REST API Guide

This guide provides comprehensive documentation for the OmniSS7 REST API
and Swagger Ul.

Table of Contents

W X N U Rk WDNRH

Overview

OmniSS7 provides a REST API for programmatic access to MAP (Mobile
Application Part) operations. The API allows you to:

¢ Send MAP requests (SRI, SRI-for-SM, UpdateLocation, etc.)
e Retrieve MAP responses

e Monitor system metrics via Prometheus

-
API Architecture
AP Ot HTTP POSTAGET- _ . AFhardier Mpdus = Maplient GenSener 3 H3UA Connection SET Metwori—+ CET Blements



HTTP Server Configuration

Server Details

Parameter Value Configurable
Protocol HTTP No

IP Address 0.0.0.0 (all interfaces) Via code only
Port 8080 Via code only

Transport Plug.Cowboy No

Access URL: http://[server-ip]:8080

Enabling/Disabling the HTTP Server

Control whether the HTTP server starts:

config :omniss7,
start http server: true # Set to false to disable

Default: true (enabled)

When Disabled: The HTTP server will not start, and REST API/Swagger Ul will
be unavailable.

Swagger Ul

The APl includes a Swagger Ul for interactive APl documentation and testing.



Accessing Swagger Ul
URL: http://[server-ip]:8080/swagger
Features:

Interactive APl documentation

Try-it-out functionality for testing endpoints

Request/response schemas

Example payloads

Swagger JSON

The OpenAPI specification is available at:

URL: http://[server-ip]:8080/swagger.json
Use Cases:

e Import into Postman or other API clients
e Generate client libraries

¢ APl documentation automation

APl Endpoints

All MAP operation endpoints follow the pattern: POST /api/{operation}



Endpoint Summary

Endpoint Method Purpose
/api/sri POST Send Routing Info
/api/sri-for-sm POST Send Routing Info for SM
/api/send-auth-info  POST Send Authentication Info

Mobile Terminated Forward

/api/MT-forwardSM POST oM

/api/forwardSM POST Forward SM
/api/updateLocation  POST Update Location
/api/prn POST Provide Roaming Number
/metrics GET Prometheus metrics
/swagger GET Swagger Ul
/swagger.json GET OpenAPI spec

Note: All MAP requests have a hardcoded 10-second timeout.

SendRoutinginfo (SRI)

Timeout

10s

10s

10s

10s

10s

10s

10s

N/A

N/A

N/A

Retrieve routing information for establishing a call to a mobile subscriber.

Endpoint: POST /api/sri

Request Body:



{

"msisdn": "1234567890",
"gmsc": "5551234567"
}
Parameters:
Field Type Required
msisdn  String Yes
gmsc String  Yes

Response (200 OK):

Description

Called party MSISDN

Gateway MSC Global Title

{
"result": {
"imsi": "001001234567890",
"msrn": "5551234999",
"vlr number": "5551234800",
}
}

Error (504 Gateway Timeout):
"timeout"

"error":

cURL Example:



curl -X POST http://localhost:8080/api/sri \
-H "Content-Type: application/json" \
-d '{
"msisdn": "1234567890",
"gmsc": "5551234567"

} 1

SendRoutinginfoForSM (SRI-for-SM)
Retrieve routing information for delivering an SMS to a mobile subscriber.
Endpoint: POST /api/sri-for-sm

Request Body:

{
"msisdn": "1234567890",
"service center": "5551234567"
}
Parameters:
Field Type Required Description
msisdn String  Yes Destination MSISDN
service center String Yes Service Center Global Title

Response (200 OK):



"result": {
"imsi": "001001234567890",
"msc_number": "5551234800",
"location info": {...},

cURL Example:

curl -X POST http://localhost:8080/api/sri-for-sm \
-H "Content-Type: application/json" \
-d '{
"msisdn": "1234567890",
"service center": "5551234567"

} 1

SendAuthenticationinfo
Request authentication vectors for a subscriber.
Endpoint: POST /api/send-auth-info

Request Body:

"imsi": "001001234567890",
"vectors": 3

Parameters:



Field Type Required Description

imsi String Yes Subscriber IMSI

Number of authentication vectors to
vectors Integer Yes
generate

Response (200 OK):

{
"result": {
"authentication sets": [
{
“rand": "0123456789ABCDEF...",
"Xres": "...",
"ck": ", ",
ik "L,
"autn": "..."
}
1,
}
}

cURL Example:

curl -X POST http://localhost:8080/api/send-auth-info \
-H "Content-Type: application/json" \
-d '{
"imsi": "001001234567890",
"vectors": 3

3

MT-ForwardSM

Deliver a Mobile Terminated SMS to a subscriber.



Endpoint: POST /api/MT-forwardSM

Request Body:

"imsi": "001001234567890",
"destination service centre":
"originating service center":

"5551234567",
*5551234568",

“smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

Parameters:

Field

imsi

destination service centre

originating service center

smsPDU

Type

String

String

String

String

Required

Yes

Yes

Yes

Yes

Description

Destination
subscriber IMSI

Destination service
center GT

Originating service
center GT

SMS TPDU in
hexadecimal format

Note: smsPDU must be a hex-encoded string (uppercase or lowercase).

Response (200 OK):

"result": {

"delivery status": "success",



cURL Example:

curl -X POST http://localhost:8080/api/MT-forwardSM \
-H "Content-Type: application/json" \

-d '{
"imsi": "001001234567890",
"destination service centre": "5551234567",

"originating service center": "5551234568",
"smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

ForwardSM

Forward an SMS message (MO-SMS from subscriber).
Endpoint: POST /api/forwardSM

Request Body: Same as MT-ForwardSM

cURL Example:

curl -X POST http://localhost:8080/api/forwardSM \
-H "Content-Type: application/json" \

-d '{
"imsi": "001001234567890",
"destination service centre": "5551234567",
"originating service center": "5551234568",

"smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

UpdateLocation
Notify HLR of subscriber location change (VLR registration).
Endpoint: POST /api/updateLocation

Request Body:



"imsi": "001001234567890",
“vlr": "5551234800"

}
Parameters:
Field Type Required Description
imsi String  Yes Subscriber IMSI
vlr String  Yes VLR Global Title address

Response (200 OK):

{
"result": {
“hlr number": "5551234567",
“subscriber data": {...},
}
}

Note: In HLR mode, this triggers InsertSubscriberData (ISD) sequence with 10-
second timeout per ISD.

cURL Example:

curl -X POST http://localhost:8080/api/updateLocation \
-H "Content-Type: application/json" \
-d '{
"imsi": "001001234567890",
"vlr": "5551234800"
3



ProvideRoamingNumber (PRN)

Request MSRN (Mobile Station Roaming Number) for call routing to roaming
subscriber.

Endpoint: POST /api/prn

Request Body:

{

"msisdn": "1234567890",

"gmsc": "5551234567",

"msc_number": "5551234800",

"imsi": "001001234567890"

}
Parameters:

Field Type Required Description
msisdn String  Yes Subscriber MSISDN
gmsc String  Yes Gateway MSC GT
msc_number  String Yes MSC number for subscriber
imsi String  Yes Subscriber IMSI

Response (200 OK):

{

"result": {
"msrn": "5551234999",

cURL Example:



curl -X POST http://localhost:8080/api/prn \
-H "Content-Type: application/json" \
-d '{
"msisdn": "1234567890",
"gmsc": "5551234567",
"msc_number": "5551234800",
"imsi": "001001234567890"

} 1

Authentication

Current Status: The APl does not require authentication.
Security Considerations:

e APl is intended for internal/trusted network use
e Consider using firewall rules to restrict access

e For production deployments, consider implementing authentication
middleware

Response Formats

All responses use JSON format.

Success Response
HTTP Status: 200 OK

Structure:



{

"result": {
// Operation-specific response data

}
}

Error Response

HTTP Status:

e 400 Bad Request - Invalid request body
e 504 Gateway Timeout - MAP request timeout (10 seconds)
e 404 Not Found - Invalid endpoint

Structure:
{
"error": "timeout"
}
or
{
“error": "invalid request"



Error Handling

Common Errors

HTTP
Error

Code
Invalid

400
JSON
Missin
] g 400
fields

Timeout 504

Not Found 404

Description

Request body is not
valid JSON

Required fields
missing

MAP request
exceeded 10s

timeout

Invalid endpoint

Timeout Behavior

Solution

Check JSON syntax

Include all required
parameters

Check M3UA connectivity,

HLR/VLR availability

Check endpoint URL

All MAP requests have a hardcoded 10-second timeout:

1. Request sent to MapClient GenServer

2. Waits for response up to 10 seconds

3. If no response - returns 504 Gateway Timeout

4. If response received - returns 200 OK with result

Troubleshooting Timeouts:

¢ Check M3UA connection status (Web Ul - M3UA page)
e Verify network element (HLR/VLR/MSC) is reachable

e Check routing configuration

e Review SS7 event logs for errors



Metrics (Prometheus)

The API exposes Prometheus metrics for monitoring.

Metrics Endpoint
URL: http://[server-ip]:8080/metrics
Format: Prometheus text format

Example Output:

# HELP map requests total Total MAP requests

# TYPE map requests total counter

map requests total{operation="sri"} 42
map_requests total{operation="sri for sm"} 158
map_requests total{operation="updatelLocation"} 23

# HELP cap requests total Total CAP requests

# TYPE cap requests total counter

cap _requests total{operation="initialDP"} 87

cap requests total{operation="requestReportBCSMEvent"} 91

# HELP map request duration milliseconds Duration of MAP
request/responses in ms

# TYPE map_request duration milliseconds histogram

map_request duration milliseconds bucket{operation="sri",le="10"}
5

map_request duration milliseconds bucket{operation="sri", le="50"}
12

map_request duration milliseconds bucket{operation="sri",le="100"}
35

# HELP map pending requests Number of pending MAP TID waiters
# TYPE map _pending requests gauge
map_pending requests 3



Available Metrics

Metric

map requests total

cap requests total

map request duration milliseconds

map_pending requests

Type

Counter

Counter

Histogram

Gauge

Prometheus Configuration

Add to your prometheus.yml:

Labels

operation

operation

operation

Descripti

Total
number o
MAP
requests |
operation

type

Total
number o
CAP
requests |
operation

type

Request
duration i
millisecor

Number o
pending
MAP
transactic



scrape _configs:
- job _name: 'omniss7'
static configs:
- targets: ['server-ip:8080']
metrics path: '/metrics'
scrape interval: 15s

Example Requests

Python Example

import requests
import json

# SRI-for-SM Request
url = "http://localhost:8080/api/sri-for-sm"
payload = {

"msisdn": "1234567890",

"service center": "5551234567"

response = requests.post(url, json=payload, timeout=15)

if response.status code == 200:
result = response.json()
print(f"Success: {result}")
elif response.status code == 504:
print("Timeout - no response from network")
else:
print(f"Error: {response.status code} - {response.text}")



JavaScript Example

const axios = require('axios');

async function sendSRI() {
try {
const response = await
axios.post('http://localhost:8080/api/sri', {
msisdn: '1234567890°',
gmsc: '5551234567"

}oo A
timeout: 15000

1)

console.log('Success:', response.data);
} catch (error) {
if (error.code === 'ECONNABORTED') {
console.error('Timeout - no response from network');
} else {
console.error('Error:"', error.response?.data ||
error.message) ;
¥
¥
}

sendSRI();



Bash/cURL Example

#!/bin/bash

# UpdatelLocation Request
response=$(curl -s -w "\n%{http code}" -X POST
http://localhost:8080/api/updateLocation \
-H "Content-Type: application/json" \
-d '{
"imsi": "001001234567890",
"vlr": "5551234800"
)

http code=$(echo "$response" | tail -n 1)
body=$(echo "$response" | sed '$d')

if [ "$http code" -eq 200 ]; then
echo "Success: $body"
elif [ "$http code" -eq 504 ]; then
echo "Timeout - no response from network"
else
echo "Error $http code: $body"
fi



Flow Diagrams

API Request Flow

APlhandler MapClient

POST /api/sri

M3UA Connection SS7 Network

GenServer.call (10s timeout)

Send SRI request

M3UA/SCCP/MAP

MAP Response

Response received

{:0k, response}

200 OK + JSON

If timeout (10s)

{:error, :timeout}

504 Gateway Timeout

APlhandler MapClient

M3UA Connection SS7 Network

Summary
The OmniSS7 REST API provides:

[] MAP Operations - Full support for SRI, SRI-for-SM, UpdateLocation, SMS
delivery, authentication [] Swagger Ul - Interactive APl documentation and
testing [] Prometheus Metrics - Monitoring and observability [] Hardcoded
Timeouts - 10-second timeout for all MAP requests [] HTTP Server - Runs on
port 8080 (configurable via start http server)

For Web Ul access, see the

For configuration details, see the



Technical Reference
(Appendix)

Technical reference for SS7 protocols and OmniSS7 implementation.

SS7 Protocol Stack

MAFP ——»  TCAP ——»  SCCP —— M3uA | —»  SCTP — IF

MAP Operation Codes

Operation Opcode Purpose
updatelLocation 2 Register subscriber location
cancellLocation 3 Deregister from VLR
provideRoamingNumber 4 Request MSRN
sendRoutinglInfo 22 Query call routing
mt-forwardSM 44 Deliver SMS to subscriber
sendRoutingInfoForSM 45 Query SMS routing
mo-forwardSM 46 Forward SMS from subscriber

sendAuthenticationinfo 56 Request auth vectors



TCAP Message Types

e BEGIN - Start transaction
e CONTINUE - Mid-transaction
e END - Final response

e ABORT - Cancel transaction

SCCP Addressing

Global Title Formats

e E.164 - International phone number (e.q., 447712345678)
e E.212 - IMSI format (e.g., 234509876543210)
e E.214 - Point code format

Subsystem Numbers (SSN)

e SSN 6: HLR

e SSN 7: VLR

e SSN 8: MSC/SMSC
e SSN 9: GMLC

e SSN 10: SGSN

SMS TPDU

Message Types

¢ SMS-DELIVER (MT) - Network to mobile
¢ SMS-SUBMIT (MO) - Mobile to network



¢ SMS-STATUS-REPORT - Delivery status
¢ SMS-COMMAND - Remote command
Character Encodings

e GSM7 - 7-bit GSM alphabet (160 chars per SMS)
e UCS2 - 16-bit Unicode (70 chars per SMS)
e 8-bit - Binary data (140 bytes per SMS)

M3UA States

e DOWN - No SCTP connection

e CONNECTING - SCTP connecting

e ASPUP_SENT - Waiting for ASPUP ACK
e INACTIVE - ASP up but not active

e ASPAC _SENT - Waiting for ASPAC ACK
e ACTIVE - Ready for traffic

Common SS7 Point Codes
Point codes are typically 14-bit (ITU) or 24-bit (ANSI) values.

Example Format (ITU):

e Network: 3 bits
e Cluster: 8 bits
¢ Member: 3 bits

SCCP Error Codes

¢ 0 - No translation for address



1 - No translation for specific address
2 - Subsystem congestion

3 - Subsystem failure

4 - Unequipped user

5 - MTP failure

6 - Network congestion

7 - Unqualified

8 - Error in message transport

MAP Error Codes

Code Error Description

1 unknownSubscriber Subscriber not in HLR

27 absentSubscriber Subscriber not reachable
34 systemFailure Network failure

35 dataMissing Required data not available
36 unexpectedDataValue Invalid parameter value

Related Documentation



OmniSS7 by Omnitouch Network Services



CAMEL Request Builder
- Implementation
Summary

Overview

A new LiveView component has been created to build and send CAMEL/CAP
requests for testing purposes. This provides an interactive Ul for creating
InitialDP and other CAMEL operations.



New Components

1. CAMEL Request Builder LiveView

Features:

e Interactive form-based Ul for building CAMEL requests

e Support for multiple request types:

o

o

e}

InitialDP - Initial Detection Point (call setup notification)
Connect - Connect call to destination

ReleaseCall - Release/terminate call
RequestReportBCSMEvent - Request event notifications
Continue - Continue call processing

ApplyCharging - Apply charging/duration limits to calls

Key Capabilities:

e Request type selection dropdown

o

o

o

Route:

Dynamic form fields based on selected request type
Advanced SCCP/M3UA options (collapsible section)

Called/Calling Party Global Titles
SSN (Subsystem Number) configuration
OPC/DPC (Point Code) settings

Real-time request history (last 20 requests)
Session tracking via OTID
Success/error feedback

Request size tracking

/camel request

2. Enhanced EventLog with CAMEL Support

New Functions:

* paklog camel/2 - Dedicated CAMEL/CAP message logging



* lookup cap opcode name/1 - CAP operation code lookup

e find cap opcode/1 - Extract CAP opcode from JSON

e extract cap tids/1 - Extract OTID/DTID from CAP messages
e format cap to json/1 - Convert CAP PDUs to JSON format

CAP Operation Codes Supported:

© => "initialDP"
5 => "connect"
6 => "releaseCall"
7 => "requestReportBCSMEvent"
8 => "eventReportBCSM"
10 => "continue"
13 => "furnishChargingInformation"
35 => "applyCharging"
(47 total operations)

Features:

e JSON logging of all CAMEL requests/responses

e Automatic TCAP action detection (Begin/Continue/End/Abort)
e SCCP addressing extraction

e Error handling for malformed messages

e Background task processing (non-blocking)

e Event prefixed with "CAP:" for easy filtering

3. Updated CapClient

Changes:

Added paklog camel/2 calls for incoming and outgoing messages

Dual logging: Both MAP (paklog) and CAP (paklog camel) for compatibility

Outgoing messages logged in sccp_m3ua_maker/2

Incoming messages logged in handle payload/1



Configuration

The new LiveView pages have been added to the runtime configuration:

# File: config/runtime.exs

config :control panel,
use additional pages: [
{SS7 .Web.EventsLive, "/events", "SS7 Events"},
{SS7.Web.TestClientLive, "/client", "SS7 Client"},
{SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},
{SS7.Web.HlrLinksLive, "/hlr links", "HLR Links"},
{SS7.Web.CAMELSessionsLive, "/camel sessions", "CAMEL
Sessions"},
{SS7.Web.CAMELRequestLive, "/camel request", "CAMEL Request
Builder"}
I

page order: ["/events", "/client", "/m3ua", "/hlr_links",
"/camel sessions", "/camel request",
"/application", "/configuration"]
Usage

Accessing the Request Builder

1. Navigate to: https://your-server:8087/camel request

2. Select request type from dropdown

3. Fill in required parameters

4. Optionally expand "Advanced SCCP/M3UA Options" for fine-tuning
5. Click "Send [RequestType] Request”

Request Flow

InitialDP (New Call)

1. Set Service Key (e.g., 100)



2. Set Calling Number (A-Party)
3. Set Called Number (B-Party)
4. Send request —» Generates new OTID

5. OTID stored in session for follow-up requests

Follow-up Requests (Connect, ReleaseCall, etc.)

1. Must have active OTID from InitialDP
2. Request automatically uses stored OTID

3. Warning shown if no active OTID

Request Parameters
InitialDP:

e Service Key (integer)
e Calling Number (ISDN format)
e Called Number (ISDN format)

Connect:

e Destination Number (where to route call)
ReleaseCall:

e Cause Code (16 = Normal, 17 = Busy, 31 = Unspecified)
RequestReportBCSMEvent:

e BCSM Events (comma-separated: oAnswer, oDisconnect, etc.)
Continue:

¢ No parameters (uses active OTID)
ApplyCharging:

e Duration (seconds, 1-864000) - Maximum call duration before action



¢ Release on Timeout (boolean) - Whether to release call when duration
expires

Advanced Options

SCCP Addressing:

Called Party GT (Global Title)
Calling Party GT

Called SSN (default 146 = gsmSSF)
Calling SSN (default 146)

M3UA Point Codes:

e OPC (Originating Point Code, default 5013)
e DPC (Destination Point Code, default 5011)

JSON Logging

All CAMEL messages are now logged in JSON format in the event log with:

e Direction: incoming/outgoing

TCAP Action: Begin/Continue/End/Abort

CAP Operation: e.g., "CAP:initialDP", "CAP:connect"
SCCP Addressing: Called/Calling Party info

TIDs: OTID/DTID for correlation

Full Message: ]SON-encoded CAP PDU



Example Log Entry

{
"map_event": "CAP:initialDP",
"direction": "outgoing",
“tcap action": "Begin",
"otid": "A1B2C3D4",
"sccp _called": {
"SSN": 146,
"GlobalTitle": {
"Digits": "55512341234",
"NumberingPlan": "isdn_ tele",
"NatureOfAddress Indicator": "international"
¥
|
"event message": "{ ... full CAP PDU ... }"
¥

Request History

The Ul displays the last 20 requests with:

Timestamp

Request type (with color-coded badge)
OTID (first 8 hex chars)

Status (sent/error)

Message size in bytes

Session Tracking

Current Session Info Panel:

e Displays active OTID
e Shows last request byte size

e Visible only when session is active



Testing Workflow
1. Start New Call:

o Send InitialDP -» Get OTID

o System creates session

2. Control Call:

o Send RequestReportBCSMEvent —» Request notifications
o Send ApplyCharging — Set call duration limit (e.g., 290 seconds)
o Send Connect - Route to destination

o OR Send ReleaseCall » Terminate

3. View Results:

o Check request history
o Monitor CAMEL Sessions page

o Review event logs with "CAP:" prefix

ApplyCharging - Call Duration
Control

Overview

The ApplyCharging operation allows you to set a maximum call duration and
optionally release the call when that duration expires. This is typically used for
prepaid charging scenarios or enforcing time limits on calls.

Use Cases

e Prepaid Charging: Limit call duration based on subscriber balance
e Time-Based Billing: Enforce periodic charging intervals

e Resource Management: Prevent calls from running indefinitely



¢ OCS Integration: Coordinate with Online Charging Systems for real-time
credit control

Parameters
Duration (maxCallPeriodDuration)

e Type: Integer (1-864000 seconds)

e Description: Maximum number of seconds the call can run before the
timer expires

e Examples:
o 60 =1 minute

o 290 = 4 minutes 50 seconds (common test value)
o 3600 =1 hour
o 86400 = 24 hours

Release on Timeout (releaselfDurationExceeded)

* Type: Boolean (true/false)

e Default: true

e Description: What happens when the duration expires:
o true: Automatically release/disconnect the call

o false: Send notification but keep call active (allows gsmSCF to take
action)

Message Structure
The ApplyCharging message is encoded as a TCAP Continue with:

e TCAP: Continue message (uses existing transaction)
e Opcode: 35 (applyCharging)
e Parameters: ApplyChargingArg containing:
o aChBillingChargingCharacteristics: Time-based charging info

» timeDurationCharging: Maximum duration and release flag

o partyToCharge: Which party is charged (default: sendingSidelD)



Example Usage
Scenario: Prepaid call with 5-minute limit

1. Send InitialDP to start call monitoring

Service Key: 100
Calling: 447700900123
Called: 447700900456
- OTID: A1B2C3D4

2. Send ApplyCharging to set 5-minute limit

Duration: 300 (seconds)
Release on Timeout: true
- Uses OTID: A1B2C3D4

3. Send Connect to complete the call

Destination: 447700900456
- Uses OTID: A1B2C3D4

4. After 5 minutes (300 seconds):

o Call automatically released by network

o gsmSCF receives disconnect notification

Best Practices
1. Always send ApplyCharging BEFORE Connect

o Ensures charging is active when call connects

o Prevents uncharged call segments

2. Use with RequestReportBCSMEvent

o Request oAnswer and oDisconnect events



o Allows tracking of actual call duration

o Enables re-application of charging if needed

3. Set reasonable durations

o Too short: Frequent charging operations, poor user experience
o Too long: Risk of revenue loss on prepaid calls

o Typical: 60-300 seconds for prepaid, longer for postpaid
4. Handle timeout gracefully

o If release=false, be prepared to handle timer expiry notifications

o Implement logic to extend duration or release call

Error Handling

Common issues:

* No active OTID: Must send InitialDP first

e Invalid duration: Must be 1-864000 seconds

e Network support: Some SSF implementations may not support
ApplyCharging

e Timer accuracy: Network timer resolution typically 1 second, but may

vary

Monitoring

Track ApplyCharging operations via:

Request History: Shows sent ApplyCharging requests

Event Log: Search for "CAP:applyCharging"
CAMEL Sessions: Monitor active sessions with charging applied

TCAP Trace: Debug encoding/decoding issues



Implementation Details

State Management

LiveView assigns track form state

OTID stored in socket assigns

Request history limited to 20 entries

Auto-refresh disabled (manual send only)

Request Generation

Uses existing CapRequestGenerator module
Builds proper TCAP/CAP structures

Encodes with :TCAPMessages codec

Wraps in SCCP via CapClient.sccp m3ua _maker/2

Sending Mechanism

e Sends via M3UA to :camelgw client asp
e Uses routing context 1
e Automatic SCCP/M3UA encapsulation

Error Handling

Form validation with user feedback

Graceful handling of missing OTID

Parse errors shown in Ul

Encoding failures logged

Future Enhancements

Potential additions:

1. Request templates/presets



© N o U A W N

. Response correlation and display

. Call flow visualization

Session detail drill-down
Export request history

Load testing (bulk requests)

. PCAP export of generated messages

. CAP parameter validation

Integration Notes

Compatible with existing MAP logging ( paklog)
Shares event log database with MAP events
Uses same SCCP/M3UA infrastructure

Works with CAMELSessionsLive for monitoring

Integrates with existing M3UA routing

Files Modified

config/runtime.exs - UPDATED

Dependencies

Existing CapRequestGenerator
CapClient for M3UA sending
M3UA.Server for packet transmission
EventLog for message logging
Phoenix LiveView framework

Control Panel for Ul infrastructure



CAMEL Gateway
Configuration Guide

Overview

The CAMEL Gateway (CAMELGW) mode transforms OmniSS7 into an
Intelligent Network (IN) platform that provides real-time call control and
charging services using the CAMEL Application Part (CAP) protocol.

What is CAMEL?

CAMEL (Customized Applications for Mobile network Enhanced Logic) is a set
of standards designed to work on either a GSM core network or UMTS network.
It allows operators to provide services that require real-time control of calls,
such as:

* Prepaid calling - Real-time balance checking and charging



Premium rate services - Special billing for value-added services
Call routing control - Dynamic destination routing based on time/location
Virtual private networks - Corporate numbering plans

Call screening - Allow/block calls based on criteria

CAP Protocol Versions

OmniSS7 CAMELGW supports multiple CAP versions:

Version Phase

CAP vl CAMEL Phase 1

CAP v2  CAMEL Phase 2

CAP v3 CAMEL Phase 3

CAP v4 CAMEL Phase 4

Features

Basic call control, limited operations

Enhanced operations, SMS support

GPRS support, additional operations

Advanced features, multimedia support

Default: CAP v2 (most widely deployed)



Architecture

Mobile Nebwork:

MSCVLR GMsC
@smSSF g=miSCF Tripper
CAP MESSages CAF Messages
1 1
\ ¥,
Sy DrnnE;E-‘? CAMELGW
MIUAISCTP
Transport
L
SICCP Layer
*
TCAF Layer

Web LI
Sessions & Bullkder

s
HTTRASON \"

Online Chamging System R ‘ ,I

- Session Stone
ETS

. - » r L |

Rintirsg Ergine Account Manager COR Storage



Call Flow Example

MSC/VLR (gsmSSF) CAMELGW (gsmSCF) OCs
Call Setup - InitialDP
InitialDP(IMSI, A-num, B-num, ServiceKey)
InitiateSession
MaxUsage: 30s
RequestReportBCSMEvent + Continue
Call Answer
EventReportBCSM(oAnswer)

UpdateSession(Usage: 0s)

MaxUsage: 30s
Continue
Call in Progress (30s later)

UpdateSession(Usage: 30s)

MaxUsage: 30s
Call Termination
EventReportBCSM(oDisconnect)
TerminateSession(Usage: 125s)
CDR Generated, Cost: $2.50
ReleaseCall
MSC/VLR (gsmSSF) CAMELGW (gsmSCF) OCs

Configuration

Prerequisites

e OmniSS7 installed and running
e M3UA connectivity to MSC/GMSC (gsmSSF)



¢ Online Charging System (OCS) with API endpoint (optional, for real-time
charging)

Enable CAMEL Gateway Mode

Edit config/runtime.exs and configure the CAMEL Gateway section:



config :omniss7,
# Mode flags - Enable CAP/CAMEL features
cap client enabled: true,
camelgw mode enabled: true,

# Disable other modes
map_client enabled: false,
hlr mode enabled: false,
smsc_mode enabled: false,

# CAP/CAMEL Version Configuration

# Determines which CAP version to use for outgoing requests and
dialogue

# Options: :v1l, :v2, :v3, :v4

cap _version: :v2,

# 0CS Integration (for real-time charging)

ocs _enabled: true,

ocs url: "http://your-ocs-server/api/charging",

ocs timeout: 5000, # milliseconds

ocs auth token: "your-api-token" # Optional, if OCS requires
authentication

# M3UA Connection Configuration for CAMEL
# Connect as ASP (Application Server Process) for CAP operations
cap_client m3ua: %{

mode: "ASP",

callback: {CapClient, :handle payload, [1},

process name: :camelgw client asp,

# Local endpoint (CAMELGW system)
local ip: {10, 179, 4, 13},
local port: 2905,

# Remote endpoint (MSC/GMSC - gsmSSF)
remote ip: {10, 179, 4, 10},
remote port: 2905,

# M3UA Parameters
routing context: 1,
network appearance: 0,



asp_identifier: 13

}

Configure Web Ul Pages

The Web Ul includes specialized pages for CAMEL operations:

config :control panel,
use additional pages: [
{SS7 .Web.EventsLive, "/events", "SS7 Events"},
{SS7 .Web.TestClientLive, "/client", "SS7 Client"},
{SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},
{SS7.Web.CAMELSessionsLive, "/camel sessions", "CAP
Sessions"},
{SS7.Web.CAMELRequestLive, "/camel request", "CAP Requests"}
1,
page order: ["/events", "/client", "/m3ua", "/camel sessions",
"/camel request", "/application", "/configuration"]



CAP Operations Supported

Incoming Operations (from gsmSSF -» gsmSCF)

Operation

InitialDP

EventReportBCSM

ApplyChargingReport

AssistRequestinstructions

Opcode

71

16

Description

Initial
Detection
Point - call
setup
notification

Basic Call
State Model
event
(answer,
disconnect,
etc.)

Charging
report from
gsmSSF

Request for
assistance
from
gsmSRF

H.

handle initial d

handle event rep

handle apply cha

handle assist re



Outgoing Operations (from gsmSCF -» gsmSSF)

Operation

Connect

Continue

ReleaseCall

RequestReportBCSMEvent

ApplyCharging

Opcode

20

31

22

23

35

Web Ul Features

CAMEL Sessions Page

URL: http://localhost/camel sessions

Description

Connect call to
destination
number

Continue call
processing
without
modification

Release/terminate
the call

Request
notification of call
events

Apply charging to
the call

Real-time monitoring of active CAMEL call sessions:

Features:

e Live session list - Auto-refreshes every 2 seconds
e Session details - OTID, Call ID, State, Duration

CapRequestG

CapRequestG

CapRequestG

CapRequestG

CapRequestG



e CAP Version - Displays protocol version (CAP v1/v2/v3/v4) detected from
InitialDP

e Call information - IMSI, A-number, B-number, Service Key
e State tracking - Initiated, Answered, Terminated

e Duration timer - Real-time call duration display
Table Columns:

e Call ID, State, Version, IMSI, Calling Number, Called Number, Service Key,
Duration, Start Time, OTID

Session States:

e [] Initiated - InitialDP received, waiting for answer
e [] Answered - Call answered, charging in progress

e [] Terminated - Call ended, CDR generated

CAP Version Detection: The system automatically detects the CAP protocol
version from the InitialDP dialogue portion and displays it in the Version
column. This helps identify which CAP version each MSC is using.

CAMEL Request Builder

URL: http://localhost/camel request

Interactive tool for building and sending CAP requests:
Features:

* Request type selector - InitialDP, Connect, ReleaseCall, etc.
e Dynamic form fields - Adapts to selected request type

e SCCP/M3UA options - Advanced addressing configuration

* Request history - Last 20 requests with status

e Session tracking - Maintains OTID for follow-up requests

* Real-time feedback - Success/error messages

Request Types:



1. InitialDP - Start new call session

o Service Key (integer)
o Calling Number (A-party)
o Called Number (B-party)

2. Connect - Route call to destination
o Destination Number
3. ReleaseCall - Terminate call
o Cause Code (16=Normal, 17=Busy, 31=Unspecified)
4. RequestReportBCSMEvent - Request event notifications
o Events: oAnswer, oDisconnect, tAnswer, tDisconnect
5. Continue - Continue call without modification

o No parameters required

6. ApplyCharging - Apply call duration limits

o Duration (seconds, 1-864000)
o Release on Timeout (boolean)

o See for detailed usage

Advanced SCCP Options:

e Called Party Global Title

e Calling Party Global Title

e Called SSN (default: 146 = gsmSSF)
e Calling SSN (default: 146)

M3UA Options:

e OPC (Originating Point Code, default: 5013)
e DPC (Destination Point Code, default: 5011)



Integration with OCS

Call Lifecycle with Charging

1. Call Initiation (InitialDP)

When MSC sends InitialDP, CAMELGW:

1. Detects CAP version - Examines dialogue portion to identify CAP
vl/v2/v3/v4

. Decodes CAP message - Extracts IMSI, calling/called numbers
. Calls OCS - InitiateSession API

. Receives authorization - MaxUsage (e.g., 30 seconds)

. Stores session - In SessionStore (ETS table) with CAP version

. Responds to MSC - RequestReportBCSMEvent + Continue (using same
CAP version)

o U &~ W N

Example:



# Decoded InitialDP data

{

imsi: "310150123456789",
calling party number: "14155551234",
called party number: "14155556789",
service key: 1,

msc_address: "19216800123",

cap version: :v2 # Detected from dialogue

o°

# 0CS response
10k, %{max usage: 30}} # 30 seconds authorized

-

HH*

SessionStore entry

o°
-~

call id: "CAMEL-4B000173",

initial dp data: %{...},

cap version: :v2, # Stored for response generation
start time: 1730246400,

state: :initiated

2. Call Answer (EventReportBCSM - oAnswer)

When call is answered:

1. Receives oAnswer event - From MSC

2. Updates OCS - UpdateSession with usage=0

3. Starts debit loop - OCS begins charging

4. Updates session state - :answered in SessionStore

5. Continues call - Sends Continue to MSC

3. Periodic Updates (Optional)

For long calls, request additional credit:

# Every 30 seconds
0CS.Client.update session(call id, %{}, current usage)



If MaxUsage returns 0, subscriber has no credit - Send ReleaseCall

4. Call Termination (EventReportBCSM - oDisconnect)

When call ends:

o U~ W N

. Receives oDisconnect event - From MSC

. Calculates total duration - From session start time
. Terminates OCS session - TerminateSession API

. CDR generated - By OCS with final cost

. Cleans up session - Removes from SessionStore

. Sends ReleaseCall - Confirms termination to MSC

CDR Analysis

CDRs are generated by your OCS and typically include:

CDR Fields from CAMEL:

Account - IMSI or calling number

Destination - Called party number

OriginID - Unique call identifier (CAMEL-OTID)
Usage - Total call duration (seconds)

Cost - Calculated cost

IMSI - Subscriber IMSI

CallingPartyNumber - A-party
CalledPartyNumber - B-party

MSCAddress - Serving MSC point code
ServiceKey - CAMEL service key



Testing

Manual Testing with Request Builder

1. Navigate to Request Builder:
http://localhost/camel request

2. Send InitialDP:

o Select "InitialDP" from dropdown
o Service Key: 100

o Calling Number: 14155551234

o Called Number: 14155556789

o Click "Send InitialDP Request"

o Note the OTID generated

3. Monitor Session:

o Open new tab: http://localhost/camel sessions

o See active session with state "Initiated"

4. Simulate Call Answer:

o Return to Request Builder
Select "EventReportBCSM"

[e]

(o]

Event Type: oAnswer
Click "Send EventReportBCSM Request"

o

o Session state changes to "Answered"

5. End Call:

o Select "ReleaseCall"
o Cause Code: 16 (Normal)
o Click "Send ReleaseCall Request"

o Session state changes to "Terminated"



Testing with Real MSC

Configure MSC CAMEL Service

On your MSC/VLR, configure CAMEL service:

# Example Huawei MSC configuration
ADD CAMELSERVICE:
SERVICEID=1,
SERVICEKEY=100,
GSMSCFADDR="55512341234", # CAMELGW Global Title
DEFAULTCALLHANDLING=CONTINUE;

ADD CAMELSUBSCRIBER:
IMSI="310150123456789",
SERVICEID=1,
TRIGGERTYPE=TERMCALL;

Monitor Logs

Watch CAMELGW logs for incoming CAP messages:

# View logs in real-time
tail -f /var/log/omniss7/omniss7.log

# Filter for CAP events
grep "CAP:" /var/log/omniss7/omniss7.log

# View event log (JSON formatted)

curl http://localhost/api/events | jq '.[] | select(.map event |
startswith("CAP:"))"

Load Testing

Use the Request Builder in a loop for load testing:



# Send 100 InitialDP requests
for i in {1..100}; do
curl -X POST http://localhost/api/camel/initial dp \
-H "Content-Type: application/json" \
-d '{
"service key": 100,
“calling number": "1415555"'$i'",
"called number": "14155556789"
}
sleep 0.1
done

Monitoring & Operations

Prometheus Metrics

CAMELGW exposes metrics at http://localhost:8080/metrics:

CAP-specific metrics:

e cap_requests total{operation} - Total CAP requests by operation type
(e.q., initialDP, requestReportBCSMEvent)

Additional MAP/API metrics:

* map requests total{operation} - Total MAP requests by operation type
* map request duration milliseconds{operation} - Request duration

histogram
* map pending requests - Number of pending MAP transactions

M3UA STP metrics (if STP mode enabled):

e m3ua_stp messages received total{peer name,point code} - Messages
received from peers
* m3ua stp messages sent total{peer name,point code} - Messages sent

to peers



* m3ua stp routing failures total{reason} - Routing failures by reason

Example queries:

# CAP requests
curl http://localhost:8080/metrics | grep cap requests total

# Total InitialDP received
curl http://localhost:8080/metrics | grep
‘cap_requests total{operation="initialDP"}'

# MAP pending requests
curl http://localhost:8080/metrics | grep map pending requests

Health Checks

# Check M3UA connectivity
curl http://localhost/api/m3ua-status

# Check 0CS connectivity
curl http://localhost/api/ocs-status

# Check active sessions
curl http://localhost/api/camel/sessions/count

Logging Configuration

Adjust log level in config/runtime.exs:

config :logger,
level: :info # Options: :debug, :info, :warning, :error

# Enable CAP debug logging
config :logger, :console,
metadata: [:cap operation, :otid, :call id]



Troubleshooting

Issue: No CAP messages received

Symptoms: Request Builder works, but MSC doesn't send InitialDP
Check:

1. M3UA link status: curl http://localhost/api/m3ua-status

2. MSC CAMEL service configuration (Service Key, gsmSCF address)
3. SCCP routing (Global Title must route to CAMELGW)

4. Firewall rules (allow SCTP port 2905)

Solution:

# Verify M3UA connectivity
tcpdump -i eth0® sctp

# Check if MSC can reach CAMELGW
ss -tuln | grep 2905

Issue: OCS errors
Symptoms: INSUFFICIENT CREDIT or timeout errors

Check:

1. OCS is reachable: curl http://your-ocs-server/api/health
2. Account has balance in OCS

3. Rating plan configured in OCS

4. Network connectivity to OCS

5. Authentication token is valid (if required)

Solution:

e Verify OCS URL configuration in runtime.exs

e Check OCS logs for errors



e Test OCS APl manually with curl
e Verify firewall rules allow connectivity
Issue: Session not found
Symptoms: EventReportBCSM fails with "Session not found"
Cause: OTID mismatch or session expired
Solution:

1. Verify OTID in logs
2. Check session timeout (default: no expiration)
3. Ensure DTID matches OTID in Continue/End messages

# Check active sessions
iex> CAMELGW.SessionStore.list sessions()

Issue: Decode errors

Symptoms: Failed to decode InitialDP in logs

Cause: CAP version mismatch or malformed message

Solution:

1. Check CAP version configuration matches MSC
2. Verify ASN.1 encoding is correct
3. Capture PCAP and analyze with Wireshark

# Capture CAP messages
tcpdump -1 eth® -w cap trace.pcap sctp port 2905

# Analyze with Wireshark (filter: m3ua)
wireshark cap trace.pcap



Advanced Configuration

Multiple CAP Versions

Support different CAP versions per service key:

config :omniss7,
cap _version map: %{
100 => :v2, # Service Key 100 uses CAP v2
200 => :v3, # Service Key 200 uses CAP v3
300 => :v4  # Service Key 300 uses CAP v4

}I

cap version: :v2 # Default

Summary

The CAMEL Gateway mode enables OmniSS7 to function as a complete
Intelligent Network platform with:

0 Full CAP protocol support (v1/v2/v3/v4) [] Real-time charging via OCS
integration [] Call control operations (Connect, Release, Continue) [] Session
management with ETS storage [] Interactive testing via Web Ul Request
Builder [J Live monitoring of active call sessions [] CDR generation for billing
and analytics [] Production-ready performance and reliability

For additional information:

Product: OmniSS7 CAMEL Gateway Documentation Version: 1.0 Last
Updated: 2025-10-26



Common Features
Guide

This guide covers features common to all OmniSS7 operating modes.

Table of Contents

vk Wy

Web Ul Overview

The Web Ul is accessible via your configured web server address.



Main Navigation

Events - Real-time SS7 signaling events and message logs

Application - Application status and runtime information

Configuration - System configuration viewer
M3UA Status - M3UA peer connections (STP mode)
SMS Queue - Outgoing SMS messages (SMSc mode)

Accessing the Web Ul

1. Open your web browser
2. Navigate to configured hostname (e.g., http://localhost)

3. View system status dashboard

Swagger APl Documentation

Interactive APl documentation:



http://your-server/swagger

Web Ul Configuration

Configure in config/runtime.exs:

config :control panel,
# Page order in navigation menu
page order: ["/events", "/application", "/configuration"],

# Web server settings

web: %{

listen ip: "0.0.0.0", # IP to bind (0.0.0.0 for all
interfaces)

port: 80, # HTTP port (443 for HTTPS)
hostname: "localhost", # Server hostname for URL generation
enable tls: false, # Set true to enable HTTPS
tls cert: "cert.pem", # Path to TLS certificate file
tls key: "key.pem" # Path to TLS private key file

}

Configuration Parameters:



Parameter

page order

listen ip

port

hostname

enable tls

tls cert

tls key

Type

List

String

Integer

String

Boolean

String

String

Default

["/events",
"/application",
"/configuration"]

"0.0.0.0"

80

"localhost"

false

“cert.pem"

n key . pemll

Logger Configuration

Configure logging level in config/runtime.exs:

config :logger,
level: :debug # Options: :debug, :info,

Log Levels:

e :debug - Detailed debugging information

Description

Order of pages in
navigation menu

IP address to bind
web server

HTTP port (use 443
for HTTPS)

Server hostname
for URL generation

Enable HTTPS with
TLS

Path to TLS
certificate (when
TLS enabled)

Path to TLS private
key (when TLS
enabled)

:warning, :error



e :info - General informational messages
e :warning - Warning messages for potential issues

e :error - Error messages only

APl Documentation

APl Base URL

http://your-server/api

Response Codes

e 200 - Success
e 400 - Bad Request
e 504 - Gateway Timeout

OpenAPI Specification

http://your-server/swagger.json

Monitoring and Metrics

Prometheus Metrics Endpoint

http://your-server/metrics

Key Metrics Categories

M3UA/SCTP Metrics:



e SCTP association state changes
e M3UA ASP state transitions

¢ Protocol data units sent/received
M2PA Metrics:

¢ Link state transitions (DOWN — ALIGNMENT - PROVING - READY)
e Messages and bytes sent/received per link

e Link-specific errors (decode, encode, SCTP)
STP Metrics:

e Messages received/sent per peer
e Routing failures by reason

e Traffic distribution across peers
MAP Client Metrics:

e MAP requests by operation type
e Request duration histograms

e Pending transactions gauge
CAP Metrics:

e CAP requests by operation type
e CAMEL gateway operations

SMSc Metrics:

¢ Queue depth
e Delivery rates

e Failed messages

Grafana Integration

OmniSS7 metrics are compatible with Prometheus and Grafana.



Best Practices

Security Recommendations

1. Network Isolation

o Deploy in dedicated VLAN
o Firewall rules to restrict access

o Allow SCTP only from known addresses

2. Web Ul Security

o Enable TLS for production
o Use reverse proxy with authentication

o Restrict to management IPs

3. APl Security

o Implement rate limiting
o Use API keys or OAuth

o Log all requests for audit

Performance Tuning
1. TPS Limits

o Configure appropriate TPS
o Monitor system load
o Adjust SCTP buffers

2. Database Optimization

o Add indexes
o Archive old messages

o Monitor connection pool

3. M3UA Tuning



o Adjust SCTP heartbeat intervals
o Configure timeout values

o Use multiple links for redundancy

SCTP Multihoming for Network
Redundancy

What is SCTP Multihoming?

SCTP Multihoming is a built-in feature of the SCTP protocol that allows a
single M3UA connection to bind to multiple IP addresses on the same network
interface or across different network interfaces. This provides automatic
failover and redundancy at the transport layer.

Key Benefits:

e Automatic Failover: If one network path fails, SCTP automatically
switches to an alternate path without dropping the connection

e Zero Configuration Failover: No application-level logic needed - SCTP
handles path monitoring and failover

e Improved Reliability: Survive network failures, switch failures, or NIC
failures

e Load Balancing: SCTP can distribute traffic across multiple paths
(implementation-dependent)

How It Works

When you configure multiple IP addresses for an M3UA connection, SCTP:

1. Binds to all IPs: The socket binds to all configured IP addresses
simultaneously

2. Monitors paths: SCTP continuously sends heartbeat packets on all paths
to monitor their health



3. Detects failures: If heartbeats fail on the primary path, SCTP marks it as
unreachable

4. Automatic failover: Traffic immediately switches to a backup path without
application intervention

5. Path recovery: When the failed path recovers, SCTP detects it and marks
it available again

Configuration

SCTP multihoming is configured by providing a list of IP addresses instead of
a single IP tuple.

Single IP (Traditional)

# Single IP - no multihoming
local ip: {10, 179, 4, 10}

Multiple IPs (Multihoming Enabled)

# Multiple IPs - multihoming enabled
# First IP is primary, subsequent IPs are backup paths
local ip: [{10, 179, 4, 10}, {10, 179, 4, 11}]

Configuration Examples

Example 1: STP Peer with Multihoming



# STP mode peer configuration
config :omniss7,
m3ua peers: [
%{

peer id: 1,
name: "Partner STP Redundant",
role: :client,
# Multihoming: bind to two local IPs for redundancy
local ip: [{213, 57, 23, 200}, {213, 57, 23, 201}],
local port: 0,
# Remote peer also supports multihoming
remote ip: [{213, 57, 23, 100}, {213, 57, 23, 101}],
remote port: 2905,
routing context: 1,
point code: 100,
network indicator: :international

Example 2: MAP Client with Multihoming

# MAP client mode with multihoming
config :omniss7,
map_client enabled: true,
map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :hlr client asp,
# Multihoming: two local IPs for failover
local ip: [{10, 0, O, 100}, {10, O, O, 101}1,
local port: 2905,
# Remote STP with multihoming support
remote ip: [{10, O, O, 1}, {10, 0, O, 2}],
remote port: 2905,
routing context: 1

Example 3: STP Listener with Multihoming



# Standalone STP server with multihoming
config :omniss7,
m3ua_stp: %{
enabled: true,
# Listen on multiple IPs for incoming connections
local ip: [{172, 16, O, 10}, {172, 16, O, 11}],
local port: 2905,
point code: 100

Example 4: Mixed Configuration (Backward Compatible)

# Mix of single and multi-homed peers
config :omniss7,
m3ua_peers: [
# Legacy peer - single IP
%{
peer id: 1,
name: "Legacy STP",
role: :client,
local ip: {10, 0, 0, 1}, # Single IP tuple
local port: 0,
remote ip: {10, 0, 0, 10},
remote port: 2905,
routing context: 1,
point code: 100
I
# New peer - multihoming
{
peer id: 2,
name: "Redundant STP",
role: :client,
local ip: [{10, ©0, O, 2}, {10, 0, O, 3}], # IP list
local port: 0,
remote ip: [{10, O, O, 20}, {10, O, O, 21}],
remote port: 2905,
routing context: 2,
point code: 200

o°



Network Topology Scenarios

Scenario 1: Dual NICs (Common Deployment)

OmniSS7 Server

eth0: 10.0.0.100 —
ethl: 10.0.0.101 —]
| |
|
|
| |
| |
Y1 Y1
| Switch A | | Switch B |

I_i_ll_i_l

T
A 4
Remote STP

10.1.0.1
10.1.0.2

Configuration:

local ip: [{10, ©0, O, 100}, {10, O, O, 101}] # Both NICs
remote ip: [{10, 1, O, 1}, {10, 1, O, 2}] # Remote peer

Benefits:

e Survives failure of one NIC
e Survives failure of one switch

¢ Automatic failover in <1 second

Scenario 2: Multiple Subnets



OmniSS7 Server

eth0: 192.168.1.10 —

ethl: 192.168.2.10 —]
]

192.168.1.0/24

192.168.2.0/24

I A I A—

| sTP A | | STP B |

| .1.100 | | .2.100 |

L 1 L 1
Configuration:

local ip: [{192, 168, 1, 10}, {192, 168, 2, 10}]
remote ip: [{192, 168, 1, 100}, {192, 168, 2, 100}]

Benefits:

e Survives subnet failure
e Geographic redundancy possible

¢ Independent routing paths

Monitoring and Logging

When multihoming is enabled, you'll see log messages indicating the
configuration:

Successful Multihoming

[info] SCTP client multihoming: bound 2 local IPs
[info] STP listener multihoming enabled: 2 local IPs bound



Path Failover Events

[warning] [MULTIHOMING] Path 10.0.0.100 is UNREACHABLE for peer

Partner STP (assoc_id=1)
[info] [MULTIHOMING] Path 10.0.0.101 is now PRIMARY for peer

Partner STP (assoc id=1)
[info] [MULTIHOMING] Path 10.0.0.100 is now AVAILABLE for peer

Partner STP (assoc_id=1)

Web Ul Display

The Web Ul automatically displays multihoming information:

M3UA Status Page:

e Single IP: Shows as 10.0.0.100
e Multiple IPs: Shows as 10.0.0.100 (+1) or 10.0.0.100 (+2)

e Details view: Shows all IPs with primary/backup labels

Best Practices

1. Network Design

e Use different NICs for maximum redundancy
» Different switches to survive switch failures
* Different subnets if possible for routing diversity

e Same datacenter initially - test before geographic separation

2. IP Address Planning

e First IP is primary - ensure it's on the most reliable path
e Order matters - list IPs in order of preference

e Consistent addressing - use similar addressing schemes for
troubleshooting

3. Testing Failover



# Disable primary interface to test failover
sudo ip link set eth® down

# Monitor logs for failover
tail -f /var/log/omniss7.log | grep MULTIHOMING

# Re-enable interface
sudo ip link set ethO up

4. Both Sides Should Support Multihoming

e Optimal: Both local and remote use multiple IPs
e Acceptable: Only one side uses multihoming

* Note: Redundancy is best when both endpoints support it

5. Firewall Configuration

# Allow SCTP on all multihoming IPs
iptables -A INPUT -p sctp --dport 2905 -s 10.0.0.0/24 -j ACCEPT
iptables -A INPUT -p sctp --dport 2905 -s 10.1.0.0/24 -j ACCEPT

Troubleshooting

Issue: Multihoming Not Working
Symptoms: Only primary IP is used, no failover

Checks:

1. Verify Erlang SCTP support: erl -eval 'gen sctp:open(9999, [binary,
{ip, {127,0,0,1}}1)."

2. Check kernel SCTP module: lsmod | grep sctp

3. Load SCTP if needed: sudo modprobe sctp

4. Verify both IPs are configured on system: ip addr show

Issue: Path Not Failing Over

Symptoms: Primary path marked down but traffic not switching



Checks:

1. Check SCTP heartbeat settings

2. Verify routing table has routes for all paths
3. Check firewall allows SCTP on all IPs

4. Review SCTP path monitoring logs

Issue: Frequent Path Flapping

Symptoms: Paths constantly switching between UP and DOWN
Checks:

1. Network instability - check physical links
2. SCTP heartbeat too aggressive - may need tuning
3. Firewall dropping SCTP heartbeats

4. MTU issues on one path

Performance Considerations

Minimal overhead: SCTP heartbeats are small and infrequent

No application changes: Multihoming is transparent to application layer

Fast failover: Typically <1 second detection and failover

Automatic recovery: No manual intervention needed

Compatibility

Backward compatible: Single IP tuple format still works

Mixed deployments: Can mix single-IP and multi-IP peers
All modes supported: Works in STP, HLR, SMSc, and MAP Client modes

Erlang requirement: Requires Erlang with SCTP support compiled in

Monitoring and Alerting
Key Metrics:

¢ M3UA connection state



¢ MAP request success rate
e API response times

¢ Message queue depth

Alert Thresholds:

M3UA down > 1 minute
MAP timeout rate > 10%
Queue depth > 1000

API error rate > 5%

Complete Configuration Reference

All Configuration Parameters

This section provides a complete reference of all available configuration
parameters across all operating modes.

Logger Configuration ( : logger)

config :logger,
level: :debug # :debug | :info | :warning | :error

Web Ul Configuration ( :control_panel)



config :control panel,
page order: ["/events", "/application", "/configuration"],
web: %{

listen ip: "0.0.0.0",
port: 80,

hostname: "localhost",
enable tls: false,

tls cert: "cert.pem",
tls key: "key.pem"

}
Parameter Type Required Default
"/events",

9 List of N "[// lication®
age order 0 application",
S Strings Ll . .

"/configuration"]
web.listen ip String Yes "0.0.0.0"
web.port Integer Yes 80
web.hostname String Yes "localhost"
web.enable tls Boolean No false

_ If TLS
web.tls cert String “cert.pem"
enabled
_ If TLS
web.tls key String "key.pem"
enabled

Descriptio

Navigation
menu page
order

IP address t
bind web
server

HTTP/HTTPS
port numbe

Server
hostname

Enable
HTTPS

TLS
certificate
path

TLS private
key path



M3UA STP Configuration ( :omniss7)

config :omniss7,
m3ua_stp: %{
enabled: false,
local ip: {127, 0,
local port: 2905
b

0, 1},

enable gt routing: true,

m3ua_peers: [...],
m3ua_routes: [...],
m3ua gt routes: [..

Parameter

m3ua_stp.enabled

m3ua_stp.local ip

m3ua_stp.local port

enable gt routing

M3UA Peer Parameters:

]

Type

Boolean

Tuple

Integer

Boolean

Required

Yes

Yes

Yes

No

Default

false

{127,
0, 0,
1}

2905

false

Description

Enable STP
mode at boot

IP to bind for
incoming
M3UA

SCTP port for
M3UA

Enable Global
Title routing



Parameter

peer id

name

role

local ip

local port

remote ip

remote port

routing context

point code

network indicator

Type

Integer

String

Atom

Tuple or
List

Integer

Tuple or
List

Integer

Integer

Integer

Atom

M3UA Route Parameters:

Required

Yes

Yes

Yes

If
:client

:client

Yes

If
:client

Yes

Yes

No

Description
Unique peer identifier
Descriptive peer name
:client or :server
Local IP(s) to bind. Single:
{10, 0, 0, 1} or List:

[{1e, o, o, 1}, {10, O,
0, 2}]

Local port (0 for dynamic)

Remote peer IP(s). Single:
{10, 0, 0, 10} or List:
[{10, 0, O, 10}, {10, O,
0, 11}]

Remote peer port

M3UA routing context

SS7 point code

:international or

:national



Parameter

dest pc

peer id

priority

network indicator Atom

M3UA GT Route

Parameter

gt prefix

peer id

priority

description

source _ssn

dest ssn

Type Required Description
Integer  Yes Destination point code
Integer Yes Peer to route through

Route priority (lower = higher
Integer Yes o
priority)
:international or
No .
:national
Parameters:
Type Required Description

String Yes

Integer Yes

Integer  Yes

String No

Integer No

Integer No

Global Title prefix to match

Destination peer

Route priority

Route description for logging

Match only if source SSN matches

Rewrite destination SSN to this value

MAP Client Configuration ( :omniss7)



config :omniss7,

map_client enabled: false,

map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, []},
process name: :map client asp,
local ip: {10, 0, 0, 100},
local port: 2905,
remote ip: {10, 0, 0, 1},
remote port: 2905,
routing context: 1



Parameter

map _client enabled

map client m3ua.

map client m3ua.

map client m3ua.

map_client m3ua.

map client m3ua.

map client m3ua.

map client m3ua.

map client m3ua.

mode

callback

process name

local ip

local port

remote ip

remote port

routing_ context

Type

Boolean

String

Tuple

Atom

Tuple

Integer

Tuple

Integer

Integer

SMS Center Configuration ( :omniss7)

Required

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Default

false

IIASP n

{MapClient,
:handle paylo
[1}

:map _client a

2905

2905



config :omniss7,

auto flush enabled: false,
auto flush interval: 10 000,
auto flush dest smsc: nil,

auto flush tps: 10

Parameter

auto flush enabled

auto flush interval

auto flush dest smsc

auto flush tps

HTTP API Configuration ( :omniss7)

Type

Boolean

Integer

String/nil

Integer

Required

No

No

No

No

Default

false

10000

nil

10

Description

Enable auto-
flush of SMS
queue

Queue poll
interval
(milliseconds)

Filter by dest
SMSC (nil =
all)

Max
transactions
per second

The SMS backend now uses HTTP API instead of direct database connections.

config :omniss7,

smsc_api base url: "https://10.5.198.200:8443",
frontend name: "omni-smscOl"”

hostname SMSc

APl Parameters:

# Optional: defaults to



Parameter Type Required Default

smsc_api base url String  Yes "https://10.5.198.200:8443"

frontend name String No "{hostname} SMSc"

API Endpoints Used:

e POST /api/frontends - Register this frontend instance with backend
* POST /api/messages raw - Insert new SMS messages

e GET /api/messages - Retrieve message queue (with smsc header)

e PATCH /api/messages/{id} - Mark message as delivered

e PUT /api/messages/{id} - Update message status

e POST /api/events - Add event tracking

e GET /api/status - Health check endpoint

Frontend Registration:

The system automatically registers itself with the backend API on startup and
re-registers every 5 minutes. Registration includes:

Frontend name and type (SMSc)

Hostname

Uptime in seconds
Configuration details (JSON format)

Configuration Notes:

SSL verification is disabled by default for self-signed certificates

HTTP requests timeout after 5 seconds

All timestamps are in ISO 8601 format

The API uses JSON for request/response bodies



Related Documentation

OmniSS7 by Omnitouch Network Services



Configuration
Reference

This document provides a comprehensive reference for all OmniSS7
configuration parameters.

Table of Contents

W X N U Rk wWDNRH

=
©

Overview

OmniSS7 configuration is managed via config/runtime.exs. The system
supports three operational modes:

e STP Mode - Signal Transfer Point for routing
e HLR Mode - Home Location Register for subscriber management

e SMSc Mode - SMS Center for message delivery

Configuration File: config/runtime.exs



Operational Mode Flags

Control which features are enabled.

Parameter

map_client enabled

hlr mode enabled

smsc_mode enabled

Example:

config :omniss7,

Type

Boolean

Boolean

Boolean

map client enabled: true,
hlr mode enabled: true,
smsc_mode enabled: false

Default

false

false

false

Description

Enable MAP client
and M3UA
connectivity

Enable HLR-specific
features

Enable SMSc-
specific features

HLR Mode Parameters

Configuration for HLR (Home Location Register) mode.

Modes

All

HLR

SMSc



HLR API Configuration

Parameter Type Default
hlr api base url String -
hlr service center gt address String -

smsc_service center gt address  String -

Example:

config :omniss7,
hlr api base url: "https://10.180.2.140:8443",
hlr service center gt address: "55512341111",
smsc_service center gt address: "55512341112"

MSISDN < IMSI Mapping

Configuration for synthetic IMSI generation from MSISDNs. For detailed

technical explanation of the mapping algorithm, see

Required

Yes

Yes

Yes

Desc

Backer
API enc
URL (S
hardco
disable

HLR Gl
Title ac
returne
Update
respon

SMSC (
addres
returne
for-SM
respon



Parameter

hlr _imsi plmn prefix

hlr msisdn country code

hlr msisdn nsn offset

hlr msisdn nsn length

Type

String

String

Integer

Integer

Example (2-digit country code):

Default

"50557"

II61II

0

9

Required

No

No

No

No

Description

PLMN prefix
(MCC+MNC)
for synthetic
IMSI
generation

Country code
prefix for
IMSI-MSISDN
reverse

mapping

Offset into
MSISDN
where NSN
starts
(typically
length of
country
code)

Length of
National
Subscriber
Number to
extract from
MSISDN



config :omniss7,

hlr imsi plmn prefix: "50557", # MCC 505 + MNC 57

hlr msisdn country code: "99", # Example 2-digit country
code

hlr msisdn nsn offset: 2, # Skip 2-digit country code

hlr msisdn nsn length: 9 # Extract 9-digit NSN

Example (3-digit country code):

config :omniss7,

hlr _imsi plmn prefix: "50557", # MCC 505 + MNC 57

hlr msisdn country code: "999", # Example 3-digit country
code

hlr msisdn nsn offset: 3, # Skip 3-digit country code

hlr msisdn nsn_length: 8 # Extract 8-digit NSN

Important: Set nsn offset to the length of your country code to properly
extract the NSN. For example:

e Country code "9" (1 digit) - nsn offset: 1
e Country code "99" (2 digits) = nsn offset: 2
e Country code "999" (3 digits) » nsn offset: 3

InsertSubscriberData (ISD) Configuration

Configuration for subscriber provisioning data sent to VLRs during
UpdatelLocation. For detailed explanation of the ISD sequence and message
flow, see



Parameter Type Default
isd network access mode Atom :packetAndCircuit
isd send ss data Boolean  true
isd send call barring Boolean  true
Example:

config :omniss7,
isd network access mode: :packetAndCircuit,
isd send ss data: true,
isd send call barring: true

CAMEL Configuration

Configuration for CAMEL-based intelligent call routing. For detailed explanation

of CAMEL integration and service keys, see

Required

No

No

No

(n (Nn (N

N (N



Parameter Type Default Re

camel service key Integer 11 110 No

camel trigger detection point  Atom :termAttemptAuthorized No

camel gsmscf gt address String (uses called GT) No
Example:

config :omniss7,
camel service key: 11 110,

camel trigger detection point: :termAttemptAuthorized

Home VLR Prefixes

Configuration for distinguishing home vs roaming subscribers. For detailed
explanation of home/roaming detection and PRN operations, see

Parameter Type Default Required

home vlr prefixes  List ["5551231"] No

Example:

Description

VLR GT prefixes
considered
"home"
network



config :omniss7,

home vlr prefixes: ["5551231",

"5551234"]

SMSc Mode Parameters

Configuration for SMS Center mode.

SMSc API Configuration

Parameter

smsc_api base url

SmSC_name

smsc service center gt address

Example:

Type

String

String

String

Default

{hostname} SMSc"

Required

Yes

No

Yes



config :omniss7,

smsc _api base url: "https://10.179.3.219:8443",

smsc_name: "ipsmgw",

smsc_service center gt address: "55512341112"

Note: Frontend registration occurs every 5 minutes (hardcoded) via

SMS.FrontendRegistry module.

Auto-Flush Configuration

Parameter Type Default
auto flush enabled Boolean  true
auto flush interval Integer 10 000

auto flush dest smsc  String -

auto flush tps Integer 10

Example:

config :omniss7,
auto flush enabled: true,
auto flush interval: 10 000,
auto flush dest smsc: "ipsmgw",
auto flush tps: 10

Required

No

No

Yes

No

Descriptiol

Enable automat|
SMS queue
processing

Queue processir
interval in
milliseconds

Destination SMS
name for auto-fl

Message proces
rate
(transactions/se



STP Mode Parameters

Configuration for M3UA Signal Transfer Point mode. For detailed routing
configuration and examples, see the

Standalone STP Server

Parameter Type Default Required Description
Enable
standalone

m3ua stp.enabled Boolean  false No
M3UA STP
server

IP address(es)
to listen for
connections.
Single IP: {10,
{127, 0, 0, 1} or
, Tuple or _
m3ua_ stp.local ip List 0, 0, No Multiple IPs for
1} SCTP
multihoming:
[{10, 0O, O,
1}, {10, 0,
0, 2}]

Port to listen
m3ua_stp.local port Integer 2905 No
on

Yes (if This STP's own

m3ua stp.point code Integer - .
enabled) SS7 point code

Example (Single IP):



config :omniss7,
m3ua_stp: %{
enabled: true,
local ip: {10, 179, 4, 10},
local port: 2905,
point code: 100

Example (SCTP Multihoming):

config :omniss7,
m3ua_stp: %{
enabled: true,
# Multiple IPs for redundancy
local ip: [{10, 179, 4, 10}, {10, 179, 4, 11}],
local port: 2905,
point code: 100

Note: For detailed information on SCTP multihoming configuration and
benefits, see

Global Title Routing

Parameter Type Default Required Description

Enable GT routing
enable gt routing Boolean false No in addition to PC

routing

Example:

config :omniss7,
enable gt routing: true



Global Title NAT Parameters

Global Title Network Address Translation allows different response GTs based on
calling party prefix. For detailed explanation and examples, see the

Parameter Type Default Required Description
Enable/disable GT
gt nat enabled Boolean false No
NAT feature
List of Yes (if List of prefix-to-GT
gt nat rules [] )
Maps enabled) mappings

Rule Format: Each rule in gt _nat rules must be a map with:

* calling prefix: String prefix to match against calling GT

* response gt: Global Title to use in responses

Example:

config :omniss7,
gt nat enabled: true,
gt nat rules: [
# When called from GT starting with "8772", respond with
"55512341112"
%{calling prefix: "8772", response gt: "55512341112"},
# When called from GT starting with "8773", respond with
"55512341111"
%{calling prefix: "8773", response gt: "55512341111"},
# Default fallback (empty prefix matches all)
%{calling prefix: "", response gt: "55512311555"}
]

See Also: for detailed usage and examples.



M3UA Connection Parameters

M3UA connection configuration for MAP client mode. For detailed usage and
examples, see the



Parameter

map client m3ua.

map client m3ua.

map_client m3ua.

map_client m3ua.

map client m3ua.

map client m3ua.

map client m3ua.

map client m3ua.

mode

callback

process_name

local ip

local port

remote ip

remote port

routing context

Type

String

Tuple

Atom

Tuple
or List

Integer

Tuple
or List

Integer

Integer

Default

2905

2905

Required

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Conr
"ASF

Callk
mod
{Mar
:han

[1}

Proc
regis

Loca
addr
bind
0, 0
Mult
mult
[{1¢
{10,

Loca

Rem
IP ac
Sing
0, 1
Mult
0, 0
0, 0

Rem

M3U
cont



Example (Single IP):

config :omniss7,
map_client m3ua: %{

mode: "ASP",
callback: {MapClient, :handle payload, []},
process name: :hlr client asp,
local ip: {10, 179, 4, 11},
local port: 2905,
remote ip: {10, 179, 4, 10},
remote port: 2905,
routing context: 1

Example (SCTP Multihoming):

config :omniss7,
map _client m3ua: %{

mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :hlr client asp,
# Multiple local IPs for redundancy
local ip: [{10, 179, 4, 11}, {10, 179, 4, 12}],
local port: 2905,
# Multiple remote IPs for STP redundancy
remote ip: [{10, 179, 4, 10}, {10, 179, 4, 20}],
remote port: 2905,
routing context: 1

Note: For detailed information on SCTP multihoming configuration and
benefits, see

HTTP Server Parameters

Configuration for the REST API HTTP server.



Parameter Type Default Required Description

Enable/disable
start http server Boolean true No HTTP server (port
8080)

Hardcoded Values (not configurable):

e IP: 0.0.0.0 (all interfaces)
e Port: 8080
e Transport: Plug.Cowboy

Example:

config :omniss7,
start http server: true # Set to false to disable

API Endpoints:

* REST API: http://[server-ip]:8080/api/*
e Swagger Ul: http://[server-ip]:8080/swagger

e Prometheus metrics: http://[server-ip]:8080/metrics

See for details.

Database Parameters

Configuration for Mnesia database persistence.



Parameter Type Default Required

mnesia storage type Atom :disc copies No

Example:

config :omniss7,
mnesia storage type: :disc copies # Production
# mnesia storage type: :ram copies # Testing only

Storage Types:

e :disc copies - Persistent disk storage (survives restarts) -
Recommended for production

Description

Mnesia
storage type:
:disc_copies
or

:ram_copies

e :ram copies - In-memory only (lost on restart) - For testing only

Mnesia Tables:

* m3ua peer - M3UA peer connections
* m3ua_route - Point Code routes

e m3ua gt route - Global Title routes

Location: Mnesia.{node name}/ directory

Hardcoded Values

The following values are hardcoded in the source code and cannot be

changed via configuration.



Timeouts

Value

MAP request timeout: 10
seconds

ISD timeout: 10
seconds

HTTP Server

Value

HTTP IP: 0.0.0.0 Server listens on all interfaces

HTTP Port: 8080 REST API runs on port 8080

SSL Verification

Value

HLR API SSL:
disabled

SMSc API SSL:
disabled

Impact

All MAP operations timeout
after 10s

Each ISD message times
out after 10s

Impact

Impact

SSL verification always
disabled

SSL verification always
disabled

Workaround

Modify source
code

Modify source
code

Workaround

Modify source code

Modify source code

Workaround

Modify source
code

Modify source
code



Registration Intervals

Value Impact
Frontend registration: 5 SMSc registers with
minutes backend every 5 min

Web Ul Auto-Refresh

Page Interval
Routing Management 5 seconds

Active Subscribers 2 seconds

Workaround

Modify source
code



Configuration Examples

Minimal HLR Configuration

config :omniss7,
map_client enabled: true,
hlr _mode enabled: true,
smsc_mode enabled: false,

hlr api base url: "https://10.180.2.140:8443",
hlr service center gt address: "55512341111",
smsc_service center gt address: "55512341112",

map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :hlr client asp,
local ip: {10, 179, 4, 11},
local port: 2905,
remote ip: {10, 179, 4, 10},
remote port: 2905,
routing context: 1



Minimal SMSc Configuration

config :omniss7,
map client enabled: true,
hlr mode enabled: false,
smsc_mode enabled: true,

smsc_api base url: "https://10.179.3.219:8443",
smsc _name: "ipsmgw",
smsc_service center gt address: "55512341112",

auto flush enabled: true,

auto flush interval: 10 000,
auto flush dest smsc: "ipsmgw",
auto flush tps: 10,

map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :stp client asp,
local ip: {10, 179, 4, 12},
local port: 2905,
remote ip: {10, 179, 4, 10},
remote port: 2905,
routing context: 1



STP with Standalone Server

config :omniss7,
map client enabled: true,
hlr mode enabled: false,
smsc_mode enabled: false,

enable gt routing: true,
mnesia storage type: :disc copies,

m3ua_stp: %{
enabled: true,
local ip: {10, 179, 4, 10},
local port: 2905,
point code: 100
}

map_client m3ua: %{
mode: "ASP",

callback: {MapClient, :handle payload, []1},

process name: :stp client asp,
local ip: {10, 179, 4, 10},
local port: 2906,

remote ip: {10, 179, 4, 11},
remote port: 2905,

routing context: 1

Summary

Total Configuration Parameters:
By Category:

e Operational Mode: 3 parameters
e HLR Mode: 13 parameters

e SMSc Mode: 7 parameters

32



STP Mode: 5 parameters

M3UA Connection: 8 parameters

HTTP Server: 1 parameter

Database: 1 parameter
Required Parameters (must be set):

* hlr api base url (HLR mode)
e hlr service center gt address (HLR mode)
e smsc_api base url (SMSc mode)

e smsc service center gt address (SMSc/HLR mode)

All map client m3ua.* parameters

m3ua stp.point code (if STP enabled)

Related Documentation

. - HLR-specific configuration

. - SMSc-specific configuration
. - STP routing configuration

. - REST API reference

. - Web interface documentation



Global Title NAT Guide

Overview

Global Title Network Address Translation (GT NAT) is a feature that allows
OmniSS7 to respond with different Global Title addresses based on the calling
party's GT prefix, the called party's GT prefix, or a combination of both. This is
essential when operating with multiple Global Titles and needing to ensure
responses use the correct GT based on which network or peer is calling and/or
which GT they called.

What's New (Enhanced GT NAT)

The GT NAT feature has been enhanced with powerful new capabilities:

New Features

1. Called Party Prefix Matching: Rules can now match on called prefix
in addition to calling prefix

2. Combined Matching: Rules can match on both calling AND called prefixes
simultaneously

3. Weight-Based Prioritization: Rules now use a weight field (lower =
higher priority) instead of just prefix length

4. Flexible Matching: You can now create rules with:
o Only calling prefix
o Only called prefix
o Both calling and called prefixes
o Neither (wildcard/fallback rule)

New Rule Format

Required fields:



e weight: Integer priority (lower = higher priority)

e response gt: The GT to respond with
Optional fields (at least one recommended for specific matching):

e calling prefix: Match on calling party GT prefix
e called prefix: Match on called party GT prefix

Example:

gt nat rules: [
# Specific rule with both prefixes - highest priority
%s{calling prefix: "8772", called prefix: "555", weight: 1,

response gt: "111111"},
# Specific rules - medium priority
%s{calling prefix: "8772", weight: 10, response gt: "222222"},
%s{called prefix: "555", weight: 10, response gt: "333333"},

# Wildcard fallback - lowest priority
%s{weight: 100, response gt: "999999"}

Use Cases

Multi-Network Operation

When you have multiple peer networks and each expects responses from a

specific GT:

e Network A calls your GT 111111 and expects responses from 111111
e Network B calls your GT 222222 and expects responses from 222222

Without GT NAT, you would need separate instances or complex routing. With
GT NAT, a single OmniSS7 instance can handle this intelligently.



Roaming Scenarios
When operating as an HLR or SMSc with roaming agreements:

e Home network subscribers use GT 555000
e Roaming partner 1 uses GT 555001
* Roaming partner 2 uses GT 555002

GT NAT ensures each partner receives responses from the correct GT they're
configured to route to.

Testing and Migration
During network migrations or testing:

e Gradually migrate traffic from old GT to new GT
e Maintain both GTs during transition period

e Route responses based on which GT the caller used

How It Works

Address Translation Flow

1. Incoming Request: OmniSS7 receives an SCCP message with:

o Called Party GT: 55512341112 (your GT)
o Calling Party GT: 877234567 (their GT)

2. GT NAT Lookup: System checks calling GT 877234567 against configured
prefix rules

3. Prefix Matching: Finds longest matching prefix (e.g., 8772 matches
877234567 )

4. Response GT Selection: Uses response gt from matched rule (e.qg.,
55512341112)



5. Response Sent: SCCP response uses:

o Called Party GT: 877234567 (reversed - their GT)
o Calling Party GT: 55512341112 (NAT'd GT)

Affected Response Types

GT NAT applies to multiple layers of the SS7 stack:

SCCP Layer (All Responses)

SCCP Called/Calling GT addresses in all response messages

ISD (InsertSubscriberData) acknowledgments

UpdatelLocation responses

Error responses

MAP Layer (Operation-Specific)

e SRI-for-SM Responses: networkNode-Number (SMSc GT address)
e UpdateLocation: hlr-Number in responses

¢ InsertSubscriberData: HLR GT in ISD messages

Configuration

Basic Configuration

Add to config/runtime.exs:



config :omniss7,
# Enable GT NAT
gt nat enabled: true,

# Define GT NAT rules
gt nat rules: [

# Rule 1: Calls from prefix "8772" get

"55512341112"

%{calling prefix: "8772", response gt:

# Rule 2: Calls from prefix "8773" get

"55512341111"

%{calling prefix: "8773", response gt:

response from

"55512341112"},

response from

"55512341111"},

# Default rule (empty prefix matches everything)
%{calling prefix: "", response gt: "55512311555"}

]

Configuration Parameters

For complete configuration reference, see

Parameter Type

gt nat enabled Boolean

List of

gt nat rules
- Maps

Rule Format

Required

Yes

Yes (if
enabled)

Each rule is a map with the following keys:

Description

Enable/disable GT NAT
feature

List of prefix matching
rules



%1

calling prefix: "8772", # (Optional) Prefix to match

against calling GT

called prefix: "555", # (Optional) Prefix to match

against called GT

}

weight: 10, # (Required) Priority value (lower
higher priority)
response gt: "55512341112" # (Required) GT to use in responses

Rule Fields:

calling_prefix (Optional): String prefix to match against incoming calling
GT

o Matching is done by String.starts with?/2
o Empty string "" or nil acts as wildcard (matches any calling GT)

o Can be omitted to match any calling GT

called prefix (Optional): String prefix to match against incoming called
GT

o Matching is done by String.starts with?/2
o Empty string "" or nil acts as wildcard (matches any called GT)

o Can be omitted to match any called GT

weight (Required): Integer priority value

o Lower weight = higher priority (processed first)
o Mustbe >=0

o Used as primary sorting criterion for matching rules

response_gt (Required): The Global Title address to use in responses

o Must be a valid E.164 number string

o Should match one of your configured GTs

At least one of calling_prefix or called_prefix should be specified for
specific routing. Both can be omitted for a wildcard/fallback rule.



Rule Matching Logic

Rules are evaluated by weight first (ascending), then by combined prefix

specificity:
Matching Algorithm:

1. Filter rules where all specified prefixes match
o If calling prefix is set, it must match the calling GT

o If called prefix is set, it must match the called GT
o If both are set, both must match

o |If neither is set, rule acts as a wildcard

2. Sort matching rules by:
o Primary: Weight (ascending - lower values first)

o Secondary: Combined prefix length (descending - longer = more
specific)
3. Return the first matching rule

Examples:



# Example rules
gt nat rules: [
# Weight 1: Highest priority - matches both prefixes
%s{calling prefix: "8772", called prefix: "555", weight: 1,
response gt: "111111"},

# Weight 10: Medium priority - specific rules

%s{calling prefix: "8772", weight: 10, response gt: "222222"},
Calling only

%s{called prefix: "555", weight: 10, response gt: "333333"},
Called only

# Weight 100: Lowest priority - wildcard fallback
%s{weight: 100, response gt: "444444"} # Matches everything

]

# Matching examples:

# Calling: "877234567", Called: "555123" -> "111111" (weight 1,
both match)

# Calling: "877234567", Called: "999999" -> "222222" (weight 10,
calling only)

# Calling: "999999999", Called: "555123" -> "333333" (weight 10,
called only)

# Calling: "999999999", Called: "888888" -> "444444" (weight 100,
wildcard)

Examples

Example 1: Two Network Partners

Scenario: You operate an SMSc with two network partners. Each expects
responses from a different GT.

#

#



config :omniss7,
gt nat enabled: true,

# Default SMSc GT (used when GT NAT is disabled or no rule

matches)
smsc service center gt address: "5551000",

# GT NAT rules for partners

gt nat rules: [
# Partner A (prefix 4412) expects responses from GT 5551001
%{calling prefix: "4412", weight: 10, response gt: "5551001"},

# Partner B (prefix 4413) expects responses from GT 5551002
%{calling prefix: "4413", weight: 10, response gt: "5551002"},

# Default: use standard SMSc GT (wildcard fallback)
%s{weight: 100, response gt: "5551000"}
]

Traffic Flow:

Incoming SRI-for-SM from 44121234567:
Called GT: 5551001 (your GT that Partner A uses)
Calling GT: 44121234567 (Partner A's GT)

GT NAT Lookup:
"44121234567" matches prefix "4412"
Selected response gt: "5551001"

Response SRI-for-SM to 44121234567:
Called GT: 44121234567 (reversed)

Calling GT: 5551001 (NAT'd)
networkNode-Number: 5551001 (in MAP response)

Example 2: HLR with Regional GTs

Scenario: National HLR with different GTs per region.



config :omniss7,
gt nat enabled: true,
hlr _service center gt address: "555000", # Default HLR GT

gt nat rules: [
# Northern region VLRs (prefix 5551)
%{calling prefix: "5551", weight: 10, response gt: "555100"},

# Southern region VLRs (prefix 5552)
%{calling prefix: "5552", weight: 10, response gt: "555200"},

# Western region VLRs (prefix 5553)
%{calling prefix: "5553", weight: 10, response gt: "555300"},

# Default for other regions (wildcard)
%{weight: 100, response gt: "555000"}

Example 3: Migration Scenario

Scenario: Migrating from old GT to new GT gradually.

config :omniss7,
gt nat enabled: true,
hlr service center gt address: "123456789", # 0ld GT (default)

gt nat rules: [
# Migrated networks (already updated their configs)
%{calling prefix: "555", weight: 10, response gt:
"087654321"}, # New GT
%{calling prefix: "666", weight: 10, response gt:
"987654321"}, # New GT

# Everyone else still uses old GT (wildcard)
%s{weight: 100, response gt: "123456789"} # 0ld GT
]



Example 4: Called Party Prefix Matching (NEW)

Scenario: You have multiple GTs for different services, and want to respond
with the correct GT based on which GT was called.

config :omniss7,
gt nat enabled: true,

gt nat rules: [
# When they call your SMS GT (5551xxx), respond with that GT
%{called prefix: "5551", weight: 10, response gt: "555100"},

# When they call your Voice GT (5552xxx), respond with that GT
%{called prefix: "5552", weight: 10, response gt: "555200"},

# When they call your Data GT (5553xxx), respond with that GT
%{called prefix: "5553", weight: 10, response gt: "555300"},

# Default fallback
%s{weight: 100, response gt: "555000"}

Traffic Flow:

Incoming request to Called GT: 555100 (your SMS GT)
Calling GT: 441234567 (any caller)

GT NAT Lookup:
Called GT "555100" matches prefix "5551"
Selected response gt: "555100"

Response uses Calling GT: 555100 (matches what they called)

Example 5: Combined Calling + Called Prefix
Matching (ADVANCED)

Scenario: Different partners call different GTs, and you want fine-grained
control.



config :omniss7,
gt nat enabled: true,

gt nat rules: [
# Partner A calling your SMS GT - highest priority (weight 1)
%{calling prefix: "4412", called prefix: "5551", weight: 1,
response gt: "555101"},

# Partner B calling your SMS GT - highest priority (weight 1)
%{calling prefix: "4413", called prefix: "5551", weight: 1,
response gt: "555102"},

# Anyone calling your SMS GT - medium priority (weight 10)
%{called prefix: "5551", weight: 10, response gt: "555100"},

# Partner A calling any GT - medium priority (weight 10)
%{calling prefix: "4412", weight: 10, response gt: "555200"},

# Default fallback - low priority (weight 100)
%{weight: 100, response gt: "555000"}

Matching Examples:

# Partner A calls SMS GT
Calling: "441234567", Called: "555100"
- Matches weight 1 rule (both prefixes) - "555101"

# Partner A calls Voice GT
Calling: "441234567", Called: "555200"
- Matches weight 10 rule (calling only) - "555200"

# Unknown caller calls SMS GT
Calling: "999999999", Called: "555100"
- Matches weight 10 rule (called only) - "555100"

# Unknown caller calls Voice GT
Calling: "999999999", Called: "555200"
- Matches weight 100 wildcard - "555000"



Operational Modes

GT NAT works across all OmniSS7 operational modes:

HLR Mode
GT NAT affects:

e UpdateLocation responses (HLR GT in response)
e InsertSubscriberData messages (HLR GT as calling party)
e SendAuthenticationIinfo responses

e Cancel Location responses
For more information on HLR operations, see the

Configuration:

config :omniss7,
hlr mode enabled: true,
hlr service center gt address: "5551234567", # Default HLR GT

gt nat enabled: true,
gt nat rules: [
%{calling prefix: "331", weight: 10, response gt:
"5551234568"}, # France
%{calling prefix: "44", weight: 10, response gt:
"5551234569"}, # UK
%{weight: 100, response gt: "5551234567"} # Default wildcard

]

SMSc Mode
GT NAT affects:

e SRI-for-SM responses ( networkNode-Number field) - see

e MT-ForwardSM acknowledgments

For more information on SMSc operations, see the



Configuration:

config :omniss7,
smsc_mode enabled: true,
smsc_service center gt address: "5559999", # Default SMSc GT

gt nat enabled: true,
gt nat rules: [
%{calling prefix: "1", weight: 10, response gt: "5559991"},
# North America
%{calling prefix: "44", weight: 10, response gt: "5559992"},
# UK
%{calling prefix: "86", weight: 10, response gt: "5559993"},
# China
%{weight: 100, response gt: "5559999"} # Default wildcard
1

CAMEL Gateway Mode

GT NAT affects:

All SCCP-level responses (gsmSCF GT as Calling Party)
CAMEL/CAP operation responses (InitialDP, EventReportBCSM, etc.)

RequestReportBCSMEvent acknowledgments

ApplyCharging responses

Continue responses

Configuration:



config :omniss7,
camelgw mode enabled: true,
camel gsmscf gt address: "55512341112", # Default gsmSCF GT

gt nat enabled: true,
gt nat rules: [
%{calling prefix: "555", weight: 10, response gt:
"55512341111"}, # Network A
%{calling prefix: "666", weight: 10, response gt:
"55512311555"}, # Network B
%s{weight: 100, response gt: "55512341112"} # Default wildcard
]

Use Case: When operating as a gsmSCF (Service Control Function) for multiple
networks, each network's gsmSSF may expect responses from a specific
gsmSCF GT. GT NAT ensures the correct GT is used based on which gsmSSF is
calling.

Logging and Debugging

Enable GT NAT Logging

GT NAT includes automatic logging of all translations:

# In logs, you'll see:
[info] GT NAT [SRI-for-SM response]: Calling GT 877234567 ->
Response GT 55512341112
[info] GT NAT [UpdateLocation ISD]: Calling GT 331234567 ->
Response GT 55512341111

[info] GT NAT [MAP BEGIN response]: Calling GT 441234567 ->
Response GT 55512311555

The context field shows where the NAT was applied:

e "SRI-for-SM response" - In SRI-for-SM handler
e "UpdateLocation ISD" - In InsertSubscriberData messages

e "UpdateLocation END" - In UpdateLocation END response



e "MAP BEGIN response" - Generic MAP BEGIN responses
e "ISD ACK" -ISD acknowledgment
e "HLR error response" - Error response from HLR

e "CAMEL response" - CAMEL/CAP operation responses (gsmSCF)

Validation

The system validates GT NAT configuration at startup:

# Check GT NAT config
iex> GtNat.validate config()
{:0k, [

%s{calling prefix: "8772", weight: 10, response gt:
"55512341112"},

%s{calling prefix: "8773", weight: 10, response gt:
"55512341111"}
1}

# Check if enabled
iex> GtNat.enabled?()
true

# Get all rules
iex> GtNat.get rules()
[

%{calling prefix: "8772", weight: 10, response gt:
"55512341112"},

%s{calling prefix: "8773", weight: 10, response gt:
"55512341111"}
]

Testing GT NAT

Test GT NAT logic programmatically:



# Test translation with calling GT only (called gt is nil)
iex> GtNat.translate response gt("877234567", nil, "default gt")
"55512341112"

# Test translation with both calling and called GT
iex> GtNat.translate response gt("877234567", "555123",
"default gt")

"55512341112"

# Test with logging (nil called GT)

iex> GtNat.translate response gt with logging("877234567", nil,
"default gt", "test")

# Logs: GT NAT [test]: Calling GT 877234567 -> Response GT
55512341112

"55512341112"

# Test with logging (both GTs)

iex> GtNat.translate response gt with logging("877234567",
"555123", "default gt", "test")

# Logs: GT NAT [test]: Calling GT 877234567, Called GT 555123 ->
Response GT 55512341112

"55512341112"

# Test no match (returns default)

iex> GtNat.translate response gt("999999999", "888888",
"default gt")

“default gt"

Troubleshooting

Issue: GT NAT Not Working

Check 1: Is it enabled?

iex> Application.get env(:omniss7, :gt nat enabled)
true # Should be true

Check 2: Are rules configured?



iex> Application.get env(:omniss7, :gt nat rules)
[%{calling prefix: "8772", response gt: "55512341112"}, ...] #
Should return list

Check 3: Check logs Search for "GT NAT" in logs to see if translations are
happening.

Issue: Wrong GT in Responses
Symptom: Responses use unexpected GT address

Cause: Rule prefix matching might be too broad or default rule is catching
traffic

Solution: Review rule weights and prefixes:

# BAD: Wildcard with low weight (catches everything first)
gt nat rules: [

%s{weight: 1, response gt: "111111"}, # This
matches everything first!

%s{calling prefix: "8772", weight: 10, response gt: "222222"} #
Never reached

]

# GOOD: Specific rules with lower weight, wildcard with higher
weight
gt nat rules: [

%s{calling prefix: "8772", weight: 10, response gt: "222222"}, #
Specific, low weight

%s{weight: 100, response gt: "111111"} # Wildcard, high weight
(fallback)
]

Issue: GT NAT Not Applied to Specific Message
Type

Symptom: Some responses use NAT'd GT, others don't



Current Coverage:

[J SCCP Calling GT (all responses)
[1 SRI-for-SM responses (networkNode-Number)
[] UpdateLocation ISD messages (HLR GT)

[J UpdateLocation END responses

0 ISD acknowledgments
[] MAP BEGIN responses

If a specific message type isn't using GT NAT, it may not be implemented yet.
Check the source code or contact support.

Performance Considerations

Lookup Performance

GT NAT uses simple prefix matching with O(n) complexity where n is the
number of rules.

Performance tips:

e Keep rule count under 100 for best performance
e Use specific prefixes to reduce rule count

e Default rule (empty prefix) should be last
Benchmark (typical system):

e 10 rules: < 1ps per lookup
e 50 rules: < 5us per lookup

e 100 rules: < 10us per lookup

Memory Usage

Each rule requires ~100 bytes of memory:

e 10 rules = 1 KB



e 100 rules = 10 KB

Best Practices

1. Always Include a Wildcard Fallback Rule

gt nat rules: [
%{calling prefix: "8772", weight: 10, response gt: "111111"},
%s{calling prefix: "8773", weight: 10, response gt: "222222"},
%s{weight: 100, response gt: "default gt"} # Always have a

wildcard with high weight

]

2. Use Meaningful Prefixes and Weights

# GOOD: Clear, specific prefixes with appropriate weights
%s{calling prefix: "331", weight: 10, response gt: "..."} # France
%s{calling prefix: "44", weight: 10, response gt: "..."} # UK

# BAD: Overly broad prefixes or confusing weights

%s{calling prefix: "3", weight: 5, response gt: "..."} # Too
many countries
%s{calling prefix: "331", weight: 100, response gt: "..."} #

Weight should be lower for specific rules

3. Document Your Rules

gt nat rules: [
# Partner XYZ - UK network (GT range: 4412XXXXXXX)
# Weight 10: Standard partner priority
%s{calling prefix: "4412", weight: 10, response gt: "5551001"},

# Partner ABC - France network (GT range: 33123XXXXXX)
# Weight 10: Standard partner priority
%s{calling prefix: "33123", weight: 10, response gt: "5551002"}



4. Test Before Deployment

# Test in iex before deploying

iex> GtNat.translate response gt("44121234567", nil, "default")
"5551001" # Expected result

# Test with called GT

iex> GtNat.translate response gt("44121234567", "555123",

"default")
“5551001" # Expected result

5. Monitor Logs

Enable INFO level logging to see all GT NAT translations in production.

Integration with Other Features

STP Mode

GT NAT works independently of STP routing. STP routes based on point codes
and destination GTs, while GT NAT handles response addressing.

For more information on STP routing, see the

CAMEL Integration
GT NAT is fully integrated with CAMEL/CAP operations:
SCCP Layer:

e Calling Party GT in all CAMEL responses
e Automatically applied based on incoming gsmSSF GT

Configuration:

e camel gsmscf gt address - Default gsmSCF GT (optional)

e If not configured, uses the Called Party GT from incoming request



e GT NAT rules override the default based on calling party prefix

Example:

# When gsmSSF 555123456 calls your gsmSCF

# Incoming: Called=55512341112, Calling=555123456
# GT NAT lookup: "555" -> response gt="55512341111"
# Response: Called=555123456, Calling=55512341111

Load Balancing

GT NAT can be combined with M3UA load balancing for advanced traffic
management.

Migration Guide

Enabling GT NAT on Existing System

1. Prepare Configuration

# Add to runtime.exs (keep disabled initially)
config :omniss7,
gt nat enabled: false, # Start disabled
gt nat rules: [
# Your rules here with weights
%{calling prefix: "877", weight: 10, response gt:
"111111"},
%s{weight: 100, response gt: "999999"} # Wildcard fallback
1

2. Test Configuration



# Validate config compiles
mix compile

# Test in iex
iex -S mix
iex> GtNat.validate config()

3. Enable in Staging

gt nat enabled: true # Change to true

4. Monitor Logs

tail -f log/omniss7.log | grep "GT NAT"

5. Deploy to Production

o Deploy during maintenance window

o Monitor first 24 hours closely

o Have rollback plan ready (set gt nat enabled:

Support

For issues or questions:

e Check logs for "GT NAT" messages
e Validate config with GtNat.validate config()
e Review this guide's troubleshooting section

e Contact OmniSS7 support with log excerpts

See Also

. - HLR mode configuration

. - SMSc mode configuration

false)



- STP routing configuration

- Complete config reference



HLR Configuration
Guide

This guide provides configuration for using OmniSS7 as a Home Location
Register (HLR/HSS) with OmniHSS as the backend subscriber database.

OmniHSS Integration

OmniSS7 HLR mode functions as an SS7 signaling frontend that
interfaces with OmniHSS, a full-featured Home Subscriber Server (HSS)
backend. This architecture separates concerns:

e OmniSS7 (HLR Frontend): Handles all SS7/MAP protocol signaling, SCCP
routing, and network communication

e OmniHSS (HSS Backend): Manages subscriber data, authentication,
provisioning, and advanced features

Why OmniHSS?

OmniHSS provides carrier-grade subscriber management with features
including:

e Multi-IMSI Support: Each subscriber can have multiple IMSIs associated
with a single MSISDN for international roaming, network switching, and
eSIM provisioning

* Flexible Authentication: Support for both Milenage (3G/4G/5G) and
COMP128 (2G) authentication algorithms

e Circuit & Packet Session Tracking: Independent tracking of CS (circuit-
switched) and PS (packet-switched) network registrations

e Advanced Provisioning: Customizable service profiles, supplementary
services, and CAMEL subscription data



e API-First Design: RESTful HTTP API for integration with billing, CRM, and
provisioning systems

* Real-time Updates: Location tracking, session management, and
authentication vector generation

All subscriber data, authentication credentials, and service configurations are
stored and managed in OmniHSS. OmniSS7 queries OmniHSS via HTTPS API
calls to respond to MAP operations like UpdatelLocation,
SendAuthenticationinfo, and SendRoutinginfo.

Important: OmniSS7 HLR mode is a signaling frontend only. All subscriber
management logic, authentication algorithms, provisioning rules, and database
operations are handled by OmniHSS. This guide covers the SS7/MAP protocol
configuration in OmniSS7. For information about subscriber provisioning,
authentication configuration, service profiles, and administrative operations,
refer to the OmniHSS documentation.

Multi-IMSI Support

OmniHSS natively supports Multi-IMSI configurations, allowing a single
subscriber (identified by MSISDN) to have multiple IMSIs. This enables:

* International Roaming Profiles: Different IMSIs for different regions to
reduce roaming costs

¢ eSIM Multi-Profile: Multiple network profiles on a single eSIM-capable
device

e Network Switching: Seamless switching between networks without
changing MSISDN

e Dual SIM Coordination: Coordination across multiple physical or virtual
SIMs

* Testing & Development: Multiple test IMSIs pointing to the same
subscriber

How it works:

e Each IMSI has its own authentication credentials (Ki, OPc, algorithm)

e Each IMSI can have independent circuit and packet session registrations



e Subscriber services and profiles can be shared or customized per-IMSI

e OmniSS7 queries OmniHSS by IMSI, and OmniHSS returns the appropriate
subscriber data

e Billing systems can track usage per-IMSI while associating all IMSIs to a
single account

Example Multi-IMSI scenario:

Subscriber MSISDN: +1-555-123-4567
|— IMSTI 1: 310260123456789 (US Home Network - Milenage auth)

- IMSI 2: 208011234567890 (France Roaming Profile - Milenage
auth)

L- IMSI 3: 440201234567891 (UK Roaming Profile - COMP128 auth)

All three IMSIs can be used independently for network registration, but they all
belong to the same subscriber account. OmniHSS manages the IMSI-to-

subscriber mapping and ensures proper authentication and provisioning for
each IMSI.



Table of Contents

© o N o U A WD -

=
©

What is HLR Mode?

HLR Mode enables OmniSS7 to function as a Home Location Register for:

Subscriber Management: Store and manage subscriber data

Authentication: Generate authentication vectors for network access

Location Tracking: Process location updates from VLRs

Routing Information: Provide routing info for calls and SMS



HLR Architecture



SS7 Network

VLR/MSC ‘ | SGSN ‘ GMSC ‘

OmniCharge  OmniRAN

- v
| MAP: |

MAP: UpdateLocation . .
UpdateGprsLocation MAP: SendRoutinginfo
SendAuthinfo
SendAuthinfo

Downloads ¥ English+ Omnitouch Website (@

oOmniss7? HLJantend

MIUA/SCTP
Protocol Stack

SCCP Routing

HTTPS REST API
Subscriber Queries
Auth Vector Generation
Location Updates

OmniH%S Backend API

Milenage/COMP128 Circuit & Packet
Auth Generator Session Tracker




Enabling HLR Mode

OmniSS7 can operate in different modes. To use it as an HLR, you need to
enable HLR mode in the configuration.

Switching to HLR Mode

OmniSS7's config/runtime.exs contains three pre-configured operational
modes. To enable HLR mode:

=

. Open config/runtime.exs

2. Find the three configuration sections (lines 53-174):
o Configuration 1: STP Mode (lines 53-85)

o Configuration 2: HLR Mode (lines 87-123)
o Configuration 3: SMSc Mode (lines 125-174)

. Comment out the currently active configuration (add # to each line)

3
4. Uncomment the HLR configuration (remove # from lines 87-123)
5. Customize the configuration parameters as needed

6

. Restart the application: iex -S mix

HLR Mode Configuration

The complete HLR configuration looks like this:



config :omniss7,
# Mode flags - Enable HLR features only
map _client enabled: true,
hlr mode enabled: true,
smsc_mode enabled: false,

# 0OmniHSS Backend API Configuration
hlr api base url: "https://10.180.2.140:8443",

# HLR Service Center GT Address for SMS operations
hlr service center gt address: "1234567890",

# MSISDN o IMSI Mapping Configuration

# See: MSISDN ~ IMSI Mapping section for details
hlr _imsi plmn prefix: "50557",

hlr msisdn country code: "61",

hlr msisdn nsn offset: 0,

hlr msisdn nsn length: 9,

# InsertSubscriberData Configuration

# Network Access Mode: :packetAndCircuit, :packetOnly, or
:circuitOnly

isd network access mode: :packetAndCircuit,

# Send ISD #2 (Supplementary Services data)
isd send ss data: true,

# Send ISD #3 (Call Barring data)
isd send call barring: true,

# CAMEL Configuration (for SendRoutingInfo responses)
# Service Key for CAMEL service initiation
camel service key: 11 110,

# CAMEL Trigger Detection Point
# Options: :termAttemptAuthorized, :tBusy, :tNoAnswer, :tAnswer
camel trigger detection point: :termAttemptAuthorized,

# Home VLR Prefixes

# List of VLR address prefixes that are considered "home"
network

# If subscriber's VLR starts with one of these prefixes, use
standard SRI response



# Otherwise, subscriber is roaming and we need to send PRN to
get MSRN

home vlr prefixes: ["123456"],

# M3UA Connection Configuration
# Connect as ASP for receiving MAP operations (UpdatelLocation,
SendAuthInfo, etc.)
map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, []},
process name: :hlr client asp,
# Local endpoint (HLR system)
local ip: {10, 179, 4, 11},
local port: 2905,
# Remote STP endpoint
remote ip: {10, 179, 4, 10},
remote port: 2905,
routing context: 1



Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the



Parameter

hlr api base url

hlr service center gt address

smsc service center gt address

hlr smsc alert gts

hlr alert location expiry seconds

hlr imsi plmn prefix

hlr msisdn country code

Type

String

String

String

List

Integer

String

String

Default

Required

Required

Required

[]

172800

"50557"

II61II



Parameter

hlr msisdn nsn offset

hlr msisdn nsn length

isd network access mode

isd send ss data

isd send call barring

camel service key

camel trigger detection point

home vlr prefixes

local ip

Type

Integer

Integer

Atom

Boolean

Boolean

Integer

Atom

List

Tuple

Default

:packetAndCircuit

true

true

11 110

:termAttemptAuthorized

["5551231"]

Required



Parameter

local port

remote ip

remote port

routing context

Type

Integer

Tuple

Integer

Integer

Default

2905

Required

2905

What Happens When HLR Mode is Enabled

When hlr _mode enabled: true, the web Ul will show:

e []SS7 Events - Event logging

[] M3UA - Connection status

[] SS7 Client - MAP operation testing

[J Resources - System monitoring

[ Configuration - Config viewer

[0 HLR Links - HLR API status + subscriber management « HLR-specific

The Routing, Routing Test, and SMSc Links tabs will be hidden.

Important Notes

* Required Configuration: The hlr service center gt address
parameter is mandatory. The application will fail to start if it is not

configured.

« OmniHSS Backend: The OmniHSS APl backend must be accessible at the

configured hlr api base url

e API Request Timeout: All OmniHSS API requests have a hardcoded 5-

second timeout

e MAP Request Timeout: All MAP requests (SRI, UpdateLocation,
SendAuthinfo, etc.) have a hardcoded 10-second timeout



e ISD Timeout: Each InsertSubscriberData (ISD) message in an
UpdatelLocation sequence has a hardcoded 10-second timeout

e M3UA connection to STP is required for receiving MAP operations

e After changing modes, you must restart the application for changes to take

effect
e Web Ul: See the for information on using the web interface
e API Access: See the for REST APl documentation and Swagger
Ul access

Subscriber Database

OmniHSS manages all subscriber data including identities, authentication
credentials, service profiles, and location information. OmniSS7 retrieves this
data via RESTful API calls.

OmniHSS Subscriber Model

OmniHSS stores comprehensive subscriber information:

e Multiple IMSIs per subscriber: Support for Multi-IMSI configurations
(eSIM, roaming profiles, network switching)

¢ Authentication credentials: Ki, OPc, and algorithm selection (Milenage
or COMP128)

e Service profiles: Subscriber category, allowed services, QoS parameters

e Location tracking: Current VLR/MSC (circuit session) and SGSN/GGSN
(packet session) independent tracking

e CAMEL subscription data: Service keys, trigger points, and gsmSCF
addresses

e Supplementary services: Call forwarding, barring, waiting, CLIP/CLIR
configurations

 Administrative state: Enabled/disabled, service restrictions, expiration
dates



Authentication Vectors

Generate Auth Vectors

OmniHSS generates authentication vectors using the Milenage or
COMP128 algorithms based on each subscriber's configured authentication
method. When OmniSS7 receives sendAuthenticationinfo MAP requests:

1. OmniSS7 extracts the IMSI from the MAP request

2. OmniSS7 calls the OmniHSS API to generate authentication vectors
3. OmniHSS retrieves the subscriber's Ki and OPc credentials
4.

OmniHSS generates the requested number of vectors (RAND, XRES, CK, IK,
AUTN)

5. OmniSS7 encodes the vectors into MAP format and returns them to the
requesting VLR/SGSN

OmniHSS API Integration

OmniSS7 communicates with OmniHSS via HTTPS REST API to retrieve
subscriber information, update location data, and generate authentication
vectors:

config :omniss7,
hlr api base url: "https://omnihss-server:8443"

When OmniSS7 receives MAP operations from the SS7 network, it queries
OmniHSS to:

* Retrieve subscriber data by IMSI or MSISDN
e Generate authentication vectors using stored Ki/OPc credentials

e Update circuit session location when subscribers perform
UpdatelLocation

¢ Check subscriber status and service entitlements



Location Updates

Update Location Processing

When receiving updateLocation MAP requests, OmniSS7 coordinates with
OmniHSS to register the subscriber at a new VLR:

1. Extract location info from UpdatelLocation request (IMSI, new VLR GT,
new MSC GT)

2. Query OmniHSS to verify subscriber exists and is enabled
3. Update circuit session in OmniHSS with new VLR/MSC location

4. Send InsertSubscriberData (ISD) messages to provision the subscriber
at the new VLR

5. Return UpdateLocation response to VLR (includes HLR GT from
hlr service center gt address)

6. Send alertServiceCenter to configured SMSc GTs (if hlr smsc alert gts
is populated)

Note: The hlr service center gt address configuration parameter specifies
the HLR's Global Title that is returned in UpdateLocation responses. This allows
the VLR/MSC to identify and route messages back to this HLR.

Alert Service Center Integration

After a successful UpdatelLocation, the HLR can automatically notify SMSc
systems that a subscriber is now reachable by sending alertServiceCenter
(MAP opcode 64) messages. For information on how the SMSc handles these
alerts, see

Configuration

Configure the list of SMSc Global Titles to notify:



config :omniss7,
# List of SMSc GTs to send alertServiceCenter after

UpdatelLocation
hlr smsc alert gts: [
"15559876543",
"15559876544"

1,

# Location expiry time when SMSc receives alertServiceCenter

(default:

48 hours)

hlr _alert location expiry seconds: 172800

Flow Diagram

Subscriber registers at new VLR ‘

UpdateLocation (IMSI, VLR GT, MSC GT)

Verify subscriber exists

Update VLR location in database

Send InsertSubscriberData (ISD) sequence

UpdateLocation Response (hir_service_center_gt_address)

InsertSubscriberData
ISD
InsertSubscriberData
ISD
InsertSubscriberData

ISD

SMSc

‘ Notify SMSc of subscriber reachability

-

alertServiceCenter (MSISDN)

alertServiceCenter ACK

[For each SMSc GT in hir_smsc_alert_gts]

Strip TON/NPI prefix from MSISDN

Calculate IMSI

200 OK

Track in SubscriberTracker (active)

SMSc

POST /api/location (user_agent=HLR GT)

SMSc API

SMSc API



Behavior

When a subscriber performs UpdatelLocation:

1. HLR sends alertServiceCenter to each SMSc GT in the hlr smsc alert gts
list

2. Message includes the subscriber's MSISDN

3. HLR uses hlr _service center gt address as the calling party GT

4. SCCP addressing: calling SSN=6 (HLR), called SSN=8 (SMSc)

The SMSc receives the alert and:

e Strips TON/NPI prefix from MSISDN (e.g., "19123123213" -
"123123213")

e Marks the subscriber as reachable in its location database (via POST to
/api/location)

e Sets user_agent field to the HLR GT when calling the API (for tracking
which HLR sent the alert)

* Sets location expiry time based on hlr alert location expiry seconds

e Tracks the subscriber in the SMSc Subscriber Tracker for monitoring

Testing

Use the Active Subscribers page in the Web Ul to manually send
alertServiceCenter messages for testing:

1. Navigate to the "Active Subscribers" tab
2. Find the "Test Alert Service Center" section

3. Enter MSISDN, SMSc GT, and HLR GT (defaults are pre-populated from
config)
o SMSc GT defaults to first entry in hlr smsc alert gts
o HLR GT defaults to hlr _service center gt address

4. Click "Send alertServiceCenter"

This is useful for testing SMSc alert handling without requiring a full
UpdatelLocation flow. The form uses phx-blur validation to avoid showing
errors while typing.



InsertSubscriberData (ISD) Configuration

After a successful UpdatelLocation, the HLR sends subscriber provisioning data
to the VLR using InsertSubscriberData (ISD) messages. The ISD
configuration allows you to customize what data is sent and how.

For configuration parameter reference, see

ISD Sequence

The HLR can send up to 3 sequential ISD messages:
1. ISD #1 (Always sent) - Basic subscriber data:

o |MSI

o MSISDN

o Subscriber category

o Subscriber status (serviceGranted)
o Bearer service list

o Teleservice list

o Network access mode

2. I1SD #2 (Optional) - Supplementary Services (SS) data:

o Call forwarding settings (unconditional, busy, no reply, not reachable)
o Call waiting

o Call hold

o Multi-party service

o Supplementary service status and features

3. ISD #3 (Optional) - Call Barring data:

o Barring of all outgoing calls (BAOC)
o Barring of outgoing international calls (BOIC)

o Access restriction data

Configuration Options



# InsertSubscriberData Configuration

# Network Access Mode: :packetAndCircuit, :packetOnly, or
:circuitOnly

isd network access mode: :packetAndCircuit,

# Send ISD #2 (Supplementary Services data)
isd send ss data: true,

# Send ISD #3 (Call Barring data)
isd send call barring: true,
Network Access Mode

The isd network access mode parameter controls what type of network
access the subscriber is allowed:

Value Description Use Case

Both packet-switched
:packetAndCircuit  (GPRS/LTE) and circuit-
switched (voice)

Default - Full
service subscribers

Packet-switched only Data-only SIM
:packetOnly .
(data/LTE) cards, loT devices
. _ Circuit-switched only Legacy devices,
:circuitOnly , .
(voice/SMS) voice-only plans

Controlling ISD Messages

You can control which ISD messages are sent based on your network
requirements:

Send all ISDs (Default - Full feature set):

isd send ss data: true,
isd send call barring: true,



Send only basic subscriber data (Minimal provisioning):

isd send ss data: false,
isd send call barring: false,

Send basic + supplementary services (No call barring):

isd send ss data: true,
isd send call barring: false,

ISD Flow Example

When UpdatelLocation is received:

VLR - HLR:
HLR - VLR:
VLR - HLR:
HLR - VLR:

enabled]

VLR - HLR:
HLR - VLR:

enabled]

VLR - HLR:
HLR - VLR:

UpdateLocation (BEGIN)

InsertSubscriberData #1 (CONTINUE) - Basic data
ISD #1 ACK (CONTINUE)

InsertSubscriberData #2 (CONTINUE) - SS data [if

ISD #2 ACK (CONTINUE)
InsertSubscriberData #3 (CONTINUE) - Call barring [if

ISD #3 ACK (CONTINUE)
UpdatelLocation Response (END)

If isd send ss data or isd send call barring are set to false, those ISD

messages are skipped, and the UpdatelLocation END is sent sooner.

Best Practices

» Default Configuration: Use :packetAndCircuit and enable all ISDs for
maximum compatibility

* loT/M2M: Use :packetOnly and disable SS data/call barring for data-only

devices

e Interoperability: Some older VLRs may not support all supplementary

services - disable isd send ss data if encountering issues



e Performance: Disabling unused ISDs reduces message overhead and
speeds up location updates

CAMEL Integration

CAMEL Configuration for SendRoutinginfo

When responding to SendRoutinglinfo (SRI) requests from a GMSC (Gateway
MSC), the HLR can instruct the GMSC to invoke CAMEL services for intelligent
call routing and service control.

For configuration parameter reference, see

What is CAMEL?

CAMEL (Customized Applications for Mobile network Enhanced Logic) is a
protocol that enables intelligent network services in GSM/UMTS networks. It
allows network operators to implement value-added services like:

e Prepaid billing

e Call screening and barring

¢ Virtual Private Networks (VPN)

* Premium rate services

e Call forwarding with custom logic

e Location-based services

Configuration Options

# CAMEL Configuration (for SendRoutingInfo responses)
# Service Key for CAMEL service initiation
camel service key: 11 110,

# CAMEL Trigger Detection Point
# Options: :termAttemptAuthorized, :tBusy, :tNoAnswer, :tAnswer
camel trigger detection point: :termAttemptAuthorized,



Service Key

The camel service key identifies which CAMEL service should be invoked at
the gsmSCF (Service Control Function). This is a numeric identifier configured in
your network:

Service Key Typical Use Case

11 110 Prepaid terminating call control (default)
100 Originating prepaid service

200 Call forwarding with custom logic

300 Virtual Private Network (VPN)

Custom Operator-specific services

Configuration Example:

# For prepaid terminating call control
camel service key: 11 110,

# For VPN service
camel service key: 300,
Trigger Detection Point

The camel trigger detection point specifies when the CAMEL service should
be triggered during call setup:



Detection Point

:termAttemptAuthorized

: tBusy

:tNoAnswer

:tAnswer

Configuration Examples:

Description

Call attempt
authorized (default)

Terminating busy

Terminating no answer

Terminating answer

Standard prepaid control (trigger before routing):

camel trigger detection point:

Custom busy handling (trigger when busy):

camel trigger detection point: :tBusy,

Answer-based billing (trigger on answer):

camel trigger detection point: :tAnswer,

SRI Response with CAMEL

When Triggered

Before call is routed
to subscriber

When subscriber is
busy

When subscriber
doesn't answer

When subscriber
answers the call

:termAttemptAuthorized,

When configured, SendRoutinginfo responses include CAMEL subscription

information:



GMSC - HLR: SendRoutingInfo (BEGIN)
HLR - GMSC: SRI Response (END) with:
- IMSI
- VLR number
- Subscriber state
- CAMEL routing info:
* Service Key: 11 110
* gsmSCF Address: <configured address>
* Trigger Detection Point: termAttemptAuthorized
* Default Call Handling: continueCall

GMSC contacts gsmSCF at trigger point to execute CAMEL service

Best Practices

* Production Networks: Use standardized service keys agreed upon with
your gsmSCF provider

e Testing: Use :termAttemptAuthorized for most comprehensive testing

* Prepaid Services: Service key 11 110 is a common industry standard for
prepaid terminating calls

e Fallback Handling: defaultCallHandling: :continueCall ensures calls
proceed if gsmSCF is unreachable

Roaming Subscriber Handling

Home VLR vs Roaming VLR Detection

When the HLR receives a SendRoutinglinfo (SRI) request, it needs to
determine whether the subscriber is on a "home" VLR (within your network) or
on a roaming VLR (visiting another network). The behavior differs based on this

determination:

For configuration parameter reference, see

e Home VLR: Return standard SRI response with CAMEL routing information



e Roaming VLR: Send a Provide Roaming Number (PRN) request to obtain
an MSRN, then return it in the SRI response

Configuration

# Home VLR Prefixes

# List of VLR address prefixes that are considered "home" network
# If subscriber's VLR address starts with one of these prefixes,
use standard SRI response

# Otherwise, subscriber is roaming and we need to send PRN to get
MSRN

home vlr prefixes: ["555123"],

Configuration Example:

# Single home network
home vlr prefixes: ["555123"],

# Multiple home networks (e.g., different regions or subsidiaries)
home vlr prefixes: ["555123", "555124", "555125"],

How It Works

1. Home Subscriber Flow (Standard)

When the subscriber's VLR address starts with a configured home prefix:

GMSC - HLR: SendRoutingInfo (MSISDN: "1234567890")
HLR queries backend API for subscriber data
HLR checks VLR address: "5551234567"
HLR determines: VLR starts with "555123" - Home network
HLR - GMSC: SRI Response with CAMEL routing info:
- IMSI
- VLR number: "5551234567"
- gsmSCF address (MSC): "5551234501"
- CAMEL service key: 11 110
- Trigger detection point: termAttemptAuthorized



2. Roaming Subscriber Flow (PRN Required)

When the subscriber's VLR address does NOT match any home prefix:

GMSC - HLR: SendRoutingInfo (MSISDN: "1234567890")

HLR
HLR
HLR
HLR

queries backend API for subscriber data

checks VLR address: "49170123456"

determines: VLR doesn't start with "555123" - Roaming
- MSC: ProvideRoamingNumber (PRN):

MSISDN: "1234567890"

IMSI: "999999876543210"

MSC number: "49170123456"

GMSC address: "5551234501"

- HLR: PRN Response with MSRN: "49170999888777"
- GMSC: SRI Response with routing info:

IMSI

VLR number: "49170123456"

Roaming Number (MSRN): "49170999888777"

Response Structure Differences

Home Subscriber SRI Response



%{
imsi: "999999876543210",
extendedRoutingInfo: {
:camelRoutingInfo, %{
gmscCamelSubscriptionInfo: %{
"t-CSI": %{
serviceKey: 11 110,
"gsmSCF-Address": "5551234501",
defaultCallHandling: :continueCall,
"t-BcsmTriggerDetectionPoint": :termAttemptAuthorized
}
}
}
¥,

subscriberInfo: %{
locationInformation: %{"vlr-number": "5551234567"},
subscriberState: {:notProvidedFromVLR, :NULL}

Roaming Subscriber SRI Response

o°
-~

imsi: "999999876543210",
extendedRoutingInfo: {
:routingInfo, %{
roamingNumber: "49170999888777" # MSRN from PRN
}
¥,

subscriberInfo: %{
locationInformation: %{"vlr-number": "49170123456"},
subscriberState: {:notProvidedFromVLR, :NULL}

Provide Roaming Number (PRN) Operation

PRN Request Structure

The PRN request sent to the MSC/VLR contains:



Field

MSISDN

IMSI

MSC Number

GMSC Address

Call Reference
Number

Supported CAMEL
Phases

PRN Response Handling

Source

SRI
request

HLR API

HLR API

SRI
request

Static

Static

Description

Subscriber's phone number

Subscriber's IMSI

MSC serving the roaming subscriber
(serving msc)

GMSC making the original SRI request

Call reference identifier

CAMEL phases supported by GMSC

The HLR expects a PRN response containing:

¢ MSRN (Mobile Station Roaming Number): A temporary number allocated
by the visited network for routing the call

Error Handling:

e If PRN times out — Returns error 27 (Absent Subscriber) in SRI response

e If PRN fails = Returns error 27 (Absent Subscriber) in SRI response

¢ If MSRN cannot be extracted — Returns error 27 (Absent Subscriber) in SRI

response

Configuration Examples

Single Home Network Operator



# ALl VLR addresses starting with "555123" are considered home
home vlr prefixes: ["555123"],

e VLR 5551234567 - Home (CAMEL response)
e VLR 5551235001 - Home (CAMEL response)
e VLR 49170123456 — Roaming (PRN + MSRN response)

Multi-Region Operator

# Multiple home networks across different regions
home vlr prefixes: ["555123", "555124", "555125"],

VLR 5551234567 - Home (region 1)

VLR 5552341234 - Home (region 2)

VLR 5553411111 - Home (region 3)

VLR 44201234567 = Roaming (international)

Testing Configuration

For testing PRN functionality, set an empty list to treat all VLRs as roaming:

# ALl VLRs are treated as roaming (for testing PRN flow)
home vlr prefixes: [],

Best Practices

e Prefix Selection: Use the shortest unique prefix that identifies your
network's VLRs (e.g., country code + network code)

e Multiple Prefixes: Include all VLR prefixes in your network, including
different regions and subsidiaries

e Roaming Agreements: Ensure PRN is properly supported by roaming
partner networks

e Testing: Test both home and roaming scenarios thoroughly before
production deployment



e Monitoring: Monitor PRN timeout rates to identify connectivity issues with
roaming partners

Troubleshooting
Symptom: All subscribers treated as roaming

* Cause: home vlr prefixes not configured or prefixes don't match VLR
addresses

¢ Solution: Check VLR addresses in your database and update prefixes
accordingly

Symptom: PRN requests timing out

e Cause: Network connectivity issues to roaming partner MSC/VLR
¢ Solution: Verify M3UA/SCCP routing to remote MSC addresses

Symptom: Invalid MSRN in SRI response

e Cause: PRN response format from roaming partner doesn't match expected
structure

* Solution: Review PRN response logs and adjust extract msrn from prn/1
if needed

HLR Operations

Supported MAP Operations

e updateLocation (Opcode 2) - Register VLR location

e sendAuthenticationInfo (Opcode 56) - Generate auth vectors

e sendRoutingInfo (Opcode 22) - Provide MSRN for calls with CAMEL support
e sendRoutingInfoForSM (Opcode 45) - Provide MSC GT for SMS

e cancellLocation (Opcode 3) - Deregister from old VLR

e insertSubscriberData (Opcode 7) - Push subscriber profile



Response Field Mapping

This section details where each field in HLR responses comes from.
SendRoutinginfo (SRI) Response

Purpose: Provides routing information for incoming calls to a subscriber.

The HLR provides two different response types based on whether the
subscriber is on a home VLR or roaming:

Home Subscriber Response (CAMEL Routing)

Used when the subscriber's VLR address starts with a configured
home vlr prefixes value.

Response Structure:



Field

IMSI

VLR Number

Subscriber State

extendedRoutinginfo

gsmSCF Address

Service Key

Trigger Detection
Point

CAMEL Capability
Handling

Default Call
Handling

Source

OmniHSS
API

OmniHSS
API

Static

OmniHSS
API

runtime.exs

runtime.exs

Static

Static

Description

Subscriber's IMSI from OmniHSS
database

Current VLR serving the subscriber
(circuit session.assigned vlr)

Always notProvidedFromVLR

Type: camelRoutingInfo

MSC serving the subscriber
(circuit session.assigned msc)

CAMEL service identifier
(camel service key)

When to trigger CAMEL
(camel trigger detection point)

CAMEL phase support level

Fallback if gsmSCF unreachable

Roaming Subscriber Response (MSRN Routing)

Used when the subscriber's VLR address does NOT match any configured

home vlr prefixes value.

Response Structure:



Field

IMSI

VLR Number

Subscriber State

extendedRoutinginfo

Roaming Number
(MSRN)

Routing Decision Logic:

Source

OmniHSS
API

OmniHSS
API

Static

PRN
Response

Description

Subscriber's IMSI from OmniHSS
database

Current VLR serving the
subscriber

(circuit session.assigned vlr)

Always notProvidedFromVLR

Type: routingInfo

MSRN obtained from
ProvideRoamingNumber request

1. OmniSS7 receives SendRoutingInfo request
2. OmniSS7 queries subscriber data from OmniHSS API
3. 0mniSS7 checks VLR address against home vlr prefixes:

If VLR starts with home prefix:

- Return CAMEL routing info (home subscriber flow)

If VLR does NOT match any home prefix:
- Send ProvideRoamingNumber (PRN) to MSC
- Extract MSRN from PRN response
- Return routing info with MSRN (roaming subscriber flow)

Data Flow:

e OmniSS7 queries OmniHSS for subscriber information

¢ OmniHSS returns IMSI, current VLR/MSC location, and subscriber state

e OmniSS7 uses this data to construct the MAP response

Configuration Requirements:



# In runtime.exs
home vlr prefixes: ["555123"], # List of home VLR prefixes

Error Responses:

e If serving vlr and serving msc are null: Returns error 27 (Absent
Subscriber)

e If subscriber not found: Returns error 1 (Unknown Subscriber)

e If PRN request times out (roaming case): Returns error 27 (Absent
Subscriber)

e If PRN response invalid (roaming case): Returns error 27 (Absent
Subscriber)

UpdatelLocation Response with InsertSubscriberData

Purpose: Registers subscriber at new VLR and provisions subscriber data.

UpdateLocation END Response

Field Source Description Example
HLR _ This HLR's Global Title
runtime.exs _ "555123456¢
Number (hlr _service center gt address)
TCAP
Message Static Final response after all ISDs END
Type

InsertSubscriberData #1 (Basic Subscriber Data)



Field Source Description Example

From UpdatelLocation

IMSI Request 9999998765432
request
MSISDN OmniHSS Subscriber's phone number ERE SRR
API from OmniHSS
Category Static Subscriber category "\n" (Ox0A)
Subscriber _ . :
Static Service status :serviceGrante
Status
Bearer
Service Static Supported bearer services [<&lt;31>>]
List
Teleservice , _ [<&1t;17>>, "!
. Static Supported teleservices
LISt ||\|| n ]
Network

, Packet/circuit access :
Access runtime.exs , :packetAndCirc
Mode (isd network access mode)

InsertSubscriberData #2 (Supplementary Services) - Optional



Field Source

Provisioned
SS

Static

Call
Forwarding

Static

Call Waiting Static

Multi-party
Service

Static

ISD #2 includes:

Description

Supplementary services
data

Forwarding
configurations
(unconditional, busy, no
reply, not reachable)

Call waiting service
status

Conference call support

e Call forwarding unconditional (SS code 21)

e Call forwarding on busy (SS code 41)

e Call forwarding on no reply (SS code 42)

e Call forwarding on not reachable (SS code 62)

e Call waiting (SS code 43)

e Multi-party service (SS code 51)

e CLIP/CLIR services

InsertSubscriberData #3 (Call Barring) - Optional

Controlled By

isd send ss data:
true

Config enabled

Config enabled

Config enabled



Field

Call Barring
Info

BAOC

BOIC

Access
Restriction
Data

Source

Static

Static

Static

Static

ISD Sequence Control:

Description

Call barring
configurations

Barring of All
Outgoing Calls (SS
code 146)

Barring of
Outgoing
International Calls
(SS code 147)

Network access
restrictions

Controlled By

isd send call barring:
true

Config enabled

Config enabled

Config enabled

* ISD #1: Always sent - Contains essential subscriber data

* ISD #2: Sentonly if isd send ss data: true in runtime.exs

e ISD #3: Sentonly if isd send call barring: true in runtime.exs

SendRoutinginfoForSM (SRI-for-SM) Response

Purpose: Provides MSC/SMSC routing information for SMS delivery. When an
SMSc needs to deliver an SMS to a subscriber, it sends a SRI-for-SM request to

the HLR to determine where to route the message.

Response Structure:



Field Source Description How Generated

Synthetic
IMSI derived PLMN PREFIX +
IMSI Calculated -
from zero padded MSISDN
MSISDN
Network SMSC GT
Node runtime.exs  address for smsc_service center gt address
Number SMS routing

Configuration Parameters (from runtime.exs):

# Service Center GT Address (returned in SRI-for-SM responses)
# This tells the requesting SMSc where to send MT-ForwardSM
messages

smsc_service center gt address: "5551234567", # Required

# MSISDN < IMSI Mapping Configuration

# PLMN prefix: MCC (001 = Test Network) + MNC (01 = Test Operator)
hlr imsi plmn prefix: "001001", # Only config
parameter needed!

MSISDN « IMSI Mapping

Configuration Parameters:

These parameters control how OmniSS7 generates synthetic IMSIs from
MSISDNs for SRI-for-SM responses:

* hlr_imsi plmn_prefix: The MCC+MNC prefix to use when constructing
synthetic IMSIs (e.g., "50557" for MCC=505, MNC=57)

e hlr_msisdn_country_code: Country code to prepend when doing reverse
IMSI-MSISDN mapping (e.g., "61" for Australia, "1" for USA/Canada)

* hlr_msisdn_nsn_offset: Character position where the National Subscriber
Number (NSN) starts within the MSISDN (typically O if MSISDN doesn't



include country code, or length of country code if it does)

* hlr_msisdn_nsn_length: Number of digits to extract from the MSISDN as
the NSN

For additional configuration details, see

Why is MSISDN to IMSI Mapping Needed?

The MAP protocol for SendRoutinginfoForSM (SRI-for-SM) requires the HLR to
return an IMSI (International Mobile Subscriber Identity) in its response.
However, the requesting SMSc only knows the subscriber's MSISDN (phone
number).

In a traditional network:

e The SMSc sends SRI-for-SM with the destination MSISDN (e.qg.,
"5551234567")

e The HLR must look up the subscriber in its database to find their IMSI
e The HLR returns the IMSI in the SRI-for-SM response
e The SMSc then uses this IMSI when sending MT-ForwardSM to the MSC/VLR

OmniSS7's Approach - Synthetic IMSIs:

Instead of maintaining a full subscriber database with MSISDN-to-IMSI
mappings, OmniSS7 uses a simple encoding scheme to calculate synthetic
IMSiIs directly from the MSISDN. This approach provides two key benefits:

1. Privacy: Real subscriber IMSIs stored in the HLR database are never
exposed in SRI-for-SM responses sent over the SS7 network

2. Simplicity: No need to query the HLR database for IMSI lookups during
SRI-for-SM operations - the IMSI is calculated on-the-fly from the MSISDN

How It Works:

MSISDNs are encoded directly into the subscriber portion of the IMSI (the digits
after MCC+MNC):



IMSI = PLMN PREFIX + zero padded MSISDN

Where:

e PLMN_PREFIX: MCC + MNC (e.g., "001001" for Test Network)
e MSISDN: All numeric digits from the phone number
e Zero Padding: Left-padded with zeros to fill IMSI to exactly 15 digits

Step-by-Step Example:

# Configuration
plmn prefix = "001001" # MCC 001 + MNC 01

# Input: MSISDN from SRI-for-SM request (TBCD decoded)
msisdn = "555123456" # 9 digits

# Step 1: Calculate available space for subscriber number
subscriber digits = 15 - String.length("001001") # = 9 digits

# Step 2: Left-pad MSISDN with zeros to fill subscriber portion
padded msisdn = String.pad leading("555123456", 9, "0") # =
"555123456" (no padding needed)

# Step 3: Concatenate PLMN prefix + padded MSISDN

imsi = "001001" <> "555123456" # = "001001555123456" (exactly 15
digits)

Complete Examples:



Input
MSISDN

"555123456"

n 99 n

*999999999"

"91123456789"

PLMN
Prefix

"001001"
(6)

"001001"
(6)

"001001"
(6)

"001001"
(6)

Edge Case Handling:

Subscriber
Digits
Available

Padded
MSISDN

*555123456"

"000000099"

Hieefeizfeieieiziert

*555123456"

Final IMSI

"001001555123:

"001001000000(

"001001999999¢

"001001555123:

e Short MSISDNs: Left-padded with zeros (e.g., "99" — "000000099")

« Long MSISDNs: Rightmost digits are kept, leftmost digits are truncated
(e.g., "91123456789" — "555123456" )

e IMSI Length: Always exactly 15 digits

Reverse Mapping (IMSI - MSISDN):

The SMSc can reverse this mapping to convert IMSIs back to MSISDNs:



# Input: IMSI from SRI-for-SM response
imsi = "001001555123456"

# Step 1: Strip PLMN prefix
plmn prefix = "001001"
subscriber portion = String.slice(imsi, 6, 9) # = "555123456"

# Step 2: Remove leading zeros to get actual MSISDN

msisdn = String.replace leading(subscriber portion, "0@", "") # =
"555123456"

Reverse Mapping Examples:

. Remove )
: £ IMSI PLMN Subscriber Leadi Final
npu eadin
P Prefix Portion 9 MSISDI
Zeros
"001001555123456" "001001" "555123456" "555123456" "5551234!
"001001000000099" "001001" "000000O99" "99" "go"
"001001999999999" "001001" "999999999" "999999999" 9999999¢

Properties of This Mapping:

MSISDN Input Handling:

0 Privacy-Preserving: Real IMSIs never exposed

[l Deterministic: Same MSISDN always produces same IMSI
[] Reversible: Can convert back from IMSI to MSISDN

[0 Minimal Configuration: Only requires hlr imsi plmn prefix

[0 No Database Lookup: Fast calculation, no API calls needed

[J Always 15 Digits: IMSI is always exactly 15 digits

When the HLR receives a SRI-for-SM request, the MSISDN undergoes TBCD

decoding:



1. TBCD Decode: Convert binary TBCD to string (may include TON/NPI prefix
like "91")
2. Extract Digits: Keep only numeric digits, strip any non-digit characters

3. Normalize: If longer than available space, take rightmost digits; if shorter,
left-pad with zeros

4. Encode: Concatenate PLMN prefix + normalized MSISDN

Security Considerations:

The synthetic IMSIs returned in SRI-for-SM responses are purely for routing
purposes. They are NOT the real IMSIs stored in the HLR subscriber database.
This provides an additional layer of privacy protection, as real subscriber IMSIs
are only exposed when absolutely necessary (e.g., during UpdatelLocation or
SendAuthenticationInfo operations that require real authentication vectors).

Response Flow:

1. SMSc - HLR: SRI-for-SM Request
- MSISDN (TBCD): "91123456789" (includes TON/NPI)

2. HLR Processing:
- TBCD decode: "91123456789"
- Extract digits: "91123456789" (11 digits)
- Fit to 9 digits: "555123456" (rightmost 9)
- Add PLMN: "001001" + "555123456" = "001001555123456"
- Get SMSC GT from config: "5551234567"

3. HLR - SMSc: SRI-for-SM Response
- IMSI: "001001555123456" (synthetic, always 15 digits)
- Network Node Number: "5551234567" (where to send MT-
ForwardSM)

4, SMSc sends MT-ForwardSM to "5551234567" with IMSI
"001001555123456"

Configuration:

The following parameters are used in runtime.exs:



# PLMN prefix: MCC (001 = Test Network) + MNC (01 = Test Operator)
hlr imsi plmn prefix: "001001",

# NSN Extraction (if MSISDNs include country code)

hlr msisdn country code: "1", # Used for reverse mapping
(IMSI-MSISDN)

hlr msisdn nsn offset: 1, # Skip 1-digit country code
hlr msisdn nsn length: 10 # Extract 10-digit NSN

NSN Extraction Configuration:

If your MSISDNSs include the country code (e.g., "68988000088" instead of just
"88000088" ), you must configure NSN extraction:

* hlr_msisdn_nsn_offset: Position where NSN starts (typically the length of
your country code)

* hlr_msisdn_nsn_length: Number of digits in the NSN

Examples:

Countr MSISDN |

Example y nsn_offset nsn_length
Code Example - - Ext

1-digit :

‘o "95551234567" 1 10 "555:
CC
2-digit

"99" "99412345678" 2 9 "412:
CC
3-digit
ce "999" "99988000088" 3 8 " 880!

How It Works:

1. MSISDN - IMSI: Extract NSN from MSISDN, pad with leading zeros,
concatenate with PLMN prefix



MSISDN: "99988000088"

NSN: String.slice("99988000088", 3, 8) = "88000088"
Padded NSN: "088000088" (9 digits)

IMSI: "547050" + "088000088" = "547050088000088"

2. IMSI -» MSISDN: Strip PLMN prefix, remove leading zeros, prepend country
code

IMSI: "547050088000088"

Subscriber portion: "088000088"

Remove zeros: "88000088"

MSISDN: "+999" + "88000088" = "+99988000088"

APl Requirements: None - SRI-for-
SM uses calculated values and



config only. No backend API calls
are required.

Field Source Summary

Source
Type

OmniHSS

API

runtime.exs

Static

Request

Calculated

Description

Dynamic data
from OmniHSS
subscriber
database

OmniSS7
configuration
parameters

Hardcoded
values in
response
generator

Fields extracted
from incoming
MAP request

Derived values
using logic

Examples

IMSI, MSISDN, serving VLR/MSC from
circuit_session

smsc_service center gt address,
camel service key,
isd network access mode

Subscriber status, bearer services, SS
codes

IMSI from UpdatelLocation, MSISDN from
SRI

Synthetic IMSI in SRI-for-SM
(hir_imsi_prefix + NSN)

Configuration Dependencies

Required in runtime.exs:

* hlr service center gt address - Used in UpdatelLocation responses



* smsc service center gt address - Used in SRI-for-SM responses (where
MT-ForwardSM should be routed)

Optional in runtime.exs (with defaults):

e camel service key - Default: 11 110

e camel trigger detection point - Default: :termAttemptAuthorized

e isd network access mode - Default: :packetAndCircuit

e isd send ss data - Default: true

e isd send call barring - Default: true

e hlr imsi plmn prefix - Default: "001001" (PLMN prefix for MSISDN«|MSI
mapping)

Required from OmniHSS:
OmniHSS must provide REST API endpoints for:

e Subscriber lookup by IMSI and MSISDN
e Circuit session location updates (VLR/MSC assignment)
e Authentication vector generation

e Subscriber status and service profile queries

Related Documentation

OmniSS7 Documentation:

OmniHSS Documentation: For subscriber management, provisioning,
authentication configuration, and administrative operations, refer to the
OmniHSS product documentation. OmniHSS contains all the subscriber



database logic, authentication algorithms, service provisioning rules, and Multi-
IMSI management capabilities.

OmniSS7 by Omnitouch Network Services



MAP Client
Configuration Guide

This guide provides detailed configuration for using OmniSS7 as a MAP Client
to send MAP protocol requests to network elements.

Table of Contents

o LA W N+



What is MAP Client Mode?

MAP Client Mode allows OmniSS7 to connect as an Application Server
Process (ASP) to an M3UA peer (STP or SGP) and send/receive MAP (Mobile
Application Part) messages for services like:

e HLR Queries: SRI (Send Routing Info), SRI-for-SM, Authentication Info
e Location Updates: Update Location, Cancel Location

e Subscriber Management: Provide Roaming Number (PRN), Insert
Subscriber Data

Network Architecture

_— Core Network Elements
557 Network )

OmnisST (MAP Client) L HLRmSS

REST API »  MAP Client Engine = M3UVAASP & - M3UASCTR _

= MSCWVLR

Enabling MAP Client Mode

Edit config/runtime.exs and configure MAP client settings. For complete
configuration reference, see



Basic Configuration

config :omniss7,
# Enable MAP Client mode
map_client enabled: true,

# M3UA Connection for MAP Client (connects as ASP to remote
STP/SGP)

map_client m3ua: %{

mode: "ASP", # M3UA mode: "ASP" (client)
or "SGP" (server)

callback: {MapClient, :handle payload, []}, # Callback for
incoming messages

process name: :map client asp, # Registered process name
local ip: {10, 0, 0, 100}, # Local IP address

local port: 2905, # Local SCTP port

remote ip: {10, 0, 0, 1}, # Remote STP/SGP IP

remote port: 2905, # Remote STP/SGP port
routing context: 1 # M3UA routing context



Production Configuration Example

config :omniss7,
# Enable MAP Client for production
map _client enabled: true,

# Production M3UA connection
map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :map client asp,
local ip: {10, 0, 0, 100},
local port: 2905,
remote ip: {10, 0, 0, 1}, # Production STP IP
remote port: 2905,
routing context: 1

}
config :control panel,
web: %{
listen ip: "0.0.0.0",
port: 443,

hostname: "ss7-gateway.example.com",
enable tls: true,

tls cert: "/etc/ssl/certs/gateway.crt",
tls key: "/etc/ssl/private/gateway.key"



Available MAP Operations

1. Send Routing Info for SM (SRI-for-SM)

Queries the HLR to determine the serving MSC for SMS delivery. For detailed
information on how the HLR processes SRI-for-SM requests, see



API Endpoint: POST /api/sri-for-sm

Request:

"msisdn": "447712345678",
"serviceCenter": "447999123456"

Response:

"result": {
"imsi": "234509876543210",
"locationInfoWithLMSI": {
"networkNode-Number": "447999555111"

cURL Example:

curl -X POST http://localhost/api/sri-for-sm \
-H "Content-Type: application/json" \
-d '{
"msisdn": "447712345678",
"serviceCenter": "447999123456"

} 1

2. Send Routing Info (SRI)

Queries the HLR for voice call routing information.
API Endpoint: POST /api/sri

Request:



"msisdn": "447712345678",
“gmsc": "447999123456"

}

Response:

"result": {
"imsi": "234509876543210",
"extendedRoutingInfo": {
"routingInfo": {
“roamingNumber": "447999555222"
}
}
}
}

3. Provide Roaming Number (PRN)
Requests a temporary roaming number (MSRN) from the serving MSC.
APl Endpoint: POST /api/prn

Request:

"msisdn": "447712345678",
“gmsc": "447999123456",
"msc_number": "447999555111",
"imsi": "234509876543210"



4. Send Authentication Info

Requests authentication vectors from the HLR for subscriber authentication.
APl Endpoint: POST /api/send-auth-info

Request:

"imsi": "234509876543210",
"vectors": 5

}
Response:
{
"result": {
"authenticationSetList": [
{
“rand": "0123456789ABCDEF0123456789ABCDEF",
"xres": "ABCDEF0123456789",
"ck": "0123456789ABCDEF0123456789ABCDEF",
"ik": "FEDCBA9876543210FEDCBA9876543210",
"autn": "0123456789ABCDEF0123456789ABCDEF"
}
]
}
}

5. Update Location

Registers a subscriber's current location with the HLR. For detailed information
on UpdateLocation processing and InsertSubscriberData sequences, see

API Endpoint: POST /api/updateLocation

Request:



"234509876543210",
*447999555111"

MAP Operations Summary

sendAuthenticationInfo
Opcode: 56

sendRoutingInfo
Opcode: 22




Sending Requests via API

Using Swagger Ul

The Swagger Ul provides an interactive interface for sending SS7 requests.

Access Swagger Ul:

1. Navigate to http://your-server/swagger
2. Browse the available APl endpoints

3. Click on any endpoint to expand its details

Sending a Request:

1. Click on the endpoint you want to use (e.g., /api/sri-for-sm)
2. Click the "Try it out" button

3. Fill in the required parameters in the request body

4. Click "Execute"

5. View the response below

APl Response Codes

e 200 - Success, result returned in response body
e 400 - Bad Request, invalid parameters

* 504 - Gateway Timeout, no response from SS7 network within 10 seconds

MAP Client Metrics

Available Metrics

Request Metrics:

* map requests total - Total number of MAP requests sent



o Labels: operation (values: sri, sri for sm, prn,
authentication info, etc.)

* map request errors total - Total number of MAP request errors

o Labels: operation

e map request duration milliseconds - Histogram of MAP request
durations

o Labels: operation

e map_pending requests - Current number of pending MAP requests (gauge)

Example Prometheus Queries

# Total SRI-for-SM requests in the last hour
increase(map requests total{operation="sri for sm"}[1h])

# Average response time for SRI requests
rate(map request duration milliseconds sum{operation="sri"}[5m]) /

rate(map request duration milliseconds count{operation="sri"}[5m])

# Error rate for all MAP operations
sum(rate(map request errors total[5m])) by (operation)

# Current pending requests
map_pending requests

Troubleshooting MAP Client

Issue: Requests Timeout
Symptoms:

e API returns 504 Gateway Timeout

* No response from HLR/MSC



Checks:

1. Verify M3UA connection is ACTIVE:

# In IEx console
:sys.get state(:map client asp)

2. Check network connectivity to STP
3. Verify routing context and SCCP addressing

4. Check logs for SCCP errors

Issue: SCCP Errors
Symptoms:

e API returns SCCP error responses

e Logs show "SCCP unitdata service" messages

Common SCCP Error Codes:

e No Translation: Global Title not found in STP routing table
e Subsystem Failure: Destination subsystem (HLR SSN 6) is unavailable

* Network Failure: Network congestion or failure
Solutions:

e Contact STP administrator to verify routing configuration
» Verify destination Global Title is reachable

e Check if destination subsystem is operational

Related Documentation



. - Web Ul, API, Monitoring

. - Routing configuration
. - SMS delivery
. - Protocol specifications

OmniSS7 by Omnitouch Network Services



SMS Center (SMSc)
Configuration Guide

This guide provides detailed configuration for using OmniSS7 as an SMS
Center (SMSc) frontend with OmniMessage as the backend message store
and delivery platform.

OmniMessage Integration

OmniSS7 SMSc mode functions as an SS7 signaling frontend that
interfaces with OmniMessage, a carrier-grade SMS platform. This architecture
separates concerns:

e OmniSS7 (SMSc Frontend): Handles all SS7/MAP protocol signaling, SCCP
routing, and network communication

e OmniMessage (SMS Backend): Manages message storage, queuing,
retry logic, delivery tracking, and routing decisions

Why OmniMessage?

OmniMessage provides carrier-grade SMS messaging capabilities with features
including:

e Message Queue Management: Persistent storage with configurable retry
logic and priority queuing

e Delivery Tracking: Real-time delivery status, delivery reports (DLR), and
failure reason tracking

* Multi-SMSc Support: Multiple frontend instances can connect to a single
OmniMessage backend for load balancing and redundancy

* Routing Intelligence: Advanced routing rules based on destination,
sender, message content, and time of day



* Rate Limiting: Per-route TPS (transactions per second) controls to prevent
network congestion

e API-First Design: RESTful HTTP API for integration with billing systems,
customer portals, and third-party applications

e Analytics & Reporting: Message volume statistics, delivery success
rates, and performance metrics

All message data, delivery state, and routing configurations are stored and
managed in OmniMessage. OmniSS7 queries OmniMessage via HTTPS API calls
to retrieve pending messages, update delivery status, and register as an active
frontend.

Important: OmniSS7 SMSc mode is a signaling frontend only. All message
routing logic, queue management, retry algorithms, delivery tracking, and
business rules are handled by OmniMessage. This guide covers the SS7/MAP
protocol configuration in OmniSS7. For information about message routing,
queue configuration, delivery reports, rate limiting, and analytics, refer to the
OmniMessage documentation.

Table of Contents

O Lo N kW N+

=
©



What is SMS Center Mode?

Note: This section covers OmniSS7's SS7 signaling configuration only. For
message routing rules, queue management, delivery tracking, and business
logic configuration, see the OmniMessage product documentation.

SMS Center Mode enables OmniSS7 to function as an SMSc for:

e MT-SMS Delivery: Mobile-Terminated SMS delivery to subscribers

e MO-SMS Handling: Mobile-Originated SMS reception and routing

e Message Queuing: Database-backed message queue with retry logic
¢ Auto-Flush: Automatic SMS delivery from queue

* Delivery Reports: Track message delivery status

SMS Center Architecture

557 Network
HLR
MAP: SRI-for-5M
OmniSS7 SM5c Frontend
MIUASSCTR o
Protocol Stack
." - e -
/- -
i | " Deliver tlalsrl:.ihlsjgﬁgé;f‘ards_’rf‘__ ]
SCCP Routing MAP: MT-ForwardsM —¥ MSCVLR GMSC
=1 4 . .
MAP Protocol Auto-Flush Frontend
Handler Background Worker Registry
| |
Query routes Paoll for pending Register frentend
Update delivery status Messages Health check
— ~ Omnii'usage Backend __— :
II y
] L ]
Routing Analytics &

Engine Reporting




Enabling SMSc Mode

OmniSS7 can operate in different modes. To use it as an SMSc, you need to
enable SMSc mode in the configuration.

Switching to SMSc Mode

OmniSS7's config/runtime.exs contains three pre-configured operational
modes. To enable SMSc mode:

=

. Open config/runtime.exs

2. Find the three configuration sections (lines 53-204):
o Configuration 1: STP Mode (lines 53-95)

o Configuration 2: HLR Mode (lines 97-142)
o Configuration 3: SMSc Mode (lines 144-204)

. Comment out any other active configuration (add # to each line)

3
4. Uncomment the SMSc configuration (remove # from lines 144-204)
5. Customize the configuration parameters as needed

6

. Restart the application: iex -S mix

SMSc Mode Configuration

The complete SMSc configuration looks like this:



config :omniss7,

# Mode flags - Enable STP + SMSc features

# Note: map client enabled is true because SMSc needs routing
capabilities

map client enabled: true,

hlr mode enabled: false,

smsc_mode enabled: true,

# OmniMessage Backend API Configuration
smsc_api base url: "https://10.179.3.219:8443",

# SMSc identification for registration with backend
smsc_name: "ipsmgw",

# Service Center GT Address for SMS operations

smsc service center gt address: "5551234567",

# Auto Flush Configuration (background SMS queue processing)
auto flush enabled: true,

auto flush interval: 10 000,

auto flush dest smsc: "ipsmgw",

auto flush tps: 10,

# M3UA Connection Configuration
# Connect as ASP for sending/receiving MAP SMS operations
map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, []},
process name: :stp client asp,
# Local endpoint (SMSc system)
local ip: {10, 179, 4, 12},
local port: 2905,
# Remote STP endpoint
remote ip: {10, 179, 4, 10},
remote port: 2905,
routing context: 1

config :control panel,
use additional pages: [
{SS7 .Web.EventsLive, "/events", "SS7 Events"},
{SS7.Web.TestClientLive, "/client", "SS7 Client"},
{SS7 .Web.M3UAStatusLive, "/m3ua", "M3UA"},
{SS7.Web.RoutingLive, "/routing", "Routing"},
{SS7.Web.RoutingTestLive, "/routing test", "Routing Test"},



{SS7.Web.SmscLinksLive, "/smsc links", "SMSc Links"}

1,
page order: ["/events", "/client", "/m3ua", "/routing",
"/routing test", "/smsc links", "/application", "/configuration"]

Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the



Parameter Type Default De:

OmniM
smsc_api base url String Required backenc
endpoir
) " Your SM
smsc_name String _
- {hostname} SMSc" for regis
: . . Service
smsc_service center gt address = String Required
- - - Global 1
Enable .
auto flush enabled Boolean  true
queue g
Queue |
auto flush interval Integer 10 000 interval
millisec
) ] Destina
auto flush dest smsc String Required
name fc
Messag
auto flush tps Integer 10 rate
(transac
local i Tupl Required el
ocal i uple equire
=P 2 & IP addre
local port Integer 2905 Local S(
. STP IP a
remote ip Tuple Required
N SS7 con

remote port Integer 2905 Remote



Parameter Type Default De:

M3UA r¢

routing context Integer 1
B context

What Happens When SMSc Mode is Enabled

When smsc_mode enabled: true and map client enabled: true, the web Ul
will show:

[] SS7 Events - Event logging
[] SS7 Client - MAP operation testing
[] M3UA - Connection status

[ Routing - Route table management (STP enabled)
[0 Routing Test - Route testing (STP enabled)

[0 SMSc Links - SMSc API status + SMS queue management « SMSc-
specific

[0 Resources - System monitoring

[] Configuration - Config viewer

The HLR Links tab will be hidden.

Important Notes

e SMSc mode requires map client enabled: true for routing capabilities

e OmniMessage Backend: The OmniMessage APl backend must be
accessible at the configured smsc_api base url

* Frontend Registration: The system automatically registers with
OmniMessage every 5 minutes via the SMS.FrontendRegistry module

* API Request Timeout: All OmniMessage API requests have a hardcoded
5-second timeout

e MAP Request Timeout: All MAP requests (SRI-for-SM, MT-ForwardSM, etc.)
have a hardcoded 10-second timeout

e Auto-flush automatically processes the SMS queue in the background



e M3UA connection to STP is required for sending/receiving MAP SMS
operations
e After changing modes, you must restart the application for changes to take

effect
e Web Ul: See the for information on using the web interface
e API Access: See the for REST APl documentation and Swagger
Ul access

HTTP API Configuration

OmniMessage Backend Setup

OmniSS7 communicates with OmniMessage via HTTPS REST API to manage
message delivery, track subscriber state, and register as an active frontend:

config :omniss7,

# OmniMessage API base URL

smsc_api base url: "https://10.5.198.200:8443",

# SMSC name identifier for registration (defaults to
hostname SMSc if empty)

smsc_name: "omni-smscOl",

# Service Center GT Address for SMS operations

smsc_service center gt address: "5551234567"

Configuration Parameters:



Parameter Type Required Default

smsc_api base url String  Yes "https://localhc
] nn (uses n
sSmsC_name String  No
{hostname} SMSc"
smsc_service center gt address  String No "5551234567"

Frontend Registration

The system automatically registers itself with OmniMessage on startup and re-
registers every 5 minutes via the SMS.FrontendRegistry module. This

allows OmniMessage to:

e Track active frontends for load balancing

e Monitor uptime and health status



e Collect configuration information

e Manage distributed SMS routing across multiple frontends
Implementation Details:

* Registration Interval: 5 minutes (hardcoded)

* Process: Started automatically when smsc _mode enabled:

Registration Payload:

{
"frontend name": "omni-smscOl",
"configuration": "{...}",
“frontend type": "SS7",
"hostname": "smsc-serverQl",
"uptime seconds": 12345

}

true

Note: The frontend name is taken from the smsc name configuration

parameter. If not set, it defaults to "{hostname} SMSc".

OmniMessage APl Communication

When OmniSS7 receives MAP operations from the SS7 network or processes the

message queue, it communicates with OmniMessage to:

* Register as an active frontend and report health status

e Submit mobile-originated (MO) messages received from subscribers

* Retrieve mobile-terminated (MT) messages from the queue for

delivery
e Update delivery status with success/failure reports

* Query routing information for message forwarding



Endpoint Method Purpose Request Body

{"frontend name":

n n
’

Register "frontend type":
/api/frontends POST frontend "SMSc", "hostname":
instance "o,

"uptime seconds":

-

{"source msisdn":

"...", "source smsc":
e POST Insert new . . -
api/messages raw ot
2 S SMS message
"message body":

II. . .II}
_ Get message Header: smsc:
/api/messages GET
queue <smscC_name>
Mark {"deliver_ time":
/api/messages/{id} PATCH message as “...", "dest smsc":
delivered "'}
Update
/api/messages/{id} PUT message {"dest smsc": null}
status
{"msisdn": "...",
Ilimsill: II. . II'
"location": "...",
"ims capable": true,
Insert/update
, , , "csfb": false,
/api/locations POST subscriber .
) "expires": "...",
location
‘user_agent": "...",

"ran location":

, "imei": "...",
“registered": "..."}



Endpoint Method Purpose Request Body

{"message id": ...,

, Add event "name": "...",
/api/events POST . s
tracking "description":
n . II}
/api/status GET Health check -

APl Response Format
All API responses use JSON format with the following conventions:

e Success responses: HTTP 200-201 with JSON body containing result data
e Error responses: HTTP 4xx/5xx with error details in response body
* Timestamps: ISO 8601 format (e.g., "2025-10-21T12:34:56Z2")

e Message IDs: Integer or string identifiers

API Client Modules

The SMS system consists of three main modules:
1. SMSc.APIClient

Main API client module providing all HTTP APl communication with
OmniMessage:

* frontend register/4 - Register frontend with OmniMessage

e insert message/3 - Insert raw SMS message (Python-compatible 3-
parameter version)

e insert location/9 - Insert/update subscriber location data

* get message queue/2 - Retrieve pending messages from queue

* mark dest smsc/3 - Mark message as delivered or failed

e add event/3 - Add event tracking for messages

e flush queue/2 - Process pending messages (SRI-for-SM + MT-forwardSM)

e auto flush/2 - Continuous queue processing loop



2. SMS.FrontendRegistry
Handles periodic frontend registration with the backend:

e Automatically registers on startup
e Re-registers every 5 minutes
* Uses smsc_name from config (falls back to hostname)

e Collects system configuration and uptime information
3. SMS.Utils
Utility functions for SMS operations:

* generate tp scts/0 - Generate SMS timestamp in TPDU format



SMS Message Flows

Incoming SMS Flow (Mobile-Originated)



Forward-SM



Outgoing SMS Flow (Mobile-Terminated)






M3UA receives SCTP
packet

|

‘ M3UA decodes packet ‘

|

‘ Extract SCCP payload ‘

|

| M —— A _ ™/~ . - - - - |

OmniCharge  OmniRAN

- -

-

Extract TCAP/MAP
message

|

Parse MAP operation ‘

|

Operation Type

Down

Forward-SM
!

Decode SMS TPDU




k 4

Extract message fields

k 4

Decode user data

k 4

POST to
/api/messages raw

k 4

POST to /api/events

k 4

Send MAP response

Key Steps Explained:

¢ SRI-for-SM Request: The SMSc queries the HLR with the destination
MSISDN to determine where to route the SMS message. The HLR responds
with:

o A synthetic IMSI (calculated from the MSISDN for privacy) - see

o The SMSC GT address (network node number) where the MT-ForwardSM
should be sent

o For complete details on how this works, see

e MT-forwardSM Request: Once routing info is obtained, the SMSc sends
the actual SMS message to the MSC/VLR serving the subscriber



SMS TPDU Structure

Alert Service Center Handling

The SMSc can receive alertServiceCenter messages from the HLR to track
subscriber reachability status.

For information on how the HLR sends alertServiceCenter messages, see

What is alertServiceCenter?

When a subscriber performs an UpdatelLocation at the HLR (i.e., registers with a
new VLR/MSC), the HLR can notify SMSc systems that the subscriber is now
reachable by sending an alertServiceCenter (MAP opcode 64) message.

Configuration

The location expiry time is configured in the HLR:



config :omniss7,

# Location expiry time when SMSc receives alertServiceCenter
(default: 48 hours)

hlr alert location expiry seconds: 172800

Behavior

When the SMSc receives an alertServiceCenter message:

1. Decode MSISDN: Extract the subscriber's MSISDN from the message
(TBCD format)

2. Strip TON/NPI prefix: Remove common prefixes like "19", "11", "91" (e.qg.,
"19123123213" - "123123213")

3. Calculate IMSI: Generate synthetic IMSI using same mapping as SRI-for-
SM

4. POST to /api/location: Update location database with:
o msisdn: Subscriber's phone number (cleaned)

o imsi: Synthetic IMSI

o location: SMSc name (e.g., "ipsmgw")

o expires: Current time + hlr alert location expiry seconds
o csfb: true (subscriber reachable via Circuit-Switched Fallback)

o ims capable: false (this is 2G/3G CS registration, not IMS/VoLTE)
o user agent: HLR GT that sent the alert (for tracking)

o ran_location: "SS7"

5. Track in SMSc Subscriber Tracker: Record the subscriber with HLR GT,
status=active, message counters at 0

6. Send ACK: Reply to HLR with alertServiceCenter acknowledgment

Absent Subscriber Handling

When the SMSc attempts to deliver a message and receives an "absent
subscriber" error during SRI-for-SM (for more on SRI-for-SM, see

):

1. Detect absence: SRI-for-SM returns absentSubscriberDiagnosticSM error



2. Expire location: POST to /api/location with expires=0 to mark subscriber
as unreachable

3. User agent: Set to "SS7_AbsentSubscriber" to identify the source

4. Update tracker: Mark subscriber as failed in SMSc Subscriber Tracker

This ensures the location database and tracker accurately reflect subscriber
reachability status.

Flow Diagram

HLR SMSc SMSc API

Subscriber performs UpdatelLocation at HLR

alertServiceCenter(15551234567)

Calculate IMSI from MSISDN

POST /api/location (expires=48h)

200 OK

alertServiceCenter ACK

Later: SMS delivery attempt

SRI-for-SM (15551234567)

Absent Subscriber Error

POST /api/location (expires=0)

200 OK

HLR SMSc SMSc API

API Endpoint

POST /api/location



"msisdn": "15551234567",

"imsi": "001010123456789",
“location”: "ipsmgw",

"ims capable": false,

"csfb": true,

"expires": "2025-11-01T12:00:00Z",
"user agent": "15551111111",

"ran_ location": "SS7",

"imei": ,
"registered": "2025-10-30T12:00:00Z"

Note: The user agent field contains the HLR GT that sent the
alertServiceCenter, allowing the SMSc to track which HLR is providing location
updates.

For absent subscribers, expires is set to current time (immediate expiry).

Loop Prevention

The SMSc implements automatic loop prevention to avoid infinite message
routing loops when messages originate from SS7 networks.

Why Loop Prevention is Important

When the SMSc receives mobile-originated (MO) SMS messages from the SS7
network, it inserts them into the message queue with a source smsc field
identifying their origin (e.g., "SS7 GT 15551234567" ). Without loop prevention,
these messages could be:

1. Received from SS7 network —» Queued with source smsc containing "SS7"
2. Retrieved from queue — Processed for delivery

3. Sent back to SS7 network — Creating a loop



How It Works

The SMSc automatically detects and prevents loops during message
processing:

SMIS TRDU

T

Me=zsage Type Indicatar Mecsage Flakds

L L L ¥ ¥ L

SMS-DELIVER SMS-SUEMIT Originating Address Dectination Address Data Coding Schiems User Diats

G5M T-bit LHCS-2Unicode
150 chars Tl chars

Implementation

When processing messages from the queue, the SMSc checks the source smsc
field:

* If source_smsc contains "SS7":

o Message is skipped

o Event added: "Loop Prevention" with description explaining the skip
reason

o Message marked as failed via PUT request

o Logged with warning level

¢ Otherwise:

o Message processed normally

o SRI-for-SM and MT-ForwardSM operations proceed

Source SMSC Values

Messages can have various source_smsc values:



Source Example Value Action

SS7 Network (MO- Skipped - Loop
"SS7 GT 15551234567" _

FSM) - = prevention
“ipsmgw" or

External API/SMPP Processed normally

"api gateway"

Other SMSc "smsc-node-01" Processed normally

Event Tracking

When a message is skipped due to loop prevention, an event is recorded:

{
"message id": 12345,
"name": "Loop Prevention",
"description": "Message skipped - source smsc

'SS7 GT 15551234567' contains 'SS7', preventing message loop"
}

This event is visible in:

« Web Ul: SS7 Events page (/events)
e Database: events table via API

e Logs: Warning level log entries

Configuration

Loop prevention is always enabled and cannot be disabled. This is a critical
safety feature to prevent network disruption from message loops.

Example Scenario

Scenario: Mobile subscriber sends SMS via SS7 network



. Mobile phone -» MSC/VLR - SMSc (via MO-ForwardSM)

. SMSc receives MO-FSM from GT 15551234567

SMSc inserts to queue: source smsc = "SS7 GT 15551234567"
Auto-flush retrieves message from queue

SMSc detects "SS7" in source smsc - SKIP

Event logged: "Loop Prevention"

Message marked as failed

No SRI-for-SM or MT-ForwardSM sent (loop prevented)

OO UL A WN B

Without loop prevention, step 8 would send the message back to the SS7
network, potentially creating an infinite loop.

SMSc Subscriber Tracking

The SMSc includes a Subscriber Tracker GenServer that maintains real-time
state for subscribers based on alertServiceCenter messages and message
delivery attempts.

Purpose
The tracker provides:

 Reachability monitoring: Which subscribers are currently reachable

e HLR tracking: Which HLR sent the alertServiceCenter for each subscriber
e Message counters: Number of messages sent/received per subscriber

¢ Failure tracking: Mark subscribers as failed when delivery attempts fail

 Web Ul visibility: Real-time dashboard showing all tracked subscribers

Tracked Information

For each subscriber, the tracker stores:



Field

msisdn

imsi

hlr gt

messages sent

messages received

status

updated at

Description Example

Subscriber's phone number

"15551234567"

(key)
Subscriber's IMSI "001010123456789"
HLR GT that sent

) "15551111111"
alertServiceCenter
Count of MT-FSM messages 5
sent
Count of MO-FSM messages
received
;active or :failed ractive
Unix timestamp of last 1730246400

update

State Transitions

Message sent/received

alertServiceCenter
received

Absent subscriber New alertServiceCenter

SRI-for-SM failure
Manual removal

Manual removal



Behavior

When alertServiceCenter is received:

Create or update subscriber entry

Set status = :active
Record HLR GT

Reset or preserve message counters

When SRI-for-SM succeeds:

* Increment messages _sent counter

e Update updated at timestamp
When SRI-for-SM fails:

e Set status = :failed

e Keep in tracker for monitoring
When subscriber is removed:

¢ Delete from ETS table

e No longer appears in Web Ul

Web Ul - SMSc Subscribers Page

Path: /smsc_subscribers Auto-refresh: Every 2 seconds

Note: This page is only available when running in SMSc mode. After
uncommenting the SMSc configuration in config/runtime.exs, you must
restart the application for the route to become available.

The SMSc Subscribers page provides real-time monitoring of all tracked

subscribers:

Features

1. Subscriber Table



o MSISDN, IMSI, HLR GT

o Messages sent/received counters

o Status badge (Active/Failed) with color coding
o Last updated timestamp and duration

o Remove button for individual subscribers

2. Summary Statistics

o

Total tracked subscribers

(o]

Count of active subscribers

[e]

Count of failed subscribers

o

Number of unique HLRs

3. Actions

o Clear All: Remove all tracked subscribers

o Remove: Remove individual subscriber

Example View

SMSc Tracked Subscribers

Total: 3

|

|

|

| MSISDN IMSI HLR GT Msgs Status

| S/R

|

|

| 15551234567 001010123456789 15551111111 5/2 e Active
| 15559876543 001010987654321 15551111111 0/0 e Active
| 15551112222 001010111222233 15552222222 3/1 o Failed
|

Summary: Total: 3 | Active: 2 | Failed: 1 | Unique HLRs: 2

APl Functions

The tracker exposes these functions for programmatic access:



# Called when alertServiceCenter is received
SMSc.SubscriberTracker.alert received(msisdn, imsi, hlr gt)

# Increment message counters
SMSc.SubscriberTracker.message sent(msisdn)
SMSc.SubscriberTracker.message received(msisdn)

# Mark as failed (SRI-for-SM failure)
SMSc.SubscriberTracker.mark failed(msisdn)

# Remove from tracking

SMSc

.SubscriberTracker.

# Query functions

SMSc
SMSc
SMSc
SMSc

.SubscriberTracker.
.SubscriberTracker.
.SubscriberTracker.
.SubscriberTracker.

Integration

remove subscriber(msisdn)

get active subscribers()
get subscriber(msisdn)
count subscribers()
clear all()

The tracker is automatically integrated with:

* alertServiceCenter handler: Calls alert received/3 on successful

location update

* SRI-for-SM handler: Increments messages sent on successful routing

* Absent subscriber handler: Calls mark failed/1 when subscriber is
absent

* Unknown subscriber errors: Calls mark failed/1 when SRI-for-SM fails

Auto-Flush SMS Queue

The Auto-Flush service automatically processes pending SMS messages.

For configuration parameter reference, see



Configuration

config :omniss7,

auto flush enabled: true, # Enable/disable auto-flush

auto flush interval: 10 000, # Poll interval in
milliseconds

auto flush dest smsc: nil, # Filter: nil = all

auto flush tps: 10 # Max transactions per
second

How It Works

1. Polling: Every auto flush interval milliseconds, queries API for pending
messages

2. Filtering: Optionally filter by auto flush dest smsc
3. Rate Limiting: Process up to auto flush tps messages per cycle
4. Delivery: For each message:
o Send SRI-for-SM (Send Routing Info for Short Message) to HLR to get
routing info
= The HLR returns a synthetic IMSI calculated from the MSISDN
= The HLR returns the SMSC GT address where MT-ForwardSM should
be sent
= See for complete documentation
o On success, send MT-forwardSM to MSC/VLR
o Update message status via API (delivered/failed)

o Add event tracking via API

[] Technical Deep Dive: For a complete explanation of how SRI-for-SM
works, including MSISDN to IMSI mapping, service center GT address
configuration, and the privacy-preserving synthetic IMSI generation, see
the



SMSc Metrics

Available Metrics
SMS Queue Metrics:

e smsc_queue_depth - Current number of pending messages
* smsc messages delivered total - Total messages successfully delivered
* smsc _messages failed total - Total messages that failed delivery

e smsc _delivery duration milliseconds - Histogram of delivery times

Example Queries:

# Current queue depth
smsc_queue depth

# Delivery success rate (last 5 minutes)
rate(smsc_messages delivered total[5m]) /
(rate(smsc_messages delivered total[5m]) +
rate(smsc messages failed total[5m]))

# Average delivery time

rate(smsc_delivery duration milliseconds sum[5m]) /
rate(smsc delivery duration milliseconds count[5m])

Troubleshooting SMSc

Issue: Messages Not Delivering
Checks:

1. Verify auto-flush is enabled

2. Check database connection

3. Monitor logs for errors

4. Verify M3UA connection is ACTIVE



5. Check TPS limits

Issue: High Queue Depth
Possible Causes:

e TPS limit too low
e HLR timeout issues
e Network connectivity problems

¢ |nvalid destination numbers
Solutions:

* Increase auto_flush_ tps
e Check HLR availability

e Review failed message logs

MT-forwardSM API

Send SMS via API
API Endpoint: POST /api/MT-forwardSM

Request:

"imsi": "234509876543210",

"destination serviceCentre": "447999555111",

"originating serviceCenter": "447999123456",

"smsPDU" :
"040B917477218345F600001570301857140COBD4F29COE9281C4E1F11A"

}

Response:



{

"result": "success",
"message id": "12345"
}

Related Documentation

OmniSS7 Documentation:

. - HLR mode setup and operations
o - Complete documentation on MSISDN
to IMSI mapping and service center configuration

. - Web Ul, API, Monitoring
. - MAP operations
. - Protocol specifications

OmniMessage Documentation: For message routing configuration, queue
management, delivery tracking, rate limiting, and analytics, refer to the
OmniMessage product documentation. OmniMessage contains all the
message routing logic, queue retry algorithms, delivery report handling, and
business rules engine.

OmniSS7 by Omnitouch Network Services



M3UA STP
Configuration Guide

This guide provides detailed configuration for using OmniSS7 as a Signaling
Transfer Point (STP).

Table of Contents

LA S

10.
11.
12.



What is a Signaling Transfer Point
(STP)?

A Signaling Transfer Point (STP) is a critical network element in SS7 and IP-
based signaling networks that routes signaling messages between network
nodes.

STP Functions

e Message Routing: Routes SS7 signaling traffic based on destination Point
Code (PC) or Global Title (GT)

e Protocol Translation: Bridges traditional SS7 networks with IP-based
M3UA/SCTP networks

e Load Distribution: Distributes traffic across multiple destinations using
priority-based routing

* Network Gateway: Connects different signaling networks and service
providers

e Topology Hiding: Can rewrite addresses to hide internal network topology



STP Network Diagram

Mobile Network & Mobile Network B
MSC A MSC B
PC: 101 PC: 201
[ Y .
MIUASCTR M3UASCTP MIUASCTR M3UASCTP
Port 2905 Port 2005 Port 2905 Port 2005
e OmniSS7 STP

SM5 Center

SM5c
PC: 3200

M3IUASCTR
Port 2003

."'_F..

T M2PA/SCTP

Routing Tables:
Point Code Routes
Global Title Routes

STP Network Roles Explained

” Port 3565
STP-to-5TP
N

Partner Network

ASP (Application Server Process)

* Role: Client connecting to a remote SGP/STP

¢ Direction: Outbound connection

* Use Case: Your STP connects to a partner network's STP

SGP (Signaling Gateway Process)

* Role: Server accepting connections from ASPs

¢ Direction: Inbound connection

e Use Case: Partner networks connect to your STP

AS (Application Server)

e Definition: Logical grouping of one or more ASPs



e Purpose: Provides redundancy and load sharing

e Use Case: Multiple ASPs serving the same destination

Enabling M3UA STP Mode

OmniSS7 can operate in different modes. To use it as an STP, you need to
enable STP mode in the configuration.

Switching to STP Mode

OmniSS7's config/runtime.exs contains three pre-configured operational
modes. To enable STP mode:

1. Open config/runtime.exs

2. Find the three configuration sections (lines 53-174):
o Configuration 1: STP Mode (lines 53-85)

o Configuration 2: HLR Mode (lines 87-123)
o Configuration 3: SMSc Mode (lines 125-174)

. Comment out the currently active configuration (add # to each line)

3
4. Uncomment the STP configuration (remove # from lines 53-85)
5. Customize the configuration parameters as needed

6

. Restart the application: iex -S mix



STP Mode Configuration

The complete STP configuration looks like this:



config :omniss7,
# Mode flags - Enable STP features only
map _client enabled: true,
hlr mode enabled: false,
smsc_mode enabled: false,

# M3UA Connection Configuration
# Connect as ASP (Application Server Process) to remote STP/SGW
map_client m3ua: %{
mode: "ASP",
callback: {MapClient, :handle payload, [1},
process name: :stp client asp,
# Local endpoint (this system)
local ip: {10, 179, 4, 10},
local port: 2905,
# Remote STP/SGW endpoint
remote ip: {10, 179, 4, 11},
remote port: 2905,
routing context: 1

Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the



Parameter

map_client enabled

local ip

local port

remote ip

remote port

routing context

enable gt routing

Type

Boolean

Tuple or
List

Integer

Tuple or
List

Integer

Integer

Boolean

Default

true

Required

2905

Required

2905

false

Description

Enable MAP
client and
routing
capabilities

Your system's IP
address(es).
Single: {10, 0,
0, 1} or List for
multihoming:

[{10, O, O,
1}, {10, 0, O,
2}1]

Local SCTP port

Remote
STP/SGW [P
address(es).
Single or List for
multihoming

Remote SCTP
port

M3UA routing
context ID

Enable Global
Title routing (in
addition to PC
routing)

Example

true

{10,

179, 4,
10}

2905

{10,
179, 4,
11}

2905

true

Tip: Use SCTP multihoming by providing a list of IP addresses for local ip

and/or remote ip to enable automatic failover. See



What Happens When STP Mode is Enabled

When map client enabled: true, the web Ul will show:

[] SS7 Events - Event logging
[] SS7 Client - MAP operation testing
[] M3UA - Connection status

[0 Routing - Route table management « STP-specific

[J Routing Test - Route testing « STP-specific

[0 Resources - System monitoring

[ Configuration - Config viewer

The HLR Links and SMSc Links tabs will be hidden.

Important Notes

e SCTP protocol (IP protocol 132) must be allowed through firewalls
e Default M3UA port is 2905 (industry standard)
e Ensure sufficient system resources for handling routing traffic

* Routing Persistence: All routes configured via the Web Ul or API are
stored in Mnesia database and survive restarts

e Configuration Merge: Routes from runtime.exs are loaded at startup
and merged with Mnesia routes

e After changing modes, you must restart the application for changes to take

effect
e Web Ul: See the for managing routes via the web interface
e API Access: See the for REST APl documentation and Swagger

Ul access



Standalone STP Mode

In addition to the STP routing capabilities available when map client enabled:
true, you can run a standalone M3UA STP server that listens for incoming
connections.

Enabling Standalone STP

Add this configuration to config/runtime.exs:

config :omniss7,
m3ua stp: %{
enabled: true,

local ip: {127, 0, 0, 1}, # IP address to listen on

local port: 2905, # Port to listen on

point code: 100 # This STP's own point code
¥

STP Configuration Parameters

Parameter Type Default Description Example

Enable standalone

enabled Boolean  false true
STP server
_ {127, 0O, IP address to listen {0, 0, 0,
local ip Tuple _
0, 1} for connections 0}
local port Integer 2905 Port to listen on 2905

, ) This STP's own SS7
point code Integer Required ) 100
point code



When to Use Standalone STP

e Pure Routing: When you only need M3UA routing without MAP client
functionality

e Central STP: To create a central signaling router for multiple network
elements

e Hub Architecture: Connect multiple HLRs, MSCs, and SMSCs through a
central STP

Note: You can enable both map client m3ua and m3ua stp simultaneously if
you need both outbound connections and inbound STP functionality.

Routing Table Persistence (Mnesia)

All routing tables (peers, Point Code routes, and Global Title routes) are stored
in a Mnesia database for persistence.

How Routing Works

1. Runtime.exs Routes: Routes defined in config/runtime.exs under
m3ua_peers, m3ua_routes, and m3ua_gt routes are loaded at application
startup

2. Web Ul Routes: Routes added via the are stored in
Mnesia

3. Route Merge: On restart, runtime.exs routes are merged with existing
Mnesia routes (no duplicates)

4. Persistence: All routes configured via Web Ul survive application
restarts

Mnesia Storage Type

Control how routing tables are stored. For more details on database
configuration, see



config :omniss7,
mnesia storage type: :disc copies # or :ram copies for testing

Storage L .
Description Persistence Use Case
Type
. . Disk-backed Survives Production
:disc copies ]
- storage (default) restarts environments
_ Testing,
:ram_copies In-memory only Lost on restart

development
Default: :disc copies

Mnesia Database Location
Mnesia stores routing tables in the application's Mnesia directory:

e Location: Mnesia.{node name}/ (e.g., Mnesia.nonode@nohost/)

e Tables: m3ua peer, m3ua route, m3ua gt route

Managing Routes
You have three options for managing routes:

1. Runtime.exs - Static configuration loaded at startup
2. Web Ul - Interactive route management (see )

3. REST API - Programmatic route management (see )

Best Practice: Use runtime.exs for base configuration and the Web Ul for
dynamic route changes during operation.



Configuring M3UA Peers

Peers represent M3UA connection endpoints (other STPs, HLRs, MSCs, SMSCs).
Add peers to config/runtime.exs.



Peer Configuration Example

config :omniss7,
m3ua_peers: [

# Outbound connection to Partner STP

%{
peer id: 1,
name: "Partner STP West",
role: :client,
outbound, :server for inbound

local ip: {10, 0, 0, 1},
local port: O,
assignment
remote ip: {10, 0, 0, 10},
remote port: 2905,
routing context: 1,
point code: 100,
peer
network indicator: :international

:national

}

# Connection to Local HLR (role:
%{
peer id: 2,
name: "Local HLR",
role: :client,
local ip: {10, 0, 0, 1},
local port: 0,
remote ip: {10, 0, 0, 20},
remote port: 2905,
routing context: 2,
point code: 200,
network indicator:

}I

# Inbound connection from Remote MSC (role:

:international

(role: :client)

# Unique identifier
# Descriptive name
# :client for

# Local IP to bind
# 0 = dynamic port

# Remote peer IP

# Remote peer port

# M3UA routing context
# Point code of this

# :international or

:client)

iserver)

# For :server role, STP waits for incoming connection

%{
peer id: 3,
name: "Remote MSC",
role: :server,

connection

# Accept inbound



remote ip: {10, 0, 0, 30}, # Expected source IP

remote port: 2905, # Expected source port
(0 = accept from any port)

routing context: 3,
point code: 300,
network indicator: :international

}

# Inbound connection with dynamic source port (no port
filtering)

%{

peer id: 4,

name: "Dynamic Client",

role: :server,

remote ip: {10, 0, 0O, 40}, # Expected source IP

remote port: O, # 0 = accept
connections from any source port

routing context: 4,

point code: 400,

network indicator: :international

}



Peer Configuration Parameters

Parameter

peer id

name

role

local ip

local port

remote ip

remote port

routing context

point code

Type

Integer

String

Atom

Tuple
or List

Integer

Tuple
or List

Integer

Integer

Integer

Required

Yes

Yes

Yes

Yes
(client)

Yes
(client)

Yes

Yes

Yes

Yes

Description

Unique numeric identifier for
the peer

Human-readable name for
logs and monitoring

:client (outbound) or
:server (inbound)

Local IP address(es) to bind.
Single: {10, 0, 0, 1} or
Multiple for SCTP
multihoming: [{10, 0, 0,
1}, {10, 0, 0, 2}]

Local port (0 for dynamic)

Remote peer IP address(es).
Single: {10, 0, 0, 10} or
Multiple: [{10, 0, 0, 10},
{10, 0, 0, 11}]

Remote peer port (0 for
inbound = accept any source

port)

M3UA routing context
identifier

SS7 point code of this peer



Parameter Type Required Description

L :international or
network indicator Atom No

:national

SCTP Multihoming: For network redundancy, you can configure multiple

IP addresses for both local ip and remote ip. This enables automatic
failover if one network path fails. See for detailed
configuration examples and best practices.

Source Port Filtering for Inbound Connections

For inbound connections (role: :server), the remote port parameter
controls source port filtering:

* Specific Port (e.g., remote port: 2905): Only accept connections from
that exact source port

o Provides additional security by validating the source port

o Use when the remote peer uses a fixed source port

e Any Port (remote port: 0): Accept connections from any source port

o Useful when the remote peer uses dynamic/ephemeral source ports
o Only validates the source IP address

o More flexible but slightly less secure

Example:



# Accept only from 10.5.198.200:2905 (specific port)
{

peer id: 1,

name: "Strict Peer",

role: :server,

remote ip: {10, 5, 198, 200},

remote port: 2905,

# ... other config

o°

# Accept from 10.5.198.200 with any source port
{

peer id: 2,

name: "Flexible Peer",

role: :server,

remote ip: {10, 5, 198, 200},

remote port: O, # Accept from any source port
# ... other config

o°

M2PA Protocol Support

OmniSS7 supports both M3UA and M2PA protocols for SS7 signaling transport.

What is M2PA?

M2PA (MTP2 User Peer-to-Peer Adaptation Layer) is an IETF-standardized

protocol (RFC 4165) for transporting SS7 MTP3 messages over IP networks
using SCTP.



M3UA vs M2PA: Key Differences

Feature

Architecture

Use Case

Link State
Management

Sequence
Numbers

Typical
Deployment

RFC

M3UA

Client/Server
(ASP/SGW)

Gateway between SS7
and IP

Application-level
(ASPUP/ASPAC)

No inherent sequencing

SS7-to-IP gateway, STP

RFC 4666

Protocol Selection Guidance

M2PA

Peer-to-Peer

Direct point-to-point links

MTP2-style (Alignment,
Proving, Ready)

24-bit BSN/FSN for
ordered delivery

Direct signaling links
between nodes

RFC 4165

Recommendation: Use M3UA by default. Only use M2PA when

specifically required.

When to Use M3UA (Recommended)

M3UA is the recommended protocol for most deployments:

e STP Deployments: Standard signaling transfer point implementations

e Gateway Functions: Bridging SS7 networks with IP-based signaling

e Network Element Connections: Connecting HLRs, MSCs, SMSCs, and
other network elements to your STP

e Signaling Gateway (SGW): Central gateway accepting connections from

multiple Application Servers



* Flexible Topologies: Client/server architectures with centralized control

e Multi-vendor Networks: Widely supported industry standard (RFC 4666)

Use M3UA for connecting network elements (HLR, MSC, SMSC, VLR,
etc.) to your STP.

When to Use M2PA (Special Cases Only)

M2PA should only be used in specific scenarios:

e STP-to-STP Links: Direct point-to-point connections between Signal
Transfer Points in a multi-STP network

e Legacy TDM Replacement: Replacing traditional SS7 TDM links when the
remote system specifically requires M2PA

e MTP2 Compatibility Required: When connecting to legacy systems that
mandate MTP2-style link state management

e Partner Requirement: When a partner or interconnect specifically
requires M2PA protocol

Important: Do not use M2PA for connecting network elements (HLR, MSC,
SMSC) to your STP - use M3UA instead. M2PA is designed for STP-to-STP
interconnections where both sides operate as routing nodes.

Configuring M2PA Peers

M2PA peers are configured the same way as M3UA peers, with an additional
protocol parameter.

M2PA Peer Configuration

Add M2PA peers to your m3ua peers configuration in config/runtime.exs
(yes, they share the same configuration section despite being different
protocols):

Key Parameters for M2PA:



Parameter Value Description

Specifies M2PA protocol (defaults

rotocol :m2pa
2 : to :m3ua if omitted)
:client or , : .
role Connection direction
.server
Local SCTP port (standard M2PA
local port Integer ]
port is 3565)
Remote SCTP port (standard
remote port Integer )
M2PA port is 3565)
point code Integer Your point code

_ , Remote peer's point code (M2PA-
adjacent point code Integer .
specific)

Note: M2PA uses port 3565 as the industry standard (different from M3UA's
port 2905).

M2PA Link States
M2PA links progress through several states during initialization:

1. Down - No connection established
2. Alignment - Initial synchronization phase (~1 second)
3. Proving - Link quality verification (~2 seconds)

4. Ready - Link active and ready for traffic

The link state progression ensures reliable signaling before traffic is exchanged.

Managing M2PA Peers via Web Ul

The Routing page in the Web Ul provides full support for managing M2PA
peers:



1. Navigate to the Routing page

2. Select the "Peers" tab

3. Click "Add New Peer"

4. Choose "M2PA (RFC 4165)" from the Protocol dropdown

5. Fill in the peer configuration:
o Peer Name (descriptive identifier)

o Protocol: M2PA

o Role: client or server

o Point Code (your PC)

o Local/Remote IP addresses

o Local/Remote ports (typically 3565 for M2PA)

o Network Indicator (international or national)
6. Click "Save Peer"

The peers table displays the protocol type with color coding:

e Blue - M3UA peers
* Green - M2PA peers

M2PA Routing Behavior

M2PA peers integrate seamlessly with OmniSS7's routing system:

e Point Code Routes: Work identically for M2PA and M3UA
e Global Title Routes: Fully supported on M2PA links

* Route Priority: M2PA and M3UA peers can be mixed in the same routing
tables

e Message Relay: Messages can arrive on M2PA and be routed to M3UA,
and vice versa

M2PA Metrics

M2PA provides comprehensive Prometheus metrics for monitoring link health
and traffic:

Traffic Metrics:



m2pa_messages sent total - Total MTP3 messages sent per link
m2pa_messages received total - Total MTP3 messages received per link
m2pa bytes sent total - Total bytes sent over M2PA

m2pa_ bytes received total - Total bytes received over M2PA

All traffic metrics are labeled by: 1ink name, point code, adjacent pc

Link State Metrics:

m2pa_link state changes total - Link state transitions (DOWN -
ALIGNMENT — PROVING - READY)
o Labels: link name, from state, to state

Error Metrics:

m2pa_errors total - Total errors by type
o decode error - M2PA message decode failures

o encode error - M2PA message encode failures
o sctp send error - SCTP transmission failures

o Labels: link name, error type

Access Metrics:

Prometheus endpoint: http://your-server:8080/metrics

Metrics auto-register on application startup

M2PA Best Practices

Ul

1. Port Selection: Use port 3565 for M2PA (industry standard)
2. Link Monitoring: Monitor link state changes via metrics

3.
4

. Point Codes: Ensure adjacent point codes are correctly configured on both

Firewall Rules: Ensure SCTP (IP protocol 132) is allowed

sides

. Network Indicator: Must match between peers (international or national)

. Testing: Use the Routing Test page to verify connectivity after

configuration



Configuring Point Code Routing

Point Code routing directs messages based on the Destination Point Code
(DPC) in the MTP3 header.

Understanding Point Codes in SS7 Protocol
Stack

Point codes exist at different layers of the SS7 protocol stack. Understanding
this distinction is important:

Protocol Stack Layers:

Application Layer (SCCP/TCAP/MAP)

MTP3 Layer
- Routing Label: DPC, OPC, SLS
- Service Information Octet (SIO) |

« User Data Routing
« Used for STP routing

M3UA or M2PA (Adaptation Layer) | « Transport Protocol
- Protocol Data (contains MTP3) |
- Network Management (DUNA/DAVA) | « Network Status

|
|
SCTP (Transport) |
|

Two Types of Point Codes:
1. MTP3 Layer Point Codes (Used for Routing):

o Located in the MTP3 routing label (DPC, OPC)
Present in M3UA Protocol Data parameter (tag 528)

(o]

(o]

Present in M2PA User Data messages

[e]

STP uses these DPC values for routing decisions

o

These determine where the message is ultimately delivered

2. M3UA Layer Point Codes (Used for Network Management):



o Present in M3UA management messages (DUNA, DAVA, SCON, DUPU)
o Indicate affected point codes for network status
o Tell peers which destinations are available/unavailable

o Not used for routing user data

How STP Routing Works:

e For M3UA DATA messages: STP extracts the MTP3 message from the
Protocol Data parameter (tag 528), which contains the MTP3 routing label
(DPC, OPC, SLS). The DPC from the MTP3 layer is used to look up routes.

e For M2PA User Data messages: STP extracts the MTP3 message from
the M2PA user data field, then reads the DPC from the MTP3 routing label.

 M3UA management messages: Network management messages (DUNA,
DAVA, SCON) contain affected point codes at the M3UA layer for signaling
network status between peers.

Basic Point Code Routes

Add routes to config/runtime.exs:



config :omniss7,
m3ua routes: [
# Route all traffic for PC 100 to peer 1 (Partner STP)

%{
dest pc: 100, # Destination point code
peer id: 1, # Peer to route through
priority: 1, # Priority (lower = higher
priority)
network indicator: :international
# mask: 14 # Optional: defaults to 14
(exact match)
},
# Route all traffic for PC 200 to peer 2 (Local HLR)
%{
dest pc: 200,
peer id: 2,
priority: 1,
network indicator: :international
},

# Load balancing example: PC 300 with primary and backup
routes

%{
dest pc: 300,
peer id: 3, # Primary route
priority: 1,
network indicator: :international
}
%{
dest pc: 300,
peer id: 4, # Backup route (higher
priority number)
priority: 2,
network indicator: :international
}

Note: The mask field is optional and defaults to 14 (exact point code match).

Only specify mask when you need range-based routing (see Point Code Masks
section below).



Routing Logic

1. STP receives M3UA DATA or M2PA User Data message

2. STP extracts the MTP3 message from the Protocol Data (M3UA) or User
Data (M2PA) field

3. STP reads the Destination Point Code (DPC) from the MTP3 routing label
4. Looks up routing table for matching DPC (considering masks)

5. If multiple routes exist, selects the route with most specific mask (highest
mask value), then lowest priority number

6. Wraps the MTP3 message in M3UA DATA or M2PA User Data for the
destination peer

7. Routes the message to the corresponding peer

8. If the selected peer is down, tries the next highest priority route

Point Code Masks

Point codes are 14-bit values (range 0-16383). By default, routes match a
single point code exactly (mask /14). However, you can use point code
masks to create routes that match ranges of point codes.

Understanding Masks

The mask specifies how many most significant bits must match between the
route's destination PC and the incoming message's DPC. The remaining bits can
be any value, creating a range of matching point codes.



Mask Reference Table:

Mask

/14

/13

/12

/11

/10

/9

/8

/7

/6

/5

/4

/3

/2

/1

/0

Point Codes Matched

1 PC (exact match)

2 PCs

4 PCs

8 PCs

16 PCs

32 PCs

64 PCs

128 PCs

256 PCs

512 PCs

1,024 PCs

2,048 PCs

4,096 PCs

8,192 PCs

16,384 PCs

Point Code Mask Examples

Use Case

Single destination (default)

Small range

Small range

Small range

Medium range

Medium range

Medium range

Medium-large range

Large range

Large range

Very large range

Very large range

Extremely large range

Half of all PCs

All PCs (default/fallback route)



Note: The mask field is optional in all examples. If omitted, it defaults to 14
(exact match).

Example 1: Single Point Code (Default Behavior)

# Without mask field (recommended for single PC)

%{
dest pc: 1000,
peer id: 1,
priority: 1,
network indicator: :international

}
# Mask defaults to 14 - Matches: Only PC 1000

# Explicit mask (same result)

{

dest pc: 1000,

peer id: 1,

priority: 1,

mask: 14, # Explicit exact match
network indicator: :international

o®

-

# Matches: Only PC 1000

Example 2: Small Range

o°
-~

dest pc: 1000,

peer id: 2,

priority: 1,

mask: 12, # Matches 4 PCs
network indicator: :international

}
# Matches: PC 1000, 1001, 1002, 1003

Example 3: Medium Range



o°
-~

dest pc: 1000,

peer id: 3,

priority: 1,

mask: 8, # Matches 64 PCs
network indicator: :international

}
# Matches: PC 1000-1063 (64 consecutive point codes)

Example 4: Default/Fallback Route

%{
dest pc: O,
peer id: 4,
priority: 10, # Low priority (high
number)
mask: 0, # Matches all PCs
network indicator: :international
}

# Matches: ALl point codes (0-16383)
# Use as a catch-all/default route with low priority

Combining Specific and Masked Routes

You can combine specific routes with masked routes for flexible routing:



config :omniss7,
m3ua routes: [
# Specific route for PC 1000 (takes precedence)

%{
dest pc: 1000,
peer id: 1,
priority: 1,

network indicator: :international
# mask defaults to 14 (exact match)

},
# Range route for PCs 1000-1063
%{
dest pc: 1000,
peer id: 2,
priority: 1,
mask: 8, # Matches 64 PCs
network indicator: :international
},
# Default/fallback route for all other PCs
%{
dest pc: 0O,
peer id: 3,
priority: 10, # Low priority
mask: 0, # Matches all PCs
network indicator: :international
¥

Routing Decision for DPC 1000:

1. Matches mask /14 route (PC 1000 exactly) - Selected (most specific)
2. Also matches mask /8 route (PC 1000-1063 range) - Ignored (less specific)

3. Also matches mask /0 route (all PCs) - Ignored (least specific)

Routing Decision for DPC 1015:

1. Does not match mask /14 route (PC 1000 only)

2. Matches mask /8 route (PC 1000-1063 range) - Selected (most specific
match)



3. Also matches mask /0 route (all PCs) - Ignored (less specific)

Routing Decision for DPC 5000:

1. Does not match mask /14 route
2. Does not match mask /8 route

3. Matches mask /0 route (all PCs) - Selected (only match, fallback route)

Best Practices

1. Omit mask for Single Destinations: For exact point code matches, omit
the mask field entirely (defaults to /14)

2. Use /14 Explicitly Only When Needed: Only specify mask: 14 when
you need to make it clear in documentation or when mixing with range
routes

3. Use Range Masks for Network Blocks: Route entire network segments
to specific peers with masks /0 through /13

4. Use /0 as Fallback: Create a default route with low priority to catch
unmatched traffic

5. Most Specific Wins: The routing engine always selects the most specific
(highest mask value) matching route first

6. Priority as Tiebreaker: If multiple routes have the same mask, lowest
priority number wins

Configuring Global Title (GT)
Routing

Global Title routing enables content-based routing using phone numbers or
IMSI values instead of point codes. For advanced Global Title address
translation based on calling/called party, see the



Prerequisites

e Enable GT routing: enable gt routing: true in config/runtime.exs



GT Route Configuration

config :omniss7,
# Enable GT routing
enable gt routing: true,

m3ua gt routes: [
# Route all UK numbers (prefix 44)

%{

gt prefix:

match
peer id: 1,
priority: 1,
description:

}I

II44II ,

"UK numbers"

to peer 1
# Global Title prefix to
# Destination peer

# Priority (lower = higher)
# Description for logging

# Route US numbers (prefix 1) to peer 2

%{
gt prefix:
peer id: 2,
priority: 1,
description:

}I

II1II ,

"US numbers"

# More specific route: UK mobile numbers starting with 447

%{
gt prefix:
peer id: 3,
priority: 1,
description:

}I

II447II ,

"UK mobile numbers"

# SSN-specific routing (optional)
%{
gt prefix:
source ssn:
= 8 (SMSC)
peer id: 4,
dest ssn: 6,
to 6 (HLR)
priority: 1,
description:

II555II ,
8,

# Longest prefix match wins

# Only match if source SSN

# Rewrite destination SSN

"SMS traffic for 61 prefix"



GT Routing Logic

The GT routing algorithm follows this decision process:



Incoming SCCP Message

Sort by Specificity:
1. Longest GT Prefix
2. Specific SSN >
Wildcard
3. Specific TT >




Wildcard

4. Specific NPl >
Wildcard

5. Specific NAI >
Wildcard

6. Lowest Priority

Apply Rewrites:
- dest_ssn
- dest_tt
- dest_npi
- dest_nai




Message Routed

Routing Steps:

1. Longest Prefix Match: The STP finds all GT routes where the prefix
matches the beginning of the Global Title

o Example: GT "447712345678" matches both "44" and "447", but "447"
wins (longest match)

2. SSN Matching (Optional):

o If source ssn is specified, the route only matches when the SCCP
Called Party SSN equals that value

o If source ssn is nil, the route matches any SSN (wildcard)

3. TT/NPI/NAI Matching (Optional):

o If source tt, source npi, or source nai are specified, routes must
match those indicators

o nil values act as wildcards (match any value)

4. Specificity-Based Selection:

o Routes with more specific matching criteria win over wildcards

o Priority order: GT Prefix Length - SSN —= TT - NPI = NAI = Priority
Number

5. Indicator Rewriting (Optional):

o If dest ssn, dest tt, dest npi, or dest nai are specified, the STP
rewrites those indicators

o Useful for protocol normalization and network interconnection

6. Fallback to Point Code:

o |If no GT route matches, the STP falls back to Point Code routing using
the DPC



Advanced GT Routing: Translation Type, NPI,
and NAI

In addition to GT prefix and SSN matching, the STP supports routing and
transformation based on SCCP Global Title indicators:

e Translation Type (TT): Identifies the numbering plan and address type

e Numbering Plan Indicator (NPI): Defines the numbering plan (e.g.,
ISDN, Data, Telex)

* Nature of Address Indicator (NAI): Specifies the address format (e.g.,
International, National, Subscriber)

Matching (Source Indicators)

Routes can match on incoming message indicators:

* source tt: Match messages with specific Translation Type
e source npi: Match messages with specific Numbering Plan Indicator
* source nai: Match messages with specific Nature of Address Indicator

e nil value = wildcard (matches any value)
Transformation (Destination Indicators)
Routes can rewrite indicators when forwarding:

e dest tt: Transform Translation Type to new value

e dest npi: Transform Numbering Plan Indicator to new value



e dest nai: Transform Nature of Address Indicator to new value

e nil value = preserve original value (no transformation)

Specificity-Based Selection

When multiple routes match, the most specific route is selected using this
priority order:

Longest GT prefix match

Specific source SSN over wildcard SSN
. Specific source TT over wildcard TT
Specific source NPI over wildcard NPI

Specific source NAI over wildcard NAI

o U A W NH

Lowest priority number

Configuration Examples



config :omniss7,
enable gt routing: true,

m3ua gt routes: [
# Example 1: Match and transform Translation Type

%
gt prefix: "44",

peer id: 1,

source tt: 0O, # Match TT=0 (Unknown)

dest tt: 3, # Transform to TT=3 (National)
priority: 1,

description: "UK numbers: TT 0-3 transformation”

}

# Example 2: Match specific NPI and transform NAI
%{
gt prefix: "1",

peer id: 2,

source npi: 1, # Match NPI=1 (ISDN/Telephony)
source nai: 4, # Match NAI=4 (International)
dest nai: 3, # Transform to NAI=3 (National)
priority: 1,

description: "US numbers: International-National NAI"

}I

# Example 3: Combined SSN and indicator routing

%{
gt prefix: "33",

source ssn: 8, # Match SMSC traffic

source tt: 0O, # Match TT=0

dest ssn: 6, # Rewrite SSN to HLR

dest tt: 2, # Transform to TT=2

dest npi: 1, # Set NPI=1 (ISDN)

dest nai: 4, # Set NAI=4 (International)
peer id: 3,

priority: 1,

description: "French SMS: Full normalization"

}

# Example 4: Wildcard TT, specific NPI
%{
gt prefix: "49",
source tt: nil, # Match any TT (wildcard)



source npi: 6, # Match NPI=6 (Data)

dest npi: 1, # Transform to NPI=1 (ISDN)
peer id: 4,
priority: 1,

description: "German data network normalization"

Common TT/NPI/NAI Values

Translation Type (TT):

e 0 = Unknown
e 1 = International
e 2 = National

e 3 = Network Specific
Numbering Plan Indicator (NPI):

e 0 = Unknown

e 1 = |SDN/Telephony (E.164)
e 3 = Data (X.121)

e 4 = Telex (F.69)

e 6 = Land Mobile (E.212)

Nature of Address Indicator (NAI):

e 0 = Unknown

e 1 = Subscriber Number

e 2 = Reserved for National Use

e 3 = National Significant Number

e 4 = |nternational Number

Routing Decision Example

For an incoming message with:

e GT: "447712345678"



SSN: 8
TT: O

NPI: 1
NAI: 4

With these configured routes:

# Route A: Wildcard TT
%{gt prefix: "447", peer id: 1, priority: 1}

# Route B: Specific TT
%{gt prefix: "447", source tt: 0, peer id: 2, priority: 1}

# Route C: Specific TT + NPI

%{gt prefix: "447", source tt: 0, source npi: 1, peer id: 3,
priority: 1}

Result: Route C is selected (most specific: matches GT + TT + NPI)

The message is forwarded with indicators transformed per Route C's dest tt,
dest npi, dest nai values.



GT Routing Examples

Called GT

447712345678

441234567890

12125551234

555881234567

555881234567

441234567890

12125551234

Practical Use Cases for TT/NPI/NAI Routing

1. Network Interconnection Normalization

Source
SSN

NPI

NAI

Matched
Route

II447II _)
peer 3

II44II _)
peer 1

II1II -

peer 2

II555II
(SSN 8)
- peer 4

"555"
(SSN
wildcard)
- peer X

II44II
(TT=0) -
peer 1

npu
(TT=0,
NPI=1,
NAI=4)

Reason

Longest prefix
match

Prefix match, no
more specific
route

Prefix match for
US numbers

GT + SSN
match, rewrites
SSN to 6

GT match, no
SSN rewrite

GT + TT match,
transforms TT to
3

Most specific:
GT+TT+NPI+NAI
match



o Different networks may use different indicator conventions

o Transform indicators at the interconnection point to ensure
compatibility

o Example: Partner network uses TT=0 for international, your network
uses TT=1

2. Protocol Conversion

o Convert between numbering plans when routing between different
network types

o Example: Route from mobile network (NPI=6) to PSTN (NPI=1)

3. Address Format Standardization

o Normalize all incoming traffic to use consistent NAI values

o Example: Convert all international format (NAI=4) to national format
(NAI=3) for domestic routing

4. Carrier-Specific Routing

o Route based on translation type to different service providers

o Example: TT=0 routes to Carrier A, TT=2 routes to Carrier B
5. Legacy System Integration

o Modern systems might use different indicator values than legacy
systems
o Transform at the STP to maintain backward compatibility

Route Management Features

Disabling Routes

Routes can be temporarily disabled without deleting them. This is useful for
testing, maintenance, or traffic management.

Enabled Flag



Both Point Code and Global Title routes support an optional enabled flag:

config :omniss7,
m3ua_ routes: [
# Active route

%
dest pc: 100,
peer id: 1,
priority: 1,

network indicator: :international,
enabled: true # Route is active (default if omitted)

}

# Disabled route (not evaluated during routing)
%{
dest pc: 200,
peer id: 2,
priority: 1,
network indicator: :international,
enabled: false # Route is disabled
}
1,

m3ua gt routes: [
# Disabled GT route

%{
gt prefix: "44",
peer id: 1,
priority: 1,
description: "UK numbers - temporarily disabled",
enabled: false

Default Behavior:

e If enabled is not specified, routes default to enabled: true
e Disabled routes are completely skipped during route lookup

e Use the Web Ul to toggle routes on/off without editing config

Use Cases:



Testing traffic flow changes

Temporary maintenance windows

A/B testing different routing paths

Gradual rollout of new routes

DROP Routes - Preventing Routing Loops

DROP routes (with peer id: 0) silently discard traffic instead of forwarding it.
This prevents routing loops and enables advanced traffic filtering.

Configuring DROP Routes

config :omniss7,
m3ua routes: [
# DROP route for specific point code

%{
dest pc: 999,
peer id: 0O, # peer id=0 means DROP
priority: 1,
network indicator: :international
}

1,

m3ua_ gt routes: [
# DROP route for GT prefix
%{
gt prefix: "999",
peer id: 0O, # peer _id=0 means DROP
priority: 99,
description: "Block test range"

How DROP Routes Work

When a message matches a DROP route:

1. The routing engine identifies peer id: 0



2. The message is silently discarded (not forwarded)

3. An INFO log is generated: "DROP route matched for DPC 999" or "DROP
route matched for GT 999"

4. The routing lookup returns {:error, :dropped}

Important: Dropped traffic is logged at INFO level for monitoring and
troubleshooting.

Common Use Case: Prefix Whitelisting

One of the most powerful uses of DROP routes is prefix whitelisting - allowing
only specific numbers within a large range while blocking all others.

The Pattern:

1. Create a DROP route for the entire prefix with high priority number (e.qg.,
99)

2. Create specific allow routes for individual numbers with low priority
numbers (e.g., 1)

3. Since lower priority numbers are evaluated first, allowed routes match
before the DROP route

4. Any number not explicitly allowed gets caught by the DROP route

Example Scenario:

You have a GT prefix 1234 that represents a range of 10,000 numbers
(1234000000 - 1234999999), but you only want to route 3 specific numbers:
1234567890, 1234555000, and 1234111222.



config :omniss7,
m3ua gt routes: [
# DROP route with HIGH priority number (evaluated last)

%{
gt prefix: "1234",
peer id: 0O, # DROP
priority: 99, # High number = low priority =

evaluated last
description: "Block all 1234* except whitelisted numbers”

}

# Specific allow routes with LOW priority numbers (evaluated
first)

%{
gt prefix: "1234567890",
peer id: 1, # Route to peer 1
priority: 1, # Low number = high priority =

evaluated first
description: "Allowed number 1"

},
%{

gt prefix: "1234555000",

peer id: 1,

priority: 1,

description: "Allowed number 2"
},
%{

gt prefix: "1234111222",

peer id: 1,

priority: 1,

description: "Allowed number 3"
¥

Routing Behavior:



Incoming
GT

1234567890

1234555000

1234111222

1234999999

1234000000

Result:

Matching
Routes

0"1234567890"
(priority 1)

0 "1234" DROP
(priority 99)

0"1234555000"
(priority 1)

[0 "1234" DROP
(priority 99)

0"1234111222"
(priority 1)

0 "1234" DROP
(priority 99)

[]"1234" DROP
(priority 99)

0 "1234" DROP
(priority 99)

Selected Route

"1234567890" (most
specific, highest
priority)

"1234555000" (most
specific, highest
priority)

"1234111222" (most
specific, highest
priority)

"1234" DROP (only
match)

"1234" DROP (only
match)

e [] Only 3 specific numbers are routed to peer 1

e [JAll other 1234* numbers are silently dropped

e [J All dropped traffic is logged for monitoring

Logs Generated:

[INFO] DROP route matched for GT 1234999999
[INFO] DROP route matched for GT 1234000000

DROP Routes for Point Codes

Action

Routed to
peer 1

Routed to
peer 1

Routed to
peer 1

Dropped +

logged

Dropped +
logged



The same whitelist pattern works for Point Code routing:

config :omniss7,
m3ua_ routes: [
# DROP entire range /8 (64 point codes: 1000-1063)
%{
dest pc: 1000,
peer id: 0O,
priority: 99,
mask: 8,
network indicator: :international

}

# Allow specific PCs

%{dest pc: 1010, peer id: 1, priority: 1, network indicator:
:international},

%{dest pc: 1020, peer id: 1, priority: 1, network indicator:
:international},

%{dest pc: 1030, peer id: 1, priority: 1, network indicator:
:international}

]

Result: Only PCs 1010, 1020, and 1030 are routed. All other PCs in the 1000-
1063 range are dropped.

Monitoring DROP Routes

Check Logs:

# Monitor for dropped traffic
tail -f logs/app.log | grep "DROP route matched"

# Expected output:

[INFO] DROP route matched for GT 1234999999
[INFO] DROP route matched for DPC 1050

Via Web Ul:

e Navigate to System Logs tab
e Filter by INFO leve



e Search for "DROP route matched"
Best Practices:

1. A Monitor logs regularly to ensure DROP routes aren't blocking legitimate
traffic

2. [] Use descriptive description fields to document why routes are dropped

3. [J Use high priority numbers (90-99) for DROP routes to ensure they're
catch-all routes

4. [] Test DROP route behavior before deploying to production

5. [J Set up alerts for unexpected increases in dropped traffic

Advanced Routing: SSN-Based
Routing and Rewriting

Subsystem Numbers (SSN)

Subsystem Numbers identify the application layer:

e SSN 6: HLR (Home Location Register)

e SSN 7: VLR (Visitor Location Register)

e SSN 8: MSC (Mobile Switching Center) / SMSC (SMS Center)
e SSN 9: GMLC (Gateway Mobile Location Center)

SSN-Based Routing Example

Route SMS traffic to different HLR based on number prefix:



m3ua gt routes: [

# Route SMS for UK numbers to UK HLR, rewrite SSN from 8 (SMSC)

to 6 (HLR)
%{
gt prefix: "44",
source ssn: 8,

(SMSC)
peer id: 1,
dest ssn: 6,
priority: 1,

description: "UK SMS to HLR"
},

# Match incoming SSN 8

# Rewrite to SSN 6 (HLR)

# Route voice traffic for UK numbers (SSN 6) without rewriting

o°

{
gt prefix: "44",
source ssn: 6,

peer id: 1,
dest ssn: nil,
priority: 1,

description: "UK voice traffic"

# Match incoming SSN 6 (HLR)

# No SSN rewrite

Testing STP Routing Configuration

After configuring peers and routes, verify your configuration:

1. Check Peer Status
Via Web Ul:

e Navigate to
e Check M3UA Status page
e Verify peers show Status: ACTIVE

Via IEx Console:


http://localhost/

# Get all peer statuses
M3UA.STP.get peers status()

# Expected output:

# [
# %{peer id: 1, name: "Partner STP West", status: :active,
point code: 100, ...},

# %{peer_id: 2, name: "Local HLR", status: :active, point code:
200, ...}
# ]

2. Test Point Code Routing

# Send test M3UA message to DPC 100
test payload = <<1, 2, 3, 4>> # Dummy payload
M3UA.STP.route by pc(100, test payload, 0)

# Check logs for routing decision
# Expected log: "Routing message: OPC=... -> DPC=100 via peer 1"



3. Test Global Title Routing

# Look up GT route manually
M3UARouting.lookup peer by gt("447712345678")

# Expected output:
# {:0k, {:m3ua peer, 3, "UK Mobile Peer", ...}, nil}

# Look up GT route with SSN
M3UARouting.lookup peer by gt("555881234567", 8)

# Expected output with SSN rewrite:
# {:0k, {:m3ua peer, 4, "SMS HLR Peer", ...}, 6}

4. Monitor Routing Metrics
Access Prometheus metrics at /metrics

Key metrics:

# Messages received per peer
m3ua stp messages received total{peer name="Partner STP West",point ¢
1523

# Messages sent per peer
m3ua stp messages sent total{peer name="Local HLR",point code="200"}

# Routing failures
m3ua_stp routing failures total{reason="no route"} 5
m3ua_stp routing failures total{reason="no gt route"} 2

STP Metrics and Monitoring

Available Metrics

Per-Peer Traffic Metrics:



* m3ua_stp messages received total - Total messages received from each
peer
o Labels: peer name, point code

* m3ua stp messages sent total - Total messages forwarded to each peer
o Labels: peer name, point code

Routing Failure Metrics:

* m3ua stp routing failures total - Count of routing failures by reason
o Labels: reason (values: no route, no gt route)

Metric Interpretation

 High message counts: Indicates active traffic flow

* Routing failures: Indicates missing routes or misconfiguration
o no_route: No Point Code route found for destination

o no gt route: No Global Title route found, and PC routing also failed

Troubleshooting with Metrics
Scenario: No traffic reaching destination

1. Check if messages are being received:

m3ua stp messages received total{peer name="Source Peer"} > 0
2. Check if messages are being sent:

m3ua_stp messages sent total{peer name="Dest Peer"} > 0
3. Check for routing failures:

m3ua_stp routing failures total{reason="no route"} > 0

Solution: If routing failures are high, add missing routes in configuration.



M3UA Peer Status Monitoring

Understanding M3UA

M3UA (MTP3 User Adaptation Layer) is a protocol that allows SS7 signaling to
be transported over IP networks using SCTP.

M3UA Connection States

M3UA connections progress through several states:



Incoming SCCP Message

Extract Called GT, SSN,
TT, NPI, NAI

GT Routing

Enabled?

'

Find All Matching Routes
GT prefix + SSN + TT +
NPl + NAI

l

Downloads ¥ English~ Omnitouch We

OmniCharge  OmniRAN

- -

Sort by Specificity:
1. Longest GT Prefix
2. Specific SSN >
Wildcard
3_Specific [ >




Use Point Code Routing

Wildcard
4. Specific NPl =
Wildcard

5. Specific NAIl =
Wildcard
6. Lowest Priority

Select Most Specific
Route

Route
Enabled?

Apply Rewrites:
- dest ssn
- dest _tt

Y

Lookup by DPC

N

- dest _npi
- dest_nai

Rewrite OPC to STP's
Point Code

.

Forward to Destination
Peer




Message Routed

e DOWN - No SCTP connection

e CONNECTING - SCTP connection in progress

e ASPUP_SENT - Waiting for ASPUP acknowledgment
e INACTIVE - ASP is up but not active

e ASPAC _SENT - Waiting for ASPAC acknowledgment
e ACTIVE - Ready for traffic, fully operational

e ASPDOWN_SENT - Graceful shutdown in progress

State Descriptions:

Monitoring M3UA Peers via Web Ul
The Web Ul provides real-time monitoring of M3UA peer connections.
Accessing M3UA Status Page:

1. Navigate to the Web Ul home page
2. Click on "M3UA Status" in the navigation menu

3. The page auto-refreshes every second

M3UA Status Table:



Column Description

Name Connection name (e.g., testASP)
PID Process identifier
Status UP (green) or DOWN (red)

ASP State Current M3UA state (e.g., ACTIVE, INACTIVE)

Assoc/SCTP SCTP association state

Local Local IP:Port
Remote Remote IP:Port
RC Routing Context ID

Status Indicators:

¢ Green (UP) - Connection is active and healthy

e Red (DOWN) - Connection is down or unavailable
e ASP State - Shows current M3UA connection state
e Assoc/SCTP - Shows SCTP association status



M3UA Message Flow



M3UA Client (ASP) M3UA Server (SGP)

SCTP Association Setup

SCTP INIT

SCTP INIT ACK

SCTP COOKIE ECHO

SCTP COOKIE ACK

M3UA ASP State Management

ASPUP

ASPUP ACK

ASPAC

ASPAC ACK

Active - Data Transfer

DATA (M3UA Protocol Data)

DATA (M3UA Protocol Data)

Graceful Shutdown

ASPDOWN

ASPDOWN ACK

SCTP SHUTDOWN

M3UA Client (ASP) M3UA Server (SGP)




L J L

Troubleshooting M3UA Connections
Issue: Connection Won't Establish
Symptoms:

e Status shows DOWN

e No SCTP association
Checks:

1. Verify network connectivity: ping remote ip

2. Check firewall allows SCTP (protocol 132)

3. Verify remote STP/SGP is listening on correct port
4. Check remote ip and remote port in config

5. Review application logs for SCTP errors

Issue: Connection Established but ASP Not Active
Symptoms:

e SCTP association exists
e ASP state stuck in INACTIVE or ASPUP_SENT

Checks:

1. Verify routing context matches remote configuration
2. Check remote STP accepts your point code
3. Review logs for ASPUP/ASPAC rejections

4. Verify no authentication/security requirements
Issue: Data Not Flowing
Symptoms:

e ASP state shows ACTIVE

* No messages being routed



Checks:

1. Verify routing context in messages

2. Check SCCP addressing (GT format, SSN values)
3. Verify routing tables configured correctly

4. Review /events page for SCCP errors

5. Check point code routing at STP level

M2PA Peer Status Monitoring

Understanding M2PA

M2PA (MTP2 User Peer-to-Peer Adaptation Layer) is a protocol defined in RFC
4165 that provides point-to-point MTP3 message transport over SCTP. Unlike
M3UA which uses an ASP/SGP architecture, M2PA provides peer-to-peer links
similar to traditional TDM SS7 links.

M2PA Link States

M2PA links progress through several states during establishment:



Initial State

DOWN

SCTP Connect

CONNECTING Alignment Failed

SCTP Established Proving Failed

ALIGNMENT Connection Lost

Alignment Complete

PROVING Link Status Change

Proving Complete

READY

Link Status Exchange
(~1s)

Link Testing (~2s)

Data Transfer

State Descriptions:

e DOWN - No SCTP connection, link inactive

e CONNECTING - SCTP association in progress

e ALIGNMENT - Link Status messages exchanged (~1 second)

e PROVING - Link proving period, testing link integrity (~2 seconds)
e READY - Link operational, ready for MTP3 user data transfer

e ALIGNMENT (re-entry) - Link status change requires re-alignment

Link State Progression:

1. SCTP Connection: Establishes SCTP association (DOWN —» CONNECTING)



. Alignment: Exchanges Link Status messages to synchronize (CONNECTING
- ALIGNMENT)

. Proving: Tests link reliability and sequence number synchronization
(ALIGNMENT - PROVING)

. Ready: Link becomes operational for data transfer (PROVING —» READY)



M2PA Message Flow



M3UA Client (ASP) M3UA Server (SGP)

OmniCharge  OmniRAN i i
Downloads ¥ English+ Omnitouch
- -

e 10 (A BN

b
SCTP INIT ACK

SCTP COOKIE ECHO

SCTP COOKIE ACK

M3UA ASP State Management

ASPUP

ASPUP ACK

ASPAC

ASPAC ACK

Active - Data Transfer

DATA (M3UA Protocol Data)

>

DATA (M3UA Protocol Data)
-

Graceful Shutdown

ASPDOWN

ASPDOWN ACK

SCTP SHUTDOWN

M3UA Client (ASP) M3UA Server (SGP)



Monitoring M2PA Peers via Web Ul

The Web Ul provides real-time monitoring of M2PA peer connections.

Accessing Routing Management Page:

1. Navigate to the Web Ul home page

2. Click on "Routing Management" in the navigation menu
3. View the "M3UA/M2PA Peers" table

M2PA Peer Table:

Column

Peer ID

Name

Protocol

Point Code

Adj. PC

Local

Remote

Status

Description

Unique peer identifier

Peer name (e.g., M2PA Link STP A)

Shows "M2PA" in green

Local point code

Adjacent peer point code

Local IP:Port (typically port 3565)

Remote IP:Port

Link state (e.g., READY, ALIGNMENT, DOWN)

Status Indicators:

READY (Green) - Link is operational and passing traffic
ALIGNMENT (Yellow) - Link is aligning, not yet ready
PROVING (Yellow) - Link is in proving state

DOWN (Red) - Link is down or unavailable



Troubleshooting M2PA Connections
Issue: Link Stuck in ALIGNMENT
Symptoms:

e Link state shows ALIGNMENT for extended period
e No progression to PROVING or READY

Checks:

1. Verify both sides are configured with correct point codes

2. Check SCTP firewall allows protocol 132

3. Verify point code and adjacent point code are correctly set
4. Review application logs for Link Status message errors

5. Ensure remote peer is also in ALIGNMENT state

Issue: Link Stuck in PROVING
Symptoms:

e Link reaches PROVING but doesn't transition to READY

e Proving period exceeds 2-3 seconds

Checks:

1. Verify network stability (no packet loss)

2. Check for SCTP association errors

3. Review logs for sequence number mismatches
4. Ensure remote peer is also in PROVING state

5. Verify SCTP multihoming isn't causing routing issues

Issue: Link Flapping (DOWN < READY)
Symptoms:

e Link repeatedly cycles between READY and DOWN

e Frequent re-alignments



Checks:

1. Check network connectivity stability

2. Verify SCTP heartbeat settings

3. Review firewall session timeout settings
4. Check for MTU/fragmentation issues

5. Verify no duplicate IP addresses
Issue: Data Not Flowing
Symptoms:

e Link state shows READY

e No MTP3 messages being transferred
Checks:

1. Verify routing tables include routes to this peer

2. Check MTP3 point code routing is configured

3. Review DPC values in messages match expected routes
4. Check /events page for routing errors

5. Verify sequence numbers (BSN/FSN) are incrementing

Related Documentation

. - Web Ul, API, Monitoring
J - Sending MAP requests

. - SMS delivery

. - Protocol specifications

OmniSS7 by Omnitouch Network Services



Web Ul Guide

This guide provides comprehensive documentation for using the OmniSS7 Web
Ul (Phoenix LiveView interface).

Table of Contents

o s W

Overview

The OmniSS7 Web Ul is a Phoenix LiveView application that provides real-
time monitoring and management capabilities. The available pages depend on
which operational mode is active (STP, HLR, or SMSc).



Web Ul Architecture

Web Browser

f

WebSocket/HTTPS

M3UA Routing System Subscriber Tracker

Server Configuration

e Protocol: HTTPS
e Port: 443 (configured in config/runtime.exs)
e Default IP: 0.0.0.0 (listens on all interfaces)

e Certificates: Located in priv/cert/

Access URL: https://[server-ip]:443

Accessing the Web Ul

Prerequisites
1. SSL Certificates: Ensure valid SSL certificates are present in priv/cert/:

o omnitouch.crt - Certificate file

o omnitouch.pem - Private key file

2. Application Running: Start the application with iex -S mix

3. Firewall: Ensure port 443 is open for HTTPS traffic




Available Pages by Mode

Page

SS7 Events

SS7 Client

M3UA

Routing

Routing Test

HLR Links

Active
Subscribers

SMSc Links

SMSc
Subscribers

Application

Configuration

STP
Mode

HLR
Mode

SMSc
Mode

Description

Event logging and
SCCP message capture

Manual MAP operation
testing

M3UA connection
status

M3UA routing table
management

Route testing and
validation

HLR API status and
subscriber
management

Real-time subscriber
location tracking (HLR)

SMSc API status and
gueue management

Real-time subscriber
tracking (SMSc)

System resources and
monitoring

Configuration viewer



Routing Management

Page: /routing Modes: STP, SMSc Auto-Refresh: Every 5 seconds

The Routing Management page provides a tabbed interface for managing M3UA
routing tables.

Page Layout

Tab Navigation

Mnesia DB

Peers Tab

Manage M3UA peer connections (other STPs, HLRs, MSCs, SMSCs).

Peer Table Columns



Column Description Example

ID Unique peer identifier 1

Name Human-readable peer name  "STP West"

Role Connection role client, server, stp
Point Code Peer's SS7 point code 100

Remote Remote IP:Port 10.0.0.10:2905
Status Connection status active, aspup, down
Actions Edit/Delete buttons -

Adding a Peer

1. Click the Peers tab

2. Fill in the form fields:
o Peer ID: Auto-generated if left empty

o Peer Name: Descriptive name (required)

o Role: Select client, server, or stp

o Point Code: SS7 point code (required)

o Local IP: Your system's IP address

o Local Port: O for dynamic port assignment

o Remote IP: Peer's IP address

o Remote Port: Peer's port (typically 2905)

o Routing Context: M3UA routing context ID

o Network Indicator: international or national
3. Click "Add Peer"

Persistence: Peer is immediately saved to Mnesia and survives restart.

Editing a Peer



1. Click the "Edit" button on the peer row
2. Modify the form fields as needed
3. Click "Update Peer"

Note: If you change the Peer ID, the old peer is deleted and a new one is
created.

Deleting a Peer

1. Click the "Delete" button on the peer row

2. Confirm the deletion (all routes using this peer will also be removed)
Peer Status Indicators

Status Color Description

active []Green Peeris connected and routing messages

aspup 0 Yellow ASP is up but not yet active

down [] Red Peer is disconnected

Point Code Routes Tab
Configure routing rules based on destination Point Codes.

Route Table Columns



Column Description Example

Destination Target point code (zone.area.id

9etp ( 1.2.3 (100)
PC format)

, /14 (exact), /8
Mask Subnet mask for PC matching
(range)

Peer ID Target peer for this route 1
Peer Name Name of target peer "STP_West"
Priority Route priority (1 = highest) 1
Network Network indicator international
Actions Edit/Delete buttons -

Adding a Point Code Route

1. Click the "Point Code Routes" tab

2. Fill in the form fields:
o Destination Point Code: Enter as zone.area.id (e.g., 1.2.3) or
integer (0-16383)

o Mask: Select mask /14 for exact match, lower values for ranges
o Peer ID: Select target peer from dropdown
o Priority: Enter priority (1 = highest, default)
o Network Indicator: Select international or national
3. Click "Add Route"

Point Code Format: You can enter point codes in two formats:

e 3-8-3 Format: zone.area.id (e.g., 1.2.3)

e Integer Format: 0-16383 (e.g., 1100)

The system automatically converts between formats.



Understanding Masks

Point codes are 14-bit values (0-16383). The mask specifies how many most
significant bits must match:

Mask PCs Matched Use Case

/14 1 (exact match) Route to specific destination

/13 2 PCs Small range

/8 64 PCs Medium range

/0 All 16,384 PCs Default/fallback route
Examples:

e PC 1000 /14 - Matches only PC 1000
e PC 1000 /8 — Matches PC 1000-1063 (64 consecutive PCs)
e PC 0 /0 = Matches all point codes (default route)

Point Code Mask Reference Card

The web page includes an interactive reference showing all mask values and
their ranges.

Global Title Routes Tab

Configure routing rules based on SCCP Global Title addresses.

Requirement: Global Title routing must be enabled in configuration:

config :omniss7,
enable gt routing: true

Route Table Columns



Column Description Example

GT Prefix Called party GT prefix (empty = fallback) "1234", ""
Source SSN Match on called party SSN (optional) 6 (HLR), any
Peer ID Target peer 1

Peer Peer name "HLR West (1)"
Dest SSN Rewrite SSN when forwarding (optional) 6, preserve
Priority Route priority 1

Description Route description "US numbers"”
Actions Edit/Delete buttons -

Adding a Global Title Route

1. Click the "Global Title Routes" tab

2. Fill in the form fields:
o GT Prefix: Leave empty for fallback route, or enter digits (e.qg.,
"1234")

o Source SSN: Optional - filter by called party SSN
o Peer ID: Select target peer
o Dest SSN: Optional - rewrite SSN when forwarding
o Priority: Route priority (1 = highest)
o Description: Human-readable description

3. Click "Add Route"

Fallback Routes: If GT Prefix is empty, the route acts as a catch-all for GTs
that don't match any other route.

Common SSN Values

The page includes a reference card with common SSN values:



SSN Network Element

6 HLR (Home Location Register)
7 VLR (Visitor Location Register)
8 MSC (Mobile Switching Center)
9 EIR (Equipment Identity Register)

10 AUC (Authentication Center)
142 RANAP
145 gsmSCF (Service Control Function)

146  SGSN

SSN Rewriting

e Source SSN: Match on the Called Party SSN in incoming messages

e Dest SSN.: If set, rewrites the Called Party SSN when forwarding
o Empty = preserve original SSN

o Value = replace with this SSN

Use Case: Route messages with SSN=6 (HLR) to a peer, and rewrite to SSN=7
(VLR) on the outgoing side.

Routing Table Persistence

All routes are stored in Mnesia and survive application restarts.

How Routes Persist

1. Web Ul Changes: All add/edit/delete operations are immediately saved to
Mnesia



2. Application Restart: Routes are loaded from Mnesia on startup

3. Runtime.exs Merge: Static routes from config/runtime.exs are merged
with Mnesia routes (no duplicates)

Route Priority
When multiple routes match a destination:

1. More Specific First: Higher mask values (more specific) take precedence
2. Priority Field: Lower priority numbers route first (1 = highest priority)

3. Peer Status: Only routes to active peers are used

Active Subscribers

Page: /subscribers Mode: HLR only Auto-Refresh: Every 2 seconds

Displays real-time tracking of subscribers who have sent UpdatelLocation
requests.



Page Features

Routing Page

‘ Peers Tab } —
‘ Point Code Routes Tab }

Global Title Routes Tab }—

Subscriber Table Columns

Column

IMSI

VLR
Number

MSC
Number

Updated At

Duration

Description

Subscriber IMSI

Current VLR GT address

Current MSC GT address

Last UpdatelLocation
timestamp

Time since registration

Data Storage

Example

"50557123456789"

“555123155"

“555123155"

"2025-10-25 14:23:45
uTc"

“2h 15m 34s"



Statistics Summary
When subscribers are present, a summary card displays:

* Total Active: Total number of registered subscribers
¢ Unique VLRs: Number of distinct VLR addresses
* Unique MSCs: Number of distinct MSC addresses

Clearing Subscribers
Clear All Button: Removes all active subscribers from the tracker.
Confirmation: Requires confirmation before clearing (cannot be undone).

Use Case: Clear stale subscriber records after network maintenance or testing.

Auto-Refresh

The page automatically refreshes every 2 seconds to show real-time
subscriber updates.

SMSc Subscribers

Page: /smsc subscribers Mode: SMSc only Auto-Refresh: Every 2 seconds

Displays real-time tracking of subscribers based on alertServiceCenter
messages received from HLRs, message delivery status, and failure tracking.



Page Features

HLR SMSc Tracker WebUI

alertServiceCenter (MSISDN)

Add subscriber (active)

Auto-refresh (2s)

Display subscriber

SRI-for-SM

Absent Subscriber

Mark failed

Auto-refresh (2s)

Update status badge

HLR SMSc Tracker WebUI




Subscriber Table Columns

Column

MSISDN

IMSI

HLR GT

Msgs Sent

Msgs Rcvd

Status

Last
Updated

Duration

Description

Subscriber's phone number

Subscriber IMSI

HLR GT that sent
alertServiceCenter

Count of MT-FSM messages
sent

Count of MO-FSM messages
received

Active or Failed (color-
coded)

Last update timestamp

Time since last update

Status Indicators

Example

"15551234567"

"001010123456789"

*15551111111"

® Active

"2025-10-30 14:23:45
uTc"

“15m 34s"

o @ Active (Green): Subscriber is reachable, last alertServiceCenter received

successfully

e O Failed (Red): Last delivery attempt failed (SRI-for-SM or absent
subscriber error)

Statistics Summary

When subscribers are present, a summary card displays:

¢ Total Tracked: Total number of tracked subscribers



e Active: Number of subscribers with active status

e Failed: Number of subscribers with failed status

e Unique HLRs: Number of distinct HLRs sending alerts
Managing Subscribers
Remove Button: Removes individual subscriber from tracking.

Clear All Button: Removes all tracked subscribers.

Confirmation: Clear All requires confirmation before clearing (cannot be
undone).

Use Case:

¢ Remove stale entries after network issues
e Clear test data after development

e Monitor which HLRs are sending alerts

Message Counters

The tracker automatically increments counters:

e Messages Sent: Incremented when SRI-for-SM succeeds and MT-FSM is
sent

e Messages Received: Incremented when MO-FSM is received from
subscriber

Auto-Refresh

The page automatically refreshes every 2 seconds to show real-time
subscriber and status updates.



Common Operations

Searching and Filtering

Currently, the Web Ul does not include built-in search/filter functionality. To find
specific routes:

1. Use your browser's find function (Ctrl+F / Cmd+F)

2. Search for peer names, point codes, or GT prefixes

Bulk Operations
To perform bulk route changes:

1. Option 1: Use the for programmatic access
2. Option 2: Edit config/runtime.exs and restart the application
3. Option 3: Use the Web Ul for individual route changes

Export/Import

Note: The Web Ul does not currently support exporting or importing routing
tables. Routes are:

e Stored in Mnesia database files

e Configured in config/runtime.exs
To backup routes:

1. Mnesia: Backup the Mnesia.{node name}/ directory

2. Config: Version control config/runtime.exs

Auto-Refresh Behavior

Different pages have different refresh intervals:



Refresh
Page Reason
Interval

Routing .
5 seconds Route changes are infrequent
Management

) , Subscriber state changes
Active Subscribers 2 seconds
frequently

M3UA Status Varies by page Connection state monitoring

WebSocket Connection: All pages use Phoenix LiveView WebSocket
connections for real-time updates.

Network Interruption: If the WebSocket connection is lost, the page will
attempt to reconnect automatically.

Troubleshooting

Page Not Loading

1. Check HTTPS Certificate: Ensure priv/cert/omnitouch.crt and .pem
are present

2. Verify Port 443: Check firewall rules allow HTTPS traffic
3. Application Running: Confirm application is running with iex -S mix

4. Browser Console: Check for SSL certificate errors (self-signed cert
warnings)

Routes Not Persisting

1. Check Mnesia Storage: Verify mnesia storage type: :disc_copies in
config

2. Mnesia Directory: Ensure Mnesia directory is writable

3. Check Logs: Look for Mnesia errors in application logs



Auto-Refresh Not Working

1. WebSocket Connection: Check browser console for WebSocket errors
2. Network: Verify stable network connection

3. Page Reload: Try refreshing the page (F5)

Related Documentation

. - Detailed routing configuration

. - Subscriber management

. - REST API for programmatic access

. - All configuration parameters
Summary

The OmniSS7 Web Ul provides intuitive, real-time management of routing
tables and subscriber tracking:

[0 Real-time Updates - Auto-refresh keeps data current [] Persistent Storage
- Mnesia ensures routes survive restarts [] Role-Based Ul - Pages adapt to
operational mode (STP/HLR/SMSc) [] Interactive Management - Add, edit,
delete routes without restart [] Status Monitoring - Live connection and peer
status

For advanced operations or automation, see the






