
�置参考

所有�置参数的完整指南

架构概述

OmniMessage SMPP �关是一个 无状态协议前端，用于将 SMPP 消息转换为 OmniMessage 及其反向操作。所有

业务逻辑、路由决策和消息存储均由 OmniMessage Core 处理 - �关仅仅：

1. 接收 来自运营商和客户的 SMPP PDU

2. 通过 REST API 转换 为 OmniMessage 格式

3. 轮询 OmniMessage 以获取待发送的消息

4. 发送 SMPP PDU 到运营商

5. 报告 交付状态回 OmniMessage

这与其他 OmniMessage 前端（Diameter、MAP、IMS）的工作方式完全相同 - 它们都是无状态的协议转换器，委托给

OmniMessage Core。

�置文件位置

/opt/omnimessage-smpp/config/runtime.exs

重要：更改配置后，重启�关：

�置结构

配置文件使用 Elixir 语法。基本结构：

sudo systemctl restart omnimessage-smpp

全局设置

API_BASE_URL

OmniMessage Core 平台 URL

参数 类型 必需 默认值

api_base_url 字符串 (URL) 是 -

目的：OmniMessage Core 平台的 URL。�关通过 REST API 与 OmniMessage 进行所有消息处理：

提交消息：将接收到的 SMPP 消息发送到 OmniMessage 进行处理

检索消息：轮询待发送到 SMPP 运营商的消息

报告交付状态：将消息交付状态更新回 OmniMessage

系统健康：定期健康检查

关键：这是�关获取所有“智能”的地方。OmniMessage 处理：

import Config

�局设置

config :omnimessage_smpp,

 setting_name: value

SMPP 绑定

config :omnimessage_smpp, :binds, [

 %{

 name: "bind_name",

 # ... 绑定设置

 }

]

config :omnimessage_smpp,

 api_base_url: "https://omnimessage-core.example.com:8443"

✓ 消息验证和格式检查

✓ 路由决策（使用哪个运营商）

✓ 速率限制和流量控制

✓ 号码验证

✓ 消息存储和持久性

✓ 交付重试逻辑

✓ 状态跟踪

�关仅仅是将 SMPP ↔ OmniMessage 格式进行转换。

示例：

网络要求：

�关必须能够访问 OmniMessage Core

在生产环境中使用 HTTPS（配置 verify_ssl_peer）

防火墙必须允许指定端口的出站 HTTPS

SMPP_POLL_INTERVAL

队列检查频率（毫秒）

使用 IP 的 HTTPS

api_base_url: "https://192.168.1.100:8443"

使用主机名的 HTTPS

api_base_url: "https://omnimessage-core.company.com:8443"

HTTP（不推荐用于生产）

api_base_url: "http://192.168.1.100:8080"

config :omnimessage_smpp,

 smpp_poll_interval: 100

参数 类型 必需 默认值

smpp_poll_interval 整数 否 100

目的：每个客户端检查消息队列的频率（以毫秒为单位）。

指导原则：

高流量（>100 TPS）：100-500ms

中等流量（10-100 TPS）：500-1000ms

低流量（<10 TPS）：1000-2000ms

环境变量：SMPP_POLL_INTERVAL

VERIFY_SSL_PEER

SSL 证书验证

参数 类型 必需 默认值

verify_ssl_peer 布尔值 否 false

目的：在连接到后端 API 时是否验证 SSL 证书。

值：

true：验证证书（生产环境中使用有效证书）

false：跳过验证（自签名证书，测试）

环境变量：VERIFY_SSL_PEER

config :omnimessage_smpp,

 verify_ssl_peer: false

SMSC_NAME

注册的网关标识符

参数 类型 必需 默认值

smsc_name 字符串 否 "smpp_gateway"

目的：在消息队列后端中标识此�关实例。

环境变量：SMSC_NAME

SMPP 客户端绑定�置

客户端绑定是 出站连接，�关作为 ESME（客户端）连接到运营商 SMSC 服务器。在这种模式下，�关发起连接以通过外部运营商发送和

接收消息。

config :omnimessage_smpp,

 smsc_name: "smpp_gateway"

完整的客户端绑定示例

客户端绑定参数

name

唯一连接标识符

类型 必需 示例

字符串 是 "vodafone_uk"

目的：唯一标识此 SMPP 连接。

config :omnimessage_smpp, :binds, [

 %{

 # 此连接的唯一标识符

 name: "vodafone_uk",

 # 连接模式

 mode: :client,

 # SMPP 绑定类型

 bind_type: :transceiver,

 # 运营商 SMPP 服务器地址

 host: "smpp.vodafone.co.uk",

 port: 2775,

 # 身份验证凭据

 system_id: "your_username",

 password: "your_password",

 # 速率限制

 tps_limit: 100,

 # 队列检查频率

 queue_check_frequency: 1000

 }

]

用于日志和指标

在所有绑定中必须唯一

使用描述性名称（运营商、地区、用���）

命名约定：

carrier_region："vodafone_uk"，"att_us"

purpose_number："marketing_1"，"alerts_primary"

mode

连接类型

类型 必需 值

原子 是 :client

目的：定义为出站连接，�关作为 ESME 连接到外部 SMSC。

固定值：出站连接始终为 :client。

bind_type

SMPP 会话类型

类型 必需 允许的值

原子 是 :transmitter，:receiver，:transceiver

目的：定义消息方向能力。

选项：

:transmitter - 仅发送消息（submit_sm）

:receiver - 仅接收消息（deliver_sm）

:transceiver - 发送和接收（最常见）

建议：除非运营商要求特定类型，否则使用 :transceiver。

host

运营商 SMPP 服务器主机名或 IP

类型 必需 示例

字符串 是 "smpp.carrier.com" 或 "10.5.1.100"

目的：运营商的 SMPP 服务器地址。

示例：

port

SMPP 服务器端口

类型 必需 默认值 范围

整数 是 2775 1-65535

目的：SMPP 连接的 TCP 端口。

标准端口：2775

示例：

system_id

身份验证用户名

host: "smpp.vodafone.co.uk"

host: "10.20.30.40"

host: "smpp-primary.carrier.net"

port: 2775 # 标准

port: 3000 # 自定义

类型 必需 示例

字符串 是 "company_user"

目的：运营商提供的用于身份验证的用户名。

安全性：保护此凭据 - 存储在配置文件中。

password

身份验证密码

类型 必需 示例

字符串 是 "secret_password"

目的：运营商提供的用于身份验证的密码。

安全性：

保护此凭据

使用强密码

定期更换

tps_limit

每秒事务限制

类型 必需 默认值 范围

整数 是 100 1-10000

目的：通过此连接发送的最大消息数。

指导原则：

设置为运营商最大值的 70-80%

防止限流/断开连接

允许交付回执的余量

示例：

计算：

queue_check_frequency

消息队列轮询间隔（毫秒）

类型 必需 默认值 范围

整数 是 1000 100-10000

目的：多长时间检查后端以获取要发送的新消息。

指导原则：

高流量（>100 TPS）：500-1000ms

中等流量（10-100 TPS）：1000-2000ms

低流量（<10 TPS）：2000-5000ms

权衡：

较低的值 = 更快的消息获取，更多的 API 负载

较高的值 = 较慢的获取，较少的 API 负载

Web UI 示例：

tps_limit: 10 # 低流量

tps_limit: 50 # 中等流量

tps_limit: 100 # 高流量（最常见）

tps_limit: 1000 # 非常高的流量

如果运营商最大 = 100 TPS

设置 tps_limit = 70-80

留下 20-30 TPS 的余量

SMPP 服务器绑定�置

服务器绑定定义 入站连接，�关作为 SMSC（服务器）接受来自外部 ESME（客户端）的连接。在这种模式下，合作伙伴系统连接到�关

以发送和接收消息。

完整的服务器绑定示例

服务器绑定参数

name

客户端标识符

类型 必需 示例

字符串 是 "partner_acme"

目的：标识连接到您的外部客户端。

命名约定：使用合作伙伴/客户端名称以便于识别。

system_id

config :omnimessage_smpp, :server_binds, [

 %{

 # 此客户端的唯一标识符

 name: "partner_acme",

 # 客户端预期的凭据

 system_id: "acme_corp",

 password: "acme_secret",

 # 允许的绑定类型

 allowed_bind_types: [:transmitter, :receiver, :transceiver],

 # IP 限制

 ip_whitelist: ["192.168.1.0/24", "10.50.1.100"],

 # 速率限制

 tps_limit: 50,

 # 队列检查频率

 queue_check_frequency: 1000

 }

]

客户端预期的用户名

类型 必需 示例

字符串 是 "acme_corp"

目的：外部客户端必须提供以进行身份验证的用户名。

提供给客户端：与您的合作伙伴共享此凭据。

password

客户端预期的密码

类型 必需 示例

字符串 是 "secure_password"

目的：外部客户端必须提供以进行身份验证的密码。

安全性：

使用强密码

每个客户端唯一

安全地与合作伙伴共享

allowed_bind_types

允许的会话类型

类型 必需 默认值

原子列表 是 -

目的：限制客户端可以使用的绑定类型。

选项：

建议：除非需要限制，否则允许所有三种类型。

ip_whitelist

允许的客户端 IP 地址

类型 必需 默认值 格式

字符串列表 是 [] IP 或 CIDR 表示法

目的：安全性 - 仅允许来自已知 IP 的连接。

格式：

单个 IP："192.168.1.100"（自动 /32）

CIDR 子�："192.168.1.0/24"，"10.0.0.0/8"

混合：["192.168.1.0/24", "10.50.1.100"]

示例：

allowed_bind_types: [:transceiver] # 仅 transceiver

allowed_bind_types: [:transmitter, :receiver] # TX 或 RX

allowed_bind_types: [:transmitter, :receiver, :transceiver] # 任何

允许任何 IP（不推荐）

ip_whitelist: []

单个 IP

ip_whitelist: ["203.0.113.50"]

多个 IP

ip_whitelist: ["203.0.113.50", "203.0.113.51"]

子网

ip_whitelist: ["192.168.1.0/24"]

混合

ip_whitelist: ["192.168.1.0/24", "10.50.1.100", "10.60.0.0/16"]

常见子网：

/32 - 单个 IP（没有掩码的 IP 自动）

/24 - 256 个地址（例如，192.168.1.0-255）

/16 - 65,536 个地址（例如，10.50.0.0-255.255）

/8 - 16,777,216 个地址（例如，10.0.0.0-255.255.255.255）

tps_limit

每秒消息限制

与客户端绑定的 tps_limit 相同 - 控制出站 deliver_sm 速率。

queue_check_frequency

队列轮询间隔

与��户端绑定的 queue_check_frequency 相同 - 多长时间检查是否有要交付给此客户端的消息。

Web UI 示例：

服务器监听�置

配置服务器绑定后，�关监听传入连接。

完整的监听示例

监听参数

host

要绑定的 IP 地址

类型 必需 默认值 常见值

字符串 否 "0.0.0.0" "0.0.0.0"，"127.0.0.1"

目的：监听哪个�络接口。

值：

"0.0.0.0" - 在所有接口上监听（推荐）

"127.0.0.1" - 仅在本地主机上监听（测试）

"192.168.1.10" - 在特定 IP 上监听

port

要监听的 TCP 端口

类型 必需 默认值 范围

整数 否 2775 1-65535

目的：用于传入 SMPP 连接的端口。

标准：2775

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

max_connections

最大并发连接数

类型 必需 默认值 范围

整数 否 100 1-10000

目的：限制同时客户端连接的���数。

指导原则：

根据预期客户端设置

较高的值使用更多内存

典型：10-100 个连接

完整�置示例

示例 1：单个运营商连接

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443",

 verify_ssl_peer: true,

 smsc_name: "smpp_prod"

config :omnimessage_smpp, :binds, [

 %{

 name: "att_primary",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.att.com",

 port: 2775,

 system_id: "company_user",

 password: "secure_pass_123",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

示例 2：多个运营商

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443"

config :omnimessage_smpp, :binds, [

 # 北美

 %{

 name: "att_us",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.att.com",

 port: 2775,

 system_id: "att_username",

 password: "att_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 },

 # 欧洲

 %{

 name: "vodafone_uk",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.vodafone.co.uk",

 port: 2775,

 system_id: "voda_username",

 password: "voda_password",

 tps_limit: 50,

 queue_check_frequency: 1000

 }

]

示例 3：具有服务器绑定的网关

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443"

出站连接

config :omnimessage_smpp, :binds, [

 %{

 name: "upstream_carrier",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.carrier.com",

 port: 2775,

 system_id: "my_username",

 password: "my_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

入站客户端定义

config :omnimessage_smpp, :server_binds, [

 %{

 name: "partner_alpha",

 system_id: "alpha_corp",

 password: "alpha_secret",

 allowed_bind_types: [:transmitter, :receiver, :transceiver],

 ip_whitelist: ["203.0.113.0/24"],

 tps_limit: 50,

 queue_check_frequency: 1000

 },

 %{

 name: "partner_beta",

 system_id: "beta_inc",

 password: "beta_password",

 allowed_bind_types: [:transceiver],

 ip_whitelist: ["198.51.100.50"],

 tps_limit: 25,

 queue_check_frequency: 2000

 }

]

�置验证

编辑配置后，重启前进行验证：

语法检查

如果语法无效，您将看到错误。在重启之前修复。

测试�置

按 Ctrl+C 两次退出。

安全最佳实践

1. 保护�置文件：

服务器监听

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

检查 Elixir 语法

/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!

('config/runtime.exs')"

在前台重启以查看错误

sudo -u omnimessage-smpp /opt/omnimessage-smpp/bin/omnimessage-

smpp console

2. 使用强密码：

至少 12 个字符

混合字母、数字、符号

每个连接唯一

3. 使用 IP 白名单：

始终为服务器绑定配置 ip_whitelist

在生产中永远不要使用空列表 []

4. 启用 SSL 验证：

设置 verify_ssl_peer: true 并使用有效证书

5. 定期更换凭据：

每季度更改密码

与运营商/合作伙伴协调

下一步

查看 MONITORING.md 以获取指标配置

阅读 OPERATIONS.md 以管理连接

查看 TROUBLESHOOTING.md 以获取常见问题

返回 README.md 以获取概述

sudo chmod 600 /opt/omnimessage-smpp/config/runtime.exs

sudo chown omnimessage-smpp:omnimessage-smpp /opt/omnimessage-

smpp/config/runtime.exs

术语表

术语和定义

A

API（应用程序编程接口）

用于与消息队列后端系统通信的接口。

自动滚动

Web UI 日志标签中的功能，自动滚动以显示最新的日志条目。

B

后端

SMPP �关连接以检索和存储消息的消息队列系统。

绑定

两个系统之间的 SMPP 连接。可以是发射器、接收器或收发器。

绑定类型

SMPP 会话的类型：

发射器：仅发送消息

接收器：仅接收消息

收发器：发送和接收消息

绑定失败

当 SMPP 身份验证尝试失败时，通常是由于凭据不正确或 IP 限制。

C

CIDR（无类域间路由）

指定 IP 地址范围的符号（例如，192.168.1.0/24 表示 256 个 IP 地址）。

客户端绑定

出站 SMPP 连接，其中�关作为 ESME 连接到外部 SMSC（通常是运营商的 SMPP 服务器）。在此模式下，�关是客户端。

连接状态

SMPP 绑定的当前状态：

已连接：活动且可操作

未连接：未连接

重新连接：尝试建立连接

计数���

仅增加的指标（在服务重启时重置），用于发送的消息等总数。

D

数据编码

指定消息字符编码的 SMPP 字段（GSM-7、UCS-2 等）。

交付失败

当消息无法送达时，由运营商的错误响应指示。

交付回执（DLR）

运营商关于消息交付状态的确认。

dest_smsc

消息队列中的字段，指示哪个 SMPP 连接应处理该消息。

断开连接

当活动的 SMPP 连接被终止时，无论是故意还是由于错误。

E

查询链接

定期发送的 SMPP 保持活动消息，以验证连接是否处于活动状态。

ESM 类

指示消息类型和特性的 SMPP 字段。

ESME（外部短消息实体）

在 SMPP 术语中，连接到 SMSC 以发送或接收消息的客户端应用程序。当�关在 客户端模式 下运行时，它充当连接到运营商 SMSC

的 ESME。当它在 服务器模式 下运行时，它接受来自外部 ESME 的连接。

指数退避

重试策略，每次失败后等待时间加倍（1分钟、2分钟、4分钟、8分钟……）。

F

防火墙

控制进出�络流量的�络安全系统。

G

网关

连接消息队列和移动�络的 SMPP �关应用程序。

仪表

可以增加或减少的指��，表示当前值（例如，连接状态）。

Grafana

用于在仪表板中显示 Prometheus 指标的流行可视化工具。

GSM-7

用于 SMS 的标准 7 位字符编码，支持每条消息最多 160 个字符。

H

HTTP/HTTPS

用于�络通信的协议。HTTPS 是加密版本。

I

IP 白名单

可以连接到�关的允许 IP 地址列表（安全功能）。

ISDN（综合业务数字网）

常用于电话号码的编号计划。

J

(�术语)

K

保持活动

定期发送的消息（enquire_link），以维护连接并检测故障。

KPI（关键绩效指标）

指示系统性能的可测量值（例如，交付成功率）。

L

标签

在 Prometheus 中，附加到指标的键值对，用于标识（例如，bind_name="vodafone_uk"）。

实时视图

用于实时 Web UI 更新的 Phoenix 框架技术。

M

消息队列

存储等待发送或接收的消息的后端系统。

指标

系统性能的定量测量，以 Prometheus 格式公开。

MO（移动发起）

从手机发送到�关的消息（入站）。

MT（移动终止）

从�关发送到手机的消息（出站）。

MSISDN（移动台国际用户目录号码）

移动电话号码的标准格式。

N

NPI（编号计划指示符）

指定编号方案的 SMPP 字段（例如，ISDN）。

O

出站

从�关流向移动�络的消息。

入站

从移动�络流向�关的消息。

P

PDU（协议数据单元）

单个 SMPP 消息包（例如，submit_sm、deliver_sm）。

Prometheus

收集和存储时间序列指标的开源监控系统。

Q

队列

等待处理或发送的消息列表。

队列检查频率

�关多长时间（以毫秒为单位）轮询后端以获取新消息。

队列工作者

从队列中检索消息并通过 SMPP 发送的组件。

R

速率限制

控制消息吞吐量以遵守运营商限制。见 TPS。

接收器

仅接收消息的 SMPP 绑定类型（deliver_sm）。

重新连接

重新建立断开的 SMPP 连接。

重试

尝试再次发送失败的消息，通常使用指数退避。

S

服务器绑定

允许外部 ESMEs（客户端）连接到�关的配置。在此模式下，�关充当接受来自合作伙伴系统的入站连接的 SMSC（服务器）。

会话

两个系统之间的活动 SMPP 连接。

SMPP（短消息对等网络）

用于在系统之间交换 SMS 消息的行业标准协议。

SMSC（短消息服务中心）

在 SMPP 术语中，接受来自 ESME（客户端）连接并处理 SMS 消息路由和交付的服务器组件。当�关在 服务器模式 下运行时，它充当

接受来自外部 ESME 的连接的 SMSC。

SSL/TLS

用于安全通信的加密协议。

Submit_SM

用于提交消息以进行交付的 SMPP PDU。

Submit_SM_Resp

对 submit_sm 的 SMPP 响应，指示成功或失败。

系统 ID

用于 SMPP 身份验证的用户名。

T

遥测

系统指标的自动收集和传输。

TON（号码类型）

指定号码格式的 SMPP 字段（例如，国际、国家）。

TPS（每秒事务数）

通过连接的最大消息每秒速率限制。

收发器

可以同时发送和接收消息的 SMPP 绑定类型（最常见）。

发射器

仅发送消息的 SMPP 绑定类型（submit_sm）。

吞吐量

消息处理速率，通常以每秒消息数来衡量。

U

UCS-2

用于 SMS 的 16 位 Unicode 字符编码，支持每条消息最多 70 个字符。

正常运行时间

连接或服务持续运行的时间。

V

有效期

在过期之前尝试交付消息的时间限制。

W

Web 仪表板

用于监控和管理�关的基于浏览器的用户界面。

白名单

见 IP 白名单。

X

(�术语)

Y

(�术语)

Z

(�术语)

缩略语快速参考

缩略语 全称

API 应用程序编程接口

CIDR 无类域间路由

DLR 交付回执

ESME 外部短消息实体

GSM 全球移动通信系统

HTTP 超文本传输协议

HTTPS 安全超文本传输协议

IP 互联�协议

ISDN 综合业务数字�

KPI 关键绩效指标

MO 移动发起

MSISDN 移动台国际用户目录号码

MT 移动终止

NPI 编号计划指示符

PDU 协议数据单元

SMPP 短消息对等�络

SMSC 短消息服务中心

缩略语 全称

SMS 短消息服务

SSL 安全套接字层

TLS 传输层安全

TON 号码类型

TPS 每秒事务数

UCS 通用编码字符集

UI 用户界面

URL 统一资源定位符

相关文档

README.md - 系统概述和入门

CONFIGURATION.md - 配置参数说明

OPERATIONS.md - 日常操作

MONITORING.md - 指标和监控

TROUBLESHOOTING.md - 问题解决

监控和指标指南

SMPP网关监控的完整参考

概述

SMPP�关以Prometheus格式公开指标，用于监控连接健康、消息吞吐量和系统性能。

关键：由于�关是无状态的，并依赖于OmniMessage Core，OmniMessage连接性是最重要的监控指标。请监控以下两

个方面：

1. SMPP网关指标 - 协议级健康

2. OmniMessage API指标 - 后端连接性和健康

指标端点

URL： http://your-server:4000/metrics

格式： Prometheus文本格式

访问： 默认情况下对localhost开放（配置防火墙以进行远程访问）

快速测试

可用指标

所有指标以 smpp_ 为前缀，并包含用于识别的标签。

curl http://localhost:4000/metrics

许可证指标

omnimessage_smpp_license_status

类型： Gauge

描述： 当前许可证状态

值：

1 = 有效许可证

0 = 无效/过期许可证

标签： 无

示例：

用途��

当值为0时发出警报（无效许可证）

当许可证无效时，出站队列处理停止，但SMPP绑定保持连接

Web UI仍可访问以进行故障排除

产品名称： omnimessage_smpp

注意：

当许可证无效（license_status == 0）时，�关停止处理出站队列

SMPP绑定（客户端和服务器）保持连接并接受绑定请求

入站消息仍然被接收但不被处理

无论许可证状态如何，UI和监控仍然可访问

警报示例：

omnimessage_smpp_license_status 1

连接状态指标

smpp_connection_status

类型： Gauge

描述： 当前SMPP绑定的连接状态

值：

1 = 已连接

0 = 已断开

标签：

bind_name - 连接名称（例如，“vodafone_uk”）

mode - 连接类型（“client”或“server”）

host - 远程主机（仅客户端模式）

port - 远程端口（仅客户端模式）

bind_type - SMPP绑定类型（仅客户端模式）

system_id - 使用的系统ID

示例：

用途：

- alert: SMPP_License_Invalid

 expr: omnimessage_smpp_license_status == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "SMPP网关许可证无效或过期"

 description: "许可证状态无效 - 出站消息处理被阻止"

smpp_connection_status{bind_name="vodafone_uk",mode="client",host="sm

1

当值为0时发出警报（已断开）

跟踪连接正常运行时间百分比

监控重新连接频率

消息计数器

smpp_messages_sent_total

类型： Counter

描述： 通过SMPP绑定发送的消息总数

单位： 消息

标签： 与connection_status相同

示例：

用途：

计算消息速率（消息/秒）

跟踪每日/每月的消息量

比较实际与预期的吞吐量

smpp_messages_received_total

类型： Counter

描述： 通过SMPP绑定接收的消息总数

单位： 消息

标签： 与connection_status相同

示例：

smpp_messages_sent_total{bind_name="vodafone_uk",mode="client",...}

150234

用途：

监控入站消息量

跟踪移动发起（MO）流量

对意外的流量变化发出警报

投递指标

smpp_delivery_failures_total

类型： Counter

描述： 消息投递失败的总数

单位： 失败

标签： 与connection_status相同

示例：

用途：

计算投递成功率

对高失败率发出警报

识别问题连接

成功率计算：

smpp_messages_received_total{bind_name="partner_acme",mode="server",.

45123

smpp_delivery_failures_total{bind_name="vodafone_uk",mode="client",..

234

success_rate = (messages_sent - delivery_failures) / messages_sent

* 100

绑定操作指标

smpp_bind_success_total

类型： Counter

描述： 成功绑定操作的总数

单位： 绑定尝试

示例：

用途：

跟踪绑定稳定性

监控身份验证成功率

smpp_bind_failures_total

类型： Counter

描述： 失败绑定操作的总数

单位： 绑定尝试

示例：

用途：

对身份验证失败发出警报

识别凭据问题

跟踪运营商连接问题

连接事件指标

smpp_connection_attempts_total

smpp_bind_success_total{bind_name="vodafone_uk",...} 45

smpp_bind_failures_total{bind_name="vodafone_uk",...} 3

类型： Counter

描述： 连接尝试的总数

单位： 尝试

示例：

用途：

跟踪连接流失

监控重新连接频率

smpp_disconnection_total

类型： Counter

描述： 断开的总数

单位： 断开

示例：

用途：

对频繁断开发出警报

识别�络问题

跟踪连接稳定性

正常运行时间指标

smpp_uptime_seconds

类型： Gauge

描述： 当前SMPP绑定的正常运行时间（以秒为单位）

单位： 秒

smpp_connection_attempts_total{bind_name="vodafone_uk",...} 48

smpp_disconnection_total{bind_name="vodafone_uk",...} 3

示例：

用途：

跟踪连接稳定性

计算正常运行时间百分比

对最近的重启发出警报

OmniMessage API健康指标

虽然�关本身公开与SMPP相关的指标，但OmniMessage API的健康至关重要。您还应该监控：

来自OmniMessage的指标（如果可用）

omnimessage_api_requests_total - 从�关发出的API请求总数

omnimessage_api_request_duration_seconds - API响应时间

omnimessage_queue_depth - OmniMessage队列中待处理的消息

来自网关日志（如果未公开指标）

查找以下模式以检测API问题：

"api.*connection refused" - 无法连接到OmniMessage

"api.*timeout" - OmniMessage未响应

"api.*http 503" - OmniMessage暂时不可用

"api.*parse error" - 响应格式问题

Prometheus�置

基本抓取�置

添加到 /etc/prometheus/prometheus.yml���

smpp_uptime_seconds{bind_name="vodafone_uk",...} 86400

多个网关

服务发现

使用基于文件的发现：

文件 /etc/prometheus/targets/smpp-production.json：

scrape_configs:

 - job_name: 'omnimessage-smpp'

 scrape_interval: 15s

 static_configs:

 - targets: ['your-server:4000']

 labels:

 environment: 'production'

 service: 'omnimessage-smpp'

scrape_configs:

 - job_name: 'omnimessage-smpp-instances'

 scrape_interval: 15s

 static_configs:

 - targets:

 - 'smpp-gw-1:4000'

 - 'smpp-gw-2:4000'

 - 'smpp-gw-3:4000'

 labels:

 environment: 'production'

scrape_configs:

 - job_name: 'omnimessage-smpp-instances'

 file_sd_configs:

 - files:

 - '/etc/prometheus/targets/smpp-*.json'

Grafana仪表板

示例仪表板面板

连接状态面板

查询：

可视化： Stat

阈值：

红色：值 < 1（已断开）

绿色：值 == 1（已连接）

消息速率面板

查询：

可视化： Graph

单位： 消息/秒

图例： {{bind_name}}

[

 {

 "targets": ["smpp-gw-1:4000", "smpp-gw-2:4000"],

 "labels": {

 "environment": "production",

 "datacenter": "us-east"

 }

 }

]

smpp_connection_status{job="omnimessage-smpp"}

rate(smpp_messages_sent_total{job="omnimessage-smpp"}[5m])

投递成功率面板

查询：

可视化： Gauge

单位： 百分比（0-100）

阈值：

红色：< 95%

黄色：95-98%

绿色：> 98%

连接正常运行时间面板

查询：

可视化： Stat

单位： 小时

警报规则

Prometheus警报规则

保存到 /etc/prometheus/rules/smpp-alerts.yml：

100 * (1 - (

 rate(smpp_delivery_failures_total{job="omnimessage-smpp"}[5m])

 /

 rate(smpp_messages_sent_total{job="omnimessage-smpp"}[5m])

))

smpp_uptime_seconds{job="omnimessage-smpp"} / 3600

groups:

 - name: smpp_gateway

 interval: 30s

 rules:

 # �接断开

 - alert: SMPPConnectionDown

 expr: smpp_connection_status == 0

 for: 2m

 labels:

 severity: critical

 annotations:

 summary: "SMPP连接 {{ $labels.bind_name }} 已断开"

 description: "连接 {{ $labels.bind_name }} 已断开超过2分钟。"

 # 高失败率

 - alert: SMPPHighFailureRate

 expr: |

 (

 rate(smpp_delivery_failures_total[5m])

 /

 rate(smpp_messages_sent_total[5m])

) > 0.05

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "在 {{ $labels.bind_name }} 上高投递失败率"

 description: "投递失败率在 {{ $labels.bind_name }} 上为 {{

$value | humanizePercentage }}。"

 # 绑定失败

 - alert: SMPPBindFailures

 expr: increase(smpp_bind_failures_total[10m]) > 3

 labels:

 severity: warning

 annotations:

 summary: "在 {{ $labels.bind_name }} 上多次绑定失败"

 description: "{{ $labels.bind_name }} 在过去10分钟内绑定失败 {{

$value }} 次。"

 # 没有发送消息（预期时）

 - alert: SMPPNoTraffic

 expr: rate(smpp_messages_sent_total[10m]) == 0

 for: 30m

 labels:

 severity: warning

 annotations:

 summary: "在 {{ $labels.bind_name }} 上没有发送消息"

 description: "{{ $labels.bind_name }} 在过去30分钟内没有发送任何消息。"

 # 频繁断开

 - alert: SMPPFrequentDisconnections

 expr: increase(smpp_disconnection_total[1h]) > 5

 labels:

 severity: warning

 annotations:

 summary: "在 {{ $labels.bind_name }} 上频繁断开"

 description: "{{ $labels.bind_name }} 在过去一小时内断开 {{

$value }} 次。"

 # OmniMessage API不可达

 - alert: OmniMessageAPIUnreachable

 expr: |

 count(count_over_time({job="omnimessage-smpp"} |=

"api.*connection refused"[5m])) > 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "OmniMessage API不可达"

 description: "SMPP网关无法连接到OmniMessage API。检查API_BASE_URL配

置和网络连接。"

 # OmniMessage API超时

 - alert: OmniMessageAPITimeout

 expr: |

 count(count_over_time({job="omnimessage-smpp"} |=

"api.*timeout"[5m])) > 5

 for: 2m

 labels:

 severity: warning

 annotations:

 summary: "OmniMessage API超时"

 description: "检测到多个API超时。OmniMessage可能很慢或超载。"

 # 没有消息流（API问题）

 - alert: NoMessageFlow

在 prometheus.yml 中加载规则：

Web仪表板监控

内置的Web UI提供实时监控，无需Prometheus。

访问

URL： https://your-server:8087

实时状态页面

导航： SMPP → 实时状态

功能：

实时连接状态

消息计数器

连接正常运行时间

手动重连/断开控制

每5秒自动刷新

用途：

 expr: rate(smpp_messages_sent_total[10m]) == 0 and

rate(smpp_messages_received_total[10m]) == 0

 for: 30m

 labels:

 severity: warning

 annotations:

 summary: "未检测到消息流 - 检查OmniMessage连接性"

 description: "在过去30分钟内没有发送或接收消息。检查OmniMessage API连接性和队��

状态。"

rule_files:

 - '/etc/prometheus/rules/smpp-alerts.yml'

快速状态检查

手动干预

实时故障排除

仪表板显示：

总绑定：所有客户端和服务器连接的总计数

客户端绑定：到运营商的出站连接（显示已连接/已断开计数）

服务器绑定：来自合作伙伴的入站连接（显示活动/等待计数）

服务器监听：入站服务器套接字的配置（主机、端口、最大连接数）

日志监控

系统日志

查看日志：

Web UI日志

导航： Web UI中的日志选项卡

功能：

实时日志流

按级别过滤（调试、信息、警告、错误）

搜索日志

暂停/恢复

清除日志

日志视图允许您：

实时跟踪日志

sudo journalctl -u omnimessage-smpp -f

最近100行

sudo journalctl -u omnimessage-smpp -n 100

从特定时间开始

sudo journalctl -u omnimessage-smpp --since "1 hour ago"

按级别过滤

sudo journalctl -u omnimessage-smpp -p err

级别过滤：选择日志级别（所有、调试、信息、警告、错误）

搜索：按文本内容查找特定日志条目

自动滚动：启用/禁用新日志到达时的自动滚动

暂停/恢复：暂停日志更新以查看特定条目

清除：清除所有显示的日志

关键绩效指标（KPI）

连接健康

指标： 连接正常运行时间百分比

目标： > 99.9%

消息投递率

指标： 每秒投递的消息数

目标： 符合预期的消息量

投递成功率

指标： 成功投递的百分比

目标： > 98%

avg_over_time(smpp_connection_status[24h]) * 100

rate(smpp_messages_sent_total[5m])

100 * (1 - rate(smpp_delivery_failures_total[5m]) /

rate(smpp_messages_sent_total[5m]))

绑定稳定性

指标： 每小时的绑定尝试

目标： < 10次每小时（表示连接稳定）

监控最佳实践

1. 设置警报

为关键指标配置Prometheus警报

使用PagerDuty/OpsGenie进行24/7警报

定期测试警报

2. 创建仪表板

为每个�关构建Grafana仪表板

在一个仪表板上包含所有连接

添加容量规划面板

3. 定期审查

每周审查指标

识别趋势和模式

计划容量调整

4. 记录基线

记录正常的消息量

记录预期的TPS速率

注意高峰时间/天

rate(smpp_bind_success_total[1h]) * 3600

5. 与后端关联

监控后端API指标

跟踪端到端消息流

识别瓶颈

使用指标进行故障排除

连接问题

检查： smpp_connection_status

值为0 = 审查日志，检查�络，验证凭据

频繁变化 = �络不稳定

投递率低

检查： smpp_delivery_failures_total

高比率 = 检查运营商状态，审查消息格式

跨连接比较 = 识别问题运营商

吞吐量低

检查： smpp_messages_sent_total 速率

低于预期 = 检查TPS限制，队列可用性

检查后端API指标

绑定问题

检查： smpp_bind_failures_total

增加 = 身份验证问题，凭据问题

检查配置中的system_id和密码

相关文档

CONFIGURATION.md - 配置监控设置

OPERATIONS.md - 操作程序

TROUBLESHOOTING.md - 解决问题

README.md - 概述和快速入门

操作指南

日常操作程序

关键依赖：OmniMessage Core

重要：OmniMessage SMPP �关在没有访问 OmniMessage Core 的情况下无法运行。所有消息处理都发生在

OmniMessage 中 - �关只是一个协议转换器。

如果 OmniMessage 无法使用：

❌ 无法提交新消息

❌ 无法检索待处理消息

❌ 无法报告交付状态

❌ 系统似乎挂起或超时

检查 OmniMessage 健康状况：

日常操作

早晨健康检查

在每天开始时执行以下检查：

1. 访问 Web 仪表板

URL: https://your-server:8087

测试 API 连接性

curl -k https://omnimessage-

core.example.com:8443/api/system/health

检查日志中的配置 API URL

grep api_base_url /opt/omnimessage-smpp/config/runtime.exs

检查仪表板是否正确加载

2. 检查连接状态

导航到：SMPP → 实时状态

验证所有连接显示“已连接”（绿色）

注意任何断开的绑定

3. 查看消息指标

导航到：队列标签

检查消息计数是否合理

验证没有意外的队列积压

4. 检查系统日志

导航到：日志标签

查找错误消息（红色）

注意任何警告模式

5. 查看 Prometheus 指标

curl http://localhost:4000/metrics

或检查 Grafana 仪表板

验证消息速率是否正常

持续监控

设置警报以监控：

连接失败（> 2 分钟宕机）

高交付失败率（> 5%）

长时间没有流量

频繁断开连接

请参见 MONITORING.md 以获取警报配置。

管理 SMPP 连接

SMPP 对等体的�置方式

SMPP 连接（对等体）可以使用 两种方法 进行配置：

方法 1：Web UI（推荐）

优点：更改立即生效，无需重启

位置：SMPP → 客户端对等体 / 服务器对等体标签

操作：添加、编辑、删除对等体

持久性：存储在 Mnesia 数据库中

最佳用途：日常操作、测试、快速更改

方法 2：�置文件

优点：代码形式的配置，版本控制

位置：/opt/omnimessage-smpp/config/runtime.exs

操作：在 Elixir 配置中定义对等体

持久性：基于文件，重启后仍然有效

要求：更改后需要重启服务

最佳用途：初始设置、基础设施作为代码

注意：Web UI 更改单独存储并覆盖配置文件设置。

请参见 CONFIGURATION.md 以获取配置文件参考。

添加新的客户端连接

目的：配置�关作为连接到运营商的 ESME（客户端）连接到 SMSC（服务器）

准备：收集运营商的信息：

SMPP 服务器主机名/IP

端口号（通常为 2775）

系统 ID（用户名）

密码

绑定类型（通常为双向）

TPS 限制

选择以下方法之一：

选项 A：通过 Web UI（推荐）

优点：立即生效，无需重启

步骤：

1. 导航到客户端对等体：

打开 Web UI：https://your-server:8087

导航到：SMPP → 客户端对等体

2. 添加新对等体：

点击“添加新客户端对等体”

填写表单：

名称：vodafone_uk（唯一标识符）

主机：smpp.vodafone.co.uk

端口：2775

系统 ID：your_username

密码：your_password

绑定类型：Transceiver

TPS 限制：100

队列检查频率：1000

点击“保存”

3. 连接自动建立：

�关立即尝试连接

导航到：SMPP → 实时状态

状态应在 10-30 秒内更改为“已连接”（绿色）

检查日志标签以获取成功绑定消息

4. 测试消息流：

导航到：队列标签

提交测试消息，dest_smsc 匹配绑定名称

在实时状态中监控传输

验证交付确认

选项 B：通过�置文件

优点：基础设施作为代码，版本控制

步骤：

1. 编辑�置文件：

2. 将新绑定添加到�置中：

3. 保存并重启服务：

4. 验证连接：

导航到：SMPP → 实时状态

找到新连接

状态应为“已连接”（绿色）

检查日志以获取成功绑定

5. 测试消息流：

导航到：队列标签

sudo nano /opt/omnimessage-smpp/config/runtime.exs

config :omnimessage_smpp, :binds, [

 # 现有绑定...

 # 添加新绑定

 %{

 name: "vodafone_uk",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.vodafone.co.uk",

 port: 2775,

 system_id: "your_username",

 password: "your_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

保存文件（在 nano 中按 Ctrl+X, Y, Enter）

重启服务

sudo systemctl restart omnimessage-smpp

提交测试消息，dest_smsc 匹配新绑定名称

在实时状态中监控传输

验证交付确认

添加服务器绑定

目的：配置�关作为 SMSC（服务器），接受来自外部 ESMEs（合作伙伴客户端）的连接

准备：

1. 生成凭据：

创建唯一的系统 ID：partner_name

创建强密码

安全地记录并与合作伙伴共享

2. 获取合作伙伴信息：

合作伙伴的源 IP 地址

预期消息量（用于 TPS 限制）

所需的绑定类型

选择以下方法之一：

选项 A：通过 Web UI（推荐）

优点：立即生效，无需重启

步骤：

1. 导航到服务器对等体：

打开 Web UI：https://your-server:8087

导航到：SMPP → 服务器对等体

2. 添加新服务器对等体：

点击“添加新服务器对等体”

填写表单：

名称：partner_acme（唯一标识符）

系统 ID：acme_corp

密码：secure_password_123

允许的绑定类型：选择所有（发送者、接收者、双向）

IP 白名单：203.0.113.0/24（多个用逗号分隔）

TPS 限制：50

队列检查频率：1000

点击“保存”

3. 网关准备好连接：

服务器对等体现在处于活动状态，等待合作伙伴连接

无需重启

4. 与合作伙伴共享信息：

�关 IP 地址

端口：2775

系统 ID：acme_corp

密码：secure_password_123

绑定类型：如配置

5. 等待合作伙伴连接：

导航到：SMPP → 实时状态

观察传入连接

验证身份验证成功

检查 IP 是否匹配白名单

选项 B：通过�置文件

优点：基础设施作为代码，版本控制

步骤：

1. 编辑�置文件：

2. 添加服务器绑定和监听�置：

3. 保存并重启服务：

sudo nano /opt/omnimessage-smpp/config/runtime.exs

添加到 server_binds 列表

config :omnimessage_smpp, :server_binds, [

 # 现有服务器绑定...

 # 添加新服务器绑定

 %{

 name: "partner_acme",

 system_id: "acme_corp",

 password: "secure_password_123",

 allowed_bind_types: [:transmitter, :receiver,

:transceiver],

 ip_whitelist: ["203.0.113.0/24"],

 tps_limit: 50,

 queue_check_frequency: 1000

 }

]

确保存在监听配置（仅需一次）

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

4. 与合作伙伴共享信息：

�关 IP 地址

端口：2775

系统 ID：acme_corp

密码：secure_password_123

绑定类型：如配置

5. 等待合作伙伴连接：

导航到：SMPP → 实时状态

观察传入连接

验证身份验证成功

检查 IP 是否匹配白名单

修改现有连接

目的：更新连接参数（TPS 限制、密码、IP 白名单等）

选择以下方法之一：

选项 A：通过 Web UI（推荐）

优点：立即生效，无需重启

步骤：

1. 导航到对等体：

打开 Web UI：https://your-server:8087

对于客户端连接：SMPP → 客户端对等体

对于服务器连接：SMPP → 服务器对等体

2. 编辑对等体：

找到要修改的对等体

sudo systemctl restart omnimessage-smpp

点击“编辑”按钮

更新所需参数：

常见更改：TPS 限制、密码、IP 白名单、主机/端口

点击“保存”

3. 更改立即生效：

连接会自动使用新设置重新连接

无需重启服务

导航到：SMPP → 实时状态以验证

4. 验证更改：

检查连接是否成功建立

监控日志标签以查找错误

如果适用，测试消息流

选项 B：通过�置文件

优点：基础设施作为代码，版本控制

步骤：

1. 编辑�置文件：

2. 修改绑定参数：

在 :binds 或 :server_binds 列表中找到绑定

更新所需参数：

常见更改：TPS 限制、密码、IP 白名单、主机/端口

示例：

sudo nano /opt/omnimessage-smpp/config/runtime.exs

3. 保存并重启服务：

4. 验证更改：

导航到：SMPP → 实时状态

检查连接是否成功建立

监控日志以查找错误

测试消息流

移除连接

目的：退役一个 SMPP 连接

步骤：

1. 通知利益相关者：

通知运营商/合作伙伴

协调停机窗口

2. 通过 Web UI 断开连接：

导航到：SMPP → 实时状态

找到连接

点击“断开连接”

确认操作

3. 移除�置：

%{

 name: "vodafone_uk",

 # ... 其他参数

 tps_limit: 150, # 从 100 更改

 password: "new_password" # 更新密码

}

sudo systemctl restart omnimessage-smpp

导航到：SMPP → 客户端/服务器对等体

找到连接

点击“删除”

确认移除

4. 验证移除：

检查实时状态 - 连接应消失

检查日志以确保干净关闭

管理消息流

检查消息队列

目的：监控待处理消息

步骤：

1. 访问队列：

导航到：队列标签

查看待处理消息列表

2. 检查消息详细信息：

点击消息行

查看：

目标号码

消息正文

目标 SMSC (dest_smsc)

交付尝试

状态

3. 搜索特定消息：

使用搜索过滤器

按目标、内容或 SMSC 过滤

故障排除卡住的消息

症状：消息未被交付

步骤：

1. 检查连接状态：

导航到：SMPP → 实时状态

验证目标连接是否已连接

如果断开，请参见 重新连接

2. 检查消息详细信息：

导航到：队列标签

找到卡住的消息

检查 dest_smsc 字段是否与连接名称匹配

检查 deliver_after 时间戳（重试调度）

3. 检查交付尝试：

高尝试 = 重复失败

检查日志以获取错误消息

可能表示格式无效或运营商拒绝

4. 手动干预（如有必要）：

联系运营商以验证问题

可能需要取消并重新提交消息

与后端团队检查队列问题

连接故障排除

重新连接绑定

症状：连接显示“已断开”（红色）

步骤：

1. 检查网络连接：

2. 检查日志中的错误：

导航到：日志标签

过滤：错误级别

查找身份验证失败、�络超时

ping -c 3 carrier-smpp-server.com

telnet carrier-smpp-server.com 2775

3. 验证凭据：

导航到：SMPP → 客户端/服务器对等体

检查系统 ID 和密码是否正确

如果不确定，请联系运营商

4. 手动重新连接：

导航到：SMPP → 实时状态

找到断开的绑定

点击“重新连接”按钮

等待 10-30 秒

检查状态是否更改为“已连接”

5. 如果���新连接失败：

检查防火墙规则

验证运营商服务器是否正常运行

联系运营商支持

请参见 TROUBLESHOOTING.md

处理身份验证失败

症状：日志中重复的绑定失败

原因：

用户名/密码不正确

IP 未在运营商处列入白名单

账户已暂停/过期

步骤：

1. 验证凭据：

导航到：SMPP → 客户端对等体

仔细检查系统 ID 和密码

与运营商确认

2. 检查 IP 白名单：

确认您的�关 IP 与运营商一致

请求运营商验证 IP 白名单

3. 检查账户状态：

验证账户是否处于活动状态

检查合同是否过期

联系运营商账单部门

4. 更新�置：

如果凭据更改，请在 Web UI 中更新

点击“重新连接”以使用新凭据重试

监控和警报

检查 Prometheus 指标

快速检查：

curl http://localhost:4000/metrics | grep smpp_connection_status

预期输出：

所有值应为 1（已连接）。

响应警报

连接中断警报：

1. 检查 Web UI → SMPP → 实时状态

2. ��试手动重新连接

3. 检查日志中的错误

4. 如果长时间中断，请联系运营商

5. 请参见 TROUBLESHOOTING.md

高失败率警报：

1. 检查日志中的错误模式

2. 查看最近的配置更改

3. 联系运营商以了解拒绝情况

4. 检查消息格式合规性

无流量警报：

1. 检查后端队列是否有消息

2. 验证 dest_smsc 路由是否正确

3. 检查 TPS 限制是否过于严格

4. 查看 queue_check_frequency 设置

smpp_connection_status{bind_name="vodafone_uk",...} 1

smpp_connection_status{bind_name="att_us",...} 1

维护程序

定期维护

每月执行：

1. 查看指标：

分析消息量趋势

检查交付成功率

确定优化机会

2. 更新文档：

记录任何配置更改

更新联系信息

记录运营商维护窗口

3. 凭据审计：

审查所有 SMPP 密码

计划凭据轮换

验证 IP 白名单是否最新

4. 容量规划：

查看高峰消息速率

检查与 TPS 限制的比较

规划增长

服务重启

何时需要：

在配置文件更改后

在系统更新后

在故障排除期间

步骤：

通过 Web UI 验证：

1. 访问仪表板（可能需要 30-60 秒才能上线）

2. 导航到：SMPP → 实时状态

3. 等待所有连接建立（1-2 分钟）

4. 检查日志以获取错误

�置备份

在更改之前备份关键文件：

如有需要，恢复：

检查当前状态

sudo systemctl status omnimessage-smpp

重启服务

sudo systemctl restart omnimessage-smpp

验证重启

sudo systemctl status omnimessage-smpp

检查日志

sudo journalctl -u omnimessage-smpp -n 50

备份配置

sudo cp /opt/omnimessage-smpp/config/runtime.exs \

 /opt/omnimessage-smpp/config/runtime.exs.backup.$(date +%Y%m%d)

备份证书

sudo tar -czf /tmp/smpp-certs-$(date +%Y%m%d).tar.gz \

 /opt/omnimessage-smpp/priv/cert/

紧急程序

完全服务中断

步骤：

1. 检查服务状态：

2. 如果服务停止，启动它：

3. 检查日志以获取崩溃原因：

4. 如果无法启动：

检查配置语法错误

验证 SSL 证书是否存在

检查磁盘空间：df -h

检查内存：free -h

5. 如果无法解决，请联系支持

恢复配置

sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup.YYYYMMDD \

 /opt/omnimessage-smpp/config/runtime.exs

重启服务

sudo systemctl restart omnimessage-smpp

sudo systemctl status omnimessage-smpp

sudo systemctl start omnimessage-smpp

sudo journalctl -u omnimessage-smpp -n 100

运营商请求紧急断开

步骤：

1. 立即断开连接：

导航到：SMPP → 实时状态

找到受影响的连接

点击“断开连接”

2. 记录原因：

记录运营商名称

记录时间和原因

保存通信记录

3. 调查问题：

检查最近的消息模式

查看日志以获取错误

确定根本原因

4. 协调解决方案：

与运营商合作

实施修复

在重新连接之前进行测试

高流量峰值

症状：意外的高消息流量

步骤：

1. 检查 TPS 限制：

导航到：SMPP → 实时状态

验证连接是否未被限制

可能需要临时增加 TPS 限制

2. 监控运营商稳定性：

观察断开连接情况

检查交付成功率

3. 与后端协调：

验证消息源是否合法

可能需要在上游实施速率限制

4. 如有需要，进行扩展：

可能需要额外的�关实例

联系支持以获取扩展建议

最佳实践

每日检查清单

 检查所有 SMPP 连接是否已连接

 查看错误日志以查找任何问题

 监控消息队列是否积压

 检查 Prometheus/Grafana 仪表板

 验证交付成功率 > 98%

每周任务

 查看指标趋势

 检查模式异常

 测试灾难恢复程序

 根据需要更新文档

 查看并确认警报

每月任务

 凭据审计

 容量规划审查

 更新运营商联系人

 查看并优化 TPS 设置

 备份配置文件

相关文档

CONFIGURATION.md - 配置连接和设置

MONITORING.md - 设置 Prometheus 警报

TROUBLESHOOTING.md - 解决常见问题

README.md - 系统概述

故障排除指南

常见问题及解决方案

OmniMessage 连接问题

由于 SMPP �关是无状态的，并且完全依赖于 OmniMessage Core，因此与 OmniMessage 的连接问题是最关键的

问题。

OmniMessage 断开连接的症状

没有外发消息：队列积压，消息未发送

没有入站消息：合作伙伴无法提交消息

超时：API 调用超时或挂起

日志显示： "Connection refused", "Timeout", "HTTP 503", "Connection reset"

诊断

1. 检查 OmniMessage 可用性：

2. 检查�置的 API URL：

测试连接

curl -k -v https://omnimessage-

core.example.com:8443/api/system/health

从网关主机专门测试

ssh gateway-server 'curl -k https://omnimessage-

core.example.com:8443/api/system/health'

3. 检查网关日志中的 API 错误：

解决方案

如果 OmniMessage 停止工作：

1. 联系 OmniMessage 运营团队

2. 待处理的消息将积累在队列中

3. �关将继续重试（请参见 SMPP_POLL_INTERVAL）

4. 检查 OmniMessage 状态页面或监控

如果 OmniMessage 正常但网关无法连接：

1. 检查防火墙规则允许外发 HTTPS

2. 检查 DNS 解析： nslookup omnimessage-core.example.com

3. 检查�络路由： traceroute omnimessage-core.example.com

4. 验证 SSL 证书（如果使用 HTTPS）

如果 API URL �置错误：

1. 编辑 /opt/omnimessage-smpp/config/runtime.exs

2. 验证 api_base_url 是否正确（生产环境必须为 HTTPS）

3. 重启�关： sudo systemctl restart omnimessage-smpp

查看配置

grep -A1 'api_base_url' /opt/omnimessage-smpp/config/runtime.exs

检查网络连接

ping omnimessage-core.example.com

nc -zv omnimessage-core.example.com 8443

查找与 API 相关的错误

sudo journalctl -u omnimessage-smpp -f | grep -i

'api\|omnimessage\|connect'

搜索日志中的最近错误

sudo journalctl -u omnimessage-smpp -n 200 | grep -i error

连接问题

连接无法建立

症状：

状态显示 "Disconnected"（红色）

日志中没有成功绑定

重复连接尝试

可能的原因和解决方案：

1. 网络连接问题

检查：

解决方案：

如果 DNS 失败：在配置中使用 IP 地址而不是主机名

如果 ping 失败：检查防火墙规则，联系运营商

如果端口失败：验证正确的端口号，检查防火墙

2. 凭证错误

检查：

测试 DNS 解析

nslookup smpp.carrier.com

测试连接

ping -c 3 smpp.carrier.com

测试端口

telnet smpp.carrier.com 2775

或

nc -zv smpp.carrier.com 2775

日志显示 "bind failed" 或 "authentication error"

Web UI：SMPP → 客户端对等体 → 验证 system_id 和密码

解决方案：

与运营商确认凭证

检查拼写错误（区分大小写）

更新配置并重新连接

3. IP 未列入白名单

检查：

连接立即被拒绝

运营商日志显示未经授权的 IP

解决方案：

确认您的�关公共 IP：

请求运营商将 IP 添加到白名单

验证 IP 是否已更改（动态 IP）

4. 防火墙阻止

检查：

解决方案：

curl ifconfig.me

检查端口是否开放

sudo iptables -L -n | grep 2775

检查 UFW（Ubuntu/Debian）

sudo ufw status | grep 2775

检查 firewalld（RHEL/CentOS）

sudo firewall-cmd --list-ports | grep 2775

连接持续掉线

症状：

连接已建���但频繁断开

smpp_disconnection_total 指标增加

日志显示重复重连

可能的原因和解决方案：

1. 网络不稳定

检查：

解决方案：

联系运营商关于�络问题

如果在您这边，检查 ISP

考虑备用连接/路由

2. 查询链路超时

检查：

Ubuntu/Debian

sudo ufw allow out 2775/tcp

RHEL/CentOS

sudo firewall-cmd --permanent --add-port=2775/tcp

sudo firewall-cmd --reload

监控丢包

ping -c 100 smpp.carrier.com | grep loss

检查网络错误

netstat -s | grep -i error

日志显示 "enquire_link timeout"

连接在不活动期间掉线

解决方案：

默认超时为 30 秒

验证�络允许保持活动数据包

检查是否有激进的防火墙超时空闲连接

3. 超过 TPS 限制

检查：

断开连接时消息速率高

运营商限制消息

解决方案：

查看 tps_limit 设置

将 TPS 降低到运营商最大值的 70-80%

在多个绑定之间分散流量

4. 运营商服务器问题

检查：

检查运营商服务状态

联系运营商支持

解决方案：

等待运营商解决

如果可用，配置备用运营商

消息投递问题

消息未发送

症状：

消息卡在队列中

smpp_messages_sent_total 不增加

连接显示已连接

可能的原因和解决方案：

1. 错误的 dest_smsc 路���

检查：

Web UI → 队列 → 检查消息 dest_smsc 字段

与 SMPP → 实时状态中的连接名称进行比较

解决方案：

消息根据 dest_smsc 字段路由

验证后端是否设置正确的 dest_smsc

如果 dest_smsc 为 NULL，检查默认路由

2. 消息计划在未来发送

检查：

Web UI → 队列 → 检查 deliver_after 字段

带有未来时间戳的消息尚未发送

说明：

重试系统为失败的消息设置 deliver_after

消息将在该时间之前等待重试

解决方案：

等待计划时间

如果紧急，联系后端团队重置时间戳

3. TPS 限制过低

检查：

大量队列积压

消息发送非常缓慢

解决方案：

增加配置中的 tps_limit

验证运营商是否能处理更高的速率

查看 CONFIGURATION.md

4. 队列工作者未运行

检查：

服务状态

日志中的错误

解决方案：

高投递失败率

症状：

smpp_delivery_failures_total 增加

日志显示 "submit_sm_resp" 带有错误状态

重启服务

sudo systemctl restart omnimessage-smpp

检查日志

sudo journalctl -u omnimessage-smpp -f

消息未到达收件人

可能的原因和解决方案：

1. 无效的目的地号码

检查：

日志中的特定错误代码

审查消息目的地格式

常见错误代码：

0x0000000B - 无效目的地

0x00000001 - 无效消息长度

0x00000003 - 无效命令

解决方案：

验证号码格式（推荐使用 E.164）

检查号码是否包含国家代码

验证运营商要求

2. 无效的消息内容

检查：

消息长度

特殊字符

编码

解决方案：

GSM-7：最大 160 个字符

UCS-2：最大 70 个字符

删除不支持的字符

检查编码设置

3. 运营商拒绝

检查：

运营商的特定错误代码

被拒绝消息的模式

解决方案：

联系运营商以获取拒绝原因

可能需要内容过滤

检查是否存在垃圾邮件/滥用模式

4. 消息过期

检查：

消息 expires 时间戳

投递尝试的时间

解决方案：

增加消息有效期

减少时间敏感消息的重试延迟

Web UI 问题

无法访问 Web 仪表板

症状：

浏览器无法连接到 https://your-server:8087

超时或连接被拒绝

可能的原因和解决方案：

1. 服务未运行

检查：

https://your-server:8087/

解决方案���

2. 防火墙阻止端口 8087

检查：

解决方案：

3. SSL 证书问题

检查：

浏览器显示安全警告

证书过期或无效

解决方案：

接受安全例外（如果是自签名）

sudo systemctl status omnimessage-smpp

如果停止，启动它

sudo systemctl start omnimessage-smpp

检查日志中的错误

sudo journalctl -u omnimessage-smpp -n 50

sudo ufw status | grep 8087

或

sudo firewall-cmd --list-ports | grep 8087

Ubuntu/Debian

sudo ufw allow 8087/tcp

RHEL/CentOS

sudo firewall-cmd --permanent --add-port=8087/tcp

sudo firewall-cmd --reload

安装有效的 SSL 证书

检查证书文件是否存在：

4. 错误的 URL

检查：

验证使用 HTTPS（而不是 HTTP）

验证正确的服务器 IP/主机名

验证端口 8087

Web UI 显示错误

症状：

页面加载但显示错误

功能无法正常工作

数据未显示

解决方案：

1. 清除浏览器缓存：

Ctrl+F5（强制刷新）

清除浏览器缓存和 cookies

2. 检查浏览器控制台：

按 F12

检查控制台选项卡中的 JavaScript 错误

如果发现错误，报告给支持团队

3. 尝试不同的浏览��：

在 Chrome、Firefox、Edge 中测试

隔离浏览器特定问题

ls -l /opt/omnimessage-smpp/priv/cert/

4. 检查服务日志：

指标问题

Prometheus 指标不可用

症状：

curl http://localhost:4000/metrics 失败

Prometheus 无法抓取指标

空响应或错误响应

可能的原因和解决方案：

1. 服务未运行

检查：

解决方案：

2. 端口不可访问

检查：

sudo journalctl -u omnimessage-smpp -f

sudo systemctl status omnimessage-smpp

sudo systemctl start omnimessage-smpp

解决方案：

如果本地有效但远程无效：检查防火墙

在防火墙中为 Prometheus 服务器打开端口 4000

3. 错误的端点

验证：

端点为 /metrics（而不是 /prometheus 或 /stats）

端口为 4000（而不是 8087）

指标显示意外值

症状：

计数器重置为零

指标显示错误值

某些绑定缺少指标

解决方案：

1. 服务重启重置计数器：

服务重启时计数器重置

这是正常行为

在 Prometheus 查询中使用 increase() 或 rate()

2. 新绑定未显示：

指标仅在第一次事件后出现

本地测试

curl http://localhost:4000/metrics

远程测试

curl http://your-server-ip:4000/metrics

发送测试消息以填充指标

检查绑定是否启用并已连接

3. 过期指标：

旧绑定可能仍在指标中显示

重启服务以清除过期条目

或使用 Prometheus 重标记进行过滤

性能问题

CPU 使用率高

检查：

可能的原因：

消息量非常大

连接过多

配置问题

解决方案：

检查消息速率是否在容量范围内

审查 TPS 限制

如果持续高 CPU，联系支持

内存使用率高

检查：

top -p $(pgrep -f omnimessage-smpp)

ps aux | grep omnimessage-smpp

可能的原因：

内存中队列消息过大

内存泄漏（罕见）

解决方案：

重启服务以清除内存

检查消息队列大小

如果内存持续增长，联系支持

消息处理缓慢

症状：

消息发送时间长

队列积压

消息速率低

检查：

1. TPS 限制 - 可能过于严格

2. queue_check_frequency - 可能过高

3. 后端 API 响应时间 - 可能较慢

4. 到运营商的�络延迟

解决方案：

如果运营商允许，增加 TPS

减少 queue_check_frequency 以加快轮询

优化后端 API

检查�络延迟

�置问题

�置文件语法错误

症状：

配置更改后服务无法启动

日志显示 "syntax error" 或 "parse error"

检查：

常见错误：

map 条目之间缺少逗号

引号不匹配（" vs '）

括号或大括号不匹配

顶部缺少 import Config

解决方案：

从备份恢复

仔细检查语法

使用具有 Elixir 语法高亮的文本编辑器

更改未生效

症状：

修改配置但行为没有变化

旧设置仍然有效

解决方案：

验证 Elixir 语法

/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!

('config/runtime.exs')"

紧急恢复

完全系统故障

步骤：

1. 检查基本系统健康：

2. 检查服务状态：

3. 查看最近日志：

配置更改需要重启

sudo systemctl restart omnimessage-smpp

验证重启是否成功

sudo systemctl status omnimessage-smpp

检查日志中的错误

sudo journalctl -u omnimessage-smpp -n 50

磁盘空间

df -h

内存

free -h

CPU 负载

uptime

sudo systemctl status omnimessage-smpp

sudo journalctl -u omnimessage-smpp -n 200

4. 尝试重启服务：

5. 如果重启失败：

检查配置语法

验证 SSL 证书是否存在

检查文件权限

查看日志以获取具体错误

6. 从备份恢复（如有需要）：

7. 如果未解决，联系支持

获取帮助

收集信息

在联系支持之前，请收集：

1. 版本： cat /opt/omnimessage-smpp/VERSION

2. 最近日志：

3. �置（清除密码）：

sudo systemctl restart omnimessage-smpp

恢复配置

sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup \

 /opt/omnimessage-smpp/config/runtime.exs

重启

sudo systemctl restart omnimessage-smpp

sudo journalctl -u omnimessage-smpp -n 200 > /tmp/smpp-logs.txt

4. 指标输出：

5. 系统信息：

联系支持

电子邮件： support@omnitouch.com

电话： +61 XXXX XXXX（24/7）

包括： 上述所有信息

相关文档

OPERATIONS.md - 正常操作程序

CONFIGURATION.md - 配置参考

MONITORING.md - 监控和指标

README.md - 系统概述

sudo cp /opt/omnimessage-smpp/config/runtime.exs

/tmp/config.exs

编辑 /tmp/config.exs 以在发送之前删除密码

curl http://localhost:4000/metrics > /tmp/metrics.txt

uname -a > /tmp/system-info.txt

free -h >> /tmp/system-info.txt

df -h >> /tmp/system-info.txt

mailto:support@omnitouch.com

