
�准测试

�目录包含使用 Benchee 的 SMS-C 系统性能基准测试。

可用�准测试

1. 原始 SMS �准测试 (raw_sms_bench.exs)

基准测试 submit_message_raw API 端点，使用真实的 SMS PDU。

特点：

使用真实的 SMS PDU（将您的 PDU 添加到文件中的 @sample_pdus 列表中）

通过在每次迭代前清除指纹来禁用重复检测

输出控制台和 HTML 报告

用法：

输出： benchmarks/output/raw_sms_benchmark.html

2. 消息 API �准测试 (message_api_bench.exs)

基准测试各种消息 API 操作，包括插入、检索和路由。

特点：

测试 insert_message（简单和带路由）

测试 get_messages_for_smsc

测试 list_message_queues

使用测试数据预填充数据库，以实现真实场景

用法：

mix run benchmarks/raw_sms_bench.exs

输出： benchmarks/output/message_api_benchmark.html

配置

所有基准测试使用 Benchee，默认设置如下���

热身：2 秒

时间：10 秒

内存时间：2 秒

启用扩展统计

自动生成 HTML 报告

输出

HTML 基准测试报告生成在 benchmarks/output/ 中，包括：

详细的性能指标

比较图表

内存使用统计

统计分析

mix run benchmarks/message_api_bench.exs

SMS-C 操作文档

← 返回主 README

欢迎来到 SMS-C 操作文档。本综合指南涵盖了配置、操作、监控和故障排除 SMS-C 系统的所有方面。

文档概述

入门

配置参考 - 完整的配置选项和示例

日常操作

操作指南 - 日常任务、监控和维护

SMS 路由指南 - 路由管理和配置

API 参考 - 完整的 API 文档及示例

性能与监控

性能调优 - 针对不同工作负载的优化

指标指南 - Prometheus 指标和监控

故障排除

故障排除指南 - 常见问题及解决方案

合规与监管

ANSSI R226 拦截合规 - 法国合法拦截技术规范

多协议前端集成 (IMS/SIP, SMPP, SS7/MAP)

ETSI X1/X2/X3 合法拦截接口

Mnesia + SQL 两层存储架构

合法拦截查询的 CDR 模式

加密和密码分析能力

快速链接

常见任务

提交消息

创建路由

检查消息状态

监控系统健康

处理投递失败

配置示例

消息存储与保留

CDR 导出设置

隐私控制

高容量配置

地理路由

负载均衡

ENUM/NAPTR 设置

OCS 计费

号码翻译

监控与警报

关键指标

推荐警报

仪表板模板

系统架构概述

SMS-C 是一个分布式、高性能的消息路由平台，具有以下关键组件：

核心组件

消息存储 - 基于 Mnesia 的快速存储，具有可配置的保留和 CDR 导出

路由��擎 - 基于 Mnesia 的路由规则，具有前缀匹配和负载均衡

号码翻译 - 基于正则表达式的号码规范化，具有优先级排序

计费集成 - 基于路由的 OCS 在线计费

ENUM 查找 - 基于 DNS 的号码路由，具有缓存

事件日志 - 消息生命周期跟踪

CDR 导出 - 自动导出到 SQL 数据库以进行长期计费/分析

外部接口

REST API - 消息提交和管理 (HTTPS)

Web UI - 路由管理、消息浏览、监控

Prometheus - 用于监控的指标暴露

OCS - 计费/账单集成

DNS - 用于路由的 ENUM/NAPTR 查找

分布与高可用性

多节点集群 - 分布式消息处理

Mnesia 复制 - 节点间路由同步

自动故障转移 - 节点故障处理

负载均衡 - 加权路由分配

相关文档

性能�准 - 性能测试和结果

CDR 模式参考 - 完整的 CDR 数据库模式及 SQL 示例

系统要求

最低要求

CPU: 2 核心

RAM: 4 GB

磁盘: 50 GB (随消息保留增长)

操作系统: Linux (推荐)，macOS (开发)

Erlang/OTP: 26.x 或更高

Elixir: 1.15.x 或更高

SQL 数据库: MySQL 8.0+��MariaDB 10.5+ 或 PostgreSQL 13+ (用于 CDR 存储)

推荐生产环境

CPU: 8+ 核心

RAM: 16+ GB

磁盘: 500+ GB SSD

网络: 1 Gbps+

SQL 数据库: 具有复制的专用服务器 (用于 CDR 存储)

网络端口

80/443 - Web UI (HTTP/HTTPS)

8443 - API (HTTPS)

4369 - Erlang 端口映射 (集群)

9100-9200 - Erlang 分布 (集群)

9568 - Prometheus 指标

支持与资源

日志

应用程序日志: /var/log/sms_c/ (生产) 或控制台 (开发)

Web UI 日志: 实时日志查看器位于 /logs

事件日志: 通过 API 进行逐消息事件跟踪

诊断

健康检查: GET /api/status

指标: GET http://localhost:9568/metrics (Prometheus 格式)

前端状态: Web UI 位于 /frontend_status

消息队列: Web UI 位于 /message_queue

寻求帮助

1. 查看 故障排除指南

2. 检查应用程序日志

3. 检查 Prometheus 指标以发现异常

4. 使用路由模拟器测试路由逻辑

5. 检查逐消息事件日志

版本信息

本文件的最新信息为：

最后更新: 2025-10-30

SMS-C 版本: 最新开发版本

支持的 Elixir: 1.15.x - 1.17.x

支持的 Erlang/OTP: 26.x - 27.x

文档约定

在本文件中：

配置示例 显示典型值；请根据您的环境进行调整

API 示例 使用 curl 命令行格式

IP 地址和域名 仅为示例；请替换为您的实际值

指标名称 遵循 Prometheus 命名约定

所有时间戳 均为 UTC，除非另有说明

快速开始

1. 配置: 通过 config/runtime.exs 进行配置 - 参见 配置参考

2. 初始路由: 通过 Web UI 或配置文件创建路由规则 - 参见 SMS 路由指南

3. 提交测试消息: 使用 API 或 Web UI - 参见 API 参考

4. 监控: 设置 Prometheus 抓取 - 参见 指标指南

文档反馈

本文件与 SMS-C 代码库一起维护。如需更正或改进，请更新 docs/ 目录中的 markdown 文件。

ANSSI R226 拦截合规文档

文档目的： 本文档提供了 OmniMessage 短信服务中心 (SMSc) 根据法国刑法第 R226-3 和 R226-7 条款所需的

ANSSI R226 授权的技术规范。

分类： 监管合规文档

目标机构： 法国国家信息系统安全局 (ANSSI)

法规： R226 - 保护通信隐私和合法拦截

1. 详细技术规范

1.1 商业技术数据表

产品名称： OmniMessage SMSc (短信服务中心)

产品类型： 电信消息中心

主要功能： 短信消息路由、存储和交付

网络协议： REST API (HTTPS)、短信协议 (SMPP、IMS、SS7/MAP 通过外部前端)

部署模型： 本地服务器应用

技术栈： Elixir/Erlang、Phoenix 框架、Mnesia、MySQL/PostgreSQL

核心能力

消息处理：

集中式短信消息队列，支持 REST API

协议无关设计，支持 SMPP、IMS、SS7/MAP 前端

基于前缀的动态路由引擎

指数退避的重试逻辑

消息过期和死信队列处理

通话详细记录 (CDR) 生成和归档

性能：约 1,750 条消息/秒���入速率，日处理能力 1.5 亿条消息

消息存储：

活动消息队列： Mnesia 内存数据库，支持磁盘持久化

主要存储：RAM 以实现超快访问（亚毫秒延迟）

磁盘备份：disc_copies 模式写入磁盘以进行崩溃恢复

自动恢复：消息在系统重启后仍然存在

保留：可配置（默认 24 小时），然后自动清理

长期 CDR 归档： MySQL/PostgreSQL 数据库（与消息队列分开）

消息交付、过期、失败或拒绝时写入 CDR

SQL 数据库仅用于 CDR 导出/归档，而不用于活动消息操作

对消息路由没有性能影响（异步写入）

双层架构的好处：

活动队列：快速（1,750 条消息/秒），没有 SQL 瓶颈

CDR 归档：长期保留（数月/数年），用于计费和合法拦截

清晰分离：消息操作从不接触 SQL

支持集群以实现高可用性（Mnesia 在节点之间复制）

网络接口：

REST API： HTTPS（端口 8443）用于外部前端通信

控制面板： HTTPS（端口 8086）用于基于 Web 的管理

前端协议： SMPP、IMS、SS7/MAP（通过外部网关应用）

数据库： MySQL/PostgreSQL 用于 CDR 存储

路由和处理：

动态短信路由，支持运行时配置更新

基于���缀的匹配（呼叫/被叫号码）

源 SMSC 和类型过滤

基于优先级和权重的负载均衡

号码转换和标准化

ENUM (E.164 号码映射) DNS 查找支持

自动回复和消息丢弃能力

每条路由的收费控制（CGRates 集成）

📖 完整架构和功能记录在 README.md

1.2 拦截能力

1.2.1 消息获取

短信消息捕获：

OmniMessage SMSc 处理所有订阅者与外部网络之间的短信

完全访问消息元数据和内容，包括：

源 MSISDN（手机号码）

目标 MSISDN（手机号码）

源 IMSI（国际移动用户身份）

目标 IMSI

消息正文（文本内容）

原始 PDU（协议数据单元）数据

TP-DCS（数据编码方案）信息

消息编码（GSM7、UCS-2、8 位、Latin-1）

多部分消息指示符和重组数据

用户数据头（UDH）信息

消息元数据获取：

完整的通话详细记录（CDR）存储在数据库中，包括：

消息 ID（唯一标识符）

呼叫号码（源 MSISDN）

被叫号码（目标 MSISDN）

提交时间戳（消息进入系统的时间）

交付时间戳（消息交付的时间）

过期时间戳（如果无法交付，消息过期的时间）

状态（已交付、已过期、失败、��拒绝）

交付尝试次数

消息部分（用于连接/多部分短信）

源 SMSC 标识符

目标 SMSC 标识符

源节点（Erlang 集群节点名称）

目标节点（用于分布式部署）

死信标志（重试耗尽指示符）

📖 完整 CDR 模式记录在 CDR_SCHEMA.md

消息队列访问：

实时消息队列监控

REST API 端点用于消息检索

数据库查询用于历史消息搜索

过滤能力：

电话号码（源/目标）

SMSC 网关

时间范围

消息状态

交付尝试

📖 完整 API 文档在 API_REFERENCE.md

1.2.2 数据处理能力

消息存储架构（双层系统）：

SMSc 使用复杂的双层存储架构，将操作消息处理与长期归档分开：

层 1：活动消息队列（Mnesia）

目的： 实时消息路由和交付操作

技术： Erlang Mnesia 分布式数据库

存储模式： 内存与 disc_copies 备份

主要存储在 RAM 中以实现最大速度

自动磁盘同步以进行崩溃恢复

消息在系统重启后持久存在

性能： 亚毫秒读/写操作

保留： 短期（默认 24 小时），可配置

清理： 自动归档到 CDR 数据库，然后从 Mnesia 中删除

操��： 所有消息队列操作（插入、更新、交付状态、路由）

关键特性： 在消息路由/交付期间绝不会查询 SQL 数据库

层 2：CDR 归档（MySQL/PostgreSQL）

目的： 用于计费、分析和合法拦截的长期存储

技术： 传统 SQL 数据库（MySQL 或 PostgreSQL）

写入触发器： 仅在消息达到最终状态时写入 CDR：

消息成功交付

消息过期（超过有效期）

消息永久失败

消息被路由规则拒绝

写入模式： 异步批量写入（对消息路由性能没有影响）

保留： 长期（数月到数年），可根据监管要求配置

操作： 历史查询、报告、合规、合法拦截

访问： SQL 查询、REST API（未来）、CSV/JSON 导出

关键架构优势：

1. 性能： 活动路由操作从不接触 SQL（没有数据库瓶颈）

2. 可扩展性： Mnesia 每秒处理 1,750 条以上消息，无 SQL 开销

3. 可靠性： disc_copies 模式确保崩溃时没有消息丢失

4. 合规性： CDR 数据库提供永久审计跟踪

5. 关注点分离： 操作数据与归档数据清晰分开

消息生命周期：

数据保留和检索：

可配置的消息正文保留或删除以保护隐私

二进制数据保留（原始 PDU 存储在 Mnesia 和 CDR 中）

完整文本搜索能力（如果在 CDR 数据库上启用）

索引 CDR 字段以快速合法拦截查询

1. �息提交 → 存储在 Mnesia（RAM + 磁盘备份）

2. �息路由 → Mnesia 查询（超快）

3. �息交��/过期 → CDR 写入 SQL（异步）

4. 24 小时后 → �息从 Mnesia 中删除（清理工作）

5. CDR 保留在 SQL 中 → 可用于合法拦截查询（数年）

前端跟踪：

实时跟踪外部 SMSC 前端（SMPP、IMS、MAP 网关）

前端注册与心跳监控

健康状态跟踪（活动/过期）

正常运行/停机历史

IP 地址和主机名跟踪

前端特定配置日志记录

1.2.3 分析能力

实时监控：

Web UI 仪表板显示：

活动消息队列

消息提交和交付

路由决策和网关选择

前端网关状态

系统资源利用率

Prometheus 指标集成用于操作监控

性能指标（吞吐量、延迟、成功率）

📖 完整监控指南在 OPERATIONS_GUIDE.md 📖 指标文档在 METRICS.md

历史分析：

CDR 数据库可通过以下方式查询：

时间范围

呼叫/被叫方号码

消息状态

SMSC 网关

交付尝试

消息内容（如果启用，则进行全文搜索）

统计分析能力：

按小时/天/月的消息量

按路由的成功/失败率

平均交付时间

多部分消息分析

失败交付模式

订阅者跟踪：

按电话号码（MSISDN）的消息历史

基于 IMSI 的跟踪（当从 IMS/MAP 前端可用时）

通话模式分析

通信方关联

时间分析（消息频率、时间模式）

网络分析：

路由性能指标

网关可用性和健康状况

消息流可视化

集群节点分布（多节点部署）

交付尝试分析

重试模式分析

号码智能：

E.164 号码标准化

从号码前缀识别国家/地区

号码转换和重写规则

ENUM DNS 查找以获取路由智能

基于前缀的路由决策

📖 号码转换指南在 number_translation_guide.md 📖 路由指南在 sms_routing_guide.md

1.3 反制能力

1.3.1 隐私保护机制

通信机密性：

HTTPS/TLS 用于 REST API 通信

基于证书的身份验证

数据库连接加密（支持 TLS）

可配置的消息正文交付后删除

访问控制：

Web UI 访问控制

API 身份验证机制

数据库访问控制

前端注册身份验证

审计日志：

完整的系统事件日志

消息���交/交付日志

配置更改跟踪

管理操作日志

结构化日志记录，具有可配置级别

1.3.2 数据保护特性

消息隐私：

可配置的消息正文交付后删除

消息正文可从 UI 显示中排除（可选）

消息正文可从导出中排除（可选）

CDR 消息正文字段可以设置为 NULL 以保护隐私

数据库安全：

MySQL 表加密支持（ENCRYPTION='Y'）

PostgreSQL 透明数据加密支持

数据库访问角色分离

分析的只读用户帐户

限制对消息内容的访问

系统加固：

最小暴露的网络端口

TLS 证书管理

安全配置存储

基于环境的配置分离

使用 Erlang 分布式协议的集群安全

1.4 存储架构：Mnesia + SQL 双层设计

概述

OmniMessage SMSc 采用独特的双层存储架构，专门设计用于将高性能操作消息处理与长期合规和归档存储分开。

层 1：Mnesia 内存消息队列

什么是 Mnesia？

内置于 Erlang/OTP 运行时的分布式数据库

混合存储：主要在内存中，自动磁盘备份

符合 ACID 的事务

在多个节点之间的集群复制

存储模式：disc_copies

内存主存储： 所有活动消息存储在 RAM 中

闪电般快速的读/写操作（亚毫秒）

��正常消息路由操作期间没有磁盘 I/O

实现 1,750 条以上消息/秒的吞吐量

磁盘备份（自动）： Mnesia 将 RAM 同步到磁盘

写入在后台异步进行

每次事务提交时更新磁盘副本

崩溃恢复：系统重启时所有消息完好无损

位置：应用数据中的 Mnesia.*/ 目录

Mnesia 中的消息生命周期：

1. 消息通过 REST API 到达 → 插入到 Mnesia RAM + 磁盘备份

2. 路由引擎查询 Mnesia → 即时响应（内存访问）

3. 外部网关轮询消息 → Mnesia 查询（内存访问）

4. 网关更新交付状态 → Mnesia 更新（内存 + 磁盘）

5. 交付/过期后 → 消息标记为清理

6. 清理工作（默认 24 小时） → 消息从 Mnesia 中删除

关键性能特性：

在活动消息路由/交付期间绝不会进行 SQL 数据库查询

SQL 完全绕过操作消息处理

这消除了传统 SMS-C 瓶颈（数据库 I/O）

层 2：SQL 数据库用于 CDR 导出/归档

什么是 CDR（通话详细记录）？

消息元数据和内容的永久审计记录

写入 MySQL 或 PostgreSQL 数据库

用于计费、分析、合规和合法拦截

何时写入 CDR： CDR 记录仅在消息达到最终状态时创建：

✅ 消息成功交付

✅ 消息过期（超过有效期��交付）

✅ 消息永久失败（无效号码、路由错误）

✅ 消息被拒绝（路由规则、验证失败）

如何写入 CDR：

异步批量写入： CDR 在后台工作进程中写入

无阻塞： 消息路由从不等待 SQL 写入

批量插入： 多个 CDR 分组（默认 100）一起写入

刷新间隔： 默认 100ms（可配置）

错误处理： 失败的 CDR 写入记录，消息处理继续

SQL 数据库的目的：

❌ 不用于：活动消息队列操作

❌ 不用于：消息路由决策

❌ 不用于：实时消息交付

✅ 仅用于：长期 CDR 归档和历史查询

✅ 仅用于：合法拦截查询（数月/年的���史）

✅ 仅用于：计费和分析报告

架构图

在 config/runtime.exs 中的配置

config :sms_c,

 batch_insert_batch_size: 100, # CDR 写入的批量大小

 batch_insert_flush_interval_ms: 100 # 刷新间隔

图例：

实线：同步操作（实时）

虚线：异步操作（后台）

绿色：高性能层（内存）

蓝色：归档层（持久 SQL）

合法拦截的影响

最近消息（< 24 小时）：

通过 Mnesia 访问（REST API 查询）

超快检索

可用完整消息内容

可进行实时监控

历史消息（> 24 小时）：

通过 SQL 数据库访问（CDR 表）

标准 SQL 查询性能

始终可用完整消息元数据

消息正文可用（���非启用隐私模式）

合规性好处：

1. 无数据丢失： disc_copies 模式确保消息在崩溃时存活

2. 永久审计跟踪： CDR 在 SQL 数据库中保留多年

3. 性能： 合法拦截查询不会影响消息路由

4. 灵活性： 最近消息（Mnesia）+ 历史消息（SQL）均可访问

1.5 多协议前端集成架构

OmniMessage SMSc 采用协议无关的核心设计，通过统一的 REST API 与外部协议特定网关（前端）接口。该架构允许合法拦

截捕获消息，无论使用何种电信协议发送或接收。

架构概述

合法拦截

OmniMessage SMSc 核心

外部协议前端（网关）

电信网络

HTTPS POST/GET HTTPS POST/GET HTTPS POST/GET

异步 CDR 写入

实时

历史查询

IMS/VoLTE 网络

SIP/Diameter

SMPP 提供商

短信聚合器

SS7/SIGTRAN 网络

MAP 协议

电路交换

移动网络

IMS 网关

SIP → REST

SMPP 网关

SMPP → REST

MAP 网关

SS7/MAP → REST

REST API

端口 8443 HTTPS

路由引擎

Mnesia 队列

活动消息

SQL CDR 数据库

历史归档

LI 中介功能

X1/X2/X3 接口

前端协议集成细节

1. IMS/SIP 前端集成

IMS 网络使用 SIP 协议进行 SMS-over-IP 消息传递。IMS 网关在 SIP 和 SMSc REST API 之间进行转换。

IMS 特定拦截数据：

源/目标 IMSI（来自 IMS 注册）

P-Asserted-Identity SIP 头

SIP Call-ID 以便关联

IMS 网络位置（P-Access-Network-Info）

IMS HSS 中的订阅者配置文件

2. SMPP 前端集成

SMPP 是短信聚合器和服务提供商的行业标准协议。SMPP 网关将基于 PDU 的 SMPP 消息转换为 REST API 调用。

Mnesia 队列SMSc REST API
SMPP 网关

(SMPP 前端)

外部 SMPP

客户端 (ESME)

Mnesia 队列SMSc REST API
SMPP 网关

(SMPP 前端)

外部 SMPP

客户端 (ESME)

解码 SMPP PDU

提取所有 TP-DCS 字段

提取 UDH（如果存在）

[拦截点]

完整的 SMPP PDU 被保留

loop [轮询交付]

BIND_TRANSMITTER

system_id: "customer123"

BIND_TRANSMITTER_RESP

SUBMIT_SM

source_addr: "447700900123"

dest_addr: "447700900456"

short_message: "Test SMS"

data_coding: 0 (GSM7)

POST /api/messages

{

"source_msisdn": "447700900123",

"destination_msisdn": "447700900456",

"message_body": "Test SMS",

"source_smsc": "smpp.customer123",

"tp_dcs_character_set": "gsm7",

"tp_dcs_coding_group": "general_data_coding",

"raw_pdu": "base64_encoded_pdu"

}

插入消息

消息 ID: 12346

201 Created

{id: 12346}

SUBMIT_SM_RESP

message_id: "12346"

GET /api/messages/get_by_smsc?smsc=smpp.provider-01

要交付的消息

DELIVER_SM

DELIVER_SM_RESP

PATCH /api/messages/{id}

{status: "delivered"}

SMPP 特定拦截数据：

完整的 SMPP PDU（保留二进制格式）

数据编码方案（DCS）详细信息

用户数据头（UDH）用于��接消息

ESME system_id（客户识别）

TON/NPI 编号计划信息

注册交付标志

3. SS7/MAP 前端集成

传统电路交换网络使用 SS7 MAP 协议进行短信。MAP 网关在 SS7 信令和 REST API 之间进行转换。

Mnesia 队列SMSc REST API
MAP 网关

(SS7 前端)

MSC/VLR

(移动网络)

Mnesia 队列SMSc REST API
MAP 网关

(SS7 前端)

MSC/VLR

(移动网络)

解码 MAP 参数

提取 GT/IMSI

解码 TP-DU

[拦截点]

SS7 GT + IMSI 被捕获

loop [轮询交付]

MAP MO-ForwardSM

MSISDN: +689871234

Destination: +689879999

TPDU: binary_data

IMSI: 547050123456789

POST /api/messages

{

"source_msisdn": "+689871234",

"destination_msisdn": "+689879999",

"source_imsi": "547050123456789",

"message_body": "Decoded text",

"source_smsc": "map.msc-01",

"raw_pdu": "hex_encoded_tpdu",

"tp_dcs_character_set": "gsm7"

}

插入消息

消息 ID: 12347

201 Created

MAP MO-ForwardSM 响应

成功

GET /api/messages/get_by_smsc?smsc=map.smsc-out

要交付的消息

MAP MT-ForwardSM

IMSI/MSISDN

TPDU

MAP MT-ForwardSM 响应

PATCH /api/messages/{id}

{status: "delivered"}

SS7/MAP 特定拦截数据：

MAP 消息中的 IMSI

全局标题 (GT) 地址

MSC/VLR 地址（网络元素识别）

SCCP 呼叫/被叫方地址

MAP 操作码

TP-用户数据的二进制格式

所有协议的统一拦截

合法拦截的关键好处： 无论使用何种协议（IMS/SIP、SMPP 或 SS7/MAP），所有消息都在 SMSc 核心中汇聚，形成标准化的

数据结构，使得：

1. 协议无关监控： 单一拦截点捕获所有消息类型

2. 统一 CDR 格式： 所有协议写入相同的 CDR 模式

3. 跨协议关联： 跟踪跨协议边界的消息

4. 完整元数据保留： 协议特定字段在 CDR 中保留

数据流摘要：

CDR 中的协议识别：

source_smsc 字段指示前端协议（例如，“ims.gateway-

01”、“smpp.customer123”、“map.msc-01”）

允许按协议类型进行过滤和分析

合法拦截查询可以针对特定协议或所有协议

1.6 合法拦截的技术架构

合法拦截集成点

双层存储架构为合法拦截提供多个访问点，优化了实时监控（Mnesia）和历史分析（SQL）。

1. 最近消息的 REST API 访问（Mnesia）：

访问 Mnesia 队列中的活动消息（通常为最近 24 小时）：

REST API

OmniMessage SMSc

Mnesia 队列

执法

监控系统

实时消息检索 活动队列监控 最近消息馈送

实时拦截的 API 端点：

GET /api/messages - 列出活动消息并进行过滤

GET /api/messages/{id} - 获取特定消息详细信息（来自 Mnesia）

GET /api/messages/get_by_smsc?smsc=X - 按网关获取消息

所有查询都命中 Mnesia（内存）以获得即时响应

注意： 这些端点查询活动 Mnesia 消息队列，提供���当前正在处理或最近交付的消息（在保留期内）的访问。

查询参数：

按源/目标 MSISDN 过滤

按时间范围过滤

按 SMSC 网关过滤

按消息状态过滤

支持排序和分页

2. CDR 数据库直接访问历史消息（SQL）：

访问 SQL 数据库中的归档消息（所有已交付/过期/失败的消息）：

直接 SQL 访问：

授权系统的只读数据库凭据

对 cdrs 表的 SQL 查询（永久审计跟踪）

访问方法： 标准 SQL 客户端（mysql、psql、DBeaver 等）

数据源： 仅归档消息（不包括活动队列）

索引字段以提高搜索效率：

calling_number（索引） - 源电话号码

called_number（索引） - 目标电话号码

message_id（索引） - 唯一消息标识符

submission_time（索引） - 消息进入系统的时间

status（索引） - 最终交付状态

dest_smsc（索引） - 用于交付的网关

注意： CDR 数据库包含所有处理消息的永久记录。这是历史合法拦截查询的主要数据源（数月/年的数据）。

3. 实时消息馈送（PubSub）：

Phoenix PubSub 集成用于实时事件

消息提交通知

消息交付通知

消息状态更改事件

可配置的事件过滤标准

WebSocket 支持以进行实时监控

4. 批量导出接口：

CDR 记录的 CSV 导出

程序访问的 JSON 导出

可配置的导出字段

基于时间范围的导出

保护隐私的导出（可选消息正文排除）

ETSI 合法拦截标准接口

OmniMessage SMSc 为实施符合 ETSI 的合法拦截接口提供基础。虽然 SMSc 核心不原生实现 X1/X2/X3 接口，但

它提供所有必要的数据访问点，可以与外部合法拦截中介功能 (LIMF) 系统集成。

标准 ETSI LI 接口：

执法监控设施（LEMF）

LI 中介功能（外部）

OmniMessage SMSc

实时馈送 SQL 查询 REST 查询

授权提供

IRI 元数据 内容

Mnesia

活动消息

SQL CDR

历史消息

REST API

LI 中介

功能

X1 接口

管理

X2 接口

IRI 交付

X3 接口

CC 交付

LEMF 系统

接口描述：

X1 接口 - 管理功能：

目的： 执法机关向拦截系统提供授权和目标配置

方向： LEMF → LIMF（双向）

功能：

激活/停用特定目标的拦截（MSISDN、IMSI）

设置拦截持续时间和有效期

配置过滤标准（电话号码、时间窗口）

检索拦截状态

与 SMSc 的集成：

LIMF 维护目标列表（授权数据库）

LIMF 查询 SMSc CDR/API 以获取匹配的消息

LIMF 根据 X1 提供的标准进行过滤

X2 接口 - IRI（拦截相关信息）交付：

目的： 向执法机关交付消息元数据

方向： LIMF → LEMF（单向）

数据格式： 符合 ETSI TS 102 232-x 的 XML/ASN.1

来自 SMSc CDR 的内容：

消息 ID

呼叫号码（源 MSISDN）

被叫号码（目标 MSISDN）

IMSI（源和目标，如果可用）

提交时间戳

交付时间戳

消息状态（已交付/失败/过期）

交付尝试

SMSC 网关信息（源/目标）

网络位置（如果可用）

与 SMSc 的集成：

LIMF 查询 CDR 数据库以获取目标电��号码

LIMF 将 CDR 记录转换为 ETSI IRI 格式

LIMF 通过 X2 将 IRI 交付给 LEMF

X3 接口 - CC（通信内容）交付：

目的： 向执法机关交付实际消息内容

方向： LIMF → LEMF（单向）

数据格式： 符合 ETSI TS 102 232-x 的格式

来自 SMSc 的内容：

消息正文（文本内容）

原始 PDU（二进制 SMS 数据）

编码信息

多部分消息段

TP-DCS 信息

用户数据头（UDH）

与 SMSc 的集成：

LIMF 从 CDR message_body 字段检索消息内容

LIMF 检索原始 PDU 数据（如果可用）

LIMF 以 ETSI CC 格式打包内容

LIMF 通过 X3 将 CC 交付给 LEMF

实施架构：

X3X2CDR 数据库
OmniMessage

SMSc

LI 中介

功能

X1 管理

接口

执法

监控设施

X3X2CDR 数据库
OmniMessage

SMSc

LI 中介

功能

X1 管理

接口

执法

监控设施

从 SMSc 轮询/馈送

alt [找到新的拦截消息]

loop [持续监控]

激活拦截

目标：+33612345678

持续时间：30 天

存储授权 + 目标列表

查询目标的消息

WHERE calling_number = '+33612345678'

OR called_number = '+33612345678'

匹配的消息

生成 IRI（元数据）

将 IRI 发送给 LEMF

IRI 已交付

生成 CC（内容）

将 CC 发送给 LEMF

CC 已交付

停用拦截

从列表中移除目标

SMSc 数据映射到 LI 接口：

SMSc 数据字段 X2 (IRI) X3 (CC) CDR 表列

消息 ID ✅ 关联 ID ✅ 参考 message_id

呼叫号码 ✅ A 方 - calling_number

被叫号码 ✅ B 方 - called_number

提交时间 ✅ 时间戳 - submission_time

交付时间 ✅ 完成 - delivery_time

状态 ✅ 结果 - status

消息正文 - ✅ 内容 message_body

原始 PDU - ✅ 二进制 (Mnesia/CDR)

源 SMSC ✅ 网络元素 - source_smsc

目标 SMSC ✅ 网络元素 - dest_smsc

IMSI ✅ 订阅者 ID - (通过前端)

LIMF 集成选项：

选项 1：轮询架构

LIMF 定期查询 CDR 数据库（每 1-60 秒）

SQL 查询按 X1 授权列表中的目标电话号码进行过滤

低复杂度，易于实施

消息交��和 LI 交付之间存在轻微延迟

选项 2：实时馈送架构

SMSc PubSub 发布消息事件

LIMF 订阅实时消息流

LIMF 根据目标列表进行过滤

合法拦截的近乎零延迟

需要自定义集成开发

选项 3：混合架构

最近消息：实时 PubSub 馈送（< 24 小时）

历史消息：CDR 数据库轮询

最优平衡延迟和可靠性

拦截触发机制

�于目标的拦截：

电话号码匹配（MSISDN）

基于 IMSI 的目标（当可用时）

可配置的观察列表

目标隔离的数据库视图

按目标标识符过滤的 API

�于事件的拦截：

所有与特定号码的消息

通过特定 SMSC 网关的消息

具有特定特征的消息（多部分、交付失败等）

地理路由（通过 ENUM 或前缀匹配）

�于时间的拦截：

CDR 查询中的日期/时间范围过滤

保留期强制执行

自动归档旧消息

可配置的数据保留策略

合法拦截的示例 SQL 查询：

2. 加密和密码分析能力

2.1 加密能力概述

OmniMessage SMSc 实施了加密机制，以保护通信和敏感数据。�部分记录了所有符合 ANSSI 要求的加密能力。

2.2 传输层加密

2.2.1 TLS/SSL 实现

支持的协议：

TLS 1.2 (RFC 5246)

TLS 1.3 (RFC 8446) - 推荐

SSL 2.0/3.0：不支持（已知漏洞）

-- �取目标号码的所有消息

SELECT * FROM cdrs

WHERE calling_number = '+33612345678'

 OR called_number = '+33612345678'

ORDER BY submission_time DESC;

-- �取特定时间窗口内的消息

SELECT * FROM cdrs

WHERE (calling_number = '+33612345678' OR called_number =

'+33612345678')

 AND submission_time BETWEEN '2025-11-01 00:00:00' AND '2025-11-

30 23:59:59'

ORDER BY submission_time;

-- �取两方之间的对话

SELECT * FROM cdrs

WHERE (calling_number = '+33612345678' AND called_number =

'+33687654321')

 OR (calling_number = '+33687654321' AND called_number =

'+33612345678')

ORDER BY submission_time;

TLS 1.0/1.1：已弃用（不推荐）

实现：

Erlang/OTP SSL/TLS 库（经过密码学验证）

Cowboy Web 服务器支持 TLS

Phoenix 框架 HTTPS 端点

密码套件：

系统使用 Erlang/OTP 的默认安全密码套件选择，包括：

首选 - TLS 1.3：

TLS_AES_256_GCM_SHA384

TLS_AES_128_GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256

支持 - TLS 1.2：

ECDHE-RSA-AES256-GCM-SHA384

ECDHE-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384

DHE-RSA-AES128-GCM-SHA256

安全特性：

通过 ECDHE/DHE 密钥交换实现完美前向保密（PFS）

强大��� Diffie-Hellman 组（2048 位最小）

支持椭圆曲线密码学

支持服务器名称指示（SNI）

证书管理：

支持 X.509 证书

RSA 密钥大小：2048 位最小，4096 位推荐

支持 ECDSA

证书链验证

自签名证书（仅用于开发）

外部 CA 集成

TLS 配置位置：

📖 完整配置参考在 CONFIGURATION.md

应用：

HTTPS 用于 REST API（端口 8443）

HTTPS 用于 Web 控制面板（端口 8086）

数据库连接（MySQL/PostgreSQL 通过 TLS）

2.3 数据加密静态

2.3.1 数据库加密

MySQL/MariaDB 加密：

表级加密支持

AES-256 加密算法

透明数据加密（TDE）

PostgreSQL 加密：

透明数据加密支持

config/runtime.exs

config :api_ex,

 api: %{

 enable_tls: true,

 tls_cert_path: "priv/cert/omnitouch.crt",

 tls_key_path: "priv/cert/omnitouch.pem"

 }

-- 为 CDR 表启用加密

ALTER TABLE cdrs ENCRYPTION='Y';

文件系统级加密

列级加密（pgcrypto 扩展）

2.3.2 Mnesia 磁盘存储

Mnesia 数据库：

磁盘副本存储以实现消息持久性

推荐文件系统级加密（LUKS、dm-crypt）

通过 Erlang VM 隔离实现内存保护

2.3.3 文件系统加密

敏��数据存储：

配置文件：建议使用文件系统加密

私钥：文件权限（0600）+ 文件系统加密

日志文件：对归档日志进行可配置加密

CDR 导出：对敏感导出进行加密存储

密钥存储：

TLS 证书和密钥存储在 priv/cert/

具有限制权限的基于文件的密钥库

安全密钥轮换程序

2.4 身份验证和访问控制

2.4.1 API 身份验证

REST API 安全性：

HTTPS/TLS 传输加密是强制的

基于头的身份验证（SMSc 头用于前端识别）

基于 IP 的访问控制（防火墙级别）

基于证书的客户端身份验证（可选）

前端注册：

唯一的前端识别（名称、类型、IP、主机名）

基于心跳的身份验证

基于过期的会话管理（90 秒超时）

前端跟踪和监控

2.4.2 数据库身份验证

数据库访问控制：

用户名/密码身份验证

支持 TLS/SSL 连接

基于 IP 的连接限制

基于角色的访问控制（RBAC）

配置：

访问控制建议：

config/runtime.exs

config :sms_c, SmsC.Repo,

 username: "omnitouch",

 password: "omnitouch2024", # 应在生产中使用强密码

 hostname: "localhost",

 ssl: true # 启用 TLS 进行数据库连接

-- 为执法访问��建只读用户

CREATE USER 'li_readonly'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT ON sms_c.cdrs TO 'li_readonly'@'%';

-- 创建不访问消息正文的限制用户

CREATE USER 'analytics'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT (id, message_id, calling_number, called_number,

 source_smsc, dest_smsc, submission_time,

delivery_time,

 status, delivery_attempts)

ON sms_c.cdrs TO 'analytics'@'%';

2.5 加密算法详细信息

2.5.1 哈希算法

在 Erlang/OTP 中可用：

SHA-256、SHA-384、SHA-512（推荐）

SHA-1（已弃用，仅用于遗留兼容性）

MD5（已弃用，不用于安全）

BLAKE2（在现代 OTP 版本中可用）

用途：

消息指纹（重复检测）

数据完整性验证

审计日志完整性

2.5.2 对称加密

可用算法：

AES（高级加密标准）

AES-128-GCM

AES-256-GCM

AES-128-CBC

AES-256-CBC

ChaCha20-Poly1305

密钥大小：

128 位（最小）

256 位（推荐）

用途：

TLS 会话加密

数据库静态加密

可选消息正文加密

2.5.3 非对称加密

支持的算法：

RSA（2048 位最小，4096 位推荐）

ECDSA（椭圆曲线数字签名算法）

P-256、P-384、P-521 曲线

Ed25519（EdDSA）

用途：

TLS 证书身份验证

数字签名

密钥交换

2.6 短信协议安全

2.6.1 短信消息编码

字符编码支持：

GSM 7 位（标准短信编码）

UCS-2（Unicode，16 位）

8 位二进制数据

Latin-1

TP-DCS（数据编码方案）：

消息类别指示

压缩标志

编码组规范

字符集识别

没有原生短信加密：

短信协议不提供端到端加密

消息内容在 SMSc 层可访问

允许合法拦截所需

2.6.2 协议安全考虑

SMPP 协议（外部前端）：

SMPP 级别的用户名/密码身份验证

支持 TLS（SMPP 通过 TLS）

绑定身份验证

IMS 协议（外部前端）：

基于 SIP 的消息

SIP 身份验证机制

与 IMS 核心网络安全的集成

SS7/MAP 协议（外部前端）：

SS7 网络安全

MAP 协议身份验证

SCCP/TCAP 层安全

注意： 协议特定的安全性在外部前端网关中实现，而不是在 SMSc 核心中。

2.7 密码分析和安全评估能力

2.7.1 协议分析工具

内置调试能力：

综合日志系统

消息流跟踪

API 请求/响应日志

数据库查询日志

错误和异常跟踪

外部集成：

标准日志输出（stdout/文件）

支持网络分析的 PCAP 捕获

用于取证的数据库查询日志

Prometheus 指标导出

2.7.2 漏洞评估考虑

已知限制：

短信协议本质上未加密（设计使然，允许合法拦截）

配置文件中的数据库凭据（应使用秘密管理）

支持自签名证书（仅用于开发/测试）

安全加固建议：

使用强 TLS 密码套件

实施数据库连接加密

使用外部秘密管理（Vault、AWS Secrets Manager）

定期对 Erlang/OTP 和依赖项进行安全更新

对 API 端口进行防火墙限制

对前端访问进行 IP 白名单管理

安全测试：

定期进行依赖项漏洞扫描

支持渗透测试

TLS 配置验证

数据库安全审计

访问控制审查

2.8 密钥管理�础设施

2.8.1 密钥生成

TLS 证书生成：

随机数生成：

Erlang/OTP CSPRNG（密码学安全伪随机数生成器）

系统熵池（/dev/urandom）

用于会话密钥、ID、令牌的强随机性

2.8.2 密钥存储和保护

私钥存储：

文件系统具有限制权限（0600）

存储在 priv/cert/ 目录中

PEM 格式（可选加密）

安全备份程序

密钥轮换：

TLS 证书续订（建议每年）

数据库凭据轮换

API 令牌轮换（如果实现）

2.8.3 密钥分发

证书分发：

手动安装在 priv/cert/

配置文件引用

生成私钥（RSA 4096 位）

openssl genrsa -out omnitouch.pem 4096

生成证书签名请求

openssl req -new -key omnitouch.pem -out omnitouch.csr

自签名证书（开发）

openssl x509 -req -days 365 -in omnitouch.csr -signkey

omnitouch.pem -out omnitouch.crt

生产：从受信任的 CA 获取证书

可能支持 ACME 协议（Let's Encrypt）

对称密钥分发：

通过外部数据库凭据进行带外密钥交换

TLS 中的 Diffie-Hellman 密钥协商

不进行明文密钥传输

2.9 合规性和标准

本节记录了适用于所有支持协议的 SMS 处理的国际电信标准、监管框架和安全规范的合规性。

2.9.1 �于 SS7/MAP 协议的 SMS 合规性

3GPP 和 ETSI 标准：

3GPP TS 23.040： 短消息服务（SMS）的技术实现 - 核心 SMS 协议规范

3GPP TS 23.038： 字母表和语言特定信息 - 字符编码（GSM7、UCS-2）

3GPP TS 29.002： 移动应用部分（MAP）规范 - SS7 信令用于 SMS

3GPP TS 23.003： 编号、寻址和识别 - MSISDN、IMSI 格式

ETSI TS 100 901： 点对点短消息服务规范

ETSI TS 100 902： 小区广播短消息服务规范

SS7 信令标准：

ITU-T Q.711-Q.716： 信令连接控制部分（SCCP）

ITU-T Q.771-Q.775： 事务能力应用部分（TCAP）

ITU-T Q.701-Q.710： 消息传输部分（MTP）第 1-3 层

ETSI EN 300 356： 信令系统 No.7 - ISDN 用户部分（ISUP）

SS7/MAP 的安全标准：

GSMA FS.07： SS7 和直径信令安全 - 基线安全控制

GSMA FS.11： SS7 安全监控指南

3GPP TS 33.117： 一般安全保证要求目录

ETSI TS 133 210： 网络域安全 - IP 网络层安全

SS7/MAP 的合法拦截：

ETSI TS 101 671： 合法拦截（LI）；���信流量合法拦截的交接接口

ETSI TS 102 232-1： 合法拦截（LI）；交接规范 - 第 1 部分：LI 管理的交接接口

3GPP TS 33.107： 3G 网络的合法拦截架构和功能

2.9.2 �于 IMS 协议的 SMS 合规性

3GPP IMS 标准：

3GPP TS 23.228： IP 多媒体子系统（IMS） - 第二阶段架构

3GPP TS 24.229： IP 多媒体呼叫控制协议 - SIP 和 SDP 程序

3GPP TS 24.341： 支持基于 IP 网络的 SMS - 第三阶段规范

3GPP TS 23.204： 支持通过通用 3GPP IP 接入的短消息服务（SMS） - 第二阶段

3GPP TS 29.228： IP 多媒体（IM）子系统 Cx 和 Dx 接口

IMS 安全标准：

3GPP TS 33.203： 3G 安全；基于 IP 的服务的接入安全（IMS AKA）

3GPP TS 33.210： 3G 安全；网络域安全（NDS）；IP 网络层安全（IPsec）

3GPP TS 33.310： 网络域安全（NDS）；身份验证框架（AF）

ETSI TS 133 203： 基于 IP 的服务的接入安全

SIP 协议标准：

RFC 3261： SIP：会话发起协议 - 核心规范

RFC 3428： SIP 即时消息扩展 - MESSAGE 方法

RFC 3325： SIP 的私有扩展以进行声明的身份

RFC 5765： 对等系统中的安全问题和解决方案

IMS 的合法拦截：

ETSI TS 102 232-5： 合���拦截（LI）；交接规范 - 第 5 部分：针对 IP 多媒体子系统服务的服务无关 LI

3GPP TS 33.107： 合法拦截要求和架构

3GPP TS 33.108： 合法拦截（LI）的交接接口

2.9.3 SMPP 协议合规性

SMPP 规范：

SMPP v3.4： 短消息对等协议规范 - 行业标准

SMPP v5.0： 扩展的 SMPP 协议，具有增强功能

SMPP 安全指南：

TLS 通过 SMPP： SMPP 连接的传输层安全（SMPP 通过 TLS）

SMPP 绑定身份验证： 系统 ID 和密码身份验证

�于 IP 的访问控制： 网络级限制用于 SMPP 连接

互操作性标准：

GSM 03.40 (ETSI TS 100 901)： 短消息点对点（PP）的技术实现

GSM 03.38 (ETSI TS 100 900)： 字母表和语言特定信息

GSM 04.11 (ETSI TS 100 942)： 移动无线接口上的点对点 SMS 支持

消息编码合规性：

ITU-T T.50： 国际字母表第 5 号（IA5）

ISO/IEC 8859-1： Latin-1 字符编码

ISO/IEC 10646： 通用字符集（UCS-2/UTF-16）

2.9.4 加密标准合规性

TLS 和网络安全：

NIST SP 800-52： TLS 实现的选择、配置和使用指南

NIST SP 800-131A： 加密算法和密钥长度的过渡

RFC 7525： TLS 和 DTLS 的安全使用建议

RFC 8446： 传��层安全 (TLS) 协议版本 1.3

加密算法标准：

FIPS 197： 高级加密标准 (AES)

FIPS 180-4： 安全哈希标准 (SHA-2 家族)

NIST SP 800-38D： 块密码操作模式的建议：GCM 模式

RFC 7539： IETF 协议的 ChaCha20 和 Poly1305

密钥管理：

NIST SP 800-57： 密钥管理建议

RFC 5280： 互联网 X.509 公钥基础设施证书和 CRL 配置文件

2.10 密码分析抵抗力

2.10.1 设计原则

抵御密码分析：

不使用自定义/专有的加密算法

仅使用行业标准、经过同行评审的算法

定期更新加密库的安全性

弃用弱算法

使用认证加密（GCM、Poly1305）

2.10.2 操作安全

密钥轮换：

TLS 证书续订程序

会话密钥轮换（每个会话用于 TLS）

数据库凭据轮换政策

监控和检测：

失败的身份验证日志

证书过期监控

TLS 握手失败日志

加密失败的异常检测

安全事件警报

3. 拦截控制和授权

3.1 合法拦截的访问控制

行政授权：

配置需要系统管理员访问

CDR 查询的数据库级访问控制

API 访问通过 IP/身份验证限制

所有访问的审计日志记录

法律框架集成：

拦截令跟踪（外部系统集成）

目标标识符授权列表（数据库视图）

有时间限制的查询（SQL WHERE 子句）

通过访问策略自动强制执行

3.2 数据保留和隐私

保留政策：

活动消息保留：可配置（默认 24 小时在 Mnesia 中）

CDR 保留：可配置（典型 6 个月到 2 年）

从 Mnesia 自动归档到 SQL

自动清除旧 CDR（基于 cron）

隐私保护：

消息正文交付后删除选项

消息正文从 UI/导出中排除

数据库静态加密

访问日志记录和监控

最小数据收集原则

配置：

📖 查看所有保留设置的 CONFIGURATION.md

3.3 执法的交接接口

标准接口：

1. REST API 访问：

HTTPS 端点用于消息检索

JSON 格式数据交换

身份验证和授权

按目标标准过滤查询

2. 直接数据库访问：

只读 SQL 凭据

标准 SQL 查询

CDR 表��问

索引搜索能力

3. 批量导出：

CSV 导出格式

JSON 导出格式

config/runtime.exs

config :sms_c,

 # Mnesia �息保留在归档之前

 message_retention_hours: 24,

 # 为隐私在交付后删除�息正文

 delete_message_body_after_delivery: false, # 设置为 true 以启用隐私模式

 # CDR 写入控制

 cdr_enabled: true,

 # 批量归档设置

 batch_insert_batch_size: 100,

 batch_insert_flush_interval_ms: 100

基于时间范围的导出

可配置字段选择

交付格式：

IRI（拦截相关信息）：

CDR 元数据字段：

消息 ID

呼叫/被叫号码

时间戳（提交、交付、过期）

状态

交付尝试

SMSC 路由信息

节点信息（集群跟踪）

CC（通信内容）：

消息正文（文本内容）

原始 PDU 数据

编码信息

多部分消息组装

导出示例：

4. 系统安全与完整性

4.1 应用安全

Elixir/Erlang 安全性：

Erlang VM 隔离和沙箱

进程隔离和监督

崩溃恢复和容错

无缓冲区溢出漏洞（受管理的运行时）

依赖管理：

依赖版本锁定（mix.lock）

安全漏洞扫描

定期更新依赖

最小依赖足迹

为执法导出 CSV

mysql -u li_readonly -p -D sms_c -e "

SELECT

 message_id,

 calling_number,

 called_number,

 message_body,

 submission_time,

 delivery_time,

 status

FROM cdrs

WHERE (calling_number = '+33612345678' OR called_number =

'+33612345678')

 AND submission_time BETWEEN '2025-11-01' AND '2025-11-30'

ORDER BY submission_time

" --batch --silent | sed 's/\t/,/g' > interception_report.csv

4.2 网络安全

网络暴露：

最小暴露的端口：

8443（HTTPS REST API）

8086（HTTPS 控制面板）

建议进行防火墙配置

对前端访问进行 IP 白名单管理

DMZ 部署用于面向互联网的服务

网络分段：

单独的管理网络

隔离的数据库网络

前端网关网络分离

集群通信网络（Erlang 分布）

4.3 监控和入侵检测

日志能力：

结构化应用日志

可配置的日志级别

日志轮换和归档

Syslog 集成支持

集中式日志记录（兼容 ELK 堆栈）

安全事件监控：

失败的身份验证尝试

不寻常的消息模式

数据库连接失败

TLS 握手失败

系统资源异常

指标和警报：

Prometheus 指标导出

消息吞吐量监控

错误率跟踪

系统资源利用率

自定义警报规则

📖 完整监控文档在 OPERATIONS_GUIDE.md 和 METRICS.md

4.4 高可用性和灾难恢复

集群支持：

Erlang 分布式集群能力

Mnesia 在节点之间复制

自动故障转移

节点发现和加入

数据冗余：

Mnesia 在所有集群节点上的 disc_copies

SQL 数据库复制（MySQL/PostgreSQL 原生）

CDR 备份程序

配置备份

恢复程序：

数据库备份和恢复

Mnesia 表恢复

配置恢复

节点替换程序

5. 文档参考

5.1 技术手册

可在项目存储库中找到的文档：

README.md - 系统概述、架构和功能

CONFIGURATION.md - 完整配置参考

API_REFERENCE.md - REST API 文档

OPERATIONS_GUIDE.md - 操作程序和监控

CDR_SCHEMA.md - 通话详细记录数据库模式

sms_routing_guide.md - 短信路由配置

number_translation_guide.md - 号码标准化

METRICS.md - Prometheus 指标和监控

PERFORMANCE_TUNING.md - 性能优化

TROUBLESHOOTING.md - 常见问题及解决方案

5.2 安全认证

渗透测试报告： [根据请求提供]

安全审计报告： [根据请求提供]

漏洞评估： [根据请求提供]

Erlang/OTP 加密验证： 行业标准加密库

5.3 合规文档

ANSSI R226 授权请求： 本文档

合法拦截合规性： 根据法国电信法规的要求

数据保护合规性： 对消息数据的 GDPR 考虑

6. 联系信息

���应商/运营商信息：

公司名称：Omnitouch Network Services Pty Ltd

地址：PO BOX 296, QUINNS ROCKS WA 6030, AUSTRALIA

联系人：合规团队

电子邮件：compliance@omnitouch.com.au

技术安全联系人：

姓名：合规团队

电子邮件：compliance@omnitouch.com.au

法律/合规联系人：

姓名：合规团队

电子邮件：compliance@omnitouch.com.au

附录

附录 A：带有拦截点的短信消息流

A.1 出站短信流（移动终止）

Parse error on line 11: ...提交短信) Note over ---------------------^ Expecting 'ACTOR',

got 'NEWLINE'

�试

mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au

SMS-C API 参考

← 返回文档索引 | 主 README

完整的 SMS-C REST API 端点参考，包括请求/响应示例。

目录

API 概述

认证

常见响应格式

状态端点

消息队列 API

原始 SMS PDU API

位置管理 API

前端注册 API

事件日志 API

MMS 消息 API

SS7 事件 API

错误代码

速率限制

最佳实践

API 概述

SMS-C REST API 提供了对消息提交、路由和管理功能的编程访问。

�础 URL

https://api.example.com:8443/api

默认端口: 8443 (可配置)

协议: HTTPS (生产环境需要 TLS)

内容类型

所有请求和响应使用 JSON：

API 版本控制

当前 API 版本为 1（隐式）。未来版本将使用 URL 版本控���：

认证

TLS 客户端证书（推荐）

生产部署应使用 TLS 客户端证书认证：

API 密钥认证

通过 X-API-Key 头进行自定义 API 密钥认证：

Content-Type: application/json

https://api.example.com:8443/api/v2/...

curl --cert client.crt --key client.key \

 https://api.example.com:8443/api/status

curl -H "X-API-Key: your_api_key_here" \

 https://api.example.com:8443/api/status

IP 白名单

在防火墙级别限制 API 访问到受信任的 IP 地址。

常见响应格式

成功响应

错误响应

列表响应

状态端点

用于监控和负载均衡的健康检查端点。

{

 "data": {

 ...

 }

}

{

 "errors": {

 "detail": "错误信息，描述发生了什么问题"

 }

}

{

 "data": [

 {...},

 {...}

]

}

获取 API 状态

请求：

响应 (200 OK):

示例：

用例：

负载均衡器健康检查

监控系统连接性

服务可用性验证

消息队列 API

核心消息提交和管���端点。

列出消息

从队列中检索消息。

请求：

GET /api/status

{

 "status": "ok",

 "application": "OmniMessage",

 "timestamp": "2025-10-30T12:34:56Z"

}

curl https://api.example.com:8443/api/status

可选头：

smsc: frontend_name - 按目标 SMSC 过滤

include-unrouted: true|false|1|0 - 包括没有位置注册的消息（默认：false）

false（默认）：仅返回具有明确路由或位置注册的消息

true：包括没有位置注册的消息（向后兼容模式）

查询参数：

status - 按状态过滤：pending、delivered、expired、dropped

source_smsc - 按源 SMSC 过滤

dest_smsc - 按目标 SMSC 过滤

limit - 限制结果（默认：100，最大：1000）

offset - 分页偏移量

响应 (200 OK):

示例：

GET /api/messages

{

 "data": [

 {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "deliver_time": null,

 "delivery_attempts": 0,

 "inserted_at": "2025-10-30T12:00:00Z"

 }

]

}

获取特定 SMSC 的待处理消息（仅具有明确路由或位置）：

获取包括未路由消息的待处理消息（向后兼容）：

获取所有已发送的消息：

获取单条消息

检索特定消息的详细信息。

请求：

响应 (200 OK):

curl -H "smsc: uk_gateway" \

 https://api.example.com:8443/api/messages

curl -H "smsc: uk_gateway" \

 -H "include-unrouted: true" \

 https://api.example.com:8443/api/messages

curl "https://api.example.com:8443/api/messages?

status=delivered&limit=50"

GET /api/messages/:id

示例：

提交消息（同步）

提交一条消息并立即接收消息 ID。

请求：

{

 "data": {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "source_imsi": null,

 "dest_imsi": null,

 "message_parts": 1,

 "message_part_number": 1,

 "tp_data_coding_scheme": "00",

 "tp_user_data_header": null,

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "deliver_time": null,

 "expires": "2025-10-31T12:00:00Z",

 "deadletter": false,

 "delivery_attempts": 0,

 "charge_failed": false,

 "deliver_after": "2025-10-30T12:00:00Z",

 "raw_data_flag": false,

 "raw_sip_flag": false,

 "raw_pdu": null,

 "inserted_at": "2025-10-30T12:00:00Z",

 "updated_at": "2025-10-30T12:00:00Z"

 }

}

curl https://api.example.com:8443/api/messages/12345

主体：

可选字段：

dest_smsc - 覆盖路由决策

send_time - 安排未来交付（ISO 8601）

message_parts - 多部分消息的总部分

message_part_number - 部分编号（1 索引）

tp_data_coding_scheme - SMS DCS（默认："00"）

source_imsi - 源订阅者 IMSI

dest_imsi - 目标订阅者 IMSI

响应 (201 Created):

POST /api/messages

Content-Type: application/json

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client"

}

{

 "data": {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "inserted_at": "2025-10-30T12:00:00Z"

 }

}

示例：

性能：~70 消息/秒，平均响应时间 14ms

使用场景：

需要立即获取消息 ID

处理消息/秒

需要立即确认

提交消息（异步）

以高吞吐量提交消息（批处理）。

请求：

主体：与同步端点相同

响应 (202 Accepted):

curl -X POST https://api.example.com:8443/api/messages \

 -H "Content-Type: application/json" \

 -d '{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client"

 }'

POST /api/messages/create_async

Content-Type: application/json

{

 "data": {

 "status": "accepted",

 "message": "�息已排队处理"

 }

}

示例：

性能：~4,650 消息/秒，平均响应时间 0.22ms

延迟：消息在 100ms 内出现在数据库中（可配置）

使用场景：

高容量批量消息（> 100 msg/sec）

不需要在 API 响应中获取消息 ID

吞吐量比即时确认更重要

更新消息

部分更新消息字段。

请求：

主体：

curl -X POST

https://api.example.com:8443/api/messages/create_async \

 -H "Content-Type: application/json" \

 -d '{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "批量通知�息",

 "source_smsc": "bulk_api"

 }'

PATCH /api/messages/:id

Content-Type: application/json

{

 "dest_smsc": "alternate_gateway",

 "deliver_after": "2025-10-30T14:00:00Z"

}

可更新字段：

dest_smsc - 更改目标

deliver_after - 延迟交付

message_body - 更新消息文本

status - 更改状态

响应 (200 OK):

示例：

标记消息为已送达

将消息标记为成功送达。

请求：

主体：

{

 "data": {

 "id": 12345,

 "dest_smsc": "alternate_gateway",

 "deliver_after": "2025-10-30T14:00:00Z",

 ...

 }

}

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "backup_gateway"

 }'

POST /api/messages/:id/mark_delivered

Content-Type: application/json

响应 (200 OK):

示例：

用例：在成功送达后由前端系统调用

增加交付尝试

增加重试计数器并应用指数退避。

请求：

响应 (200 OK):

{

 "dest_smsc": "uk_gateway"

}

{

 "data": {

 "id": 12345,

 "status": "delivered",

 "deliver_time": "2025-10-30T12:05:30Z",

 "dest_smsc": "uk_gateway",

 ...

 }

}

curl -X POST

https://api.example.com:8443/api/messages/12345/mark_delivered \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "uk_gateway"

 }'

PUT /api/messages/:id

退避计算：

示例：

用例：在交付失败后由前端调用以安排重试

删除消息

从队列中删除消息。

请求：

响应 (204 No Content)

示例：

警告：删除消息会永久移除它们。请谨慎使用。

{

 "data": {

 "id": 12345,

 "delivery_attempts": 2,

 "deliver_after": "2025-10-30T12:08:00Z",

 ...

 }

}

deliver_after = now + 2^(delivery_attempts) minutes

curl -X PUT https://api.example.com:8443/api/messages/12345

DELETE /api/messages/:id

curl -X DELETE https://api.example.com:8443/api/messages/12345

原始 SMS PDU API

以原始 PDU（协议数据单元）提交 SMS 消息，以最大限度地兼容旧系统。

提交原始 SMS（同步）

请求：

主体：

PDU 格式：十六进制编码的 SMS TPDU（传输协议数据单元）

响应 (201 Created):

示例：

POST /api/messages_raw

Content-Type: application/json

{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_system"

}

{

 "data": {

 "id": 12346,

 "source_msisdn": "+447700900000",

 "destination_msisdn": "+447700900000",

 "message_body": "Test",

 "source_smsc": "legacy_system",

 "raw_pdu": "0001000B916407007009F0000004D4F29C0E",

 ...

 }

}

提交原始 SMS（异步）

请求：

主体：与同步相同

响应 (202 Accepted):

示例：

curl -X POST https://api.example.com:8443/api/messages_raw \

 -H "Content-Type: application/json" \

 -d '{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_system"

 }'

POST /api/messages_raw/async

Content-Type: application/json

{

 "data": {

 "status": "accepted",

 "message": "PDU 已排队处理"

 }

}

curl -X POST https://api.example.com:8443/api/messages_raw/async \

 -H "Content-Type: application/json" \

 -d '{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_gateway"

 }'

PDU 处理

系统自动：

1. 使用 SMS 标准解码 PDU（3GPP TS 23.040）

2. 提取电话号码、消息文本、DCS

3. 检测交付报告（CP-ACK、RP-ACK 等）

4. 如有需要，执行 IMSI 到 MSISDN 的查找

5. 应用路由规则

6. 存储原始 PDU 以供参考

交付报告检测：

CP-ACK、CP-ERROR - 连接协议确认

RP-ACK、RP-ERROR、RP-SMMA - 中继协议响应

交付报告被记录但不会作为消息存储

位置管理 API

管理用于移动终止消息交付的订阅者位置信息。

列出位置

请求：

响应 (200 OK):

GET /api/locations

示例：

获取位置

请求：

响应 (200 OK):

{

 "data": [

 {

 "id": 1,

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ran_location": "cell_tower_12345",

 "imei": "123456789012345",

 "ims_capable": true,

 "csfb": false,

 "registered": true,

 "expires": "2025-10-30T13:00:00Z",

 "user_agent": "Samsung Galaxy",

 "inserted_at": "2025-10-30T12:00:00Z",

 "updated_at": "2025-10-30T12:00:00Z"

 }

]

}

curl https://api.example.com:8443/api/locations

GET /api/locations/:id

示例：

创建/更新位置

根据 IMSI（唯一标识符）创建新位置或更新现有位置。

请求：

主体：

{

 "data": {

 "id": 1,

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 ...

 }

}

curl https://api.example.com:8443/api/locations/1

POST /api/locations

Content-Type: application/json

{

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ran_location": "cell_tower_12345",

 "imei": "123456789012345",

 "ims_capable": true,

 "csfb": false,

 "registered": true,

 "expires": "2025-10-30T13:00:00Z",

 "user_agent": "Samsung Galaxy"

}

必填字段：

imsi - 唯一的订阅者标识符

msisdn - 电话号码

可选字段：

location - MSC/VLR 地址

ran_location - 基站/扇区 ID

imei - 设备标识符

ims_capable - IMS VoLTE 能力

csfb - 电路交换回退标志

registered - 当前注册状态

expires - 注册过期时间

user_agent - 设备型号/信息

响应 (201 Created 或 200 OK):

示例：

{

 "data": {

 "id": 1,

 "msisdn": "+15551234567",

 ...

 }

}

curl -X POST https://api.example.com:8443/api/locations \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ims_capable": true,

 "registered": true

 }'

用例：当订阅者注册时由移动管理系统（HSS、MME 等）调用

更新位置

请求：

主体：部分更新任何位置字段

响应 (200 OK):

示例：

删除位置

请求：

响应 (204 No Content)

PATCH /api/locations/:id

Content-Type: application/json

{

 "data": {

 "id": 1,

 ...

 }

}

curl -X PATCH https://api.example.com:8443/api/locations/1 \

 -H "Content-Type: application/json" \

 -d '{

 "location": "msc2.region2.example.com",

 "ran_location": "cell_tower_67890"

 }'

DELETE /api/locations/:id

示例：

用例：当订阅者注销或超时时调用

前端注册 API

跟踪和管理前端 SMSC 连接。

列出所有前端

请求：

响应 (200 OK):

curl -X DELETE https://api.example.com:8443/api/locations/1

GET /api/frontends

示例：

仅列出活动前端

请求：

响应 (200 OK)：相同格式，仅活动前端

示例：

{

 "data": [

 {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com",

 "uptime_seconds": 86400,

 "configuration": {

 "max_throughput": 1000,

 "bind_type": "transceiver"

 },

 "status": "active",

 "expires_at": "2025-10-30T12:02:00Z",

 "last_seen_at": "2025-10-30T12:00:30Z",

 "inserted_at": "2025-10-29T12:00:00Z",

 "updated_at": "2025-10-30T12:00:30Z"

 }

]

}

curl https://api.example.com:8443/api/frontends

GET /api/frontends/active

curl https://api.example.com:8443/api/frontends/active

用例：获取可用目的地列表以进行路由

获取前端统计信息

请求：

响应 (200 OK):

示例：

获取前端历史

请求：

响应 (200 OK):

GET /api/frontends/stats

{

 "data": {

 "active_count": 5,

 "expired_count": 2,

 "unique_frontends": 7,

 "total_registrations": 1523

 }

}

curl https://api.example.com:8443/api/frontends/stats

GET /api/frontends/history/:name

示例：

注册前端

注册或更新前端连接。

请求：

主体：

{

 "data": [

 {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "status": "active",

 "inserted_at": "2025-10-30T12:00:00Z",

 ...

 },

 {

 "id": 2,

 "frontend_name": "uk_gateway_1",

 "status": "expired",

 "inserted_at": "2025-10-29T12:00:00Z",

 ...

 }

]

}

curl

https://api.example.com:8443/api/frontends/history/uk_gateway_1

POST /api/frontends/register

Content-Type: application/json

必填字段：

frontend_name - 前端的唯一标识符

frontend_type - 类型：smpp、sip、http 等。

可选字段：

ip_address - 前端 IP

hostname - 前端主机名

uptime_seconds - 自启动以来的运行时间

configuration - 自定义配置对象

响应 (201 Created):

示例：

{

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com",

 "uptime_seconds": 86400,

 "configuration": {

 "max_throughput": 1000,

 "bind_type": "transceiver",

 "system_id": "gateway1"

 }

}

{

 "data": {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "status": "active",

 "expires_at": "2025-10-30T12:01:30Z",

 ...

 }

}

注册超时：90 秒（前端必须每 60-90 秒重新注册）

用例：前端系统定期调用以保持活动状态

事件日志 API

跟踪消息生命周期事件。

获取消息事件

请求：

响应 (200 OK):

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com"

 }'

GET /api/events/:message_id

示例：

事件类型：

message_inserted - 消息创建

message_routed - 做出路由决策

message_delivered - 成功送达

message_failed - 交付失败

message_dropped - 被路由丢弃

auto_reply_sent - 自动回复触发

number_translated - 应用号码转���

routing_failed - 找不到路由

charging_failed - 收费错误

{

 "data": [

 {

 "event_epoch": 1698672000,

 "name": "message_inserted",

 "description": "�息插入队列",

 "event_source": "node1@server.example.com"

 },

 {

 "event_epoch": 1698672001,

 "name": "message_routed",

 "description": "通过 route_id=42 路由到 uk_gateway",

 "event_source": "node1@server.example.com"

 },

 {

 "event_epoch": 1698672005,

 "name": "message_delivered",

 "description": "成功送达",

 "event_source": "node2@server.example.com"

 }

]

}

curl https://api.example.com:8443/api/events/12345

记录事件

请求：

主体：

响应 (201 Created):

示例：

POST /api/events

Content-Type: application/json

{

 "message_id": 12345,

 "name": "custom_event",

 "description": "自定义事件描述",

 "event_source": "external_system"

}

{

 "data": {

 "message_id": 12345,

 "name": "custom_event",

 "description": "自定义事件描述",

 "event_source": "external_system",

 "event_epoch": 1698672010

 }

}

curl -X POST https://api.example.com:8443/api/events \

 -H "Content-Type: application/json" \

 -d '{

 "message_id": 12345,

 "name": "external_delivery_confirmed",

 "description": "由下游系统确认"

 }'

事件保留：7 天（可配置）

MMS 消息 API

管理多媒体消息服务（MMS）消息。

列出 MMS 消息

请求：

响应 (200 OK)：类似于 SMS 消息，带有额外的 MMS 字段

创建 MMS 消息

请求：

主体：

响应 (201 Created)：完整的 MMS 消息对象

GET /api/mms_messages

POST /api/mms_messages

Content-Type: application/json

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "subject": "照片",

 "content_type": "image/jpeg",

 "content_location": "https://cdn.example.com/media/12345.jpg",

 "message_size": 524288

}

SS7 事件 API

跟踪 SS7 信令事件。

列出 SS7 事件

请求：

响应 (200 OK):

创建 SS7 事件

请求：

主体：

GET /api/ss7_events

{

 "data": [

 {

 "id": 1,

 "event_type": "MAP_UPDATE_LOCATION",

 "imsi": "001001000000001",

 "msisdn": "+15551234567",

 "timestamp": "2025-10-30T12:00:00Z",

 ...

 }

]

}

POST /api/ss7_events

Content-Type: application/json

响应 (201 Created)：完整事件对象

{

 "event_type": "MAP_UPDATE_LOCATION",

 "imsi": "001001000000001",

 "msisdn": "+15551234567"

}

错误代码

HTTP 状态代码

代码 含义 描述

200 OK 请求成功

201 Created 资源成功创建

202 Accepted 请求已接受处理

204 No Content 删除成功

400 Bad Request 请求格式无效

401 Unauthorized 需要认证

403 Forbidden 权限不足

404 Not Found 资源不存在

422 Unprocessable Entity 验证错误

429 Too Many Requests 超过速率限制

500 Internal Server Error 服务器错误

503 Service Unavailable 暂时不可用

错误响应格式

常见错误消息

错误 原因 解决方案

"destination_msisdn is required" 缺少必填字段 在请求中包含 destination_msisdn

"Invalid phone number format" 格式错误的号码 使用 E.164 格式：+15551234567

"Message too long" 超过大小限制 拆分为多个部分

"No route found" 路由失败 检查路由配置

"Charging failed" OCS 错误 验证收费系统连接性

"Message not found" 无效的消息 ID 验证 ID 是否存在

"Frontend not registered" 未知 SMSC 首先注册前端

{

 "errors": {

 "detail": "验证失败：destination_msisdn 是必需的"

 }

}

速率限制

默认限制

端点 限制 窗口

POST /api/messages 100 req/sec 每个 IP

POST /api/messages/create_async 1000 req/sec 每个 IP

POST /api/messages_raw 100 req/sec 每个 IP

GET /api/* 1000 req/sec 每个 IP

速率限制头

超过速率限制

响应 (429 Too Many Requests):

X-RateLimit-Limit: 100

X-RateLimit-Remaining: 95

X-RateLimit-Reset: 1698672060

{

 "errors": {

 "detail": "超出速率限制。请在 5 秒后重试。"

 }

}

最佳实践

消息提交

1. 使用异步处理批量：对于 > 100 msg/sec 使用 /create_async

2. 包含 source_smsc：始终识别您的系统

3. 验证号码：使用 E.164 格式（+国家代码）

4. 处理错误：为 5xx 错误实现重试逻辑

5. 检查路由：在批量提交前测试路由

前端集成

1. 定期注册：每 60 秒重新注册

2. 轮询消息：使用 smsc 头查询您的消息

3. 明智使用 include-unrouted：默认情况下，仅返回具有明确路由或位置注册的消息。仅在需要向后兼容行为以接收所有未路

由消息时设置 include-unrouted: true

4. 标记为已送达：成功后始终调用 mark_delivered

5. 在失败时增加：使用 PUT 端点进行重试逻辑

6. 监控事件：检查事件日志以获取交付问题

性能

1. 连接池：重用 HTTP 连接

2. 批量请求：每个请求分组多个消息

3. 并行处理：进行并发 API 调用

4. 监控指标：监视 Prometheus 以查找瓶颈

5. 设置超时：对 API 调用使用 30 秒超时

安全

1. 使用 TLS：在���产环境中始终使用 HTTPS

2. 验证证书：不要跳过证书验证

3. 轮换 API 密钥：定期更换密钥

4. IP 白名单：限制到已知来源

5. 记录 API 活动：监控可疑模式

错误处理

1. 重试 5xx 错误：服务器错误通常是暂时的

2. 不要重试 4xx：客户端错误需要代码修复

3. 指数退避：在重试之间等待更长时间

4. 断路器：在重复失败后停止

5. 对模式进行警报：监控错误率

示例集成（Python）

import requests

import time

class SMSCClient:

 def __init__(self, base_url, api_key=None):

 self.base_url = base_url

 self.session = requests.Session()

 if api_key:

 self.session.headers.update({"X-API-Key": api_key})

 def submit_message(self, from_num, to_num, text,

async_mode=False):

 endpoint = "/messages/create_async" if async_mode else

"/messages"

 url = f"{self.base_url}{endpoint}"

 payload = {

 "source_msisdn": from_num,

 "destination_msisdn": to_num,

 "message_body": text,

 "source_smsc": "python_client"

 }

 try:

 response = self.session.post(url, json=payload,

timeout=30)

 response.raise_for_status()

 return response.json()["data"]

 except requests.exceptions.RequestException as e:

 print(f"API 错误: {e}")

 return None

 def get_pending_messages(self, smsc_name,

include_unrouted=False):

 url = f"{self.base_url}/messages"

 headers = {"smsc": smsc_name}

 # 如果请求了包括未路由消息（向后兼容模式）

 if include_unrouted:

 headers["include-unrouted"] = "true"

 try:

 response = self.session.get(url, headers=headers,

timeout=30)

 response.raise_for_status()

 return response.json()["data"]

 except requests.exceptions.RequestException as e:

 print(f"API 错误: {e}")

 return []

 def mark_delivered(self, message_id, smsc_name):

 url = f"

{self.base_url}/messages/{message_id}/mark_delivered"

 payload = {"dest_smsc": smsc_name}

 try:

 response = self.session.post(url, json=payload,

timeout=30)

 response.raise_for_status()

 return True

 except requests.exceptions.RequestException as e:

 print(f"API 错误: {e}")

 return False

使用

client = SMSCClient("https://api.example.com:8443/api",

api_key="your_key")

提交单条消息

result = client.submit_message("+15551234567", "+447700900000",

"Hello")

print(f"�息 ID: {result['id']}")

提交批量消息（异步）

for i in range(1000):

 client.submit_message("+15551234567", f"+44770090{i:04d}",

f"Bulk {i}", async_mode=True)

前端轮询循环

while True:

 # �取具有明确路由或位置注册的消息

 messages = client.get_pending_messages("my_gateway")

 # 或使用 include_unrouted=True 以�取向后兼容行为

 # messages = client.get_pending_messages("my_gateway",

API 更新日志

版本 1（当前）

初始发布

消息队列 CRUD

原始 PDU 提交

位置管理

前端注册

事件日志

计划功能

批量消息提交（单个请求，多条消息）

消息模板

定时交付 API

事件的实时 Webhook

GraphQL API 端点

OAuth2 认证

如有关于 API 的问题或问题，请查看 故障排除指南 ��联系支持。

include_unrouted=True)

 for msg in messages:

 # 通过您的协议交付消息

 success = deliver_via_smpp(msg)

 if success:

 client.mark_delivered(msg["id"], "my_gateway")

 else:

 # 增加重试

 requests.put(f"

{client.base_url}/messages/{msg['id']}")

 time.sleep(5) # 每 5 秒轮询一次

CDR (通话详细记录) 架构参考

← 返回文档索引 | 主 README

完整参考用于长期消息存储、计费和分析的 CDR 数据库表。

目录

概述

表架构

字段描述

SQL 示例

索引

按数据库的数据类型

隐私考虑

保留和归档

计费集成

概述

cdrs 表存储系统处理的所有 SMS 消息的通话详细记录。CDR 在以下情况下被写入：

消息成功送达

消息在未送达的情况下过期

消息永久失败

消息被拒绝

CDR 提供与操作 Mnesia 数据库分开的长期存储，使得：

计费和开票

分析和报告

合规和审计

超过 Mnesia 保留期的消息历史

表架构

MySQL / MariaDB

CREATE TABLE cdrs (

 id BIGINT AUTO_INCREMENT PRIMARY KEY,

 -- 消息识别

 message_id BIGINT NOT NULL,

 -- 电话号码

 calling_number VARCHAR(255) NOT NULL,

 called_number VARCHAR(255) NOT NULL,

 -- SMSC 路由

 source_smsc VARCHAR(255),

 dest_smsc VARCHAR(255),

 -- 节点信息（用于集群部署）

 origin_node VARCHAR(255),

 destination_node VARCHAR(255),

 -- 时间戳

 submission_time DATETIME NOT NULL,

 delivery_time DATETIME,

 expiry_time DATETIME,

 -- 状态和元数据

 status VARCHAR(50) NOT NULL,

 delivery_attempts INT DEFAULT 0,

 message_parts INT,

 deadletter BOOLEAN DEFAULT FALSE,

 -- 可选消息体（隐私控制）

 message_body TEXT,

 -- 审计时间戳

 inserted_at DATETIME NOT NULL,

 updated_at DATETIME NOT NULL,

 -- 索引

 INDEX idx_cdrs_message_id (message_id),

 INDEX idx_cdrs_calling_number (calling_number),

 INDEX idx_cdrs_called_number (called_number),

 INDEX idx_cdrs_status (status),

 INDEX idx_cdrs_submission_time (submission_time),

 INDEX idx_cdrs_dest_smsc (dest_smsc)

);

PostgreSQL

CREATE TABLE cdrs (

 id BIGSERIAL PRIMARY KEY,

 -- 消息识别

 message_id BIGINT NOT NULL,

 -- 电话号码

 calling_number VARCHAR(255) NOT NULL,

 called_number VARCHAR(255) NOT NULL,

 -- SMSC 路由

 source_smsc VARCHAR(255),

 dest_smsc VARCHAR(255),

 -- 节点信息（用于集群部署）

 origin_node VARCHAR(255),

 destination_node VARCHAR(255),

 -- 时间戳

 submission_time TIMESTAMP NOT NULL,

 delivery_time TIMESTAMP,

 expiry_time TIMESTAMP,

 -- 状态和元数据

 status VARCHAR(50) NOT NULL,

 delivery_attempts INTEGER DEFAULT 0,

 message_parts INTEGER,

 deadletter BOOLEAN DEFAULT FALSE,

 -- 可选消息体（隐私控制）

 message_body TEXT,

 -- 审计时间戳

 inserted_at TIMESTAMP NOT NULL,

 updated_at TIMESTAMP NOT NULL

);

-- 索引

CREATE INDEX idx_cdrs_message_id ON cdrs(message_id);

CREATE INDEX idx_cdrs_calling_number ON cdrs(calling_number);

CREATE INDEX idx_cdrs_called_number ON cdrs(called_number);

字段描述

主键

字段 类型 可空 描述

id BIGINT NO CDR 记录的自增主键

消息识别

字段 类型 可空 描述

message_id BIGINT NO
来自 SMS-C 消息队列的唯一消息标识符。引用 Mnesia 中的原始消息

ID。

电话号码

字段 类型 可空 描述

calling_number VARCHAR(255) NO
消息发送者的源 MSISDN（手机号码）。通常为

E.164 格式（例如，+15551234567）。

called_number VARCHAR(255) NO
消息接收者的目标 MSISDN（手机号码）。通常为

E.164 格式（例如，+15551234567）。

CREATE INDEX idx_cdrs_status ON cdrs(status);

CREATE INDEX idx_cdrs_submission_time ON cdrs(submission_time);

CREATE INDEX idx_cdrs_dest_smsc ON cdrs(dest_smsc);

SMSC 路由

字段 类型 可空 描述

source_smsc VARCHAR(255) YES
提交消息的源 SMSC 的名称或标识符。如果通过 API 或其

他非 SMSC 接口提交，则为 NULL。

dest_smsc VARCHAR(255) YES
交付（或尝试交付）消息的目标 SMSC 的名称或标识符。如果

消息从未路由，则为 NULL。

节点信息

对于集群部署，跟踪处理消息的节点：

字段 类型 可空 描述

origin_node VARCHAR(255) YES

消息最初接收的 Erlang 节点名称（例

如，“sms@node1.example.com”）

对故障排除和负载分配分析非常有用。

destination_node VARCHAR(255) YES
消息交付的 Erlang 节点名称（如果与原始节点不同）

对于单节点部署或消息从未交付的情况为 NULL。

时间戳

所有时间戳以 UTC 存储：

mailto:sms@node1.example.com

字段 类型 可空 描述

submission_time DATETIME NO 消息首次提交到 SMS-C 的时间。用作计费计算的开始时间。

delivery_time DATETIME YES
消息成功交付的时间。如果消息过期、失败或被拒绝，则为

NULL。

expiry_time DATETIME YES
消息过期（变得不可交付）的时间。如果消息已交付或仍在待处理状

态，则为 NULL。

交付持续时间计算：

状态和元数据

字段 类型 可空 描述

status VARCHAR(50) NO
最终消息状态。有效值：delivered、

expired、failed、rejected

delivery_attempts INT NO
在最终状态之前进行的交付尝试次数。默认值：0。范

围：通常为 0-255。

message_parts INT YES
连接消息的 SMS 段数。单部分消息为 1，多个部分

为 2+。如果未知则为 NULL。

deadletter BOOLEAN NO
消息是否被移至死信队列。TRUE 表示消息无法交付

并已耗尽所有重试。默认值：FALSE

状态值：

TIMESTAMPDIFF(SECOND, submission_time, delivery_time) AS

delivery_duration_seconds

状态 描述 可计费 交付时间

delivered 成功交付给接收者 是 已设置

expired 超过有效期未交付 取决于计��政策 NULL

failed 永久交付失败（无效号码等） 取决于计费政策 NULL

rejected 被路由规则或验证拒绝 否 NULL

消息体

字段 类型 可空 描述

message_body TEXT YES

实际的 SMS 消息内容。如果启用了

delete_message_body_after_delivery，则可以

为 NULL。最大长度因数据库而异（通常 TEXT 类型为 65,535 个字

符）。

隐私模式：

完全保留： 消息体存储在 CDR 中以满足合规/归档要求

隐私模式： 当 delete_message_body_after_delivery: true 时，消息体设置为 NULL

合规模式： 消息体以加密或哈希形式存储（需要自定义实现）

审计时间戳

字段 类型 可空 描述

inserted_at DATETIME NO
CDR 记录首次插入数据库的时间。通常与

delivery_time/expiry_time 相同或稍后。

updated_at DATETIME NO
CDR 记录最后一次更新的时间。如果从未更新，则与

inserted_at 相同。

SQL 示例

�本查询

查找特定电话号码的所有 CDR：

按状态计数消息：

成功交付消息的平均交付时间：

计费查询

按目标 SMSC 的每日消息量：

SELECT * FROM cdrs

WHERE calling_number = '+15551234567'

 OR called_number = '+15551234567'

ORDER BY submission_time DESC

LIMIT 100;

SELECT status, COUNT(*) as count

FROM cdrs

GROUP BY status;

SELECT AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time))

AS avg_delivery_seconds

FROM cdrs

WHERE status = 'delivered'

 AND delivery_time IS NOT NULL;

按呼叫号码前缀的客户可计费消息：

路由性能分析：

SELECT

 DATE(submission_time) AS date,

 dest_smsc,

 COUNT(*) AS message_count,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered_count,

 SUM(message_parts) AS total_segments

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 30 DAY)

GROUP BY DATE(submission_time), dest_smsc

ORDER BY date DESC, message_count DESC;

SELECT

 DATE(submission_time) AS date,

 COUNT(*) AS message_count,

 SUM(message_parts) AS total_segments,

 SUM(message_parts) * 0.01 AS total_cost

FROM cdrs

WHERE calling_number LIKE '+1555%'

 AND status = 'delivered'

 AND submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

GROUP BY DATE(submission_time);

分析查询

按小时的消息（流量模式）：

多部分消息分析：

SELECT

 dest_smsc,

 COUNT(*) AS total_messages,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered,

 ROUND(100.0 * SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0

END) / COUNT(*), 2) AS delivery_rate_pct,

 AVG(delivery_attempts) AS avg_attempts,

 AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time)) AS

avg_delivery_seconds

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

 AND dest_smsc IS NOT NULL

GROUP BY dest_smsc

ORDER BY delivery_rate_pct DESC;

SELECT

 HOUR(submission_time) AS hour,

 COUNT(*) AS message_count

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

GROUP BY HOUR(submission_time)

ORDER BY hour;

失败消息分析：

合规和审计查询

查找两个方之间在时间范围内的所有消息：

SELECT

 message_parts,

 COUNT(*) AS message_count,

 AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time)) AS

avg_delivery_seconds

FROM cdrs

WHERE message_parts IS NOT NULL

 AND status = 'delivered'

GROUP BY message_parts

ORDER BY message_parts;

SELECT

 called_number,

 COUNT(*) AS failure_count,

 AVG(delivery_attempts) AS avg_attempts,

 MAX(submission_time) AS last_failure

FROM cdrs

WHERE status IN ('failed', 'expired')

 AND submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

GROUP BY called_number

HAVING failure_count >= 5

ORDER BY failure_count DESC;

保留政策执行（删除旧 CDR）：

集群分析

消息在节点之间的分布：

SELECT

 submission_time,

 calling_number,

 called_number,

 status,

 message_body,

 delivery_time

FROM cdrs

WHERE (

 (calling_number = '+15551234567' AND called_number =

'+15559876543')

 OR

 (calling_number = '+15559876543' AND called_number =

'+15551234567')

)

 AND submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

ORDER BY submission_time;

-- 查找超过保留期的记录（示例：2 年）

SELECT COUNT(*) FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

-- 删除旧记录（谨慎使用！）

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR)

LIMIT 10000; -- 批量删除以避免锁定

索引

以下索引被创建以优化常见查询：

索引名称 列 目的

PRIMARY id 主键，确保唯一记录

idx_cdrs_message_id message_id 按原始消息 ID 查��� CDR

idx_cdrs_calling_number calling_number 查找特定发送者的消息

idx_cdrs_called_number called_number 查找特定接收者的消息

idx_cdrs_status status 按交付状态过滤

idx_cdrs_submission_time submission_time 基于时间的查询，计费周期

idx_cdrs_dest_smsc dest_smsc 路由性能分析

额外索引建议

对于高流量部署，考虑这些额外的索引：

计费查询的复合索引：

SELECT

 origin_node,

 COUNT(*) AS message_count,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered_count

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 1 DAY)

GROUP BY origin_node;

路由分析的复合索引：

合规搜索的复合索引：

消息体搜索的全文索引（MySQL）：

按数据库的数据类型

支持的数据库之间的字段类型映射：

CREATE INDEX idx_cdrs_billing ON cdrs(calling_number,

submission_time, status);

CREATE INDEX idx_cdrs_route_perf ON cdrs(dest_smsc,

submission_time, status);

CREATE INDEX idx_cdrs_party_time ON cdrs(calling_number,

called_number, submission_time);

ALTER TABLE cdrs ADD FULLTEXT INDEX idx_cdrs_message_body_ft

(message_body);

-- 用法：

SELECT * FROM cdrs

WHERE MATCH(message_body) AGAINST('keyword' IN NATURAL LANGUAGE

MODE);

字段 MySQL/MariaDB PostgreSQL 备注

id
BIGINT

AUTO_INCREMENT
BIGSERIAL 64 位整数，自增

message_id BIGINT BIGINT 64 位整数

字符串字段 VARCHAR(255) VARCHAR(255)
可变长度字符串，最大 255 个

字符

message_body TEXT TEXT

大文本，MySQL 最大

65,535 字节，

PostgreSQL 无限制

时间戳 DATETIME TIMESTAMP 推荐使用 UTC 时间戳

整数 INT INTEGER 32 位有符号整数

布尔值
BOOLEAN

(TINYINT(1))
BOOLEAN MySQL 存储为 0/1

隐私考虑

CDR 表可能包含敏感个人信息（电话号码、消息内容）。考虑以下隐私措施：

1. 消息体隐私

config/runtime.exs 中的配置选项：

2. 电话号码掩码

对于不需要完整号码的分析：

3. 数据库加密

为数据库服务器启用静态加密��

MySQL：

PostgreSQL： 使用 PostgreSQL 透明数据加密（TDE）或文件系统级别加密。

config :sms_c,

 # 成功交付后删除�息体

 delete_message_body_after_delivery: true,

 # 在 UI 中隐藏�息体

 hide_message_body_in_ui: true,

 # 在导出中隐藏�息体

 hide_message_body_in_export: true

-- 掩码电话号码的最后 4 位

SELECT

 CONCAT(SUBSTRING(calling_number, 1, LENGTH(calling_number) - 4),

'XXXX') AS masked_calling,

 CONCAT(SUBSTRING(called_number, 1, LENGTH(called_number) - 4),

'XXXX') AS masked_called,

 COUNT(*) AS message_count

FROM cdrs

GROUP BY masked_calling, masked_called;

-- 启用表加密

ALTER TABLE cdrs ENCRYPTION='Y';

4. 访问控制

限制对 CDR 表的访问：

保留和归档

保留政策

根据监管和业务要求定义保留期：

行业 典型保留 监管依据

电信（美国） 18-24 个月 FCC，州法律

电信（欧盟） 6 个月 - 2 年 GDPR，电子隐私

金融 5-7 年 SOX，SEC

医疗保健 6 年 HIPAA

归档策略

1. 按日期分区（MySQL 8.0+，PostgreSQL 11+）

-- 创建只读计费用户

CREATE USER 'billing_ro'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT ON sms_c.cdrs TO 'billing_ro'@'%';

-- 创建有限的分析用户（无消息体访问）

CREATE USER 'analytics'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT (id, message_id, calling_number, called_number,

source_smsc,

 dest_smsc, submission_time, delivery_time, status,

 delivery_attempts, message_parts)

ON sms_c.cdrs TO 'analytics'@'%';

2. 归档到冷存储

3. 自动清理脚本

-- MySQL 按月分区

ALTER TABLE cdrs PARTITION BY RANGE (TO_DAYS(submission_time)) (

 PARTITION p202510 VALUES LESS THAN (TO_DAYS('2025-11-01')),

 PARTITION p202511 VALUES LESS THAN (TO_DAYS('2025-12-01')),

 PARTITION p202512 VALUES LESS THAN (TO_DAYS('2026-01-01')),

 PARTITION p_future VALUES LESS THAN MAXVALUE

);

-- 删除旧分区（快速归档）

ALTER TABLE cdrs DROP PARTITION p202510;

-- 将旧 CDR 导出到归档表

CREATE TABLE cdrs_archive LIKE cdrs;

INSERT INTO cdrs_archive

SELECT * FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

-- 验证并从主表中删除

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

Cron 条目：

计费集成

费率卡架构

为计费创建单独的费率表：

#!/bin/bash

cleanup_old_cdrs.sh - 通过 cron 运行

MYSQL_USER="cleanup_user"

MYSQL_PASS="secure_password"

MYSQL_DB="sms_c"

RETENTION_DAYS=730 # 2 年

归档旧记录

mysql -u"$MYSQL_USER" -p"$MYSQL_PASS" "$MYSQL_DB" <<EOF

INSERT INTO cdrs_archive

SELECT * FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL $RETENTION_DAYS

DAY)

LIMIT 100000;

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL $RETENTION_DAYS

DAY)

LIMIT 100000;

EOF

每天凌晨 2 点运行

0 2 * * * /usr/local/bin/cleanup_old_cdrs.sh >>

/var/log/sms_c/cleanup.log 2>&1

计费查询

将 CDR 与费率连接以进行开票：

CREATE TABLE billing_rates (

 id INT AUTO_INCREMENT PRIMARY KEY,

 destination_prefix VARCHAR(20) NOT NULL,

 description VARCHAR(255),

 rate_per_message DECIMAL(10, 6) NOT NULL,

 rate_per_segment DECIMAL(10, 6) NOT NULL,

 currency VARCHAR(3) DEFAULT 'USD',

 effective_date DATE NOT NULL,

 expiry_date DATE,

 INDEX idx_prefix (destination_prefix),

 INDEX idx_dates (effective_date, expiry_date)

);

-- 示例费率

INSERT INTO billing_rates (destination_prefix, description,

rate_per_message, rate_per_segment, effective_date) VALUES

('+1', '美国/加拿大', 0.0050, 0.0050, '2025-01-01'),

('+44', '英国', 0.0080, 0.0080, '2025-01-01'),

('+61', '澳大利亚', 0.0100, 0.0100, '2025-01-01'),

('+', '国际默认', 0.0150, 0.0150, '2025-01-01');

导出到计费系统

CSV 导出：

SELECT

 DATE(c.submission_time) AS date,

 c.dest_smsc AS route,

 LEFT(c.called_number,

 CASE

 WHEN c.called_number LIKE '+1%' THEN 2

 WHEN c.called_number LIKE '+%' THEN

LENGTH(SUBSTRING_INDEX(c.called_number, '', 4))

 ELSE 0

 END

) AS destination_prefix,

 COUNT(*) AS message_count,

 SUM(c.message_parts) AS segment_count,

 COALESCE(r.rate_per_segment, 0.015) AS rate,

 SUM(c.message_parts) * COALESCE(r.rate_per_segment, 0.015) AS

total_cost

FROM cdrs c

LEFT JOIN billing_rates r ON c.called_number LIKE

CONCAT(r.destination_prefix, '%')

 AND c.submission_time >= r.effective_date

 AND (r.expiry_date IS NULL OR c.submission_time < r.expiry_date)

WHERE c.status = 'delivered'

 AND c.submission_time >= '2025-10-01'

 AND c.submission_time < '2025-11-01'

GROUP BY date, route, destination_prefix

ORDER BY date DESC, total_cost DESC;

另见

配置指南 - 配置 CDR 导出设置

操作指南 - CDR 维护程序

API 参考 - 通过 REST API 查询 CDR

mysql -u billing_ro -p -D sms_c -e "

SELECT

 id,

 message_id,

 calling_number,

 called_number,

 dest_smsc,

 submission_time,

 delivery_time,

 status,

 message_parts

FROM cdrs

WHERE submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

 AND status = 'delivered'

" --batch --silent | sed 's/\t/,/g' > billing_export_202510.csv

SMS-C 配置参考

← 返回文档索引 | 主 README

完整的 SMS-C 配置选项参考，包括常见部署场景的示例。

目录

配置文件

数据库配置

API 配置

Web UI 配置

集群配置

消息队列配置

计费配置

ENUM 配置

号码翻译配置

路由配置

性能调优配置

日志配置

常见配置场景

配置文件

SMS-C 使用三个主要配置文件：

config/config.exs

在编译时加载的静态配置。包含：

应用程序范围的默认值

日志记录配置

开发/测试设置

性能调优参数

config/runtime.exs

在启动时加载的运行时配置。包含：

数据库连接设置

集群配置

外部服务集成（OCS，ENUM）

初始路由和翻译规则

环境特定设置

config/prod.exs（可选）

生产特定的覆盖。

最佳实践：在 runtime.exs 中使用环境变量来处理敏感值，如密码和 API 密钥。

SQL CDR 存储配置

SMS-C 使用 Mnesia 处理操作数据（消息队列、路由规则、号码翻译），并支持外部 SQL 数据库 进行长期 CDR（通话详细记

录）存储、计费和分析。

支持的 SQL 数据库

系统支持以下 SQL 数据库进行 CDR 导出：

数据库 版本 适配器 默认端口 最佳用途

MySQL 8.0+ Ecto.Adapters.MyXQL 3306 通用，经过验证的可靠性

MariaDB 10.5+ Ecto.Adapters.MyXQL 3306 MySQL 兼容，开源

PostgreSQL 13+ Ecto.Adapters.Postgres 5432 高级功能，JSON 支持

注意：Mnesia 自动用于操作数据（消息队列、路由、翻译），无需配置。SQL 数据库 仅 用于 CDR 导出和长期存储。

MySQL / MariaDB 配置

PostgreSQL 配置

选择 SQL 数据库

MySQL/MariaDB - 推荐用于大多数部署：

对 CDR 写入的优秀性能

在电信环境中的可靠性经过验证

对计费系统的广泛工具支持

简单的复制设置

PostgreSQL - 如果您需要：

用于分析的高级 JSON/JSONB 功能

config/runtime.exs

config :sms_c, SmsC.Repo,

 adapter: Ecto.Adapters.MyXQL,

 username: System.get_env("DB_USERNAME") || "sms_user",

 password: System.get_env("DB_PASSWORD") || "secure_password",

 hostname: System.get_env("DB_HOSTNAME") || "localhost",

 port: String.to_integer(System.get_env("DB_PORT") || "3306"),

 database: System.get_env("DB_NAME") || "sms_c_prod",

 pool_size: String.to_integer(System.get_env("DB_POOL_SIZE") ||

"20")

config/runtime.exs

config :sms_c, SmsC.Repo,

 adapter: Ecto.Adapters.Postgres,

 username: System.get_env("DB_USERNAME") || "sms_user",

 password: System.get_env("DB_PASSWORD") || "secure_password",

 hostname: System.get_env("DB_HOSTNAME") || "localhost",

 port: String.to_integer(System.get_env("DB_PORT") || "5432"),

 database: System.get_env("DB_NAME") || "sms_c_prod",

 pool_size: String.to_integer(System.get_env("DB_POOL_SIZE") ||

"20")

对 CDR 数据的复杂查询

现有的 PostgreSQL 基础设施

用于地理分析的 PostGIS

部署拓扑

重要：SQL CDR 数据库可以在与您的 SMS-C 实例 分开的服务器 上运行。这是生产部署的推荐方法。

单服务器部署（开发/测试）：

分布式部署（生产 - 推荐）：

┌────────────────────────��────┐

│ SMS-C 服务器 │

│ ┌──────────┐ ┌──────────┐ │

│ │ SMS-C │ │ SQL DB │ │

│ │ 实例 │ │ (CDR) │ │

│ └──────────┘ └──────────┘ │

│ ┌─────────────────────┐ │

│ │ Mnesia (操作) │ │

│ └─────────────────────┘ │

└─────────────────────────────┘

单独 SQL 服务器的好处：

性能隔离：CDR 写入不会影响消息处理

可扩展性：独立扩展数据库和消息处理

可靠性：数据库维护不会影响 SMS-C 的正常运行

数据管理：多个 SMS-C 实例的集中 CDR 存储

备份灵活性：独立的备份计划和保留策略

┌─────────────────┐ ┌─────────────────┐

│ SMS-C 节点 1 │ │ SMS-C 节点 2 │

│ ┌─────────────┐ │ │ ┌─────────────┐ │

│ │ SMS-C │ │ │ │ SMS-C │ │

│ │ 实例 │◄├──────┤►│ 实例 │ │

│ └──────┬──────┘ │ │ └──────┬──────┘ │

│ │ │ │ │ │

│ ┌──────▼──────┐ │ │ ┌──────▼──────┐ │

│ │ Mnesia │◄├──────┤►│ Mnesia │ │

│ │(复制) │ │ │ │(复制) │ │

│ └─────────────┘ │ │ └─────────────┘ │

└────────┬────────┘ └────────┬────────┘

 │ │

 └──────────┬─────────────┘

 │ 网络

 ┌──────────▼────────────┐

 │ 专用 SQL 服务器 │

 │ ┌──────────────────┐ │

 │ │ MySQL/MariaDB │ │

 │ │ 或 PostgreSQL │ │

 │ │ (CDR 存储) │ │

 │ └──────────────────┘ │

 └───────────────────────┘

连接池大小指南

工作负载 池大小 描述

开发 5-10 最小并发

低流量（< 100 msg/sec） 10-15 小型部署

中等流量（100-1000 msg/sec） 20-30 典型生产

高流量（> 1000 msg/sec） 40-100 高吞吐量场景

计算：pool_size = (预期并发 DB 操作) * 1.5

数据库连接示例

使用环境变量（推荐用于生产）：

直接配置（仅限开发）：

设置环境变量

export DB_USERNAME=sms_prod_user

export DB_PASSWORD=strong_password_here

export DB_HOSTNAME=db-primary.internal.example.com

export DB_PORT=3306

export DB_NAME=sms_c_production

export DB_POOL_SIZE=30

config :sms_c, SmsC.Repo,

 username: "dev_user",

 password: "dev_password",

 hostname: "localhost",

 database: "sms_c_dev",

 pool_size: 5

连接池监控

通过 Prometheus 指标监控池使用情况：

ecto_pools_queue_time - 等待连接的时间

ecto_pools_query_time - 查询执行时间

ecto_pools_connected_count - 活动连接数

如果等待时间持续超过 100ms - 表示需要更大的池。

API 配置

REST API 提供消息提交和管理功能。

�本 API 配置

TLS/SSL 配置

生产设置带 TLS（推荐）：

开发设置不带 TLS：

config/runtime.exs

config :api_ex,

 port: String.to_integer(System.get_env("API_PORT") || "8443"),

 listen_ip: System.get_env("API_LISTEN_IP") || "0.0.0.0",

 enable_tls: System.get_env("API_ENABLE_TLS") != "false"

config :api_ex,

 port: 8443,

 listen_ip: "0.0.0.0",

 enable_tls: true,

 tls_cert_path: "/etc/sms_c/certs/server.crt",

 tls_key_path: "/etc/sms_c/certs/server.key"

API 证书设置

生成自签名证书用于测试：

对于生产环境，使用受信任的 CA（Let's Encrypt、商业 CA 等）提供的证书。

API 访问控制

IP 白名单（应用防火墙）：

config :api_ex,

 port: 8080,

 listen_ip: "127.0.0.1",

 enable_tls: false

创建证书目录

mkdir -p priv/cert

生成私钥

openssl genrsa -out priv/cert/server.key 2048

生成证书签名请求

openssl req -new -key priv/cert/server.key -out

priv/cert/server.csr \

 -subj "/C=US/ST=State/L=City/O=Organization/CN=sms-

api.example.com"

生成自签名证书（有效期 365 天）

openssl x509 -req -days 365 -in priv/cert/server.csr \

 -signkey priv/cert/server.key -out priv/cert/server.crt

设置权限

chmod 600 priv/cert/server.key

chmod 644 priv/cert/server.crt

API 密钥认证（应用级别）：

通过自定义插件在路由器中配置 - 有关实现细节，请参阅操作指南。

Web UI 配置

Web 界面提供路由管理、消息浏览和监控。

�本 Web UI 配置

生产 Web UI 设置

使用 iptables（Linux）

iptables -A INPUT -p tcp --dport 8443 -s 10.0.0.0/8 -j ACCEPT

iptables -A INPUT -p tcp --dport 8443 -j DROP

使用 firewalld（Red Hat/CentOS）

firewall-cmd --permanent --add-rich-rule='rule family="ipv4"

source address="10.0.0.0/8" port protocol="tcp" port="8443"

accept'

firewall-cmd --reload

config/runtime.exs

config :control_panel,

 port: String.to_integer(System.get_env("WEB_PORT") || "80"),

 hostname: System.get_env("WEB_HOSTNAME") || "localhost",

 enable_tls: System.get_env("WEB_ENABLE_TLS") == "true"

config :control_panel,

 port: 443,

 hostname: "sms-admin.example.com",

 enable_tls: true,

 tls_cert_path: "/etc/sms_c/certs/web.crt",

 tls_key_path: "/etc/sms_c/certs/web.key"

反向代理设置（推荐）

使用 Nginx 或 Apache 作为反向代理以增强安全性和功能：

Nginx 配置示例：

upstream sms_web {

 server 127.0.0.1:4000;

 keepalive 32;

}

server {

 listen 80;

 server_name sms-admin.example.com;

 return 301 https://$server_name$request_uri;

}

server {

 listen 443 ssl http2;

 server_name sms-admin.example.com;

 ssl_certificate /etc/letsencrypt/live/sms-

admin.example.com/fullchain.pem;

 ssl_certificate_key /etc/letsencrypt/live/sms-

admin.example.com/privkey.pem;

 ssl_protocols TLSv1.2 TLSv1.3;

 ssl_ciphers HIGH:!aNULL:!MD5;

 # 基本认证以增强安全性

 auth_basic "SMS-C Admin";

 auth_basic_user_file /etc/nginx/.htpasswd;

 location / {

 proxy_pass http://sms_web;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

 # LiveView 的 WebSocket 支持

 location /live {

 proxy_pass http://sms_web;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

集群配置

SMS-C 支持多节点集群以实现高可用性和负载分配。

单节点设置

多节点静态集群

 proxy_read_timeout 86400;

 }

}

config/runtime.exs

config :sms_c,

 cluster_nodes: [], # 空��表 = 单节点模式

 smsc_node_name: "node1"

节点 1: config/runtime.exs

config :sms_c,

 cluster_nodes: [

 :"sms@node1.internal.example.com",

 :"sms@node2.internal.example.com",

 :"sms@node3.internal.example.com"

],

 smsc_node_name: "node1"

节点 2: config/runtime.exs

config :sms_c,

 cluster_nodes: [

 :"sms@node1.internal.example.com",

 :"sms@node2.internal.example.com",

 :"sms@node3.internal.example.com"

],

 smsc_node_name: "node2"

�于 DNS 的自动发现

DNS 自动发现的设置：

Erlang 分布式配置

使用正确名称启���节点：

重要：集群中的所有节点必须使用相同的 Erlang cookie 以确保安全。

config :sms_c,

 dns_cluster_query: "sms-cluster.internal.example.com",

 smsc_node_name: System.get_env("NODE_NAME") || "node1"

为集群节点配置 SRV 或 A 记录

SRV 记录（优先）：

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node1.internal.example.com.

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node2.internal.example.com.

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node3.internal.example.com.

A 记录（替代）：

sms-cluster.internal.example.com. IN A 10.0.1.10

sms-cluster.internal.example.com. IN A 10.0.1.11

sms-cluster.internal.example.com. IN A 10.0.1.12

节点 1

export NODE_NAME=sms@node1.internal.example.com

export ERLANG_COOKIE=shared_secret_cookie_here

elixir --name $NODE_NAME --cookie $ERLANG_COOKIE -S mix phx.server

节点 2

export NODE_NAME=sms@node2.internal.example.com

export ERLANG_COOKIE=shared_secret_cookie_here

elixir --name $NODE_NAME --cookie $ERLANG_COOKIE -S mix phx.server

集群网络要求

在集群节点之间打开这些端口：

端口范围 协议 目的

4369 TCP Erlang 端口映射守护进程（EPMD）

9100-9200 TCP Erlang 分布

防火墙配置示例：

消息队列配置

控制消息保留和过期行为。

消息过期

常见值：

60 - 1 小时（测试/开发）

1440 - 24 小时（典型生产）

4320 - 3 天（延长保留）

10080 - 7 天（最大保留）

超过�值的消息将变得不可交付，并标记��清理。

允许来自内部网络的集群流量

iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 4369 -j ACCEPT

iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 9100:9200 -j ACCEPT

config/runtime.exs

config :sms_c,

 dead_letter_time_minutes: 1440 # 24 小时

投递重试配置

重试行为使用指数回退：

尝试 延迟

1 2 分钟

2 4 分钟

3 8 分钟

4 16 分钟

5 32 分钟

6 64 分钟

7 128 分钟

8 256 分钟

在死信之前的最大尝试次数：受 dead_letter_time_minutes 限制。

清理配置

清理间隔：

重试延迟 = 2^(尝试次数) 分钟

config/config.exs

config :sms_c,

 cleanup_interval_minutes: 10,

 fingerprint_ttl_minutes: 5,

 event_ttl_days: 7

cleanup_interval_minutes：清理工作程序运行的频率（默认：10）

fingerprint_ttl_minutes：重复检测窗口（默认：5）

event_ttl_days：事件日志保留（默认：7）

计费配置

与 OCS 进行在线计费和计费集成。

启用计费

禁用计费

禁用时，所有消息都���被处理而不进行计费检查。

config/runtime.exs

config :sms_c,

 default_charging_enabled: true,

 ocs_url: "http://ocs.internal.example.com:2080/jsonrpc",

 ocs_tenant: "sms.example.com",

 ocs_destination: "default",

 ocs_source: "sms_platform",

 ocs_subject: "sms_user",

 ocs_account: "default_account"

config/runtime.exs

config :sms_c,

 default_charging_enabled: false

每租户计费配置

按租户的环境变量：

计费失败行为

配置计费失败时发生的事情：

:allow - 即使计费失败也处理消息（记录错误）

:deny - 如果计费失败则拒绝消息

OCS 连接示例

测试 OCS 连接性：

config :sms_c,

 ocs_url: System.get_env("OCS_URL") ||

"http://localhost:2080/jsonrpc",

 ocs_tenant: System.get_env("OCS_TENANT") ||

"tenant1.example.com",

 ocs_account: System.get_env("OCS_ACCOUNT") || "default"

租户 1

export OCS_TENANT=tenant1.example.com

export OCS_ACCOUNT=tenant1_account

租户 2

export OCS_TENANT=tenant2.example.com

export OCS_ACCOUNT=tenant2_account

config :sms_c,

 charging_failure_action: :allow # 或 :deny

预期响应：

ENUM 配置

基于 DNS 的 E.164 号码查找以实现智能路由。

禁用 ENUM（默认）

测试 OCS API

curl -X POST http://ocs.internal.example.com:2080/jsonrpc \

 -H "Content-Type: application/json" \

 -d '{

 "method": "SessionSv1.AuthorizeEvent",

 "params": [{

 "Tenant": "sms.example.com",

 "Account": "test_account",

 "Destination": "1234567890",

 "Usage": 100

 }],

 "id": 1

 }'

{

 "id": 1,

 "result": {

 "Attributes": {},

 "MaxUsage": 100,

 ...

 }

}

config/runtime.exs

config :sms_c,

 enum_enabled: false

启用带默认 DNS 的 ENUM

启用带自定义 DNS 服务器的 ENUM

ENUM 域优先级

域按顺序查询，直到成功查找：

ENUM 性能调优

对于低延迟网络：

config :sms_c,

 enum_enabled: true,

 enum_domains: ["e164.arpa", "e164.org"],

 enum_dns_servers: [], # 使用系统默认 DNS

 enum_timeout: 5000 # 5 秒

config :sms_c,

 enum_enabled: true,

 enum_domains: ["e164.internal.example.com", "e164.arpa"],

 enum_dns_servers: [

 {"10.0.1.53", 53}, # 内部 DNS 服务器

 {"8.8.8.8", 53}, # Google 公共 DNS（后备）

 {"1.1.1.1", 53} # Cloudflare DNS（后备）

],

 enum_timeout: 3000 # 3 秒（更快的故障转移）

config :sms_c,

 enum_domains: [

 "e164.internal.example.com", # 首先尝试内部

 "e164.carrier.net", # 然后是运营商

 "e164.arpa" # 然后是公共注册

]

enum_timeout: 2000 # 2 秒

对于高延迟/卫星链接：

ENUM DNS 设置示例

配置私有 ENUM 区域（BIND9 格式）：

测试 ENUM 解析：

号码翻译配置

基于正则表达式的号码规范化，在路由之前应用。

enum_timeout: 10000 # 10 秒

; e164.internal.example.com 的区域文件

$ORIGIN e164.internal.example.com.

$TTL 300

; 号码：+1-555-0100 变为 0.0.1.0.5.5.5.1.e164.internal.example.com

0.0.1.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 10 "u"

"E2U+sip" "!^.*$!sip:15550100@voip-gateway.example.com!" .

0.0.1.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 20 "u"

"E2U+pstn" "!^.*$!pstn:gateway-a.example.com!" .

; 号码：+1-555-0200

0.0.2.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 10 "u"

"E2U+sip" "!^.*$!sip:15550200@voip-gateway.example.com!" .

查询 ENUM 域

dig @10.0.1.53 NAPTR 0.0.1.0.5.5.5.1.e164.internal.example.com

预期输出包括 NAPTR 记录：

0.0.1.0.5.5.5.1.e164.internal.example.com. 300 IN NAPTR 100 10

"u" "E2U+sip" "!^.*$!sip:15550100@voip-gateway.example.com!" .

禁用号码翻译

�本号码翻译示例

为本地号码添加国家代码：

规范化国际格式：

config/runtime.exs

config :sms_c,

 translation_rules: []

config :sms_c,

 translation_rules: [

 %{

 calling_prefix: nil,

 called_prefix: "",

 source_smsc: nil,

 calling_match: "^(\d{10})$", # 匹配 10 位数字

 calling_replace: "+1\1", # 前面加上 +1

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "为 10 位北美号码添加 +1",

 enabled: true

 }

]

移除格式字符：

运营商特定翻译

路由代码剥离：

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(\d+)$", # 匹配 00 前缀

 calling_replace: "+\1", # 替换为 +

 called_match: "^00(\d+)$",

 called_replace: "+\1",

 priority: 10,

 description: "将 00 国际前缀转换为 +",

 enabled: true

}

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^\+?1?[\s\-\.\(\)]*(\d{3})[\s\-\.\)\(]*(\d{3})

[\s\-\.\(\)]*(\d{4})$",

 calling_replace: "+1\1\2\3",

 called_match: "^\+?1?[\s\-\.\(\)]*(\d{3})[\s\-\.\)\(]*(\d{3})

[\s\-\.\(\)]*(\d{4})$",

 called_replace: "+1\1\2\3",

 priority: 50,

 description: "规范化美国电话号码格式",

 enabled: true

}

多规则翻译

规则按优先级顺序进行评估（数字越小，优先级越高）：

%{

 calling_prefix: nil,

 called_prefix: "101", # 仅适用于 101 前缀

 source_smsc: "carrier_a", # 仅来自此运营商

 calling_match: nil, # 不更改呼叫

 calling_replace: nil,

 called_match: "^101(\d+)$", # 剥离 101 路由代码

 called_replace: "\1",

 priority: 5,

 description: "从被叫号码中剥离运营商路由代码",

 enabled: true

}

路由配置

初始路由规���在首次启动时加载。有关完整路由文档，请参阅 SMS 路由指南。

config :sms_c,

 translation_rules: [

 # 优先级 1：最具体的规则优先

 %{

 calling_prefix: "1555",

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(1555\d{7})$",

 calling_replace: "+\1",

 called_match: nil,

 called_replace: nil,

 priority: 1,

 description: "高级号码规范化",

 enabled: true

 },

 # 优先级 50：一般规则

 %{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 50,

 description: "一般 10 位数字规范化",

 enabled: true

 }

]

从配置加载路由

config/runtime.exs

config :sms_c,

 sms_routes: [

 # 地理路由示例

 %{

 calling_prefix: nil,

 called_prefix: "+1",

 source_smsc: nil,

 dest_smsc: "north_america_gateway",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 100,

 priority: 50,

 description: "北美路由",

 enabled: true

 },

 # 负载均衡路由示例

 %{

 calling_prefix: nil,

 called_prefix: "+44",

 source_smsc: nil,

 dest_smsc: "uk_gateway_1",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 70,

 priority: 50,

 description: "英国主网关（70%）",

 enabled: true

 },

 %{

 calling_prefix: nil,

 called_prefix: "+44",

跳过初始路由加载

仅在路由表为空（首次启动）时加载配置中定义的路由。

性能调优配置

有关详细优化策略，请参阅 性能调优指南。

批量插入工作程序

性能配置文件：

 source_smsc: nil,

 dest_smsc: "uk_gateway_2",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 30,

 priority: 50,

 description: "英国备份网关（30%）",

 enabled: true

 }

]

不从配置加载路由（仅通过 Web UI 管理）

config :sms_c,

 sms_routes: []

config/config.exs

config :sms_c,

 batch_insert_batch_size: 100, # 每批�息数量

 batch_insert_flush_interval_ms: 100 # 最大等待时间（毫秒）

配置文件 批量大小 间隔 吞吐量 延迟

高流量 200 200ms ~5,000 msg/sec 最多 200ms

平衡 100 100ms ~4,500 msg/sec 最多 100ms

低延迟 50 20ms ~3,000 msg/sec 最多 20ms

实时 10 10ms ~1,500 msg/sec 最多 10ms

日志配置

日志级别

生产推荐：:info 或 :warning 开发推荐：:debug

日志输出目标

仅控制台（开发）：

文件日志（生产）：

config/config.exs

config :logger, :console,

 level: :info, # :debug, :info, :warning, :error

 format: "$time $metadata[$level] $message\n",

 metadata: [:request_id, :message_id, :route_id]

config :logger,

 backends: [:console]

日志轮换

使用 logrotate（Linux）：

常见配置场景

高流量聚合器

优化以实现最大吞吐量（5,000+ 消息/秒）：

config :logger,

 backends: [:console, {LoggerFileBackend, :file_log}]

config :logger, :file_log,

 path: "/var/log/sms_c/application.log",

 level: :info,

 format: "$time $metadata[$level] $message\n",

 metadata: [:request_id, :message_id]

/etc/logrotate.d/sms_c

/var/log/sms_c/*.log {

 daily

 rotate 30

 compress

 delaycompress

 notifempty

 create 0644 sms_user sms_group

 sharedscripts

 postrotate

 # 信号应用程序重新打开日志文件

 systemctl reload sms_c

 endscript

}

企业实时消息

优化以实现低延迟（< 20ms）：

数据库

config :sms_c, SmsC.Repo,

 pool_size: 50

批量工作程序

config :sms_c,

 batch_insert_batch_size: 200,

 batch_insert_flush_interval_ms: 200

�息保留

config :sms_c,

 dead_letter_time_minutes: 1440 # 24 小时

计费（为性能禁用）

config :sms_c,

 default_charging_enabled: false

清理（延长间隔）

config :sms_c,

 cleanup_interval_minutes: 30

开发/测试

优化以进行调试和可见性：

数据库

config :sms_c, SmsC.Repo,

 pool_size: 20

批量工作程序（低延迟）

config :sms_c,

 batch_insert_batch_size: 20,

 batch_insert_flush_interval_ms: 10

�息保留

config :sms_c,

 dead_letter_time_minutes: 4320 # 3 天

计费（启用）

config :sms_c,

 default_charging_enabled: true,

 ocs_url: "http://ocs.local:2080/jsonrpc"

多租户服务提供商

每个租户的单独配置：

数据库

config :sms_c, SmsC.Repo,

 pool_size: 5

批量工作程序（立即）

config :sms_c,

 batch_insert_batch_size: 1,

 batch_insert_flush_interval_ms: 10

日志（详细）

config :logger, :console,

 level: :debug

�息保留（短）

config :sms_c,

 dead_letter_time_minutes: 60 # 1 小时

计费（禁用）

config :sms_c,

 default_charging_enabled: false

租户 1 环境

export DB_NAME=sms_c_tenant1

export OCS_TENANT=tenant1.example.com

export OCS_ACCOUNT=tenant1_account

export NODE_NAME=sms_tenant1@node1.example.com

租户 2 环境

export DB_NAME=sms_c_tenant2

export OCS_TENANT=tenant2.example.com

export OCS_ACCOUNT=tenant2_account

export NODE_NAME=sms_tenant2@node1.example.com

地理冗余

跨区域集群：

配置验证

在部署之前测试配置：

环境变量参考

配置中使用的常见环境变量：

美国东部集群

config :sms_c,

 cluster_nodes: [

 :"sms@us-east-1a.example.com",

 :"sms@us-east-1b.example.com",

 :"sms@us-west-1a.example.com" # 跨区域用于灾难恢复

],

 smsc_node_name: "us-east-1a"

检查配置语法

mix compile

验证数据库连接

mix ecto.create

mix ecto.migrate

测试 OCS 连接性（如果启用）

curl -X POST http://localhost:2080/jsonrpc -H "Content-Type:

application/json" \

 -d '{"method":"SessionSv1.Ping","params":[],"id":1}'

以交互模式启动应用程序

iex -S mix phx.server

变量 目的 示例

DB_USERNAME 数据库用户名 sms_prod_user

DB_PASSWORD 数据库密码 strong_password

DB_HOSTNAME 数据库主机 db.internal.example.com

DB_PORT 数据库端口 3306

DB_NAME 数据库名称 sms_c_production

DB_POOL_SIZE 连接池大小 30

API_PORT API 监听端口 8443

API_LISTEN_IP API 监听 IP 0.0.0.0

WEB_PORT Web UI 端口 443

NODE_NAME Erlang 节点名称 sms@node1.example.com

ERLANG_COOKIE 集群密钥 shared_cookie_value

OCS_URL OCS API URL http://ocs.local:2080/jsonrpc

OCS_TENANT OCS 租户 sms.example.com

配置最佳实践

1. 使用环境变量处理敏感值（密码、API 密钥）

2. 在生产之前测试配置更改于暂存环境

3. 在部署说明中记录自定义设置

4. 对配置文件进行版本控制（不包括机密）

5. 在更改后进行监控以检测性能回归

6. 保留工作配置的备份

7. 在重启之前进行验证以避免启动失败

8. 在各个环境中使用一致的命名

9. 根据硬件设置资源限制

10. 定期审查以删除未使用的功能

故障排除配置问题

症状 可能原因 解决方案

应用程序无法启动 配置中的语法错误 检查日志，验证语法

数据库连接失败 错误的凭据/主机 验证 DB_* 环境变量

API 无法访问 错误的端口/IP 绑定 检查 API_PORT 和 listen_ip

集群节点无法连接
Cookie 不匹配，防火

墙

验证 ERLANG_COOKIE，检查端口 4369、9100-

9200

计费失败 OCS 无法访问 测试 ocs_url 的连接性

ENUM 查找失

败
DNS 服务器无法访问 测试 DNS 连接性，检查超时

性能不佳 错误的批量设置 查看性能调优指南

消息未路由 路由未加载 检查 sms_routes 配置或 Web UI

如需更多帮助，请参阅 故障排除指南。

消息存储配置（Mnesia）

消息保留

消息存储在 Mnesia 中以便快速访问，并具有可配置的自动清理。

建议：

生产：24-72 小时（平衡操作需求与内存）

开发：4-8 小时（更快的清理以进行测试）

高流量：12-24 小时（节省内存）

内存影响：

平均消息：~1KB

10,000 消息：~10MB

100,000 消息：~100MB

CDR（通话详细记录）导出

当消息被投递或过期时，CDR 可以自动写入您的 Ecto 数据库以进行长期存储和计费分析。

CDR 记录包括：

消息 ID，呼叫/被叫号码

config :sms_c,

 # 在 Mnesia 中保留�息的时间（小时）

 message_retention_hours: 24,

 # 检查旧�息的频率（分钟）

 retention_check_interval_minutes: 60

config :sms_c,

 # 启用/禁用 CDR 写入

 cdr_enabled: true

源/目的 SMSC

源/目的节点（对于集群）

提交、投递、过期时间戳

状态，投递尝试

可选消息正文（见隐私控制）

何时禁用：

��需要 CDR 的测试环境

临时故障排除以减少数据库负载

隐私控制

配置消息正文的可见性和保留，以符合隐私合规性。

用例：

配置 用例

delete_message_body_after_delivery: true 节省 Mnesia 空间，符合隐私合规

hide_message_body_in_ui: true 防止操作员查看消息内容

hide_message_body_in_export: true 数据导出合规，清理报告

示例配置：

config :sms_c,

 # 成功投递后从 Mnesia 中删除�息正文

 delete_message_body_after_delivery: false,

 # 在 Web UI 中隐藏�息正文

 hide_message_body_in_ui: false,

 # 在 CSV 导出中隐藏�息正文

 hide_message_body_in_export: false

�大隐私（合规）

开发（完全可见性）

启动日志

在应用程序启动时，配置状态会被记录：

这提供了对活动功能的即时可见性。

config :sms_c,

 delete_message_body_after_delivery: true,

 hide_message_body_in_ui: true,

 hide_message_body_in_export: true,

 cdr_enabled: true # 保留没有正文的 CDR

config :sms_c,

 delete_message_body_after_delivery: false,

 hide_message_body_in_ui: false,

 hide_message_body_in_export: false,

 cdr_enabled: true

[info] �息存储：Mnesia（保留：24小时）

[info] CDR ���出：已启用

[info] 投递后删除正文：已禁用

[info] OCS 计费：已启用（url: http://..., tenant: ...）

SMS-C Prometheus 指标文

档

← 返回文档索引 | 主 README

概述

本文档描述了 SMS-C 系统暴露的所有 Prometheus 指标。这些指标旨在供运维人员监控系统健康、性能，并排查问题。

访问指标

Prometheus 指标端点可在以下地址访问：

�端点以 Prometheus 文本格式暴露指标，可以被 Prometheus 服务器抓取。指标在系统处理消息时实时更新。

指标命名约定

所有指标遵循以下模式：sms_c.<category>.<metric_name>.<type>

类别：

license - 许可证状态指标

message - 消息处理指标

routing - 路由决策指标

enum - ENUM/NAPTR 查找指标

delivery - 消息投递指标

queue - 队列管理指标

charging - 计费/收费指标

mnesia - 数据库指标

http://localhost:9568/metrics

frontend - 前端连接指标

location - 位置/注册指标

phoenix.endpoint - HTTP API 请求指标

vm - Erlang VM 系统指标

许可证指标

sms_c_license_status

类型: Gauge

描述: OmniMessage SMS-C 系统的当前许可证状态。

值:

1 - 有效许可证

0 - 无效/过期许可证

标签: 无

产品名称: omnimessage

用例: 监控许可证有效性，以确保系统在有效许可证下运行。当无效时，消息仍然会被接收，但会被路由到目的地 "NOLICENCE" 而不是正

常路由。

许可证无效时的行为:

入站消息被 接受 并存储

消息目的地 (dest_smsc) 自动设置为 "NOLICENCE"

正常路由被 绕过

UI 和监控保持 可访问

数据库和所有服务保持 正常运行

告警:

示例 Prometheus 查询:

消息处理指标

sms_c_message_received_count

类型: Counter

描述: SMS-C 从所有来源接收到的消息总数。

标签:

source_smsc : 发送消息的源 SMSC 名称

source_type : 源连接类型 (ims, circuit_switched, smpp)

message_type : 消息类型 (sms, mms)

用例: 按来源和类型监控入站消息量。用于检测流量模式、识别繁忙时段，并发现消息流中的异常。

- alert: SMS_C_License_Invalid

 expr: sms_c_license_status == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "SMS-C 许可证无效或过期"

 description: "许可证状态无效 - �息被路由到 NOLICENCE"

检查许可证是否有效

sms_c_license_status == 1

对无效许可证发出警报

sms_c_license_status == 0

计算路由到 NOLICENCE 的�息数量（表明许可证问题）

sms_c_routing_route_matched_count{dest_smsc="NOLICENCE"}

告警: 对突然下降（潜在的源连接问题）或激增（潜在的攻击/垃圾邮件）设置告警。

sms_c_message_validated_count

类型: Counter

描述: 执行的消息验证总数。

标签:

valid : 验证是否通过 (true 或 false)

用例: 跟踪验证成功/失败率。高失败率可能表明消息格式错误或集成问题。

告警: 当验证失败率超过阈值时发出警报（例如，> 5% 失败）。

sms_c_message_processing_stop_duration

类型: Histogram

描述: 从接收消息到完成处理所需的时间（包括验证、路由和排队）。

单位: 毫秒

桶: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

标签:

success : 处理是否成功 (true 或 false)

用例: 监控端到端消息处理性能。识别处理管道中的减速。

告警: 当 p95 或 p99 延迟超过 SLA 阈值时发出警报。

路由指标

sms_c_routing_route_matched_count

类型: Counter

描述: 特定路由被匹配并选择用于消息路由的总次数。

标签:

route_id : 匹配路由的唯一标识符

dest_smsc : 路由选择的目标 SMSC

priority : 匹配路由的优先级值

用例: 理解哪些路由被使用得最频繁。识别未充分利用或过载的路由。对容量规划和路由优化很有用。

告警: 如果高优先级路由很少被匹配（可能表明路由配置错误）则发出警报。

sms_c_routing_failed_count

类型: Counter

描述: 找不到合适路由的路由失败总数。

标签:

reason : 失败原因 (no_route_found, validation_failed, 等)

用例: 跟踪路由失败以识别配置缺口或意外流量模式。

告警: 对任何路由失败发出警报，因为它们表明消息无法送达。

sms_c_routing_action_count

类型: Counter

描述: 采取的特殊路由操作总数。

标签:

action : 操作类型 (drop, auto_reply, forward)

route_id : 触发操作的路由

用例: 监控丢弃规则（反垃圾邮件）、自动回复使用情况和转发模式。

告警: 对丢弃操作的意外激增发出警报（可能表明垃圾邮件攻击）。

sms_c_routing_stop_duration

类型: Histogram

描述: 评估所有路由并选择最佳匹配所需的时间。

单位: 毫秒

桶: 1, 5, 10, 25, 50, 100, 250, 500 ms

标签:

dest_smsc : 选择的目标 SMSC

用例: 监控路由引擎性能。缓慢的路由表明路由过多或匹配逻辑复杂。

告警: 当路由所需时间持续超过预期时发出警报（例如，p95 > 50ms）。

ENUM/NAPTR 查找指标

sms_c_enum_cache_hit_count

类型: Counter

描述: 从缓存中服务的 ENUM 查找总数（不需要 DNS 查询）。

标签:

domain : 查询的 ENUM 域

用例: 监控缓存有效性。高缓存命中率减少 DNS 负载并提高性能。

告警: 如果缓存命中率低于阈值发出警报（可能表明缓存问题或异常流量）。

sms_c_enum_cache_miss_count

类型: Counter

描述: 需要 DNS 查询的 ENUM 查找总数（不在缓存中）。

标签:

domain : 查询的 ENUM 域

用例: 跟踪缓存未命中以理解缓存有效性。与命中计数一起使用以计算命中率。

计算: cache_hit_rate = hits / (hits + misses)

sms_c_enum_cache_size_size

类型: Gauge

描述: ENUM 缓存中当前条目数量。

用例: 监控缓存大小以确保其不无限��长。帮助调整缓存 TTL 设置。

告警: 如果缓存大小超过预期范围发出警报（可能表明内存泄漏）。

sms_c_enum_lookup_stop_duration

类型: Histogram

描述: 完成 ENUM 查找所需的时间（包括未缓存时的 DNS 查询）。

单位: 毫秒

桶: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

标签:

domain : 查询的 ENUM 域

success : 查找是否成功 (true 或 false)

cache_hit : 结果是否来自缓存 (true 或 false)

用例: 监控 ENUM 查找性能。识别缓慢的 DNS 服务器或网络问题。

告警: 当 p95 查找时间超过超时阈值时发出警报。

sms_c_enum_naptr_records_record_count

类型: Histogram

描述: 成功 ENUM 查找返回的 NAPTR 记录数量。

桶: 0, 1, 2, 3, 5, 10

标签:

domain : 查询的 ENUM 域

用例: 理解 ENUM 记录分布。大多数查找应返回 1-3 条记录。

告警: 如果经常返回 0 条记录发出警报（DNS 配置问题）。

投递指标

sms_c_delivery_queued_count

类型: Counter

描述: 排队等待投递到目标 SMSC 的消息总数。

标签:

dest_smsc : 目标 SMSC 名称

用例: 监控每个目标的消息流。对容量规划很有用。

告警: 与投递成功/失败计数进行比较以检测积累。

sms_c_delivery_attempted_count

类型: Counter

描述: 进行的投递尝试总数（包括重试）。

标签:

dest_smsc : 目标 SMSC 名称

用例: 跟踪投递尝试量。相对于排队计数的高尝试计数表明重试行为。

sms_c_delivery_succeeded_count

类型: Counter

描述: 成功投递到目标 SMSC 的消息总数。

标签:

dest_smsc : 目标 SMSC 名称

用例: 跟踪每个目标的成功投递。主要成功指标。

告警: 如果成功率低于 SLA 阈值发出警报。

计算: success_rate = succeeded / queued

sms_c_delivery_failed_count

类型: Counter

描述: 在所有重试尝试后未能投递的消息总数。

标签:

dest_smsc : 目标 SMSC 名称

reason : 失败原因

用例: 跟踪投递失败以识别问题目标或失败模式。

告警: 对高失败率或特定失败原因发出警报。

sms_c_delivery_dead_letter_count

类型: Counter

描述: 移动到死信队列（无法投递）的消息总数。

标签:

reason : 死信原因（例如，max_retries_exceeded , expired）

用例: 监控需要手动干预的无法投递的消息。

告警: 对任何死信事件发出警报，因为它们表示完全投递失败。

sms_c_delivery_succeeded_duration

类型: Histogram

描述: 从消息排队到成功投递的端到端时间。

单位: 毫秒

桶: 100, 500, 1000, 5000, 10000, 30000, 60000 ms

标签:

dest_smsc : 目标 SMSC 名称

用例: 监控投递延迟。识别缓慢的目标或网络问题。

告警: 当 p95 投递时间超过 SLA 阈值时发出警报。

sms_c_delivery_succeeded_attempt_count

类型: Histogram

描述: 成功投递前所需的投递尝试次数。

桶: 1, 2, 3, 5, 10

标签:

dest_smsc : 目标 SMSC 名称

用例: 理解重试行为。大多数投递应在第一次尝试时成功。

告警: 如果平均尝试次数超过 2 发出警报（表明目标可靠性问题）。

sms_c_delivery_failed_attempt_count

类型: Histogram

描述: 最终失败前进行的投递尝试次数。

桶: 1, 2, 3, 5, 10

标签:

dest_smsc : 目标 SMSC 名称

用例: 理解在放弃之前发生多少次重试。

队列指标

sms_c_queue_size_size

类型: Gauge

描述: 当前队列中消息的总数（所有状态合并）。

标签:

queue_type : 队列类型 (message_queue, dead_letter)

用例: 监控队列深度以检测积压或处理问题。

告警: 当队列大小超过容量阈值时发出警报。

sms_c_queue_size_pending

类型: Gauge

描述: 当前待投递的消息数量（尚未尝试）。

标签:

queue_type : 队列类型

用例: 监控待处理消息计数。高待处理计数表明处理延迟。

告警: 当待处理计数在较长时间内超过阈值时发出警报。

sms_c_queue_size_failed

类型: Gauge

描述: 当前处于失败状态的消息数量（等待重试）。

标签:

queue_type : 队列类型

用例: 监控失败消息的积累。表明投递问题。

告警: 对高失败计数发出警报，因为这会影响投递率。

sms_c_queue_size_delivered

类型: Gauge

描述: 当前等待清理/从队列中移除的已投递消息数量。

标签:

queue_type : 队列类型

用例: 监控清理滞后。高计数表明清理过程滞后。

告警: 如果已投递消息显著积累发出警报。

sms_c_queue_oldest_message_age_seconds

类型: Gauge

描述: 当前待处理状态中最旧消息的年龄（以秒为单位）。

标签:

queue_type : 队列类型

用例: 检��消息老化和处理停滞。对 SLA 监控至关重要。

告警: 当最旧消息的年龄超过 SLA 阈值时发出警报（例如，> 300 秒）。

计费指标

sms_c_charging_requested_count

类型: Counter

描述: 向 OCS 或计费系统发出的计费请求总数。

标签:

account : 被计费的账户标识符

用例: 跟踪每个账户的计费量。对账单对账很有用。

sms_c_charging_succeeded_count

类型: Counter

描述: 成功的计费操作总数。

标签:

account : 被计费的账户标识符

用例: 监控每个账户的计费成功率。

计算: success_rate = succeeded / requested

sms_c_charging_failed_count

类型: Counter

描述: 失败的计费操作总数。

标签:

account : 账户标识符

reason : 失败原因

用例: 识别可能影响收入或需要账户干预的计费失败。

告警: 对高计费失败率发出警报。

sms_c_charging_succeeded_duration

类型: Histogram

描述: 完成成功计费请求所需的时间。

单位: 毫秒

桶: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

标签:

account : 账户标识符

用例: 监控计费系统性能。缓慢的计费可能会延迟��息投递。

告警: 当 p95 计费时间超过阈值时发出警报。

系统健康指标

sms_c_mnesia_table_size_record_count

类型: Gauge

描述: 每个 Mnesia 数据库表中的当前记录数量。

标签:

table : 表名称（例如，sms_route）

用例: 监控数据库增长。检测意外数据积累。

告警: 对意外表增长率发出警报。

sms_c_frontend_status_count

类型: Gauge

描述: 每个连接状态下的前端数量。

标签:

frontend_name : 前端标识符

status : 连接状态 (connected, disconnected)

用例: 监控前端连接性。检测连接失败。

告警: 当预期的前端断开连接时发出警报。

sms_c_location_registered_count

类型: Counter

描述: 系统接收到的位置信息/用户注册的总数。

标签:

location : 用户注册的前端/SMSC 名称

ims_capable : 用户是否支持 IMS (true/false)

用例: 监控用户注册活动。跟踪 IMS 与非 IMS 用户。检测注册风暴或失败。

告警: 设置告警以监控：

注册率下降（可能表明网络问题）

注册的异常激增

非 IMS 注册的高比例（旧设备涌入）

示例查询:

HTTP API 请求指标

phoenix_endpoint_stop_duration

类型: Distribution (Histogram)

描述: HTTP 请求处理持续时间（以毫秒为单位），从请求开始到响应完成。

标签:

route : API 端点路由（例如，/api/messages , /api/frontends）

桶: 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2.5s, 5s

用例: 监控 API 性能。识别缓慢的端点。跟踪响应时间 SLA。

告警: 设置告警以监控：

关键端点的 P95 延迟 > 500ms

任何端点的 P99 延迟 > 1s

延迟趋势上升

示例查询:

每分钟注册率

rate(sms_c_location_registered_count[1m])

IMS 与非 IMS 注册比例

sum(rate(sms_c_location_registered_count{ims_capable="true"}[5m]))

/

sum(rate(sms_c_location_registered_count[5m]))

phoenix_endpoint_stop_count

类型: Counter

描述: 按路由和 HTTP 状态码分类的完成 HTTP 请求总数。

标签:

route : API 端点路由

status : HTTP 状态码 (200, 201, 400, 404, 500, 等)

用例: 监控 API 请求量和成功率。按端点跟踪错误率。

告警: 设置告警以监控：

任何端点的错误率 > 5%

关键端点的 5xx 错误

请求量的突然下降

示例查询:

按端点的 P95 响应时间

histogram_quantile(0.95,

 rate(phoenix_endpoint_stop_duration_bucket[5m]))

响应时间超过 1 秒的请求

sum(rate(phoenix_endpoint_stop_duration_bucket{le="1000"}[5m]))

phoenix_router_dispatch_exception_count

类型: Counter

描述: 在 HTTP 请求处理期间引发的异常/错误总数。

标签:

route : 发生异常的 API 端点路由

kind : 异常类型 (error, exit, throw)

用例: 跟踪应用程序错误。识别问题端点。监控系统稳定性。

告警: 对关键端点的任何非零值设置告警。

示例查询:

每个端点的请求率

sum by (route) (rate(phoenix_endpoint_stop_count[5m]))

按端点的错误率

sum by (route) (rate(phoenix_endpoint_stop_count{status=~"5.."}

[5m])) /

sum by (route) (rate(phoenix_endpoint_stop_count[5m]))

成功率

sum(rate(phoenix_endpoint_stop_count{status=~"2.."}[5m])) /

sum(rate(phoenix_endpoint_stop_count[5m]))

按端点的异常率

rate(phoenix_router_dispatch_exception_count[5m])

最近一小时的总异常

increase(phoenix_router_dispatch_exception_count[1h])

Erlang VM 指标

vm_memory_total

类型: Gauge

描述: Erlang VM 分配的总内存（以字节为单位）。

用例: 监控整体内存使用情况。检测内存泄漏。进行容量规划。

��警: 当内存使用 > 80% 的可用系统内存时发出警报。

vm_memory_processes

类型: Gauge

描述: Erlang 进程使用的内存（以字节为单位）。

用例: 跟踪进程内存消耗。最常见的内存增长来源。

告警: 对持续的高增长率发出警报。

vm_total_run_queue_lengths_total

类型: Gauge

描述: 所有 CPU 调度器中等待调度的进程总数。

用例: 测量系统负载。高值表明 CPU 饱和。

告警: 当持续 > 10 * CPU 核心数时发出警报。

vm_system_counts_process_count

类型: Gauge

描述: 当前在 VM 中运行的进程数量。

用例: 监控进程创建模式。检测进程泄漏。

告警: 当接近进程限制（默认 262,144）时发出警报。

指标收集和轮询

系统每 10 秒自动收集以下指标：

队列大小和年龄

Mnesia 表大小

ENUM 缓存统计

所有其他指标都是事件驱动的，并在相应操作发生时发出。

常见监控模式

按目标的投递成功率

跟踪每个目标 SMSC 的消息投递成功率：

公式: (sms_c_delivery_succeeded_count) / (sms_c_delivery_queued_count)

解释: 应该 > 95% 以确保目标健康。较低的比率表明投递问题。

端到端消息延迟

监控从消息接收到投递的总时间：

指标:

sms_c_message_processing_stop_duration (处理)

sms_c_delivery_succeeded_duration (投递)

解释: 总和表示用户面临的延迟。

ENUM 缓存有效性

测量 ENUM 缓存的性能：

公式: (sms_c_enum_cache_hit_count) / (sms_c_enum_cache_hit_count +

sms_c_enum_cache_miss_count)

解释: 应该 > 80% 在预热后。较低的比率可能表明短 TTL 或高流量波动。

路由利用率

识别哪些路由处理最多流量：

指标: sms_c_routing_route_matched_count 按 route_id 分组

解释: 用于识别热路由以进行优化和容量规划。

队列积压趋势

监控消息队列是增长（积压）还是缩小（赶上）：

指标:

sms_c_queue_size_pending (当前待处理)

sms_c_queue_oldest_message_age_seconds (年龄趋势)

解释: 增长的待处理计数 + 增加的年龄 = 积压形成。

重试率

了解投递重试的频率：

指标: sms_c_delivery_succeeded_attempt_count histogram percentiles

解释: 如果 p95 > 1，大多数消息需要重试。表明目标可靠性问题。

推荐告警

告警 条件 严重性 描述

高路由失

败率
routing_failed_count 增加 Critical

消息无

法路由

队列积压 queue_size_pending > 阈值 Warning
消息积

累

队列中的

旧消息
queue_oldest_message_age_seconds > 300 Critical

SLA

违规

投递失败

激增
delivery_failed_count 激增 High

目标问

题

死信事件 delivery_dead_letter_count > 0 High

无法投

递的消

息

ENUM

查找超时
enum_lookup_stop_duration p95 > 5000ms Warning

DNS

问题

低缓存命

中率
ENUM 缓存命中率 < 0.7 Warning

缓存无

效

前端断开

连接

frontend_status_count{status="disconnected"}

> 0
High

连接丢

失

计费失败 charging_failed_count > 阈值 High
计费问

题

消息处理

缓慢

message_processing_stop_duration p95 >

1000ms
Warning

性能下

降

仪表板推荐

运维仪表板

目的: 实时系统健康监控

面板:

1. 消息吞吐量（每分钟接收/处理/投递）

2. 队列大小（待处理、失败、已投递）

3. 按目标的投递成功率

4. p95 处理和投递延迟

5. 活跃前端状态

6. 当前告警

性能仪表板

目的: 系统性能分析

面板:

1. 消息处理持续时间直方图

2. 路由持续时间直方图

3. ENUM 查找���续时间直方图

4. 计费持续时间直方图

5. 投递尝试分布

6. 缓存命中率

业务仪表板

目的: 流量和使用分析

面板:

1. 按源 SMSC 的消息

2. 按目标 SMSC 的消息

3. 路由利用率热图

4. 自动回复和丢弃操作计数

5. ENUM 使用统计

6. 按账户的计费量

指标保留

推荐的 Prometheus 保留设置：

原始指标: 15 天

5 分钟聚合: 90 天

1 小时聚合: 2 年

这提供了详细的近期历史，同时保持长期趋势以进行容量规划。

使用指标进行故障排除

场景：消息未能投递

调查步骤：

1. 检查 sms_c_message_received_count - 消息是否被接收？

2. 检查 sms_c_routing_failed_count - 它们是否被路由？

3. 检查 sms_c_delivery_queued_count - 它们是否被排队？

4. 检查 sms_c_delivery_failed_count - 投递尝试是否失败？

5. 检查 dest_smsc 标签以识别问题目标

场景：消息处理缓慢

调查步骤：

1. 检查 sms_c_message_processing_stop_duration 直方图 - 整体处理时间

2. 检查 sms_c_routing_stop_duration - 路由是否缓慢？

3. 检查 sms_c_enum_lookup_stop_duration - ENUM 查找是否缓慢？

4. 检查 sms_c_charging_succeeded_duration - 计费是否���慢？

5. 识别瓶颈并调查特定组件

场景：消息队列增长

调查步骤：

1. 检查 sms_c_queue_size_pending 趋势 - 是否在增长？

2. 检查 sms_c_delivery_attempted_count - 是否发生投递尝试？

3. 检查 sms_c_delivery_failed_count - 它们是否失败？

4. 检查 sms_c_delivery_succeeded_duration - 投递是否花费过长时间？

5. 检查 dest_smsc 标签以识别缓慢的目标

Prometheus 查询示例

消息吞吐量

每秒接收的消息（5 分钟平均）:

每分钟接收的消息（1 小时平均）:

rate(sms_c_message_received_count[5m])

rate(sms_c_message_received_count[1h]) * 60

今天的总消息:

按源类型的消息:

按源 SMSC 的消息:

投递性能

投递成功率（百分比）:

投递失败率（百分比）:

平均投递尝试（p95）:

按目标的投递成功:

increase(sms_c_message_received_count[24h])

sum by (source_type) (rate(sms_c_message_received_count[5m]))

sum by (source_smsc) (rate(sms_c_message_received_count[5m]))

(rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

(rate(sms_c_delivery_failed_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count_bucket)

sum by (dest_smsc) (rate(sms_c_delivery_succeeded_count[5m]))

投递失败原因:

投递时间（p95）:

投递时间（p99）:

队列指标

当前待处理消息:

等待重试的失败消息:

最旧消息的年龄（分钟）:

队列增长率（消息/小时）:

进入队列的消息:

sum by (reason) (rate(sms_c_delivery_failed_count[5m]))

histogram_quantile(0.95, sms_c_delivery_succeeded_duration_bucket)

histogram_quantile(0.99, sms_c_delivery_succeeded_duration_bucket)

sms_c_queue_size_pending

sms_c_queue_size_failed

sms_c_queue_oldest_message_age_seconds / 60

rate(sms_c_queue_size_size[1h]) * 3600

离开队列的消息:

队列积压（进入 - 离开）:

路由性能

路由成功率:

使用最多的路由:

路由延迟（p50, p95, p99）:

每分钟的路由失败:

rate(sms_c_delivery_queued_count[5m])

rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m])

rate(sms_c_delivery_queued_count[5m]) -

(rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m]))

(1 - (rate(sms_c_routing_failed_count[5m]) /

(rate(sms_c_routing_route_matched_count[5m]) +

rate(sms_c_routing_failed_count[5m])))) * 100

topk(10, sum by (route_id, dest_smsc)

(rate(sms_c_routing_route_matched_count[1h])))

histogram_quantile(0.50, sms_c_routing_stop_duration_bucket)

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

histogram_quantile(0.99, sms_c_routing_stop_duration_bucket)

每小时的丢弃操作:

每小时的自动回复操作:

ENUM 性能

ENUM 缓存命中率:

ENUM 缓存命中百分比:

ENUM 查找延迟（p95）:

每秒的 ENUM 查找（缓存与未缓存）:

rate(sms_c_routing_failed_count[5m]) * 60

increase(sms_c_routing_action_count{action="drop"}[1h])

increase(sms_c_routing_action_count{action="auto_reply"}[1h])

rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))

(rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))) * 100

histogram_quantile(0.95, sms_c_enum_lookup_stop_duration_bucket)

返回的平均 NAPTR 记录:

ENUM 缓存大小:

处理性能

消息处理延迟（p95）:

消息处理延迟（p99）:

处理失败:

验证失败率:

缓存（快速）

rate(sms_c_enum_cache_hit_count[5m])

未缓存（需要 DNS 查询）

rate(sms_c_enum_cache_miss_count[5m])

rate(sms_c_enum_naptr_records_record_count_sum[5m]) /

rate(sms_c_enum_naptr_records_record_count_count[5m])

sms_c_enum_cache_size_size

histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket)

histogram_quantile(0.99,

sms_c_message_processing_stop_duration_bucket)

rate(sms_c_message_processing_stop_duration_count{success="false"}

[5m])

计费指标

计费成功率:

每分钟的计费失败:

计费延迟（p95）:

按账户的计费量:

前端健康

活跃前端:

断开连接的前端:

rate(sms_c_message_validated_count{valid="false"}[5m]) /

rate(sms_c_message_validated_count[5m])

rate(sms_c_charging_succeeded_count[5m]) /

rate(sms_c_charging_requested_count[5m])

rate(sms_c_charging_failed_count[5m]) * 60

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

sum by (account) (rate(sms_c_charging_requested_count[1h]))

sum(sms_c_frontend_status_count{status="connected"})

sum(sms_c_frontend_status_count{status="disconnected"})

按名称的前端:

系统健康

Mnesia 表大小:

路由计数:

翻译规则计数:

Grafana 仪表板示例

仪表板 1: 实时运维

目的: 监控当前系统活动和健康。

面板:

1. 消息吞吐量（图形）

查询: rate(sms_c_message_received_count[5m])

查询: rate(sms_c_delivery_succeeded_count[5m])

单位: messages/second

图例: {{source_type}}

sum by (frontend_name)

(sms_c_frontend_status_count{status="connected"})

sms_c_mnesia_table_size_record_count

sms_c_mnesia_table_size_record_count{table="sms_route"}

sms_c_mnesia_table_size_record_count{table="translation_rule"}

2. 投递成功率（仪表）

查询: (rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

单位: percent (0-100)

阈值:

红色: < 90

黄色: 90-95

绿色: > 95

3. 队列深度（图形）

查询: sms_c_queue_size_pending

查询: sms_c_queue_size_failed

单位: messages

图例: {{queue_type}}

4. 最旧消息年龄（状态）

查询: sms_c_queue_oldest_message_age_seconds / 60

单位: minutes

阈值:

绿色: < 5

黄色: 5-10

红色: > 10

5. 活跃前端（状态）

查询: sum(sms_c_frontend_status_count{status="connected"})

单位: count

颜色: 蓝色

6. 路由失败（图形）

查询: rate(sms_c_routing_failed_count[5m]) * 60

单位: failures/minute

警报阈值: > 0

仪表板 2: 性能分析

目的: 分析系统性能并识别瓶颈。

面板:

1. 端到端延迟（图形）

查询: histogram_quantile(0.50,

sms_c_message_processing_stop_duration_bucket) (p50)

查询: histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket) (p95)

查询: histogram_quantile(0.99,

sms_c_message_processing_stop_duration_bucket) (p99)

单位: milliseconds

图例: Percentile

2. 组件延迟（条形仪表）

路由: histogram_quantile(0.95,

sms_c_routing_stop_duration_bucket)

ENUM: histogram_quantile(0.95,

sms_c_enum_lookup_stop_duration_bucket)

计费: histogram_quantile(0.95,

sms_c_charging_succeeded_duration_bucket)

投递: histogram_quantile(0.95,

sms_c_delivery_succeeded_duration_bucket)

单位: milliseconds

水平条形

3. 投递尝试分布（热图）

查询: sms_c_delivery_succeeded_attempt_count_bucket

显示通常需要多少次尝试

颜色比例: 蓝色（1 次尝试）到红色（多次尝试）

4. ENUM 缓存性能（图形）

命中率: rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))

缓存大小: sms_c_enum_cache_size_size

双 Y 轴（速率与大小）

5. 处理成功率（仪表）

查询:

(rate(sms_c_message_processing_stop_duration_count{success="tru

e"}[5m]) /

rate(sms_c_message_processing_stop_duration_count[5m])) * 100

单位: percent

阈值:

红色: < 95

黄色: 95-99

绿色: > 99

仪表板 3: 流量分析

目的: 分析消息流量模式和路由分布。

面板:

1. 按源类型的消息（饼图）

查询: sum by (source_type)

(increase(sms_c_message_received_count[1h]))

显示分布: IMS vs CS vs SMPP

2. 按源 SMSC 的消息（条形图）

查询: sum by (source_smsc)

(rate(sms_c_message_received_count[1h]))

前 10 个源

水平条形

3. 路由利用率（表格）

列:

路由 ID

目标 SMSC

消息（1h）: sum by (route_id, dest_smsc)

(increase(sms_c_routing_route_matched_count[1h]))

优先级

成功率

按消息计数排序

4. 按目标的投递（图形）

查询: sum by (dest_smsc)

(rate(sms_c_delivery_succeeded_count[5m]))

单位: messages/second

堆叠面积图

图例: {{dest_smsc}}

5. 丢弃/自动回复操作（状态）

丢弃: increase(sms_c_routing_action_count{action="drop"}[1h])

自动回复: increase(sms_c_routing_action_count{action="auto_reply"}

[1h])

并排状态

6. 每小时流量模式（图形）

查询: rate(sms_c_message_received_count[1h]) * 3600

时间范围: 最近 7 天

显示每日模式

仪表板 4: 容量与资源

目的: 监控资源使用情况和容量限制。

面板:

1. 队列容量（图形）

当前: sms_c_queue_size_size

容量线: 基于系统限制的固定值

显示利用率趋势

2. 数据库表增长（图形）

消息: sms_c_mnesia_table_size_record_count{table="sms_route"}

翻译:

sms_c_mnesia_table_size_record_count{table="translation_rule"}

最近 30 天的趋势

3. 消息积压趋势（图形）

查询: rate(sms_c_delivery_queued_count[5m]) -

(rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m]))

正值 = 积压增长

负值 = 赶上

4. 峰值流量（状态）

查询: max_over_time(rate(sms_c_message_received_count[5m])[24h:])

显示最近 24 小时内的最高 5m 速率

单位: messages/second

5. 容量利用率（仪表）

查询: (rate(sms_c_message_received_count[5m]) / MAX_CAPACITY) *

100

将 MAX_CAPACITY 替换为您的系统限制

单位: percent

阈值:

绿色: < 70

黄色: 70-85

红色: > 85

仪表板 5: SLA 合规性

目的: 跟踪 SLA 指标和合规性。

面板:

1. SLA 合规性（仪表）

投递成功: (rate(sms_c_delivery_succeeded_count[1h]) /

rate(sms_c_delivery_queued_count[1h])) * 100

目标线在 99%

阈值:

红色: < 95

黄色: 95-99

绿色: >= 99

2. 在 SLA 内投递的消息（状态）

查询: count(sms_c_delivery_succeeded_duration_bucket{le="5000"})

/ count(sms_c_delivery_succeeded_duration_bucket)

显示在 5 秒内投递的百分比

单位: percent

3. SLA 违规（计数器）

超过 5 分钟的消息: increase(sms_c_queue_oldest_message_age_seconds{} >

300)[24h:]

应为 0

4. 正常运行时间（状态）

查询: up{job="sms-c"}

二进制: 1 = 正常，0 = 异常

显示当前状态

5. 每日成功率趋势（图形）

查询: avg_over_time((rate(sms_c_delivery_succeeded_count[1h]) /

rate(sms_c_delivery_queued_count[1h]))[24h:1h])

时间范围: 最近 30 天

SLA 线在 99%

告警规则示例

关键告警

路由失败:

队列积压:

队列中的旧消息:

alert: RoutingFailuresDetected

expr: increase(sms_c_routing_failed_count[5m]) > 0

for: 2m

labels:

 severity: critical

annotations:

 summary: "{{ $value }} 路由失败在过去 5 分钟内"

 description: "�息无法路由。检查路由配置。"

alert: MessageQueueBacklog

expr: sms_c_queue_size_pending > 10000

for: 5m

labels:

 severity: critical

annotations:

 summary: "�息队列有 {{ $value }} 条待处理�息"

 description: "队列正在积压。检查投递性能。"

所有前端断开连接:

死信队列增长:

警告告警

低投递成功率:

alert: OldMessagesInQueue

expr: sms_c_queue_oldest_message_age_seconds > 300

for: 2m

labels:

 severity: critical

annotations:

 summary: "最旧�息已存在 {{ $value }} 秒"

 description: "�息未被投递。检查前端。"

alert: NoActiveFrontends

expr: sum(sms_c_frontend_status_count{status="connected"}) == 0

for: 1m

labels:

 severity: critical

annotations:

 summary: "没有前端连接"

 description: "没有可用的投递路径。检查前端连接。"

alert: DeadLetterMessagesIncreasing

expr: rate(sms_c_delivery_dead_letter_count[10m]) > 0

for: 5m

labels:

 severity: critical

annotations:

 summary: "{{ $value }} 条�息移动到死信队列"

 description: "�息变得无法投递。调查失败原因。"

高重试率:

消息处理缓慢:

ENUM 查找失败:

alert: LowDeliverySuccessRate

expr: (rate(sms_c_delivery_succeeded_count[10m]) /

rate(sms_c_delivery_queued_count[10m])) < 0.95

for: 10m

labels:

 severity: warning

annotations:

 summary: "投递成功率为 {{ $value | humanizePercentage }}"

 description: "成功率低于 95%。调查投递失败。"

alert: HighDeliveryRetryRate

expr: histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count_bucket) > 2

for: 15m

labels:

 severity: warning

annotations:

 summary: "95th 百分位投递尝试次数: {{ $value }}"

 description: "�息需要多次尝试。检查目标可靠性。"

alert: SlowMessageProcessing

expr: histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket) > 1000

for: 10m

labels:

 severity: warning

annotations:

 summary: "95th 百分位处理时间: {{ $value }}ms"

 description: "�息处理缓慢。检查系统资源。"

低 ENUM 缓存命中率:

计费失败:

附加说明

所有持续时间指标在内部使用纳秒精度，但在报告时转换为毫秒

alert: HighEnumFailureRate

expr: rate(sms_c_enum_lookup_stop_duration_count{success="false"}

[10m]) > 0.1

for: 10m

labels:

 severity: warning

annotations:

 summary: "ENUM 查找失败率: {{ $value }}"

 description: "DNS 查找失败。检查 DNS 服务器。"

alert: LowEnumCacheHitRate

expr: rate(sms_c_enum_cache_hit_count[10m]) /

(rate(sms_c_enum_cache_hit_count[10m]) +

rate(sms_c_enum_cache_miss_count[10m])) < 0.70

for: 30m

labels:

 severity: warning

annotations:

 summary: "ENUM 缓存命中率: {{ $value | humanizePercentage }}"

 description: "缓存效率低。可能表明唯一号码流量。"

alert: ChargingFailuresDetected

expr: rate(sms_c_charging_failed_count[10m]) > 0.05

for: 10m

labels:

 severity: warning

annotations:

 summary: "计费失败率: {{ $value }}"

 description: "计费系统错误。检查 OCS 连接。"

计数器指标是累积的，应在 Prometheus 查询中使用 rate() 或 increase() 函数

Gauge 指标表示在收集时的瞬时值

直方图指标提供百分位数计算（p50, p95, p99），并可用于创建热图

所有指标均包括 Prometheus 添加的默认标签（实例、作业等）

创建仪表板时，使用适当的时间范围：实时使用 5m，趋势使用 1h，容量规划使用 24h+

在 Prometheus 中设置记录规则以提高仪表板性能，适用于频繁使用的复杂查询

在 Grafana 中使用变量模板以实现动态仪表板（选择 dest_smsc、source_smsc 等）

SMS-C号码转换指南

← 返回文档索引 | 主README

概述

SMS-C号码转换系统在路由之前提供灵活的基于正则表达式的电话号码转换。转换规则可以规范化号码、添加国际前缀、为特定网关格式化号码，

并将多个转换串联在一起。规则存储在Mnesia中以确保持久性，并可以在运行时修改而不会中断服务。

主要特点

�于前缀的匹配：在应用转换之前通过前缀匹配号码

�于正则表达式的转换：强大的模式匹配和替换，带有捕获组

源SMSC过滤：根据消息来源应用不同的转换

�于优先级的评估：通过可配置的优先级（1-255）控制规则顺序

规则链式处理：通过循环预防继续处理多个规则

独立的呼叫/被叫转换：对发起和目的号码进行独立转换

配置文件加载：在首次启动时从runtime.exs加载初始规则

运行时配置：在不重启的情况下添加、修改或禁用规则

Web UI：���整的CRUD接口用于规则管理

模拟工具：逐步评估测试转换逻辑

备份/恢复：导出和导入转换配置

预路由集成：在路由之前应用转换以确保一致的号码格式

架构

数据模型

每个转换规则包含以下字段：

字段 类型 描述 必需

rule_id 整数 自动递增的唯一标识符 是（自动）

calling_prefix 字符串/nil 呼叫号码的前缀匹配（nil = 通配符） 否

called_prefix 字符串/nil 被叫号码的前缀匹配（nil = 通配符） 否

source_smsc 字符串/nil 源SMSC名称（nil = 通配符） 否

calling_match 字符串/nil 匹配呼叫号码的正则表达式模式 否

calling_replace 字符串/nil 呼叫号码的替换模式 否

called_match 字符串/nil 匹配被叫号码的正则表达式模式 否

called_replace 字符串/nil 被叫号码的替换模式 否

priority 整数 规则优先级（1-255，数字越小优先级越高） 是

description 字符串 人类可读的描述 否

enabled 布尔值 启用/禁用规则 是

continue 布尔值 匹配后继续评估规则（默认：false） 否

注意：规则按优���级顺序评估（数字越小越先）。只有启用的规则才会被评估。

转换算法

在转换号码时，系统：

1. 检索启用的规则，按优先级排序（最低优先级优先）

2. 依次评估规则与消息参数：

匹配calling_prefix（如果指定）

匹配called_prefix（如果指定）

匹配source_smsc（如果指定）

3. 应用第一个匹配的规则：

使用calling_match和calling_replace转换呼叫号码

使用called_match和called_replace转换被叫号码

4. 检查继续标志：

如果continue: false → 停止处理，返回结果

如果continue: true → 从可用规则中移除匹配的规则，使用转换后的号码继续进行步骤2

5. 返回最终号码和所有应用规则的列表

带循环预防的规则链式处理

continue标志启用强大的规则链式处理，同时防止无限循环：

通配符

nil或空值作为通配符，匹配任何值

没有匹配条件的规则是一个捕获所有规则

没有转换模式（nil匹配/替换）的规则将号码原样传递

示例：规则链式处理场景

Parse error on line 20: ...] style R1 fill:#38B2AC style R ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

�试

配置

从配置文件加载规则

转换规则可以在config/runtime.exs中定义，并将在首次启动时自动加载。

重要：仅在转换表为空时加载配置中的规则（首次启动）。这保留了在运行时通过Web UI添加的规则，并防止在重启时出现重复。

配置加载流程

是

否

是

否

是

应用启动

转换表\n为空?

从\nconfig/runtime.exs加载

规则

对于配置中的每个规则

验证规则字段

有效?

添加到Mnesia

否

跳过配置加载\n保留现有规则

记录错误\n跳过规则 记录成功

还有更多规则?

报告摘要\n加载的规则N/M

规则准备就绪

示例配置

config/runtime.exs

config :sms_c, :translation_rules, [

 # 为10位美国号码添加+1

 %{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: "us_domestic_smsc",

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "为来自国内SMSC的10位美国号码添加+1",

 enabled: true,

 continue: false

 },

 # 去掉国际格式的前导零

 %{

 calling_prefix: "00",

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(.+)$",

 calling_replace: "+\1",

 called_match: nil,

 called_replace: nil,

 priority: 5,

 description: "将00国际前缀转换为+",

 enabled: true,

 continue: true # 继续应用更多格式

 },

 # 为特定网关格式化英国号码

 %{

 calling_prefix: "+44",

 called_prefix: "+44",

 source_smsc: nil,

 calling_match: "^\+44(.*)$",

 calling_replace: "0044\1",

 called_match: "^\+44(.*)$",

 called_replace: "0044\1",

 priority: 20,

 description: "为传统网关格式化英国号码",

 enabled: true,

 continue: false

 }

]

入门

初始化流程

消息转换流程

事件记录器规则数据库转换引擎应用程序

事件记录器规则数据库转换引擎应用程序

使用

转换后的号码继续循环

alt [规则有continue: true]

[规则有continue: false]

alt [规则匹配条件]

[没有更多匹配]

loop [对于每个匹配的规则]

translate_numbers(calling, called, source_smsc)

记录 "translation_started"

获取启用的规则（按优先级排序）

返回规则列表

记录 "N启用规则"

do_translate_numbers

(available_rules, matched_rules=[])

找到第一个匹配的规则

记录 "规则匹配"

应用calling_match → calling_replace

应用called_match → called_replace

记录转换

将规则添加到matched_rules

记录 "继续处理"

从available_rules中移除规则

停止处理

停止处理

记录最终结果

{:ok, final_calling, final_called, matched_rules}

常见用例

国际号码规范化

将各种国际格式规范化为E.164：

以00开头 以011开头 10位数字，无前缀 已是+

输入号码

检查格式

规则1: 优先级5

00... → +...

continue: true

规则2: 优先级5

011... → +...

continue: true

规则3: 优先级10

xxxxxxxxxx → +1...

continue: false

规则4: 优先级100

直接通过

continue: false

规范化为E.164

特定网关格式化

链式规则以满足特定网关要求的格式化号码：

Parse error on line 2: ...chart TD I[输入: "5551234567"] --> S1[----------------------

^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

�试

SMSC特定翻译

根据消息来源应用不同的翻译：

�于前缀的路由准备

在路由之前规范化号码，以确保一致的前缀匹配：

混合格式号码

转换规则

(555) 123-4567 →

+15551234567

00441234567890 →

+441234567890

639123456789 →

+639123456789

规范化为E.164格式

路由引擎

可以可靠地匹配

前缀: +1, +44, +63

转换确保

路由规则可以

可靠地匹配前缀

号码可移植性处理

处理需要前缀更改的移植号码：

Parse error on line 18: ... style Input fill:#3182CE style R -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

�试

Web界面

转换规则管理UI

通过导航菜单访问规则管理界面 /number_translation：

功能：

在可排序的表格中查看所有规则，按优先级排序

通过表单验证添加新规则

编辑现有规则

启用/��用规则而不删除

确认后删除规则

对于continue: true的规则提供可视指示

以JSON格式导入/导出规则

添加规则：

1. 填写匹配条件（可选）：

呼叫前缀（例如，“+1”，“44”）

被叫前缀（例如，“+639”，“1555”）

源SMSC（留空表示任何）

2. 定义转换（可选）：

呼叫号码正则匹配和替换

被叫号码正则匹配和替换

3. 设置优先级（1-255，数字越小优先级越高）

4. 设置状态：

启用：规则处于活动状态

继续处理：在�规则匹配后继续评估更多规则

5. 添加描述

6. 点击“添加规则”或“更新规则”

继续处理切换：

停止（默认）：在�规则匹配后停止处理

继续：应用�规则并继续评估剩余规则

启用继续的规则在表格中显示蓝色“↓ 继续”徽章

编辑规则：

1. 点击规则旁边的“编辑”

2. 根据需要修改字段

3. 点击“更新规则”

规则表指示：

启用/禁用徽章显示规则状态

↓ 继续徽章显示将继续处理的规则

优先级徽章显示评估顺序

正则模式以等宽字体显示以提高清晰度

转换模拟器

通过导航菜单访问模拟器 /translation_simulator：

功能：

使用实际号码测试转换逻辑

逐步转换显示应用的每个规则

查看每个转换的前后值

查看匹配的规则及其原因

加载示例场景以快速测试

查看测试历史（最近10次测试）

使用模拟器：

1. 输入测试参数：

呼叫号码（来自）

被叫号码（到）

源SMSC（可选）

2. 点击“测试转换”

3. 查看全面的结果：

转换结果：所有转换后的最终号码

应用的规则：所有匹配的规则的计数和列表

逐步转换：每个规则的详细视图：

步骤编号和规则信息

规则描述

呼叫和被叫号码的前后值

对于继续处理的规则的“↓ 继续”指示

以绿色突出显示的转换

标记为“直接通过”的未更改值

4. 使用示例按钮加载预配置的示例

5. 查看测试历史以比较不同场景

示例输出：

转换结果

═══

呼叫号码: 5551234567 → +1-555-123-4567

被叫号码: 9078720155 → +1-907-872-0155

✓ 由3条规则翻译

逐步转换

═══════════════════════════��═══════════════

┌─ 步骤1 ────────────────────────────────┐

│ 规则 #1 (优先级10) ↓ 继续 │

│ 为10位数字添加国家代码 │

│ │

│ 被叫: 9078720155 → +19078720155 │

└──┘

┌─ 步骤2 ────────────────────────────────┐

│ 规则 #2 (优先级20) ↓ 继续 │

│ 使用破折号格式化区号 │

│ │

│ 被叫: +19078720155 → +1-907-8720155 │

└──┘

┌─ 步骤3 ────────────────────────────────┐

│ 规则 #3 (优先级30) │

│ 网关的最终格式化 │

│ │

│ 被叫: +1-907-8720155 → +1-907-872-0155│

└─────────────────────────���────────────────┘

API参考

核心操作概述

转换参数

translate_numbers接受以下参数：

calling_number（可选）：发��电话号码

called_number（可选）：目的电话号码

source_smsc（可选）：源SMSC标识符

message_id（可选）：用于事件记录

返回：

{:ok, translated_calling, translated_called, [rules_applied]} - 始终成

功

如果没有规则匹配，则返回原始号码

返回所有应用的规则列表（按顺序）

示例用法

{:ok, new_calling, new_called, rules} =

 NumberTranslation.translate_numbers(

 calling_number: "5551234567",

 called_number: "9078720155",

 source_smsc: "domestic_gateway",

 message_id: "msg_123"

)

检查是否发生了任何转换

if rules != [] do

 Logger.info("应用了 #{length(rules)} 条转换规则")

 Enum.each(rules, fn rule ->

 Logger.info(" - 规则 ##{rule.rule_id}: #{rule.description}")

 end)

end

规则管理操作

添加新规则

{:ok, rule} = NumberTranslation.add_rule(%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: "gateway1",

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "为10位数字添加+1",

 enabled: true,

 continue: false

})

更新规则

{:ok, updated_rule} = NumberTranslation.update_rule(rule_id, %{

 enabled: false,

 description: "用于测试而禁用"

})

删除规则

:ok = NumberTranslation.delete_rule(rule_id)

获取特定规则

rule = NumberTranslation.get_rule(rule_id)

列出所有规则

all_rules = NumberTranslation.list_rules()

仅列出启用的规则（按优先级排序）

enabled_rules = NumberTranslation.list_enabled_rules()

导入/导出操作

最佳实践

规则设计

1. 保持优先级有序：

1-10：关键规范化规则（添加国家代码，修复格式）

11-50：特定网关格式化

51-100：可选转换

101+：捕获所有或调试规则

2. 战略性使用continue：

对于准备进一步处理的规范化规则启用continue: true

对于最终格式化规则禁用continue: false

导出所有规则

backup = NumberTranslation.export_rules()

返回: %{

version: "1.0",

exported_at: ~U[2024-01-15 10:30:00Z],

count: 5,

rules: [...]

}

保存为JSON文件

json = Jason.encode!(backup, pretty: true)

File.write!("translation_rules_backup.json", json)

导入规则（与现有规则合并）

{:ok, %{imported: 3, failed: 0}} =

 NumberTranslation.import_rules(backup, mode: :merge)

导入规则（替换所有现有规则）

{:ok, %{imported: 5, failed: 0}} =

 NumberTranslation.import_rules(backup, mode: :replace)

避免长链（最多3-4条规则）以保持性能

3. 记录规则：

始终添加清晰的描述

在描述中包含示例（例如，“5551234567 → +15551234567”）

记录目的和预期输入/输出

4. 测试正则模式：

在部署之前使用模拟器测试模式

使用捕获组（\1，\2）进行灵活的转换

转义特殊正则字符（点、括号等）

性能

1. 最小化规则数量：

尽可能合并相似规则

使用前缀匹配以减少正则评估

删除或禁用未使用的规则

2. 优化正则模式：

首先使用前缀匹配（比正则更快）

保持正则模式简单

避免重回溯的模式

3. 限制规则链式处理：

长链（5条以上规则）可能影响性能

考虑将多个步骤合并为一条规则

使用Telemetry指标监控转换延迟

操作

1. 在部署之前测试：

使用模拟器进行真实示例测试

测试边缘情况（空号码，特殊字符）

验证continue标志行为

2. 定期备份：

在进行重大更改之前导出规则

对导出进行版本控制

在非生产环境中测试导入

3. 监控转换：

启用message_id记录以进行调试

检查事件日志以了解转换决策

监控应用的规则

4. 逐步推出：

首先添加新规则时禁用

使用模拟器测试

启用并监控

根据需要进行调整

正则提示

1. 常见模式：

10位美国号码：^(\d{10})$

国际格式：^\+(\d+)$

去掉前导零：^0+(.+)$

添加破折号：^(\d{3})(\d{3})(\d{4})$ → \1-\2-\3

2. 捕获组：

使用括号进行捕获：^(\d{3})(\d{7})$

在替换中引用：+1\1\2

多个捕获：^\+(\d{1,3})(\d+)$ → 00\1\2

3. 转义特殊字符：

字面点：\

字面加号：\+

字面括号：\(或\)

故障排除

规则未匹配

症状：预期规则未匹配，号码未转换

可能原因：

前缀不匹配（检查是否精确匹配前缀）

源SMSC不匹配

正则模式未匹配输入格式

规则已禁用

优先级更高的规则优先匹配（带有continue: false）

解决方案：

1. 使用模拟器查看评估的规则

2. 检查规则状态（启用/禁用）

3. 验证前缀匹配（区分大小写）

4. 单独测试正则模式

5. 检查优先级顺序

错误的转换应用

症状：号码已转换但结果不正确

可能原因：

正则模式匹配但替换模式错误

多条规则以意外顺序应用

捕获组引用不正确（\1，\2等）

解决方案：

1. 使用模拟器查看逐步转换

2. 验证正则模式捕获正确的组

3. 检查替换模式语法

4. 在在线正则测试器中测试正则

5. 审查规则优先级和continue标志

无限循环/性能下降

症状：转换耗时很长或似乎挂起

注意：由于循环预防，这不应该发生，但如果发生：

可能原因：

循环预防逻辑中的错误

极其复杂的正则评估

非常长的规则链

解决方案：

1. 检查应用程序日志以查找错误

2. 审查具有continue: true的规则

3. 简化正则模式

4. 减少链式规则的数量

5. 如果循环预防失败，请报告错误

意外的规则链式处理

症状：应用的规则比预期的多

可能原因：

规则在不应该的情况下具有continue: true

优先级排序允许多个匹配

转换后的号码匹配额外规则

解决方案：

1. 使用模拟器查看确切的规则链

2. 审查所有规则的continue标志

3. 调整优先级以控制顺序

4. 在最终规则上设置continue: false

转换未在路由之前应用

症状：路由器看到未转换的号码

可��原因：

转换未集成到消息流中

转换发生在路由之后

应用程序代码绕过转换

解决方案：

1. 验证应用程序集成：转换应在路由之前调用

2. 检查消息处理管道

3. 审查事件日志以获取转换事件

4. 确保在正确的顺序中调用translate_numbers

高级主题

与路由的集成

转换发生在路由之前，以确保一致的号码格式：

网关路由引擎号码转换应用程序

网关路由引擎号码转换应用程序

转换确保

路由规则看到

规范化的号码

translate_numbers(calling, called, source_smsc)

{translated_calling, translated_called, rules}

route_message(translated_calling, translated_called)

{dest_smsc, route}

send_message(dest_smsc, translated numbers)

事件记录

通过EventLogger记录转换决策：

translation_started : 转换开始

translation_candidates : 启用规则的数量

translation_matched : 匹配并应用的规则

translation_calling : 转换的呼叫号码

translation_called : 转换的被叫号码

translation_continue : 规则具��continue=true，继续评估

translation_none : 没有规则匹配

通过将message_id传递给translate_numbers/1启用记录。

Telemetry指标

使用Telemetry监控转换性能：

需要监控的关键指标：

转换持续时间（p50，p95，p99）

每条消息应用的规则

匹配的规则与未匹配的规则

continue标志的使用情况

集群

Mnesia表自动分布在集群节点之间。转换规则为高可用性而复制。

Parse error on line 25: ... style New fill:#3182CE style P ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

�试

迁移策略

在部署新转换规则时：

:telemetry.attach(

 "number-translation-handler",

 [:sms_c, :number_translation, :translate, :stop],

 fn _event_name, measurements, metadata, _config ->

 # measurements: %{duration: 微秒}

 # metadata: %{rules_applied: 计数, ...}

 end,

 nil

)

否

是

规划新规则

1. 离线设计规则

2. 在模拟器中测试

规则是否正常工作?

调试模式 3. 将规则添加为禁用

4. 部署到生产环境

5. 一次启用一条规则

6. 监控日志和指标

否

是是

否

是否按预期工作?

禁用规则，调查 7. 启用下一条规则

还有更多规则?

迁移完成 ✓

示例

示例1：美���号码规范化

需求：将各种美国号码格式转换为E.164 (+1XXXXXXXXXX)

示例2：国际前缀转换与链式处理

需求：将00前缀转换为+，然后格式化为网关

规则1：10位数字（最高优先级）

%{

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 5,

 description: "为裸10位数字添加+1",

 enabled: true,

 continue: false

}

规则2：1 + 10位数字（中等优先级）

%{

 calling_match: "^1(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^1(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "将1XXXXXXXXXX转换为+1XXXXXXXXXX",

 enabled: true,

 continue: false

}

测试用例：

"5551234567" → "+15551234567"（规则1）

"15551234567" → "+15551234567"（规则2）

"+15551234567" → "+15551234567"（未匹配，直接通过）

示例3：SMSC特定处理

需求：根据源SMSC应用不同的规则

规则1：将00转换为+（继续到下一个规则）

%{

 calling_match: "^00(.+)$",

 calling_replace: "+\1",

 called_match: "^00(.+)$",

 called_replace: "+\1",

 priority: 5,

 description: "将00国际前缀转换为+",

 enabled: true,

 continue: true # 继续格式化

}

规则2：为网关格式化（停��处理）

%{

 calling_match: "^\+(\d+)$",

 calling_replace: "00\1",

 called_match: "^\+(\d+)$",

 called_replace: "00\1",

 priority: 10,

 description: "将+号码格式化为网关的00",

 enabled: true,

 continue: false # 停止

}

测试用例：

步骤1："00441234567890" → "+441234567890"（规则1，继续）

步骤2："+441234567890" → "00441234567890"（规则2，停止）

结果："00441234567890"

应用的规则：[规则1，规则2]

规则1：受信任的SMSC - 直接通过（优先级5）

%{

 source_smsc: "trusted_gateway",

 calling_match: nil, # 无转换

 calling_replace: nil,

 called_match: nil,

 called_replace: nil,

 priority: 5,

 description: "通过来自受信任网关的号码",

 enabled: true,

 continue: false

}

规则2：不受信任的SMSC - 规范化（优先级10）

%{

 source_smsc: "untrusted_gateway",

 calling_match: "^(.*)$",

 calling_replace: "+VALIDATE\1",

 called_match: "^(.*)$",

 called_replace: "+VALIDATE\1",

 priority: 10,

 description: "为不受信任的来源添加验证前缀",

 enabled: true,

 continue: false

}

规则3：其他SMSC的捕获所有（优先级100）

%{

 source_smsc: nil, # 通配符

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "默认：为10位数字添加+1",

 enabled: true,

 continue: false

}

示例4：多步骤格式化链

需求：规范化 → 添加国家代码 → 使用破折号格式化

规则1：去掉前导零（继续）

%{

 calling_match: "^0+(.+)$",

 calling_replace: "\1",

 called_match: "^0+(.+)$",

 called_replace: "\1",

 priority: 5,

 description: "去掉前导零",

 enabled: true,

 continue: true

}

规则2：如果缺失则添加国家代码（继续）

%{

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "为10位数字添加+1",

 enabled: true,

 continue: true

}

规则3：使用破折号格式化（停止）

%{

 calling_match: "^\+1(\d{3})(\d{3})(\d{4})$",

 calling_replace: "+1-\1-\2-\3",

 called_match: "^\+1(\d{3})(\d{3})(\d{4})$",

 called_replace: "+1-\1-\2-\3",

 priority: 15,

 description: "格式化为+1-XXX-XXX-XXXX",

 enabled: true,

 continue: false

}

测试用例：

输入："005551234567"

步骤1："005551234567" → "5551234567"（规则1，继续）

步骤2："5551234567" → "+15551234567"（规则2，继续）

步骤3："+15551234567" → "+1-555-123-4567"（规则3，停止）

支持

如有问题或疑问：

检查测试套件 test/sms_c/messaging/number_translation_test.exs 中的示例

使用模拟器调试转换逻辑

查看事件日志以获取转换决策

检查Mnesia表内容：:mnesia.table_info(:translation_rule, :size)

监控Telemetry指标以查找性能问题

结果："+1-555-123-4567"

应用的规则：[规则1，规则2，规则3]

SMS-C 操作指南

← 返回文档索引 | 主 README

SMS-C 操作团队的日常操作程序、监控和维护任务。

目录

日常操作

监控

消息跟踪

路由管理

前端管理

号码翻译管理

系统维护

备份和恢复

容量规划

事件响应

日常操作

早晨健康检查

在每一天开始时执行以下检查：

1. 检查系统状态

API 健康检查

curl https://api.example.com:8443/api/status

预期响应：

{"status":"ok","application":"OmniMessage","timestamp":"2025-10-

30T08:00:00Z"}

2. 审查 Prometheus 指标

访问 Prometheus 仪表板并检查：

消息吞吐量（过去 24 小时）

路由失败率（应 < 1%）

队列积压（应 < 1000 待处理）

投递成功率（应 > 95%）

前端连接状态（所有预期前端均���于活动状态）

3. 检查消息队列

访问 Web UI: https://sms-admin.example.com/message_queue

审查：

待处理消息总数（应较低）

最旧消息的年龄（应 < 5 分钟）

高投递尝试的消息（如果 > 3 则调查）

死信消息（调查任何存在的）

4. 审查前端状态

访问 Web UI: https://sms-admin.example.com/frontend_status

验证：

所有预期前端均处于活动状态

无未过期的断开连接

在过去 24 小时内无前端错误

5. 检查应用日志

访问 Web UI: https://sms-admin.example.com/logs 或检查日志文件

查找：

错误级别消息

路由失败

收费失败

数据库连接问题

集群节点问题

消息量监控

检查每小时消息计数：

使用 Prometheus 查询：

预期模式：

工作时间：较高的消息量

夜间/周末：较低的消息量

投递率：应 > 95%

警报条件：

消息突然下降（> 50% 减少）

消息突然激增（> 200% 增加）

投递率降至 90% 以下

监控

关键指标监控

消息处理指标

每小时接收的�息

increase(sms_c_message_received_count[1h])

每小时投递的�息

increase(sms_c_delivery_succeeded_count[1h])

计算投递率

rate(sms_c_delivery_succeeded_count[1h]) /

rate(sms_c_message_received_count[1h])

接收消息计数 (sms_c_message_received_count)：

什么：进入系统的总消息

警报：突然下降或激增

查询： rate(sms_c_message_received_count[5m])

消息处理时长 (sms_c_message_processing_stop_duration)：

什么：端到端处理时间

警报：p95 > 1000ms

查询： histogram_quantile(0.95,

sms_c_message_processing_stop_duration)

路由指标

路由失败 (sms_c_routing_failed_count)：

什么：无法路由的消息

警报：任何失败（> 0）

查询： increase(sms_c_routing_failed_count[5m])

路由匹配 (sms_c_routing_route_matched_count)：

什么：正在使用的路由

警报：高优先级路由未匹配

查询： sms_c_routing_route_matched_count

投递指标

投递成功率：

什么：成功投递的百分比

警报：率 < 95%

查询： rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])

投递尝试 (sms_c_delivery_succeeded_attempt_count)：

什么：投递所需的重试次数

警报：p95 > 2（重试次数过多）

查询： histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count)

队列指���

队列大小 (sms_c_queue_size_size)：

什么：队列中的总消息

警报：大小 > 10,000

查询： sms_c_queue_size_size

最旧消息年龄 (sms_c_queue_oldest_message_age_seconds)：

什么：最旧待处理消息的年龄

警报：年龄 > 300 秒

查询： sms_c_queue_oldest_message_age_seconds

仪表板设置

操作仪表板面板：

1. 消息吞吐量（图表）

接收的消息（5 分钟速率）

投递的消息（5 分钟速率）

时间范围：过去 24 小时

2. 队列状态（单个统计）

当前待处理消息

最旧消息年龄

失败消息计数

3. 投递性能（图表）

成功率随时间变化

失败率随时间变化

时间范围：过去 24 小时

4. 路由状态（表格）

路由 ID

匹配计数（过去一小时）

目标 SMSC

优先级

5. 前端状态（表格）

前端名称

状态（活动/过期）

最后见到

消息计数（过去一小时）

6. 系统健康（单个统计）

API 响应时间（p95）

数据库查询时间（p95）

ENUM 查找时间（p95）

警报配置

关键警报（需要立即响应）：

警告警报（需要调查）：

未找到路由 - 消息无法投递

- alert: RoutingFailures

 expr: increase(sms_c_routing_failed_count[5m]) > 0

 severity: critical

 description: "{{ $value }} �息在过去 5 分钟内路由失败"

队列积压 - 处理滞后

- alert: QueueBacklog

 expr: sms_c_queue_size_pending > 10000

 severity: critical

 description: "队列有 {{ $value }} 待处理�息"

消息老化 - 投递卡住

- alert: OldMessagesInQueue

 expr: sms_c_queue_oldest_message_age_seconds > 300

 severity: critical

 description: "最旧�息已 {{ $value }} 秒"

前端断开连接 - 无投递路径

- alert: FrontendDisconnected

 expr: sms_c_frontend_status_count{status="disconnected"} > 0

 severity: critical

 description: "{{ $value }} 个前端断开连接"

消息跟踪

查找特定消息

按消息 ID：

1. Web UI：导航到 /message_queue

2. 在搜索框中输入消息 ID

3. 查看完整详细信息和事件历史

投递成功率下降

- alert: LowDeliveryRate

 expr: rate(sms_c_delivery_succeeded_count[10m]) /

rate(sms_c_delivery_queued_count[10m]) < 0.90

 severity: warning

 description: "投递成功率为 {{ $value }}"

重试次数过多

- alert: HighRetryRate

 expr: histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count) > 2

 severity: warning

 description: "95th 百分位投递尝试次数：{{ $value }}"

ENUM 查找缓慢或失败

- alert: SlowEnumLookups

 expr: histogram_quantile(0.95, sms_c_enum_lookup_stop_duration)

> 5000

 severity: warning

 description: "ENUM 查找耗时 > 5 秒"

ENUM 缓存命中率低

- alert: LowEnumCacheHitRate

 expr: rate(sms_c_enum_cache_hit_count[10m]) /

(rate(sms_c_enum_cache_hit_count[10m]) +

rate(sms_c_enum_cache_miss_count[10m])) < 0.70

 severity: warning

 description: "ENUM 缓存命中率：{{ $value }}"

通过 API：

按电话号码：

1. Web UI：导航到 /message_queue

2. 在搜索框中输入电话号码

3. 查看该号码的所有消息

跟踪消息生命周期

查看事件历史：

1. Web UI：点击队列中的消息，查看“事件”部分

2. API： GET /api/events/12345

常见事件序列：

投递失败序列：

curl https://api.example.com:8443/api/messages/12345

1. message_inserted - �息已创建

 ↓

2. number_translated - 号码已标准化（如果已配置）

 ↓

3. message_routed - 已做出路由决策

 ↓

4. charging_attempted - 收费检查（如果启用）

 ↓

5. message_delivered - 成功投递

检查投递状态

待处理消息：

状态：“待处理”

deliver_after：未来时间戳

delivery_attempts：0 或较低数字

已投递消息：

状态：“已投递”

deliver_time：投递时间戳

dest_smsc：投递的前端

失败消息：

状态：“待处理”且 delivery_attempts 较高

deadletter：true（如果过期）

检查事件日志以获取失败原因

�于位置的消息路由

SMS-C 支持基于位置的消息检索，允许前端自动接收目的地为注册在其位置的订阅者的消息。

工作原理：

1. message_inserted

 ↓

2. message_routed

 ↓

3. delivery_attempt_1 - 第一次尝试失败

 ↓

4. delivery_attempt_2 - 第二次尝试失败（延迟 2 分钟）

 ↓

5. delivery_attempt_3 - 第三次尝试失败（延迟 4 分钟）

 ↓

6. message_dead_letter - 超过重试限制

当前端使用 get_messages_for_smsc(smsc_name) 查询待处理消息时，系统以两种方式返回消息：

1. 显式路由 - dest_smsc 明确匹配前端名称的消息

2. �于位置的路由 - 消息满足以下条件：

dest_smsc 为 null（未明确路由）

destination_msisdn 有活动位置记录

位置的 location 字段与前端名称匹配

位置未过期

示例场景：

MSISDN 为 +447700900123 的订阅者在前端 uk_gateway 注册：

当一条消息到达该订阅者而没有明确路由时：

当 uk_gateway 前端轮询时，将自动接收�消息：

订阅者注册（创建位置记录）

POST /api/locations

{

 "msisdn": "+447700900123",

 "imsi": "234150123456789",

 "location": "uk_gateway",

 "expires": "2025-11-01T12:00:00Z"

}

�息提交时没有 dest_smsc

POST /api/messages

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900123",

 "message_body": "Hello",

 "source_smsc": "api"

 # 注意：dest_smsc 为 null

}

位置要求：

为了使基于位置的路由工作：

locations 表必须有 destination_msisdn 的条目

location 字段必须与查询的 SMSC 名称匹配

expires 时间戳必须在未来

监控�于位置的路由：

检查位置记录：

常见问题：

消息未投递：检查位置是否已过期

错误的前端：验证 location 字段是否与预期的前端名称匹配

未找到位置：订阅者可能需要重新注册

手动干预

重试失败消息：

前端轮询�息

GET /api/messages/queue?smsc=uk_gateway

返回�息，即使 dest_smsc 为 null

因为目标订阅者在 uk_gateway 注册

通过 API

GET /api/locations/{msisdn}

检查位置是否过期

expires 字段应 > 当前时间

更改目标：

删除卡住的消息：

路由管理

查看当前路由

Web UI：导航到 /sms_routing

通过 API：

检查路由使用情况：

Prometheus 查询：

重置 delivery_attempts 和 deliver_after

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "delivery_attempts": 0,

 "deliver_after": "2025-10-30T12:00:00Z"

 }'

路由到不同的 SMSC

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "backup_gateway"

 }'

curl -X DELETE https://api.example.com:8443/api/messages/12345

列出所有路由

curl https://api.example.com:8443/api/routes

添加新路由

Web UI：

1. 导航到 /sms_routing

2. 点击“添加新路由”

3. 填写字段：

呼叫前缀：源号码前缀（可选）

被叫前缀：目的号码前缀（地理路由必需）

源 SMSC：源系统过滤器（可选）

目标 SMSC：目的网关（除非自动回复/丢弃，否则必需）

优先级：路由优先级（1-255，数字越小优先级越高）

权重：负载均衡权重（1-100）

描述：人类可读的描述

启用：勾选以立即激活

4. 点击“保存路由”

示例：地理路由：

被叫前缀： +44

目标 SMSC： uk_gateway

优先级： 50

权重： 100

描述： “英国路由”

示例：负载均衡路由：

创建两个具有相同标准但不同权重的路由：

路由 1：

被叫前缀： +44

目标 SMSC： uk_primary

每条路由路由的�息（过去一小时）

increase(sms_c_routing_route_matched_count[1h])

优先级： 50

权重： 70

描述： “英国主要（70%）”

路由 2：

被叫前缀： +44

目标 SMSC： uk_backup

优先级： 50

权重： 30

描述： “英国备份（30%）”

测试路由

路由模拟器：

1. 导航到 /simulator

2. 输入测试参数：

呼叫号码： +15551234567

被叫号码： +447700900000

源 SMSC：（可选）

源类型：（可选）

3. 点击“模拟路由”

4. 查看结果：

选择的路由：选择了哪个路由

所有匹配：哪些路由匹配了标准

评估：每条路由匹配或不匹配的原因

生产前测试：

在模拟器中测试所有新路由

验证选择了正确的路由

检查优先级排序

验证权重分配

修改现有路由

Web UI：

1. 导航到 /sms_routing

2. 在列表中找到路由

3. 点击“编辑”

4. 修改字段

5. 点击“保存路由”

常见修改：

禁用路由：取消勾选“启用”（临时移除）

调整权重：更改负载均衡分配

更改优先级：重新排序路由评估

更新目标：切换到不同的 SMSC

删除路由

Web UI：

1. 导航到 /sms_routing

2. 在列表中找到路由

3. 点击“删除”

4. 确认删除

警告：删除路由是永久性的。考虑改为禁用。

导出/导入路由

导出路由（备份）：

1. 导航到 /sms_routing

2. 点击“导出路由”

3. 保存 JSON 文件

导入路由：

1. 导航到 /sms_routing

2. 点击“导入路由”

3. 选择 JSON 文件

4. 选择导入模式：

合并：添加到现有路由

替换：删除所有并导入

用例：

在重大更改之前备份

在环境之间复制路由

灾难恢复

配置版本控制

前端管理

监控前端连接

Web UI：导航到 /frontend_status

检查：

所有预期前端均为“活动”

最后见到��时间较近（< 90 秒）

无意外过期的前端

通过 API：

获取活动前端

curl https://api.example.com:8443/api/frontends/active

获取统计信息

curl https://api.example.com:8443/api/frontends/stats

调查断开连接

前端过期：

1. 检查前端日志以获取错误

2. 验证与 SMS-C 的网络连接

3. 确认前端正在运行

4. 检查前端注册逻辑（应每 60 秒重新注册）

注册未显示：

1. 验证前端是否调用 POST /api/frontends/register

2. 检查 API 日志以获取注册错误

3. 验证 JSON 有效负载格式

4. 使用 curl 手动测试注册

示例手动注册：

查看前端历史

Web UI：

1. 导航到 /frontend_status

2. 在列表中找到前端

3. 点击“历史”

4. 查看过去的注册

通过 API：

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "test_gateway",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway.example.com"

 }'

用例：

调查连接可靠性

跟踪前端正常运行模式

识别配置更改

号码翻译管理

号码翻译规则通过 config/runtime.exs 管理。更改需要重启应用程序。

查看活动翻译规则

检查配置文件：

常见翻译任务

为本地号码添加国家代码：

编辑 config/runtime.exs：

curl https://api.example.com:8443/api/frontends/history/uk_gateway

cat config/runtime.exs | grep -A 20 "translation_rules:"

标准化国际格式：

运营商特定代码剥离：

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "为 10 位美国号码添加 +1",

 enabled: true

}

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(\d+)$",

 calling_replace: "+\1",

 called_match: "^00(\d+)$",

 called_replace: "+\1",

 priority: 10,

 description: "将 00 前缀转换为 +",

 enabled: true

}

测试翻译规则

在配置更改后��

1. 重启应用程序以加载新规则

2. 提交测试消息，源/目的地应匹配

3. 检查事件日志以获取 number_translated 事件

4. 验证号码是否正确转换

禁用翻译规则

在规则中设置 enabled: false：

重启应用程序。

%{

 calling_prefix: nil,

 called_prefix: "101",

 source_smsc: "carrier_a",

 calling_match: nil,

 calling_replace: nil,

 called_match: "^101(\d+)$",

 called_replace: "\1",

 priority: 5,

 description: "从运营商 A 中剥离运营商代码",

 enabled: true

}

%{

 ...

 enabled: false

}

系统维护

数据库维护

检查数据库大小：

使用数据库管理工具监控 CDR 存储大小：

MySQL/MariaDB：查询 information_schema.tables 获取数据库大小

PostgreSQL：使用 pg_database_size() 函数或在 psql 中使用 \l+ 命令

清理旧的 CDR 记录：

根据保留政策定期归档和清除 CDR 记录：

根据业务需求配置自动归档（通常在操作数据库中保留 30-90 天）

将旧记录归档到数据仓库或冷存储

从操作数据库中批量删除归档记录，以避免锁争用

优化表：

定期优化数据库表以保持性能：

MySQL/MariaDB：在低流量期间运行 OPTIMIZE TABLE 命令

PostgreSQL：定期运行 VACUUM ANALYZE（或启用自动真空）

每周运行 在低流量期间以保持最佳性能。

Mnesia 数据库维护

检查 Mnesia 表大小：

备份 Mnesia 表：

在 IEx 控制台中

:mnesia.table_info(:sms_route, :size)

:mnesia.table_info(:translation_rule, :size)

恢复 Mnesia：

日志轮换

为应用程序日志配置 logrotate：

重启应用程序

优雅重启（集群中零停机时间）：

导出路由（Web UI）

导航到 /sms_routing

点击“导出路由”

或通过 Mnesia 备份

:mnesia.backup("/var/backups/sms_c/mnesia_backup.bup")

通过 Web UI 导入

或恢复备份：

:mnesia.restore("/var/backups/sms_c/mnesia_backup.bup", [])

/etc/logrotate.d/sms_c

/var/log/sms_c/*.log {

 daily

 rotate 30

 compress

 delaycompress

 notifempty

 create 0644 sms_user sms_group

 sharedscripts

 postrotate

 systemctl reload sms_c || true

 endscript

}

紧急重启（所有节点）：

重启后：

验证所有前端重新连接

检查 Prometheus 以确保指标连续

监控日志以获取错误

验证消息处理恢复

备份和恢复

备份内容

1. 配置文件：

config/runtime.exs

config/config.exs

config/prod.exs（如果存在）

2. 路由表（Mnesia）：

通过 Web UI 导出

或 Mnesia 备份命令

3. SQL CDR 数据库：

每日全量备份

事务日志备份（持续）

一次重启一个节点

systemctl restart sms_c

等待节点加入集群

对每个节点重复

systemctl restart sms_c

4. TLS 证书：

priv/cert/*.crt

priv/cert/*.key

备份程序

每日配置备份：

数据库备份：

#!/bin/bash

/opt/sms_c/scripts/backup_config.sh

BACKUP_DIR="/var/backups/sms_c/$(date +%Y%m%d)"

mkdir -p $BACKUP_DIR

备份配置

cp -r /opt/sms_c/config $BACKUP_DIR/

备份证书

cp -r /opt/sms_c/priv/cert $BACKUP_DIR/

设置权限

chmod 600 $BACKUP_DIR/cert/*

echo "配置备份完成：$BACKUP_DIR"

路由表备份���

安排备份（crontab）：

#!/bin/bash

/opt/sms_c/scripts/backup_database.sh

BACKUP_DIR="/var/backups/sms_c/database"

DATE=$(date +%Y%m%d_%H%M%S)

mkdir -p $BACKUP_DIR

备份 SQL CDR 数据库

MySQL/MariaDB：使用 mysqldump 和 --single-transaction 以确保一致性

PostgreSQL：使用 pg_dump -F c 以自定义格式

示例结构（根据您的数据库进行调整）：

- 使用适当的备份工具（mysqldump、pg_dump）

- 启用事务安全备份以确保一致性

- 压缩输出以节省空间

- 配置保留期（例如，30 天）

删除旧备份

find $BACKUP_DIR -name "sms_c_*.gz" -mtime +30 -delete

echo "数据库备份完成：sms_c_${DATE}"

#!/bin/bash

/opt/sms_c/scripts/backup_routes.sh

BACKUP_DIR="/var/backups/sms_c/routes"

DATE=$(date +%Y%m%d)

mkdir -p $BACKUP_DIR

通过 API 导出

curl https://api.example.com:8443/api/routes/export \

 > $BACKUP_DIR/routes_${DATE}.json

echo "路由备份完成：routes_${DATE}.json"

恢复程序

恢复配置：

恢复 SQL CDR 数据库：

使用适当的恢复工具恢复数据库：

MySQL/MariaDB：解压并通过 mysql 客户端进行管道

PostgreSQL：使用 pg_restore 进行自定义格式转储

重要：在恢复数据库之前停止 SMS-C 应用程序，以防止数据冲突。

恢复路由表：

1. 导航到 Web UI /sms_routing

2. 点击“导入路由”

3. 选择备份 JSON 文件

4. 选择“替换”模式

5. 确认导入

每天凌晨 2 点

0 2 * * * /opt/sms_c/scripts/backup_config.sh

0 2 * * * /opt/sms_c/scripts/backup_database.sh

0 2 * * * /opt/sms_c/scripts/backup_routes.sh

停止应用程序

systemctl stop sms_c

恢复配置文件

cp -r /var/backups/sms_c/20251030/config/* /opt/sms_c/config/

恢复证书

cp -r /var/backups/sms_c/20251030/cert/* /opt/sms_c/priv/cert/

启动应用程序

systemctl start sms_c

容量规划

监控增长趋势

消息量趋势：

Prometheus 查询（30 天平均）：

数据库增长率：

容量指标

CPU 使用率：

正常：< 50% 平均

高：> 70% 持续

关键：> 90%

内存使用率：

正常：< 70% 可用

高：> 80%

关键：> 90%

磁盘使用率：

avg_over_time(sms_c_message_received_count[30d])

-- 每月数据增长

SELECT

 DATE_FORMAT(inserted_at, '%Y-%m') AS month,

 COUNT(*) AS message_count,

 ROUND(SUM(LENGTH(message_body)) / 1024 / 1024, 2) AS data_mb

FROM message_queues

GROUP BY month

ORDER BY month DESC

LIMIT 12;

正常：< 60% 已满

高：> 75%

关键：> 85%

队列深度：

正常：< 1000 待处理

高：> 5000 待处理

关键：> 10,000 待处理

扩展建议

何时进行垂直扩展（升级资源）：

CPU 持续 > 70%

内存持续 > 80%

单节点瓶颈

何时进行水平扩展（添加节点）：

所有节点 CPU > 50%

消息量 > 5000 msg/sec

需要地理分布

需要高可用性

数据库扩展：

用于报告查询的只读副本

连接池优化

索引优化

按日期对大表进行分区

事件响应

严重性级别

关键（立即响应）：

无消息被投递

所有前端断开连接

数据库不可用

API 完全宕机

高（1 小时内响应）：

投递成功率 < 80%

多个前端断开连接

路由失败 > 10%

队列积压增长

中（4 小时内响应）：

单个前端断开连接

投递成功率 80-95%

消息处理缓慢

ENUM 查找失败

低（24 小时内响应）：

轻微性能下降

单条路由问题

非关键警告警报

事件检查清单

1. 评估严重性：

检查 Prometheus 警报

审查仪表板指标

检查消息队列状态

验证前端连接

2. 收集信息：

最近的配置更改？

最近的部署？

外部依赖状态（OCS、DNS）？

日志中的错误消息？

3. 立即行动：

停止正在进行的更改

如果怀疑是原因，回滚最近的部署

如果需要，启用详细日志记录

通知利益相关者

4. 调查：

审查应用日志

检查系统资源使用情况

检查数据库性能

测试外部依赖

5. 解决方案：

应用修复

在模拟器中测试

部署到生产

监控改进情况

6. 事件后：

记录根本原因

更新监控/警报

实施预防措施

更新操作手册

常见事件

高队列积压：

1. 检查投递成功率

2. 验���前端是否连接并轮询

3. 检查数据库性能

4. 审查 Prometheus 以查找瓶颈

5. 考虑增加批量大小/间隔

路由失败：

1. 审查路由配置

2. 在路由模拟器中测试

3. 检查缺失的路由

4. 验证是否存在捕获所有路由

5. 检查事件日志以获取失败原因

前端断开连接：

1. 检查前端系统状态

2. 验证网络连接

3. 审查前端日志

4. 测试手动 API 注册

5. 检查防火墙规则

消息处理缓慢：

1. 检查数据库查询性能

2. 审查批处理工作者配置

3. 验证资源是否充足（CPU/内存）

4. 检查 ENUM 查找延迟

5. 审查收费系统性能

有关详细故障排除程序，请参见 故障排除指南。

性能调优指南

← 返回文档索引 | 主 README

本指南解释了如何优化 SMS-C 在不同工作负载场景下的性能。

性能概述

SMS-C 使用 Mnesia 进行内存消息存储，并自动将 SQL 数据库归档以保留 CDR，从而提供 1,750 消息/秒 的吞吐量。

关键性能指标

在 Intel i7-8650U @ 1.90GHz (8 核) 上测量：

操作 吞吐量 延迟 (平均) 改进

消息插入 (带路由) 1,750 消息/秒 0.58 毫秒 比 SQL 快 21 倍

消息插入 (简单) 1,750 消息/秒 0.57 毫秒 比 SQL 快 21 倍

获取 SMSC 消息 800 消息/秒 1.25 毫秒 内存查询

每次插入内存 62 KB - 减少 50%

容量： ~每天 1.5 亿条消息，单节点

目录

消息存储架构

Mnesia 优化

CDR 归档配置

查询优化

基准测试

消息存储架构

SMS-C 使用双存储架构以实现最佳性能：

活动消息存储 (Mnesia)

目的：超快的消息插入、路由和交付

存储：内存中带磁盘持久性 (disc_copies)

性能：1,750 消息/秒插入吞吐量，0.58 毫秒延迟

保留：可配置 (默认：24 小时)

集群：支持分布式 Mnesia 以实现水平扩展

CDR 归档 (SQL 数据库)

目的：长期消息历史和报告

存储：SQL 数据库 (MySQL/MariaDB 或 PostgreSQL) 以实现持久归档

性能：批量写入以最小化数据库负载

保留：永久 (或根据数据保留政策)

查询：分析、报告、合规

数据流

Mnesia 优化

消息保留配置

调优指南：

高容量 (>1M 消息/天)：12-24 小时保留

最小化 Mnesia 表大小

更快的查询

更频繁地归档到 MySQL

config/runtime.exs

config :sms_c,

 message_retention_hours: 24 # 默认：24 小时

中等容量 (100K-1M 消息/天)：24-48 小时保留

对于大多数部署来说是良好的平衡

适当的重试逻辑缓冲

低容量 (<100K 消息/天)：48-168 小时保留

在快速存储中保留更长的消息历史

较少的归档频率

Mnesia 表索引

MessageStore 自动创建以下索引：

status - 用于过滤待处理/已交付消息

dest_smsc - 用于特定 SMSC 的查询

expires - 用于过期处理

destination_msisdn - 用于订阅者查询

source_msisdn - 用于订阅者查询

Mnesia 磁盘持久性

消息以 disc_copies 存储，提供：

✅ 内存性能

✅ 自动磁盘持久性

✅ 崩溃恢复

✅ 重启时无数据丢失

CDR 归档配置

BatchInsertWorker 处理使用批量写入将 CDR 归档到 MySQL：

CDR 调优指南

高容量归档

更大���批量减少 MySQL 负载

CDR 写入的延迟更高（归档时可接受）

平衡（推荐）

对于大多数部署来说是良好的平衡

CDR 在 100 毫秒内写入

实时 CDR 要求

更快的 CDR 写入以满足合规要求

更多 MySQL 写入操作

config/runtime.exs

config :sms_c,

 batch_insert_batch_size: 100, # CDR 批量大小

 batch_insert_flush_interval_ms: 100 # 自动刷新间隔

batch_insert_batch_size: 200

batch_insert_flush_interval_ms: 200

batch_insert_batch_size: 100

batch_insert_flush_interval_ms: 100

batch_insert_batch_size: 20

batch_insert_flush_interval_ms: 20

查询优化

有效使用 Mnesia 索引

使用索引字段的查询是最快的：

MySQL 连接池

对于 CDR 查询和归档，配置 MySQL 连接池：

指南：

标准部署：pool_size: 10

重度 CDR 报告：pool_size: 20-30

仅归档：pool_size: 5

�准测试

运行�准测试

该项目包括基于 Benchee 的基准测试以进行性能测试：

快速查询（使用索引）

MessageStore.list(status: :pending)

MessageStore.list(dest_smsc: "gateway-1")

Messaging.get_messages_for_smsc("gateway-1")

较慢的查询（全表扫描）

MessageStore.list(limit: :infinity) # 返回所有�息

config/runtime.exs

config :sms_c, SmsC.Repo,

 pool_size: 10 # 对于重度 CDR 报告增加

解释结果

示例输出：

关键指标：

ips：每秒迭代次数（越高越好）

average：平均执行时间（越低越好）

median：中间值，对于偏态分布比平均值更具代表性

99th %：99 百分位延迟（对 SLA 合规性很重要）

性能�线

在现代硬件（Intel i7-8650U，8 核）上的预期性能：

原始 SMS API 基准测试（比较同步与异步）

mix run benchmarks/raw_sms_bench.exs

一般�息 API 基准测试

mix run benchmarks/message_api_bench.exs

Name ips average

deviation median 99th %

submit_message_raw_async (batch) 4.65 K 0.22 ms

±41.72% 0.184 ms 0.55 ms

submit_message_raw (sync) 0.0696 K 14.36 ms

±33.42% 12.57 ms 33.71 ms

指标 insert_message (Mnesia) 之前 (MySQL)

吞吐量 (带路由) 1,750 消息/秒 83 消息/秒

吞吐量 (简单) 1,750 消息/秒 89 消息/秒

响应时间 (平均) 0.58 毫秒 16 毫秒

响应时间 (p99) <5 毫秒 30 毫秒

每次操作内存 62 KB 121 KB

性能提升 快 21 倍 -

关键改进：

✅ 移除重复的数字翻译调用

✅ 异步后处理（路由、计费、事件）

✅ Mnesia 内存���储与 MySQL 磁盘 I/O

✅ 50% 内存减少

监控

运行时统计

检查批处理工作者统计信息：

返回：

SmsC.Messaging.BatchInsertWorker.stats()

关键指标监控

1. 队列大小：current_queue_size - 大部分时间应低于 batch_size

2. 刷新持续时间：last_flush_duration_ms - 对于 batch_size=100 应 < 100 毫秒

3. 刷新错误：flush_errors - 应为 0 或非常低

4. 吞吐量：total_flushed / uptime - 应与预期负载匹配

警报

设置监控警报以便于：

队列大小持续达到最大（表示背压）

刷新持续时间增加（数据库性能下降）

刷新错误 > 0（数据库连接问题）

吞吐量低于预期（性能下降）

故障排除

症状：低吞吐量

可能原因：

1. 数据库连接池耗尽：增加 pool_size

2. 数据库缓慢：检查查询性能，添加索引

%{

 total_enqueued: 10000,

 total_flushed: 9900,

 total_batches: 99,

 current_queue_size: 100,

 flush_errors: 0,

 last_flush_at: ~U[2025-10-22 12:34:56Z],

 last_flush_count: 100,

 last_flush_duration_ms: 45

}

3. 网络延迟：优化到数据库的网络路径

4. 批量大小太小：增加 batch_insert_batch_size

症状：高延迟

可能原因：

1. 刷新间隔太高：减少 batch_insert_flush_interval_ms

2. 批量大小太高：减少 batch_insert_batch_size

3. 数据库写入缓慢：检查磁盘 I/O，优化表

4. 在需要同步时使用异步 API：切换到同步端点

症状：内存问题

可能原因：

1. 队列备份：消息积累速度快于刷新

2. 批量大小太大：减少 batch_insert_batch_size

3. 刷新失败：检查统计信息中的 flush_errors

4. 需要重启工作者：Supervisor.terminate_child/2 并重启

最佳实践

1. 从默认值开始（100/100ms），根据观察到的行为进行调整

2. 在生产环境中监控至少 1 周，然后再进行优化

3. 在预发布环境中测试配置更改，使用类似生产的负载

4. 使用�准测试验证配置更改

5. 记录您的调优决策以供将来参考

6. 在优化之前设置警报以捕捉回归

7. 考虑时区 - 峰值负载因地区而异

示例配置

配置：高容量聚合器

配置：企业实时消息传递

配置：开发/测试

进一步阅读

Ecto 性能指南

config/prod.exs

config :sms_c,

 batch_insert_batch_size: 200,

 batch_insert_flush_interval_ms: 200

config :sms_c, SmsC.Repo,

 pool_size: 50

config/prod.exs

config :sms_c,

 batch_insert_batch_size: 20,

 batch_insert_flush_interval_ms: 10

config :sms_c, SmsC.Repo,

 pool_size: 20

config/dev.exs

config :sms_c,

 batch_insert_batch_size: 10,

 batch_insert_flush_interval_ms: 50

config :sms_c, SmsC.Repo,

 pool_size: 5

https://hexdocs.pm/ecto/Ecto.Repo.html#module-shared-options

Benchee 文档

Phoenix 在压力下

https://hexdocs.pm/benchee/Benchee.html
https://dockyard.com/blog/2020/02/27/phoenix-liveview-under-pressure

SMS-C 路由指南

← 返回文档索引 | 主 README

概述

SMS-C 路由系统提供基于多个标准（包括号码前缀、SMSC 标识符、连接类型等）灵活、高性能的 SMS 消息路由。路由存储在

Mnesia 中以确保持久性，并且可以在运行时进行修改而不会中断服务。

主要特点

�于前缀的路由：基于呼叫/被叫号码前缀进行路由，采用最长匹配优先的逻辑

�于 SMSC 的路由：基于源或目的地 SMSC 进行路由

�于类型的路由：基于源连接类型（IMS、电路交换、SMPP）进行路由

�于优先级的路由：通过可配置的优先级控制路由选择顺序

�于权重的负载均衡：使用权重在多个路由之间分配流量

自动回复路由：自动向消息发起者发送回复

丢弃路由：丢弃符合特定标准的消息（垃圾邮件过滤等）

计费控制：为每条路由配置计费行为（是/否/默认）

配置文件加载：在首次启动时从 runtime.exs 加载初始路由

��行时配置：在不重启的情况下添加、修改或禁用路由

Web UI：具有前端下拉菜单的完整 CRUD 接口，用于路由管理

模拟工具：在部署前测试路由逻辑

备份/恢复：导出和导入路由配置

ENUM 支持：基于 DNS 的号码查找（未来实施）

架构

数据模型

每条路由包含以下字段：

字段 类型 描述

route_id integer 自增唯一标识符 是（自

calling_prefix string/nil 呼叫号码的前缀匹配（nil = 通配符） 否

called_prefix string/nil 被叫号码的前缀匹配（nil = 通配符） 否

source_smsc string/nil 源 SMSC 名称（nil = 通配符） 否

dest_smsc string/nil
目的地 SMSC 名称（除非 auto_reply 或 drop

为真，否则必需）
有条件

source_type atom/nil

源类

型：:ims、:circuit_switched、:smpp

或 nil

否

enum_domain string/nil 用于查找的 DNS ENUM 域 否

auto_reply boolean 如果为真，则向发起者发送回复 否（默

auto_reply_message string/nil 自动回复的消息文本（如果 auto_reply 为真，则必需） 有条件

drop boolean 如果为真，则丢弃消息（垃圾邮件过滤） 否（默

charged atom 计费行为：:yes、:no 或 :default
否（默

认：

weight integer 负载均衡权重（1-100，默认 100） 是

priority integer 路由优先级（1-255，数字越小优先级越高） 是

description string 人类可读的描述 否

enabled boolean 启用/禁用路由 是

注意：路由必须是以下三种类型之一：

1. 正常路由：auto_reply=false，drop=false，需要 dest_smsc

2. 自动回复：auto_reply=true，需要 auto_reply_message

3. 丢弃：drop=true，丢弃消息

路由算法

在路由消息时，系统遵循以下优先级顺序：

优先级 1：�于位置的路由（最高）

1. 检查订阅者注册：如果目的地 MSISDN 在位置表中注册

2. 直接路由到服务前端：跳过所有路由规则，直接发送到服务该订阅者的前端

3. 此操作发生在号码转换之后，以确保与位置注册的一致性

优先级 2：标准路由规则（如果未找到位置注册）

1. 过滤启用的路由，匹配所有指定标准

2. 按特异性排序（更特定的路由优先）：

更长的被叫前缀 = 更高的特异性（×100 分）

更长的呼叫前缀 = 中等特异性（×50 分）

指定源 SMSC = +25 分

指定 ENUM 结果域 = +15 分

指定源类型 = +10 分

指定 ENUM 域 = +5 分

3. 按优先级分组（数字越小 = 优先级越高）

4. 从最高优先级组中选择，使用加权随机选择

5. 执行路由操作：

正常路由：返回目的地 SMSC 以进行消息投递

自动回复路由：异步向发起者发送回复

丢弃路由：丢弃消息并记录事件

通配符

nil 或空值作为通配符，匹配任何值

没有指定标准的路由是一个捕获所有路由

配置

从配置文件加载路由

路由可以在 config/runtime.exs 中定义，并将在首次启动时自动加载。这对于定义系统首次启动时应存在的基线路由规则非常有

用。

重要：仅在路由表为空（首次启动）时加载配置中的路由。这保留了在运行时通过 Web UI 添加的路由，并防止在重启时出现重复。

配置加载流程

示例路由配置结构

路由配置

路由

匹配标准 目的地 行为 控制

calling_prefix called_prefix source_smsc source_type dest_smsc auto_reply drop priority weight enabled charged

yes no default

请参见 config/runtime.exs 和 config/sms_routes.example.exs 获取完整示例，包括：

地理路由

自动回复路由

丢弃路由（垃圾邮件过滤）

负载均衡路��

计费的优质号码路由

入门

初始化流程

路由类型概述

路由类型

通配符路由 基于前缀的路由 基于类型的路由 多标准路由

未指定标准

匹配所有
用例：默认回退 匹配呼叫/被叫前缀 示例：+44 → UK_Gateway 用例：地理路由 匹配源类型 示例：IMS → IMS_Gateway 用例：协议路由 组合多个标准

示例：+639 从 SMPP →

Philippines_GW
用例：复杂路由

消息路由流程

事件记录器路由数据库路由引擎位置存储应用程序

alt [正常路由]

[自动回复路由]

[丢弃路由]

alt [找到匹配路由]

alt [订阅者在前端注册]

[未注册位置]

转换号码（如果需要）

根据 MSISDN 检查位置（目的地）

找到位置（前端：smsc1）

记录 "location_based_routing"

设置 dest_smsc = 前端

路由完成（跳过标准路由）

未找到

route_message(calling, called, source_smsc, source_type)

记录 "routing_started"

获取启用的路由

返��路由列表

过滤匹配路由

(前缀、SMSC、类型、ENUM)

记录 "N candidates found"

按优先级和特异性排序

按优先级分组

加权随机选择

记录 "route_selected"

{:ok, dest_smsc, route}

创建回复消息（异步）

记录 "auto_reply_triggered"

{:ok, nil, route}

记录 "message_dropped"

{:ok nil route}

事件记录器路由数据库路由引擎位置存储应用程序

[没有匹配路由]

{:ok, nil, route}

记录 "no_route_found"

{:error, :no_route_found}

常见用例

�于位置的路由（最高优先级）

将消息直接路由到服务注册订阅者的前端，绕过所有路由规则：

Parse error on line 4: ...-->|订阅者在前端注册
于 "ims-core-1"| REG[基于位 --------------

---------^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

�试

工作原理：

1. 消息到达，带有目的地号码

2. 号码被转换（如果配置了）

3. 系统检查转换后的目的地 MSISDN 是否在位置表中

4. 如果注册，消息直接路由到服务该订阅者的前端

5. 标准路由规则完全跳过

6. 如果未注册，则应用正常路由规则

好处：

保证投递到正确的前端，针对注册的订阅者

最快的路由 - 不需要路由表评估

准确的路由 - 订阅者位置是事实来源

覆盖���有路由规则 - 确保订阅者可达性

用例：

在特定 IMS 核心注册的 IMS/VoLTE 订阅者

附加到特定 MSC 的移动订阅者

在特定应用服务器上注册的 SIP 订阅者

地理路由

根据目的地国家将消息路由到区域 SMSC：

负载均衡

使用权重在多个 SMSC 之间分配流量：

权重：70 权重：30

消息到 +639*

路由选择

相同优先级：10

菲律宾主路由

70% 的流量

菲律宾次路由

30% 的流量

投递消息

加权随机选择

确保流量分配

优质号码路由

将优质号码路由到特殊处理，优先级更高：

�于协议的路由

根据源连接类型进行路由：

IMS SMPP 电路交换 未指定类型

发送的消息

检查源类型

IMS 网关

优先级：10

SMPP 网关

优先级：20

CS 网关

优先级：30

默认网关

优先级：100

路由消息

网络迁移

在迁移过程中，将特定前缀路由到新基础设施：

优先级 1

是

否

优先级 50

是 否

消息到 +639*

按优先级评估路由

检查：以 6391 开头？

新平台 SMSC

迁移范围

继续到下一个优先级

检查：以 639 开头？

遗留平台 SMSC

剩余范围
未找到路由

投递消息

基于优先级的路由允许

逐步迁移：

• 新范围 → 优先级 1

• 遗留范围 → 优先级 50

复杂多标准路由

组合多个标准以实现精细控制：

Web 界面

路由管理 UI

访问路由管理界面位于 /sms_routing（在路由器中配置）：

功能：

在可排序的表格中查看所有路由

使用表单验证添加新路由

编辑现有路由

启用/禁用���由而不删除

确认删除路由

实时更新（5 秒刷新）

添加路由：

1. 点击“添加新路由”

2. 填写表单字段（仅目的地 SMSC 是必需的）

3. 设置权重（1-100，默认 100）和优先级（1-255，默认 100）

4. 勾选“启用”以立即激活

5. 点击“保存路由”

编辑路由：

1. 点击路由旁边的“编辑”

2. 根据需要修改字段

3. 点击“保存路由”

禁用路由：

点击“禁用”以暂时停用而不删除

点击“启用”以重新激活

路由模拟器

访问模拟器位于 /simulator（通过导航菜单）：

功能：

使用各种参数测试路由逻辑

逐字段详细评估，显示每条路由匹配或不匹配的原因

查看按优先级顺序评估的所有路由

匹配/选择路由的可视指示器

加载示例场景以快速测试

查看测试历史（最近 10 次测试）

使用模拟器：

1. 输入测试参数：

呼叫号码（来自）

被叫号码（到）

源 SMSC（可选）

源类型（任何/IMS/电路交换/SMPP）

2. 点击“模拟路由”

3. 查看全面结果：

路由结果：选择的路由和目的地（或“未找到路由”）

路由评估：所有路由的逐字段分析：

✓ 绿色勾号 = ��段匹配

✗ 红色 X = 字段不匹配

每个字段匹配/不匹配的原因

可视指示器：

绿色边框 + “SELECTED” 徽章 = 实际使用的路由

紫色边框 + “MATCHED” 徽章 = 匹配但未选择的路由

灰色边框 = 未匹配的路由

4. 使用示例按钮加载预配置的示例

5. 查看测试历史以比较不同场景

示例评估输出： 对于每条路由，您将看到其匹配或不匹配的原因：

呼叫前缀：“匹配前缀 '1234'”或“未以 '44' 开头”

被叫前缀：“通配符（匹配任何）”或“未以 '639' 开头”

源 SMSC：“匹配 'smsc1'”或“期望 'untrusted_smsc'，得到 'none'”

源类型：“通配符（匹配任何）”或“期望 'smpp'，得到 'IMS'”

API 参考

核心操作概述

导入/导出

merge

replace

export_routes 创建备份文件

import_routes 导入模式

添加到现有

清除并替换所有

消息路由

找到匹配

未找到匹配

route_message 评估���准

calling_number

called_number

source_smsc

source_type

用于日志记录的 message_id

结果

返回：dest_smsc + route

返回：错误

路由管理

init_tables 创建/检查 Mnesia 表

add_route 插入新路由

update_route 修改现有路由

delete_route 移除路由

get_route 检索单条路由

list_routes 获取所有路由

list_enabled_routes 仅获取活动路由

路由管理操作

Mnesia 数据库路由 APIApp

初始化系统

添加新路由

更新路由

删除路由

init_tables()

创建表（如有需要）

表准备就绪

:ok

add_route(route_data)

验证字段

插入路由

路由 ID 分配

{:ok, route}

update_route(route_id, changes)

检查路由是否存在

找到路由

��用更新

已更新

{:ok, updated_route}

delete_route(route_id)

移除路由

已删除

:ok

Mnesia 数据库路由 APIApp

查询路由

list_routes() 或 list_enabled_routes()

查询路由

路由列表

[routes]

消息路由参数

route_message 接受以下参数：

calling_number（可选）：发起电话号码

called_number（可选）：目的电话号码

source_smsc（可选）：源 SMSC 标识符

source_type（可选）：连接类型（:ims、:circuit_switched、:smpp）

message_id（可选）：用于事件日志记录

返回：

{:ok, dest_smsc, route} - 找到并选择了路由

{:error, :no_route_found} - 未找到匹配路由

导入/导出操作

导入过程

merge

replace

有效

无效

是

否

import_routes backup,

mode
检查模式

保留现有路由

删除所有现有路由

对于备份中的每条路由

验证路由数据

添加到��据库

跳过并记录错误
还有更多路由？ 返回：导入计数、失败计数

导出过程

export_routes 从 Mnesia 查询所有路由 转换为可导出的格式
添加元数据：

版本、导出时间
返回备份映射

最佳实践

路由设计

1. 明智地使用优先级：将低优先级（1-10）保留给关键路由

2. 保持简单：从广泛的路由开始，按需添加特定路由

3. 记录路由：始终为路由添加描述

4. 使用捕获所有：始终有一个低优先级的默认路由

性能

1. 最小化路由数量：尽可能合并相似路由

2. 使用最长前缀：更特定的前缀减少评估时间

3. 禁用未使用的路由：不要删除您可能稍后需要的路由；禁用它们

操作

1. 部署前测试：使用模拟器验证路由逻辑

2. 定期备份：在进行重大更改之前导出路由

3. 监控路由：检查事件日志以获取路由决策

4. 逐步推出：使用权重逐步将流量转移到新路由

测试

1. 编写集成测试：测试您的特定路由场景

2. 负载测试：验证在负载下的路��性能

3. 故障转移测试：确保备份路由在主路由失败时工作

故障排除

未找到路由

症状：返回 {:error, :no_route_found}

可能原因：

没有配置路由

所有匹配的路由都已禁用

路由标准与消息参数不匹配

前缀不匹配（检查拼写错误）

解决方案：

1. 检查路由是否存在：SmsRouting.list_enabled_routes()

2. 使用模拟器测试实际消息参数的路由

3. 添加捕获所有路由以进行调试：add_route(%{dest_smsc: "debug_smsc", priority:

255})

4. 检查事件日志以获取路由评估详细信息

选择了错误的路由

症状：消息路由到意外的目的地

可能原因：

优先级配置错误

通配符路由具有更高的优先级

特异性计算偏向不同的路由

使用权重的多条路由具有相同标准

解决方案：

1. 使用模拟器查看所有匹配的路由

2. 检查优先级值（数字越小优先级越高）

3. 验证模拟器中的特异性分数

4. 审查负载均衡路由的权重分布

性能问题

症状：路由缓慢

可能原因：

数据库中的路由数量过多

复杂的路由模式

Mnesia 表未正确索引

解决方案：

1. 合并相似路由

2. 删除不再需要的禁用路由

3. 确保创建 Mnesia 索引（在 init_tables 中自动）

4. 考虑缓存频繁使用的路由决策

高级主题

ENUM/NAPTR 集成

ENUM（E.164 号码映射）提供基于 DNS 的号码查找，使用 NAPTR 记录。SMS-C 包含完整的 ENUM 支持，具有缓

存、可配置的 DNS 服务器和基于 ENUM 查找结果的路由匹配。

什么是 ENUM？

ENUM 将 E.164 电话号码映射到 DNS 名称，使用简单的转换：

电话号码：+1-212-555-1234

ENUM 查询：4.3.2.1.5.5.5.2.1.2.1.e164.arpa

DNS 记录类型：NAPTR（命名权威指针）

结果：SIP URI、路由信息或其他服务数据

配置

ENUM 功能在 config/runtime.exs 中配置：

启用 ENUM 查找：

设置 enum_enabled: true 以在路由之前启用 ENUM 查找。启用后，系统将对传入消息执行 DNS ENUM 查找，并在

路由决策中使用结果。

ENUM 域：

按优先级顺序列出要查询的 ENUM 域。系统将尝试每个域，直到成功查找为止。

常见的 ENUM 域：

e164.arpa - 官方 IETF ENUM 域

e164.org - 替代 ENUM 注册

自定义私有 ENUM 域

DNS 服务器：

为 ENUM 查询配置特定的 DNS 服务器。格式：{ip_address, port}

留空或设置为 [] 以使用系统默认 DNS 服务器。

示例自定义 DNS 配置：

Google 公共 DNS：{"8.8.8.8", 53}，{"8.8.4.4", 53}

Cloudflare DNS：{"1.1.1.1", 53}，{"1.0.0.1", 53}

自定义 ENUM DNS：{"10.0.0.53", 53}

超时：

设置 DNS 查询超时（默认：5000ms）。对于慢速网络增加，对于快速故障转移减少。

ENUM 查找的工作原理

Parse error on line 37: ... style Router fill:#3182CE style C -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

�试

ENUM 缓存

系统缓存 ENUM 查找结果 15 分钟，以提高性能并减少 DNS 负载。

缓存好处：

减少 DNS 查询负载

提高路由延迟

保护免受 DNS 服务器故障（缓存结果保持可用）

缓存统计：

在 NAPTR 测试页面查看缓存大小和状态

通过 Prometheus 指标监控缓存命中/未命中率

如有需要手动清除缓存（配置更改、测试等）

缓存行为：

成功和失败的查找都被缓存

失败的查找被缓存，以避免对无效号码的重复查询

缓存在 15 分钟后自动过期

缓存在应用程序重启后仍然存在（存储在 ETS 中）

在路由中使用 ENUM

路由可以使用 enum_result_domain 字段与 ENUM 查找结果匹配：

示例场景：

ENUM 查找 +1-555-0100 返回 NAPTR 记录：

服务：E2U+sip

替换：sip:customer@voip-carrier.com

结果域：voip-carrier.com

路由配置：

创建一个路由，enum_result_domain: "voip-carrier.com"，以匹配 ENUM 查找返回该域的消息。

匹配逻辑：

如果路由具有 enum_result_domain: nil - 匹配所有消息（通配符）

如果路由具有 enum_result_domain: "specific.com" - 仅在 ENUM 返回该域时匹配

具有匹配 ENUM 域的路由获得更高的特异性分数

优先级计算：

具有 ENUM 结果域的路由获得 +15 的特异性分数，使其优先于通用路由。

测试 ENUM 查找

访问 NAPTR 测试页面位于 /naptr_test（通过导航菜单）。

功能：

针对配置的 DNS 服务器执行实时 ENUM 查找

查看详细的 NAPTR 记录信息

查看从 NAPTR 记录中提取的结果域

监控缓存统计

清除缓存以进行测试

测试工作流程：

1. 输入电话号码（带或不带 + 前缀）

2. 指定 ENUM 域（默认：e164.arpa）

3. 点击“执行查找”

4. 查看结果：

找到的 NAPTR 记录

顺序和优先级值

服务类型（E2U+sip、E2U+tel 等）

正则表达式

替换值

提取的结果域（用于路由匹配）

当前配置显示：

正在使用的 DNS 服务器（或“系统默认”）

超时设置

缓存大小和状态

清除缓存按钮

理解结果：

每条 NAPTR 记录包含：

顺序：处理优���级（数字越小越先）

优先级：在同一顺序内（数字越小越先）

标志：处理指令（u=终端，s=继续）

服务：服务类型（E2U+sip、E2U+tel 等）

正则表达式：替代表达式

替换：替代域或地址

结果域：提取的域，用于路由匹配

常见 ENUM 用例

1. VoIP 对等

使用 ENUM 识别托管在 SIP/VoIP 网络上的号码，并直接路由到 VoIP 网关：

ENUM 返回 SIP URI：sip:number@voip-carrier.com

结果域：voip-carrier.com

路由与 enum_result_domain: "voip-carrier.com" 被选择

流量发送到直接 VoIP 对等网关

2. 运营商识别

识别服务某个号码的运营商并相应地路由：

ENUM 返回运营商信息

结果域：carrier-a.com

路由到运营商 A 的互联

优化路由成本和质量

3. 号码可携带性

处理在运营商之间迁移的已携带号码：

ENUM 查找返回当前运营商

自动路由到正确的目的地

无需手动更新路由表

4. 最低成本路由

将 ENUM 与多个路由结合：

ENUM 识别目的地网络

针对同一域的多个路由，具有不同成本

使用优先级和权重来优先选择低成本路由

5. 紧急服务

将紧急号码（911、112 等）路由到适当的紧急服务：

ENUM 查找识别本地紧急网关

高优先级路由确保立即路由

无需正常路由评估的延迟

ENUM 路由策略

推荐配置：

1. 高优先级 ENUM 路由（优先级 1-10）

匹配特定 ENUM 结果域的路由

用于直接对等、VoIP 路由

最高特异性，首先选择

2. 中优先级前缀路由（优先级 50-100）

标准基于前缀的路由

在 ENUM 查找失败或返回无记录时使用

可靠的后备

3. 低优先级捕获所有（优先级 200+）

默认路由，用于其他所有情况

确保没有消息未路由

示例路由层次结构：

优先级 1：enum_result_domain: "sip.carrier.com" → 直接 VoIP 网关

优先级 10：enum_result_domain: "tel.carrier.com" → 运营商的 PSTN 网关

优先级 50：called_prefix: "+1" → 北美默认网关

优先级 100：called_prefix: "+" → 国际默认网关

优先级 200：无标准 → 最终后备

性能考虑

DNS 查询延迟：

ENUM 查找为路由添加 DNS 查询时间：

缓存：< 1ms（快速）

未缓存：10-100ms（取决于 DNS 服务器）

建议：

使用地理位置接近的 DNS 服务器

配置适当的超时（默认 5000ms）

监控缓存命中率（目标 > 80%）

考虑为已知号码预热缓存

可扩展性：

缓存系统处理高流量场景：

缓存在所有进程之间共享

读取并发的 ETS 表以提高性能

通过 TTL 自动清理缓存

可扩展到数百万个缓存条目

故障处理：

ENUM 失败优雅地回退到常规路由：

DNS 超时 → 转到下一个路由

无 NAPTR 记录 → 使用基于前缀的路由

NAPTR 格式无效 → 记录错误，继续路由

DNS 服务器不可用 → 使用缓存结果或后备

监控 ENUM 操作

使用 Prometheus 指标监控 ENUM 性能：

sms_c_enum_lookup_stop_duration - 查找延迟

sms_c_enum_cache_hit_count - 缓存命中

sms_c_enum_cache_miss_count - 缓存未命中

sms_c_enum_cache_size_size - 当前缓存大小

sms_c_enum_naptr_records_record_count - 每次查找的 NAPTR 记录

关键指标：

缓存命中率：应在预热后 > 70%

查找持续时间 p95：应 < 1000ms

失败的查找：监控 DNS 问题

请参见 docs/METRICS.md 获取完整的指标文档。

故障排除 ENUM

问题：未找到 NAPTR 记录

验证 ENUM 域配置

测试 DNS 服务器连接性

检查号码是否实际在 ENUM 注册中

尝试替代 ENUM 域（例如，e164.org）

使用 NAPTR 测试页面进行诊断

问题：ENUM 查找缓慢

检查 DNS 服务器延迟

验证网络连接

如有需要增加超时

考虑使用更接近的 DNS 服务器

检查缓存命中率

问题：ENUM 后选择了错误的路由

验证路由中的 enum_result_domain 字段

使用路由模拟器测试路由逻辑

检查结果域提取是否正确

查看测试页面中的 NAPTR 记录格式

问题：ENUM 查找被禁用

验证 enum_enabled: true 在 config/runtime.exs 中

检查 enum_domains 列表是否为空

配置更改后重启应用程序

检查应用程序日志以获取 ENUM 初始化信息

安全考虑

DNS 缓存中毒：

仅使用受信任的 DNS 服务器

如果可用，考虑使用 DNSSEC

验证 NAPTR 记录格式

监控意外结果域

资源耗尽：

缓存限制防止内存耗尽

超时防止在慢 DNS 上挂起

失败的查找被缓存以防止重试风暴

信息泄露：

ENUM 查找向 DNS 服务器揭示路由意图

对于敏感路由，使用私有 DNS 服务器

考虑 VPN/加密 DNS 以保护隐私

事件日志记录

路由决策通过 EventLogger 记录：

sms_routing_started：路由评估开始

sms_routing_candidates：找到的启用路由数量

sms_routing_matches：匹配的路由数量

sms_routing_selected：选择的路由详细信息

sms_routing_failed：未找到路由

通过将 message_id 传递给 route_message/1 启用日志记录。

集群

Mnesia 表自动分布在集群节点之间。路由被复制以确保高可用性。

Parse error on line 25: ... style New fill:#3182CE style P ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

�试

示例

请参见测试套件 test/sms_c/messaging/sms_routing_test.exs，获取全面的示例，包括：

前缀匹配

基于优先级的路由

基于权重的负载均衡

多标准路由

边缘情况

从旧路由迁移

如果从旧的基于配置的路由迁移，请遵循以下流程：

迁移步骤详细信息

1. 初始化表

创建 Mnesia 路由表

准备系统以进行新路由

2. 分析旧路由

正则模式 → 基于前缀的路由

罐装响应 → 自动回复路由

自定义逻辑 → 多标准路由

3. 彻底测试

使用路由模拟器

验证所有场景

检查边缘情况

4. 更新代码

替换旧的路由调用

使用 route_message/1 API

更新错误处理

5. 部署与监控

部署新路由系统

监控问题

初始时保留旧配置作为备份

6. 清理

删除旧路由配置

删除迁移代码

更新文档

支持

如有问题或疑问：

检查测试套件以获取示例

使用模拟器调试路由逻辑

查看事件日志以获取路由决策

检查 Mnesia 表内容：:mnesia.table_info(:sms_route, :size)

SMS-C 故障排除指南

← 返回文档索引 | 主 README

全面指南，用于诊断和解决常见的 SMS-C 问题。

目录

诊断工具

消息投递问题

路由问题

性能问题

数据库问题

前端连接问题

计费/收费问题

ENUM 查找问题

集群问题

API 问题

Web UI 问题

系统资源问题

诊断工具

快速健康检查

日志分析

查看最近错误：

实时监控日志：

1. 检查 API 状态

curl https://api.example.com:8443/api/status

2. 检查 Prometheus 指标端点

curl https://api.example.com:9568/metrics | grep sms_c

3. 检查应用程序日志

tail -f /var/log/sms_c/application.log

4. 检查进程状态

systemctl status sms_c

5. 检查 SQL CDR 数据库连接性 (MySQL/MariaDB)

mysql -u sms_user -p -h db.example.com -e "SELECT 1"

对于 PostgreSQL:

psql -U sms_user -h db.example.com -d sms_c_prod -c "SELECT 1"

最近 100 条错误级别日志条目

tail -1000 /var/log/sms_c/application.log | grep "\[error\]"

搜索特定错误模式

grep "routing_failed" /var/log/sms_c/application.log

查找 SQL 数据库错误

grep -i "database\|sql\|ecto" /var/log/sms_c/application.log |

grep error

指标查询

检查消息处理速率：

检查队列状态：

检查系统性能：

带过滤器跟踪日志

tail -f /var/log/sms_c/application.log | grep -E "

(error|warning|critical)"

每秒�息数

rate(sms_c_message_received_count[5m])

投递成功率

rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])

当前队列深度

sms_c_queue_size_pending

最旧�息的年龄（秒）

sms_c_queue_oldest_message_age_seconds

�息处理延迟 (p95)

histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket)

路由延迟 (p95)

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

消息投递问题

消息未被投递

症状：

消息卡在“待处理”状态

高待处理消息��数

无投递通知

诊断步骤：

1. 检查前端连接：

预期：活动前端列表

问题：空列表或缺少预期的前端

2. 检查消息队列：

访问 Web UI: /message_queue

按状态过滤：“待处理”

检查 dest_smsc 值

验证 deliver_after 不在未来

3. 检查路由：

访问 Web UI: /simulator

使用实际消息参数进行测试

验证路由匹配并且目标正确

4. 检查前端轮询：

查看前端系统日志：

前端是否在查询 /api/messages？

curl https://api.example.com:8443/api/frontends/active

前端是否正确发送 smsc 头？

解决方案：

没有前端连接：

消息路由到错误的 SMSC：

查看路由配置

检查路由优先级

在路由模拟器中测试

验证前端名称与消息中的 dest_smsc 匹配

消息计划在未来：

检查 deliver_after 时间戳

如有必要重置：

检查前端系统状态

systemctl status frontend_service

验证前端是否可以访问 API

curl -k https://api.example.com:8443/api/status

手动注册前端

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "test_gateway",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50"

 }'

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"deliver_after": "2025-10-30T12:00:00Z"}'

消息重试失败

症状：

delivery_attempts 计数器增加

尝试计数高的消息（> 3）

指数退避延迟

诊断步骤：

1. 检查事件日志：

查找：

投递失败事件

错误描述

重试时间戳

2. 检查前端日志：

前端为什么无法投递？

网络错误？

协议错误？

下游系统不可用？

解决方案：

临时网络问题：

等待重试（自动）

监控成功投递

持续失败：

curl https://api.example.com:8443/api/events/12345

无效的目标号码：

验证号码格式

检查号码转换规则

如果确实无效，删除消息

死���消息

症状：

消息中有 deadletter: true

消息超过过期时间

状态仍为“待处理”

诊断步骤：

1. 查找死信消息：

访问 Web UI: /message_queue

按过期状态过滤

检查过期时间戳

2. 检查过期原因：

查看事件日志

检查投递尝试历史

验证路由是否成功

路由到备用网关

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"dest_smsc": "backup_gateway"}'

重置重试计数器

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"delivery_attempts": 0, "deliver_after": "2025-10-

30T12:00:00Z"}'

解决方案：

延长过期时间：

路由问题

找不到路由

症状：

错误：no_route_found

sms_c_routing_failed_count 指标增加

事件日志显示“routing_failed”

诊断步骤：

1. 检查路由是否存在：

访问 Web UI: /sms_routing

验证路由是否配置

检查至少一个路由是否启用

2. 测试路由：

访问 Web UI: /simulator

输入消息参数（呼叫号码，被叫号码，源 SMSC）

查看评估结果

检查为什么路由没有匹配

3. 检查路由标准：

将过期时间延长 24 小时

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"expires": "2025-10-31T12:00:00Z", "deadletter": false}'

前缀匹配是否必要？

源 SMSC 过滤是否过于严格？

所有路由是否禁用？

解决方案：

没有配置路由：

添加通用路由：

路由过于具体：

添加更广泛的路由：

所有路由都被禁用：

通过 Web UI 启用适当的路由

检查配置是否意外禁用路由

选择错误的路由

症状：

呼叫前缀: (空)

被叫前缀: (空)

源 SMSC: (空)

目标 SMSC: default_gateway

优先级: 255

权重: 100

启用: ✓

描述: 通用默认路由

被叫前缀: +

目标 SMSC: international_gateway

优先级: 200

权重: 100

启用: ✓

描述: 国际通用路由

消息路由到意外的目的地

错误的网关接收流量

负载均衡未按预期分配

诊断步骤：

1. 使用路由模拟器：

访问 Web UI: /simulator

使用实际消息参数进行测试

查看“所有匹配”部分

检查优先级和特异性分数

2. 检查路由优先级：

数字越低 = 优先级越高

路由按优先级顺序评估

在同一优先级内，权重适用

3. 检查路由特异性：

特异性评分：

更长的被叫前缀：每个字符 +100 分

更长的呼叫前缀：每个字符 +50 分

指定源 SMSC：+25 分

指定源类型：+10 分

指定 ENUM 域：+15 分

解决方案：

调整优先级：

使特定路由优先级更高：

调整权重：

更改负载均衡分配：

添加更具体的路由：

为特定情况覆盖一般路由：

自动回复不工作

症状：

配置了自动回复路由但未触发

没有回复消息被发送

优质路由:

 被叫前缀: +1555

 优先级: 10（���优先级）

一般路由:

 被叫前缀: +1

 优先级: 50（低优先级）

主路由 (70%):

 权重: 70

备用路由 (30%):

 权重: 30

特定路由:

 被叫前缀: +15551234

 目标 SMSC: dedicated_gateway

 优先级: 1

一般路由:

 被叫前缀: +1

 目标 SMSC: general_gateway

 优先级: 50

事件日志缺少自动回复事件

诊断步骤：

1. 检查路由配置：

auto_reply: true

auto_reply_message 包含文本

路由已启用

路由匹配消息标准

2. 在模拟器中测试：

验证路由是否被选择

检查是否有“auto_reply”指示

3. 检查事件日志：

解决方案：

路由不匹配：

扩大标准（移除过滤器）

检查优先级（应高于正常路由）

验证启用状态

消息未设置：

编辑路由，添加消息：

优先级错误���

curl https://api.example.com:8443/api/events/12345 | grep

auto_reply

自动回复: ✓

自动回复�息: "感谢您的�息。我们将尽快回复。"

自动回复路由应具有高优先级（低数字）：

性能问题

高消息处理延迟

症状：

sms_c_message_processing_stop_duration p95 > 1000ms

API 响应缓慢

队列积压

诊断步骤：

1. 检查组件延迟：

2. 检查系统资源：

自动回复路由:

 优先级: 10

正常路由:

 优先级: 50

路由延迟

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

ENUM 查找延迟

histogram_quantile(0.95, sms_c_enum_lookup_stop_duration_bucket)

收费延迟

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

投递延迟

histogram_quantile(0.95, sms_c_delivery_succeeded_duration_bucket)

解决方案：

路由缓慢（许多路由）：

减少启用的路由数量

合并相似路由

优化路由标准

ENUM 查找缓慢：

检查 DNS 服务器延迟

增加超时

使用更快/更近的 DNS 服务器

如果不需要，禁用 ENUM

收费缓慢：

检查 OCS 性能

增加 OCS 超时

如果不需要，禁用收费

使用异步收费

数据库缓慢：

增加连接池大小

添加索引

优化查询

升级数据库资源

配置更改：

CPU 使用率

top -b -n 1 | grep sms_c

内存使用率

ps aux | grep beam.smp

低消息吞吐量

症状：

处理 < 100 msg/sec

使用异步 API 但仍然缓慢

高 API 响应时间

诊断步骤：

1. 检查批处理工作者：

查找：

current_queue_size 接近最大值

flush_errors > 0

last_flush_duration_ms 非常高

2. 检查瓶颈：

config/config.exs

增加批处理大小以提高吞吐量

config :sms_c,

 batch_insert_batch_size: 200,

 batch_insert_flush_interval_ms: 200

增加数据库池

config :sms_c, SmsC.Repo,

 pool_size: 50

在生产控制台 (iex)

SmsC.Messaging.BatchInsertWorker.stats()

解决方案：

数据库瓶颈：

增加池大小：

批处理配置：

调整以提高吞吐量：

使用异步端点：

队列积压增长

症状：

sms_c_queue_size_pending 增加

最旧消息的年龄增加

数据库查询时间

ecto_pools_query_time

连接池排队时间

ecto_pools_queue_time

config :sms_c, SmsC.Repo,

 pool_size: 50 # 从 20 增加

config :sms_c,

 batch_insert_batch_size: 200, # 更大的批次

 batch_insert_flush_interval_ms: 200 # 更长的间隔

高吞吐量：使用 /create_async

curl -X POST

https://api.example.com:8443/api/messages/create_async

NOT: /api/messages (同步)

处理无法跟上到达速率

诊断步骤：

1. 检查到达速率与投递速率：

2. 检查前端容量：

前端轮询是否足够频繁？

前端处理消息是否足够快？

有前端错误吗？

3. 检查投递成功率：

解决方案：

前端未轮询：

检查前端连接性

验证轮询间隔（应为 5-10 秒）

重启前端服务

前端太慢：

添加更多前端实例

优化前端处理

增加前端并发性

高重试率：

到达速率

rate(sms_c_message_received_count[5m])

投递速率

rate(sms_c_delivery_succeeded_count[5m])

rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_attempted_count[5m])

调查投递失败

修复下游问题

路由到备用网关

临时峰值：

等待队列排空

监控直到正常

如果重复考虑容量升级

数据库问题

连接失败

症状：

错误：“无法连接到数据库”

API 返回 500 错误

应用程序无法启动

诊断步骤：

1. 检查 SQL CDR 数据库状态：

2. 检查网络：

MySQL/MariaDB

systemctl status mysql

PostgreSQL

systemctl status postgresql

测试连接性 (MySQL/MariaDB)

mysql -u sms_user -p -h db.example.com -e "SELECT 1"

测试连接性 (PostgreSQL)

psql -U sms_user -h db.example.com -d sms_c_prod -c "SELECT 1"

3. 检查凭证：

解决方案：

数据库关闭：

凭证错误：

更新配置：

Ping 数据库主机

ping db.example.com

检查端口连接性 (MySQL/MariaDB: 3306, PostgreSQL: 5432)

telnet db.example.com 3306

或

telnet db.example.com 5432

验证环境变量

echo $DB_USERNAME

echo $DB_HOSTNAME

echo $DB_PORT

尝试使用相同凭证手动连接 (MySQL/MariaDB)

mysql -u $DB_USERNAME -p$DB_PASSWORD -h $DB_HOSTNAME

对于 PostgreSQL:

psql -U $DB_USERNAME -h $DB_HOSTNAME -d sms_c_prod

启动数据库 (MySQL/MariaDB)

systemctl start mysql

启动数据库 (PostgreSQL)

systemctl start postgresql

网络问题：

检查防火墙规则

验证安全组（云）

检查 VPN/网络连接性

连接池耗尽：

增加池大小：

查询缓慢

症状：

数据库查询时间高

API 响应缓慢

连接池排队增加

诊断步骤：

1. 检查慢查询日志：

export DB_USERNAME=correct_user

export DB_PASSWORD=correct_password

重启应用程序

systemctl restart sms_c

config :sms_c, SmsC.Repo,

 pool_size: 50 # 从当前值增加

2. 检查缺失的索引：

3. 检查表统计信息：

-- MySQL/MariaDB: 启用慢查询日志

SET GLOBAL slow_query_log = 'ON';

SET GLOBAL long_query_time = 1; -- 记录 > 1 秒的查询

-- 查看慢查询 (MySQL/MariaDB)

SELECT * FROM mysql.slow_log ORDER BY query_time DESC LIMIT 10;

-- PostgreSQL: 在 postgresql.conf 中启用慢查询日志

-- log_min_duration_statement = 1000 # 毫秒

-- 然后检查 PostgreSQL 日志

-- 检查表索引

SHOW INDEX FROM message_queues;

-- 预期索引：

-- - source_smsc

-- - dest_smsc

-- - send_time

-- - inserted_at

-- 表大小 (MySQL/MariaDB)

SELECT

 table_name,

 table_rows,

 ROUND(data_length / 1024 / 1024, 2) AS data_mb,

 ROUND(index_length / 1024 / 1024, 2) AS index_mb

FROM information_schema.tables

WHERE table_schema = 'sms_c_prod';

-- 表大小 (PostgreSQL)

-- SELECT schemaname, tablename,

--

pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename))

AS size

-- FROM pg_tables WHERE schemaname = 'public';

解决方案：

缺失索引：

表碎片化：

数据过多：

清理旧记录：

磁盘空间已满

症状：

错误：“磁盘已满”

无法写入数据库

CREATE INDEX idx_message_queues_source_smsc ON

message_queues(source_smsc);

CREATE INDEX idx_message_queues_dest_smsc ON

message_queues(dest_smsc);

CREATE INDEX idx_message_queues_send_time ON

message_queues(send_time);

CREATE INDEX idx_message_queues_status ON message_queues(status);

-- MySQL/MariaDB

OPTIMIZE TABLE message_queues;

OPTIMIZE TABLE frontend_registrations;

-- PostgreSQL

-- VACUUM ANALYZE message_queues;

-- VACUUM ANALYZE frontend_registrations;

-- 删除超过 30 天的已投递消息

DELETE FROM message_queues

WHERE status = 'delivered'

AND deliver_time < DATE_SUB(NOW(), INTERVAL 30 DAY)

LIMIT 10000;

应用程序崩溃

诊断步骤：

1. 检查磁盘使用情况：

2. 查找大文件：

解决方案：

清理旧数据：

轮换日志：

df -h

检查 SQL 数据库目录 (MySQL/MariaDB)

du -sh /var/lib/mysql

检查 SQL 数据库目录 (PostgreSQL)

du -sh /var/lib/postgresql

查找最大文件 (MySQL/MariaDB)

find /var/lib/mysql -type f -exec du -h {} + | sort -rh

| head -20

查找最大文件 (PostgreSQL)

find /var/lib/postgresql -type f -exec du -h {} + | sort

-rh | head -20

检查日志文件

du -sh /var/log/sms_c/*

-- 删除旧消息

DELETE FROM message_queues

WHERE inserted_at < DATE_SUB(NOW(), INTERVAL 90 DAY)

LIMIT 100000;

扩展磁盘：

调整卷大小（云）

添加新磁盘并扩展卷

将数据移动到更大磁盘

前端连接问题

前端未显示为活动

症状：

前端状态显示“过期”

前端不在活动列表中

消息未投递到前端

诊断步骤：

1. 检查注册：

2. 检查前端日志：

前端是否调用 /api/frontends/register？

有任何 API 错误吗？

注册频率（应每 60 秒一次）

3. 检查 API 日志：

强制 logrotate

logrotate -f /etc/logrotate.d/sms_c

清除旧日志文件

find /var/log/sms_c -name "*.log.*" -mtime +30 -delete

curl https://api.example.com:8443/api/frontends/active | grep

frontend_name

解决方案：

前端未注册：

测试手动注册：

如果成功，问题出在前端代码/配置上。

注册超时：

前端在 90 秒后过期。确保每 60 秒注册��次：

网络问题：

检查前端与 API 之间的防火墙

验证 DNS 解析

从前端服务器测试 curl

前端反复连接/断开

症状：

grep "frontend.*register" /var/log/sms_c/application.log | tail

-20

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "uk_gateway",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50"

 }'

前端应每 60 秒调用注册

while True:

 register_with_smsc()

 time.sleep(60)

前端状态在活动/过期之间切换

注册历史中的高计数

连接不稳定

诊断步骤：

1. 检查前端健康：

前端进程是否稳定？

有崩溃或重启吗？

资源问题（CPU/内存）？

2. 检查网络稳定性：

3. 检查注册时间：

太频繁？（每几秒）

太不频繁？（> 90 秒）

解决方案：

前端不稳定：

修复前端应用程序问题

增加前端资源

检查前端日志中的错误

网络问题：

检查是否存在间歇性连接

查看防火墙日志

检查负载均衡器健康检查

检查丢包

ping -c 100 api.example.com

检查连接重置

netstat -s | grep -i reset

注册间隔错误：

正确间隔：

计费/收费问题

收费失败

症状：

sms_c_charging_failed_count 增加

事件日志显示“charging_failed”

消息标记为 charge_failed: true

诊断步骤：

1. 检查 OCS 连接��：

预期：{"result":"Pong"}

2. 检查 OCS 日志：

3. 检查配置：

REGISTRATION_INTERVAL = 60 # 秒

测试 OCS API

curl -X POST http://ocs.example.com:2080/jsonrpc \

 -H "Content-Type: application/json" \

 -d '{

 "method": "SessionSv1.Ping",

 "params": [],

 "id": 1

 }'

tail -f /var/log/ocs/ocs.log

解决方案：

OCS 不可用：

配置错误：

更新配置：

暂时禁用收费：

重启应用程序。

账户问题：

检查 OCS 中账户是否存在

验证账户是否有余额

检查计费计划是否配置

验证 OCS URL

grep ocs_url config/runtime.exs

检查 OCS 状态

systemctl status ocs

如有需要，启动

systemctl start ocs

config :sms_c,

 ocs_url: "http://correct-host:2080/jsonrpc",

 ocs_tenant: "correct_tenant"

config :sms_c,

 default_charging_enabled: false

收费太慢

症状：

sms_c_charging_succeeded_duration p95 > 500ms

启用收费时消息处理缓慢

禁用时快速

诊断步骤：

1. 检查收费延迟：

2. 检查 OCS 性能：

3. 检查网络延迟：

解决方案：

OCS 慢：

优化 OCS 配置

添加 OCS 资源

使用更快的计费引擎

网络延迟：

将 OCS 部署到更靠近 SMS-C 的位置

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

OCS 响应时间

curl -w "%{time_total}\n" -X POST

http://ocs.example.com:2080/jsonrpc \

 -H "Content-Type: application/json" \

 -d '{"method":"SessionSv1.Ping","params":[],"id":1}'

Ping OCS 主机

ping -c 10 ocs.example.com

使用直接网络路径

尽量避免 VPN/隧道

超时太短：

增加超时：

ENUM 查找问题

ENUM 查找失败

症状：

sms_c_enum_lookup_stop_duration 显示失败

事件日志显示 ENUM 错误

带有 enum_result_domain 的路由未匹配

诊断步骤：

1. 检查 ENUM 配置：

2. 测试 DNS 连接性：

3. 检查 DNS 服务器：

config :sms_c,

 ocs_timeout: 5000 # 5 秒

grep -A 10 "enum_" config/runtime.exs

测试 DNS 服务器

dig @8.8.8.8 e164.arpa

测试 ENUM 查询

对于 +15551234567:

dig @8.8.8.8 NAPTR 7.6.5.4.3.2.1.5.5.5.1.e164.arpa

解决方案：

DNS 服务器不可达：

使用备用 DNS：

ENUM 域错误：

更新域：

超时太短：

增加超时：

禁用 ENUM（如果不需要）：

自定义 DNS 是否可达？

ping 10.0.1.53

测试端口

nc -zv 10.0.1.53 53

config :sms_c,

 enum_dns_servers: [

 {"8.8.8.8", 53}, # Google 公共 DNS

 {"1.1.1.1", 53} # Cloudflare DNS

]

config :sms_c,

 enum_domains: ["e164.arpa"] # 使用标准域

config :sms_c,

 enum_timeout: 10000 # 10 秒

config :sms_c,

 enum_enabled: false

ENUM 缓存问题

症状：

低缓存命中率 (< 70%)

缓存大小无限增长

内存使用高

诊断步骤：

1. 检查缓存统计信息：

2. 检查流量模式：

数字是否重复？

缓存 TTL 是否合适？

解决方案：

低命中率（预期）：

流量到唯一数字（正常）

监控但如果 < 70% 不要报警

缓存增长：

通过 NAPTR 测试页面清除缓存或重启应用程序。

高内存使用：

大缓存时预期

监控整体系统内存

缓存命中率

rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))

缓存大小

sms_c_enum_cache_size_size

考虑调整 TTL

集群问题

节点无法加入集群

症状：

单个节点运行

集群查询仅返回本地结��

Erlang 分布错误

诊断步骤：

1. 检查节点名称：

2. 检查 Erlang Cookie：

3. 检查网络：

在 IEx 控制台中

Node.self()

预期： :sms@node1.example.com

Node.list()

预期：其他节点的列表

检查 cookie 文件

cat ~/.erlang.cookie

在所有节点上验证相同

解决方案：

Cookie 不匹配：

在所有节点上设置相同的 cookie：

防火墙阻塞：

打开所需端口：

DNS 问题：

使用 IP 地址而不是主机名：

节点之间可以相互访问吗？

ping node2.example.com

检查端口

nc -zv node2.example.com 4369

nc -zv node2.example.com 9100-9200

export ERLANG_COOKIE=same_secret_value_here

或更新 ~/.erlang.cookie

echo "same_secret_value_here" > ~/.erlang.cookie

chmod 400 ~/.erlang.cookie

EPMD

iptables -A INPUT -p tcp --dport 4369 -j ACCEPT

Erlang 分布

iptables -A INPUT -p tcp --dport 9100:9200 -j ACCEPT

config :sms_c,

 cluster_nodes: [

 :"sms@10.0.1.10",

 :"sms@10.0.1.11"

]

集群分裂脑

症状：

节点运行但断开连接

不同节点上的数据不同

Mnesia 不一致

诊断步骤：

1. 检查节点连接性：

2. 检查 Mnesia：

解决方案：

重新连接节点：

Mnesia 不一致：

从正确的节点导出路由

停止所有节点

删除 Mnesia 目录

在每��节点上 (IEx)

Node.list()

:mnesia.system_info(:running_db_nodes)

停止所有节点

systemctl stop sms_c

首先启动一个节点

systemctl start sms_c # 在 node1 上

等待其完全启动，然后启动其他节点

systemctl start sms_c # 在 node2 上

systemctl start sms_c # 在 node3 上

启动节点

导入路由

API 问题

API 不响应

症状：

连接超时

连接被拒绝

无响应

诊断步骤：

1. 检查 API 进程：

2. 检查防火墙：

3. 检查 TLS 配置：

应用程序是否在运行？

systemctl status sms_c

检查监听端口

netstat -tlnp | grep 8443

检查 iptables

iptables -L -n | grep 8443

测试本地连接

curl -k https://localhost:8443/api/status

解决方案：

应用程序未运行：

防火墙阻塞：

证书问题：

生成新证书（请参见配置指南）。

端口错误：

检查配置：

API 返回 500 错误

症状：

内部服务器错误

500 状态码

日志中有错误

诊断步骤：

检查证书是否存在

ls -l priv/cert/server.crt priv/cert/server.key

检查证书有效性

openssl x509 -in priv/cert/server.crt -noout -dates

systemctl start sms_c

允许 API 端口

iptables -A INPUT -p tcp --dport 8443 -j ACCEPT

grep "port:" config/runtime.exs

1. 检查应用程序日志：

2. 检查数据库：

3. 检查资源：

解决方案：

数据库不可用：

启动数据库

修复连接配置

内存不足：

重启应用程序

增加系统内存

检查内存泄漏

应用程序错误：

检查日志中的具体错误

修复配置问题

重启应用程序

tail -100 /var/log/sms_c/application.log | grep "\[error\]"

mysql -u sms_user -p -e "SELECT 1"

内存

free -h

CPU

top -b -n 1

磁盘

df -h

Web UI 问题

无法访问 Web UI

症状：

连接超时

404 未找到

页面无法加载

诊断步骤：

1. 检查应用程序状态：

2. 检查端口：

3. 检查 URL：

主机名正确吗？

端口正确吗？

HTTP 与 HTTPS？

解决方案：

错误的端口：

检查配置：

在正确的端口访问（默认：80 或 4000）。

systemctl status sms_c

netstat -tlnp | grep 80

grep "control_panel" config/runtime.exs

应用程序未运行：

防火墙：

LiveView 未更新

症状：

页面加载但不更新

数据过时

浏览器控制台中的 WebSocket 错误

诊断步骤：

1. 检查浏览器控制台：

打开开发者工具 (F12)

查找 WebSocket 错误

检查网络选项卡中的失败请求

2. 检查代理配置：

如果使用反向代理，确保支持 WebSocket：

解决方案：

WebSocket 被阻止：

systemctl start sms_c

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

location /live {

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

}

配置代理以支持 WebSocket

检查防火墙

检查浏览器扩展

刷新页面：

硬刷新 (Ctrl+F5)

清除浏览器缓存

系统资源问题

高 CPU 使用率

症状：

CPU 持续 > 80%

系统缓慢

应用程序无响应

诊断步骤：

1. 检查进程：

2. 检查指标：

解决方案：

高流量：

top -b -n 1 | grep beam.smp

�息处理速率

rate(sms_c_message_received_count[5m])

路由操作

rate(sms_c_routing_route_matched_count[5m])

横向扩展（添加节点）

纵向扩展（增加 CPU）

路由效率低：

减少路由数量

优化路由标准

ENUM 查找过多：

检查缓存命中率

考虑禁用如果不需要

高内存使用

症状：

内存使用 > 90%

应用程序崩溃

内存不足错误

诊断步骤：

1. 检查内存：

2. 检查缓存大小：

解决方案：

ENUM 缓存过大：

清除缓存

free -h

ps aux | grep beam.smp

sms_c_enum_cache_size_size

减少 TTL

如果不需要，禁用 ENUM

批处理队列增长：

如果队列很大，手动刷新或重启。

增加内存：

纵向扩展

添加交换空间（临时）

内存泄漏：

重启应用程序

报告问题以供调查

如需更多帮助，请咨询：

操作指南 - 日常程序

配置指南 - 配置选项

指标指南 - 监控设置

应用程序日志 - /var/log/sms_c/application.log

检查工作者统计信息 (IEx)

SmsC.Messaging.BatchInsertWorker.stats()

