
API Error Handling

← Back to API Reference

Table of Contents

Common Error Responses

Error Handling Flow

Common Error Responses

400 Bad Request

Causes:

Malformed JSON

Missing required fields

Invalid data types

404 Not Found

Causes:

{

 "error": "Invalid JSON format"

}

{

 "error": "Resource not found"

}

Subscriber/profile/entity doesn't exist

Incorrect ID in URL

422 Unprocessable Entity

Causes:

Validation failures

Database constraints violated

Foreign key references don't exist

500 Internal Server Error

Causes:

Database connectivity issues

Unexpected application errors

{

 "errors": {

 "imsi": ["has already been taken"],

 "key_set_id": ["does not exist"]

 }

}

{

 "error": "Internal server error"

}

Error Handling Flow

← Back to API Reference

API Usage Examples

← Back to API Reference

Table of Contents

Complete Subscriber Provisioning

Complete Static IP Provisioning

Complete Subscriber Provisioning

This example demonstrates the complete workflow for provisioning a new

subscriber from scratch. The process involves creating all required profiles and

components before creating the subscriber.

Prerequisites: This example uses jq for JSON parsing. Install with apt-get

install jq or brew install jq .

Related Sections:

Key Set Management

APN Profiles

EPC Profiles

Subscriber Management

1. Create Key Set

KEY_SET_ID=$(curl -k -X POST

https://hss.example.com:8443/api/key_set \

 -H "Content-Type: application/json" \

 -d '{

 "ki": "0123456789ABCDEF0123456789ABCDEF",

 "opc": "FEDCBA9876543210FEDCBA9876543210",

 "authentication_algorithm": "milenage",

 "amf": "8000",

 "sqn": 0

 }' | jq -r '.response.id')

2. Create APN QoS Profile

APN_QOS_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/qos_profile \

 -H "Content-Type: application/json" \

 -d '{

 "name": "Default Internet QoS",

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 50000,

 "apn_ambr_ul_kbps": 25000,

 "pre_emption_capability": true,

 "pre_emption_vulnerability": true,

 "qci": 9

 }' | jq -r '.response.id')

3. Create APN Identifier

APN_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/identifier \

 -H "Content-Type: application/json" \

 -d '{

 "apn": "internet",

 "ip_version": "ipv4v6"

 }' | jq -r '.response.id')

4. Create APN Profile

APN_PROFILE_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_identifier_id\": $APN_ID,

 \"apn_qos_profile_id\": $APN_QOS_ID,

 \"name\": \"Internet APN\"

What This Creates:

This provisioning workflow creates a complete subscriber with:

1. Cryptographic keys (Key Set) - For authentication

2. Data service profile (EPC Profile) - Bandwidth and network access

settings

3. APN configuration (APN Profile) - Access point with QoS

4. Subscriber record (Subscriber) - The actual subscriber entity

Next Steps:

Add phone numbers: See MSISDN Management

Enable voice services: Create and assign IMS Profile

 }" | jq -r '.response.id')

5. Create EPC Profile

EPC_PROFILE_ID=$(curl -k -X POST

https://hss.example.com:8443/api/epc/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_profiles\": [$APN_PROFILE_ID],

 \"name\": \"Standard Data Plan\",

 \"network_access_mode\": \"packet_only\",

 \"tracking_area_update_interval_seconds\": 600,

 \"ue_ambr_dl_kbps\": 100000,

 \"ue_ambr_ul_kbps\": 50000

 }" | jq -r '.response.id')

6. Create Subscriber

SUBSCRIBER_ID=$(curl -k -X POST

https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d "{

 \"imsi\": \"001001123456789\",

 \"key_set_id\": $KEY_SET_ID,

 \"epc_profile_id\": $EPC_PROFILE_ID

 }" | jq -r '.response.id')

echo "Subscriber provisioned successfully with ID: $SUBSCRIBER_ID"

Configure roaming: Create and assign Roaming Profile

Link physical SIM: Create and assign SIM

See Also:

Multi-MSISDN Documentation - Assigning multiple phone numbers

Profiles Documentation - Advanced profile configuration

Complete Static IP Provisioning

This example demonstrates provisioning a subscriber with a static IP address

from scratch.

Scenario: Provision an IoT device subscriber that needs a static IPv4 address

on the "internet" APN.

Prerequisites: jq must be installed (apt-get install jq or brew

install jq)

1. Create Key Set

KEY_SET_ID=$(curl -k -X POST

https://hss.example.com:8443/api/key_set \

 -H "Content-Type: application/json" \

 -d '{

 "ki": "0123456789ABCDEF0123456789ABCDEF",

 "opc": "FEDCBA9876543210FEDCBA9876543210",

 "authentication_algorithm": "milenage",

 "amf": "8000",

 "sqn": 0

 }' | jq -r '.response.id')

2. Create APN QoS Profile

APN_QOS_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/qos_profile \

 -H "Content-Type: application/json" \

 -d '{

 "name": "IoT Best Effort",

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 10000,

 "apn_ambr_ul_kbps": 5000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": false,

 "qci": 9

 }' | jq -r '.response.id')

3. Create APN Identifier

APN_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/identifier \

 -H "Content-Type: application/json" \

 -d '{

 "apn": "internet",

 "ip_version": "ipv4"

 }' | jq -r '.response.id')

4. Create APN Profile

APN_PROFILE_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_identifier_id\": $APN_ID,

 \"apn_qos_profile_id\": $APN_QOS_ID,

 \"name\": \"IoT Internet APN\"

 }" | jq -r '.response.id')

5. Create Static IP for the APN

STATIC_IP_ID=$(curl -k -X POST

https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_profile_id\": $APN_PROFILE_ID,

 \"ipv4_static_ip\": \"100.64.1.100\"

 }" | jq -r '.response.id')

6. Create EPC Profile

EPC_PROFILE_ID=$(curl -k -X POST

https://hss.example.com:8443/api/epc/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_profiles\": [$APN_PROFILE_ID],

 \"name\": \"IoT Data Plan\",

 \"network_access_mode\": \"packet_only\",

 \"tracking_area_update_interval_seconds\": 600,

 \"ue_ambr_dl_kbps\": 10000,

 \"ue_ambr_ul_kbps\": 5000

 }" | jq -r '.response.id')

7. Create MSISDN (phone number)

MSISDN_ID=$(curl -k -X POST

https://hss.example.com:8443/api/msisdn \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "14155551000"

 }' | jq -r '.response.id')

8. Create Subscriber with Static IP

SUBSCRIBER_ID=$(curl -k -X POST

https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d "{

 \"imsi\": \"001001999999999\",

 \"key_set_id\": $KEY_SET_ID,

 \"epc_profile_id\": $EPC_PROFILE_ID,

 \"msisdns\": [$MSISDN_ID],

What This Creates:

This provisioning workflow creates a complete IoT subscriber with:

1. Cryptographic keys (Key Set) - For authentication

2. APN configuration (APN Profile) - "internet" access point

3. Static IP assignment (Static IP) - Fixed IPv4 address 100.64.1.100

4. Data service profile (EPC Profile) - IoT-optimized bandwidth limits

5. Phone number (MSISDN) - For device identification

6. Subscriber record (Subscriber) - The complete subscriber entity

Result:

When this subscriber attaches to the network and connects to the "internet"

APN, they will receive the static IP address 100.64.1.100 instead of a dynamic

DHCP address.

Next Steps:

Add additional APNs with static IPs: Repeat steps 2-5 for each APN

Enable voice services: Create and assign IMS Profile

Configure roaming: Create and assign Roaming Profile

Link physical SIM: Create and assign SIM

See Also:

Static IP Management - Detailed static IP documentation

Complete Subscriber Provisioning - Basic provisioning without static IP

Multi-MSISDN Documentation - Assigning multiple phone numbers

 \"static_ips\": [$STATIC_IP_ID]

 }" | jq -r '.response.id')

echo "IoT Subscriber provisioned successfully!"

echo " Subscriber ID: $SUBSCRIBER_ID"

echo " IMSI: 001001999999999"

echo " MSISDN: 14155551000"

echo " Static IPv4: 100.64.1.100 (on 'internet' APN)"

← Back to API Reference

OmniHSS API

Reference

← Back to Operations Guide

Table of Contents

API Overview

Authentication

Subscriber Management

MSISDN Management

SIM Management

Key Set Management

Profile Management

Static IP Management

Roaming Management

EIR Management

Status and Health

Error Handling

API Usage Examples

API Overview

Base URL

https://[hostname]:8443/api

Request Format

Content-Type: application/json

Protocol: HTTPS only

Port: 8443 (configurable)

Important: All API endpoints expect "flat" JSON payloads without wrapper

objects.

Correct Format:

Incorrect Format (Do Not Use):

Example:

{

 "name": "value",

 "field": "value"

}

{

 "subscriber": {

 "name": "value",

 "field": "value"

 }

}

✓ Correct

curl -X POST https://hss.example.com:8443/api/ims/profile \

 -H "Content-Type: application/json" \

 -d '{"name": "default", "ifc_template": "..."}'

✗ Incorrect

curl -X POST https://hss.example.com:8443/api/ims/profile \

 -H "Content-Type: application/json" \

 -d '{"ims_profile": {"name": "default", "ifc_template": "..."}}'

Response Format

All responses are JSON with the following structure:

Success Response:

Error Response:

HTTP Status Codes

Code Meaning Use Case

200 OK Successful GET, PUT, DELETE

201 Created Successful POST

400 Bad Request Invalid input data

404 Not Found Resource doesn't exist

422 Unprocessable Entity Validation error

500 Internal Server Error Server-side error

{

 "status": "success",

 "response": { ... }

}

{

 "status": "error",

 "response": {

 "invalid_fields": {

 "field_name": "error message"

 }

 }

}

API Request Flow

Subscriber Management

List Subscribers

Retrieve all subscribers or filter by criteria.

Endpoint: GET /api/subscriber

Query Parameters:

Parameter Type Description

enabled boolean Filter by enabled status

ims_enabled boolean Filter by IMS enabled status

Example Request:

Example Response:

Get Subscriber by ID

Retrieve a specific subscriber by database ID.

Endpoint: GET /api/subscriber/:id

Path Parameters:

curl -k https://hss.example.com:8443/api/subscriber

{

 "data": [

 {

 "id": 1,

 "imsi": "001001123456789",

 "enabled": true,

 "ims_enabled": true,

 "sim_id": 1,

 "key_set_id": 1,

 "epc_profile_id": 1,

 "ims_profile_id": 1,

 "roaming_profile_id": 1,

 "custom_attributes": {},

 "inserted_at": "2025-10-15T10:30:00Z",

 "updated_at": "2025-10-15T10:30:00Z"

 }

]

}

Parameter Type Description

id integer Subscriber database ID

Example Request:

Get Subscriber by IMSI

Retrieve a subscriber by their IMSI.

Endpoint: GET /api/subscriber/imsi/:imsi

Path Parameters:

Parameter Type Description Format

imsi string
International Mobile Subscriber

Identity

14-15

digits

Example Request:

Use Case: Troubleshooting a specific subscriber by their IMSI.

Get Subscriber by MSISDN

Retrieve a subscriber by their phone number.

Endpoint: GET /api/subscriber/msisdn/:msisdn

Path Parameters:

curl -k https://hss.example.com:8443/api/subscriber/1

curl -k

https://hss.example.com:8443/api/subscriber/imsi/001001123456789

Parameter Type Description Format

msisdn string Mobile Station ISDN Number 1-15 digits (E.164)

Example Request:

Use Case: Looking up subscriber information when you only have their phone

number.

Create Subscriber

Provision a new subscriber.

Endpoint: POST /api/subscriber

Request Body:

Required Fields:

curl -k

https://hss.example.com:8443/api/subscriber/msisdn/14155551234

{

 "subscriber": {

 "imsi": "001001123456789",

 "enabled": true,

 "ims_enabled": true,

 "sim_id": 1,

 "key_set_id": 1,

 "epc_profile_id": 1,

 "ims_profile_id": 1,

 "roaming_profile_id": 1,

 "custom_attributes": {

 "note": "Test subscriber"

 }

 }

}

imsi - Must be 14-15 digits, unique

key_set_id - Must reference existing Key Set

epc_profile_id - Must reference existing EPC Profile

Optional Fields:

enabled - Default: true

ims_enabled - Default: true

sim_id - Reference to SIM card

ims_profile_id - Reference to IMS Profile (required for IMS services)

roaming_profile_id - Reference to Roaming Profile (required for roaming

control)

msisdns - Array of MSISDN IDs (phone numbers)

static_ips - Array of Static IP IDs for APN assignments

custom_attributes - Custom key-value pairs

See Also:

Complete Subscriber Provisioning Example - End-to-end workflow

Multi-MSISDN Documentation - Assigning phone numbers to subscribers

Static IP Management - Assigning static IPs to APNs

Example Request:

Provisioning Flow:

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "imsi": "001001123456789",

 "key_set_id": 1,

 "epc_profile_id": 1

 }

 }'

No Yes

No Yes

No Yes

Start Provisioning

Key Set Exists?

Error: Key Set Not Found EPC Profile Exists?

Error: EPC Profile Not

Found
IMSI Unique?

Error: IMSI Already

Exists
Create Subscriber

Auto-Create Subscriber

State

201 Created

Update Subscriber

Modify an existing subscriber.

Endpoint: PUT /api/subscriber/:id

Path Parameters:

Parameter Type Description

id integer Subscriber database ID

Request Body:

Updatable Fields:

enabled - Enable/disable all services

ims_enabled - Enable/disable IMS services

sim_id - Change SIM card assignment

key_set_id - Change crypto keys (be careful!)

epc_profile_id - Change data service profile

ims_profile_id - Change voice service profile

roaming_profile_id - Change roaming policy

msisdns - Update phone numbers assigned to subscriber

static_ips - Update static IP assignments to APNs

custom_attributes - Update custom data

{

 "subscriber": {

 "enabled": false,

 "ims_enabled": false,

 "epc_profile_id": 2,

 "custom_attributes": {

 "note": "Temporarily disabled"

 }

 }

}

Not Updatable:

imsi - Cannot change IMSI (delete and recreate instead)

See Also:

Profile Management - Managing service profiles

Example Request:

Use Cases:

Temporarily disable subscriber: {"enabled": false}

Disable voice services only: {"ims_enabled": false}

Change service profile: {"epc_profile_id": 2} (see EPC Profiles)

Update roaming policy: {"roaming_profile_id": 3} (see Roaming

Management)

Delete Subscriber

Remove a subscriber from the system.

Endpoint: DELETE /api/subscriber/:id

Path Parameters:

Parameter Type Description

id integer Subscriber database ID

curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "enabled": false

 }

 }'

Example Request:

Warning: This permanently deletes the subscriber and all associated state

data (PDN sessions, calls, etc.). The IMSI can be reused after deletion.

Note: Deleting a subscriber does NOT delete the associated:

Key Set - Can be reused for other subscribers

SIM - Can be reassigned to a new subscriber

Profiles - Shared resources used by multiple subscribers

MSISDNs - Must be deleted separately if desired

Cancel Location Request (Force Detach)

Send a Cancel Location Request (CLR) to force detach a subscriber from their

currently registered MME.

Endpoint: POST /api/subscriber/cancel_location

Request Body:

Parameters:

Parameter Type Required Description

imsi string Yes
IMSI of subscriber to detach (14-15

digits)

Example Request:

curl -k -X DELETE https://hss.example.com:8443/api/subscriber/1

{

 "imsi": "001001123456789"

}

Success Response (200 OK):

Error Response (404 Not Found):

Behavior:

Sends S6a CLR to the MME where subscriber is currently registered

(subscriber_state.last_seen_mme)

Uses Cancellation-Type: subscription_withdrawal (forces full detach)

Sets CLR-Flags: {s6a_indicator: 1, reattach_required: 1} (UE must

re-authenticate)

Returns 404 if subscriber has never registered or last_seen_mme is null

Affects all MSISDNs associated with the IMSI (same physical device/SIM)

Use Cases:

Fraud Prevention: Immediately detach suspicious subscriber

Subscription Termination: Force logout when account is disabled

curl -k -X POST

https://hss.example.com:8443/api/subscriber/cancel_location \

 -H "Content-Type: application/json" \

 -d '{"imsi": "001001123456789"}'

{

 "data": {

 "message": "Cancel Location Request sent successfully",

 "imsi": "001001123456789",

 "destination_host": "mme01.operator.com",

 "destination_realm": "epc.operator.com"

 }

}

{

 "error": "Subscriber not found or not currently registered at

any MME"

}

Troubleshooting: Clear stale MME registration for debugging

Migration: Force re-authentication to apply new profile settings

Security: Immediately disconnect compromised subscriber

Multi-IMSI Considerations:

When using CLR with multi-MSISDN scenarios:

1. Multiple MSISDNs, Single IMSI:

2. Different IMSIs (Different Devices):

Important Notes:

IMSI-based: CLR is always sent per IMSI, not per MSISDN

Asynchronous: CLR is sent asynchronously; success response means CLR

was sent, not that MME processed it

No validation of MME status: CLR is sent even if MME is unreachable

(standard HSS behavior)

Idempotent: Safe to call multiple times for same IMSI

// Subscriber has IMSI 001001123456789 with MSISDNs

["+1234567890", "+9876543210"]

POST /api/subscriber/cancel_location

{"imsi": "001001123456789"}

// Result: One CLR sent, both MSISDNs affected (same device)

// Two subscribers with same MSISDN but different IMSIs (number

porting scenario)

// Subscriber A: IMSI 001001111111111, MSISDN "+1234567890"

// Subscriber B: IMSI 001001222222222, MSISDN "+1234567890"

POST /api/subscriber/cancel_location

{"imsi": "001001111111111"}

// Result: Only Subscriber A detached, Subscriber B unaffected

Related Documentation:

Cancel Location Request Protocol Flow

Multi-IMSI Scenarios

S6a Interface Architecture

MSISDN Management

MSISDNs (phone numbers) can be assigned to subscribers to enable voice

services. See Multi-MSISDN Documentation for details on assigning multiple

numbers to a single subscriber.

List MSISDNs

Retrieve all phone numbers.

Endpoint: GET /api/msisdn

Example Request:

Get MSISDN

Retrieve a specific phone number.

Endpoint: GET /api/msisdn/:id

Example Request:

curl -k https://hss.example.com:8443/api/msisdn

curl -k https://hss.example.com:8443/api/msisdn/1

Create MSISDN

Create a new phone number.

Endpoint: POST /api/msisdn

Request Body:

Validation:

Must be 1-15 digits

Must be unique

Must follow E.164 format (international format without + sign)

Example Request:

Assign MSISDN to Subscriber

To assign a phone number to a subscriber, you need to create a join record.

This is typically done through the subscriber update endpoint or via direct

database manipulation.

Multi-MSISDN Pattern:

{

 "msisdn": {

 "msisdn": "14155551234"

 }

}

curl -k -X POST https://hss.example.com:8443/api/msisdn \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": {

 "msisdn": "14155551234"

 }

 }'

See Multi-MSISDN and Multi-IMSI Features for detailed usage.

Delete MSISDN

Remove a phone number.

Endpoint: DELETE /api/msisdn/:id

Example Request:

SIM Management

SIM card records store physical SIM card information including ICCID, vendor

details, PIN/PUK codes, and OTA keys. SIM records can optionally be linked to

subscribers.

See Also:

Multi-IMSI Documentation - Multiple subscribers on one physical SIM

List SIMs

Retrieve all SIM cards.

Endpoint: GET /api/sim

Example Request:

Get SIM

Retrieve a specific SIM card.

Endpoint: GET /api/sim/:id

curl -k -X DELETE https://hss.example.com:8443/api/msisdn/1

curl -k https://hss.example.com:8443/api/sim

Example Request:

Create SIM

Create a new SIM card record.

Endpoint: POST /api/sim

Request Body:

Required Fields:

iccid - 19-20 digits, unique

Optional but Important Fields:

sim_vendor - Manufacturer name

batch_name - For tracking

is_esim - Boolean flag for eSIM

pin1 , pin2 - End-user PIN codes

curl -k https://hss.example.com:8443/api/sim/1

{

 "sim": {

 "iccid": "8991101200003204510",

 "sim_vendor": "Gemalto",

 "batch_name": "2025-Q1-Batch-01",

 "is_esim": false,

 "pin1": "1234",

 "pin2": "5678",

 "puk1": "12345678",

 "puk2": "87654321",

 "adm1": "admin-code-1",

 "kic": "0123456789ABCDEF0123456789ABCDEF",

 "kid": "FEDCBA9876543210FEDCBA9876543210"

 }

}

puk1 , puk2 - PIN unlock codes

adm1-adm10 - Administrative codes

kic , kid - OTA security keys (hex string)

Example Request:

Update SIM

Modify SIM card data.

Endpoint: PUT /api/sim/:id

Example Request:

Delete SIM

Remove a SIM card record.

Endpoint: DELETE /api/sim/:id

Warning: Ensure no subscribers reference this SIM before deleting.

curl -k -X POST https://hss.example.com:8443/api/sim \

 -H "Content-Type: application/json" \

 -d '{

 "sim": {

 "iccid": "8991101200003204510",

 "sim_vendor": "Gemalto"

 }

 }'

curl -k -X PUT https://hss.example.com:8443/api/sim/1 \

 -H "Content-Type: application/json" \

 -d '{

 "sim": {

 "batch_name": "Updated-Batch-Name"

 }

 }'

Key Set Management

Key sets contain the cryptographic material (Ki, OPC/OP, AMF, SQN) used for

subscriber authentication via the Milenage algorithm. Each subscriber must

reference a key set.

See Also:

Protocol Flows - Authentication procedures using key sets

List Key Sets

Retrieve all cryptographic key sets.

Endpoint: GET /api/key_set

Example Request:

Get Key Set

Retrieve a specific key set.

Endpoint: GET /api/key_set/:id

Example Request:

Response Example:

curl -k https://hss.example.com:8443/api/key_set

curl -k https://hss.example.com:8443/api/key_set/1

Create Key Set

Create a new cryptographic key set.

Endpoint: POST /api/key_set

Request Body:

Required Fields:

ki - 128-bit key (32 hex characters)

Either opc OR op (OPC can be derived from OP)

authentication_algorithm - Currently only "milenage"

Optional Fields:

{

 "data": {

 "id": 1,

 "ki": "0123456789ABCDEF0123456789ABCDEF",

 "opc": "FEDCBA9876543210FEDCBA9876543210",

 "op": null,

 "amf": "8000",

 "sqn": 0,

 "authentication_algorithm": "milenage",

 "ota_counter": 0

 }

}

{

 "key_set": {

 "ki": "0123456789ABCDEF0123456789ABCDEF",

 "opc": "FEDCBA9876543210FEDCBA9876543210",

 "amf": "8000",

 "sqn": 0,

 "authentication_algorithm": "milenage"

 }

}

amf - Default: "8000"

sqn - Default: 0

ota_counter - Default: 0

Key Format:

All keys are hexadecimal strings

Ki, OPC, OP: 32 hex characters (128 bits)

AMF: 4 hex characters (16 bits)

Example Request:

Security Warning: Key sets contain highly sensitive cryptographic material.

Protect API access accordingly.

Update Key Set

Modify an existing key set.

Endpoint: PUT /api/key_set/:id

Warning: Changing keys for an active subscriber will cause authentication

failures. Only update keys during maintenance windows or for new subscribers.

Impact: Updates affect all subscribers using this key set immediately. Active

subscribers will fail authentication on next attach attempt.

curl -k -X POST https://hss.example.com:8443/api/key_set \

 -H "Content-Type: application/json" \

 -d '{

 "key_set": {

 "ki": "0123456789ABCDEF0123456789ABCDEF",

 "opc": "FEDCBA9876543210FEDCBA9876543210",

 "authentication_algorithm": "milenage"

 }

 }'

Delete Key Set

Remove a key set.

Endpoint: DELETE /api/key_set/:id

Warning: Ensure no subscribers reference this key set before deleting. Query

subscribers first to check for references.

Profile Management

EPC Profiles

EPC (Evolved Packet Core) profiles define data service parameters for

subscribers. These profiles are referenced when creating subscribers.

List EPC Profiles

Endpoint: GET /api/epc/profile

Get EPC Profile

Endpoint: GET /api/epc/profile/:id

Create EPC Profile

Endpoint: POST /api/epc/profile

Request Body:

Fields:

Field Description Units Typ

name Profile name Text Uniqu

ue_ambr_dl_kbps

Download

bandwidth

limit

Kbps 1000

ue_ambr_ul_kbps

Upload

bandwidth

limit

Kbps 5000

network_access_mode Access type String
"pack

"pack

tracking_area_update_interval_seconds TAU timer Seconds 600 (

apn_profiles
List of APN

profile IDs
Array [] or [

Example Request:

{

 "apn_profiles": [],

 "name": "Standard Data Plan",

 "network_access_mode": "packet_only",

 "tracking_area_update_interval_seconds": 600,

 "ue_ambr_dl_kbps": 100000,

 "ue_ambr_ul_kbps": 50000

}

See Also:

Profiles Documentation - Detailed profile configuration guide

Complete Subscriber Provisioning - Using EPC profiles in provisioning

Update EPC Profile

Endpoint: PUT /api/epc/profile/:id

Note: Changes to EPC profiles affect all subscribers using this profile. Active

sessions may need to be re-established.

Delete EPC Profile

Endpoint: DELETE /api/epc/profile/:id

Warning: Ensure no subscribers reference this profile before deleting.

IMS Profiles

IMS (IP Multimedia Subsystem) profiles define voice service parameters and

Initial Filter Criteria (IFC) for subscribers. These profiles are referenced when

creating subscribers with IMS services enabled.

List IMS Profiles

Endpoint: GET /api/ims/profile

Create IMS Profile

curl -k -X POST https://hss.example.com:8443/api/epc/profile \

 -H "Content-Type: application/json" \

 -d '{

 "apn_profiles": [],

 "name": "Premium 100Mbps",

 "network_access_mode": "packet_only",

 "tracking_area_update_interval_seconds": 600,

 "ue_ambr_dl_kbps": 100000,

 "ue_ambr_ul_kbps": 50000

 }'

Endpoint: POST /api/ims/profile

Request Body:

Required Fields:

name - Profile name (must be unique)

ifc_template - IFC (Initial Filter Criteria) XML template with Liquid

template variables

IFC Template Variables:

The IFC template supports the following Liquid template variables that are

dynamically substituted:

Variable Description Example Value

{{ imsi }} Subscriber IMSI 001001123456789

{{ msisdns

}}

Array of MSISDNs (for

loops)

["14155551234",

"14155555678"]

{{ mcc }} Mobile Country Code 001

{{ mnc }} Mobile Network Code 001

How Template Rendering Works:

The IFC template is stored as a Liquid template (similar to Jinja2) and is

rendered dynamically during IMS operations:

1. Storage: When you create an IMS profile, the template is stored as-is with

variables like {{ imsi }} and {% for msisdn in msisdns %}

{

 "name": "Standard VoLTE",

 "ifc_template": "<IMS-XML-Template-Here>"

}

2. Validation: The API validates the template by rendering it with test data to

ensure valid XML syntax

3. Runtime Rendering: When a subscriber performs IMS registration

(MAA/SAA), the HSS:

Retrieves the subscriber's IMS profile

Renders the template with the subscriber's actual data:

{{ imsi }} → subscriber's IMSI

{{ msisdns }} → subscriber's phone numbers

{{ mcc }} → configured Mobile Country Code

{{ mnc }} → configured Mobile Network Code

Returns the rendered XML to the S-CSCF via Cx/Diameter

Template Syntax:

IFC Template Example:

<!-- Simple variable substitution -->

{{ imsi }}

<!-- For loops over arrays -->

{% for msisdn in msisdns %}

 <MSISDN>{{ msisdn }}</MSISDN>

{% endfor %}

<!-- Combining variables -->

{{ imsi }}@ims.mnc{{ mnc }}.mcc{{ mcc }}.3gppnetwork.org

Example Request (curl):

<?xml version="1.0" encoding="UTF-8"?>

<IMSSubscription>

<PrivateID>{{ imsi }}@ims.mnc{{ mnc }}.mcc{{ mcc

}}.3gppnetwork.org</PrivateID>

<ServiceProfile>

{% for msisdn in msisdns %}

<PublicIdentity>

<Identity>sip:{{ msisdn }}@ims.mnc{{ mnc }}.mcc{{ mcc

}}.3gppnetwork.org</Identity>

<Extension>

<IdentityType>0</IdentityType>

</Extension>

</PublicIdentity>

<PublicIdentity>

<Identity>tel:{{ msisdn }}</Identity>

<Extension>

<IdentityType>0</IdentityType>

</Extension>

</PublicIdentity>

{% endfor %}

<InitialFilterCriteria>

<Priority>10</Priority>

<TriggerPoint>

<ConditionTypeCNF>0</ConditionTypeCNF>

<SPT>

<ConditionNegated>0</ConditionNegated>

<Group>0</Group>

<Method>REGISTER</Method>

</SPT>

</TriggerPoint>

<ApplicationServer>

<ServerName>sip:as.ims.mnc{{ mnc }}.mcc{{ mcc

}}.3gppnetwork.org</ServerName>

<DefaultHandling>0</DefaultHandling>

</ApplicationServer>

</InitialFilterCriteria>

</ServiceProfile>

</IMSSubscription>

Example Request (Python):

Success Response (201 Created):

Validation:

The API validates that the IFC template is valid XML

Template variables are rendered with test data to verify syntax

The name field must be unique and non-empty

curl -k -X POST https://hss.example.com:8443/api/ims/profile \

 -H "Content-Type: application/json" \

 -d '{

 "name": "default",

 "ifc_template": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<IMSSubscription><ServiceProfile>...</ServiceProfile>

</IMSSubscription>"

 }'

import requests

response = requests.post(

 "https://hss.example.com:8443/api/ims/profile",

 json={

 "name": "default",

 "ifc_template": ifc_template_string

 },

 verify=False # For self-signed certificates

)

{

 "status": "success",

 "response": {

 "id": 1,

 "name": "default",

 "ifc_template": "<?xml version=\"1.0\" encoding=\"UTF-8\"?

>..."

 }

}

See Also:

Profiles Documentation - IFC template details and examples

Protocol Flows - IMS registration and call flows

Default IFC Template - Reference implementation

APN Profiles

APN (Access Point Name) profiles consist of three components that work

together:

1. APN Identifier - Defines the APN name and IP version

2. APN QoS Profile - Defines Quality of Service parameters

3. APN Profile - Combines identifier and QoS, linked to EPC Profiles

See PCRF Documentation for detailed policy configuration, QoS

management, and automatic re-auth. See also Profiles Documentation for

APN configuration examples.

List APN Identifiers

Endpoint: GET /api/apn/identifier

Create APN Identifier

Endpoint: POST /api/apn/identifier

Request Body:

IP Version Values:

"ipv4" - IPv4 only

"ipv6" - IPv6 only

{

 "apn": "internet",

 "ip_version": "ipv4v6"

}

https://docs.omnitouch.com.au/assets/files/common-73113cdf0d22db479272ae425281a7f6.ex/#L770-L925

"ipv4v6" - IPv4v6 (dual stack)

"ipv4_or_ipv6" - IPv4 or IPv6 (network choice)

List APN QoS Profiles

Endpoint: GET /api/apn/qos_profile

Create APN QoS Profile

Endpoint: POST /api/apn/qos_profile

Request Body:

List APN Profiles

Endpoint: GET /api/apn/profile

Create APN Profile

Endpoint: POST /api/apn/profile

Request Body:

Required Fields:

{

 "name": "Best Effort Internet",

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 50000,

 "apn_ambr_ul_kbps": 25000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true,

 "qci": 9

}

{

 "apn_identifier_id": 1,

 "apn_qos_profile_id": 1,

 "name": "Internet APN"

}

apn_identifier_id - Must reference existing APN Identifier

apn_qos_profile_id - Must reference existing APN QoS Profile

See Also:

Complete Subscriber Provisioning - Full example including APN setup

EPC Profiles - APN profiles are linked to EPC profiles

Static IP Management

Static IP addresses can be assigned to specific APNs for individual subscribers.

This allows subscribers to receive a predetermined IPv4 and/or IPv6 address

when connecting to a particular APN, rather than receiving a dynamic address

from a DHCP pool.

Architecture:

Static IP Assignments

APN Configuration

Subscriber Configuration

belongs t

includes includesassigned to APN assigned to APN

assigned assigned

Subscriber

IMSI: 001001123456789

MSISDN: +1234567890

EPC Profile

Bandwidth Limits

TAU Settings

APN Profile: internet

QCI: 9, ARP: 8

APN Profile: ims

QCI: 5, ARP: 2

Static IP

IPv4: 100.64.1.1

IPv6: 2606:4700::1111

Static IP

IPv4: 100.64.2.1

Data Flow When Subscriber Connects:

PGW/GGSNOmniHSSMME
UE/Device

(IMSI: 001001123456789)

PGW/GGSNOmniHSSMME
UE/Device

(IMSI: 001001123456789)

Subscriber Attaches and Requests "internet" APN

HSS Looks Up Subscriber

Finds EPC Profile with APNs

Checks for Static IP on "internet" APN

PGW Assigns Static IP

100.64.1.1 to PDN Session

Device now has

100.64.1.1 on "internet" APN

Attach Request (IMSI + APN: "internet")

Update Location Request (IMSI)

Update Location Answer

(APN: "internet", QoS, Static IP: 100.64.1.1)

Create Session Request

(Static IP: 100.64.1.1)

Create Session Response

(IP: 100.64.1.1)

Attach Accept (IP: 100.64.1.1)

Update Location Answer - APN Configuration Data Mapping:

This diagram shows exactly where each field in the S6a Update Location

Answer APN-Configuration AVP comes from in the database:

Key Observations:

1. Context-Identifier: Sequential index (0, 1, 2...) for each APN in the profile

2. Service-Selection: Comes directly from apn_identifier.apn (e.g.,

"internet", "ims")

3. PDN-Type: Encoded from apn_identifier.ip_version (ipv4=0, ipv6=1,

ipv4v6=2, ipv4_or_ipv6=3)

4. QoS Parameters: All from apn_qos_profile table

5. AMBR Bandwidth: Values are multiplied by 1000 (kbps → bps conversion)

6. Served-Party-IP-Address: Only included if static IP exists for this

subscriber+APN combination

Lookup process: subscriber.static_ips → filter by apn_profile_id →

extract IPs

IP version compatibility checked against apn_identifier.ip_version

7. VPLMN-Dynamic-Address-Allowed: Hardcoded to 0 (not allowed) -

forces use of static IP if provided

Relationship Hierarchy:

Subscriber Layer (Per-

Subscriber)

Profile Layer (Shared

Resources)

member of

many_to_many many_to_many

belongs_to belongs_to

APN Identifier

Name: internet

IP Version: IPv4v6

APN QoS Profile

QCI: 9, Bandwidth:

50Mbps

APN Profile

EPC Profile

UE Bandwidth

Network Access Mode

Subscriber

IMSI: 001001123456789

Key Set

Ki, OPC, AMF

Static IP #1

100.64.1.1

for 'internet' APN

Static IP #2

100.64.2.1

for 'ims' APN

Key Concepts:

Per-APN Assignment: Each Static IP is linked to a specific APN Profile

One IP per APN per Subscriber: A subscriber can only have one static IP

assignment per APN

IPv4 and IPv6 Support: Static IPs can be IPv4-only, IPv6-only, or dual-

stack

Global IP Uniqueness: Each IP address must be globally unique across all

static IP records in the system

The same IPv4 or IPv6 address cannot be assigned to multiple

subscribers (even on different APNs)

This prevents routing conflicts and IP address ambiguity

Enforced by database unique indexes on ipv4_static_ip and

ipv6_static_ip fields

Many-to-Many Relationship: Subscribers and Static IPs are linked via a

join table

Use Cases:

Fixed IP addresses for IoT devices

Server hosting on mobile devices (requires static IP for inbound

connections)

Legacy applications that require specific IP addresses

Network policy routing based on source IP

Regulatory compliance requiring IP address tracking

List Static IPs

Retrieve all static IP assignments.

Endpoint: GET /api/epc/static_ip

Example Request:

Example Response:

curl -k https://hss.example.com:8443/api/epc/static_ip

Get Static IP

Retrieve a specific static IP assignment.

Endpoint: GET /api/epc/static_ip/:id

Path Parameters:

Parameter Type Description

id integer Static IP database ID

Example Request:

{

 "data": [

 {

 "id": 1,

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1",

 "ipv6_static_ip": "2606:4700:4700::1111",

 "apn_profile": {

 "id": 5,

 "name": "Internet APN",

 "apn_identifier": {

 "apn": "internet",

 "ip_version": "ipv4v6"

 }

 },

 "inserted_at": "2025-11-15T10:30:00Z",

 "updated_at": "2025-11-15T10:30:00Z"

 }

]

}

curl -k https://hss.example.com:8443/api/epc/static_ip/1

Create Static IP

Create a new static IP assignment for an APN.

Endpoint: POST /api/epc/static_ip

Request Body:

Required Fields:

apn_profile_id - Must reference an existing APN Profile

At least one of ipv4_static_ip OR ipv6_static_ip must be specified

Optional Fields:

ipv4_static_ip - IPv4 address (dotted decimal notation)

ipv6_static_ip - IPv6 address (standard notation)

IP Format Validation:

IPv4: Standard dotted decimal format (e.g., 100.64.1.1)

IPv6: Standard colon-separated hexadecimal format (e.g.,

2606:4700:4700::1111)

Both IPv4 and IPv6 addresses must be globally unique across all static

IP records

This prevents IP address conflicts in the network

The same IP cannot be assigned to multiple subscribers, even on

different APNs

This is a database-level constraint enforced by unique indexes

Configuration Options:

{

 "static_ip": {

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1",

 "ipv6_static_ip": "2606:4700:4700::1111"

 }

}

Configuration IPv4 IPv6 Example

IPv4 Only ✓ - {"ipv4_static_ip": "100.64.1.1"}

IPv6 Only - ✓
{"ipv6_static_ip":

"2606:4700:4700::1111"}

Dual Stack ✓ ✓ Both fields specified

Example Requests:

IPv4-only Static IP:

IPv6-only Static IP:

Dual-stack Static IP:

curl -k -X POST https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1"

 }

 }'

curl -k -X POST https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 6,

 "ipv6_static_ip": "2606:4700:4700::1111"

 }

 }'

Success Response (201 Created):

See Also:

Assign Static IP to Subscriber - How to link this to a subscriber

APN Profiles - Managing APN configurations

Update Static IP

Modify an existing static IP assignment.

Endpoint: PUT /api/epc/static_ip/:id

Path Parameters:

curl -k -X POST https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1",

 "ipv6_static_ip": "2606:4700:4700::1111"

 }

 }'

{

 "data": {

 "id": 1,

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1",

 "ipv6_static_ip": "2606:4700:4700::1111",

 "inserted_at": "2025-11-15T10:30:00Z",

 "updated_at": "2025-11-15T10:30:00Z"

 }

}

Parameter Type Description

id integer Static IP database ID

Request Body:

Updatable Fields:

ipv4_static_ip - Change IPv4 address

ipv6_static_ip - Change IPv6 address

apn_profile_id - Change APN assignment

Not Updatable:

id - Primary key (read-only)

Warning: Changing the IP address for an active subscriber will affect their next

PDN connection. Active PDN sessions will continue to use the old IP until they

disconnect and reconnect.

Example Request:

{

 "static_ip": {

 "ipv4_static_ip": "100.64.1.2",

 "ipv6_static_ip": "2606:4700:4700::1112"

 }

}

curl -k -X PUT https://hss.example.com:8443/api/epc/static_ip/1 \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "ipv4_static_ip": "100.64.1.2"

 }

 }'

Delete Static IP

Remove a static IP assignment.

Endpoint: DELETE /api/epc/static_ip/:id

Path Parameters:

Parameter Type Description

id integer Static IP database ID

Example Request:

Behavior:

Removes the static IP assignment

Does NOT affect the APN Profile (APN remains available for other

subscribers)

Subscribers using this static IP will receive dynamic IPs on next connection

The IP address becomes available for reuse after deletion

Warning: If a subscriber is actively using this static IP, deleting it will cause

them to receive a dynamic IP on their next PDN connection. Ensure subscribers

are offline or send a Cancel Location Request before deleting.

Assign Static IP to Subscriber

To assign a static IP to a subscriber, you need to associate the Static IP record

with the Subscriber during creation or update.

Assignment Pattern:

1. Create the Static IP (see Create Static IP)

2. Assign to Subscriber using the static_ips field

curl -k -X DELETE https://hss.example.com:8443/api/epc/static_ip/1

Create Subscriber with Static IP:

Update Existing Subscriber with Static IP:

Multiple Static IPs (Different APNs):

A subscriber can have multiple static IPs as long as each is for a different APN:

Step 1: Create static IP for "internet" APN

STATIC_IP_ID=$(curl -k -X POST

https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1",

 "ipv6_static_ip": "2606:4700:4700::1111"

 }

 }' | jq -r '.data.id')

Step 2: Create subscriber with static IP assigned

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d "{

 \"subscriber\": {

 \"imsi\": \"001001123456789\",

 \"key_set_id\": 1,

 \"epc_profile_id\": 1,

 \"static_ips\": [$STATIC_IP_ID]

 }

 }"

curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "static_ips": [1, 2]

 }

 }'

Validation Rules:

✓ Allowed: Multiple static IPs for different APNs

✗ Rejected: Multiple static IPs for the same APN

Error Example - Duplicate APN:

Create static IP for "internet" APN

INTERNET_IP=$(curl -k -X POST

https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 5,

 "ipv4_static_ip": "100.64.1.1"

 }

 }' | jq -r '.data.id')

Create static IP for "ims" APN

IMS_IP=$(curl -k -X POST

https://hss.example.com:8443/api/epc/static_ip \

 -H "Content-Type: application/json" \

 -d '{

 "static_ip": {

 "apn_profile_id": 6,

 "ipv4_static_ip": "100.64.2.1"

 }

 }' | jq -r '.data.id')

Assign both to subscriber

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d "{

 \"subscriber\": {

 \"imsi\": \"001001123456789\",

 \"key_set_id\": 1,

 \"epc_profile_id\": 1,

 \"static_ips\": [$INTERNET_IP, $IMS_IP]

 }

 }"

See Also:

Create Subscriber - Subscriber provisioning

Update Subscriber - Modifying subscriber configuration

Complete Static IP Provisioning Example - End-to-end workflow

Roaming Management

Roaming profiles control whether subscribers can access data and IMS services

on visited networks. Profiles are assigned to subscribers and consist of rules

matched by MCC/MNC.

List Roaming Profiles

Endpoint: GET /api/roaming/profile

This will FAIL if both static IPs reference the same APN

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "imsi": "001001123456789",

 "static_ips": [1, 2]

 }

 }'

Error Response:

{

 "errors": {

 "static_ips": [

 "static ips per apn per subscriber must be unique. eg a

subscriber may not be assigned static ip 100.64.1.1 for internet

and also 100.64.1.2 for internet"

]

 }

}

Create Roaming Profile

Endpoint: POST /api/roaming/profile

Request Body:

Action Values:

"allow" - Allow

"deny" - Deny

Default Actions:

data_action_if_no_rules_match - Action when no roaming rule matches

ims_action_if_no_rules_match - IMS-specific default action

List Roaming Rules

Endpoint: GET /api/roaming/rule

Create Roaming Rule

Endpoint: POST /api/roaming/rule

Request Body:

{

 "roaming_profile": {

 "name": "US Carriers Only",

 "data_action_if_no_rules_match": "deny",

 "ims_action_if_no_rules_match": "deny",

 "roaming_rules": []

 }

}

Fields:

mcc - Mobile Country Code (3 digits)

mnc - Mobile Network Code (2-3 digits)

data_action - "allow" or "deny" data services

ims_action - "allow" or "deny" IMS/voice services

See Also:

Roaming Documentation - Detailed configuration and examples

Protocol Flows - How roaming control works in Diameter flows

EIR Management

OmniHSS functions as an Equipment Identity Register (EIR) via the S13

Diameter interface. EIR rules control device access based on IMEI patterns.

See EIR Documentation for detailed equipment identity checking, S13

interface flows, and IMEI validation.

List EIR Rules

Endpoint: GET /api/eir/rule

{

 "roaming_rule": {

 "name": "Allow AT&T",

 "mcc": "310",

 "mnc": "410",

 "data_action": "allow",

 "ims_action": "allow"

 }

}

Create EIR Rule

Endpoint: POST /api/eir/rule

Request Body:

Fields:

name - Descriptive name for the rule

imei_regex - Regular expression to match IMEI numbers

action - Whitelist (0), Blacklist (1), or Greylist (2)

Action Values:

0 - Whitelist (allow)

1 - Blacklist (deny)

2 - Greylist (allow but track)

Use Cases:

Block stolen devices (blacklist specific IMEIs)

Restrict device types (blacklist by TAC pattern)

Allow only approved devices (whitelist pattern with deny-all default)

See Also:

Protocol Flows - S13 interface and EIR check flow

Architecture Overview - OmniHSS EIR function

{

 "eir_rule": {

 "name": "Block iPhone 6",

 "imei_regex": "^35[0-9]{6}0[0-9]{7}$",

 "action": 1

 }

}

Additional Documentation

For more information, see the following documentation:

Status and Health - API health check endpoints

Error Handling - Common errors and troubleshooting

API Usage Examples - Complete provisioning workflows

← Back to Operations Guide | Next: Control Panel →

API Status and Health

← Back to API Reference

System Status

Check if the API is responding.

Endpoint: GET /api/status

Example Request:

Example Response:

Use Case: Health check for load balancers and monitoring systems.

← Back to API Reference

curl -k https://hss.example.com:8443/api/status

{

 "status": "ok"

}

OmniHSS Architecture

Overview

← Back to Operations Guide

Table of Contents

System Overview

Component Architecture

Diameter Stack

Application Layer

Data Layer

External Interfaces

Deployment Architecture

System Overview

OmniHSS is built on Elixir and the Erlang/OTP platform, providing a highly

concurrent, fault-tolerant system designed for telecommunications workloads.

The architecture follows a layered approach with clear separation of concerns.

Component Architecture

Core Components

OTP Application

Supervision Tree

Hss.Application

Ecto.Repo DiameterEx.Supervisor API Endpoint Control Panel Endpoint Phoenix.PubSub Telemetry.Supervisor

S6a Handler Cx Handler Sh Handler S13 Handler Gx Handler Rx Handler

Diameter Application Handlers

Each Diameter application (S6a, Cx, Sh, S13, Gx, Rx) is implemented as a

DiameterEx handler module that:

1. Registers with DiameterEx - Subscribes to specific Diameter Application

IDs

2. Validates Requests - Extracts AVPs, validates subscriber state

3. Processes Business Logic - Calls appropriate business logic modules

4. Constructs Responses - Builds Diameter answer messages with AVPs

5. Handles Errors - Returns appropriate Diameter result codes

Diameter Stack

Diameter Service Configuration

OmniHSS configures a single Diameter service with multiple supported

applications:

Diameter Service:

:omnitouch_hss

Transport Layer

TCP/SCTP :3868
Application Layer

S6a

App ID: 16777251

S13

App ID: 16777252

Cx

App ID: 16777216

Sh

App ID: 16777217

Gx

App ID: 16777238

Rx

App ID: 16777236

Peer Connection Management

Peer Added

Initiate Connection

Handshake Success

Handshake Failure

Connection Lost

Reconnect Timer

Peer Removed

Configured

Connecting

Connected

Down
Diameter messages

can be exchanged

Automatic reconnection

attempts continue

Diameter Message Flow

Application Layer

S6a Interface (LTE/EPC)

Handles authentication and mobility management for LTE networks.

AIR ULR PUR NOR

AIA
ULA

PUA NOA CLR

Automatic on

MME change

MME

S6a Handler

Authentication

Module

Location

Update

State

Management

Cancel Location

Sender

Key Set

Milenage

Roaming

Check

EPC Profile

AMBR, APNs

CLR sent automatically

during ULR when MME

changes

or via API for forced

detach

Cx Interface (IMS)

Handles IMS registration and authentication.

Sh Interface (IMS Profile Data)

Provides IMS application servers access to subscriber profile data.

UDR PUR SNR UDA PUA SNA PNR

Application Server

Sh Handler

Sh Repository

Data Access

Subscription

Management

Subscriber State

sh_repository_data

PubSub

Notifications

Gx Interface (Policy Control)

Manages policy and charging control for data sessions. See PCRF

Documentation for details.

CCR-I CCR-U CCR-T CCA-I CCA-U CCA-T RAR

P-GW

Gx Handler

PDN Session

Management
QoS Rules Roaming Check

APN Profile

AMBR, QCI
Charging Rules

Rx Interface (IMS Media)

Controls IMS media policy and dedicated bearers for VoLTE. See PCRF

Documentation for details.

S13 Interface (EIR)

Validates device IMEI against equipment identity rules. See EIR

Documentation for details.

ECR ECA

EIR

S13 Handler

EIR Rules

Engine

Regex

Matching

Whitelist

Result

Blacklist

Result

Greylist

Result

Unknown

Config

Data Layer

Database Schema Overview

has

reference

uses uses hashas hashas

has

has

uses

has include

reference

has has

include

reference

SUBSCRIBER

JOIN_SUB_MSISDN

MSISDN

SIM KEY_SET EPC_PROFILEIMS_PROFILE ROAMING_PROFILESUBSCRIBER_STATE

PDN_SESSION

LTE_CALL APN_PROFILE

CIRCUIT_SESSION JOIN_EPC_APN

APN_IDENTIFIER APN_QOS_PROFILE

JOIN_ROAM_RULE

ROAMING_RULE

Ecto Repository Pattern

Optimized Query Strategy

Each Diameter procedure uses optimized queries that preload only necessary

associations:

S6a AIR S6a ULR Cx SAR Gx CCR-I

Diameter Request

Procedure Type

Query: subscriber

+ key_set

+ roaming_profile

Query: subscriber

+ epc_profile + apns

+ subscriber_state

Query: subscriber

+ ims_profile

+ msisdns

Query: subscriber

+ apn_profile + qos

+ subscriber_state

Minimal Data

Fast Response

Moderate Data

Profile Info

Full IMS Data

Complete Profile

Session Data

QoS Rules

External Interfaces

API Architecture

Control Panel Architecture

Data Sources

Live Pages

Control Panel - Port 7443

Phoenix Endpoint

LiveView

PubSub

Overview Live

Subscribers

Diameter Live

Peers

Application Live

Resources

Ecto.Repo Subscriber State Diameter Service System Stats

Deployment Architecture

Single Node Deployment

External

Server

Network Interfaces

OmniHSS Application

DiameterHTTPS

Database Protocol

BEAM VM

Erlang Runtime

OmniHSS Application

Management Interface

API :8443

Control Panel :7443

Diameter Interface

:3868

Network ElementsOperations Staff SQL Database

External/Local

Process Flow Example:

Authentication

This example shows the complete flow for an authentication request:

Key Architectural Principles

1. Fault Tolerance

Erlang/OTP supervision trees automatically restart failed processes

Isolated Diameter handlers prevent cascading failures

Database connection pooling with automatic reconnection

2. Concurrency

Each Diameter request handled in its own process

No shared state between request handlers

Database connection pooling for parallel queries

3. Modularity

Each Diameter application in separate module

Clear separation between interface, business logic, and data layers

Pluggable authentication algorithms

4. Performance

Optimized database queries with selective preloading

Minimal data transfer for each procedure type

Connection pooling and keepalive

5. Observability

Real-time monitoring via Control Panel

Structured logging throughout application

Diameter peer status tracking

Subscriber state tracking with timestamps

← Back to Operations Guide | Next: Configuration →

OmniHSS Configuration

Guide

← Back to Operations Guide

Table of Contents

Configuration File Overview

License Client Configuration

Runtime Configuration

Database Configuration

Diameter Configuration

Network Configuration

Home PLMN Configuration

HSS Core Configuration

IMS Configuration

EIR Configuration

API and Control Panel Configuration

Configuration Workflow

Configuration File Overview

OmniHSS uses two primary configuration files:

config/config.exs (Compile Time)

Contains static configuration that doesn't change between environments:

Control Panel page configuration

API endpoint configuration

Telemetry settings

config/runtime.exs (Runtime)

Contains environment-specific configuration that changes per deployment:

Database connection parameters

Diameter peer configuration

Home PLMN settings

IMS S-CSCF selection

Network interface bindings

License Client Configuration

The License Client validates the HSS license with a remote license server:

License Configuration Parameters:

Parameter Description Required Examp

license_server_api_urls

List of

license

server URLs

Yes ["https://10.0.0.

licensee

Organization

name on

license

Yes "ACME Telecom"

product_name

Product

identifier for

license

Yes "omnihss"

Important Notes:

License server must be reachable from HSS

Use HTTPS for secure license validation

Multiple URLs provide failover capability

License validation occurs at startup and periodically

config/runtime.exs

config :license_client,

 # License server API endpoints (list for failover)

 license_server_api_urls:

["https://license.example.com:8443/api"],

 # Licensed organization name

 licensee: "Your Organization Name",

 # Product identifier

 product_name: "omnihss"

Runtime Configuration

Configuration Priority

Yes No

Environment Variables

Variable Set?

Use Environment Value Use Default Value

Final Configuration

Environment Variable Pattern

OmniHSS follows this pattern for configuration:

Environment variable names are UPPERCASE with underscores

Default values are provided in runtime.exs

Database credentials should use environment variables in production

Database Configuration

Basic Database Configuration

config/runtime.exs

config :hss, Hss.Repo,

 # Database connection parameters

 username: System.get_env("DATABASE_USERNAME", "root"),

 password: System.get_env("DATABASE_PASSWORD", "password"),

 hostname: System.get_env("DATABASE_HOSTNAME", "localhost"),

 database: System.get_env("DATABASE_NAME", "omnihss"),

 # Connection pool settings

 pool_size:

String.to_integer(System.get_env("DATABASE_POOL_SIZE", "20")),

 # Timeouts (in milliseconds)

 timeout: 15_000,

 connect_timeout: 15_000,

 # Additional options

 show_sensitive_data_on_connection_error: false

Database Configuration Parameters

Parameter Description Default Recommendation

username
SQL Database

username
"root"

Use dedicated user in

production

password
SQL Database

password
"password"

Use strong password,

store in env var

hostname
SQL Database

server hostname
"localhost"

Use FQDN or IP in

production

database Database name "omnihss"
Keep default unless

multiple instances

pool_size
Connection pool

size
20

Adjust based on load

(10-50 typical)

Pool Size Tuning

Guidelines:

Start with 20 connections

Monitor for "connection pool timeout" errors

Increase by 10 if timeouts occur under normal load

Each connection uses ~4MB of memory

Too many connections can degrade SQL Database performance

Example: Production Database Configuration

config/runtime.exs - Production example

config :hss, Hss.Repo,

 username: System.fetch_env!("DATABASE_USERNAME"), #

Required in production

 password: System.fetch_env!("DATABASE_PASSWORD"), #

Required in production

 hostname: System.get_env("DATABASE_HOSTNAME",

"db.internal.example.com"),

 database: System.get_env("DATABASE_NAME", "omnihss"),

 port: String.to_integer(System.get_env("DATABASE_PORT",

"3306")),

 pool_size:

String.to_integer(System.get_env("DATABASE_POOL_SIZE", "30")),

 ssl: true,

 ssl_opts: [

 cacertfile: "/etc/ssl/certs/mysql-ca.pem",

 verify: :verify_peer

]

Diameter Configuration

Diameter Service Configuration

config/runtime.exs

diameter_config = %{

 service_name: :omnitouch_hss,

 # Network binding

 listen_ip: System.get_env("DIAMETER_LISTEN_IP", "10.7.25.186"),

 listen_port:

String.to_integer(System.get_env("DIAMETER_LISTEN_PORT", "3868")),

 # Diameter identity

 host: System.get_env("DIAMETER_HOST", "omnihss"),

 realm: System.get_env("DIAMETER_REALM",

"epc.mnc001.mcc001.3gppnetwork.org"),

 # Product identification

 product_name: "OmniHSS",

 vendor_id: 10415, # 3GPP

 supported_vendor_ids: [5535, 10415],

 # Protocol settings

 request_timeout: 5000,

 # Peer configuration

 peers: [

 # Add peer configurations here

]

}

config :hss, :diameter, diameter_config

Diameter Identity Configuration

Example Example

Constructed

Diameter Host FQDN

Host Realm

omnihss epc.mnc001.mcc001.3gppnetwork.org

Full Identity

omnihss.epc.mnc001.mcc001.3gppnetwork.org

Guidelines:

Host: Short hostname of the HSS (e.g., "omnihss", "hss01")

Realm: Diameter realm matching your PLMN (e.g.,

"epc.mnc001.mcc001.3gppnetwork.org")

Full Identity: Constructed as {host}.{realm}

Adding Diameter Peers

Static Peer Configuration (Connect Mode)

Listen-Only Mode

For environments where peers initiate connections to the HSS:

config/runtime.exs

peers: [

 # MME Peer Example

 %{

 host: "mme01.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.7.25.100",

 port: 3868,

 transport: :sctp, # or :tcp

 applications: [:s6a]

 },

 # P-GW Peer Example

 %{

 host: "pgw01.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.7.25.101",

 port: 3868,

 transport: :sctp,

 applications: [:gx]

 },

 # I-CSCF Peer Example

 %{

 host: "icscf01.ims.mnc001.mcc001.3gppnetwork.org",

 realm: "ims.mnc001.mcc001.3gppnetwork.org",

 ip: "10.7.25.102",

 port: 3868,

 transport: :tcp,

 applications: [:cx]

 }

]

Diameter Peer Connection Modes

Bidirectional

Either Can InitiateOmniHSS Peer

Listen Mode

InitiatesPeer OmniHSS

Connect Mode

InitiatesOmniHSS Peer

Transport Protocol Selection

Transport Advantages Disadvantages Recommendation

SCTP

Multi-streaming,

better failure

detection

Requires kernel

support, firewall

config

Preferred for

Diameter

TCP

Universal

support, simpler

firewall rules

Single stream,

slower failure

detection

Use if SCTP

unavailable

Network Configuration

Home PLMN Configuration

The home PLMN identifies your network operator:

config/runtime.exs

diameter_config = %{

 # ... other config ...

 peers: [] # Empty - accept incoming connections only

}

HSS Core Configuration

These settings control HSS behavior and features:

HSS Core Parameters:

config/runtime.exs

config :hss, :home_plmn, %{

 mcc: System.get_env("HOME_PLMN_MCC", "001"), # Mobile Country

Code

 mnc: System.get_env("HOME_PLMN_MNC", "001") # Mobile Network

Code

}

config/runtime.exs

config :hss,

 # Ecto repositories for database operations

 ecto_repos: [Hss.Repo],

 # CLR (Cancel Location Request) on MME change

 send_clr_on_mme_change: true,

 # Stop Diameter service during database outages

 stop_diameter_on_database_failure: true,

 # License enforcement configuration

 license_enforced: true,

 license_module: LicenseClient

Parameter Description Default Re

ecto_repos

List of Ecto

repositories

used by the

application

[Hss.Repo]

Re

dat

op

send_clr_on_mme_change

Send Cancel

Location

Request

when

subscriber

changes

MME

true
Kee

pro

stop_diameter_on_database_failure

Disable

Diameter

service if

database

becomes

unavailable

true
En

con

license_enforced

Enable

license

enforcement

true
Re

pro

license_module

Module

handling

license

checks

LicenseClient Do

PLMN Code Format

Examples:

AT&T (USA): MCC=310, MNC=410

Verizon (USA): MCC=311, MNC=480

Vodafone (UK): MCC=234, MNC=15

Test Network: MCC=001, MNC=01

Network Interface Binding

Interface Binding Options:

config/runtime.exs

Diameter interface

listen_ip: System.get_env("DIAMETER_LISTEN_IP", "0.0.0.0"), # All

interfaces

Or specific interface:

listen_ip: "10.7.25.186",

API interface

config :hss, HssWeb.Api.Endpoint,

 http: [

 ip: {0, 0, 0, 0}, # All interfaces

 port: 8443

]

Control Panel interface

config :hss, HssWeb.ControlPanel.Endpoint,

 http: [

 ip: {0, 0, 0, 0}, # All interfaces

 port: 7443

]

Binding Choice

0.0.0.0

(All Interfaces)

Management IP

(e.g., 192.168.1.10)

127.0.0.1

(Localhost Only)

Accessible from

any network

Accessible only from

management network

Accessible only

from server itself

IMS Configuration

S-CSCF Selection Configuration

S-CSCF Selection Methods

Selection Methods:

config/runtime.exs

config :hss, :ims, %{

 scscf: %{

 # Selection method: :random_peer or :round_robin

 selection_method: :random_peer,

 # List of available S-CSCF peers

 peers: [

 %{

 host:

"sip:scscf01.ims.mnc001.mcc001.3gppnetwork.org:5060",

 capabilities: [] # Optional: capability matching

 },

 %{

 host:

"sip:scscf02.ims.mnc001.mcc001.3gppnetwork.org:5060",

 capabilities: []

 }

]

 }

}

Method Description Use Case

:random_peer Randomly selects an S-CSCF Even load distribution

:round_robin Sequentially assigns S-CSCFs Predictable distribution

IMS Realm Configuration

Typically, IMS uses a separate realm from EPC:

EIR Configuration

See EIR Documentation for complete equipment identity checking

details.

Equipment Identity Register Settings

EPC Realm

"epc.mnc001.mcc001.3gppnetwork.org"

IMS Realm

"ims.mnc001.mcc001.3gppnetwork.org"

config/runtime.exs

config :hss, :eir, %{

 # Behavior for unknown equipment (no matching rule)

 unknown_equipment_behaviour: :whitelist

 # Options:

 # :whitelist - Allow unknown equipment

 # :blacklist - Block unknown equipment

 # :greylist - Track but allow unknown equipment

 # :reject_unknown_equipment - Reject with specific result code

}

Unknown Equipment Behavior

Yes No

:whitelist :blacklist :greylist :reject_unknown

IMEI Check Request

Matches Rule?

Apply Rule Action Unknown Behavior

Allow

Equipment Unknown

Deny

Equipment Blacklisted

Allow

Equipment Greylisted

Deny

Equipment Not Known

Behavior Options:

Option Result Use Case

:whitelist Allow all unknown IMEI
Open network,

testing

:blacklist Block all unknown IMEI Moderate security

:greylist
Allow but track

unknown IMEI
Monitoring mode

:reject_unknown_equipment
Reject with specific

code
High security

Recommendation: Start with :whitelist during testing, move to :greylist

for production monitoring, then :blacklist for strict security.

API and Control Panel

Configuration

API Endpoint Configuration

Control Panel Configuration

config/config.exs

config :hss, HssWeb.Api.Endpoint,

 url: [host: "localhost"],

 render_errors: [view: HssWeb.ErrorView, accepts: ~w(json)],

 pubsub_server: Hss.PubSub,

 # HTTPS configuration

 https: [

 port: 8443,

 cipher_suite: :strong,

 certfile: "priv/cert/omnitouch.crt",

 keyfile: "priv/cert/omnitouch.pem"

]

config/config.exs

config :hss, HssWeb.ControlPanel.Endpoint,

 url: [host: "localhost"],

 render_errors: [view: HssWeb.ErrorView, accepts: ~w(html json)],

 pubsub_server: Hss.PubSub,

 live_view: [signing_salt: "some-secret"],

 # HTTPS configuration

 https: [

 port: 7443,

 cipher_suite: :strong,

 certfile: "priv/cert/omnitouch.crt",

 keyfile: "priv/cert/omnitouch.pem"

]

TLS Certificate Configuration

Certificate Files

omnitouch.crt

Public Certificate

omnitouch.pem

Private Key

API :8443 Control Panel :7443
Diameter :3868

Optional

Certificate Requirements:

Valid X.509 certificate

Matching private key

Include intermediate certificates if needed

CN or SAN must match hostname

For Production:

https: [

 port: 8443,

 cipher_suite: :strong,

 certfile: System.get_env("TLS_CERT_FILE",

"/etc/ssl/certs/omnihss.crt"),

 keyfile: System.get_env("TLS_KEY_FILE",

"/etc/ssl/private/omnihss.key"),

 cacertfile: System.get_env("TLS_CA_FILE", "/etc/ssl/certs/ca-

bundle.crt")

]

Configuration Workflow

Initial Deployment Configuration

Configuration Checklist

Essential Configuration

 Database connection (hostname, credentials)

 Home PLMN (MCC, MNC)

 Diameter host and realm

 Diameter listen IP and port

 TLS certificates for API and Control Panel

 License client configuration (server URLs, licensee, product_name)

 HSS core settings (send_clr_on_mme_change,

stop_diameter_on_database_failure)

Network Element Integration

 Diameter peers configured (if using connect mode)

 Firewall rules allow Diameter traffic (port 3868)

 Firewall rules allow HTTPS traffic (ports 7443, 8443)

 DNS resolution for Diameter identities

IMS Configuration (if using IMS features)

 S-CSCF peer list configured

 S-CSCF selection method chosen

 IMS realm configured

Optional Configuration

 EIR behavior configured

 Database pool size tuned

 Network interface binding restricted

Verifying Configuration

After modifying configuration:

1. Syntax Check:

2. Control Panel Access:

3. API Access:

4. Diameter Status:

Check logs for configuration loading errors

Access https://[hostname]:7443

Verify Overview page loads

curl -k https://[hostname]:8443/api/status

5. Database Connectivity:

Check Control Panel Diameter page

Verify peer connections

Check Control Panel for subscriber data

Or connect directly to SQL Database

Complete Runtime Configuration

Example

config/runtime.exs - Complete production example

import Config

===

DATABASE CONFIGURATION

===

config :hss, Hss.Repo,

 username: System.fetch_env!("DATABASE_USERNAME"),

 password: System.fetch_env!("DATABASE_PASSWORD"),

 hostname: System.get_env("DATABASE_HOSTNAME", "db.omnihss.internal"

 database: System.get_env("DATABASE_NAME", "omnihss"),

 port: String.to_integer(System.get_env("DATABASE_PORT", "3306")),

 pool_size: String.to_integer(System.get_env("DATABASE_POOL_SIZE", "

 timeout: 15_000,

 connect_timeout: 15_000,

 ssl: true,

 ssl_opts: [

 cacertfile: "/etc/ssl/certs/mysql-ca.pem",

 verify: :verify_peer

]

===

LICENSE CLIENT CONFIGURATION

===

config :license_client,

 license_server_api_urls: [System.get_env("LICENSE_SERVER_URL",

"https://license.example.com:8443/api")],

 licensee: System.get_env("LICENSE_ORGANIZATION", "Your Organization

 product_name: "omnihss"

===

HOME PLMN AND HSS CORE CONFIGURATION

===

config :hss,

 ecto_repos: [Hss.Repo],

 home_plmn: %{

 mcc: System.get_env("HOME_PLMN_MCC", "001"),

 mnc: System.get_env("HOME_PLMN_MNC", "001")

 },

 send_clr_on_mme_change: true,

 stop_diameter_on_database_failure: true,

 license_enforced: true,

 license_module: LicenseClient

===

DIAMETER CONFIGURATION

===

diameter_config = %{

 service_name: :omnitouch_hss,

 listen_ip: System.get_env("DIAMETER_LISTEN_IP", "10.7.25.186"),

 listen_port: String.to_integer(System.get_env("DIAMETER_LISTEN_PORT

"3868")),

 host: System.get_env("DIAMETER_HOST", "omnihss01"),

 realm: System.get_env("DIAMETER_REALM",

"epc.mnc001.mcc001.3gppnetwork.org"),

 product_name: "OmniHSS",

 vendor_id: 10415,

 supported_vendor_ids: [5535, 10415],

 request_timeout: 5000,

 peers: [

 %{

 host: "mme01.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.7.25.100",

 port: 3868,

 transport: :sctp,

 applications: [:s6a]

 }

]

}

config :hss, :diameter, diameter_config

===

IMS CONFIGURATION

===

config :hss, :ims, %{

 scscf: %{

 selection_method: :random_peer,

 peers: [

 %{host: "sip:scscf01.ims.mnc001.mcc001.3gppnetwork.org:5060"},

 %{host: "sip:scscf02.ims.mnc001.mcc001.3gppnetwork.org:5060"}

]

 }

}

===

EIR CONFIGURATION

===

config :hss, :eir, %{

 unknown_equipment_behaviour: :whitelist

}

===

API ENDPOINT CONFIGURATION

===

config :hss, HssWeb.Api.Endpoint,

 http: [ip: {0, 0, 0, 0}, port: 8443],

 https: [

 port: 8443,

 cipher_suite: :strong,

 certfile: System.get_env("TLS_CERT_FILE", "/etc/ssl/certs/omnihss

 keyfile: System.get_env("TLS_KEY_FILE", "/etc/ssl/private/omnihss

],

 url: [host: System.get_env("API_HOST", "api.omnihss.internal"), por

8443]

===

CONTROL PANEL ENDPOINT CONFIGURATION

===

config :hss, HssWeb.ControlPanel.Endpoint,

← Back to Operations Guide | Next: Entity Relationships →

 http: [ip: {0, 0, 0, 0}, port: 7443],

 https: [

 port: 7443,

 cipher_suite: :strong,

 certfile: System.get_env("TLS_CERT_FILE", "/etc/ssl/certs/omnihss

 keyfile: System.get_env("TLS_KEY_FILE", "/etc/ssl/private/omnihss

],

 url: [host: System.get_env("CP_HOST", "hss.omnihss.internal"), port

OmniHSS Control Panel

Guide

← Back to Operations Guide

Table of Contents

Control Panel Overview

Accessing the Control Panel

Overview Page

Diameter Page

Application Page

Configuration Page

Navigation and Interface

Control Panel Overview

The OmniHSS Control Panel is a web-based monitoring interface that provides

real-time visibility into system status, subscriber activity, and Diameter

connectivity. Built with Phoenix LiveView, it automatically updates without

requiring page refreshes.

Key Features

Real-time Updates - Auto-refreshes every second

Subscriber Monitoring - View active subscribers and their current state

Diameter Status - Monitor peer connections in real-time

System Resources - Track application performance

Configuration Viewer - Inspect runtime configuration

Access Information

Control Panel Architecture

Accessing the Control Panel

Initial Access

1. Open a web browser

2. Navigate to https://[hostname]:7443

3. Accept the TLS certificate (if self-signed)

4. You will be presented with the Overview page by default

URL: https://[hostname]:7443

Protocol: HTTPS Only

Port: 7443 (configurable)

Certificate: Configured in config/config.exs

TLS Certificate Warnings

If using self-signed certificates, browsers will show security warnings. This is

expected for internal deployments.

For Production: Use certificates signed by a trusted Certificate Authority.

Network Requirements

Port 7443 must be accessible from your management network

HTTPS is mandatory - HTTP is not supported

Firewall rules must allow traffic to port 7443

Browser Compatibility

The Control Panel uses modern web technologies (LiveView, WebSockets):

Chrome/Chromium (recommended)

Firefox

Safari

Edge

Note: Internet Explorer is not supported.

Overview Page

URL: https://[hostname]:7443/overview

The Overview page displays all subscribers and their real-time state

information.

Page Layout

Overview Page

Subscriber Table

Table Columns Expandable Rows

ID Enabled IMSI ICCID EPC Profile IMS Profile Roaming Profile Subscriber State Details

Table Columns

Column Description Values

ID Subscriber database ID Integer

Enabled Service status
✓ (enabled) / ✗

(disabled)

IMSI
International Mobile Subscriber

Identity
14-15 digits

ICCID SIM card ID 19-20 digits or "N/A"

EPC Profile Data service profile name Profile name or ID

IMS Profile Voice service profile name
Profile name, ID, or

"N/A"

Roaming

Profile
Roaming policy name

Profile name, ID, or

"N/A"

Expandable Row Details

Click on any row to expand and view detailed subscriber state:

Location Information

Fields:

MCC - Mobile Country Code (3 digits)

MNC - Mobile Network Code (2-3 digits)

TAC - Tracking Area Code

Cell ID - Serving cell identifier

eNodeB ID - Base station identifier

ECI - E-UTRAN Cell Identifier

Network Information

Fields:

Last Seen MME - Current serving MME hostname

Last Seen Realm - Diameter realm of MME

RAT Type - Radio Access Technology (e.g., "E-UTRAN" for LTE)

Last Seen At - Timestamp of last Diameter message

IMS Information

Fields:

Assigned S-CSCF - Currently assigned S-CSCF SIP URI

IMS Public Identity - SIP URI (e.g.,

sip:+14155551234@ims.example.com)

Last Seen P-CSCF - Last P-CSCF that contacted HSS

Last Seen I-CSCF - Last I-CSCF that contacted HSS

Session Information

Fields:

mailto:+14155551234@ims.example.com

PDN Sessions - Number of active data connections

Active Calls - Number of active VoLTE calls

State Indicators

Subscriber State

Idle

Not Attached

Attached

Registered to MME

PDN Active

Data Connection

IMS Registered

Voice Ready

In Call

Active VoLTE Call

How to identify state:

Idle: No location information, no MME

Attached: Last Seen MME present, location info available

PDN Active: PDN sessions count > 0

IMS Registered: Assigned S-CSCF present

In Call: Active calls count > 0

Auto-Refresh

The Overview page automatically refreshes every 1 second to show real-time

updates.

Visual indicators:

New data appears without page reload

Timestamps update in real-time

No manual refresh needed

Use Cases

1. Monitor Active Subscribers

See which subscribers are currently attached

Check current serving network (for roaming)

Verify IMS registration status

2. Troubleshooting

Verify subscriber is enabled

Check last seen timestamp (is subscriber responsive?)

Confirm profile assignments

View current location information

3. Capacity Monitoring

Count total attached subscribers

Monitor PDN session counts

Track active VoLTE calls

Diameter Page

URL: https://[hostname]:7443/diameter

The Diameter page shows real-time status of all Diameter peer connections.

Page Layout

Diameter Page

Peer Table

Table Columns Expandable Rows

Hostname Realm IP:Port Transport Status Connection Details

Table Columns

Column Description Values

Hostname Diameter peer hostname FQDN

Realm Diameter realm Domain name

IP:Port Network address IP address and port

Transport Transport protocol TCP or SCTP

Status Connection status Connected / Disconnected

Connection Status

Expandable Row Details

Click on any peer to view additional information:

Connection Information:

Connection Type - Initiated by HSS or peer

Product Name - Peer's product identification

Application IDs - Supported Diameter applications

Application ID Examples:

16777251 - S6a (MME)

16777238 - Gx (P-GW)

16777216 - Cx (I-CSCF, S-CSCF)

16777217 - Sh (Application Server)

16777236 - Rx (P-CSCF)

16777252 - S13 (EIR client, if external)

Peer Connection Flow

Diameter PeerOmniHSS

Diameter PeerOmniHSS

Status: Connected

Status: Connected

alt [HSS Initiates (Connect Mode)]

[Peer Initiates (Listen Mode)]

loop [Keepalive]

No response - Status: Disconnected

Automatic reconnection attempts

alt [Connection Loss]

CER (Capabilities Exchange Request)

CEA (Capabilities Exchange Answer)

CER

CEA

DWR (Device Watchdog Request)

DWA (Device Watchdog Answer)

DWR

Auto-Refresh

The Diameter page automatically refreshes every 1 second.

Use Cases

1. Verify Connectivity

Ensure all expected peers are connected

Identify disconnected peers immediately

Monitor for flapping connections

2. Troubleshooting

Check if peer is reachable

Verify transport protocol (TCP vs SCTP)

Confirm application IDs match expectations

Identify which side initiated connection

3. Capacity Planning

Count total connected peers

Monitor for connection stability

Plan for additional peer capacity

Common Issues

Peer Shows Disconnected

Possible Causes:

1. Network connectivity issue

2. Peer is down or restarting

3. Firewall blocking traffic

4. Diameter configuration mismatch

5. Certificate issue (if using TLS)

Troubleshooting Steps:

1. Check network connectivity: ping [peer-ip]

2. Verify port is reachable: telnet [peer-ip] 3868

3. Check firewall rules

4. Review HSS logs for error messages

5. Verify peer's Diameter configuration matches HSS

Peer Connects and Disconnects Repeatedly

Possible Causes:

1. Network instability

2. Keepalive timeout mismatch

3. Peer resource issues

4. Diameter application mismatch

Troubleshooting Steps:

1. Check network stability

2. Review keepalive timers on both sides

3. Check peer system resources

4. Verify application IDs match on both sides

Application Page

URL: https://[hostname]:7443/application

The Application page provides system-level monitoring and resource usage

information.

Features

Process Information - Erlang VM process count and memory

System Memory - Total and used memory

Application Uptime - How long OmniHSS has been running

Erlang VM Version - Runtime version information

Key Metrics

Use Cases

1. Health Monitoring

Verify application is running

Check for memory leaks (increasing memory over time)

Monitor process count growth

2. Capacity Planning

Track memory usage trends

Plan for scale-out based on process count

Verify adequate system resources

3. Troubleshooting

Identify resource exhaustion

Check if restart is needed

Verify Erlang VM version

Configuration Page

URL: https://[hostname]:7443/configuration

The Configuration page displays the current runtime configuration of OmniHSS.

Features

View Configuration - Inspect all configuration parameters

Search Configuration - Find specific settings

Environment Variables - See resolved values

Configuration Categories

Configuration

HSS Config Database Config Diameter Config Network Config

Home PLMN IMS Settings EIR Settings Connection Params Pool Settings Peer List Listen Settings API Endpoint Control Panel

Use Cases

1. Configuration Verification

Verify runtime.exs settings are applied

Confirm database connection parameters

Check Diameter peer configuration

2. Troubleshooting

Identify misconfiguration

Verify environment variables are set correctly

Compare expected vs actual configuration

3. Documentation

Export current configuration for documentation

Share configuration with support team

Security Note: Configuration page may display sensitive information

(database passwords, keys). Restrict access appropriately.

Navigation and Interface

Top Navigation Bar

Navigation Bar

Overview

Diameter

Application

Configuration

Navigation is always visible at the top of the page for quick access.

Keyboard Shortcuts

While the Control Panel doesn't implement custom keyboard shortcuts,

standard browser shortcuts work:

Ctrl+R / F5 - Manual page refresh (though auto-refresh makes this

unnecessary)

Ctrl+F - Search on page

Ctrl+T - Open new tab (for multiple pages)

Multi-Tab Monitoring

You can open multiple Control Panel pages in separate browser tabs for

simultaneous monitoring:

Example Setup:

Tab 1: Overview page (monitor subscribers)

Tab 2: Diameter page (monitor connectivity)

Tab 3: Application page (monitor resources)

All tabs will auto-update independently.

Responsive Design

The Control Panel is optimized for desktop browsers. Mobile browsers are

supported but may require horizontal scrolling for tables.

Recommended Resolution: 1920x1080 or higher for comfortable viewing.

Monitoring Best Practices

Daily Operations

1. Start of Shift

Open Control Panel Overview page

Verify expected number of subscribers are attached

Check Diameter page - all peers connected

2. During Shift

Keep Overview page open for real-time monitoring

Watch for unusual state changes

Monitor for disconnected peers on Diameter page

3. End of Shift

Verify system is stable

Check Application page for resource usage trends

Document any anomalies

Troubleshooting Workflow

Alert Thresholds

Establish monitoring thresholds for proactive alerting:

Metric Warning Critical

Disconnected Diameter Peers 1 peer
2+ peers or critical

peer

Memory Usage > 80% > 90%

Subscriber Authentication

Failures
> 5% > 10%

Process Count
> 80% of

limit
> 95% of limit

← Back to Operations Guide | Next: Metrics & Monitoring →

EIR (Equipment

Identity Register)

Overview

The HSS includes a built-in EIR (Equipment Identity Register) that provides

equipment identity verification for mobile devices. The EIR validates IMEI

(International Mobile Equipment Identity) numbers to determine if mobile

equipment is authorized, stolen, or under observation before allowing network

access.

Key Capabilities

S13 Interface: Equipment identity checking via Diameter protocol

IMEI Validation: Verify equipment identity using IMEI/IMEISV

Flexible Matching: Regex-based pattern matching for IMEI, IMEISV, and

IMSI

Three-Tier Classification: Whitelist, blacklist, and greylist support

Configurable Policies: Customizable behavior for unknown equipment

REST API: Full CRUD operations for EIR rule management

Architecture

Diameter Interface

Interface
Application

ID
Peer Purpose

S13 16,777,252 MME/SGSN
Equipment identity

verification

Equipment Rules Database

The EIR uses a flexible rule-based matching system:

Rule Actions:

whitelist - Allow equipment

blacklist - Block equipment

greylist - Monitor equipment

Regex Patterns: Match against IMEI, IMEISV, or IMSI

Equipment Status Values

Status Code Meaning Network Action

Whitelist 0 Equipment approved Allow network access

Blacklist 1 Equipment stolen/blocked Deny network access

Greylist 2 Equipment under observation Allow with monitoring

S13 Interface

Supported Operations

Equipment Identity Check Request (ECR) / Equipment Identity Check

Answer (ECA)

Direction: MME/SGSN → HSS (EIR)

Trigger: MME verifies equipment identity during attach or tracking area update

Request AVPs:

Session-Id

Origin-Host, Origin-Realm

Destination-Realm

Auth-Session-State

Terminal-Information

IMEI (15 digits)

Software-Version (2 digits, optional)

User-Name (IMSI, optional)

Vendor-Specific-Application-Id

EIR Actions:

1. Extract IMEI, Software-Version (if present), and IMSI (if present)

2. If IMSI provided:

Validate subscriber exists and is enabled

Update subscriber state with last seen information

3. Attempt equipment lookup in priority order:

IMEISV match (IMEI + Software-Version concatenated)

IMEI match (IMEI only)

IMSI match (if provided in request)

Unknown equipment policy (configured default behavior)

4. Return equipment status

Response AVPs:

Session-Id (echoed from request)

Result-Code: 2001 (success)

Equipment-Status: 0 (whitelist) / 1 (blacklist) / 2 (greylist)

Error Responses:

Experimental-Result: 5422 (equipment/subscriber not found)

Experimental-Result: 5012 (general error)

Equipment Matching Logic

Priority Order

The EIR uses a cascading lookup strategy to maximize matching flexibility:

Matching Algorithm

Step 1: IMEISV Matching

Concatenate IMEI + Software-Version: "35979139461611" + "08" =

"3597913946161108"

Test against all EIR rule regex patterns

Return action ("whitelist", "blacklist", "greylist") of first matching rule

Step 2: IMEI Matching (fallback)

Use IMEI only: "35979139461611"

Test against all EIR rule regex patterns

1. IMEISV (IMEI + Software-Version)

 ↓ (if no match)

2. IMEI only

 ↓ (if no match)

3. IMSI (if provided in request)

 ↓ (if no match)

4. Unknown Equipment Policy

Return action of first matching rule

Step 3: IMSI Matching (fallback if IMSI provided)

Use IMSI from request: "999999876543210"

Test against all EIR rule regex patterns

Return action of first matching rule

Use case: Block all equipment for a specific subscriber

Step 4: Unknown Equipment Policy (final fallback)

Configuration setting: eir_unknown_equipment_behaviour

Options:

:whitelist - Allow unknown equipment (permissive)

:blacklist - Block unknown equipment (restrictive)

:greylist - Observe unknown equipment (moderate)

:reject_unknown_equipment - Return error 5422 (strict)

Regex Pattern Examples

Pattern Matches Use Case

"35979139461650" Exact IMEI Single device whitelist/blacklist

"3597913946165.*"
IMEI prefix

wildcard
Manufacturer/model range

"3597913946161108" Exact IMEISV
Specific device with software

version

"999999876543210" IMSI
Block all equipment for

subscriber

"359791.*" TAC wildcard Entire device type allocation

Common Message Flows

Flow 1: Equipment Check - Known Whitelisted

IMEI

Database
HSS

(EIR)
MME/SGSN

Database
HSS

(EIR)
MME/SGSN

Equipment approved,

allow network access

S13 ECR

(IMEI: 35979139461650,

IMSI: 999999876543210)

Query subscriber by IMSI

Subscriber data

Update subscriber state

(last_seen_realm,

last_received_message_type)

Updated

Query EIR rules

All rules

Match IMEISV "35979139461650"

→ No match

Match IMEI "35979139461650"

→ Matches regex "3597913946165.*"

→ Action: "whitelist"

S13 ECA

(Result-Code: 2001,

Equipment-Status: 0)

Flow 2: Equipment Check - Blacklisted IMEI

(Stolen Device)

Flow 3: Equipment Check - Unknown

Equipment (Whitelist Policy)

ConfigurationDatabase
HSS

(EIR)
MME/SGSN

ConfigurationDatabase
HSS

(EIR)
MME/SGSN

Equipment unknown but

policy allows, grant access

S13 ECR

(IMEI: 99999999999999,

IMSI: 999999876543210)

Query subscriber by IMSI

Subscriber data

Update subscriber state

Updated

Query EIR rules

All rules

Match IMEISV "99999999999999"

→ No match

Match IMEI "99999999999999"

→ No match

Match IMSI "999999876543210"

→ No match

Get unknown_equipment_behaviour

:whitelist

Apply policy: "whitelist"

S13 ECA

(Result-Code: 2001,

Equipment-Status: 0)

Flow 4: Equipment Check - Unknown

Equipment (Reject Policy)

ConfigurationDatabase
HSS

(EIR)
MME/SGSN

ConfigurationDatabase
HSS

(EIR)
MME/SGSN

Equipment unknown,

deny network access

S13 ECR

(IMEI: 99999999999999,

IMSI: 999999876543210)

Query subscriber by IMSI

Subscriber data

Update subscriber state

Updated

Query EIR rules

All rules

Match IMEISV "99999999999999"

→ No match

Match IMEI "99999999999999"

→ No match

Match IMSI "999999876543210"

→ No match

Get unknown_equipment_behaviour

:reject_unknown_equipment

S13 ECA

(Experimental-Result: 5422,

DIAMETER_ERROR_EQUIPMENT_UNKNOWN)

Flow 5: Equipment Check - Unknown

Subscriber

Flow 6: Equipment Check - IMEISV Match

Database
HSS

(EIR)
MME/SGSN

Database
HSS

(EIR)
MME/SGSN

Equipment greylisted,

allow with monitoring

S13 ECR

(IMEI: 35979139461630,

Software-Version: 08,

IMSI: 999999876543210)

Query subscriber by IMSI

Subscriber data

Update subscriber state

Updated

Query EIR rules

All rules

Concatenate IMEISV:

"35979139461630" + "08"

= "3597913946163008"

Match IMEISV "3597913946163008"

→ Matches regex "3597913946163008"

→ Action: "greylist"

S13 ECA

(Result-Code: 2001,

Equipment-Status: 2)

Flow 7: Equipment Check - IMSI Blocking

REST API

EIR Rule Management

Base path: /api/eir/rule

List All EIR Rules

Request:

Response (HTTP 200):

Get Specific EIR Rule

Request:

Response (HTTP 200):

GET /api/eir/rule

{

 "data": [

 {

 "id": 1,

 "action": "whitelist",

 "regex": "3597913946165.*",

 "inserted_at": "2025-01-15T10:30:00Z",

 "updated_at": "2025-01-15T10:30:00Z"

 },

 {

 "id": 2,

 "action": "blacklist",

 "regex": "35979139461640",

 "inserted_at": "2025-01-16T14:20:00Z",

 "updated_at": "2025-01-16T14:20:00Z"

 }

]

}

GET /api/eir/rule/{id}

{

 "data": {

 "id": 1,

 "action": "whitelist",

 "regex": "3597913946165.*"

 }

}

Create EIR Rule

Request:

Validation:

action : Required, must be "whitelist", "blacklist", or "greylist"

regex : Required, must be valid regex pattern, unique across all rules

Response (HTTP 201):

Error Response (HTTP 400):

Update EIR Rule (Partial)

Request:

POST /api/eir/rule

Content-Type: application/json

{

 "action": "blacklist",

 "regex": "35979139461640"

}

{

 "data": {

 "id": 3,

 "action": "blacklist",

 "regex": "35979139461640"

 }

}

{

 "errors": {

 "regex": ["has already been taken"]

 }

}

Response (HTTP 200):

Replace EIR Rule

Request:

Response (HTTP 200):

PATCH /api/eir/rule/{id}

Content-Type: application/json

{

 "action": "greylist"

}

{

 "data": {

 "id": 3,

 "action": "greylist",

 "regex": "35979139461640"

 }

}

PUT /api/eir/rule/{id}

Content-Type: application/json

{

 "action": "whitelist",

 "regex": "359791394616.*"

}

{

 "data": {

 "id": 3,

 "action": "whitelist",

 "regex": "359791394616.*"

 }

}

Delete EIR Rule

Request:

Response (HTTP 204 No Content)

Configuration

Diameter Service Setup

S13 Application (config/runtime.exs):

Unknown Equipment Behavior

Configure the default behavior for equipment not matching any rules in

config/runtime.exs :

Example:

Valid Values:

:whitelist - Allow unknown equipment (default, permissive)

:blacklist - Block unknown equipment (restrictive)

DELETE /api/eir/rule/{id}

%{

 application_name: :s13,

 application_dictionary: :diameter_gen_3gpp_s13,

 vendor_specific_application_ids: [

 %{vendor_id: 10415, auth_application_id: 16_777_252}

]

}

config :hss, :eir,

 unknown_equipment_behaviour: :whitelist

:greylist - Monitor unknown equipment (moderate)

:reject_unknown_equipment - Return Diameter error 5422 (strict)

Use Cases:

Development/Testing: :whitelist - Allow all devices

Production (permissive): :whitelist - Only block known bad devices

Production (moderate): :greylist - Log unknown devices for review

Production (strict): :reject_unknown_equipment - Only allow registered

devices

Error Handling

Result

Code
Type Meaning Cau

2001 Success DIAMETER_SUCCESS

Equipm

check

compl

5422 Experimental DIAMETER_ERROR_EQUIPMENT_UNKNOWN

Subsc

not fo

or

unkno

equipm

rejecte

5012 Experimental DIAMETER_ERROR_UNKNOWN
Proces

error

Use Cases

1. Stolen Device Management

Scenario: Device reported stolen

Action:

Result: Device denied network access on next attachment

2. Manufacturer Whitelist

Scenario: Pre-approve entire device model range

Action:

Result: All devices in TAC range approved

3. Subscriber Equipment Lock

Scenario: Block all equipment for specific subscriber (SIM lock)

Action:

POST /api/eir/rule

{

 "action": "blacklist",

 "regex": "35979139461640" # Exact IMEI

}

POST /api/eir/rule

{

 "action": "whitelist",

 "regex": "359791394.*" # TAC for manufacturer/model

}

Result: Any equipment used with this SIM is blocked

4. Test Equipment Greylist

Scenario: Monitor test equipment in production

Action:

Result: Equipment allowed but flagged for monitoring

5. Software Version Control

Scenario: Block specific vulnerable firmware version

Action:

Result: Only devices with Software-Version "05" in IMEI range blocked

POST /api/eir/rule

{

 "action": "blacklist",

 "regex": "999999876543210" # IMSI

}

POST /api/eir/rule

{

 "action": "greylist",

 "regex": "35979139.*" # Test equipment TAC range

}

POST /api/eir/rule

{

 "action": "blacklist",

 "regex": "359791394616.*05" # IMEI range + Software Version 05

}

Implementation Details

Internal Components

The EIR functionality is implemented using several internal modules:

S13 Protocol Handler - ECR/ECA message processing

Equipment Matching Engine - Regex-based IMEI/IMEISV/IMSI matching

EIR Rules Database - Pattern storage and lookup

REST API Controller - Rule management endpoints

Equipment Status Lookup Function

The equipment status lookup follows this cascading logic:

1. IMEISV Matching: Check IMEI + Software-Version concatenated

2. IMEI Matching: Check IMEI only

3. IMSI Matching: Check IMSI (if provided)

4. Unknown Equipment: Apply configured default policy

Possible Results:

whitelist - Equipment allowed

blacklist - Equipment blocked

greylist - Equipment under observation

reject_unknown_equipment - Strict rejection

Security Considerations

IMEI Privacy

IMEI numbers are sensitive identifiers. The EIR:

Does not log IMEI values in plaintext by default

Uses hashed database lookups (if configured)

Restricts API access to authenticated administrators

Rule Ordering

EIR rules are evaluated in database order (by ID). For conflicting patterns:

Recommendation: Create specific rules before broad wildcards to ensure

blacklist takes precedence.

Rate Limiting

Consider implementing rate limiting on:

S13 ECR requests from untrusted peers

REST API EIR rule modifications

IMEI lookup queries to prevent enumeration attacks

Related Documentation

Diameter Protocols - S13 protocol specification

API Reference - Complete API documentation

Architecture - Overall HSS architecture

Operations Guide - Operational procedures

Rule 1: regex "359791.*" action "whitelist" (broad)

Rule 2: regex "35979139461640" action "blacklist" (specific)

Appendix: IMEI Structure

IMEI Format (15 digits)

IMEISV Format (16 digits)

Example Patterns

IMEI/IMEISV Pattern Matches

359791394616108 3597913946161.*

All devices with

TAC+FAC+Serial

359791394616*

359791394616140 35979139461614.
All check digits for Serial

359791394616141-9

35979139461640 35979139461640 Exact IMEI match

3597913946163008 3597913946163008
Exact IMEISV (IMEI + SV)

match

35 9791 394616 1

│ │ │ └─ Check digit (Luhn algorithm)

│ │ └─ Serial Number (6 digits)

│ └─ FAC (Final Assembly Code, 4 digits)

└─ TAC (Type Allocation Code, 8 digits total including RBI)

 │ └─ RBI (Reporting Body Identifier, 2 digits)

 └─ Manufacturer/Model (6 digits)

35 9791 394616 1 08

│ │ │ │ └─ Software Version (2 digits)

└─ IMEI (15 digits)

OmniHSS Entity

Relationships

← Back to Operations Guide

Table of Contents

Entity Overview

Core Entities

Profile Entities

State Entities

Entity Relationship Diagrams

Entity Lifecycle

Data Flow Patterns

Entity Overview

OmniHSS organizes subscriber data into logical entities with clear relationships.

Understanding these entities is crucial for operational tasks like provisioning,

troubleshooting, and capacity planning.

Entity Categories

Core Entities

Subscriber

The Subscriber is the central entity representing a mobile user.

uses uses has has has has has

SUBSCRIBER

bigint id PK

boolean enabled

boolean ims_enabled

string imsi UK 14-15 digits

map custom_attributes

SIM KEY_SET EPC_PROFILE IMS_PROFILE ROAMING_PROFILE SUBSCRIBER_STATE JOIN_SUB_MSISDN

Fields:

Field Type Description Constraints

id bigint Primary key
Auto-

increment

enabled boolean Service enabled flag Default: true

ims_enabled boolean IMS services enabled Default: true

imsi string
International Mobile

Subscriber Identity

14-15 digits,

unique

custom_attributes map
Custom key-value

data
Optional

sim_id bigint Foreign key to SIM Optional

key_set_id bigint
Foreign key to Key

Set
Required

epc_profile_id bigint
Foreign key to EPC

Profile
Required

ims_profile_id bigint
Foreign key to IMS

Profile
Optional

roaming_profile_id bigint
Foreign key to

Roaming Profile
Optional

subscriber_state_id bigint
Foreign key to

Subscriber State
Auto-created

Key Points:

Each subscriber must have exactly one IMSI

IMSI must be 14-15 digits (no letters or special characters)

A subscriber can have multiple MSISDNs (phone numbers)

Subscriber state is automatically created when subscriber is created

enabled flag controls all services (data and IMS)

ims_enabled flag controls only IMS services

SIM

The SIM entity represents a physical or embedded SIM card.

Fields:

Field Type Description Security Level

iccid string Integrated Circuit Card ID Public

sim_vendor string SIM manufacturer Public

batch_name string Manufacturing batch Public

is_esim boolean Embedded SIM flag Public

pin1 , pin2 string PIN codes Sensitive

puk1 , puk2 string PUK codes Sensitive

adm1 - adm10 string Administrative codes Highly Sensitive

kic , kid binary OTA security keys Highly Sensitive

Key Points:

ICCID uniquely identifies the SIM card

One SIM can be assigned to one subscriber at a time

PIN/PUK codes are for end-user SIM locking

ADM codes are for administrative SIM operations

KIC/KID are for SIM OTA (Over-The-Air) updates

Key Set

The Key Set contains cryptographic keys for authentication.

used by

KEY_SET

bigint id PK

binary ki 128-bit

binary opc 128-bit

binary op 128-bit

binary amf 16-bit

bigint sqn 48-bit sequence

string authentication_algorithm

SUBSCRIBER

Fields:

Field Type Description Size

ki binary Secret key
128 bits (16

bytes)

opc binary
Operator variant

key (derived)
128 bits

op binary
Operator key (for

deriving OPC)
128 bits

amf binary
Authentication

Management Field

16 bits (2

bytes)

sqn bigint
Sequence number

(anti-replay)
48 bits

authentication_algorithm string Algorithm name
Currently

"milenage"

ota_counter bigint
OTA operation

counter
Integer

Key Points:

Multiple subscribers can share the same key set

Ki is the master secret shared with the SIM

Either OPC or OP must be provided (OPC can be derived from OP)

SQN is incremented with each authentication

Milenage is currently the only supported algorithm

Authentication Algorithm:

Ki

Secret Key

Milenage

Algorithm

OPC

Operator Key

RAND

Random Challenge

AMF

Auth Field

SQN

Sequence

XRES

Response

KASME

Key

AUTN

Token

CK/IK

IMS Keys

MSISDN

The MSISDN represents a phone number.

Fields:

Field Type Description Format

msisdn string Mobile Station ISDN Number 1-15 digits, E.164 format

Key Points:

MSISDN is the phone number in international format

Multiple MSISDNs can be assigned to one subscriber

One MSISDN cannot be shared between multiple subscribers

Format: Country code + National number (e.g., "14155551234" for +1 415-

555-1234)

Multi-MSISDN Pattern:

Subscriber

IMSI: 001001123456789

MSISDN: 14155551001

Primary

MSISDN: 14155551002

Work

MSISDN: 14155551003

Fax

Profile Entities

EPC Profile

The EPC Profile defines data service characteristics for LTE.

Fields:

Field Type Description

name string Profile name Text

ue_ambr_dl_kbps integer

Download

bandwidth

limit

Kbps

ue_ambr_ul_kbps integer

Upload

bandwidth

limit

Kbps

network_access_mode string
Access

restrictions

"packe

"packe

tracking_area_update_interval_seconds integer TAU interval Second

Network Access Modes:

Network Access Mode

0: Packet Only

Data Services
1: Reserved

2: Packet + Reserved

Data + Circuit

AMBR (Aggregate Maximum Bit Rate):

User Equipment
UE-AMBR

Total Bandwidth Limit

APN 1: Internet

Uses up to UE-AMBR

APN 2: IMS

Uses up to UE-AMBR

APN 3: MMS

Uses up to UE-AMBR

IMS Profile

The IMS Profile defines voice/video service characteristics.

Fields:

Field Type Description Format

name string Profile name Text

ifc_template text
Initial Filter Criteria XML

template

XML with

variables

IFC Template Variables:

IFC Template

Template Variables

{{imsi}}

Subscriber IMSI

{{msisdns}}

List of phone numbers

{{mcc}}

Home country code

{{mnc}}

Home network code

Rendered XML

Sent to S-CSCF

Key Points:

IFC (Initial Filter Criteria) controls call routing in IMS

Template is rendered when subscriber registers

Variables are substituted with actual subscriber data

Sent to S-CSCF during IMS registration

APN Profile

The APN Profile defines characteristics for a specific data access point.

uses uses included i used by

APN_PROFILE

bigint id PK

string name UK

APN_IDENTIFIER APN_QOS_PROFILE JOIN_EPC_APN PDN_SESSION

Related Entities:

APN Identifier

Field Type Description Example

apn string APN name "internet", "ims", "mms"

ip_version string IP protocol support See below

IP Version Options:

IP Version

ipv4: IPv4 Only ipv6: IPv6 Only
ipv4v6: IPv4v6

Dual Stack

ipv4_or_ipv6: IPv4 or

IPv6

Network Choice

APN QoS Profile

QoS Parameters:

Parameter Description Range
Default

Bearer

qci
QoS Class

Identifier
1-9

QCI 9

(Internet)

allocation_retention_priority ARP priority 1-15
8 (lower

priority)

apn_ambr_dl_kbps

APN

download

limit

0+ Varies

apn_ambr_ul_kbps
APN upload

limit
0+ Varies

pre_emption_capability
Can preempt

others
true/false false

pre_emption_vulnerability
Can be

preempted
true/false true

QCI Values:

QCI

QCI 1-4

Guaranteed Bit Rate

Voice, Video

QCI 5-9

Non-Guaranteed

Data Services

QCI 1: Conversational

Voice

QCI 2: Conversational

Video
QCI 4: Video Streaming QCI 5: IMS Signaling QCI 9: Internet Default

Roaming Profile

The Roaming Profile controls access when subscriber visits other networks.

include

reference

assigned t

ROAMING_PROFILE

bigint id PK

string name UK

string data_action_if_no_rules_match allow or deny

string ims_action_if_no_rules_match allow or deny

JOIN_ROAM_RULE

ROAMING_RULE

SUBSCRIBER

Roaming Rule:

Rule Evaluation:

Match Found No Match

Subscriber Visits

Network

MCC: 310, MNC: 410

Match Rule?

Apply Rule Action Apply Default Action

Allow Deny Allow if default=allow Deny if default=deny

State Entities

Subscriber State

The Subscriber State tracks real-time subscriber status.

Key Fields:

Location Information:

last_seen_mcc , last_seen_mnc - Visited network

last_seen_tac - Tracking Area Code

last_seen_cell_id - Cell ID

last_seen_enodeb_id - eNodeB ID

last_seen_eci - E-UTRAN Cell Identifier

Network Elements:

last_seen_mme - Current MME serving subscriber

last_seen_realm - Diameter realm of MME

last_seen_rat_type - Radio Access Technology (LTE, 5G, etc.)

IMS Information:

assigned_scscf - Current S-CSCF serving subscriber

ims_public_identity - SIP URI (e.g.,

sip:+14155551234@ims.example.com)

sh_repository_data - Custom IMS profile data

Timestamps:

last_seen_at - Last Diameter message received

Various last_*_at timestamps for different procedures

mailto:+14155551234@ims.example.com

PDN Session

The PDN Session represents an active data connection.

belongs t uses has

PDN_SESSION

bigint id PK

string pgw_session_id

integer rat_type

string ip_address

string assigned_pgw_host

boolean emergency

boolean roaming

datetime created_at

SUBSCRIBER_STATE APN_PROFILE LTE_CALL

PDN Session Lifecycle:

Gx CCR-I

Gx CCA-I (Success)

Gx CCR-U Gx CCA-U Gx CCR-T

Gx CCA-T

Creating

Active

Modified Terminating
Subscriber has active

data connection

LTE Call

The LTE Call represents an active VoLTE voice/video call.

Call Types:

LTE Call Type

0: Voice Call

Audio Only

1: Video Call

Audio + Video

2: Emergency Call

E911

VoLTE Call Flow:

P-GWOmniHSSP-CSCFPhone

P-GWOmniHSSP-CSCFPhone

SIP INVITE

Rx AAR (Authorize Media)

Create LTE Call Record

Rx AAA (Authorized)

Gx RAR (Setup Dedicated Bearer)

Gx RAA

Create Dedicated Bearer

SIP 200 OK

Entity Relationship Diagrams

Complete Entity Relationships

Provisioning Relationships

This diagram shows what must exist before creating a subscriber:

Subscriber

Optional

Built from Prerequisites

Must Exist First

Key Set

Crypto Keys

EPC Profile

Data Service Config

APN Identifier

APN Names

APN QoS Profile

QoS Parameters

APN Profile

SIM

Card Data

IMS Profile

Voice Config

Roaming Profile

Roaming Rules

Subscriber

Session State Relationships

Entity Lifecycle

Subscriber Provisioning Lifecycle

Provision Supporting

Data

All Required Data Exists

enabled=false

enabled=true

Update enabled=true

Update enabled=false

Subscriber Attaches to

Network
Subscriber Detaches

IMS Registration IMS Deregistration

VoLTE Call Starts Call Ends

Delete Subscriber

Delete Subscriber

Create_Prerequisites

Create_Subscriber

Disabled

Enabled

Active

IMS_Registered

In_Call

Create Key Set

Create EPC Profile (with

APNs)

Create IMS Profile

(optional)

Create Roaming Profile

(optional)

Create SIM (optional)

Session Lifecycle

Subscriber Idle

Data Connection Starts Data Connection Ends

VoLTE Call Starts VoLTE Call Ends

Second Call Starts Second Call Ends

No_Sessions

PDN_Active

PDN_And_Call

Multiple_Calls

PDN Session record

exists

in database

PDN Session + LTE Call

records exist

Data Flow Patterns

Authentication Flow

Location Update Flow

S6a ULR Request

Lookup Subscriber

by IMSI

Load EPC Profile

+ APN Profiles

Update Subscriber State

Location, MME, etc.

Build Subscription Data

AMBR, APNs, QoS

S6a ULA Response

IMS Registration Flow

Cx SAR Request

Lookup Subscriber

by IMSI/MSISDN

Load IMS Profile

+ MSISDNs

Select S-CSCF

Random/Round-Robin

Render IFC Template

with Variables

Update Subscriber State

S-CSCF Assignment

Cx SAA Response

Session Establishment Flow

Query Optimization Patterns

OmniHSS optimizes database queries by selectively preloading only the

necessary associations for each operation:

Minimal Query (Authentication)

Query Subscriber

Key Set

Roaming Profile

Use Case: S6a AIR - Only needs crypto keys and roaming rules

Moderate Query (Location Update)

Use Case: S6a ULR - Needs complete EPC profile data

Full Query (IMS Registration)

Query Subscriber

IMS Profile

MSISDNs

via Join Table

Subscriber State

Use Case: Cx SAR - Needs IMS profile and all phone numbers

← Back to Operations Guide | Next: API Reference →

Diameter Response

Data Mapping

← Back to Documentation Index

This document provides detailed mermaid diagrams showing where each field

in Diameter protocol responses is sourced from in the OmniHSS system.

Table of Contents

Update Location Answer (S6a ULA)

Authentication Information Answer (S6a AIA)

Server Assignment Answer (Cx SAA)

Credit Control Answer (Gx CCA)

User Data Answer (Sh UDA)

ME Identity Check Answer (S13 ECA)

Update Location Answer (S6a ULA)

The Update Location Answer is sent by the HSS to the MME during LTE attach

procedures. This diagram shows the complete data flow from database tables

to Diameter AVPs.

Data Source Mapping

Detailed Field Mapping

Database Source Field
D

subscriber.enabled true/false
Su

St

msisdn.msisdn '14155551234' MS

epc_profile.ue_ambr_ul_kbps 50000

Ma

Re

Ba

UL

epc_profile.ue_ambr_dl_kbps 100000

Ma

Re

Ba

DL

epc_profile.network_access_mode 'packet_only'

Ne

Ac

Mo

apn_identifier.apn 'internet'
Se

Se

apn_identifier.ip_version 'ipv4v6' PD

apn_qos_profile.qci 9
Qo

Ide

apn_qos_profile.allocation_retention_priority 8
Pr

Le

Database Source Field
D

apn_qos_profile.pre_emption_capability false

Pre

em

Ca

apn_qos_profile.pre_emption_vulnerability true

Pre

em

Vu

apn_qos_profile.apn_ambr_ul_kbps 25000
AP

UL

apn_qos_profile.apn_ambr_dl_kbps 50000
AP

DL

static_ip.ipv4_static_ip '100.64.1.1'

Se

Pa

Ad

(IP

static_ip.ipv6_static_ip '2606:4700::1111'

Se

Pa

Ad

(IP

Key Transformations:

1. AMBR bandwidth: Database stores in kbps, Diameter expects bps

(multiply by 1000)

2. IP Version encoding: 0=IPv4, 1=IPv6, 2=IPv4v6, 3=IPv4_or_IPv6

3. Subscriber Status: enabled: true → 0 (SERVICE_GRANTED) , enabled:

false → 1 (OPERATOR_DETERMINED_BARRING)

4. Context-Identifier: Sequential numbering (0, 1, 2...) for each APN in

profile

5. Static IP: Only included if assigned via static_ips many-to-many

relationship

Business Logic Validation:

Roaming check: Match visited PLMN against

roaming_profile.roaming_rules

Subscriber enabled check: subscriber.enabled == true

Filter APNs: May exclude IMS APNs if roaming policy denies IMS

Authentication Information Answer

(S6a AIA)

The Authentication Information Answer provides authentication vectors for

LTE/EPC subscribers.

Data Source Mapping

Authentication Answer
Milenage Algorithm

Database

Subscriber Key Set

Subscriber State

Milenage

RAND

AUTN

XRES

KASME

AIAAuth Vectors

Key Components:

1. Cryptographic Keys: All keys stored as hex strings in key_set table

2. SQN Management: Sequence number incremented after each auth vector

generation (prevents replay attacks)

3. Milenage Algorithm: 3GPP TS 35.206 - generates authentication vectors

4. KASME Derivation: Key derived from CK||IK using KDF per TS 33.401

Security Features:

SQN stored per subscriber (not global)

Ki/OPc never leave HSS (only derived values transmitted)

AUTN includes sequence number (SQN) and AMF for network authentication

Milenage algorithm provides mutual authentication between UE and

network

Server Assignment Answer (Cx

SAA)

The Server Assignment Answer is sent by the HSS to the S-CSCF during IMS

registration.

Data Source Mapping

Key Features:

1. IFC Template: XML template stored in ims_profile.ifc_template

2. Dynamic Substitution: Replaces {{msisdn}} , {{imsi}} , {{impu}} at

runtime

3. S-CSCF Assignment: Stores assigned S-CSCF in

subscriber_state.assigned_scscf

4. IMS Public Identity: Format: sip:+{msisdn}@{ims_domain} or tel:+

{msisdn}

IFC Template Parameters:

{{msisdn}} - First MSISDN from subscriber

{{imsi}} - Subscriber IMSI

{{impu}} - IMS Public User Identity (from subscriber_state)

{{impi}} - IMS Private User Identity (typically IMSI@realm)

Credit Control Answer (Gx CCA)

The Credit Control Answer is sent by the PCRF function to the PGW during

bearer establishment.

Data Source Mapping

Credit Control Answer
Database

Subscriber

EPC Profile APN QoS

PDN Session

CCA

QoS Info

Bearer QoS

Key Features:

1. Session Tracking: Creates/updates pdn_session record for each bearer

2. QoS Enforcement: Provides QCI and bandwidth limits from APN QoS

profile

3. Charging Rules: Returns default charging rules for billing integration

4. CC-Request-Type: Handles INITIAL (1), UPDATE (2), TERMINATION (3)

Session State Management:

INITIAL_REQUEST : Creates new PDN session record

UPDATE_REQUEST : Updates existing PDN session

TERMINATION_REQUEST : Deletes PDN session record

User Data Answer (Sh UDA)

The User Data Answer is sent by the HSS to the AS (Application Server) via Sh

interface.

Data Source Mapping

User Data Answer

Processing
Database

Subscriber

MSISDN

Subscriber State

Build XML Sh XML Data UDAUser Data AVP

Key Features:

1. Repository Data: Can store custom XML in

subscriber_state.sh_repository_data

2. Service Indication: Filters data by requested service (e.g., presence,

messaging)

3. Public Identities: Returns all IMS public identities for subscriber

4. Reference vs Transparent: Supports both reference and transparent

data modes

ME Identity Check Answer (S13

ECA)

The ME Identity Check Answer is sent by the EIR function to the MME for IMEI

validation.

Data Source Mapping

Key Features:

1. IMEI Regex Matching: Rules use regular expressions for flexible matching

2. TAC-based Rules: Can match Type Allocation Code (first 8 digits)

3. Default Behavior: Configurable for unknown IMEIs (accept or reject)

4. Equipment Status Values:

0 = WHITELIST (explicitly allowed)

1 = BLACKLIST (stolen/blocked)

2 = GREYLIST (allowed but monitored)

5 = UNKNOWN (no matching rule)

Use Cases:

Block stolen devices by exact IMEI

Block device models by TAC pattern

Whitelist approved devices only

Track grey market devices

Common Response Elements

All Diameter responses share these common AVPs:

Common Response

AVPs (All Protocols)

Any Diameter Answer

Session-Id

Source: Echo from

request

Auth-Session-State

Source: Config or

request

Origin-Host

Source:

config.diameter_host

Origin-Realm

Source:

config.diameter_realm

Vendor-Specific-

Application-Id

Source: Protocol

definition

Result-Code or

Experimental-Result

Source: Validation +

Business Logic

Auth-Application-Id

16777251=S6a,

16777216=Cx, etc.

Vendor-Id

10415=3GPP

2001:

DIAMETER_SUCCESS

5xxx: Error codes

Experimental-Result

3GPP-specific codes

Configuration Example:

config :diameter_ex,

 diameter_host: "hss",

 diameter_realm: "example.com",

 diameter_service_name: "OmniHSS"

Data Flow Summary

Request Processing Pipeline

Implementation Notes

Protocol Handlers

The system implements handlers for the following Diameter protocols:

S6a - LTE/MME interface for authentication and location updates

Cx - IMS/CSCF interface for IMS registration and server assignment

Sh - IMS/AS interface for subscriber data retrieval

Gx - PCRF interface for policy and charging control

Rx - IMS/AF interface for media authorization

S13 - EIR interface for IMEI validation

SWx - WiFi/IMS interface for non-3GPP access authentication

Data Models

The database schema includes the following core entities:

Subscriber - Core subscriber record with IMSI

Key Set - Cryptographic keys for authentication

EPC Profile - LTE service configuration

APN Profile - Access point configuration

IMS Profile - IMS service configuration with IFC templates

Roaming Profile - Roaming rules and restrictions

Subscriber State - Dynamic session and state tracking

PDN Session - Active bearer session tracking

Static IP - Static IP address assignments

EIR Rule - IMEI validation rules

← Back to Documentation Index | API Reference → | Protocol Flows →

OmniHSS Metrics and

Monitoring Guide

← Back to Operations Guide

Table of Contents

Monitoring Overview

Control Panel Monitoring

Database Monitoring

Log Monitoring

External Monitoring Integration

Key Performance Indicators

Alerting Strategies

Monitoring Overview

OmniHSS provides several mechanisms for monitoring system health,

performance, and subscriber activity. Operations staff should utilize a

combination of these tools for comprehensive visibility.

Monitoring Layers

Control Panel Monitoring

The Control Panel provides the primary real-time monitoring interface.

Overview Page Monitoring

URL: https://[hostname]:7443/overview

Key Metrics Available

Overview Page

Subscriber Metrics State Metrics Location Metrics

Total Subscribers Enabled Count Disabled Count Attached Subscribers Active PDN Sessions Active VoLTE Calls Roaming Subscribers
Home Network

Subscribers

Monitored Subscriber States

State Indicator What It Means

Idle No location info
Subscriber powered off or out of

coverage

Attached MME present Subscriber registered to network

PDN Active
PDN session count

> 0
Active data connection

IMS

Registered
S-CSCF assigned Voice services ready

In Call
Active call count >

0
VoLTE call in progress

Extracting Metrics from Overview

While the Control Panel doesn't export metrics directly, you can:

1. Count visible rows for total subscribers

2. Scan for green checkmarks to count enabled subscribers

3. Review expanded details for state information

4. Note last seen timestamps for responsiveness

Diameter Page Monitoring

URL: https://[hostname]:7443/diameter

Key Metrics

Critical Peer Monitoring

Identify critical peers and monitor their status:

Peer Type Criticality Impact if Down

MME High No new LTE attachments

P-GW High No data sessions

S-CSCF High No IMS registrations

P-CSCF High No VoLTE calls

I-CSCF Medium IMS routing issues

AS Low-Medium Specific service unavailable

Application Page Monitoring

URL: https://[hostname]:7443/application

Key Metrics

Metric Description
Normal

Range

Action

Threshold

Process

Count

Active Erlang

processes

Varies by

load
> 90% of limit

Memory

Usage

Total memory

consumed
< 80% > 90%

Uptime
Time since last

restart
N/A

Track for

stability

Database Monitoring

Direct Database Queries

Connect to SQL Database to extract detailed metrics:

Subscriber Counts

Query the database to retrieve:

Total count of all subscribers

Count of enabled subscribers

Count of IMS-enabled subscribers

Session Statistics

Query the database to retrieve:

Count of active PDN sessions

Count of active VoLTE calls

Breakdown of PDN sessions by APN profile

Location Statistics

Query the database to retrieve:

Subscriber count grouped by visited network (MCC-MNC combination)

Count of subscribers currently roaming (not on home PLMN 001-001)

Distribution of subscribers across different visited networks

Recent Activity

Query the database to retrieve:

Count of subscribers seen in the last hour

Distribution of subscribers by serving MME

Timestamp analysis of last subscriber activity

Database Health Monitoring

Monitor database health by querying:

Total database size and growth trends

Individual table sizes and row counts

Current database connection count

Query performance and resource usage

Log Monitoring

Log Output

OmniHSS outputs logs to stdout/stderr, which should be captured by your

process manager.

Log Levels

Log Levels

Debug

Detailed tracing

Info

Normal operations

Warning

Potential issues

Error

Failures

Key Log Patterns to Monitor

Diameter Peer Events:

Database Events:

Authentication Events:

[info] Diameter peer connected: mme01.epc.example.com

[warn] Diameter peer disconnected: pgw01.epc.example.com

[error] Diameter peer connection failed: timeout

[info] Database connection established

[error] Database connection lost: timeout

[error] Database query failed: deadlock detected

Log Aggregation

For production deployments, implement log aggregation:

OmniHSS

stdout/stderr

Process Manager

systemd, supervisord

Log Files

Log Aggregator

ELK Stack Splunk
Cloud Logging

CloudWatch, Stackdriver

Dashboards

[info] Authentication successful: IMSI 001001123456789

[warn] Authentication failed: IMSI 001001123456789, invalid vector

[error] Roaming denied: IMSI 001001123456789, MCC 310 MNC 410

External Monitoring Integration

Health Check Endpoint

API Health Check: GET /api/status

Expected Response:

HTTP Status: 200 OK

Monitoring Tool Integration

Nagios/Icinga Example

Prometheus Integration

curl -k https://hss.example.com:8443/api/status

{"status": "ok"}

#!/bin/bash

check_omnihss.sh

API_URL="https://hss.example.com:8443/api/status"

response=$(curl -k -s -o /dev/null -w "%{http_code}" "$API_URL" --

max-time 5)

if ["$response" = "200"]; then

 echo "OK - OmniHSS API responding"

 exit 0

else

 echo "CRITICAL - OmniHSS API not responding (HTTP $response)"

 exit 2

fi

Custom exporters can be created to export OmniHSS metrics to Prometheus by

querying the API and database.

SNMP Integration

For SNMP-based monitoring, custom SNMP extension scripts can query the

database or API for metrics and return values via SNMP OIDs.

Key Performance Indicators

Operational KPIs

Recommended KPI Thresholds

KPI Target Warning Critical

System Uptime 99.99% < 99.95% < 99.9%

Diameter Peer Uptime 99.9% < 99.5% < 99%

Authentication Success Rate > 99% < 99% < 95%

Diameter Response Time < 100ms > 200ms > 500ms

Database Query Time < 50ms > 100ms > 500ms

Error Rate < 0.1% > 0.5% > 1%

Capacity KPIs

Metric Monitor Plan Action At

Total Subscribers Current count
80% of expected

capacity

Concurrent PDN

Sessions
Active sessions

70% of expected

maximum

Database Size MB used 80% of allocated storage

Database Connections
Active

connections
80% of pool size

Alerting Strategies

Alert Priorities

Alert Triggers

Priority 1

Critical

Priority 2

High

Priority 3

Medium

Priority 4

Low

System Down

All Peers Down

Database Down

Critical Peer Down

Memory > 95%

Auth Failure > 10%

Non-Critical Peer Down

Memory > 85%

High Error Rate

Capacity Warning

Performance

Degradation

Alert Definitions

Critical Alerts (P1)

System Unavailable:

API health check fails

Control Panel inaccessible

Database connection fails

Action: Immediate investigation and escalation

All Diameter Peers Disconnected:

Zero connected peers

Action: Check network, restart if necessary

Database Down:

Cannot connect to SQL Database

Action: Investigate database server, restart if necessary

High Priority Alerts (P2)

Critical Diameter Peer Down:

Primary MME disconnected

Primary P-GW disconnected

Primary S-CSCF disconnected

Action: Investigate peer connectivity within 15 minutes

High Memory Usage:

Memory > 95%

Action: Investigate memory leak, plan restart

High Authentication Failure Rate:

10% of auth requests fail

Action: Check subscriber provisioning, investigate cause

Medium Priority Alerts (P3)

Non-Critical Peer Down:

Secondary peer disconnected

Application Server disconnected

Action: Investigate within 1 hour

Elevated Memory Usage:

Memory > 85%

Action: Monitor trend, plan capacity upgrade

Elevated Error Rate:

Error rate > 1%

Action: Review logs, identify root cause

Low Priority Alerts (P4)

Capacity Warning:

Subscribers > 80% of capacity

Database > 80% of allocated storage

Action: Plan capacity expansion

Performance Degradation:

Response times elevated but acceptable

Action: Monitor and optimize queries

Alert Notification Channels

Monitoring Checklist

Daily Checks

 Review Control Panel Overview - subscriber counts normal

 Review Diameter page - all critical peers connected

 Review Application page - memory and processes within limits

 Check for error logs - no critical errors in last 24 hours

 Verify backup completed successfully

Weekly Checks

 Review capacity trends - subscriber growth

 Review performance trends - response times

 Review database size - growth rate acceptable

 Review error rates - identify patterns

 Test alert notifications - ensure working

Monthly Checks

 Capacity planning review - project 6 months ahead

 Performance optimization review - identify slow queries

 Security review - certificate expiration, vulnerabilities

 Documentation review - update runbooks

 Disaster recovery test - verify backups restore correctly

← Back to Operations Guide | Next: Multi-Features →

OmniHSS Multi-MSISDN

and Multi-IMSI

Features

← Back to Operations Guide

Table of Contents

Overview

Multi-MSISDN: Multiple Phone Numbers

Multi-IMSI SIM: Multiple Network Identities

Combined Scenarios

Configuration Examples

Operational Procedures

Overview

OmniHSS supports advanced provisioning capabilities that enable flexible

service configurations:

Multi-MSISDN Support

One IMSI → Multiple Phone Numbers

A single subscriber (identified by one IMSI) can have multiple MSISDNs (phone

numbers) assigned. All numbers ring on the same device and share the same

service profiles.

Multi-IMSI SIM Support

One SIM → Multiple IMSIs

A single physical SIM card can contain multiple IMSIs, allowing the device to

attach to different networks using different network identities. This is useful for

international roaming and MVNO scenarios.

One Physical SIM

Multi-IMSI Capable

IMSI 1

001001111111111

Home Network

IMSI 2

310410222222222

Roaming Partner

IMSI 3

234015333333333

Regional MVNO

Subscriber 1

Subscriber 2

Subscriber 3

Multi-MSISDN: Multiple Phone

Numbers

How It Works

One subscriber record in the HSS has multiple MSISDNs linked through a join

table. When the subscriber registers to IMS, all MSISDNs are included in the IMS

profile, allowing inbound calls to any number to reach the device.

Key Characteristics

One IMSI - Subscriber has a single IMSI tied to their SIM card

Multiple MSISDNs - Subscriber can have multiple phone numbers

IMS Integration - All MSISDNs are registered in IMS

Shared Service - All numbers share the same service profiles (EPC, IMS,

Roaming)

Data Model

Important: One MSISDN can only be assigned to ONE subscriber at a time.

However, one subscriber can have MANY MSISDNs.

Use Cases

1. Business and Personal Lines

A subscriber has both business and personal phone numbers on the same

device:

Smartphone

Single SIM

Personal

+1-415-555-0001

Business

+1-415-555-0002

Personal Contacts

Business Contacts

2. International Numbers

A subscriber who travels frequently has numbers in multiple countries:

Subscriber

US Number

+1-415-555-0001

UK Number

+44-20-7123-4567

German Number

+49-30-1234-5678

3. Family Plans

One parent manages multiple family member numbers:

Note: In OmniHSS, this would require multiple subscribers (one per SIM/IMSI),

each potentially having multiple MSISDNs.

4. Legacy Line Porting

When a subscriber changes numbers but wants to keep the old number active

during transition:

New Number

+1-415-555-0002

Old Number

+1-415-555-0001
Subscriber

New Number

+1-415-555-0002

Old Number

+1-415-555-0001
Subscriber

Month 1: Old number only

Month 2: Add new number, both active

Month 3: Remove old number

Uses old number

Old contacts still work

Give new number to contacts

Only new number active

Configuration

Creating MSISDNs

MSISDNs must be created before assigning to subscribers.

Assigning MSISDNs to Subscribers

The assignment is done through the join table in the database.

Database Method:

1. Query the database to get the subscriber ID for the target IMSI

2. Query the database to get the MSISDN IDs for the phone numbers

3. Insert records into the join table linking subscriber_id to each msisdn_id

This creates the many-to-many relationship between the subscriber and their

phone numbers.

Provisioning Workflow

Verifying Assignment

Query the database to retrieve the subscriber along with all linked MSISDNs by:

Joining the subscriber table with the join table

Create first MSISDN

curl -k -X POST https://hss.example.com:8443/api/msisdn \

 -H "Content-Type: application/json" \

 -d '{"msisdn": {"msisdn": "14155551001"}}'

Create second MSISDN

curl -k -X POST https://hss.example.com:8443/api/msisdn \

 -H "Content-Type: application/json" \

 -d '{"msisdn": {"msisdn": "14155551002"}}'

Joining the join table with the msisdn table

Grouping results by subscriber to see all phone numbers together

This will show the subscriber ID, IMSI, and a list of all assigned MSISDNs.

IMS Integration

IMS Registration

When a subscriber registers to IMS, all assigned MSISDNs are included in

the IMS profile sent to the S-CSCF.

S-CSCFOmniHSSI-CSCFPhone

S-CSCFOmniHSSI-CSCFPhone

Load subscriber

+ all MSISDNs

REGISTER (IMSI)

Cx UAR (Check User)

Cx UAA (User Exists)

REGISTER (Forward)

Cx SAR (Register User)

Render IFC Template

with all MSISDNs

Cx SAA

(IFC with all numbers)

200 OK

IFC Template Rendering

The IMS IFC template can reference all MSISDNs using the {{msisdns}}

variable.

Example IFC Template:

Template Variable:

{{msisdns}} - List of all MSISDNs assigned to subscriber

Public Identities

Each MSISDN typically results in two IMS public identities:

MSISDN: 14155551001

SIP URI

sip:+14155551001@ims.example.com

TEL URI

tel:+14155551001

Inbound Call Routing

<ServiceProfile>

 <PublicIdentity>

 <Identity>sip:

{{imsi}}@ims.mnc{{mnc}}.mcc{{mcc}}.3gppnetwork.org</Identity>

 </PublicIdentity>

 <!-- Repeat for each MSISDN -->

 <PublicIdentity>

 <Identity>sip:+14155551001@ims.example.com</Identity>

 </PublicIdentity>

 <PublicIdentity>

 <Identity>tel:+14155551001</Identity>

 </PublicIdentity>

 <PublicIdentity>

 <Identity>sip:+14155551002@ims.example.com</Identity>

 </PublicIdentity>

 <PublicIdentity>

 <Identity>tel:+14155551002</Identity>

 </PublicIdentity>

 <!-- ... -->

</ServiceProfile>

When someone calls one of the subscriber's numbers, the IMS network routes

to the correct SIP URI:

Outbound Call Presentation

The phone can choose which number to present as caller ID for outbound calls.

SIP INVITE Example:

The From and P-Asserted-Identity headers indicate which of the subscriber's

numbers is being used.

INVITE sip:+15105551234@ims.example.com SIP/2.0

From: "+14155551002" <sip:+14155551002@ims.example.com>;tag=123

To: <sip:+15105551234@ims.example.com>

P-Asserted-Identity: <sip:+14155551002@ims.example.com>

Troubleshooting Multi-MSISDN

Issue: MSISDN Not Appearing in IMS Registration

Symptoms:

S-CSCF shows only one public identity

Calls to second number fail

Troubleshooting Steps:

1. Verify MSISDN Assignment in Database:

Query the database to retrieve all MSISDNs linked to the subscriber's

IMSI

Check the join table to ensure the relationships exist

2. Check IMS Profile Template:

Verify template includes {{msisdns}} variable

Confirm template syntax is valid XML

3. Review HSS Logs:

Look for IMS registration (Cx SAR) messages

Verify all MSISDNs are included in response

4. Test IMS Registration:

Trigger re-registration on phone

Check S-CSCF logs for public identities registered

Issue: Cannot Assign MSISDN to Subscriber

Symptoms:

Database insert fails

Error: "Duplicate entry" or "Foreign key constraint"

Possible Causes:

1. MSISDN Already Assigned:

Query the database to check if the MSISDN is already linked to another

subscriber

Solution: Remove the existing assignment first, then create the new

assignment

2. MSISDN Doesn't Exist:

Query the database to verify the MSISDN record exists

Solution: Create the MSISDN record first via API or database insert

Issue: Calls to One Number Work, Other Doesn't

Symptoms:

Calls to primary number work

Calls to secondary number fail or route incorrectly

Troubleshooting Steps:

1. Verify Both Numbers in IMS Registration:

Check S-CSCF registered public identities

Confirm both SIP URIs present

2. Check IMS Routing Rules:

Verify IFC template routing rules apply to all identities

Check if specific number needs special routing

3. Test Both Numbers:

Issue: API Lookup by MSISDN Returns Wrong Subscriber

Symptoms:

Test from SIP client

sip:+14155551001@ims.example.com # Should work

sip:+14155551002@ims.example.com # Should also work

API query /api/subscriber/msisdn/:msisdn returns unexpected

subscriber

Verification:

Query the database to find which subscriber the MSISDN is assigned to. This

should return exactly one subscriber. If it returns multiple or the wrong

subscriber, the join table has incorrect data that needs to be corrected.

Best Practices

Provisioning Order

1. Create all MSISDNs first

2. Create subscriber

3. Assign MSISDNs to subscriber

4. Verify assignment before activation

MSISDN Management

Document primary vs secondary numbers in subscriber

custom_attributes

Port numbers sequentially when porting to avoid service disruption

Test all numbers after provisioning before giving to customer

IMS Configuration

Ensure IFC template handles multiple public identities correctly

Test inbound routing to all numbers

Verify caller ID presentation for outbound calls

Migration

When migrating from single to multi-MSISDN:

Yes

No

Subscriber has 1

MSISDN

Add second MSISDN

Test both numbers

Both work?

Activate for customer Debug issue

Complete

Multi-IMSI SIM: Multiple Network

Identities

How It Works

A multi-IMSI SIM contains multiple complete subscriber profiles, each with its

own IMSI, keys, and credentials. The device can switch between IMSIs to attach

to different networks, often automatically based on location or network

availability.

Important: Only one IMSI can be active at any given time. When a device

switches to a different IMSI on the same SIM card, the HSS will automatically

deregister the previously active IMSI.

OmniHSS Implementation

In OmniHSS, each IMSI on a multi-IMSI SIM is provisioned as a separate

subscriber record, but all reference the same SIM card:

SIM Card

ICCID:

8991101200003204510

Subscriber 1

IMSI: 001001111111111

Subscriber 2

IMSI: 310410222222222

Subscriber 3

IMSI: 234015333333333

EPC Profile: Home EPC Profile: US Roaming EPC Profile: UK Partner

Use Cases

1. International Roaming Optimization

Home IMSI: 001-001 (home network rates)

US Roaming IMSI: 310-410 (local US rates)

EU Roaming IMSI: 234-015 (local EU rates)

Device switches IMSI based on location

2. MVNO Service

Primary IMSI: MVNO network (reseller)

Fallback IMSI: Host network (parent operator)

Automatic failover if MVNO coverage unavailable

3. IoT/M2M Multi-Network

IMSI 1: Primary carrier

IMSI 2: Backup carrier for redundancy

IMSI 3: Emergency/low-cost fallback

Critical devices maintain connectivity

4. Regulatory Compliance

Different IMSIs for different regulatory zones

Comply with local data residency requirements

Use local network identity per jurisdiction

Multi-IMSI Features

Independent Authentication

Each IMSI has its own Ki, OPC, and key set

Separate authentication vectors per IMSI

Different security credentials per network

Separate Service Profiles

Different EPC profiles (bandwidth, APNs)

Different IMS profiles (voice services)

Different roaming rules per IMSI

Shared Physical Identity

All IMSIs reference same SIM (via sim_id)

Same ICCID across all subscriber records

Logical grouping via SIM card

Network Selection

Device or SIM card decides which IMSI to use

Based on available networks, location, policy

HSS authenticates whichever IMSI device presents

Configuration

1. Create SIM card (multi-IMSI capable)

SIM_ID=$(curl -k -X POST https://hss.example.com:8443/api/sim \

 -d '{"sim": {"iccid": "8991101200003204510", "is_esim": false}}'

\

 | jq -r '.data.id')

2. Create key set for IMSI 1 (home network)

KEYSET1=$(curl -k -X POST https://hss.example.com:8443/api/key_set

\

 -d '{"key_set": {"ki": "0123456789ABCDEF...", "opc":

"FEDCBA9876..."}}' \

 | jq -r '.data.id')

3. Create subscriber 1 (home IMSI)

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -d "{\"subscriber\": {

 \"imsi\": \"001001111111111\",

 \"sim_id\": $SIM_ID,

 \"key_set_id\": $KEYSET1,

 \"epc_profile_id\": 1

 }}"

4. Create key set for IMSI 2 (roaming partner)

KEYSET2=$(curl -k -X POST https://hss.example.com:8443/api/key_set

\

 -d '{"key_set": {"ki": "1111111111111111...", "opc":

"2222222222..."}}' \

 | jq -r '.data.id')

5. Create subscriber 2 (roaming IMSI)

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -d "{\"subscriber\": {

 \"imsi\": \"310410222222222\",

 \"sim_id\": $SIM_ID,

 \"key_set_id\": $KEYSET2,

 \"epc_profile_id\": 2

 }}"

6. Repeat for additional IMSIs on the SIM...

Authentication Flow

When a multi-IMSI device attaches:

The HSS doesn't need to know it's a multi-IMSI SIM—it just authenticates

whatever IMSI the device presents.

IMSI Switching and Automatic Deregistration

When a multi-IMSI SIM switches from one IMSI to another, only one IMSI can be

registered at a time on the network. OmniHSS automatically handles this by

sending a Cancel Location Request (CLR) to deregister the previously active

IMSI when a new IMSI from the same SIM card registers.

Single Active IMSI Rule

Key Concept: Only one subscriber (IMSI) per SIM card can be active at any

given time.

If a subscriber is registered on an MME using IMSI X

And the HSS receives an Update Location Request for IMSI Y (on the same

SIM as IMSI X)

The HSS automatically sends a Cancel Location Request to deregister

IMSI X

This ensures clean handoff between IMSIs and prevents conflicts in the

network.

IMSI Switching Flow

OmniHSSMMEDevice

OmniHSSMMEDevice

Currently registered with IMSI X

001001111111111

IMSI X is active

Location: MME-001

User travels to different country

SIM switches to IMSI Y

Query: Find other subscribers

with same sim_id

Found: IMSI X is still registered

on MME-001

Deregister IMSI X

Release resources

Mark IMSI X as deregistered

Register IMSI Y

IMSI Y is now registered

IMSI X is deregistered

IMSI Y is active

Attach Request (IMSI Y: 310410222222222)

S6a AIR (IMSI Y)

S6a AIA (auth vectors for IMSI Y)

Authentication Challenge

Authentication Response

S6a ULR (Update Location for IMSI Y)

SELECT * FROM subscriber

WHERE sim_id = (SELECT sim_id FROM subscriber WHERE imsi='310410...')

AND imsi != '310410...'

AND subscriber_state is REGISTERED

S6a CLR (Cancel Location for IMSI X)

Destination: MME-001

S6a CLA (Cancel Location Answer)

S6a ULA (Update Location Answer for IMSI Y)

Attach Accept (IMSI Y now active)

Why This Matters

Network Integrity:

Prevents duplicate registrations from the same physical SIM

Ensures network resources are properly released

Maintains accurate subscriber location data

Billing Accuracy:

Only one IMSI is charged for network access at a time

Clear session boundaries between IMSI switches

Accurate CDR (Call Detail Record) generation

Resource Management:

MME resources for old IMSI are freed

PDP contexts and bearers are cleaned up

Location tracking remains accurate

IMSI Switch Triggers

The device/SIM decides when to switch IMSIs based on:

1. Network Availability

Home IMSI network not available

Switch to roaming partner IMSI

2. Manual Selection

User manually selects network

SIM switches to corresponding IMSI

3. Policy-Based

SIM card has internal rules (e.g., prefer local IMSI in certain countries)

Automatic switching based on MCC/MNC

4. Cost Optimization

Switch to IMSI with lower roaming rates

Use local IMSI to avoid roaming charges

IMS Considerations

The same Cancel Location Request behavior applies to IMS registration:

Operational Impact

For Operations Staff:

1. Subscriber appears offline: When IMSI switches, the old IMSI will show

as "deregistered" in the HSS. This is normal behavior.

2. Two subscriber records for one SIM: Multi-IMSI SIMs will have multiple

subscriber records sharing the same sim_id . Only one will be in

"registered" state at a time.

3. Location tracking: The subscriber_state table tracks which MME/SGSN

each IMSI is registered with. When IMSI switches, the old location is cleared.

4. Troubleshooting: If a device cannot be reached:

Check which IMSI is currently registered

Verify the correct IMSI is being used for the current network

Confirm only one IMSI per SIM is in registered state

Combined Scenarios

Multi-IMSI + Multi-MSISDN

You can combine both features: multiple IMSIs on one SIM, each with multiple

MSISDNs.

Multi-IMSI SIM

IMSI 1:

001001111111111

IMSI 2:

310410222222222

Subscriber 1 Subscriber 2

MSISDN 1A: +1-415-

555-1001

MSISDN 1B: +1-415-

555-1002

MSISDN 2A: +1-212-

555-2001

MSISDN 2B: +1-212-

555-2002

Example Use Case:

Home Network (IMSI 1):

Personal number: +1-415-555-1001

Business number: +1-415-555-1002

US Roaming Network (IMSI 2):

Personal number: +1-212-555-2001

Business number: +1-212-555-2002

When device is in home territory, uses IMSI 1 with its MSISDNs. When roaming

in US, switches to IMSI 2 with different MSISDNs optimized for US network.

Operational Procedures

Managing Multi-MSISDN Subscribers

View all MSISDNs for a subscriber:

The response includes all linked MSISDNs.

Troubleshooting Multi-IMSI

Device not attaching with second IMSI:

1. Verify second subscriber record exists for that IMSI

2. Check key_set is configured correctly for that IMSI

3. Verify EPC profile is assigned

4. Confirm roaming rules allow attachment

Device switching IMSIs unexpectedly:

This is controlled by device/SIM logic, not HSS

HSS authenticates whatever IMSI is presented

Check device IMSI selection settings

Troubleshooting Multi-MSISDN

Second number not ringing:

1. Verify MSISDN is linked in join table

2. Check IMS profile template includes {{msisdns}} variable

3. Confirm IMS registration includes all public identities

4. Review S-CSCF logs for registered identities

Outbound calls only show one number:

Device selects which number to present as caller ID

This is device configuration, not HSS

HSS provides all identities; device chooses

Query via API: GET /api/subscriber/imsi/:imsi

Benefits Summary

Multi-MSISDN Benefits

✓ One SIM, multiple phone numbers ✓ Separate business and personal lines ✓

International local presence ✓ Simplified device management ✓ All numbers

share same data service ✓ Centralized billing per IMSI

Multi-IMSI SIM Benefits

✓ Optimized roaming costs ✓ Automatic network selection ✓ Redundancy and

failover ✓ Local network identity ✓ Regulatory compliance ✓ Service continuity

across networks

Combined Benefits

✓ Maximum flexibility ✓ Different number sets per network ✓ Optimized for

each use case ✓ Complex business scenarios ✓ International and local

optimization

← Back to Operations Guide

PCRF (Policy and

Charging Rules

Function)

Overview

The HSS includes a built-in PCRF (Policy and Charging Rules Function) that

provides policy control and charging rules for mobile data sessions. The PCRF

controls Quality of Service (QoS) policies, bandwidth allocation, and charging

rules for both default and dedicated bearers in LTE networks.

Key Capabilities

Gx Interface: Policy control for PGW/PCEF (Packet Data Network Gateway /

Policy and Charging Enforcement Function)

Rx Interface: Authorization and QoS for IMS (IP Multimedia Subsystem)

media flows

Dynamic Policy Management: Real-time policy updates via Re-Auth

Requests (RAR)

VoLTE Support: Dedicated bearer creation for voice calls with guaranteed

QoS

Charging Rules: Define charging behavior and speed profiles using Traffic

Flow Templates (TFTs)

REST API: Programmatic control of policy enforcement and rule

management

Architecture

Diameter Interfaces

Interface
Application

ID
Peer Purpose

Gx 16,777,238
PGW

(PCEF)

PDN session management, QoS

enforcement, charging rules

Rx 16,777,236
P-CSCF

(AF)

IMS media authorization,

bandwidth reservation

Session State Management

The PCRF maintains session state for active PDN connections and VoLTE calls:

Gx Interface

Supported Operations

1. Credit Control Request - Initial (CCR-I)

Trigger: PGW creates new PDN connection for subscriber

Request AVPs:

Session-Id

Origin-Host, Origin-Realm

Subscription-Id (contains IMSI)

Called-Station-Id (APN name)

IP-CAN-Type (IP Connectivity Access Network type)

RAT-Type (Radio Access Technology)

Framed-IP-Address (UE IP address)

PCRF Actions:

1. Lookup subscriber by IMSI

2. Retrieve APN profile and QoS configuration

3. Create session tracking entry

4. Build QoS policies from APN profile

Response AVPs:

Result-Code: 2001 (DIAMETER_SUCCESS)

QoS-Information (APN aggregate bandwidth limits)

Default-EPS-Bearer-QoS (QCI, ARP, priority)

Bearer-Control-Mode

2. Credit Control Request - Update (CCR-U)

Trigger: PGW reports session changes (location update, RAT change, etc.)

PCRF Actions:

1. Locate existing session by session ID

2. Update session parameters (RAT type, location, etc.)

3. Return updated policies if needed

Response: Result-Code 2001 with optional policy updates

3. Credit Control Request - Terminate (CCR-T)

Trigger: PGW terminates PDN connection

PCRF Actions:

1. Locate session by session ID

2. Delete session and associated call records

3. Confirm termination

Response: Result-Code 2001

4. Re-Auth Request (RAR)

Direction: PCRF → PGW (HSS initiates)

Trigger:

IMS call setup (Rx AAR triggers Gx RAR)

IMS call teardown (Rx STR triggers Gx RAR)

Manual re-auth via REST API

RAR AVPs:

Session-Id (PGW session ID)

Auth-Application-Id: 16,777,238

Re-Auth-Request-Type (0 = Authorize only)

Charging-Rule-Install/Remove

QoS-Information (for dedicated bearers)

PGW Actions: Create/modify/delete dedicated bearers based on charging rules

Charging Rules and Traffic Flow Templates

The PCRF supports defining charging rules with Traffic Flow Templates (TFTs) to

control:

Service-specific charging - Different rates for video, gaming, social

media, etc.

Speed profiles - Throttle or prioritize traffic matching specific patterns

Usage-based policies - Apply different QoS based on traffic type or

destination

Charging rules can be:

Installed dynamically via Gx RAR based on application detection

Pre-defined and triggered by specific conditions (time of day, location,

quota)

Associated with TFTs using packet filter rules (5-tuple: protocol, source/dest

IP, source/dest port)

Common Use Cases:

Zero-rating - Unlimited access to specific services (Spotify, WhatsApp,

Facebook) without consuming data quota

Post-quota access - Allow self-care portal and support sites even after

subscriber exhausts data allowance

Tiered speed - High-speed for premium services, throttled for standard

content

Time-based policies - Off-peak unlimited streaming, peak-time

prioritization

Roaming policies - Different charging for international vs domestic data

usage

Enterprise SLAs - Guaranteed QoS for business-critical applications

QoS Policy Structure

Default Bearer QoS (from APN profile):

Dedicated Bearer QoS (for VoLTE):

{

 "QoS-Class-Identifier": 9, // QCI (9 = default bearer)

 "APN-Aggregate-Max-Bitrate-UL": 50000, // kbps

 "APN-Aggregate-Max-Bitrate-DL": 100000, // kbps

 "Allocation-Retention-Priority": {

 "Priority-Level": 8,

 "Pre-emption-Capability": 1, // May preempt

 "Pre-emption-Vulnerability": 1 // May be preempted

 }

}

Rx Interface

Supported Operations

1. AA Request (AAR) / AA Answer (AAA)

Trigger: P-CSCF requests authorization for IMS media session (VoLTE call setup)

Request AVPs:

Session-Id (P-CSCF session identifier)

Subscription-Id (IMSI or SIP URI)

Media-Component-Description

Media-Type (audio, video)

Max-Requested-Bandwidth-UL/DL

Codec-Data

Flow-Description (5-tuple packet filters)

AF-Application-Identifier

PCRF Actions:

1. Lookup subscriber by IMSI or SIP URI

2. Find active IMS session

3. Extract media parameters (codec, bandwidth, flow rules)

4. Create call tracking entry

5. Trigger Gx RAR to PGW to create dedicated bearer

6. Wait for Gx RAA response

{

 "QoS-Class-Identifier": 1, // QCI 1 = Conversational

Voice

 "Max-Requested-Bandwidth-UL": 128000, // bps

 "Max-Requested-Bandwidth-DL": 128000, // bps

 "Guaranteed-Bitrate-UL": 128000,

 "Guaranteed-Bitrate-DL": 128000

}

7. Return Rx AAA with authorization result

Response AVPs:

Result-Code: 2001 (success) or 5063 (service not authorized)

2. Session Termination Request (STR) / Session Termination Answer

(STA)

Trigger: P-CSCF terminates IMS session (call hangup)

PCRF Actions:

1. Locate call session by P-CSCF session ID

2. Trigger Gx RAR to PGW to remove dedicated bearer

3. Delete call tracking entry

4. Return STA confirmation

Response: Result-Code 2001

Common Message Flows

Flow 1: PDN Session Establishment

Database
HSS

(PCRF)

PGW

(PCEF)

Database
HSS

(PCRF)

PGW

(PCEF)

Establish default bearer

with QoS parameters

Gx CCR-I

(IMSI, APN, RAT-Type, IP)

Query subscriber

Subscriber data

Query APN profile

APN QoS config

Create pdn_session

Session created

Build QoS information

(QCI, AMBR, ARP)

Gx CCA-I

(QoS-Information,

Default-EPS-Bearer-QoS)

Flow 2: VoLTE Call Setup (Rx AAR → Gx RAR)

Flow 3: VoLTE Call Teardown (Rx STR → Gx RAR)

PGW

(PCEF)
Database

HSS

(PCRF)

P-CSCF

(IMS AF)

PGW

(PCEF)
Database

HSS

(PCRF)

P-CSCF

(IMS AF)

Delete dedicated bearer

Rx STR

(Session-Id)

Lookup lte_call by

P-CSCF session ID

lte_call record

Gx RAR

(Charging-Rule-Remove)

Gx RAA

(Result-Code: 2001)

Delete lte_call record

Deleted

Rx STA

(Result-Code: 2001)

Flow 4: PDN Session Update

Database
HSS

(PCRF)

PGW

(PCEF)

Database
HSS

(PCRF)

PGW

(PCEF)

Gx CCR-U

(Session-Id, New RAT-Type,

Location Update)

Lookup pdn_session by

PGW session ID

pdn_session record

Update session

(RAT type, location, timestamp)

Updated

Evaluate policy changes

(e.g., roaming, RAT-specific rules)

Gx CCA-U

(Result-Code: 2001,

Optional policy updates)

Flow 5: PDN Session Termination

Flow 6: Manual Re-Auth via REST API

PGW

(PCEF)
DatabasePCRF CoreHSS REST APIAdministrator

PGW

(PCEF)
DatabasePCRF CoreHSS REST APIAdministrator

Update policies/bearers

POST /api/operation/pcrf_re_auth

{imsi: "...", apn: "ims"}

Query subscriber by IMSI

Subscriber data

Find active session for APN

Session found

Build Gx RAR

(Session-Id, Destination)

Gx RAR

(Re-Auth-Request-Type)

Gx RAA

(Result-Code: 2001)

RAR result

HTTP 200

{data: "Gx Re-Auth Request sent,

Result-Code: 2001"}

REST API

PCRF Re-Auth Endpoint

Endpoint: POST /api/operation/pcrf_re_auth

Purpose: Manually trigger Gx Re-Auth Request to refresh policies

When to Use: This manual endpoint is typically used for troubleshooting or

forcing policy refresh on specific subscribers. For routine policy updates

(changing APN QoS profiles), the system automatically triggers re-auth for all

affected sessions - no manual action needed.

Request Body:

Success Response (HTTP 200):

Error Response (HTTP 400):

Policy Configuration API

The PCRF retrieves QoS policies from APN configurations stored in the

database. These policies can be created and managed via REST API.

Automatic Policy Enforcement: When you update an APN QoS profile (e.g.,

change bandwidth limits or QCI), the system automatically sends Gx Re-Auth

Requests (RAR) to all PGWs with active PDN sessions using that APN. This

ensures policy changes are applied immediately to all connected subscribers

without manual intervention.

Policy Architecture

Policies are defined through a three-tier structure:

{

 "imsi": "999999876543210",

 "apn": "ims"

}

{

 "data": "Gx Re-Auth Request for 999999876543210 sent to

pgw.epc.mnc999.mcc999.3gppnetwork.org, Result-Code: 2001"

}

{

 "error": "Unable to send Re-Auth Request for 999999876543210 on

APN ims, no active PDN Session found"

}

1. Create APN Identifier

Define the APN name and IP version support.

Endpoint: POST /api/apn/identifier

Request Body:

IP Version Options:

"ipv4" - IPv4 only

"ipv6" - IPv6 only

"ipv4v6" - Dual stack (both IPv4 and IPv6)

"ipv4_or_ipv6" - Network decides (either IPv4 or IPv6)

Response (HTTP 201):

Validation:

APN Identifier → APN QoS Profile → APN Profile

 ↓ ↓ ↓

 "internet" QCI, AMBR, ARP Links both together

{

 "apn_identifier": {

 "apn": "internet",

 "ip_version": "ipv4v6"

 }

}

{

 "data": {

 "id": 1,

 "apn": "internet",

 "ip_version": "ipv4v6"

 }

}

apn : Required, 1-254 characters, unique

ip_version : Required, must be one of the four options above

List APN Identifiers: GET /api/apn/identifier

2. Create APN QoS Profile

Define the QoS parameters (bandwidth, QCI, priority).

Endpoint: POST /api/apn/qos_profile

Request Body:

QoS Parameters:

{

 "apn_qos_profile": {

 "name": "Best Effort Internet",

 "qci": 9,

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 100000,

 "apn_ambr_ul_kbps": 50000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true

 }

}

Field Type Range Description

name string 1-254 chars
Profile name

(unique)

qci integer 1-254

QoS Class

Identifier (1-

4 = GBR, 5-

9 = Non-

GBR)

allocation_retention_priority integer 1-15

ARP level (1

= highest

priority)

apn_ambr_dl_kbps integer
1-

4,294,967,293

APN

Aggregate

Maximum

Bit Rate

Downlink

(kbps)

apn_ambr_ul_kbps integer
1-

4,294,967,293

APN

Aggregate

Maximum

Bit Rate

Uplink

(kbps)

pre_emption_capability boolean true/false

Can

preempt

lower

priority

bearers

pre_emption_vulnerability boolean true/false Can be

preempted

Field Type Range Description

by higher

priority

bearers

Common QCI Values:

1 - Conversational Voice (VoLTE) - GBR, 100ms delay budget

2 - Conversational Video - GBR, 150ms delay budget

5 - IMS Signaling - Non-GBR, 100ms delay budget

9 - Default Bearer (Internet) - Non-GBR, 300ms delay budget

Response (HTTP 201):

List QoS Profiles: GET /api/apn/qos_profile

3. Create APN Profile

Link the APN identifier with a QoS profile.

Endpoint: POST /api/apn/profile

Request Body:

{

 "data": {

 "id": 1,

 "name": "Best Effort Internet",

 "qci": 9,

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 100000,

 "apn_ambr_ul_kbps": 50000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true

 }

}

Fields:

name : Profile name (unique), used for reference

apn_identifier_id : ID from Create APN Identifier

apn_qos_profile_id : ID from Create APN QoS Profile

Response (HTTP 201):

Constraints:

apn_identifier_id and apn_qos_profile_id must reference existing

records

Each combination of APN identifier and QoS profile must be unique

List APN Profiles: GET /api/apn/profile

Complete Policy Configuration Example

Step 1: Create IMS APN Policy (VoLTE)

{

 "apn_profile": {

 "name": "Internet APN",

 "apn_identifier_id": 1,

 "apn_qos_profile_id": 1

 }

}

{

 "data": {

 "id": 1,

 "name": "Internet APN",

 "apn_identifier_id": 1,

 "apn_qos_profile_id": 1

 }

}

Step 2: Assign to Subscriber

1. Create APN Identifier

curl -X POST https://hss.example.com:8443/api/apn/identifier \

 -H "Content-Type: application/json" \

 -d '{

 "apn_identifier": {

 "apn": "ims",

 "ip_version": "ipv4v6"

 }

 }'

Response: {"data": {"id": 2, ...}}

2. Create QoS Profile (IMS Signaling)

curl -X POST https://hss.example.com:8443/api/apn/qos_profile \

 -H "Content-Type: application/json" \

 -d '{

 "apn_qos_profile": {

 "name": "IMS Signaling QoS",

 "qci": 5,

 "allocation_retention_priority": 2,

 "apn_ambr_dl_kbps": 5000,

 "apn_ambr_ul_kbps": 5000,

 "pre_emption_capability": true,

 "pre_emption_vulnerability": false

 }

 }'

Response: {"data": {"id": 2, ...}}

3. Create APN Profile

curl -X POST https://hss.example.com:8443/api/apn/profile \

 -H "Content-Type: application/json" \

 -d '{

 "apn_profile": {

 "name": "IMS APN",

 "apn_identifier_id": 2,

 "apn_qos_profile_id": 2

 }

 }'

Response: {"data": {"id": 2, ...}}

Once created, the APN profile is assigned to subscribers via EPC profiles. See

API Reference for linking APN profiles to subscribers.

Policy Update and Deletion

Update QoS Profile:

Example - Increase Bandwidth for All Users:

What Happens Automatically:

1. QoS profile is updated in the database

2. System identifies all active PDN sessions using APNs linked to this QoS

profile

3. For each active session, a Gx RAR is sent to the corresponding PGW

4. PGWs update bearer QoS to reflect new bandwidth limits

5. All connected subscribers immediately receive the updated policy

Example Scenario: If 100 subscribers are currently connected on the

"internet" APN using QoS profile ID 1, all 100 will have their bandwidth limits

updated to 150 Mbps down / 75 Mbps up within seconds of the API call

completing.

Note: When you update an APN QoS profile, the system automatically

triggers re-auth for all active PDN sessions using that APN, applying the new

PATCH /api/apn/qos_profile/{id}

PUT /api/apn/qos_profile/{id}

Update QoS profile ID 1 to increase bandwidth

curl -X PATCH https://hss.example.com:8443/api/apn/qos_profile/1 \

 -H "Content-Type: application/json" \

 -d '{

 "apn_qos_profile": {

 "apn_ambr_dl_kbps": 150000,

 "apn_ambr_ul_kbps": 75000

 }

 }'

policies immediately to attached subscribers. No manual re-auth is required.

Delete Resources:

Deletion Constraints:

Cannot delete APN identifiers or QoS profiles referenced by APN profiles

Cannot delete APN profiles assigned to active subscribers

Policy Templates

High-Speed Internet (100 Mbps down / 50 Mbps up):

Premium Internet (500 Mbps down / 100 Mbps up):

DELETE /api/apn/identifier/{id}

DELETE /api/apn/qos_profile/{id}

DELETE /api/apn/profile/{id}

{

 "apn_qos_profile": {

 "name": "High Speed Internet",

 "qci": 9,

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 100000,

 "apn_ambr_ul_kbps": 50000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true

 }

}

IoT/M2M (Low Bandwidth):

Emergency Services (Highest Priority):

{

 "apn_qos_profile": {

 "name": "Premium Internet",

 "qci": 8,

 "allocation_retention_priority": 5,

 "apn_ambr_dl_kbps": 500000,

 "apn_ambr_ul_kbps": 100000,

 "pre_emption_capability": true,

 "pre_emption_vulnerability": false

 }

}

{

 "apn_qos_profile": {

 "name": "IoT M2M",

 "qci": 9,

 "allocation_retention_priority": 10,

 "apn_ambr_dl_kbps": 1024,

 "apn_ambr_ul_kbps": 512,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true

 }

}

{

 "apn_qos_profile": {

 "name": "Emergency APN",

 "qci": 5,

 "allocation_retention_priority": 1,

 "apn_ambr_dl_kbps": 10000,

 "apn_ambr_ul_kbps": 10000,

 "pre_emption_capability": true,

 "pre_emption_vulnerability": false

 }

}

Configuration

Diameter Service Setup

Gx Application (config/runtime.exs):

Rx Application (config/runtime.exs):

QoS Parameters

QoS parameters are sourced from:

Default Bearer: APN profile configuration in database

apn_qos_profile.qci (QoS Class Identifier)

apn_qos_profile.apn_ambr_ul_kbps (Aggregate Maximum Bit Rate

Uplink)

apn_qos_profile.apn_ambr_dl_kbps (Aggregate Maximum Bit Rate

Downlink)

apn_qos_profile.priority_level (Allocation Retention Priority)

%{

 application_name: :gx,

 application_dictionary: :diameter_gen_3gpp_gx,

 vendor_specific_application_ids: [

 %{vendor_id: 10415, auth_application_id: 16_777_238}

]

}

%{

 application_name: :rx,

 application_dictionary: :diameter_gen_3gpp_rx,

 vendor_specific_application_ids: [

 %{vendor_id: 10415, auth_application_id: 16_777_236}

]

}

Dedicated Bearer: Extracted from Rx AAR Media-Component-Description

QCI: 1 (Conversational Voice)

Guaranteed Bitrate: From Max-Requested-Bandwidth AVPs

Flow filters: From Flow-Description AVPs

Error Handling

Result

Code
Type Meaning Cause

2001 Success DIAMETER_SUCCESS
Request processed

successfully

5001 Experimental User not found
IMSI not in subscriber

database

5002 Experimental Session not found

PDN session doesn't

exist for

update/terminate

5063 Experimental
Service not

authorized

IMS media authorization

denied

Implementation Details

Session Management

The PCRF tracks:

Active PDN Sessions - One per APN, per subscriber

VoLTE Calls - Multiple calls per IMS session (supports conference calling)

QoS Policies - Applied dynamically based on APN configuration

Charging Rules - Traffic flow templates and service-specific policies

Advanced Policy Features

The PCRF supports advanced policy control including:

Charging rule installation/removal via Gx interface

Traffic Flow Template (TFT) matching for service differentiation

Dynamic speed profiles based on application or traffic type

Service-aware policies triggered by network conditions or subscriber

behavior

Contact your system administrator for information on configuring advanced

charging rules and TFT-based policies.

Related Documentation

Diameter Protocols - Detailed protocol specifications

API Reference - Complete API documentation

Architecture - Overall HSS architecture

Data Mapping - Database to Diameter AVP mappings

OmniHSS Profile

Management

← Back to Operations Guide

Overview

OmniHSS uses profiles to define service characteristics for subscribers.

Profiles allow you to create reusable service templates that can be assigned to

multiple subscribers, simplifying provisioning and ensuring consistency.

Profile Types

Profile Types

EPC Profile

Data Services

IMS Profile

Voice Services

APN Profile

Network Access

Roaming Profile

Roaming Control

EPC Profiles

EPC (Evolved Packet Core) Profiles define data service characteristics for LTE

subscribers.

Key Parameters

Parameter Description Typical Value

ue_ambr_dl_kbps
Download

speed limit

10,000 - 1,000,0

Kbps

ue_ambr_ul_kbps
Upload

speed limit

5,000 - 500,000

Kbps

network_access_mode Service type
"packet_only" or

"packet_and_circ

tracking_area_update_interval_seconds TAU timer 54 seconds (typi

Creating EPC Profiles

Common EPC Profile Templates

Basic Internet:

curl -k -X POST https://hss.example.com:8443/api/epc/profile \

 -H "Content-Type: application/json" \

 -d '{

 "apn_profiles": [],

 "name": "Premium 100Mbps",

 "network_access_mode": "packet_only",

 "tracking_area_update_interval_seconds": 600,

 "ue_ambr_dl_kbps": 100000,

 "ue_ambr_ul_kbps": 50000

 }'

Download: 10 Mbps (10,000 Kbps)

Upload: 5 Mbps (5,000 Kbps)

Standard:

Download: 50 Mbps (50,000 Kbps)

Upload: 25 Mbps (25,000 Kbps)

Premium:

Download: 100 Mbps (100,000 Kbps)

Upload: 50 Mbps (50,000 Kbps)

Unlimited:

Download: 1 Gbps (1,000,000 Kbps)

Upload: 500 Mbps (500,000 Kbps)

IMS Profiles

IMS Profiles define voice service characteristics, primarily through IFC (Initial

Filter Criteria) templates.

IFC Templates

IFC templates are XML documents that define call routing rules for the S-CSCF.

Template Variables:

{{imsi}} - Subscriber IMSI

{{msisdns}} - List of phone numbers

{{mcc}} - Home country code

{{mnc}} - Home network code

Creating IMS Profiles

IFC Template Example

curl -k -X POST https://hss.example.com:8443/api/ims/profile \

 -H "Content-Type: application/json" \

 -d '{

 "ims_profile": {

 "name": "Standard VoLTE",

 "ifc_template": "<InitialFilterCriteria>...

</InitialFilterCriteria>"

 }

 }'

<ServiceProfile>

 <PublicIdentity>

 <Identity>sip:

{{imsi}}@ims.mnc{{mnc}}.mcc{{mcc}}.3gppnetwork.org</Identity>

 </PublicIdentity>

 <InitialFilterCriteria>

 <Priority>0</Priority>

 <TriggerPoint>

 <ConditionTypeCNF>0</ConditionTypeCNF>

 <SPT>

 <ConditionNegated>0</ConditionNegated>

 <Group>0</Group>

 <Method>INVITE</Method>

 </SPT>

 </TriggerPoint>

 <ApplicationServer>

 <ServerName>sip:as.ims.example.com</ServerName>

 <DefaultHandling>0</DefaultHandling>

 </ApplicationServer>

 </InitialFilterCriteria>

</ServiceProfile>

APN Profiles

APN (Access Point Name) Profiles define network access points for data

connections.

APN Components

APN Identifier

Defines the APN name and IP protocol support.

Common APNs:

internet - General internet access

ims - IMS/VoLTE signaling

mms - Multimedia messaging

vzwadmin - Carrier-specific

IP Version Options:

"ipv4" : IPv4 only

"ipv6" : IPv6 only

"ipv4v6" : IPv4v6 (dual stack)

"ipv4_or_ipv6" : IPv4 or IPv6 (network choice)

APN QoS Profile

Defines quality of service parameters.

QCI (QoS Class Identifier) Values:

QCI Type Use Case Priority

1 GBR Conversational voice Highest

2 GBR Conversational video High

4 GBR Video streaming High

5 Non-GBR IMS signaling Medium

9 Non-GBR Internet (default) Lowest

Creating Complete APN Configuration

Assigning APNs to EPC Profile

APNs are linked to EPC Profiles through the join_epc_profile_to_apn_profile

table.

Insert records into the join table to link APN profile IDs to the EPC profile ID.

Multiple APN profiles can be assigned to one EPC profile.

1. Create APN Identifier

APN_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/identifier \

 -H "Content-Type: application/json" \

 -d '{"apn": "internet", "ip_version": "ipv4v6"}' \

 | jq -r '.response.id')

2. Create APN QoS Profile

QOS_ID=$(curl -k -X POST

https://hss.example.com:8443/api/apn/qos_profile \

 -H "Content-Type: application/json" \

 -d '{

 "name": "Best Effort",

 "allocation_retention_priority": 8,

 "apn_ambr_dl_kbps": 50000,

 "apn_ambr_ul_kbps": 25000,

 "pre_emption_capability": false,

 "pre_emption_vulnerability": true,

 "qci": 9

 }' | jq -r '.response.id')

3. Create APN Profile

curl -k -X POST https://hss.example.com:8443/api/apn/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"apn_identifier_id\": $APN_ID,

 \"apn_qos_profile_id\": $QOS_ID,

 \"name\": \"Internet APN\"

 }"

Roaming Profiles

See detailed documentation in Roaming Control Guide.

Profile Assignment

Subscriber Profile Relationships

Subscriber

EPC Profile

Required

IMS Profile

Optional

Roaming Profile

Optional

APN Profile 1 APN Profile 2 APN Profile N...

Assigning Profiles to Subscribers

Profile Management Best Practices

Design Principles

1. Create Standard Profiles - Define common service tiers (Basic, Standard,

Premium)

2. Reuse Profiles - Assign same profile to multiple subscribers

3. Document Changes - Track profile modifications

4. Test Before Production - Verify profile works with test subscriber first

Assign EPC and IMS profiles during subscriber creation

curl -k -X POST https://hss.example.com:8443/api/subscriber \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "imsi": "001001123456789",

 "key_set_id": 1,

 "epc_profile_id": 1,

 "ims_profile_id": 1,

 "roaming_profile_id": 1

 }

 }'

Update subscriber profile

curl -k -X PUT https://hss.example.com:8443/api/subscriber/1 \

 -H "Content-Type: application/json" \

 -d '{

 "subscriber": {

 "epc_profile_id": 2

 }

 }'

Profile Naming Convention

Profile Migration

When changing a subscriber's profile:

SubscriberOmniHSS APIOperations

SubscriberOmniHSS APIOperations

On next attach/TAU

Profile active

Update subscriber profile

Success

Location Update Request

New profile data (AMBR, APNs)

Important: Profile changes take effect on the next:

Tracking Area Update (TAU)

Attach

IMS Registration (for IMS profile changes)

Troubleshooting Profile Issues

Subscriber not getting expected speed:

[Service Tier]-[Speed]-[Features]

Examples:

- "Basic-10Mbps-Internet"

- "Premium-100Mbps-VoLTE"

- "Enterprise-1Gbps-MultiAPN"

1. Check assigned EPC profile AMBR values

2. Check APN QoS profile AMBR values

3. Verify MME/P-GW enforcing QoS correctly

4. Check for network congestion

IMS registration fails:

1. Verify IMS profile assigned

2. Check IFC template XML validity

3. Review S-CSCF logs for IFC processing errors

4. Confirm S-CSCF selection configuration

APN not available:

1. Verify APN profile linked to EPC profile

2. Check APN identifier matches network request

3. Review PDN connectivity request from UE

← Back to Operations Guide | Next: Roaming Control →

OmniHSS Protocol

Flows

← Back to Operations Guide

Overview

This document details the Diameter protocol message flows supported by

OmniHSS. Understanding these flows is essential for troubleshooting and

operations.

S6a Interface (LTE/EPC)

Authentication Information Request (AIR/AIA)

MME requests authentication vectors for subscriber.

Key AVPs:

Request: User-Name (IMSI), Visited-PLMN-Id, Number of Requested Vectors

Response: Authentication-Info (RAND, AUTN, XRES, KASME)

Update Location Request (ULR/ULA)

MME notifies HSS of subscriber location and retrieves subscription data.

DatabaseOmniHSS (HSS)MME

DatabaseOmniHSS (HSS)MME

S6a ULR

(IMSI, MME Identity, Visited PLMN)

Query subscriber + epc_profile + apn_profiles

Subscriber + profiles

Update subscriber_state

(MME, location, timestamp)

Updated

Build subscription data

(AMBR, APN configs, QoS)

S6a ULA

Result: Success

(Subscription Data)

Key AVPs:

Request: User-Name (IMSI), RAT-Type, ULR-Flags, Visited-PLMN-Id, UE-

SRVCC-Capability

Response: Subscription-Data (AMBR, APN-Configuration, Network-Access-

Mode)

Purge UE Request (PUR/PUA)

MME notifies HSS when subscriber context is deleted.

Notify Request (NOR/NOA)

MME informs HSS of various events.

OmniHSS (HSS)MME

OmniHSS (HSS)MME

S6a NOR

(IMSI, Event Type)

Process notification

S6a NOA

Result: Success

Cancel Location Request (CLR/CLA)

HSS initiates location cancellation to inform MME that subscriber should be

detached. OmniHSS supports both automatic and programmatic CLR sending.

Automatic CLR (MME Handover)

When a subscriber performs an Update Location Request from a new MME,

OmniHSS automatically sends a CLR to the previous MME to clean up stale

registrations.

DatabaseOmniHSS (HSS)New MMEPrevious MME

DatabaseOmniHSS (HSS)New MMEPrevious MME

Subscriber moves to new MME

alt [Previous MME exists and differs from current]

S6a ULR

(IMSI, New MME Identity)

Query subscriber_state

last_seen_mme: "old-mme.example.com"

Build CLR message

S6a CLR

(IMSI, Cancellation-Type: 0)

(CLR-Flags: 0)

Delete subscriber context

S6a CLA

Result: Success

Update subscriber_state

(last_seen_mme: new MME)

Updated

S6a ULA

Result: Success

(Subscription Data)

Key AVPs (Automatic CLR):

User-Name: IMSI of subscriber

Destination-Host: Previous MME hostname

Destination-Realm: Previous MME realm

Cancellation-Type: 0 (MME Update Procedure)

CLR-Flags: 0

Subscription-Data: Full subscription profile

Programmatic CLR (API-Triggered)

Administrators can trigger CLR via the programmatic API to forcibly detach

subscribers (e.g., for subscription withdrawal, fraud prevention, or

administrative actions).

Key AVPs (Programmatic CLR):

User-Name: IMSI of subscriber

Destination-Host: Last seen MME hostname

Destination-Realm: Last seen MME realm

Cancellation-Type: :subscription_withdrawal (encoded as integer per

3GPP TS 29.272)

CLR-Flags:

s6a_indicator: 1 (indicates S6a interface)

reattach_required: 1 (UE must re-authenticate to reattach)

Cancellation Types

OmniHSS supports multiple cancellation types per 3GPP TS 29.272:

Type Value Description Use Case

MME Update

Procedure
0

Normal MME

change

Automatic during ULR

from new MME

SGSN Update

Procedure
1 SGSN handover

3G/2G handover

scenarios

Subscription

Withdrawal
2 Admin termination Manual detach via API

Update

Procedure IWF
3

Interworking

function update
Legacy network interop

Initial Attach

Procedure
4 Fresh registration Force re-authentication

CLR-Flags

The CLR-Flags AVP is a bitmask with the following fields:

Flag Bit Description

S6a/S6d Indicator 0 1 = S6a interface used

Reattach Required 1 1 = UE must perform new attach

Example CLR-Flags Configuration:

Multi-IMSI Scenarios

clr_flags: %{

 s6a_indicator: 1, # Using S6a interface

 reattach_required: 1 # Force re-authentication

}

OmniHSS tracks MME registration per subscriber (IMSI), not per MSISDN.

This is critical for understanding CLR behavior in multi-IMSI scenarios:

Scenario 1: Multiple MSISDNs, Single IMSI

When this subscriber moves to a new MME:

One CLR sent to "mme01.operator.com" with IMSI 999000123456789

Both MSISDNs are affected (same subscriber, same SIM)

User-Name AVP contains the IMSI, not MSISDNs

Scenario 2: Multiple Subscribers (Different IMSIs), Same MSISDN

OmniHSS enforces unique MSISDN constraint (one MSISDN cannot belong to

multiple subscribers simultaneously). However, during porting/migration:

When Subscriber B registers:

No CLR sent (different IMSI = different subscriber)

Subscriber A remains registered at mme01

Subscriber B registers at mme02

Both can be active simultaneously (different physical devices)

Subscriber A:

 - IMSI: 999000123456789

 - MSISDNs: ["+1234567890", "+9876543210"]

 - last_seen_mme: "mme01.operator.com"

Subscriber A:

 - IMSI: 999000111111111

 - MSISDN: "+1234567890"

 - last_seen_mme: "mme01.operator.com"

Subscriber B (after porting):

 - IMSI: 999000222222222

 - MSISDN: "+1234567890" # Same MSISDN, different SIM/IMSI

 - last_seen_mme: "mme02.operator.com"

Scenario 3: Programmatic CLR for Multi-MSISDN Subscriber

Result:

One CLR sent to the subscriber's last_seen_mme

All MSISDNs associated with that IMSI are effectively detached

The IMSI is the primary key for tracking MME registration

Important Notes

1. IMSI is the Key: CLR operations are always per IMSI, never per MSISDN.

The subscriber_state table tracks last_seen_mme by subscriber (IMSI).

2. Atomic Operation: Each subscriber can only be registered at one MME at

a time. The automatic CLR ensures this by cleaning up the old registration.

3. No CLR if No Previous MME: If last_seen_mme is nil (subscriber never

registered), no CLR is sent during ULR.

4. Subscription Data Included: The automatic CLR (during ULR) includes

the full Subscription-Data AVP to help the old MME properly clean up

context.

5. Asynchronous: The CLR is sent asynchronously (fire-and-forget). The ULA

response to the new MME does not wait for CLA from the old MME.

6. CLA Handling: OmniHSS receives CLA responses but currently discards

them (:discard at line 398). This prevents message loops and is standard

HSS behavior.

Cx Interface (IMS)

User Authorization Request (UAR/UAA)

I-CSCF queries if user is authorized to register.

OmniHSS (HSS)I-CSCFPhone

OmniHSS (HSS)I-CSCFPhone

alt [User Authorized]

[User Not Authorized]

SIP REGISTER

Cx UAR

(Public Identity, Visited Network)

Lookup subscriber

Cx UAA

Result: Success

(Server Capabilities)

Select S-CSCF

Cx UAA

Result: User Unknown

403 Forbidden

Server Assignment Request (SAR/SAA)

S-CSCF registers/deregisters user and retrieves IMS profile.

IFC Template Rendering:

{{imsi}} → Actual IMSI

{{msisdns}} → List of phone numbers

{{mcc}}, {{mnc}} → Home PLMN codes

Multimedia Auth Request (MAR/MAA)

S-CSCF requests authentication vectors for IMS registration.

DatabaseOmniHSS (HSS)S-CSCF

DatabaseOmniHSS (HSS)S-CSCF

Cx MAR

(IMSI, Public Identity)

Query subscriber + key_set

Subscriber + keys

Generate IMS auth vectors

(CK, IK from Milenage)

Cx MAA

Result: Success

(SIP-Authenticate, CK, IK)

Location Info Request (LIR/LIA)

I-CSCF queries which S-CSCF is serving the user.

DatabaseOmniHSS (HSS)I-CSCF

DatabaseOmniHSS (HSS)I-CSCF

alt [User Registered]

[User Not Registered]

Cx LIR

(Public Identity)

Query subscriber_state

(Lookup assigned S-CSCF)

S-CSCF assignment

Cx LIA

Result: Success

(S-CSCF Name)

Route to assigned S-CSCF

Cx LIA

Result: User Not Registered

Sh Interface (IMS Profile Data)

User Data Request (UDR/UDA)

Application Server requests subscriber profile data.

Profile Update Request (PUR/PUA)

Application Server updates subscriber profile data.

DatabaseOmniHSS (HSS)Application Server

DatabaseOmniHSS (HSS)Application Server

Sh PUR

(Public Identity, User Data)

Update subscriber_state

(sh_repository_data)

Updated

Sh PUA

Result: Success

Subscribe Notifications Request (SNR/SNA)

Application Server subscribes to profile changes.

OmniHSS (HSS)Application Server

OmniHSS (HSS)Application Server

When data changes...

Sh SNR

(Public Identity, Data Reference)

Store subscription

Sh SNA

Result: Success

Sh PNR

(Profile Update Notification)

Sh PNA

Result: Success

Gx Interface (Policy Control)

OmniHSS functions as the PCRF (Policy and Charging Rules Function) via the Gx

interface.

See PCRF Documentation for detailed architecture, policy

configuration, and QoS management.

Credit Control Request - Initial (CCR-I/CCA-I)

P-GW requests policy rules when PDN session is established.

Key AVPs:

Request: Subscription-Id (IMSI), Called-Station-Id (APN), RAT-Type, IP-CAN-

Type

Response: QoS-Information (QCI, ARP, AMBR), Charging-Rule-Install

Credit Control Request - Update (CCR-U/CCA-U)

P-GW notifies of session changes.

DatabaseOmniHSS (PCRF)P-GW

DatabaseOmniHSS (PCRF)P-GW

Gx CCR-U

(Session-Id, Event Trigger)

Update pdn_session

(Update timestamp, RAT type, etc.)

Updated

Gx CCA-U

Result: Success

(Updated Rules if needed)

Credit Control Request - Terminate (CCR-T/CCA-

T)

P-GW notifies when PDN session ends.

Re-Auth Request (RAR/RAA)

OmniHSS (PCRF) initiates policy update to P-GW.

P-GWOmniHSS (PCRF)

P-GWOmniHSS (PCRF)

Policy change needed

(e.g., VoLTE call starts)

Gx RAR

(Session-Id, Updated QoS Rules)

Apply new rules

(e.g., create dedicated bearer)

Gx RAA

Result: Success

Rx Interface (IMS Media Policy)

OmniHSS functions as the PCRF via the Rx interface for IMS media

authorization.

See PCRF Documentation for detailed VoLTE call flows and media

authorization.

AA Request (AAR/AAA)

P-CSCF requests media authorization for IMS session.

DatabaseP-GWOmniHSS (PCRF)P-CSCFPhone

DatabaseP-GWOmniHSS (PCRF)P-CSCFPhone

Trigger dedicated bearer setup

SIP INVITE (VoLTE Call)

Rx AAR

(IMSI, Media Description, SDP)

Lookup pdn_session

(Find active IMS PDN)

PDN session found

Create lte_call record

(Codec, bandwidth, flow rules)

Call created

Rx AAA

Result: Success

Gx RAR

(QoS for dedicated bearer, SDF filters)

Create Dedicated Bearer

(GBR bearer for voice)

Gx RAA

Result: Success

SIP 183 Session Progress

Key Information:

Parse SDP to determine codec and bandwidth

Calculate required bandwidth (UL/DL)

Create SDF filters for media flows

Trigger dedicated bearer via Gx RAR

Session Termination Request (STR/STA)

P-CSCF notifies when IMS session ends.

S13 Interface (EIR)

OmniHSS functions as the EIR (Equipment Identity Register) via the S13

interface.

See EIR Documentation for detailed equipment identity checking, IMEI

validation, and blacklist management.

ME Identity Check Request (ECR/ECA)

External EIR client (or MME) requests equipment validation.

DatabaseOmniHSS (EIR)MME/EIR Client

DatabaseOmniHSS (EIR)MME/EIR Client

alt [Rule Matches: Whitelist]

[Rule Matches: Blacklist]

[Rule Matches: Greylist]

[No Rule Match]

S13 ECR

(IMEI)

Query eir_rules

(Match IMEI against regex rules)

Matching rules

Evaluate rule actions

S13 ECA

Result: Equipment Unknown

S13 ECA

Result: Equipment Blacklisted

S13 ECA

Result: Equipment Greylisted

Apply unknown_equipment_behaviour config

S13 ECA

Result: (Based on config)

Equipment Status Values:

Equipment Unknown (0) - Device allowed (whitelist)

Equipment Blacklisted (1) - Device blocked

Equipment Greylisted (2) - Device allowed but tracked

Complete Call Flow: VoLTE Call

End-to-end VoLTE call setup showing multiple interfaces.

Troubleshooting Protocol Issues

Authentication Failures (S6a AIR)

Check:

1. Key set configured correctly (Ki, OPC, AMF)

2. SQN synchronization (if repeated failures)

3. Roaming rules allow visited network

Location Update Failures (S6a ULR)

Check:

1. EPC profile exists and has APNs configured

2. Roaming allowed for data services

3. MME identity format correct

IMS Registration Failures (Cx SAR)

Check:

1. IMS profile assigned to subscriber

2. IFC template valid XML

3. S-CSCF selection configured

4. MSISDNs assigned if used in template

PDN Connection Failures (Gx CCR-I)

Check:

1. APN exists in EPC profile's APN list

2. APN QoS profile configured

3. PDN session table not full (if limits exist)

← Back to Operations Guide

OmniHSS Roaming

Control

← Back to Operations Guide

Overview

OmniHSS provides granular roaming control, allowing you to define which

networks subscribers can access for both data and IMS services when roaming.

Roaming Control Flow

Roaming Profile Structure

Components

Roaming Profile

Roaming Rules

MCC/MNC specific

Default Data Action

if no match

Default IMS Action

if no match

Roaming Rule

Each rule specifies action for a specific network (MCC/MNC combination).

Fields:

name - Descriptive name

mcc - Mobile Country Code (3 digits)

mnc - Mobile Network Code (2-3 digits)

data_action - "allow" or "deny"

ims_action - "allow" or "deny"

Roaming Profile

Defines default behavior and links to rules.

Fields:

name - Profile name

data_action_if_no_rules_match - "allow" or "deny"

ims_action_if_no_rules_match - "allow" or "deny"

Configuration Examples

Allow All Roaming

Deny All Roaming

Create profile that allows everything

curl -k -X POST https://hss.example.com:8443/api/roaming/profile \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_profile": {

 "name": "Allow All",

 "data_action_if_no_rules_match": "allow",

 "ims_action_if_no_rules_match": "allow",

 "roaming_rules": []

 }

 }'

Create profile that blocks everything

curl -k -X POST https://hss.example.com:8443/api/roaming/profile \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_profile": {

 "name": "No Roaming",

 "data_action_if_no_rules_match": "deny",

 "ims_action_if_no_rules_match": "deny",

 "roaming_rules": []

 }

 }'

Allow Specific Networks (Whitelist)

Create AT&T rule

RULE1=$(curl -k -X POST

https://hss.example.com:8443/api/roaming/rule \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_rule": {

 "name": "Allow AT&T",

 "mcc": "310",

 "mnc": "410",

 "data_action": "allow",

 "ims_action": "allow"

 }

 }' | jq -r '.response.id')

Create Verizon rule

RULE2=$(curl -k -X POST

https://hss.example.com:8443/api/roaming/rule \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_rule": {

 "name": "Allow Verizon",

 "mcc": "311",

 "mnc": "480",

 "data_action": "allow",

 "ims_action": "allow"

 }

 }' | jq -r '.response.id')

Create profile with deny-by-default and link rules

curl -k -X POST https://hss.example.com:8443/api/roaming/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"roaming_profile\": {

 \"name\": \"US Carriers Only\",

 \"data_action_if_no_rules_match\": \"deny\",

 \"ims_action_if_no_rules_match\": \"deny\",

 \"roaming_rules\": [$RULE1, $RULE2]

 }

 }"

Allow Data, Block Voice

Create rule that allows data but blocks IMS

curl -k -X POST https://hss.example.com:8443/api/roaming/rule \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_rule": {

 "name": "Data Only - T-Mobile",

 "mcc": "310",

 "mnc": "260",

 "data_action": "allow",

 "ims_action": "deny"

 }

 }'

Block Specific Networks (Blacklist)

Common Roaming Scenarios

Scenario 1: Domestic Roaming Only

Subscriber can roam within home country but not internationally.

Create expensive network blocking rule

RULE=$(curl -k -X POST

https://hss.example.com:8443/api/roaming/rule \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_rule": {

 "name": "Block Expensive Network",

 "mcc": "206",

 "mnc": "01",

 "data_action": "deny",

 "ims_action": "deny"

 }

 }' | jq -r '.response.id')

Create profile with allow-by-default

curl -k -X POST https://hss.example.com:8443/api/roaming/profile \

 -H "Content-Type: application/json" \

 -d "{

 \"roaming_profile\": {

 \"name\": \"Block Expensive Networks\",

 \"data_action_if_no_rules_match\": \"allow\",

 \"ims_action_if_no_rules_match\": \"allow\",

 \"roaming_rules\": [$RULE]

 }

 }"

Configuration:

Default: Deny all

Rules: Allow all USA MCC codes (310, 311, 312, 313, 314, 315, 316)

Scenario 2: Roaming Partners Only

Subscriber can only roam on networks with commercial agreements.

Partner Network Non-Partner

Subscriber

Network Type

Allow Deny

Configuration:

Default: Deny all

Rules: Allow each partner network explicitly (by MCC/MNC)

Scenario 3: Data Roaming, No Voice Roaming

Subscriber can use data abroad but must use WiFi for voice calls.

Subscriber Abroad

Data Request Voice Request

Allow Data Deny IMS

Configuration:

Rules: data_action: "allow" , ims_action: "deny"

Scenario 4: Emergency Service Access

Always allow emergency services, even if roaming is blocked.

Note: Emergency service handling is typically done at the MME/network level.

OmniHSS roaming rules apply to normal services.

MCC/MNC Reference

Common Country Codes (MCC)

MCC Country Networks

310-316 USA AT&T, Verizon, T-Mobile, etc.

302 Canada Rogers, Bell, Telus

234-235 United Kingdom Vodafone, O2, EE

262 Germany Deutsche Telekom, Vodafone

208 France Orange, SFR, Bouygues

222 Italy TIM, Vodafone, Wind

214 Spain Movistar, Vodafone

Common US Carriers (MCC 310-316)

MCC MNC Carrier

310 410 AT&T

311 480 Verizon

310 260 T-Mobile

310 120 Sprint

313 380 (Example test network)

Full Lists: See ITU-T E.212 or MCC/MNC databases

Roaming Enforcement Points

S6a Interface (Data)

When subscriber attaches to visited network:

https://www.itu.int/pub/T-SP-E.212B
https://www.mcc-mnc.com/

Cx Interface (IMS)

When subscriber registers to IMS in visited network:

SubscriberOmniHSSS-CSCF (Visited)

SubscriberOmniHSSS-CSCF (Visited)

alt [IMS Roaming Allowed]

[IMS Roaming Denied]

IMS Register

Cx SAR

(IMSI, Visited Network)

Check Roaming Profile

Lookup Rules for PLMN

Cx SAA Success

(IMS Profile)

200 OK

Cx SAA Error

(Roaming Not Allowed)

403 Forbidden

Troubleshooting Roaming Issues

Subscriber Cannot Attach in Visited Network

Check roaming profile assignment:

Query the database to view subscriber's assigned roaming profile

Verify the profile name and default action settings

Check if rule exists for visited network:

Query the database for roaming rules matching the visited network's

MCC/MNC

Verify if a rule exists for the subscriber's roaming profile

Check the data_action value for that specific network

Subscriber Can Attach But Not Register IMS

Check IMS action separately:

Query the roaming rules for the visited network

Verify both data_action and ims_action values

Look for cases where data is allowed but IMS is denied

Unexpected Roaming Behavior

Review logs for roaming checks:

Best Practices

Profile Design

1. Start restrictive - Default deny, explicitly allow partners

2. Test thoroughly - Verify rules in lab before production

3. Document rules - Maintain list of allowed networks and why

4. Review regularly - Update as roaming agreements change

[info] Roaming check: IMSI 001001123456789, Visited PLMN 310-410

[info] Roaming rule matched: "Allow AT&T"

[info] Data action: allow, IMS action: allow

Rule Management

1. Use descriptive names - "Allow-ATT-Data-Only" not "Rule1"

2. Verify MCC/MNC - Double-check codes against official databases

3. Consider both services - Think about data and IMS separately

4. Monitor usage - Track which networks subscribers actually visit

Operational Procedures

1. Emergency Changes - Have procedure to quickly enable/disable roaming

2. Bulk Updates - Plan for updating multiple subscribers' roaming profiles

3. Reporting - Track roaming usage and denied attempts

4. Customer Communication - Notify customers of roaming policy changes

← Back to Operations Guide | Next: Protocol Flows →

OmniHSS

Troubleshooting Guide

← Back to Operations Guide

Table of Contents

Troubleshooting Overview

Authentication Failures

Diameter Connectivity Issues

Database Issues

EPC Registration Failures

IMS Registration Failures

VoLTE Call Failures

Roaming Issues

EIR Problems

Performance Problems

Subscriber State Issues

API Issues

Diagnostic Tools and Commands

Troubleshooting Overview

General Troubleshooting Approach

Information to Gather

Before troubleshooting any issue, collect:

1. Subscriber Information (if subscriber-specific)

IMSI

MSISDN (phone number)

Last known state

Error messages from device

2. Timing Information

When did the issue start?

Is it intermittent or constant?

Time of last successful operation

3. Scope of Impact

Single subscriber or multiple?

Specific network or all networks?

Specific service (data/voice) or both?

4. System State

Check Control Panel for system status

Review Diameter peer status

Verify database connectivity

Authentication Failures

Symptoms

Subscriber cannot attach to network

"Authentication rejected" errors

Repeated authentication attempts

Common Causes and Solutions

Cause 1: Incorrect Key Set

Symptoms:

Consistent authentication failure for specific subscriber

Works for other subscribers with same profile

Diagnostic Steps:

1. Query subscriber to verify key_set_id:

2. Verify key set exists and has correct values:

3. Compare Ki and OPC values with SIM card documentation

Solution:

Update subscriber with correct key set

If keys are correct, SIM card may be faulty

Cause 2: SQN Out of Sync

Symptoms:

Authentication fails after previously working

Error: "SQN synchronization failure"

Works intermittently

Diagnostic Steps:

1. Check subscriber state for SQN value in database

2. Look for SQN-related errors in logs

curl -k https://hss.example.com:8443/api/subscriber/imsi/[IMSI]

curl -k https://hss.example.com:8443/api/key_set/[KEY_SET_ID]

3. Verify subscriber's key set SQN value

Solution:

SQN will automatically resynchronize after subscriber sends AUTS

If persistent, reset SQN to 0 in key set (requires subscriber re-attach)

Warning: Resetting SQN can cause security issues. Only do during

maintenance.

Cause 3: Subscriber Disabled

Symptoms:

Authentication rejected immediately

No authentication vectors generated

Diagnostic Steps:

1. Check subscriber enabled status:

2. Verify enabled field is true

Solution:

Enable subscriber:

Cause 4: Missing EPC Profile

Symptoms:

Subscriber lookup succeeds but authentication fails

Error: "No EPC profile assigned"

curl -k https://hss.example.com:8443/api/subscriber/imsi/[IMSI]

curl -k -X PUT https://hss.example.com:8443/api/subscriber/[ID]

\

 -H "Content-Type: application/json" \

 -d '{"subscriber": {"enabled": true}}'

Diagnostic Steps:

1. Check subscriber's epc_profile_id field

2. Verify EPC profile exists:

Solution:

Assign valid EPC profile to subscriber

curl -k

https://hss.example.com:8443/api/epc/profile/[PROFILE_ID]

Authentication Troubleshooting Flowchart

No

Yes

No

Yes

No

Yes

Yes No

Authentication Failure

Subscriber Enabled?

Enable Subscriber

Has EPC Profile?

Assign EPC Profile

Correct Keys?

Update Key Set

SQN Sync Issue?

Wait for Auto Resync

or Reset SQN
Check MME Logs

Verify Resolution

Diameter Connectivity Issues

Symptoms

Diameter peers showing as disconnected in Control Panel

"No route to host" errors

Services failing for all subscribers

Common Causes and Solutions

Cause 1: Network Connectivity

Symptoms:

Peer never connects

Connection timeout errors

Ping fails to peer

Diagnostic Steps:

1. Verify network connectivity from OmniHSS to peer:

2. Check if Diameter port is reachable:

3. Verify firewall rules allow Diameter traffic (port 3868)

Solution:

Fix network routing

Update firewall rules

Verify peer is running and listening

ping [PEER_IP]

telnet [PEER_IP] 3868

Cause 2: Incorrect Diameter Configuration

Symptoms:

Connection attempts fail

CER/CEA exchange fails

Peer rejects connection

Diagnostic Steps:

1. Review runtime.exs Diameter configuration:

Verify peer origin_host matches peer's expected value

Check origin_realm configuration

Verify peer IP address is correct

2. Check logs for CER/CEA errors

3. Verify peer's configuration expects OmniHSS's origin_host

Solution:

Update runtime.exs with correct Diameter configuration

Restart OmniHSS after configuration change

Coordinate with peer administrator to verify settings

Cause 3: Certificate Issues (TLS Diameter)

Symptoms:

Connection fails during TLS handshake

Certificate validation errors

"Certificate expired" or "Certificate invalid" errors

Diagnostic Steps:

1. Verify certificate files exist in priv/cert/

2. Check certificate expiration:

3. Verify certificate chain is complete

4. Check peer's certificate if mutual TLS

Solution:

Renew expired certificates

Install correct certificate chain

Update certificate files and restart OmniHSS

Cause 4: Peer Application Support Mismatch

Symptoms:

Peer connects but doesn't support required applications

Capabilities exchange succeeds but operations fail

"Application not supported" errors

Diagnostic Steps:

1. Check Control Panel Diameter page for peer applications

2. Verify peer supports required application (S6a, Cx, Sh, etc.)

3. Review CER/CEA exchange in logs

Solution:

Verify peer configuration includes required Diameter applications

Check that peer type matches expected functionality:

MME must support S6a (16777251)

S-CSCF must support Cx (16777216)

P-GW must support Gx (16777238)

openssl x509 -in priv/cert/diameter.crt -noout -dates

Diameter Troubleshooting Flowchart

Database Issues

Symptoms

API returns 500 errors

Control Panel fails to load

"Database connection failed" errors

Slow query performance

Common Causes and Solutions

Cause 1: Database Server Down

Symptoms:

All API calls fail

Control Panel shows error

"Connection refused" errors

Diagnostic Steps:

1. Test database connectivity:

2. Check database service status on database server

3. Verify network connectivity to database server

Solution:

Start database service

Fix database server issues

If using PostgreSQL

psql -h [DB_HOST] -U [DB_USER] -d [DB_NAME]

If using MySQL

mysql -h [DB_HOST] -u [DB_USER] -p [DB_NAME]

Verify network routing to database server

Cause 2: Incorrect Database Credentials

Symptoms:

"Authentication failed" errors

OmniHSS can't connect at startup

Diagnostic Steps:

1. Review database configuration in runtime.exs

2. Test credentials manually with database client

3. Check database user permissions

Solution:

Update database configuration in runtime.exs

Grant correct permissions to database user

Restart OmniHSS after configuration change

Cause 3: Connection Pool Exhausted

Symptoms:

Intermittent 500 errors

"No available connections" errors

High load periods trigger failures

Diagnostic Steps:

1. Check current connection count in database

2. Review database pool size in runtime.exs

3. Monitor connection usage during peak load

Solution:

Increase pool size in runtime.exs configuration

Investigate connection leaks if pool exhausts repeatedly

Consider database scaling if load is consistently high

Cause 4: Slow Queries

Symptoms:

API responses very slow

Timeouts on subscriber lookups

Database CPU high

Diagnostic Steps:

1. Query database for slow query log

2. Identify specific slow queries

3. Check for missing indexes

4. Verify subscriber count and table sizes

Solution:

Optimize slow queries

Add missing indexes

Consider database performance tuning

Plan for database scaling if needed

Database Troubleshooting Flowchart

No Yes

No

Yes

Yes

No

Yes No

Database Issue

Can Connect?

DB Server Running? Response Slow?

Start Database Service

Check Credentials

Analyze Slow Queries

Pool Exhausted?

Optimize/Index

Increase Pool Size Check Permissions

Verify Connection

Update runtime.exs

Restart OmniHSS

EPC Registration Failures

Symptoms

Subscriber cannot attach to LTE network

MME rejects attachment

No PDN session established

Common Causes and Solutions

Cause 1: Roaming Denied

Symptoms:

Subscriber works on home network but fails when roaming

"Roaming not allowed" errors

Works for some networks but not others

Diagnostic Steps:

1. Check subscriber's roaming_profile_id

2. Query roaming profile and rules

3. Verify MCC/MNC of visited network

4. Check if roaming rule exists for that network

Solution:

Add roaming rule for visited network MCC/MNC

Or update roaming profile default action to allow

See Roaming Documentation for configuration

Cause 2: Missing APN Configuration

Symptoms:

Attachment succeeds but PDN session fails

"Unknown APN" errors from MME

Subscriber can't get data connection

Diagnostic Steps:

1. Check EPC profile has APN profiles linked

2. Verify APN identifier matches what device requests

3. Query APN profile configuration

Solution:

Link APN profiles to subscriber's EPC profile

Ensure APN name matches device configuration

Verify APN QoS profile exists

Cause 3: MME Not Connected

Symptoms:

All subscribers fail to attach

No communication with MME

Diameter peer down

Diagnostic Steps:

1. Check Control Panel Diameter page

2. Verify MME peer status is "Connected"

3. Check MME supports S6a application

Solution:

Troubleshoot Diameter connectivity

Verify MME configuration

Contact MME administrator

Cause 4: Subscriber State Corruption

Symptoms:

Subscriber shows as attached but can't attach again

State doesn't match reality

Detach and re-attach fails

Diagnostic Steps:

1. Query subscriber state from database

2. Check for stale MME assignments

3. Verify last update timestamp

Solution:

Clear subscriber state (detach procedure)

Reset serving MME in subscriber state

May require subscriber power cycle

EPC Registration Troubleshooting Flowchart

No

Yes

No

Yes

No

Yes

No

Yes

EPC Registration Fails

On Home Network?

Check Roaming Profile

MME Connected?

Roaming Allowed?

Add Roaming Rule Fix Diameter Connection

APN Configured?

Configure APN Profile

Check Subscriber State

Clear Stale State

Verify Attachment

IMS Registration Failures

Symptoms

Subscriber can't register for VoLTE

"IMS registration failed" on device

Data works but voice doesn't

Common Causes and Solutions

Cause 1: IMS Disabled for Subscriber

Symptoms:

Subscriber has data but no IMS

Registration rejected immediately

Diagnostic Steps:

1. Query subscriber and check ims_enabled field

2. Verify subscriber has ims_profile_id assigned

Solution:

Enable IMS for subscriber

Assign IMS profile

Cause 2: S-CSCF Not Connected

Symptoms:

All IMS registrations fail

No IMS-related Diameter traffic

Diagnostic Steps:

1. Check Control Panel Diameter page

2. Verify S-CSCF peer connected

3. Check S-CSCF supports Cx application

Solution:

Fix Diameter connectivity to S-CSCF

Verify S-CSCF configuration

Cause 3: Missing or Invalid IFC Template

Symptoms:

Registration fails during User-Authorization-Answer

IFC-related errors in logs

Diagnostic Steps:

1. Query subscriber's IMS profile

2. Verify IFC template is present

3. Check IFC XML syntax

Solution:

Update IMS profile with valid IFC template

See Profiles Documentation for IFC examples

Cause 4: Roaming Denied for IMS

Symptoms:

IMS works on home network

Fails when roaming

Data roaming works but not IMS

Diagnostic Steps:

1. Check roaming profile IMS action

2. Verify roaming rules have correct ims_action

Solution:

Update roaming rules to allow IMS

Or update roaming profile default IMS action

IMS Registration Troubleshooting Flowchart

VoLTE Call Failures

Symptoms

IMS registration succeeds but calls fail

One-way audio

Call drops immediately

"Call failed" error on device

Common Causes and Solutions

Cause 1: P-CSCF Not Connected

Symptoms:

Registration works but calls fail

Media authorization fails

Diagnostic Steps:

1. Check Control Panel Diameter page

2. Verify P-CSCF peer connected

3. Check P-CSCF supports Rx application (OmniHSS PCRF function)

Solution:

Fix Diameter connectivity to P-CSCF

Verify P-CSCF configuration points to OmniHSS for Rx

Cause 2: Missing Media Authorization

Symptoms:

Call setup starts but fails

AAR/AAA exchange fails

Rx interface errors

Diagnostic Steps:

1. Check logs for Rx Diameter messages

2. Verify AAR (AA-Request) received

3. Check AAA (AA-Answer) response

Solution:

Verify P-CSCF is sending AAR for media authorization

Check OmniHSS Rx application configuration

Verify subscriber has active IMS registration

Cause 3: QoS/Bearer Issues

Symptoms:

Call connects but no audio

One-way audio

Quality issues

Diagnostic Steps:

1. Check APN QoS profile for voice APN

2. Verify QCI is set correctly (typically QCI 1 for voice)

3. Check P-GW is connected for Gx (PCRF function)

Solution:

Verify APN QoS profile for IMS APN

Ensure QCI 1 is configured for voice bearer

Fix Diameter connectivity to P-GW if needed

VoLTE Call Troubleshooting Flowchart

No

Yes

No

Yes

No

Yes

YesNo

VoLTE Call Fails

IMS Registered?

Fix IMS Registration

P-CSCF Connected?

Fix Diameter to P-CSCF

AAR/AAA OK?

Check Rx Configuration

Audio Issues?

Check QoS/Bearer
Check Application

Server

Fix QCI/APN ConfigCheck S-CSCF LogsFix Rx Setup

Test Call

Roaming Issues

Symptoms

Subscriber works at home but not when roaming

Some roaming networks work, others don't

Roaming data works but not voice (or vice versa)

Common Causes and Solutions

Cause 1: No Roaming Profile Assigned

Symptoms:

Roaming fails for subscriber

Other subscribers roam successfully

Diagnostic Steps:

1. Query subscriber's roaming_profile_id

2. Check if field is null

Solution:

Assign roaming profile to subscriber

Cause 2: Roaming Denied by Policy

Symptoms:

Roaming fails consistently on specific network

Error indicates policy rejection

Diagnostic Steps:

1. Identify visited network MCC/MNC from subscriber device or MME

2. Query subscriber's roaming profile

3. Check roaming rules for matching MCC/MNC

4. Check profile's default action

Solution:

Add roaming rule to allow visited network:

Cause 3: Data Allowed but IMS Denied

Symptoms:

Data roaming works

Voice/IMS roaming fails

Split service availability

Diagnostic Steps:

1. Query roaming rules for visited network

2. Check data_action vs ims_action values

3. Verify roaming profile default actions

Solution:

Update roaming rule to allow IMS:

Set ims_action: "allow"

Or update profile's ims_action_if_no_rules_match to "allow"

See Roaming Documentation for detailed configuration.

curl -k -X POST https://hss.example.com:8443/api/roaming/rule \

 -H "Content-Type: application/json" \

 -d '{

 "roaming_rule": {

 "name": "Allow Visited Network",

 "mcc": "310",

 "mnc": "410",

 "data_action": "allow",

 "ims_action": "allow"

 }

 }'

EIR Problems

Symptoms

Devices blocked unexpectedly

Stolen devices not blocked

EIR check failing

Common Causes and Solutions

Cause 1: Incorrect IMEI Regex

Symptoms:

Wrong devices blocked/allowed

Rule matches incorrectly

Diagnostic Steps:

1. Query EIR rules

2. Identify which rule is matching

3. Test regex pattern against actual IMEI

4. Check rule priority/order

Solution:

Update EIR rule with correct regex

Test regex thoroughly before applying

Consider rule order (first match wins)

Cause 2: MME Not Sending S13 Requests

Symptoms:

EIR check never happens

All devices allowed regardless of rules

Diagnostic Steps:

1. Check if MME is configured to use S13 interface

2. Verify MME Diameter peer connected

3. Check for S13 application support

4. Review MME configuration

Solution:

Configure MME to perform EIR checks via S13

Verify Diameter peer supports S13 application (16777252)

Contact MME administrator if needed

Cause 3: No Default Rule

Symptoms:

Devices not matching any rule have unexpected behavior

Diagnostic Steps:

1. Query all EIR rules

2. Check if catch-all rule exists

3. Verify rule ordering

Solution:

Add default rule with regex .* to match all IMEIs

Set appropriate action (whitelist or blacklist)

Ensure specific rules are checked before catch-all

Performance Problems

Symptoms

Slow API responses

Diameter request timeouts

High CPU or memory usage

Control Panel slow to load

Common Causes and Solutions

Cause 1: High Database Load

Symptoms:

All operations slow

Database CPU high

Query timeouts

Diagnostic Steps:

1. Check database server resource usage

2. Identify slow queries

3. Check for missing indexes

4. Monitor query patterns

Solution:

Optimize slow queries

Add database indexes

Increase database resources

Consider database scaling

See Database Issues

Cause 2: High Subscriber Count

Symptoms:

Performance degraded over time

Slowness correlates with subscriber growth

List operations especially slow

Diagnostic Steps:

1. Query total subscriber count

2. Check table sizes

3. Review query execution plans

4. Monitor resource usage trends

Solution:

Plan capacity upgrade

Optimize queries for large datasets

Consider pagination for large results

Implement caching if needed

Cause 3: Diameter Peer Issues

Symptoms:

Diameter operations slow

Timeouts on specific peer

Some peers fast, others slow

Diagnostic Steps:

1. Check Control Panel Diameter page

2. Identify slow peer

3. Test network latency to peer

4. Check peer resource usage

Solution:

Investigate peer performance issues

Check network path for congestion

Consider adding redundant peers

Increase Diameter timeout if needed

Cause 4: Memory Issues

Symptoms:

OmniHSS memory usage high

Out of memory errors

Performance degrades over time

Diagnostic Steps:

1. Check OmniHSS memory usage on Application page

2. Monitor memory trend

3. Check for memory leaks

4. Review Erlang VM settings

Solution:

Restart OmniHSS to clear temporary condition

Investigate memory leak if usage continuously grows

Adjust Erlang VM memory settings in runtime.exs

Plan for hardware upgrade if consistently high

Subscriber State Issues

Symptoms

Subscriber shows as attached but isn't

Stale state information

Location information incorrect

Can't detach subscriber

Common Causes and Solutions

Cause 1: MME Crash/Restart

Symptoms:

Subscriber shows serving MME that is no longer serving

Subscriber can't attach after MME restart

State is stale

Diagnostic Steps:

1. Check subscriber state for serving MME

2. Verify if MME has restarted

3. Check MME's last connection time

Solution:

Wait for subscriber to attach again (state will update)

Or manually clear subscriber state

MME should send Cancel-Location on restart

Cause 2: Network Detach Not Received

Symptoms:

Subscriber powered off but shows as attached

PDN sessions remain in database

Location not cleared

Diagnostic Steps:

1. Check subscriber's last_seen timestamp

2. Verify if old state (hours or days old)

3. Check if subscriber device is reachable

Solution:

State will clear when subscriber attaches again

Or wait for state timeout (if implemented)

Manual cleanup may be required for very stale state

Cause 3: Database Corruption

Symptoms:

Inconsistent state across tables

Foreign key violations

State doesn't make sense

Diagnostic Steps:

1. Query subscriber state directly from database

2. Check for orphaned records

3. Verify referential integrity

Solution:

Identify and fix inconsistent data

May require manual database cleanup

Contact support if corruption is widespread

API Issues

Symptoms

API returns errors

Slow API responses

Cannot create/update entities

500 errors

Common Causes and Solutions

Cause 1: Invalid Request Data

Symptoms:

400 or 422 errors

Validation error messages

Field rejected

Diagnostic Steps:

1. Review error response for specific field errors

2. Check API request format

3. Verify required fields present

4. Check data types

Solution:

Fix request data to match API reference

Ensure all required fields included

Verify foreign key references exist (profile IDs, etc.)

Cause 2: Foreign Key Constraint

Symptoms:

Cannot create subscriber

Error: "key_set_id does not exist"

Referenced entity not found

Diagnostic Steps:

1. Identify which foreign key is failing

2. Verify referenced entity exists:

key_set_id → key sets

epc_profile_id → EPC profiles

ims_profile_id → IMS profiles

Solution:

Create referenced entity first

Or use existing entity ID

Follow complete provisioning workflow

Cause 3: Database Connectivity

Symptoms:

500 errors

All API calls fail

Database connection errors

Solution:

See Database Issues

Diagnostic Tools and Commands

Control Panel Quick Checks

1. System Overview

URL: https://[hostname]:7443/overview

Check: Subscriber counts, active sessions, system status

2. Diameter Status

URL: https://[hostname]:7443/diameter

Check: All critical peers connected

3. Application Health

URL: https://[hostname]:7443/application

Check: Memory usage, process count, uptime

API Diagnostic Commands

Check System Health:

Query Subscriber:

curl -k https://hss.example.com:8443/api/status

List All Subscribers:

Check Profile Configuration:

Network Diagnostic Commands

Test Diameter Port Connectivity:

Check TLS Certificate:

By IMSI

curl -k

https://hss.example.com:8443/api/subscriber/imsi/001001123456789

By MSISDN

curl -k

https://hss.example.com:8443/api/subscriber/msisdn/14155551234

By ID

curl -k https://hss.example.com:8443/api/subscriber/1

curl -k https://hss.example.com:8443/api/subscriber

EPC Profile

curl -k https://hss.example.com:8443/api/epc/profile/1

IMS Profile

curl -k https://hss.example.com:8443/api/ims/profile/1

Roaming Profile

curl -k https://hss.example.com:8443/api/roaming/profile/1

telnet [PEER_IP] 3868

openssl s_client -connect [hostname]:8443 -showcerts

Test Database Connectivity:

Log Analysis

Search Logs for Specific IMSI:

Find Authentication Failures:

Check Diameter Peer Events:

Find Database Errors:

PostgreSQL

psql -h [DB_HOST] -U [DB_USER] -d [DB_NAME] -c "SELECT COUNT(*)

FROM subscriber;"

MySQL

mysql -h [DB_HOST] -u [DB_USER] -p -e "SELECT COUNT(*) FROM

subscriber;" [DB_NAME]

grep "001001123456789" /var/log/omnihss/omnihss.log

grep "authentication.*fail" /var/log/omnihss/omnihss.log

grep "Diameter peer" /var/log/omnihss/omnihss.log

grep -i "database.*error" /var/log/omnihss/omnihss.log

Escalation Guidelines

When to Escalate

Escalate to engineering/vendor support when:

1. System-wide failures that cannot be resolved with documented

procedures

2. Data corruption or inconsistent database state

3. Suspected software bugs or unexpected behavior

4. Performance issues that cannot be resolved with tuning

5. Security incidents or unauthorized access

6. Questions about undocumented behavior

Information to Provide

When escalating, include:

1. Detailed symptoms - What is failing, when, for whom

2. Steps taken - What troubleshooting you've already done

3. Logs - Relevant log excerpts showing the issue

4. Configuration - Relevant portions of runtime.exs (redact sensitive data)

5. Environment - OmniHSS version, database version, OS version

6. Impact - How many subscribers affected, business impact

7. Subscriber examples - Specific IMSIs showing the problem

Critical vs Non-Critical

Critical Issues (Escalate Immediately):

System completely down

All subscribers unable to attach

Database corruption

Security breach

Non-Critical Issues (Document and Escalate During Business Hours):

Single subscriber issues that can be worked around

Performance degradation that's manageable

Enhancement requests

Documentation questions

Common Error Messages Reference

Authentication Errors

Error Message Cause Solution

"Authentication vectors

generation failed"

Missing or invalid

key set

Check key set

configuration

"SQN synchronization

failure"
SQN out of sync Wait for resync

"Subscriber not found" Invalid IMSI
Verify IMSI, provision

subscriber

"Subscriber disabled" enabled=false Enable subscriber

Diameter Errors

Error Message Cause Solution

"Diameter peer

connection timeout"
Network issue

Check network

connectivity

"CER/CEA exchange

failed"
Configuration mismatch

Verify Diameter

config

"Application not

supported"

Peer doesn't support

required app

Check peer

applications

"TLS handshake failed" Certificate issue Check certificates

Database Errors

Error Message Cause Solution

"Connection refused" Database down Start database

"Authentication failed" Wrong credentials Fix credentials

"No connections available" Pool exhausted Increase pool size

"Query timeout" Slow query Optimize queries

API Errors

Error Message Cause Solution

"key_set_id does not

exist"

Invalid foreign

key
Create key set first

"IMSI has already been

taken"
Duplicate IMSI

Use different IMSI or delete

existing

"Validation error" Invalid input
Check field format and

requirements

← Back to Operations Guide | Next: API Reference →

OmniHSS Webhook

Integration

← Back to Operations Guide

Table of Contents

Overview

How Webhooks Work

Webhook Events

Webhook Payload

Configuration

Use Cases

Security Considerations

Troubleshooting

Overview

OmniHSS supports webhooks to notify external systems about subscriber

events in real-time. When specific events occur (such as location updates,

authentication requests, or IMS registrations), OmniHSS can send an HTTP

POST request to your configured webhook endpoint with the complete

subscriber profile data.

What Are Webhooks?

Webhooks are HTTP callbacks that allow OmniHSS to push event notifications to

your application as they happen, rather than requiring your application to poll

the HSS API for changes.

Key Benefits

Real-time notifications - Get instant updates when subscriber events

occur

Complete subscriber data - Each webhook includes the full subscriber

profile (same as GET /api/subscriber)

Event-driven automation - Trigger workflows, analytics, or provisioning

based on network events

Reduced polling - No need to continuously query the API for subscriber

status changes

Integration flexibility - Connect OmniHSS to billing systems, analytics

platforms, or custom applications

How Webhooks Work

Event Flow

1. Event occurs - A subscriber performs an action (attach, location update,

IMS registration, etc.)

2. HSS processes event - OmniHSS handles the Diameter request/response

normally

3. Webhook triggered - If a webhook is registered for this event type, HSS

sends HTTP POST to your endpoint

4. Subscriber data included - The webhook payload contains the complete

subscriber profile as JSON

5. Your application responds - Your endpoint should return HTTP 200-299

to acknowledge receipt

Delivery Guarantees

Best effort delivery - Webhooks are sent asynchronously and do not

block network operations

Timeout - Webhook requests timeout after 5 seconds

No retries - If your endpoint is unavailable or returns an error, the

webhook is not retried

Order not guaranteed - Events may arrive out of order under high load

Important: Network operations (authentication, location updates, etc.) are not

dependent on webhook delivery. If your webhook endpoint is down, subscriber

service continues normally.

Webhook Events

OmniHSS can trigger webhooks for the following events:

EPC/LTE Events

Event Trigger Description

update_location_request
S6a

ULR

Subscriber attaches or

performs Tracking Area

Update

authentication_information_request S6a AIR

Network requests

authentication vectors

for subscriber

purge_request
S6a

PUR

MME removes

subscriber context

(device powered off,

detached)

cancel_location_answer
S6a

CLA

MME acknowledges

subscriber

deregistration

IMS Events

Event Trigger Description

ims_registration Cx SAR
Subscriber registers for IMS/VoLTE

service

ims_deregistration
Cx SAR (de-

reg)
Subscriber deregisters from IMS

ims_profile_request Sh UDR
Application Server requests

subscriber IMS profile

Policy Events (PCRF)

Event Trigger Description

policy_request Gx CCR
P-GW requests policy for subscriber

data session

media_authorization Rx AAR
P-CSCF requests media authorization

for IMS call

Multi-IMSI Events

Event Trigger Description

imsi_switch
ULR for different IMSI

on same SIM

Device switches to different IMSI

on multi-IMSI SIM

Webhook Payload

Request Format

When an event occurs, OmniHSS sends an HTTP POST request to your

configured webhook URL:

POST /your-webhook-endpoint HTTP/1.1

Host: your-server.com

Content-Type: application/json

X-OmniHSS-Event: update_location_request

X-OmniHSS-Event-ID: 550e8400-e29b-41d4-a716-446655440000

X-OmniHSS-Timestamp: 2025-01-15T14:30:00Z

{

 "event": "update_location_request",

 "event_id": "550e8400-e29b-41d4-a716-446655440000",

 "timestamp": "2025-01-15T14:30:00Z",

 "subscriber": {

 "id": 1234,

 "imsi": "001001123456789",

 "enabled": true,

 "ims_enabled": true,

 "msisdns": [

 {"id": 1, "msisdn": "14155551001"},

 {"id": 2, "msisdn": "14155551002"}

],

 "sim": {

 "id": 5678,

 "iccid": "8991101200003204510",

 "is_esim": false

 },

 "key_set": {

 "id": 100,

 "amf": "8000"

 },

 "epc_profile": {

 "id": 1,

 "name": "Premium 100Mbps",

 "ue_ambr_dl_kbps": 100000,

 "ue_ambr_ul_kbps": 50000

 },

 "ims_profile": {

 "id": 1,

 "name": "Standard VoLTE"

 },

 "roaming_profile": {

 "id": 1,

 "name": "International Roaming Allowed"

 },

Payload Structure

Field Type Description

event string Event type (e.g., update_location_request)

event_id string Unique UUID for this webhook delivery

timestamp string ISO 8601 timestamp when event occurred

subscriber object
Complete subscriber profile (same as GET

/api/subscriber/:id)

event_context object Additional event-specific context data

Event Context Fields

The event_context object contains event-specific information:

For update_location_request :

 "subscriber_state": {

 "mme_host": "mme-01.example.com",

 "mme_realm": "epc.mnc001.mcc001.3gppnetwork.org",

 "visited_plmn": "001001",

 "last_update": "2025-01-15T14:30:00Z"

 },

 "custom_attributes": {

 "account_type": "premium",

 "billing_plan": "unlimited"

 }

 },

 "event_context": {

 "visited_plmn": "310410",

 "mme_host": "mme-roaming.example.com",

 "location_update_type": "initial_attach"

 }

}

For imsi_switch :

For ims_registration :

{

 "visited_plmn": "310410",

 "mme_host": "mme-roaming.example.com",

 "mme_realm": "epc.mnc410.mcc310.3gppnetwork.org",

 "location_update_type": "initial_attach"

}

{

 "previous_imsi": "001001111111111",

 "new_imsi": "310410222222222",

 "sim_id": 5678,

 "previous_mme_host": "mme-home.example.com",

 "new_mme_host": "mme-roaming.example.com"

}

{

 "scscf_host": "scscf-01.ims.example.com",

 "public_identities": [

 "sip:001001123456789@ims.mnc001.mcc001.3gppnetwork.org",

 "sip:+14155551001@ims.example.com",

 "tel:+14155551001"

]

}

HTTP Headers

Header Description Example

Content-Type
Always

application/json
application/json

X-OmniHSS-Event Event type update_location_request

X-OmniHSS-Event-

ID
Unique event identifier UUID

X-OmniHSS-

Timestamp
Event timestamp ISO 8601 format

User-Agent OmniHSS version OmniHSS/1.0

Configuration

Registering Webhooks

Webhooks are configured via the OmniHSS API.

Register a Webhook

Response:

List Webhooks

Update Webhook

curl -k -X POST https://hss.example.com:8443/api/webhook \

 -H "Content-Type: application/json" \

 -d '{

 "webhook": {

 "url": "https://your-server.com/omnihss-webhook",

 "events": [

 "update_location_request",

 "ims_registration",

 "imsi_switch"

],

 "enabled": true,

 "description": "Production billing system webhook"

 }

 }'

{

 "data": {

 "id": 1,

 "url": "https://your-server.com/omnihss-webhook",

 "events": [

 "update_location_request",

 "ims_registration",

 "imsi_switch"

],

 "enabled": true,

 "description": "Production billing system webhook",

 "created_at": "2025-01-15T14:00:00Z"

 }

}

curl -k https://hss.example.com:8443/api/webhook

Delete Webhook

Webhook Endpoint Requirements

Your webhook endpoint must:

1. Accept POST requests with Content-Type: application/json

2. Respond quickly - Return HTTP 200-299 within 5 seconds

3. Be idempotent - Handle duplicate deliveries gracefully

4. Use HTTPS - For security, use TLS/SSL endpoints (recommended)

5. Validate payloads - Verify the request is from OmniHSS (see Security

section)

Example Webhook Handler (Node.js/Express):

curl -k -X PUT https://hss.example.com:8443/api/webhook/1 \

 -H "Content-Type: application/json" \

 -d '{

 "webhook": {

 "enabled": false

 }

 }'

curl -k -X DELETE https://hss.example.com:8443/api/webhook/1

Use Cases

1. Real-Time Billing and Usage Tracking

Track subscriber network usage and trigger billing events in real-time.

const express = require('express');

const app = express();

app.post('/omnihss-webhook', express.json(), (req, res) => {

 const { event, subscriber, event_context } = req.body;

 console.log(`Received event: ${event}`);

 console.log(`Subscriber IMSI: ${subscriber.imsi}`);

 // Process the subscriber data

 // ... your business logic here ...

 // Respond immediately to acknowledge receipt

 res.status(200).json({ received: true });

 // Handle async processing after response

 processWebhook(req.body).catch(console.error);

});

async function processWebhook(payload) {

 // Your async processing logic

 // e.g., update billing system, trigger analytics, etc.

}

app.listen(3000);

Billing SystemWebhook HandlerOmniHSSDevice

Billing SystemWebhook HandlerOmniHSSDevice

Attach to Network (Roaming)

update_location_request

(visited_plmn: 310410)

Check roaming rates for PLMN 310410

$0.05/MB rate

Start roaming session

Enable roaming charges

200 OK

Benefits:

Instantly detect when subscribers roam internationally

Apply appropriate roaming charges in real-time

Track session start/end times accurately

Generate usage alerts when thresholds are reached

2. Analytics and Monitoring

Feed subscriber activity data into analytics platforms for real-time dashboards

and reporting.

Use Case: Track active subscribers by region

Analytics Dashboard:

Active subscribers per MME

Roaming subscribers by country

Service tier distribution

IMS registration success rates

3. Fraud Detection and Security

Detect suspicious activity patterns in real-time and trigger automated

responses.

// Webhook handler feeding data to analytics platform

app.post('/omnihss-webhook', async (req, res) => {

 const { event, subscriber, event_context } = req.body;

 if (event === 'update_location_request') {

 await analytics.track({

 event: 'subscriber_location_update',

 imsi: subscriber.imsi,

 visited_plmn: event_context.visited_plmn,

 timestamp: req.body.timestamp,

 profile: subscriber.epc_profile.name

 });

 }

 res.status(200).send();

});

Fraud Detection Scenarios:

1. Rapid Location Changes

Subscriber attaches in Country A

30 minutes later, attaches in Country B (physically impossible)

Action: Flag account, send alert to security team

2. IMSI Switch Abuse

Multiple rapid IMSI switches on same SIM

Possible SIM cloning or unauthorized multi-IMSI usage

Action: Disable all IMSIs on SIM, notify fraud team

3. Unauthorized Roaming

Subscriber roams to blocked country (sanctions, fraud risk)

Action: Auto-disable subscriber, block network access

Example Implementation:

4. Provisioning Automation

Automatically provision or update subscriber services based on network events.

Use Case: Auto-enable IMS when subscriber first uses VoLTE

@app.route('/omnihss-webhook', methods=['POST'])

def webhook_handler():

 data = request.json

 subscriber = data['subscriber']

 event_context = data.get('event_context', {})

 if data['event'] == 'update_location_request':

 visited_plmn = event_context.get('visited_plmn')

 # Check for blocked countries

 if visited_plmn in BLOCKED_PLMNS:

 disable_subscriber(subscriber['imsi'])

 alert_security_team(subscriber, 'Roaming to blocked

PLMN')

 # Check for impossible travel

 if is_impossible_travel(subscriber['imsi'], visited_plmn):

 flag_for_review(subscriber['imsi'])

 alert_fraud_team(subscriber, 'Impossible travel

detected')

 return jsonify({'status': 'ok'}), 200

5. Customer Notifications

Send real-time notifications to customers about their service.

Use Case: Welcome message when roaming internationally

SMS GatewayWebhookOmniHSSDeviceCustomer

SMS GatewayWebhookOmniHSSDeviceCustomer

Attach in foreign country

update_location_request

(visited_plmn: foreign)

Send welcome SMS

"Welcome to Country X!

Roaming rates: $0.05/MB"

SMS received on device

200 OK

Example Notifications:

app.post('/omnihss-webhook', async (req, res) => {

 const { event, subscriber } = req.body;

 if (event === 'ims_registration' && !subscriber.ims_enabled) {

 // First-time IMS user - enable IMS permanently

 await omnihss.updateSubscriber(subscriber.id, {

 ims_enabled: true,

 custom_attributes: {

 ...subscriber.custom_attributes,

 volte_activated_at: new Date().toISOString()

 }

 });

 // Update CRM

 await crm.updateCustomer(subscriber.imsi, {

 features: ['volte']

 });

 }

 res.status(200).send();

});

"Welcome to [Country]! Roaming rates apply."

"You've used 80% of your data allowance"

"VoLTE service now active on your device"

"Your account has been upgraded to Premium"

6. Multi-IMSI SIM Management

Track and manage subscribers with multi-IMSI SIMs, receiving notifications

when they switch IMSIs.

app.post('/omnihss-webhook', async (req, res) => {

 const { event, subscriber, event_context } = req.body;

 if (event === 'imsi_switch') {

 const { previous_imsi, new_imsi, sim_id } = event_context;

 // Log IMSI switch for analytics

 await db.logImsiSwitch({

 sim_id,

 from_imsi: previous_imsi,

 to_imsi: new_imsi,

 timestamp: req.body.timestamp

 });

 // Update billing system

 await billing.endSession(previous_imsi);

 await billing.startSession(new_imsi);

 // Alert if excessive switching (potential fraud)

 const switchCount = await db.getSwitchCount(sim_id, '24h');

 if (switchCount > 10) {

 await alertFraudTeam(`Excessive IMSI switching: SIM

${sim_id}`);

 }

 }

 res.status(200).send();

});

7. Integration with External Systems

Connect OmniHSS to third-party systems without polling.

Example Integrations:

CRM Systems - Update customer records with service usage

Network Monitoring - Feed subscriber data to network analytics

platforms

Billing Systems - Trigger charges based on network events

Ticketing Systems - Auto-create tickets for failed authentications

Data Warehouses - Stream subscriber events for big data analysis

Security Considerations

Webhook Secret/Signature

To verify webhooks are from OmniHSS, implement signature verification:

OmniHSS will include an X-OmniHSS-Signature header:

Configure webhook with secret

curl -k -X POST https://hss.example.com:8443/api/webhook \

 -H "Content-Type: application/json" \

 -d '{

 "webhook": {

 "url": "https://your-server.com/omnihss-webhook",

 "events": ["update_location_request"],

 "secret": "your-secret-key-here"

 }

 }'

X-OmniHSS-Signature:

sha256=5d7a8f9b2c1e3a4d6f7e8b9c0a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a

Verify the signature:

Best Practices

1. Use HTTPS - Always use TLS for webhook endpoints

2. Validate signatures - Verify webhook signatures to prevent spoofing

3. Rate limiting - Implement rate limiting on webhook endpoints

4. IP allowlisting - Restrict webhook access to OmniHSS IP addresses

5. Monitor failures - Track webhook delivery failures and errors

6. Sanitize data - Validate and sanitize webhook payloads before processing

7. Secure credentials - Store webhook secrets in secure configuration

(environment variables, secrets manager)

const crypto = require('crypto');

function verifyWebhook(req) {

 const signature = req.headers['x-omnihss-signature'];

 const secret = process.env.WEBHOOK_SECRET;

 const payload = JSON.stringify(req.body);

 const expectedSignature = 'sha256=' +

 crypto.createHmac('sha256', secret)

 .update(payload)

 .digest('hex');

 return crypto.timingSafeEqual(

 Buffer.from(signature),

 Buffer.from(expectedSignature)

);

}

app.post('/omnihss-webhook', (req, res) => {

 if (!verifyWebhook(req)) {

 return res.status(401).json({ error: 'Invalid signature' });

 }

 // Process webhook...

 res.status(200).send();

});

Data Privacy

Webhook payloads contain sensitive subscriber information:

IMSI (subscriber identity)

MSISDNs (phone numbers)

Location data (visited PLMN, MME)

Service profile information

Compliance Requirements:

GDPR - Ensure webhook data is processed in compliance with GDPR

Data retention - Implement appropriate data retention policies

Access control - Restrict webhook endpoint access

Encryption - Use TLS for webhook transport

Audit logging - Log all webhook deliveries for compliance

Troubleshooting

Webhook Not Received

Symptoms:

Events occur but webhook is not triggered

Webhook endpoint never receives requests

Troubleshooting Steps:

1. Verify webhook is enabled:

2. Check webhook events configuration:

curl -k https://hss.example.com:8443/api/webhook

Check "enabled": true

Ensure the event type is included in the webhook's events list

Example: If you want ims_registration events, verify it's in the events

array

3. Review HSS logs:

Check for webhook delivery errors

Look for network connectivity issues

Verify no DNS resolution failures

4. Test endpoint accessibility:

Webhook Timing Out

Symptoms:

HSS logs show webhook timeout errors

Webhook endpoint receives request but HSS marks as failed

Solution:

1. Respond immediately:

Return HTTP 200 within 5 seconds

Process data asynchronously after responding

2. Optimize endpoint performance:

curl -X POST https://your-server.com/omnihss-webhook \

 -H "Content-Type: application/json" \

 -d '{"test": true}'

Duplicate Webhooks

Symptoms:

Same event delivered multiple times

event_id is identical for duplicate deliveries

Cause:

Network retries (though OmniHSS doesn't retry, network infrastructure

might)

Multiple webhooks registered for same event

Solution:

Implement idempotency using event_id :

// BAD - Slow synchronous processing

app.post('/webhook', (req, res) => {

 processData(req.body); // Blocks for 10 seconds

 res.status(200).send();

});

// GOOD - Async processing after response

app.post('/webhook', (req, res) => {

 res.status(200).send(); // Respond immediately

 processData(req.body); // Process async

});

Webhook Returns Error

Symptoms:

Endpoint returns HTTP 4xx or 5xx

HSS logs webhook delivery failure

Common Errors:

1. 401 Unauthorized - Signature verification failed

Check webhook secret matches configuration

Verify signature calculation algorithm

2. 400 Bad Request - Invalid payload

Check webhook payload parsing

Ensure Content-Type header is handled

3. 500 Internal Server Error - Endpoint crashed

Review endpoint error logs

const processedEvents = new Set();

app.post('/omnihss-webhook', (req, res) => {

 const eventId = req.body.event_id;

 if (processedEvents.has(eventId)) {

 // Already processed, skip

 return res.status(200).json({ status: 'duplicate' });

 }

 processedEvents.add(eventId);

 // Process webhook...

 processWebhook(req.body);

 res.status(200).json({ status: 'processed' });

});

Add error handling and logging

Solution:

Add comprehensive error handling:

Missing Subscriber Data

Symptoms:

Webhook received but subscriber object is incomplete

Expected fields are null or missing

Possible Causes:

app.post('/omnihss-webhook', async (req, res) => {

 try {

 // Verify signature

 if (!verifyWebhook(req)) {

 return res.status(401).json({ error: 'Invalid signature' });

 }

 // Validate payload

 if (!req.body.event || !req.body.subscriber) {

 return res.status(400).json({ error: 'Invalid payload' });

 }

 // Process webhook

 await processWebhook(req.body);

 res.status(200).json({ status: 'ok' });

 } catch (error) {

 console.error('Webhook processing error:', error);

 // Return 200 to prevent retry, log error for investigation

 res.status(200).json({ status: 'error', message: error.message

});

 }

});

1. Subscriber not fully provisioned - Some profiles may be optional (IMS,

roaming)

2. Data race condition - Subscriber updated between event trigger and

webhook send

Solution:

Handle optional fields gracefully:

Monitoring and Observability

Webhook Metrics

Track webhook performance and reliability:

Metrics to Monitor:

Webhook delivery rate (successful vs. failed)

Webhook latency (time from event to endpoint response)

Endpoint response times

Error rates by endpoint

Events per second

Example Dashboard Query (Prometheus/Grafana):

const { subscriber } = req.body;

// Check for optional fields

const imsProfile = subscriber.ims_profile || { name: 'No IMS' };

const roamingProfile = subscriber.roaming_profile || { name: 'No

Roaming' };

// Handle missing MSISDNs

const msisdns = subscriber.msisdns || [];

Webhook Logs

Enable detailed webhook logging for troubleshooting:

Log Format:

← Back to Operations Guide | Next: API Reference →

Webhook success rate

rate(omnihss_webhook_success_total[5m]) /

rate(omnihss_webhook_attempts_total[5m])

Webhook latency

histogram_quantile(0.95, omnihss_webhook_duration_seconds)

{

 "timestamp": "2025-01-15T14:30:00Z",

 "level": "info",

 "component": "webhook",

 "event_id": "550e8400-e29b-41d4-a716-446655440000",

 "webhook_id": 1,

 "event_type": "update_location_request",

 "subscriber_imsi": "001001123456789",

 "endpoint": "https://your-server.com/omnihss-webhook",

 "http_status": 200,

 "duration_ms": 145,

 "error": null

}

OmniHSS Operations

Guide

Introduction

OmniHSS is a Home Subscriber Server (HSS) implementation designed for 4G

LTE (EPC) and IMS (IP Multimedia Subsystem) networks. As the central database

and authentication center for mobile networks, OmniHSS manages subscriber

credentials, profile data, and provides authentication and authorization services

for both data and voice services.

Built on Elixir and the Erlang VM, OmniHSS delivers high availability, fault

tolerance, and scalability required for modern telecommunications

infrastructure.

What is a Home Subscriber Server?

The HSS is a critical component in LTE and IMS networks that:

Stores subscriber data - Credentials, profile information, and service

subscriptions

Performs authentication - Validates subscribers attempting to access

the network

Manages authorization - Controls which services subscribers can access

Tracks location - Maintains current location information for routing

Controls roaming - Enforces roaming policies based on visited networks

Manages equipment - Functions as Equipment Identity Register (EIR) for

device control

Key Features

Operational Features

S6a Interface - Authentication and location management for LTE/EPC

networks

Cx Interface - IMS registration and authentication

Sh Interface - IMS profile data access and subscription notifications

S13 Interface - Equipment Identity Check (OmniHSS functions as EIR)

Gx Interface - Policy and Charging control (OmniHSS functions as PCRF)

Rx Interface - IMS media policy control (OmniHSS functions as PCRF)

Roaming Control - Granular control over data and IMS roaming by PLMN

Multiple MSISDNs - Support for multiple phone numbers per subscriber

RESTful API - Complete provisioning API for integration (also used by

OmniHLR)

Web Control Panel - Real-time monitoring and system status

Network Element Integration

OmniHSS interfaces with the following network elements:

MME (Mobility Management Entity) - LTE mobility and session management

P-GW (PDN Gateway) - Receives policy from OmniHSS (PCRF function)

P-CSCF (Proxy Call Session Control Function) - IMS media authorization

I-CSCF (Interrogating CSCF) - IMS routing queries

S-CSCF (Serving CSCF) - IMS registration and authentication

AS (Application Server) - IMS subscriber data access

OmniHLR - Legacy HLR that communicates with OmniHSS via API

Documentation Structure

This operations guide is organized into the following documents:

Core Documentation

Architecture Overview - System architecture, components, and Diameter

stack

Configuration Guide - Complete configuration reference with examples

Entity Relationships - Data model and entity relationships

Operational Guides

Control Panel - Using the web-based monitoring interface

Metrics & Monitoring - System monitoring and health checks

Troubleshooting Guide - Diagnosing and resolving common issues

API Reference - Complete API endpoint documentation

Webhooks - Real-time event notifications and integration

Feature Documentation

Profile Management - EPC, IMS, APN, and roaming profiles

Roaming Control - Configuring roaming policies

Protocol Flows - Diameter protocol procedures and message flows

PCRF - Policy and Charging Rules Function (Gx/Rx interfaces, QoS, VoLTE)

EIR - Equipment Identity Register (S13 interface, IMEI validation)

Multi-MSISDN and Multi-IMSI Features - Multiple phone numbers and

multiple IMSI support

Quick Start for Operations

Accessing the System

Control Panel (Web Interface)

URL: https://[hostname]:7443

The Control Panel provides real-time monitoring of subscribers and Diameter

peers.

API Endpoint

The RESTful API allows provisioning and subscriber management.

Key Configuration Files

config/runtime.exs - Runtime configuration (database, Diameter, network

settings)

priv/cert/ - TLS certificates for HTTPS and Diameter

Essential Operations

1. Check System Status - Access Control Panel Overview page

2. Monitor Diameter Peers - Access Control Panel Diameter page

3. Query Subscriber - Use API endpoint /api/subscriber/imsi/:imsi

4. View Database - Connect to SQL Database at configured hostname

Support and Troubleshooting

Log Files

System logs are output to stdout/stderr and can be captured by your process

manager (systemd, supervisord, etc.).

Common Checks

Diameter connectivity - Check Diameter page for peer status

Database connectivity - Verify database configuration in runtime.exs

Subscriber authentication failures - Check subscriber state for failure

counts

URL: https://[hostname]:8443

Health Monitoring

API Health Check - GET /api/status

Control Panel - Access any Control Panel page

Database - Connect to SQL Database and verify table access

Security Considerations

TLS Required - Both API and Control Panel use HTTPS

Certificate Management - Certificates in priv/cert/ must be valid

Database Security - Secure database credentials in runtime.exs

Network Isolation - Diameter interface should be on management

network

API Authentication - Consider implementing authentication for

production use

Architecture at a Glance

Next Steps

For detailed operational procedures, refer to the specific documentation

sections:

Start with Architecture Overview to understand system components

Review Configuration Guide to customize your deployment

Explore Control Panel for day-to-day monitoring

Consult API Reference for provisioning automation

Document Version: 1.0 Maintained By: Omnitouch Operations Team

