFC Template Parameters:

{{msisdn}} - First MSISDN from subscriber
{{imsi}} - Subscriber IMSI

{{impu}} - IMS Public User Identity (from subscriber_state)
{{impi}} - IMS Private User Identity (typically IMSI@realm)

Credit Control Answer (Gx CCA)

The Credit Control Answer is sent by the PCRF function to the PGW during
bearer establishment.

Data Source Mapping

QoS Info

APN QoS l

Key Features:

1. Session Tracking: Creates/updates pdn session record for each bearer

2. QoS Enforcement: Provides QCIl and bandwidth limits from APN QoS
profile

3. Charging Rules: Returns default charging rules for billing integration
4. CC-Request-Type: Handles INITIAL (1), UPDATE (2), TERMINATION (3)

Session State Management:

e INITIAL REQUEST: Creates new PDN session record
e UPDATE REQUEST: Updates existing PDN session
e TERMINATION REQUEST: Deletes PDN session record

User Data Answer (Sh UDA)

The User Data Answer is sent by the HSS to the AS (Application Server) via Sh
interface.

Data Source Mapping

UDA

. Build XML

Key Features:

1. Repository Data: Can store custom XML in
subscriber state.sh repository data

2. Service Indication: Filters data by requested service (e.g., presence,
messaging)
3. Public Identities: Returns all IMS public identities for subscriber

4. Reference vs Transparent: Supports both reference and transparent
data modes

ME Ildentity Check Answer (S13
ECA)

The ME Identity Check Answer is sent by the EIR function to the MME for IMEI
validation.

Data Source Mapping

Credit Control Answer
Database

A Q05 Info —
I EPC Profile - APN Qo5 CCA
Subscriber 4 ——= Bearer Qo5 |~

— » PDM Session

Key Features:

1. IMEI Regex Matching: Rules use regular expressions for flexible matching
2. TAC-based Rules: Can match Type Allocation Code (first 8 digits)
3. Default Behavior: Configurable for unknown IMEIs (accept or reject)

4. Equipment Status Values:
o 0 = WHITELIST (explicitly allowed)

o 1 = BLACKLIST (stolen/blocked)
o 2 = GREYLIST (allowed but monitored)
o 5 = UNKNOWN (no matching rule)

Use Cases:

Block stolen devices by exact IMEI

Block device models by TAC pattern

Whitelist approved devices only

Track grey market devices

Common Response Elements

All Diameter responses share these common AVPs:

Any Diameter Answer

Result-Code or
Experimental-Result
Source: Validation +

Business Logic

Configuration Example:

config :diameter ex,
diameter host: "hss",
diameter realm: "example.com",
diameter service name: "OmniHSS"

Data Flow Summary

Request Processing Pipeline

Database
Frocessing

" Subescriber Stake ! Uzer Dats Answer

-
Subscribeer Bullid XL o Sh XML Dats o Lizer Dists AP L o

¥
MSISDN

Implementation Notes

Protocol Handlers
The system implements handlers for the following Diameter protocols:

e S6a - LTE/MME interface for authentication and location updates

e Cx - IMS/CSCF interface for IMS registration and server assignment
e Sh - IMS/AS interface for subscriber data retrieval

e Gx - PCRF interface for policy and charging control

e Rx - IMS/AF interface for media authorization

e S13 - EIR interface for IMEI validation

¢ SWx - WIiFi/IMS interface for non-3GPP access authentication

Data Models

The database schema includes the following core entities:

¢ Subscriber - Core subscriber record with IMSI

Key Set - Cryptographic keys for authentication

EPC Profile - LTE service configuration

APN Profile - Access point configuration

IMS Profile - IMS service configuration with IFC templates

Roaming Profile - Roaming rules and restrictions
Subscriber State - Dynamic session and state tracking
PDN Session - Active bearer session tracking

Static IP - Static IP address assignments

EIR Rule - IMEI validation rules

OmniHSS Metrics and
Monitoring Guide

Table of Contents

Monitoring Overview

OmniHSS provides several mechanisms for monitoring system health,
performance, and subscriber activity. Operations staff should utilize a
combination of these tools for comprehensive visibility.

Monitoring Layers

Datsbace Monforing Log Aggregation

Comired Pamed
Web Interfsce

Control Panel Monitoring

The Control Panel provides the primary real-time monitoring interface.

Overview Page Monitoring

URL: https://[hostname]:7443/overview

Key Metrics Available

Monitored Subscriber States

State

Idle

Attached

PDN Active

IMS
Registered

In Call

Indicator

No location info

MME present

PDN session count
>0

S-CSCF assigned

Active call count >
0

Extracting Metrics from Overview

What It Means

Subscriber powered off or out of
coverage

Subscriber registered to network

Active data connection

Voice services ready

VOLTE call in progress

While the Control Panel doesn't export metrics directly, you can:

1. Count visible rows for total subscribers
2. Scan for green checkmarks to count enabled subscribers
3. Review expanded details for state information

4. Note last seen timestamps for responsiveness

Diameter Page Monitoring
URL: https://[hostname]:7443/diameter

Key Metrics

Critical Peer Monitoring

Identify critical peers and monitor their status:

Peer Type Criticality Impact if Down
MME High No new LTE attachments
P-GW High No data sessions

S-CSCF High No IMS registrations
P-CSCF High No VoLTE calls

I-CSCF Medium IMS routing issues

AS Low-Medium Specific service unavailable

Application Page Monitoring

URL: https://[hostname]:7443/application

Key Metrics

Metric Description
Process Active Erlang
Count processes
Memory Total memory
Usage consumed

Time since last

Uptime
restart

Normal
Range

Varies by
load

< 80%

N/A

Database Monitoring

Direct Database Queries

Connect to SQL Database to extract detailed metrics:

Subscriber Counts

Query the database to retrieve:

e Total count of all subscribers

¢ Count of enabled subscribers

¢ Count of IMS-enabled subscribers

Session Statistics
Query the database to retrieve:

¢ Count of active PDN sessions

e Count of active VoLTE calls

e Breakdown of PDN sessions by APN profile

Action
Threshold

> 90% of limit

> 90%

Track for
stability

Location Statistics

Query the database to retrieve:

e Subscriber count grouped by visited network (MCC-MNC combination)
e Count of subscribers currently roaming (not on home PLMN 001-001)

e Distribution of subscribers across different visited networks
Recent Activity
Query the database to retrieve:

e Count of subscribers seen in the last hour
e Distribution of subscribers by serving MME

e Timestamp analysis of last subscriber activity

Database Health Monitoring
Monitor database health by querying:

e Total database size and growth trends
¢ |Individual table sizes and row counts
e Current database connection count

e Query performance and resource usage

Log Monitoring

Log Output

OmniHSS outputs logs to stdout/stderr, which should be captured by your
process manager.

Log Levels

Debug
Detailed tracing

Info
Normal operations

/

_
\

Warning
Potential issues

Error
Failures

Key Log Patterns to Monitor

Diameter Peer Events:

[info] Diameter peer connected: mme@l.epc.example.com
[warn] Diameter peer disconnected: pgwOl.epc.example.com
[error] Diameter peer connection failed: timeout

Database Events:

[info] Database connection established
[error] Database connection lost: timeout
[error] Database query failed: deadlock detected

Authentication Events:

[info] Authentication successful: IMSI 001001123456789
[warn] Authentication failed: IMSI 001001123456789, invalid vector
[error] Roaming denied: IMSI 001001123456789, MCC 310 MNC 410

Log Aggregation

For production deployments, implement log aggregation:

OmniHSS

Log Aggregator

< =

Dashboards

External Monitoring Integration

Health Check Endpoint

API Health Check: GET /api/status

curl -k https://hss.example.com:8443/api/status
Expected Response:

{"status": "ok"}
HTTP Status: 200 OK

Monitoring Tool Integration

Nagios/Icinga Example

#!/bin/bash
check omnihss.sh

API URL="https://hss.example.com:8443/api/status”

response=$(curl -k -s -o /dev/null -w "%{http code}" "$API URL" --
max-time 5)

if ["$response" = "200"]; then
echo "OK - OmniHSS API responding"
exit 0
else
echo "CRITICAL - OmniHSS API not responding (HTTP $response)”
exit 2
fi

Prometheus Integration

Custom exporters can be created to export OmniHSS metrics to Prometheus by
querying the APl and database.

SNMP Integration

For SNMP-based monitoring, custom SNMP extension scripts can query the
database or API for metrics and return values via SNMP OIDs.

Key Performance Indicators

Operational KPIs

. Debug
/r Detailed tracing
/
R Info
/ Normal operations
Log Levels

\... Warning

Potential issues

N\

b

N) Error

Failures

Recommended KPI Thresholds

KPI

System Uptime

Diameter Peer Uptime

Authentication Success Rate

Diameter Response Time

Database Query Time

Error Rate
Capacity KPIs
Metric

Total Subscribers

Concurrent PDN
Sessions

Database Size

Database Connections

Target

99.99%

99.9%

> 99%

< 100ms

< 50ms

<0.1%

Monitor

Current count

Active sessions

MB used

Active
connections

Warning Critical
<99.95% < 99.9%
< 99.5% < 99%

< 99% < 95%

> 200ms > 500ms
> 100ms > 500ms
> 0.5% > 1%

Plan Action At

80% of expected
capacity

70% of expected
maximum

80% of allocated storage

80% of pool size

Alerting Strategies

Alert Priorities

Priority 1 Priority 2 Priority 3 Priority 4
Critical High Medium Low

Alert Definitions

Critical Alerts (P1)

System Unavailable:

API health check fails

Control Panel inaccessible

Database connection fails

Action: Immediate investigation and escalation
All Diameter Peers Disconnected:

e Zero connected peers

e Action: Check network, restart if necessary
Database Down:

e Cannot connect to SQL Database

e Action: Investigate database server, restart if necessary

High Priority Alerts (P2)

Critical Diameter Peer Down:

Primary MME disconnected

Primary P-GW disconnected

Primary S-CSCF disconnected

Action: Investigate peer connectivity within 15 minutes
High Memory Usage:

e Memory > 95%

e Action: Investigate memory leak, plan restart
High Authentication Failure Rate:

. 10% of auth requests fail

e Action: Check subscriber provisioning, investigate cause
Medium Priority Alerts (P3)
Non-Critical Peer Down:

e Secondary peer disconnected
e Application Server disconnected

e Action: Investigate within 1 hour
Elevated Memory Usage:

e Memory > 85%

e Action: Monitor trend, plan capacity upgrade
Elevated Error Rate:

e Error rate > 1%

e Action: Review logs, identify root cause
Low Priority Alerts (P4)
Capacity Warning:

e Subscribers > 80% of capacity

e Database > 80% of allocated storage

e Action: Plan capacity expansion
Performance Degradation:

e Response times elevated but acceptable

e Action: Monitor and optimize queries

Alert Notification Channels

Downloads ¥ English~ Omnitouch Website
‘ UMniH>> ‘

|

stdout/stderr

|

Process Manager
systemd, supervisord

|

‘ Log Files ‘

Log Aggregator
Cloud Logging

ELK Stack Sl ‘ CloudWatch, Stackdriver

Dashboards

Monitoring Checklist

Daily Checks

Review Control Panel Overview - subscriber counts normal
Review Diameter page - all critical peers connected

Review Application page - memory and processes within limits
Check for error logs - no critical errors in last 24 hours

Verify backup completed successfully

Weekly Checks

Review capacity trends - subscriber growth
Review performance trends - response times
Review database size - growth rate acceptable
Review error rates - identify patterns

Test alert notifications - ensure working

Monthly Checks

Capacity planning review - project 6 months ahead
Performance optimization review - identify slow queries
Security review - certificate expiration, vulnerabilities
Documentation review - update runbooks

Disaster recovery test - verify backups restore correctly

OmniHSS Multi-MSISDN
and Multi-IMSI
Features

Table of Contents

Overview

OmniHSS supports advanced provisioning capabilities that enable flexible
service configurations:

Multi-MSISDN Support
One IMSI -» Multiple Phone Numbers

A single subscriber (identified by one IMSI) can have multiple MSISDNs (phone
numbers) assigned. All numbers ring on the same device and share the same
service profiles.

MSISDN 1

s +1-415-555-1001
-~
//
r
: One IMS| MSISDN 2
One Physical SIM R
001001123456789 +1-415-555-1002
N
\
\\
MSISDN 3
e

+1-415-555-1003

Multi-IMSI SIM Support

One SIM - Multiple IMSIs

A single physical SIM card can contain multiple IMSIs, allowing the device to
attach to different networks using different network identities. This is useful for
international roaming and MVNO scenarios.

IMSI 1
001001111111111 Subscriber 1
Home Network

IMSI 2
310410222222222 Subscriber 2
Roaming Partner

One Physical SIM
Multi-IMSI Capable

IMSI 3
234015333333333 Subscriber 3
Regional MVNO

Multi-MSISDN: Multiple Phone
Numbers

How It Works

One subscriber record in the HSS has multiple MSISDNs linked through a join
table. When the subscriber registers to IMS, all MSISDNs are included in the IMS
profile, allowing inbound calls to any number to reach the device.

Key Characteristics

One IMSI - Subscriber has a single IMSI tied to their SIM card
Multiple MSISDNSs - Subscriber can have multiple phone numbers
IMS Integration - All MSISDNs are registered in IMS

Shared Service - All numbers share the same service profiles (EPC, IMS,
Roaming)

Data Model

IMSI 1
> 001001111111111 — Subscriber 1 ‘

/ Home Network

o
e
//
. IMSI 2
One Physical SIM)
. 310410222222222 e Subscriber 2
Multi-IMSI Capable ,
Roaming Partner
N\
S
RS
Y
\\
AN IMSI 3

o 234015333333333 — Subscriber 3 ‘
Regional MVNO

Important: One MSISDN can only be assigned to ONE subscriber at a time.
However, one subscriber can have MANY MSISDNSs.

Use Cases
1. Business and Personal Lines

A subscriber has both business and personal phone numbers on the same

device:
Personal
" +1-415-555-0001
Smartphone
Single SIM
\ Business
+1-415-555-0002

2. International Numbers

A subscriber who travels frequently has numbers in multiple countries:

Subscriber
US Number UK Number German Number
+1-415-555-0001 +44-20-7123-4567 +49-30-1234-5678

3. Family Plans

One parent manages multiple family member numbers:

> e Personal Contacts
7 +1-415-555-0001 i
Smartphone
Single SIM
H\M .
Ty Sz Business Contacts

+1-415-555-0002

Note: In OmniHSS, this would require multiple subscribers (one per SIM/IMSI),
each potentially having multiple MSISDNs.

4. Legacy Line Porting

When a subscriber changes numbers but wants to keep the old nhumber active
during transition:

New Number
+1-415-555-0002

Old Number
+1-415-555-0001

\ \
Month 1: Old number only

‘ Subscriber |

Uses old number

Month 2: Add new number, both active

Old contacts still work

Give new number to contacts

Month 3: Remove old number

Only new number active

New Number
+1-415-555-0002

Old Number

Subscriber +1-415-555-0001

Configuration

Creating MSISDNs

MSISDNs must be created before assigning to subscribers.

Create first MSISDN

curl -k -X POST https://hss.example.com:8443/api/msisdn \
-H "Content-Type: application/json" \
-d '{"msisdn": {"msisdn": "14155551001"}}"'

Create second MSISDN
curl -k -X POST https://hss.example.com:8443/api/msisdn \
-H "Content-Type: application/json" \
-d '{"msisdn": {"msisdn": "14155551002"}}"
Assigning MSISDNs to Subscribers

The assignment is done through the join table in the database.

Database Method:

1. Query the database to get the subscriber ID for the target IMSI
2. Query the database to get the MSISDN IDs for the phone numbers

3. Insert records into the join table linking subscriber_id to each msisdn_id

This creates the many-to-many relationship between the subscriber and their
phone numbers.

Provisioning Workflow

subscriber
L __'_'_'_‘_'_'___ T _________‘_‘—‘—-_
~ i : T~
v v v
UsS Number UK Number German Number
+1-415-555-0001 +44-20-7123-4567 +49-30-1234-5678

Verifying Assignment
Query the database to retrieve the subscriber along with all linked MSISDNs by:

e Joining the subscriber table with the join table

e Joining the join table with the msisdn table

e Grouping results by subscriber to see all phone numbers together

This will show the subscriber ID, IMSI, and a list of all assigned MSISDNs.

IMS Integration

IMS Registration

When a subscriber registers to IMS, all assigned MSISDNs are included in
the IMS profile sent to the S-CSCF.

Phone I-CSCF OmniHSS S-CSCF

REGISTER (IMSI)

Cx UAR (Check User)

Cx UAA (User Exists)

REGISTER (Forward)

Cx SAR (Register User)

Load subscriber
+ all MSISDNs

Render IFC Template
with all MSISDNs

Cx SAA
(IFC with all numbers)

200 OK

Phone I-CSCF OmniHSS S-CSCF

IFC Template Rendering

The IMS IFC template can reference all MSISDNs using the {{msisdns}}
variable.

Example IFC Template:

<ServiceProfile>
<PublicIdentity>
<Identity>sip:
{{imsi}}@ims.mnc{{mnc}}.mcc{{mcc}}.3gppnetwork.org</Identity>
</PublicIdentity>

<PublicIdentity>
<Identity>sip:+14155551001@ims.example.com</Identity>
</PublicIdentity>
<PublicIdentity>
<Identity>tel:+14155551001</Identity>
</PublicIdentity>
<PublicIdentity>
<Identity>sip:+14155551002@ims.example.com</Identity>
</PublicIdentity>
<PublicIdentity>
<Identity>tel:+14155551002</Identity>
</PublicIdentity>

</ServiceProfile>

Template Variable:

e {{msisdns}} - List of all MSISDNs assigned to subscriber

Public Identities

Each MSISDN typically results in two IMS public identities:

MSISDN: 14155551001

~ N

SIP URI TEL URI
sip:+14155551001@ims.example.com tel:+14155551001

Inbound Call Routing

When someone calls one of the subscriber's numbers, the IMS network routes
to the correct SIP URI:

- Old Number MNew Number
Subscriber +1-415-555-0001 +1-415-555-0002

Month 1: Old number only

Uses old number

>

Month 2: Add new number, both active

Old contacts still work

(=
Give new number to contacts
=
Month 3: Remove old number
Only new number active
>
- Old Number MNew Number
Subscriber +1-415-555-0001 +1-415-555-0002

Outbound Call Presentation
The phone can choose which number to present as caller ID for outbound calls.

SIP INVITE Example:

INVITE sip:+15105551234@ims.example.com SIP/2.0

From: "+14155551002" <sip:+14155551002@ims.example.com>;tag=123
To: <sip:+15105551234@ims.example.com>

P-Asserted-Identity: <sip:+14155551002@ims.example.com>

The From and P-Asserted-Identity headers indicate which of the subscriber's
numbers is being used.

Troubleshooting Multi-MSISDN

Issue: MSISDN Not Appearing in IMS Registration

Symptoms:

e S-CSCF shows only one public identity

e Calls to second number fail
Troubleshooting Steps:
1. Verify MSISDN Assignment in Database:

o Query the database to retrieve all MSISDNs linked to the subscriber's
IMSI

o Check the join table to ensure the relationships exist

2. Check IMS Profile Template:

o Verify template includes {{msisdns}} variable

o Confirm template syntax is valid XML

3. Review HSS Logs:

o Look for IMS registration (Cx SAR) messages

o Verify all MSISDNs are included in response

4. Test IMS Registration:

o Trigger re-registration on phone

o Check S-CSCF logs for public identities registered
Issue: Cannot Assign MSISDN to Subscriber
Symptoms:

e Database insert fails

e Error: "Duplicate entry" or "Foreign key constraint”

Possible Causes:

1. MSISDN Already Assigned:

o Query the database to check if the MSISDN is already linked to another
subscriber

o Solution: Remove the existing assignment first, then create the new
assignment

2. MSISDN Doesn't Exist:

o Query the database to verify the MSISDN record exists

o Solution: Create the MSISDN record first via APl or database insert

Issue: Calls to One Number Work, Other Doesn't
Symptoms:

e Calls to primary number work

e (Calls to secondary number fail or route incorrectly
Troubleshooting Steps:
1. Verify Both Numbers in IMS Registration:

o Check S-CSCF registered public identities
o Confirm both SIP URIs present

2. Check IMS Routing Rules:

o Verify IFC template routing rules apply to all identities

o Check if specific number needs special routing

3. Test Both Numbers:

Test from SIP client
sip:+14155551001@ims.example.com # Should work
sip:+14155551002@ims.example.com # Should also work

Issue: APl Lookup by MSISDN Returns Wrong Subscriber

Symptoms:

e APl query /api/subscriber/msisdn/:msisdn returns unexpected
subscriber

Verification:

Query the database to find which subscriber the MSISDN is assigned to. This
should return exactly one subscriber. If it returns multiple or the wrong
subscriber, the join table has incorrect data that needs to be corrected.

Best Practices

Provisioning Order

1. Create all MSISDNs first
2. Create subscriber
3. Assign MSISDNs to subscriber

4. Verify assignment before activation

MSISDN Management

e Document primary vs secondary numbers in subscriber
custom_attributes

e Port numbers sequentially when porting to avoid service disruption

e Test all numbers after provisioning before giving to customer

IMS Configuration

e Ensure IFC template handles multiple public identities correctly
e Test inbound routing to all numbers

e Verify caller ID presentation for outbound calls

Migration

When migrating from single to multi-MSISDN:

Subscriber has 1
MSISDN

_
/_
¢

Complete

Multi-IMSI SIM: Multiple Network
Identities

How It Works

A multi-IMSI SIM contains multiple complete subscriber profiles, each with its
own IMSI, keys, and credentials. The device can switch between IMSIs to attach
to different networks, often automatically based on location or network
availability.

Important: Only one IMSI can be active at any given time. When a device
switches to a different IMSI on the same SIM card, the HSS will automatically
deregister the previously active IMSI.

OmniHSS Implementation

In OMniHSS, each IMSI on a multi-IMSI SIM is provisioned as a separate
subscriber record, but all reference the same SIM card:

SIM Card
ICCID:
/ 8991101200003204510
Subscriber 1 Subscriber 2 Subscriber 3
IMSI: 001001111111111 IMSI: 310410222222222 IMSI: 234015333333333

Use Cases
1. International Roaming Optimization

¢ Home IMSI: 001-001 (home network rates)
e US Roaming IMSI: 310-410 (local US rates)

e EU Roaming IMSI: 234-015 (local EU rates)

e Device switches IMSI based on location
2. MVNO Service

e Primary IMSI: MVNO network (reseller)
e Fallback IMSI: Host network (parent operator)

e Automatic failover if MVNO coverage unavailable

3. 10T/ M2M Multi-Network

IMSI 1: Primary carrier

IMSI 2: Backup carrier for redundancy

IMSI 3: Emergency/low-cost fallback

Critical devices maintain connectivity
4. Regulatory Compliance

e Different IMSIs for different regulatory zones
e Comply with local data residency requirements

e Use local network identity per jurisdiction

Multi-IMSI Features

Independent Authentication

e Each IMSI has its own Ki, OPC, and key set
e Separate authentication vectors per IMSI

» Different security credentials per network
Separate Service Profiles

e Different EPC profiles (bandwidth, APNSs)
e Different IMS profiles (voice services)

e Different roaming rules per IMSI

Shared Physical Identity

e All IMSIs reference same SIM (via sim_id)
e Same ICCID across all subscriber records

e Logical grouping via SIM card
Network Selection

¢ Device or SIM card decides which IMSI to use
e Based on available networks, location, policy

e HSS authenticates whichever IMSI device presents

Configuration

1. Create SIM card (multi-IMSI capable)
SIM ID=$(curl -k -X POST https://hss.example.com:8443/api/sim \
-d '{"sim": {"iccid": "8991101200003204510", "is esim": false}}'

| jg -r '.data.id")

2. Create key set for IMSI 1 (home network)
KEYSET1=$(curl -k -X POST https://hss.example.com:8443/api/key set
\

-d '{"key set": {"ki": "0123456789ABCDEF...", "opc":
"FEDCBA9876..."}}"' \

| jq -r '.data.id')

3. Create subscriber 1 (home IMSI)
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-d "{\"subscriber\": {
\"imsi\": \"001001111111111\",
\"sim id\": $SIM ID,
\"key set id\": $KEYSETI1,
\"epc profile id\": 1
I3

4. Create key set for IMSI 2 (roaming partner)
KEYSET2=$(curl -k -X POST https://hss.example.com:8443/api/key set
\

-d '{"key set": {"ki": "1111111111111111...", "opc":
"2222222222..."}}" \

| jq -r '.data.id')

5. Create subscriber 2 (roaming IMSI)
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-d "{\"subscriber\": {
\"imsi\": \"310410222222222\",
\"sim id\": $SIM ID,
\"key set id\": $KEYSET2,
\"epc profile id\": 2
P

6. Repeat for additional IMSIs on the SIM...

Authentication Flow

When a multi-IMSI device attaches:

Phone I-C5CF OmniHS5 5-C5CF

REGISTER (IM5l1)
-

Cx UAR (Check User)

Cx UAA (User Exists)
.q......................................
REGISTER (Forward)

L J

Cx SAR (Register User)

il
%

Load subscriber
+ all M5ISDNs

Render IFC Template
with all MSISDNs

«

Cx SAM
(IFC with all numbers)

200 OK

F 3

Phone I-CSCF OmniHS5 5-CSCF

The HSS doesn't need to know it's a multi-IMSI SIM—it just authenticates
whatever IMSI the device presents.

IMSI Switching and Automatic Deregistration

When a multi-IMSI SIM switches from one IMSI to another, only one IMSI can be
registered at a time on the network. OmniHSS automatically handles this by
sending a Cancel Location Request (CLR) to deregister the previously active
IMSI when a new IMSI from the same SIM card registers.

Single Active IMSI Rule

Key Concept: Only one subscriber (IMSI) per SIM card can be active at any
given time.

e If a subscriber is registered on an MME using IMSI X

¢ And the HSS receives an Update Location Request for IMSI Y (on the same
SIM as IMSI X)

e The HSS automatically sends a Cancel Location Request to deregister
IMSI X

This ensures clean handoff between IMSIs and prevents conflicts in the
network.

IMSI Switching Flow

Currently registered with IMSI X
001001111111111

IMSI X is active
Location: MME-001

User travels to different country
SIM switches to IMSI'Y

Attach Request (IMSI Y: 310410222222222)

S6a AIR (IMSI Y)

S6a AIA (auth vectors for IMSI Y)

Authentication Challenge

Authentication Response

S6a ULR (Update Location for IMSI Y)

Query: Find other subscribers
with same sim_id

SELECT * FROM subscriber
WHERE sim_id = (SELECT sim_id FROM subscriber WHERE imsi='310410...")
AND imsi != '310410...'
AND subscriber_state is REGISTERED

Found: IMSI X is still registered
on MME-001

S6a CLR (Cancel Location for IMSI X)
Destination: MME-001

Deregister IMSI X
Release resources

S6a CLA (Cancel Location Answer)

Mark IMSI X as deregistered
Register IMSI'Y

S6a ULA (Update Location Answer for IMSI Y)

Attach Accept (IMSI Y now active)

‘ IMSI Y is now registered ‘

IMSI X is deregistered
IMSI Y is active

Why This Matters

Network Integrity:

e Prevents duplicate registrations from the same physical SIM
e Ensures network resources are properly released

¢ Maintains accurate subscriber location data
Billing Accuracy:

e Only one IMSI is charged for network access at a time
¢ Clear session boundaries between IMSI| switches

e Accurate CDR (Call Detail Record) generation
Resource Management:

e MME resources for old IMSI are freed
e PDP contexts and bearers are cleaned up

e Location tracking remains accurate

IMSI Switch Triggers

The device/SIM decides when to switch IMSIs based on:
1. Network Availability

o Home IMSI network not available

o Switch to roaming partner IMSI

2. Manual Selection

o User manually selects network

o SIM switches to corresponding IMSI

3. Policy-Based

o SIM card has internal rules (e.qg., prefer local IMSI in certain countries)
o Automatic switching based on MCC/MNC

4. Cost Optimization

o Switch to IMSI with lower roaming rates

o Use local IMSI to avoid roaming charges

IMS Considerations

The same Cancel Location Request behavior applies to IMS registration:

MSISDN: 14155551001

//
v v
SIP URI TEL URI
sip:+14155551001@ims.example.com tel:+14155551001

Operational Impact
For Operations Staff:

1. Subscriber appears offline: When IMSI switches, the old IMSI will show
as "deregistered" in the HSS. This is normal behavior.

2. Two subscriber records for one SIM: Multi-IMSI SIMs will have multiple
subscriber records sharing the same sim id. Only one will be in
"registered" state at a time.

3. Location tracking: The subscriber state table tracks which MME/SGSN
each IMSI is registered with. When IMSI switches, the old location is cleared.

4. Troubleshooting: If a device cannot be reached:

o Check which IMSI is currently registered
o Verify the correct IMSI is being used for the current network

o Confirm only one IMSI per SIM is in registered state

Combined Scenarios

Multi-IMSI + Multi-MSISDN

You can combine both features: multiple IMSIs on one SIM, each with multiple
MSISDNs.

Multi-IMSI SIM

—_— T~

IMSI 1: IMSI 2:
001001111111111 310410222222222

Subscriber 1 Subscriber 2

7~ N\ 7~ N\
ET BN TN T

Example Use Case:

¢ Home Network (IMSI 1):

o Personal number: +1-415-555-1001
o Business number: +1-415-555-1002

e US Roaming Network (IMSI 2):

o Personal number: +1-212-555-2001
o Business number: +1-212-555-2002

When device is in home territory, uses IMSI 1 with its MSISDNs. When roaming
in US, switches to IMSI 2 with different MSISDNs optimized for US network.

Operational Procedures

Managing Multi-MSISDN Subscribers

View all MSISDNs for a subscriber:

Query via API: GET /api/subscriber/imsi/:imsi

The response includes all linked MSISDNs.

Troubleshooting Multi-IMSI

Device not attaching with second IMSI:

1. Verify second subscriber record exists for that IMSI
2. Check key set is configured correctly for that IMSI
3. Verify EPC profile is assighed

4. Confirm roaming rules allow attachment

Device switching IMSIs unexpectedly:

e This is controlled by device/SIM logic, not HSS
e HSS authenticates whatever IMSI is presented

e Check device IMSI selection settings

Troubleshooting Multi-MSISDN

Second number not ringing:

1. Verify MSISDN is linked in join table
2. Check IMS profile template includes {{msisdns}} variable
3. Confirm IMS registration includes all public identities

4. Review S-CSCF logs for registered identities

Outbound calls only show one number:

e Device selects which number to present as caller ID
e This is device configuration, not HSS

e HSS provides all identities; device chooses

Benefits Summary

Multi-MSISDN Benefits

v One SIM, multiple phone numbers v Separate business and personal lines v
International local presence v Simplified device management v All numbers
share same data service v Centralized billing per IMSI

Multi-IMSI SIM Benefits

v Optimized roaming costs v Automatic network selection v Redundancy and
failover v Local network identity v Regulatory compliance v Service continuity
across networks

Combined Benefits

v Maximum flexibility v Different number sets per network v Optimized for
each use case v Complex business scenarios v International and local
optimization

PCRF (Policy and
Charging Rules
Function)

Overview

The HSS includes a built-in PCRF (Policy and Charging Rules Function) that
provides policy control and charging rules for mobile data sessions. The PCRF
controls Quality of Service (QoS) policies, bandwidth allocation, and charging
rules for both default and dedicated bearers in LTE networks.

Key Capabilities

¢ Gx Interface: Policy control for PGW/PCEF (Packet Data Network Gateway /
Policy and Charging Enforcement Function)

e Rx Interface: Authorization and QoS for IMS (IP Multimedia Subsystem)
media flows

e Dynamic Policy Management: Real-time policy updates via Re-Auth
Requests (RAR)

e VOLTE Support: Dedicated bearer creation for voice calls with guaranteed
QoS

e Charging Rules: Define charging behavior and speed profiles using Traffic
Flow Templates (TFTs)

e REST API: Programmatic control of policy enforcement and rule
management

Architecture

Diameter Interfaces

Application
Interface Peer
ID
PGW
Gx 16,777,238
(PCEF)
P-CSCF
Rx 16,777,236
(AF)

Purpose

PDN session management, QoS
enforcement, charging rules

IMS media authorization,
bandwidth reservation

Session State Management

The PCRF maintains session state for active PDN connections and VoLTE calls:

PDN_SESSION

int id PK
string pgw_session_id
string assigned_pgw_host

string rat_type

string ip_address
R
T boolean | emergency
""
- boolean | roaming
contains uses
o
iy
LTE_CALL
int id PK
int pdn_session_id FK
string pescf_session_id 1
APN_PROFILE
string assigned_pcscf_host
int id PK
string codec
string | name
string type

boolean | dedicated_bearer_active

int dedicated_bandwidth_ul

int dedicated_bandwidth_dI

GXx Interface

Supported Operations

1. Credit Control Request - Initial (CCR-I)
Trigger: PGW creates new PDN connection for subscriber

Request AVPs:

e Session-Id

e Origin-Host, Origin-Realm

e Subscription-ld (contains IMSI)
e Called-Station-ld (APN name)

SUBSCRIBER_STATE

int id PE

string imnsi

e |P-CAN-Type (IP Connectivity Access Network type)
e RAT-Type (Radio Access Technology)
e Framed-IP-Address (UE IP address)

PCRF Actions:

1. Lookup subscriber by IMSI

2. Retrieve APN profile and QoS configuration
3. Create session tracking entry

4. Build QoS policies from APN profile

Response AVPs:

e Result-Code: 2001 (DIAMETER_SUCCESS)
e QoS-Information (APN aggregate bandwidth limits)
e Default-EPS-Bearer-QoS (QCI, ARP, priority)

¢ Bearer-Control-Mode

2. Credit Control Request - Update (CCR-U)
Trigger: PGW reports session changes (location update, RAT change, etc.)

PCRF Actions:

1. Locate existing session by session ID
2. Update session parameters (RAT type, location, etc.)

3. Return updated policies if needed
Response: Result-Code 2001 with optional policy updates
3. Credit Control Request - Terminate (CCR-T)
Trigger: PGW terminates PDN connection
PCRF Actions:

1. Locate session by session ID
2. Delete session and associated call records

3. Confirm termination

Response: Result-Code 2001

4. Re-Auth Request (RAR)
Direction: PCRF - PGW (HSS initiates)
Trigger:

e IMS call setup (Rx AAR triggers Gx RAR)
e |IMS call teardown (Rx STR triggers Gx RAR)
¢ Manual re-auth via REST API

RAR AVPs:

Session-Id (PGW session ID)
Auth-Application-Id: 16,777,238
Re-Auth-Request-Type (0 = Authorize only)

Charging-Rule-Install/Remove

QoS-Information (for dedicated bearers)

PGW Actions: Create/modify/delete dedicated bearers based on charging rules

Charging Rules and Traffic Flow Templates

The PCRF supports defining charging rules with Traffic Flow Templates (TFTs) to
control:

e Service-specific charging - Different rates for video, gaming, social
media, etc.

* Speed profiles - Throttle or prioritize traffic matching specific patterns

 Usage-based policies - Apply different QoS based on traffic type or
destination

Charging rules can be:

e Installed dynamically via Gx RAR based on application detection

* Pre-defined and triggered by specific conditions (time of day, location,
quota)

Associated with TFTs using packet filter rules (5-tuple: protocol, source/dest
IP, source/dest port)

Common Use Cases:

Zero-rating - Unlimited access to specific services (Spotify, WhatsApp,
Facebook) without consuming data quota

Post-quota access - Allow self-care portal and support sites even after
subscriber exhausts data allowance

Tiered speed - High-speed for premium services, throttled for standard
content

Time-based policies - Off-peak unlimited streaming, peak-time
prioritization

Roaming policies - Different charging for international vs domestic data
usage

Enterprise SLAs - Guaranteed QoS for business-critical applications

QoS Policy Structure

Default Bearer QoS (from APN profile):

}

"QoS-Class-Identifier": 9, // QCI (9 = default bearer)
"APN-Aggregate-Max-Bitrate-UL": 50000, // kbps
"APN-Aggregate-Max-Bitrate-DL": 100000, // kbps
"Allocation-Retention-Priority": {
"Priority-Level": 8,
"Pre-emption-Capability": 1, // May preempt
"Pre-emption-Vulnerability": 1 // May be preempted
}

Dedicated Bearer QoS (for VoLTE):

{
"QoS-Class-Identifier": 1, // QCI 1 = Conversational

Voice
"Max-Requested-Bandwidth-UL": 128000, // bps
"Max-Requested-Bandwidth-DL": 128000, // bps
"Guaranteed-Bitrate-UL": 128000,
"Guaranteed-Bitrate-DL": 128000

Rx Interface

Supported Operations

1. AA Request (AAR) / AA Answer (AAA)

Trigger: P-CSCF requests authorization for IMS media session (VOLTE call setup)

Request AVPs:

e Session-ld (P-CSCF session identifier)
e Subscription-ld (IMSI or SIP URI)

e Media-Component-Description
o Media-Type (audio, video)

o Max-Requested-Bandwidth-UL/DL
o Codec-Data
o Flow-Description (5-tuple packet filters)

e AF-Application-Identifier
PCRF Actions:

. Lookup subscriber by IMSI or SIP URI
. Find active IMS session

. Extract media parameters (codec, bandwidth, flow rules)

1

2

3

4. Create call tracking entry

5. Trigger Gx RAR to PGW to create dedicated bearer
6

. Wait for Gx RAA response

7. Return Rx AAA with authorization result

Response AVPs:

¢ Result-Code: 2001 (success) or 5063 (service not authorized)

2. Session Termination Request (STR) / Session Termination Answer
(STA)

Trigger: P-CSCF terminates IMS session (call hangup)
PCRF Actions:

1. Locate call session by P-CSCF session ID
2. Trigger Gx RAR to PGW to remove dedicated bearer
3. Delete call tracking entry

4. Return STA confirmation

Response: Result-Code 2001

Common Message Flows

Flow 1: PDN Session Establishment

PGW HSS
(PCEF) (PCRF) Database

Gx CCR-I
(IMSI, APN, RAT-Type, IP)

Query subscriber
Subscriber data
Query APN profile
APN QoS config
Create pdn_session
Session created
Build QoS information

(QCI, AMBR, ARP)

Gx CCA-I
(QoS-Information,
Default-EPS-Bearer-QoS)

Establish default bearer
with QoS parameters

PGW HSS
(PCEF) (PCRF) Database

Flow 2: VoLTE Call Setup (Rx AAR -» Gx RAR)

PGW HS5
(PCEF) (PCRF) Database
Gx CCR-
(IMSI, APN, RAT-Type, IP)
>
Query subscriber
Subscriber data
B
Query APN profile
>
APN QoS config
.‘_____________________...............
Create pdn_session
>
Session created
L LI L LI T

Build QoS information
(QCI, AMBR, ARP)

0

Gx CCA-|
(QoS-Information,
Default-EPS-Bearer-Qos)

*a.;;;;;;;;;;;;;;;;;;;;;--- sEEEmEEE

Establish default bearer
with QoS parameters

PGW HS5
(PCEF) (PCRF) Database

Flow 3: VOLTE Call Teardown (Rx STR -» Gx RAR)

P-CSCF HSS PGW
(IMS AF) (PCRF) Database (PCEF)
Rx STR
(Session-Id)
Lookup Ite_call by
P-CSCF session ID
Ite_call record
Gx RAR
(Charging-Rule-Remove)
Delete dedicated bearer
Gx RAA
(Result-Code: 2001)
Delete Ite_call record
Deleted
Rx STA

(Result-Code: 2001)

P-CSCF HSS
(IMS AF) (PCRF)

PGW
Database (PCEF)

Flow 4: PDN Session Update

PGW HSS
(PCEF) I ‘ (PCRF) Database

Gx CCR-U
(Session-Id, New RAT-Type,
Location Update)

Lookup pdn_session by
PGW session ID

pdn_session record

Update session
(RAT type, location, timestamp)

Updated
Evaluate policy changes

(e.g., roaming, RAT-specific rules)

Gx CCA-U
(Result-Code: 2001,
Optional policy updates)

PGW HSS
(PCEF) I ‘ (PCRF) e

Flow 5: PDN Session Termination

P-CSCF HSS PGW
{IMS AF) {PCRF) Database (PCEF)

Bx 5TR
(Session-1d)

L J

Lookup Ite_call by
P-CSCF session ID

Ite_call record

.‘
Gx RAR
{Charging-Rule-Remowe)
Delete dedicated bearer
Gx RAA
(Result-Code: 2001)
q ...
Delete Ite_call record
Deleted
.‘
Rx STA
{Result-Code: 2001)
‘.
P-CSCF H55 PGW
{IMS AF) {PCRF) Database (PCEF)

Flow 6: Manual Re-Auth via REST API

Administrator HSS REST API PCRF Core ‘ Database ‘ (58‘5";)

POST /api/operation/pcrf_re_auth

{imsi: "...", apn: "ims"}
Query subscriber by IMSI
Subscriber data
Find active session for APN
Session found
Build Gx RAR
(Session-Id, Destination)
Gx RAR
(Re-Auth-Request-Type)
Update policies/bearers
Gx RAA
(Result-Code: 2001)
RAR result
HTTP 200

{data: "Gx Re-Auth Request sent,
Result-Code: 2001"}

Administrator HSS REST API PCRF Core ‘ Database ‘)

REST API

PCRF Re-Auth Endpoint

Endpoint: POST /api/operation/pcrf re auth
Purpose: Manually trigger Gx Re-Auth Request to refresh policies

When to Use: This manual endpoint is typically used for troubleshooting or
forcing policy refresh on specific subscribers. For routine policy updates
(changing APN QoS profiles), the system automatically triggers re-auth for all
affected sessions - no manual action needed.

Request Body:

“imsi": "999999876543210",
Ilapnll : Ilimsll

Success Response (HTTP 200):

"data": "Gx Re-Auth Request for 999999876543210 sent to
pgw.epc.mnc999.mcc999.3gppnetwork.org, Result-Code: 2001"
}

Error Response (HTTP 400):

"error": "Unable to send Re-Auth Request for 999999876543210 on
APN ims, no active PDN Session found"

}

Policy Configuration API

The PCRF retrieves QoS policies from APN configurations stored in the
database. These policies can be created and managed via REST API.

Automatic Policy Enforcement: When you update an APN QoS profile (e.g.,
change bandwidth limits or QCI), the system automatically sends Gx Re-Auth
Requests (RAR) to all PGWs with active PDN sessions using that APN. This

ensures policy changes are applied immediately to all connected subscribers
without manual intervention.

Policy Architecture

Policies are defined through a three-tier structure:

APN Identifier - APN QoS Profile - APN Profile
i i i
"internet" QCI, AMBR, ARP Links both together

1. Create APN ldentifier

Define the APN name and IP version support.
Endpoint: POST /api/apn/identifier

Request Body:

{
"apn_identifier": {
"apn": "internet",
"ip version": "ipv4ve"
}
}

IP Version Options:

e "ipv4" - IPv4 only
e "ipve" - IPv6 only
e "ipv4ve" - Dual stack (both IPv4 and IPv6)

e "ipv4 or_ipv6" - Network decides (either IPv4 or IPv6)

Response (HTTP 201):

{
"data": {
"id": 1,
"apn": "internet",
"ip version": "ipv4ve"
}
}

Validation:

e apn: Required, 1-254 characters, unique

e 1ip version: Required, must be one of the four options above
List APN Identifiers: GET /api/apn/identifier

2. Create APN QoS Profile

Define the QoS parameters (bandwidth, QCI, priority).
Endpoint: POST /api/apn/qos_profile

Request Body:

"apn qos profile": {
“name": "Best Effort Internet",
"qci": 9,
"allocation retention priority": 8,
"apn _ambr dl kbps": 100000,
"apn_ambr ul kbps": 50000,
"pre emption capability": false,
"pre _emption vulnerability": true

QoS Parameters:

Field

name

gci

allocation retention priority

apn _ambr dl kbps

apn_ambr ul kbps

pre emption capability

pre emption vulnerability

Type

string

integer

integer

integer

integer

boolean

boolean

Range

1-254 chars

1-254

1-15

1-
4,294,967,293

1-
4,294,967,293

true/false

true/false

Description

Profile name
(unique)

QoS Class
Identifier (1-
4 = GBR, 5-
9 = Non-
GBR)

ARP level (1
= highest
priority)

APN
Aggregate
Maximum
Bit Rate
Downlink
(kbps)

APN
Aggregate
Maximum
Bit Rate
Uplink
(kbps)

Can
preempt
lower
priority
bearers

Can be
preempted

Field Type Range Description

by higher
priority
bearers

Common QCI Values:

e 1 - Conversational Voice (VoLTE) - GBR, 100ms delay budget
e 2 - Conversational Video - GBR, 150ms delay budget

e 5 - IMS Signaling - Non-GBR, 100ms delay budget

e 9 - Default Bearer (Internet) - Non-GBR, 300ms delay budget

Response (HTTP 201):

{
"data": {
"id": 1,
"name": "Best Effort Internet",
"gqci": 9,
"allocation retention priority": 8,
"apn_ambr dl kbps": 100000,
"apn_ambr ul kbps": 50000,
"pre _emption capability": false,
"pre emption vulnerability": true
}
}

List QoS Profiles: GET /api/apn/qos profile
3. Create APN Profile

Link the APN identifier with a QoS profile.
Endpoint: POST /api/apn/profile

Request Body:

"apn profile": {
"name": "Internet APN",
"apn_identifier id": 1,
"apn_qos profile id": 1
}
}

Fields:

e name: Profile name (unique), used for reference
* apn_identifier id: ID from

* apn_qos profile id: ID from

Response (HTTP 201):

{
"data": {
"id": 1,
"name": "Internet APN",
"apn_identifier id": 1,
"apn_qos profile id": 1
}
}
Constraints:

e apn_identifier id and apn qos profile id must reference existing
records

e Each combination of APN identifier and QoS profile must be unique
List APN Profiles: GET /api/apn/profile

Complete Policy Configuration Example

Step 1: Create IMS APN Policy (VoLTE)

1. Create APN Identifier
curl -X POST https://hss.example.com:8443/api/apn/identifier \
-H "Content-Type: application/json" \

-d '{
"apn_identifier": {
"apn": "ims",
“ip version": "ipv4ve"
}
)
Response: {"data": {"id": 2, ...}}

2. Create QoS Profile (IMS Signaling)
curl -X POST https://hss.example.com:8443/api/apn/qos profile \
-H "Content-Type: application/json" \
-d '{
"apn _qos profile": {
"name": "IMS Signaling QoS",
"qci": 5,
"allocation retention priority": 2,
"apn ambr dl kbps": 5000,
"apn _ambr ul kbps": 5000,
"pre _emption capability": true,
"pre emption vulnerability": false
}
}
Response: {"data": {"id": 2, ...}}

3. Create APN Profile
curl -X POST https://hss.example.com:8443/api/apn/profile \
-H "Content-Type: application/json" \
-d '{
"apn profile": {
"name": "IMS APN",
"apn_identifier id": 2,
"apn_qos profile id": 2
¥
}
Response: {"data": {"id": 2, ...}}

Step 2: Assign to Subscriber

Once created, the APN profile is assigned to subscribers via EPC profiles. See
for linking APN profiles to subscribers.

Policy Update and Deletion

Update QoS Profile:

PATCH /api/apn/qos profile/{id}
PUT /api/apn/qos profile/{id}

Example - Increase Bandwidth for All Users:

Update QoS profile ID 1 to increase bandwidth
curl -X PATCH https://hss.example.com:8443/api/apn/qos profile/1 \
-H "Content-Type: application/json" \
-d '{
"apn_qos profile": {
"apn _ambr dl kbps": 150000,
“apn_ambr ul kbps": 75000
}
3

What Happens Automatically:

1. QoS profile is updated in the database

2. System identifies all active PDN sessions using APNs linked to this QoS
profile

3. For each active session, a Gx RAR is sent to the corresponding PGW

4. PGWs update bearer QoS to reflect new bandwidth limits

5. All connected subscribers immediately receive the updated policy

Example Scenario: If 100 subscribers are currently connected on the
“internet" APN using QoS profile ID 1, all 100 will have their bandwidth limits
updated to 150 Mbps down / 75 Mbps up within seconds of the API call
completing.

Note: When you update an APN QoS profile, the system automatically
triggers re-auth for all active PDN sessions using that APN, applying the new

policies immediately to attached subscribers. No manual re-auth is required.

Delete Resources:

DELETE /api/apn/identifier/{id}
DELETE /api/apn/qos profile/{id}
DELETE /api/apn/profile/{id}

Deletion Constraints:

e Cannot delete APN identifiers or QoS profiles referenced by APN profiles

e Cannot delete APN profiles assigned to active subscribers

Policy Templates

High-Speed Internet (100 Mbps down / 50 Mbps up):

"apn_qos profile": {
"name": "High Speed Internet",
"gqci": 9,
"allocation retention priority": 8,
"apn_ambr dl kbps": 100000,
"apn_ambr ul kbps": 50000,
"pre _emption capability": false,
"pre emption vulnerability": true

Premium Internet (500 Mbps down / 100 Mbps up):

"apn_qos profile": {
"name": "Premium Internet",
"gci": 8,
"allocation retention priority": 5,
"apn _ambr dl kbps": 500000,
"apn_ambr ul kbps": 100000,
"pre _emption capability": true,
"pre emption vulnerability": false

loT/M2M (Low Bandwidth):

{
"apn_qos profile": {
"name": "IoT M2M",
"gci": 9,
"allocation retention priority": 10,
"apn _ambr dl kbps": 1024,
"apn_ambr ul kbps": 512,
"pre emption capability": false,
"pre emption vulnerability": true
}
}

Emergency Services (Highest Priority):

"apn_qos profile": {
“name": "Emergency APN",
"gci": 5,
"allocation retention priority": 1,
"apn _ambr dl kbps": 10000,
"apn_ambr ul kbps": 10000,
"pre _emption capability": true,
"pre emption vulnerability": false

Configuration

Diameter Service Setup

Gx Application (config/runtime.exs):

o°
-~

application name: :gx,
application dictionary: :diameter gen 3gpp gXx,
vendor specific application ids: [

%{vendor id: 10415, auth application id: 16 777 238}

]

Rx Application (config/runtime.exs):

o°
~

application name: :rx,
application dictionary: :diameter gen 3gpp rx,
vendor specific application ids: [
%s{vendor id: 10415, auth application id: 16 777 236}

]

QoS Parameters

QoS parameters are sourced from:

 Default Bearer: APN profile configuration in database

o apn _qgos profile.qgci (QoS Class ldentifier)

o apn_qos profile.apn ambr ul kbps (Aggregate Maximum Bit Rate
Uplink)

o apn_qgos profile.apn ambr dl kbps (Aggregate Maximum Bit Rate
Downlink)

o apn_qgos profile.priority level (Allocation Retention Priority)

e Dedicated Bearer: Extracted from Rx AAR Media-Component-Description

o QCI: 1 (Conversational Voice)
o Guaranteed Bitrate: From Max-Requested-Bandwidth AVPs

o Flow filters: From Flow-Description AVPs

Error Handling

Result .
Type Meaning Cause
Code
Request processed
2001 Success DIAMETER _SUCCESS
B successfully
. IMSI not in subscriber
5001 Experimental User not found
database
PDN session doesn't
5002 Experimental Session not found exist for
update/terminate
, Service not IMS media authorization
5063 Experimental , _
authorized denied

Implementation Details

Session Management

The PCRF tracks:

Active PDN Sessions - One per APN, per subscriber

VOLTE Calls - Multiple calls per IMS session (supports conference calling)

QoS Policies - Applied dynamically based on APN configuration

Charging Rules - Traffic flow templates and service-specific policies

Advanced Policy Features

The PCRF supports advanced policy control including:

Charging rule installation/removal via Gx interface

Traffic Flow Template (TFT) matching for service differentiation

Dynamic speed profiles based on application or traffic type

Service-aware policies triggered by network conditions or subscriber
behavior

Contact your system administrator for information on configuring advanced
charging rules and TFT-based policies.

Related Documentation

. - Detailed protocol specifications
. - Complete API documentation
. - Overall HSS architecture

. - Database to Diameter AVP mappings

OmniHSS Profile
Management

Overview

OmniHSS uses profiles to define service characteristics for subscribers.
Profiles allow you to create reusable service templates that can be assigned to

multiple subscribers, simplifying provisioning and ensuring consistency.

Profile Types

Profile Types

—_— N T
Ea A ES B

EPC Profiles

EPC (Evolved Packet Core) Profiles define data service characteristics for LTE

subscribers.
Key Parameters

Parameter

ue ambr dl kbps

ue _ambr ul kbps

network access mode

tracking area update interval seconds

Creating EPC Profiles

Description

Download
speed limit

Upload
speed limit

Service type

TAU timer

Typical Value

10,000 - 1,000,0
Kbps

5,000 - 500,000
Kbps

"packet only" or
"packet_and_circ

54 seconds (typi

curl -k -X POST https://hss.example.com:8443/api/epc/profile \

-H "Content-Type: application/json" \
-d '{

"apn profiles": [],

“name": "Premium 100Mbps",

"network access mode": "packet only",
"tracking area update interval seconds": 600,

"ue ambr dl kbps": 100000,
"ue ambr ul kbps": 50000

Common EPC Profile Templates

Basic Internet:

e Download: 10 Mbps (10,000 Kbps)
e Upload: 5 Mbps (5,000 Kbps)

Standard:

e Download: 50 Mbps (50,000 Kbps)
e Upload: 25 Mbps (25,000 Kbps)

Premium:

e Download: 100 Mbps (100,000 Kbps)
e Upload: 50 Mbps (50,000 Kbps)

Unlimited:

e Download: 1 Gbps (1,000,000 Kbps)
e Upload: 500 Mbps (500,000 Kbps)

IMS Profiles

IMS Profiles define voice service characteristics, primarily through IFC (Initial
Filter Criteria) templates.

IFC Templates
IFC templates are XML documents that define call routing rules for the S-CSCF.

Template Variables:

{{imsi}} - Subscriber IMSI

{{msisdns}} - List of phone numbers

{{mcc}} - Home country code

{{mnc}} - Home network code

Creating IMS Profiles

curl -k -X POST https://hss.example.com:8443/api/ims/profile \
-H "Content-Type: application/json" \
-d '{
"ims profile": {
“name": "Standard VoLTE",
"ifc template": "<InitialFilterCriteria>...
</InitialFilterCriteria>"
}
}

IFC Template Example

<ServiceProfile>
<PublicIdentity>
<Identity>sip:
{{imsi}}@ims.mnc{{mnc}}.mcc{{mcc}}.3gppnetwork.org</Identity>
</PublicIdentity>
<InitialFilterCriteria>
<Priority>0</Priority>
<TriggerPoint>
<ConditionTypeCNF>0</ConditionTypeCNF>
<SPT>
<ConditionNegated>0</ConditionNegated>
<Group>0</Group>
<Method>INVITE</Method>
</SPT>
</TriggerPoint>
<ApplicationServer>
<ServerName>sip:as.ims.example.com</ServerName>
<DefaultHandling>0</DefaultHandling>
</ApplicationServer>
</InitialFilterCriteria>
</ServiceProfile>

APN Profiles

APN (Access Point Name) Profiles define network access points for data

connections.

APN Components

Profile Types

i v v

EPC Profile IMS Profile APN Profile
Data Services Voice Services MNetwork Access

APN Identifier

Defines the APN name and IP protocol support.
Common APNs:

* internet - General internet access
e ims - IMS/VOLTE signaling
e mms - Multimedia messaging

e vzwadmin - Carrier-specific
IP Version Options:

e "ipv4":IPv4 only
e "ipv6":IPv6 only
e "ipv4ve": IPv4v6 (dual stack)

e "ipv4 or ipv6": IPv4 or IPv6 (network choice)

APN QoS Profile

Defines quality of service parameters.

QCI (QoS Class Identifier) Values:

¥

Roaming Profile
Roaming Control

QCl

Type

GBR

GBR

GBR

Non-GBR

Non-GBR

Use Case

Conversational voice

Conversational video

Video streaming

IMS signaling

Internet (default)

Priority

Highest

High

High

Medium

Lowest

Creating Complete APN Configuration

1. Create APN Identifier
APN ID=$%$(curl -k -X POST
https://hss.example.com:8443/api/apn/identifier \
-H "Content-Type: application/json" \
-d '{"apn": "internet", "ip version": "ipv4v6"}' \
| jg -r '.response.id"')

2. Create APN QoS Profile
Q0S ID=$(curl -k -X POST
https://hss.example.com:8443/api/apn/qos profile \
-H "Content-Type: application/json" \
-d '{
"name": "Best Effort",
"allocation retention priority": 8,
"apn_ambr dl kbps": 50000,
"apn ambr ul kbps": 25000,
"pre emption capability": false,
"pre emption vulnerability": true,
"gci": 9
}'"' | jqg -r '.response.id"')

3. Create APN Profile
curl -k -X POST https://hss.example.com:8443/api/apn/profile \
-H "Content-Type: application/json" \
L
\"apn identifier id\": $APN 1ID,
\"apn_qos profile id\": $Q0S 1ID,
\"name\": \"Internet APN\"
3

Assigning APNs to EPC Profile

APNs are linked to EPC Profiles through the join epc profile to apn profile
table.

Insert records into the join table to link APN profile IDs to the EPC profile ID.
Multiple APN profiles can be assigned to one EPC profile.

Roaming Profiles

See detailed documentation in

Profile Assignment

Subscriber Profile Relationships

Subscriber

EPC Profile
Required

Assigning Profiles to Subscribers

Assign EPC and IMS profiles during subscriber creation
curl -k -X POST https://hss.example.com:8443/api/subscriber \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
"imsi": "001001123456789",
"key set id": 1,
"epc _profile id": 1,
"ims profile id": 1,
“roaming profile id": 1
}
}

Update subscriber profile
curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \
-H "Content-Type: application/json" \
-d '{
"subscriber": {
"epc profile id": 2
¥
}

Profile Management Best Practices

Design Principles

1. Create Standard Profiles - Define common service tiers (Basic, Standard,
Premium)

2. Reuse Profiles - Assign same profile to multiple subscribers
3. Document Changes - Track profile modifications

4. Test Before Production - Verify profile works with test subscriber first

Profile Naming Convention

[Service Tier]-[Speed]-[Features]
Examples:
- "Basic-10Mbps-Internet"

- "Premium-100Mbps-VoLTE"
- "Enterprise-1Gbps-MultiAPN"

Profile Migration

When changing a subscriber's profile:

‘ Operations | ‘ OmniHSS API l ‘ Subscriber |

Update subscriber profile

Success

On next attach/TAU

Location Update Request

New profile data (AMBR, APNs)

Profile active

‘ Operations | ‘ OmniHSS API l Subscriber

Important: Profile changes take effect on the next:

e Tracking Area Update (TAU)
e Attach
e |IMS Registration (for IMS profile changes)

Troubleshooting Profile Issues

Subscriber not getting expected speed:

1. Check assigned EPC profile AMBR values
2. Check APN QoS profile AMBR values
3. Verify MME/P-GW enforcing QoS correctly

4. Check for network congestion

IMS registration fails:

1. Verify IMS profile assigned
2. Check IFC template XML validity
3. Review S-CSCF logs for IFC processing errors

4. Confirm S-CSCF selection configuration

APN not available:

1. Verify APN profile linked to EPC profile
2. Check APN identifier matches network request

3. Review PDN connectivity request from UE

OmniHSS Protocol
Flows

Overview

This document details the Diameter protocol message flows supported by
OmniHSS. Understanding these flows is essential for troubleshooting and

operations.

S6a Interface (LTE/EPC)

Authentication Information Request (AIR/AIA)

MME requests authentication vectors for subscriber.

MME OmniHSS (HS5) Database

SGa AlR
{IM5I, Visited PLMMN, Requested Vectors)

=

Query subscriber + key_set + roaming_profile

L J

Subscriber data
5 AR S R RS B SE EAE SRR

Check reaming allowed

-
—
alt [Roaming Denied]
S6a AlA
Result: Roaming Mot Allowed
Ml e e e e e
[Roaming Allowed]
Generate auth vectors (Milenage)
|
SGa AlA
Result: Success
{Auth Vectors)
MME OmniHSS (H55) Database
Key AVPs:

e Request: User-Name (IMSI), Visited-PLMN-Id, Number of Requested Vectors
e Response: Authentication-Info (RAND, AUTN, XRES, KASME)

Update Location Request (ULR/ULA)

MME notifies HSS of subscriber location and retrieves subscription data.

S6a ULR
(IMSI, MME Identity, Visited PLMN)

Query subscriber + epc_profile + apn_profiles
Subscriber + profiles

Update subscriber_state
(MME, location, timestamp)

Updated
Build subscription data

(AMBR, APN configs, QoS)

S6a ULA
Result: Success
(Subscription Data)

Key AVPs:

e Request: User-Name (IMSI), RAT-Type, ULR-Flags, Visited-PLMN-Id, UE-
SRVCC-Capability

e Response: Subscription-Data (AMBR, APN-Configuration, Network-Access-
Mode)

Purge UE Request (PUR/PUA)

MME notifies HSS when subscriber context is deleted.

MME OmniHSS (H55) Database

S6a ULR
(IM5l, MME Identity, Visited PLMN)

Query subscriber + epc_profile + apn_profiles

kL J

Subscriber + profiles

e
Update subscriber_state
{MME, location, timestamp)
Updated
Build subscription data
{AMBR, APN configs, QoS)
S6a ULA
Result: Success
(Subscription Data)
MME OmniHSS (H55) Database

Notify Request (NOR/NOA)

MME informs HSS of various events.

MME OmniHSS (HSS)

S6a NOR
(IMSI, Event Type)

Process notification

S6a NOA
Result: Success

MME OmniHSS (HSS)

Cancel Location Request (CLR/CLA)

HSS initiates location cancellation to inform MME that subscriber should be
detached. OmniHSS supports both automatic and programmatic CLR sending.

Automatic CLR (MME Handover)

When a subscriber performs an Update Location Request from a new MME,
OmniHSS automatically sends a CLR to the previous MME to clean up stale

registrations.

‘ Subscriber moves to new MME ‘

Previous MME

S6a ULR
(IMSI, New MME Identity)

Query subscriber_state
last_seen_mme: "old-mme.example.com"

- [Previous MME exists and differs from current]

Build CLR message

S6a CLR
(IMSI, Cancellation-Type: 0)
(CLR-Flags: 0)

Delete subsdariber context
S6a CLA
Result: Success

Update subscriber_state
(last_seen_mme: new MME)

Updated

S6a ULA
Result: Success
(Subscription Data)

it (459

Key AVPs (Automatic CLR):

Previous MME

e User-Name: IMSI of subscriber
¢ Destination-Host: Previous MME hostname
¢ Destination-Realm: Previous MME realm

e Cancellation-Type: 0 (MME Update Procedure)

e CLR-Flags: 0

e Subscription-Data: Full subscription profile

Programmatic CLR (API-Triggered)

Administrators can trigger CLR via the programmatic API to forcibly detach
subscribers (e.qg., for subscription withdrawal, fraud prevention, or
administrative actions).

MME OmniHSS (HSS)

S6a NOR
(IMSI, Event Type)

>

Process notification

«

Sba NOA
Result: Success

MME OmniHSS (HSS)

Key AVPs (Programmatic CLR):

e User-Name: IMSI of subscriber
e Destination-Host: Last seen MME hostname
¢ Destination-Realm: Last seen MME realm

e Cancellation-Type: :subscription withdrawal (encoded as integer per
3GPP TS 29.272)
e CLR-Flags:
o sb6a_indicator: 1 (indicates S6a interface)

o reattach required: 1 (UE must re-authenticate to reattach)

Cancellation Types

OmniHSS supports multiple cancellation types per 3GPP TS 29.272:

Type Value Description Use Case

MME Update 0 Normal MME Automatic during ULR
Procedure change from new MME
SGSN Update 3G/2G handover
1 SGSN handover :
Procedure scenarios

Subscription

] 2 Admin termination Manual detach via API
Withdrawal
Update Interworking _
3 . Legacy network interop
Procedure IWF function update
Initial Attach) , o
4 Fresh registration Force re-authentication
Procedure
CLR-Flags

The CLR-Flags AVP is a bitmask with the following fields:

Flag Bit Description

S6a/S6d Indicator 0 1 = S6a interface used

Reattach Required 1 1 = UE must perform new attach

Example CLR-Flags Configuration:

clr flags: %{
sba indicator: 1, # Using S6a interface
reattach required: 1 # Force re-authentication

}

Multi-IMSI Scenarios

OmniHSS tracks MME registration per subscriber (IMSI), not per MSISDN.
This is critical for understanding CLR behavior in multi-IMSI scenarios:

Scenario 1: Multiple MSISDNs, Single IMSI

Subscriber A:
- IMSI: 999000123456789
- MSISDNs: ["+1234567890", "+9876543210"]
- last seen mme: "mmeOl.operator.com"

When this subscriber moves to a new MME:

e One CLR sent to "mme0O1l.operator.com" with IMSI 999000123456789
¢ Both MSISDNs are affected (same subscriber, same SIM)
e User-Name AVP contains the IMSI, not MSISDNs

Scenario 2: Multiple Subscribers (Different IMSIs), Same MSISDN

OmniHSS enforces unique MSISDN constraint (one MSISDN cannot belong to
multiple subscribers simultaneously). However, during porting/migration:

Subscriber A:
- IMSI: 999000111111111
- MSISDN: "+1234567890"
- last seen mme: "mmeOl.operator.com"

Subscriber B (after porting):
- IMSI: 999000222222222
- MSISDN: "+1234567890" # Same MSISDN, different SIM/IMSI
- last seen mme: "mmeO2.operator.com"

When Subscriber B registers:

No CLR sent (different IMSI = different subscriber)

Subscriber A remains registered at mme0O1l

Subscriber B registers at mme02

Both can be active simultaneously (different physical devices)

Scenario 3: Programmatic CLR for Multi-MSISDN Subscriber
Result:

e One CLR sent to the subscriber's last_seen_mme
e All MSISDNs associated with that IMSI are effectively detached
e The IMSI is the primary key for tracking MME registration

Important Notes

1. IMSI is the Key: CLR operations are always per IMSI, never per MSISDN.
The subscriber state table tracks last seen mme by subscriber (IMSI).

2. Atomic Operation: Each subscriber can only be registered at one MME at
a time. The automatic CLR ensures this by cleaning up the old registration.

3. No CLR if No Previous MME: If last seen mme is nil (subscriber never
registered), no CLR is sent during ULR.

4. Subscription Data Included: The automatic CLR (during ULR) includes
the full Subscription-Data AVP to help the old MME properly clean up
context.

5. Asynchronous: The CLR is sent asynchronously (fire-and-forget). The ULA
response to the new MME does not wait for CLA from the old MME.

6. CLA Handling: OmniHSS receives CLA responses but currently discards
them (:discard at line 398). This prevents message loops and is standard
HSS behavior.

Cx Interface (IMS)

User Authorization Request (UAR/UAA)

I-CSCF queries if user is authorized to register.

‘ Phone ‘ | I-CSCF | OmniHSS (HSS)

SIP REGISTER
Cx UAR
(Public Identity, Visited Network)
Lookup subscriber
Iy [User Authorized]

Cx UAA
Result: Success
(Server Capabilities)

Select S-CSCF

[User Not Authorized]

Cx UAA
Result: User Unknown

403 Forbidden

‘ Phone ‘ | I-CSCF | OmniHSS (HSS)

Server Assignment Request (SAR/SAA)

S-CSCF registers/deregisters user and retrieves IMS profile.

Previous MME New MME OminiHSS (H55)

Subscriber moves to new MME

S6a ULR
(IMSI, New MME Identity)

=
L

Query subscriber_state

Database

last_seen_mme: "old-mme_example.com”
alt [Previous MME exists and differs from current]

Build CLR. message

-~

—

S6a CLR
(IM5I, Cancellation-Type: 0]
[CLR-Flags: 0)

Delete subscriber context

SEa CLA
Result: Success

S6a ULA
Result: Success
{Subscription Data)

Previous MME New MME OmniHSS (H55])
IFC Template Rendering:

e {{imsi}} - Actual IMSI
e {{msisdns}} - List of phone numbers
o {{mcc}}, {{mnc}} -» Home PLMN codes

Update subscriber_state
{last_seen_mme: new MME]

Multimedia Auth Request (MAR/MAA)

S-CSCF requests authentication vectors for IMS registration.

Database

S-CSCF OmniHSS (HSS) Database

Cx MAR
(IMSI, Public Identity)

Query subscriber + key set
Subscriber + keys
Generate IMS auth vectors

(CK, IK from Milenage)

Cx MAA
Result: Success
(SIP-Authenticate, CK, IK)

S-CSCF OmniHSS (HSS) Database

Location Info Request (LIR/LIA)

I-CSCF queries which S-CSCF is serving the user.

{ I-CSCF I OmniHSS (HSS) Database

Cx LIR
(Public Identity)

Query subscriber_state
(Lookup assigned S-CSCF)

S-CSCF assignment

- [User Registered]

Cx LIA
Result: Success
(S-CSCF Name)

Route to assigned S-CSCF

[User Not Registered]

Cx LIA
Result: User Not Registered

l I-CSCF I OmniHSS (HSS)

{ Database

Sh Interface (IMS Profile Data)

User Data Request (UDR/UDA)

Application Server requests subscriber profile data.

Phone I-CSCF OmniHSS (H55)

SIP REGISTER
Cx UAR
{Public Identity, Visited Network)
Lookup subscriber
alt [User Authorized]

Cx UAA
Result: Success
(Server Capabilities)
*_......________......_______......._______......_____
Select S-CSCF

0

[User Not Authorized]

Cx UAA
Result: User Unknown
*_......________......_______......._______......_____
403 Forbidden

Phone I-CSCF OmniHSS (HSS)

Profile Update Request (PUR/PUA)

Application Server updates subscriber profile data.

Application Server OmniHSS (HSS)

‘ Database

Sh PUR
(Public Identity, User Data)

Update subscriber_state
(sh_repository_data)

Updated

Sh PUA
Result: Success

Application Server OmniHSS (HSS)

| Database

Subscribe Notifications Request (SNR/SNA)

Application Server subscribes to profile changes.

Application Server OmniHSS (HSS)

Sh SNR
(Public Identity, Data Reference)

Store subscription

Sh SNA
Result: Success

When data changes...

Sh PNR
(Profile Update Notification)

Sh PNA
Result: Success

Application Server OmniHSS (HSS)

Gx Interface (Policy Control)

OmniHSS functions as the PCRF (Policy and Charging Rules Function) via the Gx
interface.

See for detailed architecture, policy
configuration, and QoS management.

Credit Control Request - Initial (CCR-1/CCA-I)

P-GW requests policy rules when PDN session is established.

S-CSCF OmniHSS (HSS) Database

Cx MAR
(IMSI, Public Identity)

Y

Query subscriber + key_set

L J

Subscriber + keys

Generate IMS auth vectors
(CK, IK from Milenage)

0

Cx MAA
Result: Success
(sIP-Authenticate, CK, 1K)
.*__..__..__..__..__..__..__..__..__.._..._..

S-CSCF OmniHSS (HSS) Database

Key AVPs:

e Request: Subscription-Id (IMSI), Called-Station-Id (APN), RAT-Type, IP-CAN-
Type
e Response: QoS-Information (QCI, ARP, AMBR), Charging-Rule-Install

Credit Control Request - Update (CCR-U/CCA-U)

P-GW notifies of session changes.

‘ P-GW I OmniHSS (PCRF)

{ Database

Gx CCR-U
(Session-ld, Event Trigger)

Update pdn_session
(Update timestamp, RAT type, etc.)

Updated

Gx CCA-U
Result: Success
(Updated Rules if needed)

OmniHSS (PCRF)

‘ P-GW I { Database

Credit Control Request - Terminate (CCR-T/CCA-
T)

P-GW notifies when PDN session ends.

IHCSCF

Cx LIR
(Public Identity)

OmniHSS (H55)

alt [User Registerad]

Cx LIA
Result: Success

[P R
Route to assigned S-CSCF

—

[User Not Registered]

Cx LIA

L J

(5-CSCF Name)

Result: User Not Registered

IHCSCF

OmniHSS (HSS)

Database

Query subscriber_state
(Lookup assigned 5-CSCF)

P D

L

S-CSCF assignment

Database

Re-Auth Request (RAR/RAA)

OmniHSS (PCRF) initiates policy update to P-GW.

OmniHSS (PCRF) P-GW

Policy change needed
(e.g., VOLTE call starts)

Gx RAR
(Session-Id, Updated QoS Rules)

Apply new rules
(e.g., create dedicated bearer)

Gx RAA
Result: Success

OmniHSS (PCRF) P-GW

Rx Interface (IMS Media Policy)

OmniHSS functions as the PCRF via the Rx interface for IMS media

authorization.

See for detailed VoOLTE call flows and media

authorization.

AA Request (AAR/AAA)

P-CSCF requests media authorization for IMS session.

‘ ‘ Database ‘

P-CSCF OmniHSS (PCRF) ‘ P-GW
)

SIP INVITE (VoLTE Call

Rx AAR
(IMSI, Media Description, SDP)

Lookup pdn_session
(Find active IMS PDN)

PDN session found

Create Ite_call record
(Codec, bandwidth, flow rules)

Call created

Rx AAA
Result: Success

Trigger dedicated bearer setup

Gx RAR
(QoS for dedicated bearer, SDF filters)

Create Dedicated Bearer
(GBR bearer for voice)

Gx RAA
Result: Success

SIP 183 Session Progress

S—— | eow

‘ ‘ Database ‘

Key Information:

e Parse SDP to determine codec and bandwidth
e Calculate required bandwidth (UL/DL)
¢ Create SDF filters for media flows

e Trigger dedicated bearer via Gx RAR

Session Termination Request (STR/STA)

P-CSCF notifies when IMS session ends.

Application Server OmniHSS5 (H55) Database

Sh PUR
{Public Identity, User Data)

[
ol

Update subscriber_state
(sh_repository_data)

Updated

5h PUA
Result: Success

Application Server OmniHSS (H55) Database

S13 Interface (EIR)

OmniHSS functions as the EIR (Equipment Identity Register) via the S13
interface.

See for detailed equipment identity checking, IMEI
validation, and blacklist management.

ME Identity Check Request (ECR/ECA)

External EIR client (or MME) requests equipment validation.

MME/EIR Client OmniHSS (EIR)

‘ Database

S13 ECR
(IMEI)
Query eir_rules
(Match IMEI against regex rules)
Matching rules
Evaluate rule actions
y [Rule Matches: Whitelist]
S13 ECA

Result: Equipment Unknown

[Rule Matches: Blacklist]

S13 ECA
Result: Equipment Blacklisted

[Rule Matches: Greylist]

S13 ECA
Result: Equipment Greylisted

[No Rule Match]

Apply unknown_equipment_behaviour config

S13 ECA
Result: (Based on config)

MME/EIR Client

OmniHSS (EIR) ‘ Database

Equipment Status Values:

e Equipment Unknown (0) - Device allowed (whitelist)
e Equipment Blacklisted (1) - Device blocked
« Equipment Greylisted (2) - Device allowed but tracked

Complete Call Flow: VolLTE Call

End-to-end VOLTE call setup showing multiple interfaces.

Application Server OmniHSS (HSS)

Sh SNR
(Public Identity, Data Reference)

>

Store subscription

Sh SNA
Result: Success
.1 ...
When data changes...
Sh PNR
(Profile Update Notification)
-«
Sh PNA
Result: Success
... ...
Application Server OmniHSS (HSS)

Troubleshooting Protocol Issues

Authentication Failures (S6a AIR)
Check:

1. Key set configured correctly (Ki, OPC, AMF)

2. SQN synchronization (if repeated failures)

3. Roaming rules allow visited network

Location Update Failures (S6a ULR)
Check:

1. EPC profile exists and has APNs configured
2. Roaming allowed for data services

3. MME identity format correct

IMS Registration Failures (Cx SAR)
Check:

1. IMS profile assigned to subscriber

2. IFC template valid XML

3. S-CSCF selection configured

4. MSISDNs assigned if used in template

PDN Connection Failures (Gx CCR-I)
Check:

1. APN exists in EPC profile's APN list
2. APN QoS profile configured

3. PDN session table not full (if limits exist)

OmniHSS Roaming
Control

Overview

OmniHSS provides granular roaming control, allowing you to define which
networks subscribers can access for both data and IMS services when roaming.

Roaming Control Flow

Subscriber Visits
Network

|

Lookup Roaming
Profile

Matching Rule?

Found Not Found
Apply Rule Action ‘ ‘ Apply Default Action

‘ Allow or Deny ‘

Roaming Profile Structure

Components

Roaming Profile

Roaming Rule
Each rule specifies action for a specific network (MCC/MNC combination).
Fields:

e name - Descriptive name

* mcc - Mobile Country Code (3 digits)

e mnc - Mobile Network Code (2-3 digits)
e data action - "allow" or "deny"

e ims action - "allow" or "deny"

Roaming Profile

Defines default behavior and links to rules.

Fields:

* name - Profile name
e data action if no rules match - "allow" or "deny"

e ims action if no rules match - "allow" or "deny"

Configuration Examples

Allow All Roaming

Create profile that allows everything
curl -k -X POST https://hss.example.com:8443/api/roaming/profile \
-H "Content-Type: application/json" \
-d '{
"roaming profile": {
"name": "Allow All",
"data action if no rules match": "allow",
"ims action if no rules match": "allow",
"roaming rules": []

Deny All Roaming

Create profile that blocks everything
curl -k -X POST https://hss.example.com:8443/api/roaming/profile \
-H "Content-Type: application/json" \

-d '{
“roaming profile": {
“name": "No Roaming",
"data action if no rules match": "deny",
"ims action if no rules match": "deny",

"roaming rules": []

Allow Specific Networks (Whitelist)

Create AT&T rule
RULE1=$(curl -k -X POST
https://hss.example.com:8443/api/roaming/rule \
-H "Content-Type: application/json" \
-d '{
"roaming rule": {
"name": "Allow AT&T",

"mcc": "310",
"mnc": "410",
"data action": "allow",
"ims action": "allow"
¥
}' | jq -r '.response.id')

Create Verizon rule

RULE2=$(curl -k -X POST

https://hss.example.com:8443/api/roaming/rule \
-H "Content-Type: application/json" \

-d '{
"roaming rule": {
"name": "Allow Verizon",
"mcc": "311",
"mnc": "480",
"data action": "allow",
"ims action": "allow"
}
}' | jg -r '.response.id"')

Create profile with deny-by-default and link rules
curl -k -X POST https://hss.example.com:8443/api/roaming/profile \
-H "Content-Type: application/json" \
@ T
\"roaming profile\": {
\"name\": \"US Carriers Only\",
\"data action if no rules match\": \"deny\",
\"ims action if no rules match\": \"deny\",
\"roaming rules\": [$RULE1l, $RULE2]
}
3

Allow Data, Block Voice

Create rule that allows data but blocks IMS
curl -k -X POST https://hss.example.com:8443/api/roaming/rule \
-H "Content-Type: application/json" \
-d '{
"roaming rule": {
"name": "Data Only - T-Mobile",

"mcc": "310",

“mnc": "260",

"data action": "allow",
"ims action": "deny"

Block Specific Networks (Blacklist)

Create expensive network blocking rule

RULE=$(curl -k -X POST

https://hss.example.com:8443/api/roaming/rule \
-H "Content-Type: application/json" \

-d '{
"roaming rule": {
"name": "Block Expensive Network",
"mcc": "206",
"mnc": "O1",
"data action": "deny",
"ims action": "deny"
}
}' | jg -r '.response.id"')

Create profile with allow-by-default
curl -k -X POST https://hss.example.com:8443/api/roaming/profile \

-H "Content-Type: application/json" \
@ O
\"roaming profile\": {
\"name\": \"Block Expensive Networks\",
\"data action if no rules match\": \"allow\",
\"ims action if no rules match\": \"allow\",
\"roaming rules\": [$RULE]

Common Roaming Scenarios

Scenario 1: Domestic Roaming Only

Subscriber can roam within home country but not internationally.

Roaming Rules

"] MCC/MNC specific
Default Data Action
Roaming Profile — > .
if no match
o Default IMS Action

if no match

Configuration:

e Default: Deny all
e Rules: Allow all USA MCC codes (310, 311, 312, 313, 314, 315, 316)

Scenario 2: Roaming Partners Only

Subscriber can only roam on networks with commercial agreements.

Partner twork Nonartner

Allow Deny

Configuration:

e Default: Deny all
e Rules: Allow each partner network explicitly (by MCC/MNC)

Scenario 3: Data Roaming, No Voice Roaming

Subscriber can use data abroad but must use WiFi for voice calls.

O\
R

Allow Data Deny IMS

Configuration:

* Rules: data action: "allow", ims action: "deny"

Scenario 4: Emergency Service Access
Always allow emergency services, even if roaming is blocked.

Note: Emergency service handling is typically done at the MME/network level.
OmniHSS roaming rules apply to normal services.

MCC/MNC Reference

Common Country Codes (MCC)

MCC Country Networks
310-316 USA AT&T, Verizon, T-Mobile, etc.
302 Canada Rogers, Bell, Telus

234-235 United Kingdom Vodafone, 02, EE

262 Germany Deutsche Telekom, Vodafone
208 France Orange, SFR, Bouygues
222 Italy TIM, Vodafone, Wind

214 Spain Movistar, Vodafone

Common US Carriers (MCC 310-316)

MCC MNC Carrier
310 410 AT&T

311 480 Verizon

310 260 T-Mobile

310 120 Sprint

313 380 (Example test network)

Full Lists: See or

Roaming Enforcement Points

S6a Interface (Data)

When subscriber attaches to visited network:

https://www.itu.int/pub/T-SP-E.212B
https://www.mcc-mnc.com/

‘ Subscriber ‘

Partner Network

!

Network Type

‘ Allow

Non-Partner

|

Deny

Cx Interface (IMS)

When subscriber registers to IMS in visited network:

S-CSCF (Visited)

‘ OmniHSS | ‘ Subscriber |

IMS Register

Cx SAR
(IMSI, Visited Network)

Check Roaming Profile

Lookup Rules for PLMN

- [IMS Roaming Allowed]

Cx SAA Success
(IMS Profile)

200 OK
[IMS Roaming Denied]

Cx SAA Error
(Roaming Not Allowed)

403 Forbidden

S-CSCF (Visited)

‘ OmniHSS | ‘ Subscriber |

Troubleshooting Roaming Issues

Subscriber Cannot Attach in Visited Network

Check roaming profile assignment:

e Query the database to view subscriber's assigned roaming profile

» Verify the profile name and default action settings
Check if rule exists for visited network:

e Query the database for roaming rules matching the visited network's
MCC/MNC

e Verify if a rule exists for the subscriber's roaming profile

e Check the data_action value for that specific network

Subscriber Can Attach But Not Register IMS

Check IMS action separately:

e Query the roaming rules for the visited network
e Verify both data_action and ims_action values

¢ Look for cases where data is allowed but IMS is denied

Unexpected Roaming Behavior

Review logs for roaming checks:

[info] Roaming check: IMSI 001001123456789, Visited PLMN 310-410
[info] Roaming rule matched: "Allow AT&T"
[info] Data action: allow, IMS action: allow

Best Practices

Profile Design

1. Start restrictive - Default deny, explicitly allow partners
2. Test thoroughly - Verify rules in lab before production
3. Document rules - Maintain list of allowed networks and why

4. Review regularly - Update as roaming agreements change

Rule Management

1. Use descriptive names - "Allow-ATT-Data-Only" not "Rulel"
2. Verify MCC/MNC - Double-check codes against official databases
3. Consider both services - Think about data and IMS separately

4. Monitor usage - Track which networks subscribers actually visit

Operational Procedures

1. Emergency Changes - Have procedure to quickly enable/disable roaming
2. Bulk Updates - Plan for updating multiple subscribers' roaming profiles
3. Reporting - Track roaming usage and denied attempts

4. Customer Communication - Notify customers of roaming policy changes

OmniHSS
Troubleshooting Guide

Table of Contents

Troubleshooting Overview

General Troubleshooting Approach

Issue Reported ‘

OmniCharge OmniRAN

- -
Scope of Impact
Single Subscriber Multiple Subscribers All Subscribers
Check Subscriber Data Check System/Profile ‘ Check System Health
| J
Check
Verify Subscriber Config ‘ ‘ Verify Profile Config ‘

Diameter/DB/System

Verify Resolution

Document Solution

Downloads 2 English+ Omnitouch Website (2

Information to Gather
Before troubleshooting any issue, collect:

1. Subscriber Information (if subscriber-specific)

(o]

IMSI
MSISDN (phone number)

Last known state

o

[e]

o Error messages from device

2. Timing Information

o When did the issue start?
o |s it intermittent or constant?

o Time of last successful operation

3. Scope of Impact

o Single subscriber or multiple?
o Specific network or all networks?

o Specific service (data/voice) or both?

4. System State

o Check for system status
o Review Diameter peer status

o Verify database connectivity

Authentication Failures

Symptoms

e Subscriber cannot attach to network
e "Authentication rejected" errors

e Repeated authentication attempts

Common Causes and Solutions

Cause 1: Incorrect Key Set
Symptoms:

e Consistent authentication failure for specific subscriber

e Works for other subscribers with same profile
Diagnostic Steps:

1. Query subscriber to verify key set id:

curl -k https://hss.example.com:8443/api/subscriber/imsi/[IMSI]

2. Verify key set exists and has correct values:

curl -k https://hss.example.com:8443/api/key set/[KEY SET ID]

3. Compare Ki and OPC values with SIM card documentation
Solution:

e Update subscriber with correct

e If keys are correct, SIM card may be faulty
Cause 2: SQN Out of Sync
Symptoms:

e Authentication fails after previously working
e Error: "SQN synchronization failure"

e Works intermittently
Diagnostic Steps:

1. Check subscriber state for SQN value in database

2. Look for SQN-related errors in logs

3. Verify subscriber's key set SQN value

Solution:

¢ SQN will automatically resynchronize after subscriber sends AUTS

e If persistent, reset SQN to 0 in key set (requires subscriber re-attach)

Warning: Resetting SQN can cause security issues. Only do during
maintenance.

Cause 3: Subscriber Disabled
Symptoms:

e Authentication rejected immediately

¢ No authentication vectors generated
Diagnostic Steps:

1. Check subscriber enabled status:

curl -k https://hss.example.com:8443/api/subscriber/imsi/[IMSI]

2. Verify enabled field is true

Solution:

curl -k -X PUT https://hss.example.com:8443/api/subscriber/[ID]
\

-H "Content-Type: application/json" \

-d "{"subscriber": {"enabled": true}}"'

Cause 4: Missing EPC Profile
Symptoms:

e Subscriber lookup succeeds but authentication fails

e Error: "No EPC profile assigned"

Diagnostic Steps:

1. Check subscriber's epc profile id field
2. Verify EPC profile exists:

curl -k
https://hss.example.com:8443/api/epc/profile/[PROFILE ID]

Solution:

e Assign valid to subscriber

Authentication Troubleshooting Flowchart

Authentication Failure

\

\
*

/N
e

Verify Resolution

Diameter Connectivity Issues

Symptoms

e Diameter peers showing as disconnected in
* "No route to host" errors

e Services failing for all subscribers

Common Causes and Solutions

Cause 1: Network Connectivity
Symptoms:

¢ Peer never connects
e Connection timeout errors

e Ping fails to peer
Diagnostic Steps:

1. Verify network connectivity from OmniHSS to peer:
ping [PEER IP]

2. Check if Diameter port is reachable:
telnet [PEER IP] 3868

3. Verify firewall rules allow Diameter traffic (port 3868)

Solution:

e Fix network routing
e Update firewall rules

e Verify peer is running and listening

Cause 2: Incorrect Diameter Configuration
Symptoms:

e Connection attempts fail
e CER/CEA exchange fails

* Peer rejects connection
Diagnostic Steps:
1. Review runtime.exs Diameter configuration:

o Verify peer origin_host matches peer's expected value
o Check origin_realm configuration

o Verify peer IP address is correct

2. Check logs for CER/CEA errors
3. Verify peer's configuration expects OmniHSS's origin_host
Solution:

e Update runtime.exs with correct
e Restart OmniHSS after configuration change

e Coordinate with peer administrator to verify settings
Cause 3: Certificate Issues (TLS Diameter)
Symptoms:

e Connection fails during TLS handshake
e Certificate validation errors

e "Certificate expired" or "Certificate invalid" errors
Diagnostic Steps:
1. Verify certificate files exist in priv/cert/

2. Check certificate expiration:

openssl x509 -in priv/cert/diameter.crt -noout -dates

3. Verify certificate chain is complete

4. Check peer's certificate if mutual TLS

Solution:

e Renew expired certificates
¢ |nstall correct certificate chain

e Update certificate files and restart OmniHSS

Cause 4: Peer Application Support Mismatch
Symptoms:

e Peer connects but doesn't support required applications
e Capabilities exchange succeeds but operations fail

e "Application not supported" errors
Diagnostic Steps:

1. Check for peer applications
2. Verify peer supports required application (S6a, Cx, Sh, etc.)
3. Review CER/CEA exchange in logs

Solution:

e Verify peer configuration includes required Diameter applications

e Check that peer type matches expected functionality:
o MME must support S6a (16777251)

o S-CSCF must support Cx (16777216)
o P-GW must support Gx (16777238)

Diameter Troubleshooting Flowchart

- -
Authentication Failure
L
Subscriber Enabled?
S,
fes
v
Has EPC Profile?
Yes
T
No Comect Keys?
e
, ",
No o ’ .‘ﬂ_as
' '.
Mo SON Sync lssue?
s
Yes' “Na
[\
[] . ¥ r . []
. Wait for Auto Resync
Enable Subscriber Assign EPC Profile Update Key Set or Resat SON Check MME Logs
e,

Ld)

Verify Resolution

Database Issues

Symptoms

e API returns 500 errors
e Control Panel fails to load
e "Database connection failed" errors

e Slow query performance

Common Causes and Solutions
Cause 1: Database Server Down
Symptoms:

¢ All API calls fail
¢ Control Panel shows error

¢ "Connection refused" errors
Diagnostic Steps:

1. Test database connectivity:

If using PostgreSQL
psql -h [DB HOST] -U [DB USER] -d [DB NAME]

If using MySQL
mysql -h [DB HOST] -u [DB USER] -p [DB NAME]

2. Check database service status on database server
3. Verify network connectivity to database server
Solution:

e Start database service

¢ Fix database server issues

* Verify network routing to database server

Cause 2: Incorrect Database Credentials
Symptoms:

e "Authentication failed" errors

e OmniHSS can't connect at startup
Diagnostic Steps:

1. Review database configuration in runtime.exs
2. Test credentials manually with database client

3. Check database user permissions

Solution:

e Update in runtime.exs
e Grant correct permissions to database user

e Restart OmniHSS after configuration change

Cause 3: Connection Pool Exhausted
Symptoms:

¢ Intermittent 500 errors
* "No available connections" errors

e High load periods trigger failures
Diagnostic Steps:

1. Check current connection count in database
2. Review database pool size in runtime.exs

3. Monitor connection usage during peak load

Solution:

e Increase pool size in runtime.exs configuration

e Investigate connection leaks if pool exhausts repeatedly

e Consider database scaling if load is consistently high

Cause 4: Slow Queries
Symptoms:

* APl responses very slow
e Timeouts on subscriber lookups
e Database CPU high

Diagnostic Steps:

1. Query database for slow query log
2. ldentify specific slow queries
3. Check for missing indexes

4. Verify subscriber count and table sizes

Solution:

e Optimize slow queries
e Add missing indexes
e Consider database performance tuning

e Plan for database scaling if needed

Database Troubleshooting Flowchart

Database Issue

Verify Connection

EPC Registration Failures

Symptoms

e Subscriber cannot attach to LTE network
* MME rejects attachment

e No PDN session established

Common Causes and Solutions

Cause 1: Roaming Denied
Symptoms:

e Subscriber works on home network but fails when roaming
e "Roaming not allowed" errors

e Works for some networks but not others
Diagnostic Steps:

1. Check subscriber's roaming_profile_id
2. Query roaming profile and rules
3. Verify MCC/MNC of visited network

4. Check if roaming rule exists for that network

Solution:

e Add for visited network MCC/MNC
e Or update roaming profile default action to allow

e See for configuration

Cause 2: Missing APN Configuration
Symptoms:

e Attachment succeeds but PDN session fails
¢ "Unknown APN" errors from MME

e Subscriber can't get data connection
Diagnostic Steps:

1. Check EPC profile has APN profiles linked
2. Verify APN identifier matches what device requests

3. Query APN profile configuration

Solution:

e Link to subscriber's EPC profile
e Ensure APN name matches device configuration
e Verify APN QoS profile exists

Cause 3: MME Not Connected
Symptoms:

e All subscribers fail to attach
¢ No communication with MME

e Diameter peer down
Diagnostic Steps:

1. Check
2. Verify MME peer status is "Connected"
3. Check MME supports S6a application

Solution:

e Troubleshoot
e Verify MME configuration

e Contact MME administrator

Cause 4: Subscriber State Corruption
Symptoms:

e Subscriber shows as attached but can't attach again
e State doesn't match reality

e Detach and re-attach fails
Diagnostic Steps:

1. Query subscriber state from database
2. Check for stale MME assignments

3. Verify last update timestamp

Solution:

e Clear subscriber state (detach procedure)
e Reset serving MME in subscriber state

e May require subscriber power cycle

EPC Registration Troubleshooting Flowchart

EPC Registration Fails

B
\\

Verify Attachment

IMS Registration Failures

Symptoms

e Subscriber can't register for VoLTE
e "IMS registration failed" on device

e Data works but voice doesn't

Common Causes and Solutions
Cause 1: IMS Disabled for Subscriber
Symptoms:

e Subscriber has data but no IMS

e Registration rejected immediately
Diagnostic Steps:

1. Query subscriber and check ims enabled field

2. Verify subscriber has ims profile id assigned

Solution:

. for subscriber

e Assign
Cause 2: S-CSCF Not Connected
Symptoms:

e All IMS registrations fail

e No IMS-related Diameter traffic
Diagnostic Steps:

1. Check

2. Verify S-CSCF peer connected
3. Check S-CSCF supports Cx application

Solution:

e Fix to S-CSCF
e Verify S-CSCF configuration

Cause 3: Missing or Invalid IFC Template
Symptoms:

e Registration fails during User-Authorization-Answer

e |FC-related errors in logs
Diagnostic Steps:

1. Query subscriber's IMS profile
2. Verify IFC template is present
3. Check IFC XML syntax

Solution:
e Update with valid IFC template
e See for IFC examples

Cause 4: Roaming Denied for IMS
Symptoms:

¢ |IMS works on home network
e Fails when roaming

e Data roaming works but not IMS
Diagnostic Steps:

1. Check roaming profile IMS action

2. Verify roaming rules have correct ims action

Solution:

e Update

to allow IMS

e Or update roaming profile default IMS action

IMS Registration Troubleshooting Flowchart

No

DB Server Running?

fes

Check Credentials

L4

Update runtime.exs

*

Start Database Service

Database Issue

Cam Connect?

Analyze Slow Queries

Dptimize/index o

T

Verify Connection

Yos.
L

Increase Pool Size

Restart OmniH55

.. Yes

Response Slow?

.No

Pool Exhausted?

No
L

Check Permissions

VOoLTE Call Failures

Symptoms

e |MS registration succeeds but calls fail
¢ One-way audio
e Call drops immediately

e "Call failed" error on device

Common Causes and Solutions

Cause 1: P-CSCF Not Connected
Symptoms:

e Registration works but calls fail

e Media authorization fails
Diagnostic Steps:

1. Check
2. Verify P-CSCF peer connected
3. Check P-CSCF supports Rx application (OmniHSS PCRF function)

Solution:

e Fix to P-CSCF
e Verify P-CSCF configuration points to OmniHSS for Rx

Cause 2: Missing Media Authorization
Symptoms:

e Call setup starts but fails
e AAR/AAA exchange fails

e Rx interface errors

Diagnostic Steps:

1. Check logs for Rx Diameter messages
2. Verify AAR (AA-Request) received
3. Check AAA (AA-Answer) response

Solution:

e Verify P-CSCF is sending AAR for media authorization
e Check OmniHSS Rx application configuration

e Verify subscriber has active IMS registration

Cause 3: QoS/Bearer Issues
Symptoms:

¢ Call connects but no audio
¢ One-way audio

e Quality issues
Diagnostic Steps:

1. Check APN QoS profile for voice APN
2. Verify QCl is set correctly (typically QCI 1 for voice)
3. Check P-GW is connected for Gx (PCRF function)

Solution:

e Verify for IMS APN
e Ensure QCI 1 is configured for voice bearer
e Fix to P-GW if needed

VoLTE Call Troubleshooting Flowchart

VoLTE Call Fails

0\

Test Call -

Roaming Issues

Symptoms

e Subscriber works at home but not when roaming

e Some roaming networks work, others don't

e Roaming data works but not voice (or vice versa)

Common Causes and Solutions
Cause 1: No Roaming Profile Assigned
Symptoms:

e Roaming fails for subscriber

e Other subscribers roam successfully
Diagnostic Steps:

1. Query subscriber's roaming profile id
2. Check if field is null

Solution:

e Assign to subscriber

Cause 2: Roaming Denied by Policy
Symptoms:

e Roaming fails consistently on specific network

e Error indicates policy rejection
Diagnostic Steps:

1. Identify visited network MCC/MNC from subscriber device or MME
2. Query subscriber's roaming profile

3. Check roaming rules for matching MCC/MNC

4. Check profile's default action

Solution:

e Add to allow visited network:

curl -k -X POST https://hss.example.com:8443/api/roaming/rule \
-H "Content-Type: application/json" \

-d '{
"roaming rule": {
"name": "Allow Visited Network",
"mcc": "310",
"mnc": "410",
"data action": "allow",
"ims action": "allow"
}
}

Cause 3: Data Allowed but IMS Denied
Symptoms:

e Data roaming works
e Voice/IMS roaming fails

e Split service availability
Diagnostic Steps:

1. Query roaming rules for visited network
2. Check data action vs ims action values

3. Verify roaming profile default actions

Solution:

e Update roaming rule to allow IMS:
o Set ims_action: "allow"

e Or update profile's ims action if no rules match to "allow"

See for detailed configuration.

EIR Problems

Symptoms

e Devices blocked unexpectedly
e Stolen devices not blocked

e EIR check failing

Common Causes and Solutions

Cause 1: Incorrect IMEI Regex
Symptoms:

* Wrong devices blocked/allowed

¢ Rule matches incorrectly
Diagnostic Steps:

1. Query EIR rules
2. Identify which rule is matching
3. Test regex pattern against actual IMEI

4. Check rule priority/order

Solution:

e Update with correct regex
» Test regex thoroughly before applying

e Consider rule order (first match wins)
Cause 2: MME Not Sending S13 Requests
Symptoms:

e EIR check never happens

e All devices allowed regardless of rules

Diagnostic Steps:

1. Check if MME is configured to use S13 interface
2. Verify MME Diameter peer connected
3. Check for S13 application support

4. Review MME configuration

Solution:

e Configure MME to perform EIR checks via S13
e Verify Diameter peer supports S13 application (16777252)

e Contact MME administrator if needed
Cause 3: No Default Rule
Symptoms:

e Devices not matching any rule have unexpected behavior
Diagnostic Steps:

1. Query all EIR rules
2. Check if catch-all rule exists

3. Verify rule ordering

Solution:

e Add default rule with regex .* to match all IMEls
e Set appropriate action (whitelist or blacklist)

e Ensure specific rules are checked before catch-all

Performance Problems

Symptoms

e Slow API responses
e Diameter request timeouts

e High CPU or memory usage

e Control Panel slow to load

Common Causes and Solutions

Cause 1: High Database Load
Symptoms:

e All operations slow
e Database CPU high

e Query timeouts
Diagnostic Steps:

1. Check database server resource usage
2. ldentify slow queries
3. Check for missing indexes

4. Monitor query patterns

Solution:

e Optimize slow queries

Add database indexes

Increase database resources

Consider database scaling

e See
Cause 2: High Subscriber Count
Symptoms:

e Performance degraded over time
e Slowness correlates with subscriber growth

e List operations especially slow
Diagnostic Steps:

1. Query total subscriber count

2. Check table sizes
3. Review query execution plans

4. Monitor resource usage trends

Solution:

Plan capacity upgrade

Optimize queries for large datasets

Consider pagination for large results

Implement caching if needed

Cause 3: Diameter Peer Issues
Symptoms:

e Diameter operations slow
e Timeouts on specific peer

e Some peers fast, others slow
Diagnostic Steps:

1. Check
2. ldentify slow peer
3. Test network latency to peer

4. Check peer resource usage

Solution:

Investigate peer performance issues

Check network path for congestion

Consider adding redundant peers

Increase Diameter timeout if needed

Cause 4: Memory Issues
Symptoms:

e OmniHSS memory usage high

e QOut of memory errors

e Performance degrades over time
Diagnostic Steps:

1. Check OmniHSS memory usage on Application page
2. Monitor memory trend
3. Check for memory leaks

4. Review Erlang VM settings

Solution:

e Restart OmniHSS to clear temporary condition
e Investigate memory leak if usage continuously grows
e Adjust Erlang VM memory settings in runtime.exs

e Plan for hardware upgrade if consistently high

Subscriber State Issues

Symptoms

e Subscriber shows as attached but isn't
e Stale state information
e Location information incorrect

e Can't detach subscriber

Common Causes and Solutions
Cause 1: MME Crash/Restart
Symptoms:

e Subscriber shows serving MME that is no longer serving
e Subscriber can't attach after MME restart

e State is stale

Diagnostic Steps:

1. Check subscriber state for serving MME
2. Verify if MME has restarted

3. Check MME's last connection time

Solution:

e Wait for subscriber to attach again (state will update)
¢ Or manually clear subscriber state

¢ MME should send Cancel-Location on restart

Cause 2: Network Detach Not Received
Symptoms:

e Subscriber powered off but shows as attached
e PDN sessions remain in database

¢ Location not cleared
Diagnostic Steps:

1. Check subscriber's last_seen timestamp
2. Verify if old state (hours or days old)

3. Check if subscriber device is reachable

Solution:

e State will clear when subscriber attaches again
e Or wait for state timeout (if implemented)

e Manual cleanup may be required for very stale state

Cause 3: Database Corruption
Symptoms:

¢ Inconsistent state across tables
e Foreign key violations

e State doesn't make sense

Diagnostic Steps:

1. Query subscriber state directly from database
2. Check for orphaned records

3. Verify referential integrity

Solution:

» |dentify and fix inconsistent data
e May require manual database cleanup

e Contact support if corruption is widespread

API Issues

Symptoms

e API returns errors
e Slow API responses
e Cannot create/update entities

e 500 errors

Common Causes and Solutions

Cause 1: Invalid Request Data
Symptoms:

* 400 or 422 errors
* Validation error messages

e Field rejected
Diagnostic Steps:

1. Review error response for specific field errors

2. Check API request format

3. Verify required fields present
4. Check data types

Solution:

e Fix request data to match
e Ensure all required fields included

* Verify foreign key references exist (profile IDs, etc.)

Cause 2: Foreign Key Constraint
Symptoms:

e Cannot create subscriber
e Error: "key set id does not exist"

e Referenced entity not found
Diagnostic Steps:

1. Identify which foreign key is failing
2. Verify referenced entity exists:

o key set id — key sets

o epc_profile_id -» EPC profiles

o ims_profile_id - IMS profiles
Solution:

e Create referenced entity first
e Or use existing entity ID

e Follow

Cause 3: Database Connectivity
Symptoms:

e 500 errors
¢ All API calls fail

e Database connection errors

Solution:

e See

Diagnostic Tools and Commands

Control Panel Quick Checks

1. System Overview

o URL: https://[hostname]:7443/overview
o Check: Subscriber counts, active sessions, system status

2. Diameter Status

o URL: https://[hostname]:7443/diameter

o Check: All critical peers connected

3. Application Health

o URL: https://[hostname]:7443/application

o Check: Memory usage, process count, uptime

API Diagnostic Commands

Check System Health:
curl -k https://hss.example.com:8443/api/status

Query Subscriber:

By IMSI
curl -k
https://hss.example.com:8443/api/subscriber/imsi/001001123456789

By MSISDN
curl -k

https://hss.example.com:8443/api/subscriber/msisdn/14155551234

By ID
curl -k https://hss.example.com:8443/api/subscriber/1

List All Subscribers:
curl -k https://hss.example.com:8443/api/subscriber
Check Profile Configuration:

EPC Profile
curl -k https://hss.example.com:8443/api/epc/profile/1

IMS Profile
curl -k https://hss.example.com:8443/api/ims/profile/1

Roaming Profile
curl -k https://hss.example.com:8443/api/roaming/profile/1

Network Diagnostic Commands
Test Diameter Port Connectivity:

telnet [PEER IP] 3868
Check TLS Certificate:

openssl s client -connect [hostname]:8443 -showcerts

Test Database Connectivity:

PostgreSQL
psql -h [DB HOST] -U [DB USER] -d [DB NAME] -c "SELECT COUNT(*)
FROM subscriber;"

MySQL
mysql -h [DB HOST] -u [DB USER] -p -e "SELECT COUNT(*) FROM
subscriber;" [DB NAME]

Log Analysis
Search Logs for Specific IMSI:

grep "001001123456789" /var/log/omnihss/omnihss.log
Find Authentication Failures:

grep "authentication.*fail" /var/log/omnihss/omnihss.log
Check Diameter Peer Events:

grep "Diameter peer" /var/log/omnihss/omnihss.log
Find Database Errors:

grep -i "database.*error" /var/log/omnihss/omnihss.log

Escalation Guidelines

When to Escalate
Escalate to engineering/vendor support when:

1. System-wide failures that cannot be resolved with documented
procedures

Data corruption or inconsistent database state
Suspected software bugs or unexpected behavior
Performance issues that cannot be resolved with tuning

Security incidents or unauthorized access

o v A~ W N

Questions about undocumented behavior

Information to Provide
When escalating, include:

. Detailed symptoms - What is failing, when, for whom
. Steps taken - What troubleshooting you've already done

. Logs - Relevant log excerpts showing the issue

. Environment - OmniHSS version, database version, OS version

1
2
3
4. Configuration - Relevant portions of runtime.exs (redact sensitive data)
5
6. Impact - How many subscribers affected, business impact

7

. Subscriber examples - Specific IMSIs showing the problem

Critical vs Non-Critical
Critical Issues (Escalate Immediately):

e System completely down
e All subscribers unable to attach
e Database corruption

e Security breach

Non-Critical Issues (Document and Escalate During Business Hours):

Enhancement requests

Documentation questions

Single subscriber issues that can be worked around

Performance degradation that's manageable

Common Error Messages Reference

Authentication Errors

Error Message

"Authentication vectors
generation failed"

"SQN synchronization
failure"

"Subscriber not found"

"Subscriber disabled"

Cause Solution

Missing or invalid Check
key set

SQN out of sync

, Verify IMSI, provision
Invalid IMSI ,
subscriber

enabled=false

Diameter Errors

Error Message

"Diameter peer
connection timeout"

"CER/CEA exchange
failed"

"Application not
supported"”

"TLS handshake failed"

Database Errors

Error Message
"Connection refused"
"Authentication failed"
"No connections available"

"Query timeout"

Cause Solution

Network issue

Configuration mismatch

Peer doesn't support
required app

Certificate issue

Cause Solution

Database down

Wrong credentials

Pool exhausted

Slow query

API Errors

Error Message

"key set id does not
exist"

"IMSI has already been
taken"

"Validation error"

Cause

Invalid foreign
key

Duplicate IMSI

Invalid input

Solution

Create key set first

Use different IMSI or delete
existing

Check field format and
requirements

OmniHSS Webhook
Integration

Table of Contents

Overview

OmniHSS supports webhooks to notify external systems about subscriber
events in real-time. When specific events occur (such as location updates,
authentication requests, or IMS registrations), OmniHSS can send an HTTP
POST request to your configured webhook endpoint with the complete
subscriber profile data.

What Are Webhooks?

Webhooks are HTTP callbacks that allow OmniHSS to push event notifications to
your application as they happen, rather than requiring your application to poll
the HSS API for changes.

Device MME OmniHsS Your Webhook Endpoint Four Application

Attach Ragquest [IMSI)

S6a ULR (Update Locatian)

Ewent: Update Location Reguest

Load subscriber profile
)
—

par [Send Lo MME]
S6a LILA (subseription data)
[Motify Webhook]

POST fwebhook
Subscriber Prafile |SOM

Proceds subscriber data

Attach Accept

Dewvice MME OmniHS5 Yaur Webhook Endpoint Tour Application

Key Benefits

* Real-time notifications - Get instant updates when subscriber events
occur

e Complete subscriber data - Each webhook includes the full subscriber
profile (same as GET /api/subscriber)

e Event-driven automation - Trigger workflows, analytics, or provisioning
based on network events

* Reduced polling - No need to continuously query the API for subscriber
status changes

e Integration flexibility - Connect OmniHSS to billing systems, analytics
platforms, or custom applications

How Webhooks Work

Event Flow

1. Event occurs - A subscriber performs an action (attach, location update,
IMS registration, etc.)

2. HSS processes event - OmniHSS handles the Diameter request/response
normally

3. Webhook triggered - If a webhook is registered for this event type, HSS
sends HTTP POST to your endpoint

4. Subscriber data included - The webhook payload contains the complete
subscriber profile as JSON

5. Your application responds - Your endpoint should return HTTP 200-299
to acknowledge receipt

Delivery Guarantees

e Best effort delivery - Webhooks are sent asynchronously and do not
block network operations

* Timeout - Webhook requests timeout after 5 seconds

* No retries - If your endpoint is unavailable or returns an error, the
webhook is not retried

e Order not guaranteed - Events may arrive out of order under high load

Important: Network operations (authentication, location updates, etc.) are not
dependent on webhook delivery. If your webhook endpoint is down, subscriber
service continues normally.

Webhook Events

OmniHSS can trigger webhooks for the following events:

EPC/LTE Events

Event

update location request

authentication information request

purge request

cancel location answer

IMS Events

Event

ims registration

ims deregistration

ims profile request

Trigger

Cx SAR

Cx SAR (de-
reg)

Sh UDR

Trigger Description

Subscriber attaches or
performs Tracking Area
Update

S6a
ULR

Network requests
S6a AIR authentication vectors
for subscriber

MME removes

S6a subscriber context
PUR (device powered off,
detached)

MME acknowledges
subscriber

S6a

CLA , _
deregistration

Description

Subscriber registers for IMS/VoLTE
service

Subscriber deregisters from IMS

Application Server requests
subscriber IMS profile

Policy Events (PCRF)

Event Trigger Description

P-GW requests policy for subscriber
policy request Gx CCR q. Polcy
- data session

, , _ P-CSCF requests media authorization
media authorization Rx AAR

for IMS call
Multi-IMSI Events
Event Trigger Description
o , ULR for different IMSI Device switches to different IMSI
imsi switch .
- on same SIM on multi-IMSI SIM

Webhook Payload

Request Format

When an event occurs, OmniHSS sends an HTTP POST request to your
configured webhook URL.:

POST /your-webhook-endpoint HTTP/1.1

Host: your-server.com

Content-Type: application/json

X-0mniHSS-Event: update location request
X-0mniHSS-Event-ID: 550e8400-e29b-41d4-a716-446655440000
X-0mniHSS-Timestamp: 2025-01-15T14:30:00Z

"event": "update location request",
"event id": "550e8400-e29b-41d4-a716-446655440000",
"timestamp": "2025-01-15T14:30:00Z",
"subscriber": {
"id": 1234,
"imsi": "001001123456789",
"enabled": true,
"ims enabled": true,
"msisdns": [
{"id": 1, "msisdn": "14155551001"},
{"id": 2, "msisdn": "14155551002"}
1,
"sim": {
"id": 5678,
"iccid": "8991101200003204510",
"is esim": false
},
"key set": {
"id": 100,
"amf": "8000"
},
"epc_profile": {
"id": 1,
“name": "Premium 100Mbps",
"ue ambr dl kbps": 100000,
"ue ambr ul kbps": 50000
},
"ims profile": {
"id": 1,
"name": "Standard VoLTE"
},
"roaming profile": {
"id": 1,
"name": "International Roaming Allowed"

}

"subscriber state": {
"“mme _host": "mme-01.example.com",
“mme _realm": "epc.mnc00l.mccOO1l.3gppnetwork.org",
"visited plmn": "001001",
"last update": "2025-01-15T14:30:00Z"

H

“custom attributes": {
"account type": "premium",
"billing plan”: "unlimited"

}

}

"event context": {
"visited plmn": "310410",
"mme _host": "mme-roaming.example.com",
"location update type": "initial attach"

}

Payload Structure

Field Type Description
event string Event type (e.g., update location request)
event id string Unique UUID for this webhook delivery
timestamp string I1SO 8601 timestamp when event occurred

Complete subscriber profile (same as GET

subscriber object _ . _
/api/subscriber/:id)

event context object Additional event-specific context data

Event Context Fields
The event context object contains event-specific information:

For update_location_request:

For

For

"visited plmn": "310410",

“mme host": "mme-roaming.example.com",
"mme realm": "epc.mnc410.mcc310.3gppnetwork.org",
"location update type": "initial attach"

imsi_switch:

"previous imsi": "001001111111111",

"new imsi": "310410222222222",

"sim id": 5678,

"previous mme host": "mme-home.example.com",
“new _mme host": "mme-roaming.example.com"

ims_registration:

"scscf host": "scscf-01l.ims.example.com",
"public identities": [

"sip:001001123456789@ims.mncOO1.mccO001.3gppnetwork.

"sip:+14155551001@ims.example.com",
"tel:+14155551001"

org",

HTTP Headers

Header Description

Always
Content-Type i _ :
application/json

X-0mniHSS-Event Event type

X-0mniHSS-Event- _ , e
Unique event identifier

ID
X-0mniHSS- .
i Event timestamp
Timestamp
User-Agent OmniHSS version
Configuration

Registering Webhooks

Webhooks are configured via the OmniHSS API.

Register a Webhook

Example

application/json

update location request

uulibD

ISO 8601 format

OmniHSS/1.0

curl -k -X POST https://hss.example.com:8443/api/webhook \
-H "Content-Type: application/json" \

-d '{
"webhook": {

"url": "https://your-server.com/omnihss-webhook",
"events": [

"update location request",
"ims registration",
"imsi switch"

1,

"enabled": true,

"description": "Production billing system webhook"
}
}
Response:
{
"data": {
"id": 1,
"url": "https://your-server.com/omnihss-webhook",
"events": [
"update location request",
"ims registration",
"imsi switch"
1,
“enabled": true,
"description": "Production billing system webhook",
“created at": "2025-01-15T14:00:00Z"
}
}

List Webhooks

curl -k https://hss.example.com:8443/api/webhook

Update Webhook

curl -k -X PUT https://hss.example.com:8443/api/webhook/1 \
-H "Content-Type: application/json" \
-d '{
"webhook": {
"enabled": false

}
} 1

Delete Webhook

curl -k -X DELETE https://hss.example.com:8443/api/webhook/1

Webhook Endpoint Requirements
Your webhook endpoint must:

. Accept POST requests with Content-Type: application/json
. Respond quickly - Return HTTP 200-299 within 5 seconds

1

2

3. Be idempotent - Handle duplicate deliveries gracefully

4. Use HTTPS - For security, use TLS/SSL endpoints (recommended)
5

. Validate payloads - Verify the request is from OmniHSS (see Security
section)

Example Webhook Handler (Node.js/Express):

const express = require('express');
const app = express();

app.post('/omnihss-webhook', express.json(), (req, res) => {
const { event, subscriber, event context } = req.body;

console.log(Received event: ${event});
console.log(Subscriber IMSI: ${subscriber.imsi});

// Process the subscriber data
// ... your business logic here ...

// Respond immediately to acknowledge receipt
res.status(200).json({ received: true });

// Handle async processing after response
processWebhook(req.body).catch(console.error);

});

async function processWebhook(payload) {
// Your async processing logic
// e.g., update billing system, trigger analytics, etc.

}

app.listen(3000);

Use Cases

1. Real-Time Billing and Usage Tracking

Track subscriber network usage and trigger billing events in real-time.

OmniHSS Webhook Handler Billing System

Attach to Network (Roaming)

update_location_request
(visited_plmn: 310410)

Check roaming rates for PLMN 310410
$0.05/MB rate

Start roaming session
Enable roaming charges

200 OK

OmniHSS Webhook Handler Billing System

Benefits:

e Instantly detect when subscribers roam internationally
e Apply appropriate roaming charges in real-time
e Track session start/end times accurately

e Generate usage alerts when thresholds are reached

2. Analytics and Monitoring

Feed subscriber activity data into analytics platforms for real-time dashboards
and reporting.

Use Case: Track active subscribers by region

// Webhook handler feeding data to analytics platform
app.post('/omnihss-webhook', async (req, res) => {
const { event, subscriber, event context } = req.body;

if (event === 'update location request') {
await analytics.track({
event: 'subscriber location update’,
imsi: subscriber.imsi,
visited plmn: event context.visited plmn,
timestamp: req.body.timestamp,
profile: subscriber.epc profile.name
})s
}

res.status(200).send();
1)

Analytics Dashboard:

Active subscribers per MME

Roaming subscribers by country

Service tier distribution

IMS registration success rates

3. Fraud Detection and Security

Detect suspicious activity patterns in real-time and trigger automated
responses.

Device OmniHSS Webhook Handler Billing System

Attach to Network (Roaming)
*

update_location_request
{visited plmn: 310410}

Check roaming rates for PLMN 310410

£0.05/ME rate

Start rocaming session
Enable reaming charges

Device OmniHSS Webhook Handler Billing System
Fraud Detection Scenarios:
1. Rapid Location Changes

o Subscriber attaches in Country A
o 30 minutes later, attaches in Country B (physically impossible)

o Action: Flag account, send alert to security team

2. IMSI Switch Abuse

o Multiple rapid IMSI switches on same SIM
o Possible SIM cloning or unauthorized multi-IMSI usage

o Action: Disable all IMSIs on SIM, notify fraud team

3. Unauthorized Roaming

o Subscriber roams to blocked country (sanctions, fraud risk)

o Action: Auto-disable subscriber, block network access

Example Implementation:

@app.route('/omnihss-webhook', methods=['POST'])
def webhook handler():

data = request.json

subscriber = data['subscriber']

event context = data.get('event context', {})

if data['event'] == 'update location request':
visited plmn = event context.get('visited plmn')

Check for blocked countries
if visited plmn in BLOCKED PLMNS:
disable subscriber(subscriber['imsi'])
alert security team(subscriber, 'Roaming to blocked

PLMN ')
Check for impossible travel
if is impossible travel(subscriber['imsi'], visited plmn):
flag for review(subscriber['imsi'])
alert fraud team(subscriber, 'Impossible travel
detected')

return jsonify({'status': 'ok'}), 200

4. Provisioning Automation
Automatically provision or update subscriber services based on network events.

Use Case: Auto-enable IMS when subscriber first uses VoLTE

app.post('/omnihss-webhook', async (req, res) => {
const { event, subscriber } = req.body;

if (event === 'ims registration' && !subscriber.ims enabled) {
// First-time IMS user - enable IMS permanently
await omnihss.updateSubscriber(subscriber.id, {
ims enabled: true,
custom attributes: {
...subscriber.custom attributes,
volte activated at: new Date().toISOString()
}
})s

// Update CRM
await crm.updateCustomer(subscriber.imsi, {
features: ['volte']

)

res.status(200).send();
})s

5. Customer Notifications
Send real-time notifications to customers about their service.

Use Case: Welcome message when roaming internationally

Customer Device OmniHSS Webhook SMS Gateway

Attach in foreign country

update_location_request
(visited_plmn: foreign)

Send welcome SMS
"Welcome to Country X!
Roaming rates: $0.05/MB"

SMS received on device

200 OK

Customer Device OmniHSS Webhook SMS Gateway

Example Notifications:

e "Welcome to [Country]! Roaming rates apply."
e "You've used 80% of your data allowance"
e "VOLTE service now active on your device"

e "Your account has been upgraded to Premium*

6. Multi-IMSI SIM Management

Track and manage subscribers with multi-IMSI SIMs, receiving notifications
when they switch IMSls.

app.post('/omnihss-webhook', async (req, res) => {
const { event, subscriber, event context } = req.body;

if (event === 'imsi switch') {
const { previous imsi, new imsi, sim id } = event context;

// Log IMSI switch for analytics
await db.logImsiSwitch({

sim id,

from imsi: previous imsi,

to imsi: new imsi,

timestamp: req.body.timestamp
})s

// Update billing system
await billing.endSession(previous imsi);
await billing.startSession(new imsi);

// Alert if excessive switching (potential fraud)
const switchCount = await db.getSwitchCount(sim id, ‘'24h");
if (switchCount > 10) {
await alertFraudTeam(Excessive IMSI switching: SIM
${sim id});
}

res.status(200).send();
1)

7. Integration with External Systems
Connect OmniHSS to third-party systems without polling.
Example Integrations:

e CRM Systems - Update customer records with service usage

* Network Monitoring - Feed subscriber data to network analytics
platforms

e Billing Systems - Trigger charges based on network events
* Ticketing Systems - Auto-create tickets for failed authentications

 Data Warehouses - Stream subscriber events for big data analysis

Security Considerations

Webhook Secret/Signature

To verify webhooks are from OmniHSS, implement signature verification:

Configure webhook with secret
curl -k -X POST https://hss.example.com:8443/api/webhook \
-H "Content-Type: application/json" \

-d '{
"webhook": {
“url": "https://your-server.com/omnihss-webhook",
"events": ["update location request"],
"secret": "your-secret-key-here"
}
}

OmniHSS will include an X-0mniHSS-Signature header:

X-0mniHSS-Signature:
sha256=5d7a8f9b2cle3a4d6f7e8b9cPalb2c3d4e5f6a7b8c9d0elf2a3b4c5db6e7f8¢

Verify the signature:

const crypto = require('crypto');

function verifyWebhook(req) {
const signature = req.headers|['x-omnihss-signature'];
const secret = process.env.WEBHOOK SECRET;
const payload = JSON.stringify(req.body);

const expectedSignature = 'sha256=' +
crypto.createHmac('sha256', secret)
.update(payload)

.digest('hex"');

return crypto.timingSafeEqual(
Buffer.from(signature),
Buffer.from(expectedSignature)

);

app.post('/omnihss-webhook', (req, res) => {
if (!verifyWebhook(req)) {
return res.status(401).json({ error: 'Invalid signature' });

}

// Process webhook. ..
res.status(200).send();

1)

Best Practices

. Use HTTPS - Always use TLS for webhook endpoints

. Validate signatures - Verify webhook signatures to prevent spoofing
. Rate limiting - Implement rate limiting on webhook endpoints

. IP allowlisting - Restrict webhook access to OmniHSS IP addresses

. Monitor failures - Track webhook delivery failures and errors

. Sanitize data - Validate and sanitize webhook payloads before processing

~N~N o0 o A WN

. Secure credentials - Store webhook secrets in secure configuration
(environment variables, secrets manager)

Data Privacy

Webhook payloads contain sensitive subscriber information:

IMSI (subscriber identity)
MSISDNs (phone numbers)
Location data (visited PLMN, MME)

Service profile information

Compliance Requirements:

GDPR - Ensure webhook data is processed in compliance with GDPR

Data retention - Implement appropriate data retention policies

Access control - Restrict webhook endpoint access

Encryption - Use TLS for webhook transport

Audit logging - Log all webhook deliveries for compliance

Troubleshooting

Webhook Not Received

Symptoms:

e Events occur but webhook is not triggered

* Webhook endpoint never receives requests
Troubleshooting Steps:

1. Verify webhook is enabled:

curl -k https://hss.example.com:8443/api/webhook
Check "enabled": true

2. Check webhook events configuration:

o Ensure the event type is included in the webhook's events list

o Example: If you want ims registration events, verify it's in the events
array

3. Review HSS logs:

o Check for webhook delivery errors
o Look for network connectivity issues

o Verify no DNS resolution failures

4. Test endpoint accessibility:

curl -X POST https://your-server.com/omnihss-webhook \
-H "Content-Type: application/json" \
-d '{"test": true}'

Webhook Timing Out
Symptoms:

e HSS logs show webhook timeout errors

* Webhook endpoint receives request but HSS marks as failed
Solution:
1. Respond immediately:

o Return HTTP 200 within 5 seconds

o Process data asynchronously after responding

2. Optimize endpoint performance:

// BAD - Slow synchronous processing

app.post('/webhook', (req, res) => {
processData(req.body); // Blocks for 10 seconds
res.status(200).send();

});

// GOOD - Async processing after response

app.post('/webhook', (req, res) => {
res.status(200).send(); // Respond immediately
processData(req.body); // Process async

1)

Duplicate Webhooks
Symptoms:

* Same event delivered multiple times

e event id is identical for duplicate deliveries
Cause:

e Network retries (though OmniHSS doesn't retry, network infrastructure
might)

e Multiple webhooks registered for same event
Solution:

Implement idempotency using event id:

const processedEvents = new Set();

app.post('/omnihss-webhook', (req, res) => {
const eventId = req.body.event id;

if (processedEvents.has(eventld)) {

// Already processed, skip
return res.status(200).json({ status: 'duplicate' });

}

processedEvents.add(eventld);

// Process webhook. ..
processWebhook(req.body);

res.status(200).json({ status: 'processed' });

});

Webhook Returns Error
Symptoms:

e Endpoint returns HTTP 4xx or 5xx

e HSS logs webhook delivery failure
Common Errors:
1. 401 Unauthorized - Signature verification failed

o Check webhook secret matches configuration

o Verify signature calculation algorithm

2. 400 Bad Request - Invalid payload

o Check webhook payload parsing

o Ensure Content-Type header is handled

3. 500 Internal Server Error - Endpoint crashed

o Review endpoint error logs

o Add error handling and logging

Solution:

Add comprehensive error handling:

app.post('/omnihss-webhook', async (req, res) => {
try {
// Verify signature
if (!verifyWebhook(req)) {

return res.status(401).json({ error: 'Invalid signature' });

}

// Validate payload
if (!'req.body.event || !req.body.subscriber) {

return res.status(400).json({ error: 'Invalid payload' });

}

// Process webhook
await processWebhook(req.body);

res.status(200).json({ status: 'ok' });

} catch (error) {
console.error('Webhook processing error:', error);

// Return 200 to prevent retry, log error for investigation
res.status(200).json({ status: 'error', message: error.message

1)
}
})s

Missing Subscriber Data
Symptoms:

* Webhook received but subscriber object is incomplete

e Expected fields are null or missing

Possible Causes:

1. Subscriber not fully provisioned - Some profiles may be optional (IMS,
roaming)

2. Data race condition - Subscriber updated between event trigger and
webhook send

Solution:

Handle optional fields gracefully:

const { subscriber } = req.body;

const imsProfile = subscriber.ims profile || { name: 'No IMS' };
const roamingProfile = subscriber.roaming profile || { name: 'No
Roaming' };

const msisdns = subscriber.msisdns || [];

Monitoring and Observability

Webhook Metrics

Track webhook performance and reliability:

Metrics to Monitor:

Webhook delivery rate (successful vs. failed)

Webhook latency (time from event to endpoint response)

Endpoint response times

Error rates by endpoint

Events per second

Example Dashboard Query (Prometheus/Grafana):

Webhook success rate
rate(omnihss webhook success total[5m]) /
rate(omnihss webhook attempts total[5m])

Webhook latency
histogram quantile(0.95, omnihss webhook duration seconds)

Webhook Logs

Enable detailed webhook logging for troubleshooting:

Log Format:

{
“timestamp": "2025-01-15T14:30:00Z",
"level": "info",
“component": "webhook",

"event id": "550e8400-e29b-41d4-a716-446655440000",
"webhook id": 1,

"event type": "update location request",
"subscriber imsi": "001001123456789",
"endpoint": "https://your-server.com/omnihss-webhook",

"http status": 200,
"duration ms": 145,
"error": null

OmniHSS Operations
Guide

Introduction

OmniHSS is a Home Subscriber Server (HSS) implementation designed for 4G
LTE (EPC) and IMS (IP Multimedia Subsystem) networks. As the central database
and authentication center for mobile networks, OmniHSS manages subscriber
credentials, profile data, and provides authentication and authorization services
for both data and voice services.

Built on Elixir and the Erlang VM, OmniHSS delivers high availability, fault
tolerance, and scalability required for modern telecommunications
infrastructure.

What is a Home Subscriber Server?

The HSS is a critical component in LTE and IMS networks that:

e Stores subscriber data - Credentials, profile information, and service
subscriptions

e Performs authentication - Validates subscribers attempting to access
the network

e Manages authorization - Controls which services subscribers can access
e Tracks location - Maintains current location information for routing
e Controls roaming - Enforces roaming policies based on visited networks

e Manages equipment - Functions as Equipment Identity Register (EIR) for
device control

Key Features

Operational Features

e S6a Interface - Authentication and location management for LTE/EPC
networks

¢ Cx Interface - IMS registration and authentication

e Sh Interface - IMS profile data access and subscription notifications

e S13 Interface - Equipment Identity Check (OmniHSS functions as EIR)

¢ Gx Interface - Policy and Charging control (OmniHSS functions as PCRF)
* Rx Interface - IMS media policy control (OmniHSS functions as PCRF)

e Roaming Control - Granular control over data and IMS roaming by PLMN
e Multiple MSISDNs - Support for multiple phone numbers per subscriber

e RESTful API - Complete provisioning API for integration (also used by
OmniHLR)

e Web Control Panel - Real-time monitoring and system status

Network Element Integration
OmniHSS interfaces with the following network elements:

e MME (Mobility Management Entity) - LTE mobility and session management
e P-GW (PDN Gateway) - Receives policy from OmniHSS (PCRF function)

e P-CSCF (Proxy Call Session Control Function) - IMS media authorization

e I-CSCF (Interrogating CSCF) - IMS routing queries

e S-CSCF (Serving CSCF) - IMS registration and authentication

e AS (Application Server) - IMS subscriber data access

e OmniHLR - Legacy HLR that communicates with OmniHSS via API

Documentation Structure

This operations guide is organized into the following documents:

Core Documentation

. - System architecture, components, and Diameter
stack

. - Complete configuration reference with examples

. - Data model and entity relationships

Operational Guides

. - Using the web-based monitoring interface

. - System monitoring and health checks

. - Diagnosing and resolving common issues
J - Complete API endpoint documentation

. - Real-time event notifications and integration

Feature Documentation

. - EPC, IMS, APN, and roaming profiles

. - Configuring roaming policies

. - Diameter protocol procedures and message flows

J - Policy and Charging Rules Function (Gx/Rx interfaces, QoS, VoLTE)
. - Equipment Identity Register (S13 interface, IMEI validation)

. - Multiple phone numbers and

multiple IMSI support

Quick Start for Operations

Accessing the System

Control Panel (Web Interface)

URL: https://[hostname]:7443

The Control Panel provides real-time monitoring of subscribers and Diameter
peers.

API Endpoint
URL: https://[hostname]:8443

The RESTful API allows provisioning and subscriber management.

Key Configuration Files

e config/runtime.exs - Runtime configuration (database, Diameter, network
settings)
e priv/cert/ - TLS certificates for HTTPS and Diameter

Essential Operations

1. Check System Status - Access Control Panel Overview page
2. Monitor Diameter Peers - Access Control Panel Diameter page
3. Query Subscriber - Use APl endpoint /api/subscriber/imsi/:imsi

4. View Database - Connect to SQL Database at configured hostname

Support and Troubleshooting

Log Files

System logs are output to stdout/stderr and can be captured by your process
manager (systemd, supervisord, etc.).

Common Checks

 Diameter connectivity - Check Diameter page for peer status
 Database connectivity - Verify database configuration in runtime.exs

e Subscriber authentication failures - Check subscriber state for failure
counts

Health Monitoring

e API Health Check - GET /api/status
e Control Panel - Access any Control Panel page

e Database - Connect to SQL Database and verify table access

Security Considerations

e TLS Required - Both APl and Control Panel use HTTPS
e Certificate Management - Certificates in priv/cert/ must be valid
 Database Security - Secure database credentials in runtime.exs

* Network Isolation - Diameter interface should be on management
network

e API Authentication - Consider implementing authentication for
production use

Architecture at a Glance

- e

Next Steps

For detailed operational procedures, refer to the specific documentation
sections:

e Start with to understand system components
e Review to customize your deployment

e Explore for day-to-day monitoring

e Consult for provisioning automation

Document Version: 1.0 Maintained By: Omnitouch Operations Team

