
REST API Guide

← Back to Main Documentation

This guide provides comprehensive documentation for the OmniSS7 REST API

and Swagger UI.

Table of Contents

1. Overview

2. HTTP Server Configuration

3. Swagger UI

4. API Endpoints

5. Authentication

6. Response Formats

7. Error Handling

8. Metrics (Prometheus)

9. Example Requests

Overview

OmniSS7 provides a REST API for programmatic access to MAP (Mobile

Application Part) operations. The API allows you to:

Send MAP requests (SRI, SRI-for-SM, UpdateLocation, etc.)

Retrieve MAP responses

Monitor system metrics via Prometheus

API Architecture

HTTP Server Configuration

Server Details

Parameter Value Configurable

Protocol HTTP No

IP Address 0.0.0.0 (all interfaces) Via code only

Port 8080 Via code only

Transport Plug.Cowboy No

Access URL: http://[server-ip]:8080

Enabling/Disabling the HTTP Server

Control whether the HTTP server starts:

Default: true (enabled)

When Disabled: The HTTP server will not start, and REST API/Swagger UI will

be unavailable.

Swagger UI

The API includes a Swagger UI for interactive API documentation and testing.

config :omniss7,

 start_http_server: true # Set to false to disable

Accessing Swagger UI

URL: http://[server-ip]:8080/swagger

Features:

Interactive API documentation

Try-it-out functionality for testing endpoints

Request/response schemas

Example payloads

Swagger JSON

The OpenAPI specification is available at:

URL: http://[server-ip]:8080/swagger.json

Use Cases:

Import into Postman or other API clients

Generate client libraries

API documentation automation

API Endpoints

All MAP operation endpoints follow the pattern: POST /api/{operation}

Endpoint Summary

Endpoint Method Purpose Timeout

/api/sri POST Send Routing Info 10s

/api/sri-for-sm POST Send Routing Info for SM 10s

/api/send-auth-info POST Send Authentication Info 10s

/api/MT-forwardSM POST
Mobile Terminated Forward

SM
10s

/api/forwardSM POST Forward SM 10s

/api/updateLocation POST Update Location 10s

/api/prn POST Provide Roaming Number 10s

/metrics GET Prometheus metrics N/A

/swagger GET Swagger UI N/A

/swagger.json GET OpenAPI spec N/A

Note: All MAP requests have a hardcoded 10-second timeout.

SendRoutingInfo (SRI)

Retrieve routing information for establishing a call to a mobile subscriber.

Endpoint: POST /api/sri

Request Body:

Parameters:

Field Type Required Description

msisdn String Yes Called party MSISDN

gmsc String Yes Gateway MSC Global Title

Response (200 OK):

Error (504 Gateway Timeout):

cURL Example:

{

 "msisdn": "1234567890",

 "gmsc": "5551234567"

}

{

 "result": {

 "imsi": "001001234567890",

 "msrn": "5551234999",

 "vlr_number": "5551234800",

 ...

 }

}

{

 "error": "timeout"

}

SendRoutingInfoForSM (SRI-for-SM)

Retrieve routing information for delivering an SMS to a mobile subscriber.

Endpoint: POST /api/sri-for-sm

Request Body:

Parameters:

Field Type Required Description

msisdn String Yes Destination MSISDN

service_center String Yes Service Center Global Title

Response (200 OK):

curl -X POST http://localhost:8080/api/sri \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "gmsc": "5551234567"

 }'

{

 "msisdn": "1234567890",

 "service_center": "5551234567"

}

cURL Example:

SendAuthenticationInfo

Request authentication vectors for a subscriber.

Endpoint: POST /api/send-auth-info

Request Body:

Parameters:

{

 "result": {

 "imsi": "001001234567890",

 "msc_number": "5551234800",

 "location_info": {...},

 ...

 }

}

curl -X POST http://localhost:8080/api/sri-for-sm \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "service_center": "5551234567"

 }'

{

 "imsi": "001001234567890",

 "vectors": 3

}

Field Type Required Description

imsi String Yes Subscriber IMSI

vectors Integer Yes
Number of authentication vectors to

generate

Response (200 OK):

cURL Example:

MT-ForwardSM

Deliver a Mobile Terminated SMS to a subscriber.

{

 "result": {

 "authentication_sets": [

 {

 "rand": "0123456789ABCDEF...",

 "xres": "...",

 "ck": "...",

 "ik": "...",

 "autn": "..."

 }

],

 ...

 }

}

curl -X POST http://localhost:8080/api/send-auth-info \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vectors": 3

 }'

Endpoint: POST /api/MT-forwardSM

Request Body:

Parameters:

Field Type Required Description

imsi String Yes
Destination

subscriber IMSI

destination_service_centre String Yes
Destination service

center GT

originating_service_center String Yes
Originating service

center GT

smsPDU String Yes
SMS TPDU in

hexadecimal format

Note: smsPDU must be a hex-encoded string (uppercase or lowercase).

Response (200 OK):

{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

}

{

 "result": {

 "delivery_status": "success",

 ...

 }

}

cURL Example:

ForwardSM

Forward an SMS message (MO-SMS from subscriber).

Endpoint: POST /api/forwardSM

Request Body: Same as MT-ForwardSM

cURL Example:

UpdateLocation

Notify HLR of subscriber location change (VLR registration).

Endpoint: POST /api/updateLocation

Request Body:

curl -X POST http://localhost:8080/api/MT-forwardSM \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

 }'

curl -X POST http://localhost:8080/api/forwardSM \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "destination_service_centre": "5551234567",

 "originating_service_center": "5551234568",

 "smsPDU": "0001000A8121436587F900001C48656C6C6F20576F726C64"

 }'

Parameters:

Field Type Required Description

imsi String Yes Subscriber IMSI

vlr String Yes VLR Global Title address

Response (200 OK):

Note: In HLR mode, this triggers InsertSubscriberData (ISD) sequence with 10-

second timeout per ISD.

cURL Example:

{

 "imsi": "001001234567890",

 "vlr": "5551234800"

}

{

 "result": {

 "hlr_number": "5551234567",

 "subscriber_data": {...},

 ...

 }

}

curl -X POST http://localhost:8080/api/updateLocation \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vlr": "5551234800"

 }'

ProvideRoamingNumber (PRN)

Request MSRN (Mobile Station Roaming Number) for call routing to roaming

subscriber.

Endpoint: POST /api/prn

Request Body:

Parameters:

Field Type Required Description

msisdn String Yes Subscriber MSISDN

gmsc String Yes Gateway MSC GT

msc_number String Yes MSC number for subscriber

imsi String Yes Subscriber IMSI

Response (200 OK):

cURL Example:

{

 "msisdn": "1234567890",

 "gmsc": "5551234567",

 "msc_number": "5551234800",

 "imsi": "001001234567890"

}

{

 "result": {

 "msrn": "5551234999",

 ...

 }

}

Authentication

Current Status: The API does not require authentication.

Security Considerations:

API is intended for internal/trusted network use

Consider using firewall rules to restrict access

For production deployments, consider implementing authentication

middleware

Response Formats

All responses use JSON format.

Success Response

HTTP Status: 200 OK

Structure:

curl -X POST http://localhost:8080/api/prn \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "1234567890",

 "gmsc": "5551234567",

 "msc_number": "5551234800",

 "imsi": "001001234567890"

 }'

Error Response

HTTP Status:

400 Bad Request - Invalid request body

504 Gateway Timeout - MAP request timeout (10 seconds)

404 Not Found - Invalid endpoint

Structure:

or

{

 "result": {

 // Operation-specific response data

 }

}

{

 "error": "timeout"

}

{

 "error": "invalid request"

}

Error Handling

Common Errors

Error
HTTP

Code
Description Solution

Invalid

JSON
400

Request body is not

valid JSON
Check JSON syntax

Missing

fields
400

Required fields

missing

Include all required

parameters

Timeout 504

MAP request

exceeded 10s

timeout

Check M3UA connectivity,

HLR/VLR availability

Not Found 404 Invalid endpoint Check endpoint URL

Timeout Behavior

All MAP requests have a hardcoded 10-second timeout:

1. Request sent to MapClient GenServer

2. Waits for response up to 10 seconds

3. If no response → returns 504 Gateway Timeout

4. If response received → returns 200 OK with result

Troubleshooting Timeouts:

Check M3UA connection status (Web UI → M3UA page)

Verify network element (HLR/VLR/MSC) is reachable

Check routing configuration

Review SS7 event logs for errors

Metrics (Prometheus)

The API exposes Prometheus metrics for monitoring.

Metrics Endpoint

URL: http://[server-ip]:8080/metrics

Format: Prometheus text format

Example Output:

HELP map_requests_total Total MAP requests

TYPE map_requests_total counter

map_requests_total{operation="sri"} 42

map_requests_total{operation="sri_for_sm"} 158

map_requests_total{operation="updateLocation"} 23

HELP cap_requests_total Total CAP requests

TYPE cap_requests_total counter

cap_requests_total{operation="initialDP"} 87

cap_requests_total{operation="requestReportBCSMEvent"} 91

HELP map_request_duration_milliseconds Duration of MAP

request/responses in ms

TYPE map_request_duration_milliseconds histogram

map_request_duration_milliseconds_bucket{operation="sri",le="10"}

5

map_request_duration_milliseconds_bucket{operation="sri",le="50"}

12

map_request_duration_milliseconds_bucket{operation="sri",le="100"}

35

...

HELP map_pending_requests Number of pending MAP TID waiters

TYPE map_pending_requests gauge

map_pending_requests 3

Available Metrics

Metric Type Labels Descripti

map_requests_total Counter operation

Total

number o

MAP

requests b

operation

type

cap_requests_total Counter operation

Total

number o

CAP

requests b

operation

type

map_request_duration_milliseconds Histogram operation

Request

duration i

millisecon

map_pending_requests Gauge -

Number o

pending

MAP

transactio

Prometheus Configuration

Add to your prometheus.yml :

Example Requests

Python Example

scrape_configs:

 - job_name: 'omniss7'

 static_configs:

 - targets: ['server-ip:8080']

 metrics_path: '/metrics'

 scrape_interval: 15s

import requests

import json

SRI-for-SM Request

url = "http://localhost:8080/api/sri-for-sm"

payload = {

 "msisdn": "1234567890",

 "service_center": "5551234567"

}

response = requests.post(url, json=payload, timeout=15)

if response.status_code == 200:

 result = response.json()

 print(f"Success: {result}")

elif response.status_code == 504:

 print("Timeout - no response from network")

else:

 print(f"Error: {response.status_code} - {response.text}")

JavaScript Example

const axios = require('axios');

async function sendSRI() {

 try {

 const response = await

axios.post('http://localhost:8080/api/sri', {

 msisdn: '1234567890',

 gmsc: '5551234567'

 }, {

 timeout: 15000

 });

 console.log('Success:', response.data);

 } catch (error) {

 if (error.code === 'ECONNABORTED') {

 console.error('Timeout - no response from network');

 } else {

 console.error('Error:', error.response?.data ||

error.message);

 }

 }

}

sendSRI();

Bash/cURL Example

#!/bin/bash

UpdateLocation Request

response=$(curl -s -w "\n%{http_code}" -X POST

http://localhost:8080/api/updateLocation \

 -H "Content-Type: application/json" \

 -d '{

 "imsi": "001001234567890",

 "vlr": "5551234800"

 }')

http_code=$(echo "$response" | tail -n 1)

body=$(echo "$response" | sed '$d')

if ["$http_code" -eq 200]; then

 echo "Success: $body"

elif ["$http_code" -eq 504]; then

 echo "Timeout - no response from network"

else

 echo "Error $http_code: $body"

fi

Flow Diagrams

API Request Flow

SS7 NetworkM3UA ConnectionMapClientAPIhandlerClient

SS7 NetworkM3UA ConnectionMapClientAPIhandlerClient

If timeout (10s)

POST /api/sri

GenServer.call (10s timeout)

Send SRI request

M3UA/SCCP/MAP

MAP Response

Response received

{:ok, response}

200 OK + JSON

{:error, :timeout}

504 Gateway Timeout

Summary

The OmniSS7 REST API provides:

� MAP Operations - Full support for SRI, SRI-for-SM, UpdateLocation, SMS

delivery, authentication � Swagger UI - Interactive API documentation and

testing � Prometheus Metrics - Monitoring and observability � Hardcoded

Timeouts - 10-second timeout for all MAP requests � HTTP Server - Runs on

port 8080 (configurable via start_http_server)

For Web UI access, see the Web UI Guide.

For configuration details, see the Configuration Reference.

Technical Reference

(Appendix)

← Back to Main Documentation

Technical reference for SS7 protocols and OmniSS7 implementation.

SS7 Protocol Stack

MAP Operation Codes

Operation Opcode Purpose

updateLocation 2 Register subscriber location

cancelLocation 3 Deregister from VLR

provideRoamingNumber 4 Request MSRN

sendRoutingInfo 22 Query call routing

mt-forwardSM 44 Deliver SMS to subscriber

sendRoutingInfoForSM 45 Query SMS routing

mo-forwardSM 46 Forward SMS from subscriber

sendAuthenticationInfo 56 Request auth vectors

TCAP Message Types

BEGIN - Start transaction

CONTINUE - Mid-transaction

END - Final response

ABORT - Cancel transaction

SCCP Addressing

Global Title Formats

E.164 - International phone number (e.g., 447712345678)

E.212 - IMSI format (e.g., 234509876543210)

E.214 - Point code format

Subsystem Numbers (SSN)

SSN 6: HLR

SSN 7: VLR

SSN 8: MSC/SMSC

SSN 9: GMLC

SSN 10: SGSN

SMS TPDU

Message Types

SMS-DELIVER (MT) - Network to mobile

SMS-SUBMIT (MO) - Mobile to network

SMS-STATUS-REPORT - Delivery status

SMS-COMMAND - Remote command

Character Encodings

GSM7 - 7-bit GSM alphabet (160 chars per SMS)

UCS2 - 16-bit Unicode (70 chars per SMS)

8-bit - Binary data (140 bytes per SMS)

M3UA States

DOWN - No SCTP connection

CONNECTING - SCTP connecting

ASPUP_SENT - Waiting for ASPUP ACK

INACTIVE - ASP up but not active

ASPAC_SENT - Waiting for ASPAC ACK

ACTIVE - Ready for traffic

Common SS7 Point Codes

Point codes are typically 14-bit (ITU) or 24-bit (ANSI) values.

Example Format (ITU):

Network: 3 bits

Cluster: 8 bits

Member: 3 bits

SCCP Error Codes

0 - No translation for address

1 - No translation for specific address

2 - Subsystem congestion

3 - Subsystem failure

4 - Unequipped user

5 - MTP failure

6 - Network congestion

7 - Unqualified

8 - Error in message transport

MAP Error Codes

Code Error Description

1 unknownSubscriber Subscriber not in HLR

27 absentSubscriber Subscriber not reachable

34 systemFailure Network failure

35 dataMissing Required data not available

36 unexpectedDataValue Invalid parameter value

Related Documentation

← Back to Main Documentation

STP Guide

MAP Client Guide

SMS Center Guide

HLR Guide

Common Features

OmniSS7 by Omnitouch Network Services

CAMEL Request Builder

- Implementation

Summary

Overview

A new LiveView component has been created to build and send CAMEL/CAP

requests for testing purposes. This provides an interactive UI for creating

InitialDP and other CAMEL operations.

New Components

1. CAMEL Request Builder LiveView

Features:

Interactive form-based UI for building CAMEL requests

Support for multiple request types:

InitialDP - Initial Detection Point (call setup notification)

Connect - Connect call to destination

ReleaseCall - Release/terminate call

RequestReportBCSMEvent - Request event notifications

Continue - Continue call processing

ApplyCharging - Apply charging/duration limits to calls

Key Capabilities:

Request type selection dropdown

Dynamic form fields based on selected request type

Advanced SCCP/M3UA options (collapsible section)

Called/Calling Party Global Titles

SSN (Subsystem Number) configuration

OPC/DPC (Point Code) settings

Real-time request history (last 20 requests)

Session tracking via OTID

Success/error feedback

Request size tracking

Route: /camel_request

2. Enhanced EventLog with CAMEL Support

New Functions:

paklog_camel/2 - Dedicated CAMEL/CAP message logging

lookup_cap_opcode_name/1 - CAP operation code lookup

find_cap_opcode/1 - Extract CAP opcode from JSON

extract_cap_tids/1 - Extract OTID/DTID from CAP messages

format_cap_to_json/1 - Convert CAP PDUs to JSON format

CAP Operation Codes Supported:

Features:

JSON logging of all CAMEL requests/responses

Automatic TCAP action detection (Begin/Continue/End/Abort)

SCCP addressing extraction

Error handling for malformed messages

Background task processing (non-blocking)

Event prefixed with "CAP:" for easy filtering

3. Updated CapClient

Changes:

Added paklog_camel/2 calls for incoming and outgoing messages

Dual logging: Both MAP (paklog) and CAP (paklog_camel) for compatibility

Outgoing messages logged in sccp_m3ua_maker/2

Incoming messages logged in handle_payload/1

0 => "initialDP"

5 => "connect"

6 => "releaseCall"

7 => "requestReportBCSMEvent"

8 => "eventReportBCSM"

10 => "continue"

13 => "furnishChargingInformation"

35 => "applyCharging"

... (47 total operations)

Configuration

The new LiveView pages have been added to the runtime configuration:

Usage

Accessing the Request Builder

1. Navigate to: https://your-server:8087/camel_request

2. Select request type from dropdown

3. Fill in required parameters

4. Optionally expand "Advanced SCCP/M3UA Options" for fine-tuning

5. Click "Send [RequestType] Request"

Request Flow

InitialDP (New Call)

1. Set Service Key (e.g., 100)

File: config/runtime.exs

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 Events"},

 {SS7.Web.TestClientLive, "/client", "SS7 Client"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.HlrLinksLive, "/hlr_links", "HLR Links"},

 {SS7.Web.CAMELSessionsLive, "/camel_sessions", "CAMEL

Sessions"},

 {SS7.Web.CAMELRequestLive, "/camel_request", "CAMEL Request

Builder"}

],

 page_order: ["/events", "/client", "/m3ua", "/hlr_links",

 "/camel_sessions", "/camel_request",

 "/application", "/configuration"]

2. Set Calling Number (A-Party)

3. Set Called Number (B-Party)

4. Send request → Generates new OTID

5. OTID stored in session for follow-up requests

Follow-up Requests (Connect, ReleaseCall, etc.)

1. Must have active OTID from InitialDP

2. Request automatically uses stored OTID

3. Warning shown if no active OTID

Request Parameters

InitialDP:

Service Key (integer)

Calling Number (ISDN format)

Called Number (ISDN format)

Connect:

Destination Number (where to route call)

ReleaseCall:

Cause Code (16 = Normal, 17 = Busy, 31 = Unspecified)

RequestReportBCSMEvent:

BCSM Events (comma-separated: oAnswer, oDisconnect, etc.)

Continue:

No parameters (uses active OTID)

ApplyCharging:

Duration (seconds, 1-864000) - Maximum call duration before action

Release on Timeout (boolean) - Whether to release call when duration

expires

Advanced Options

SCCP Addressing:

Called Party GT (Global Title)

Calling Party GT

Called SSN (default 146 = gsmSSF)

Calling SSN (default 146)

M3UA Point Codes:

OPC (Originating Point Code, default 5013)

DPC (Destination Point Code, default 5011)

JSON Logging

All CAMEL messages are now logged in JSON format in the event log with:

Direction: incoming/outgoing

TCAP Action: Begin/Continue/End/Abort

CAP Operation: e.g., "CAP:initialDP", "CAP:connect"

SCCP Addressing: Called/Calling Party info

TIDs: OTID/DTID for correlation

Full Message: JSON-encoded CAP PDU

Example Log Entry

Request History

The UI displays the last 20 requests with:

Timestamp

Request type (with color-coded badge)

OTID (first 8 hex chars)

Status (sent/error)

Message size in bytes

Session Tracking

Current Session Info Panel:

Displays active OTID

Shows last request byte size

Visible only when session is active

{

 "map_event": "CAP:initialDP",

 "direction": "outgoing",

 "tcap_action": "Begin",

 "otid": "A1B2C3D4",

 "sccp_called": {

 "SSN": 146,

 "GlobalTitle": {

 "Digits": "55512341234",

 "NumberingPlan": "isdn_tele",

 "NatureOfAddress_Indicator": "international"

 }

 },

 "event_message": "{ ... full CAP PDU ... }"

}

Testing Workflow

1. Start New Call:

Send InitialDP → Get OTID

System creates session

2. Control Call:

Send RequestReportBCSMEvent → Request notifications

Send ApplyCharging → Set call duration limit (e.g., 290 seconds)

Send Connect → Route to destination

OR Send ReleaseCall → Terminate

3. View Results:

Check request history

Monitor CAMEL Sessions page

Review event logs with "CAP:" prefix

ApplyCharging - Call Duration

Control

Overview

The ApplyCharging operation allows you to set a maximum call duration and

optionally release the call when that duration expires. This is typically used for

prepaid charging scenarios or enforcing time limits on calls.

Use Cases

Prepaid Charging: Limit call duration based on subscriber balance

Time-Based Billing: Enforce periodic charging intervals

Resource Management: Prevent calls from running indefinitely

OCS Integration: Coordinate with Online Charging Systems for real-time

credit control

Parameters

Duration (maxCallPeriodDuration)

Type: Integer (1-864000 seconds)

Description: Maximum number of seconds the call can run before the

timer expires

Examples:

60 = 1 minute

290 = 4 minutes 50 seconds (common test value)

3600 = 1 hour

86400 = 24 hours

Release on Timeout (releaseIfDurationExceeded)

Type: Boolean (true/false)

Default: true

Description: What happens when the duration expires:

true : Automatically release/disconnect the call

false : Send notification but keep call active (allows gsmSCF to take

action)

Message Structure

The ApplyCharging message is encoded as a TCAP Continue with:

TCAP: Continue message (uses existing transaction)

Opcode: 35 (applyCharging)

Parameters: ApplyChargingArg containing:

aChBillingChargingCharacteristics : Time-based charging info

timeDurationCharging : Maximum duration and release flag

partyToCharge : Which party is charged (default: sendingSideID)

Example Usage

Scenario: Prepaid call with 5-minute limit

1. Send InitialDP to start call monitoring

2. Send ApplyCharging to set 5-minute limit

3. Send Connect to complete the call

4. After 5 minutes (300 seconds):

Call automatically released by network

gsmSCF receives disconnect notification

Best Practices

1. Always send ApplyCharging BEFORE Connect

Ensures charging is active when call connects

Prevents uncharged call segments

2. Use with RequestReportBCSMEvent

Request oAnswer and oDisconnect events

Service Key: 100

Calling: 447700900123

Called: 447700900456

→ OTID: A1B2C3D4

Duration: 300 (seconds)

Release on Timeout: true

→ Uses OTID: A1B2C3D4

Destination: 447700900456

→ Uses OTID: A1B2C3D4

Allows tracking of actual call duration

Enables re-application of charging if needed

3. Set reasonable durations

Too short: Frequent charging operations, poor user experience

Too long: Risk of revenue loss on prepaid calls

Typical: 60-300 seconds for prepaid, longer for postpaid

4. Handle timeout gracefully

If release=false , be prepared to handle timer expiry notifications

Implement logic to extend duration or release call

Error Handling

Common issues:

No active OTID: Must send InitialDP first

Invalid duration: Must be 1-864000 seconds

Network support: Some SSF implementations may not support

ApplyCharging

Timer accuracy: Network timer resolution typically 1 second, but may

vary

Monitoring

Track ApplyCharging operations via:

Request History: Shows sent ApplyCharging requests

Event Log: Search for "CAP:applyCharging"

CAMEL Sessions: Monitor active sessions with charging applied

TCAP Trace: Debug encoding/decoding issues

Implementation Details

State Management

LiveView assigns track form state

OTID stored in socket assigns

Request history limited to 20 entries

Auto-refresh disabled (manual send only)

Request Generation

Uses existing CapRequestGenerator module

Builds proper TCAP/CAP structures

Encodes with :TCAPMessages codec

Wraps in SCCP via CapClient.sccp_m3ua_maker/2

Sending Mechanism

Sends via M3UA to :camelgw_client_asp

Uses routing context 1

Automatic SCCP/M3UA encapsulation

Error Handling

Form validation with user feedback

Graceful handling of missing OTID

Parse errors shown in UI

Encoding failures logged

Future Enhancements

Potential additions:

1. Request templates/presets

2. Response correlation and display

3. Call flow visualization

4. Session detail drill-down

5. Export request history

6. Load testing (bulk requests)

7. PCAP export of generated messages

8. CAP parameter validation

Integration Notes

Compatible with existing MAP logging (paklog)

Shares event log database with MAP events

Uses same SCCP/M3UA infrastructure

Works with CAMELSessionsLive for monitoring

Integrates with existing M3UA routing

Files Modified

config/runtime.exs - UPDATED

Dependencies

Existing CapRequestGenerator

CapClient for M3UA sending

M3UA.Server for packet transmission

EventLog for message logging

Phoenix LiveView framework

Control Panel for UI infrastructure

CAMEL Gateway

Configuration Guide

Overview

The CAMEL Gateway (CAMELGW) mode transforms OmniSS7 into an

Intelligent Network (IN) platform that provides real-time call control and

charging services using the CAMEL Application Part (CAP) protocol.

What is CAMEL?

CAMEL (Customized Applications for Mobile network Enhanced Logic) is a set

of standards designed to work on either a GSM core network or UMTS network.

It allows operators to provide services that require real-time control of calls,

such as:

Prepaid calling - Real-time balance checking and charging

Premium rate services - Special billing for value-added services

Call routing control - Dynamic destination routing based on time/location

Virtual private networks - Corporate numbering plans

Call screening - Allow/block calls based on criteria

CAP Protocol Versions

OmniSS7 CAMELGW supports multiple CAP versions:

Version Phase Features

CAP v1 CAMEL Phase 1 Basic call control, limited operations

CAP v2 CAMEL Phase 2 Enhanced operations, SMS support

CAP v3 CAMEL Phase 3 GPRS support, additional operations

CAP v4 CAMEL Phase 4 Advanced features, multimedia support

Default: CAP v2 (most widely deployed)

Architecture

Call Flow Example

OCSCAMELGW (gsmSCF)MSC/VLR (gsmSSF)

OCSCAMELGW (gsmSCF)MSC/VLR (gsmSSF)

Call Setup - InitialDP

Call Answer

Call in Progress (30s later)

Call Termination

InitialDP(IMSI, A-num, B-num, ServiceKey)

InitiateSession

MaxUsage: 30s

RequestReportBCSMEvent + Continue

EventReportBCSM(oAnswer)

UpdateSession(Usage: 0s)

MaxUsage: 30s

Continue

UpdateSession(Usage: 30s)

MaxUsage: 30s

EventReportBCSM(oDisconnect)

TerminateSession(Usage: 125s)

CDR Generated, Cost: $2.50

ReleaseCall

Configuration

Prerequisites

OmniSS7 installed and running

M3UA connectivity to MSC/GMSC (gsmSSF)

Online Charging System (OCS) with API endpoint (optional, for real-time

charging)

Enable CAMEL Gateway Mode

Edit config/runtime.exs and configure the CAMEL Gateway section:

config :omniss7,

 # Mode flags - Enable CAP/CAMEL features

 cap_client_enabled: true,

 camelgw_mode_enabled: true,

 # Disable other modes

 map_client_enabled: false,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 # CAP/CAMEL Version Configuration

 # Determines which CAP version to use for outgoing requests and

dialogue

 # Options: :v1, :v2, :v3, :v4

 cap_version: :v2,

 # OCS Integration (for real-time charging)

 ocs_enabled: true,

 ocs_url: "http://your-ocs-server/api/charging",

 ocs_timeout: 5000, # milliseconds

 ocs_auth_token: "your-api-token" # Optional, if OCS requires

authentication

 # M3UA Connection Configuration for CAMEL

 # Connect as ASP (Application Server Process) for CAP operations

 cap_client_m3ua: %{

 mode: "ASP",

 callback: {CapClient, :handle_payload, []},

 process_name: :camelgw_client_asp,

 # Local endpoint (CAMELGW system)

 local_ip: {10, 179, 4, 13},

 local_port: 2905,

 # Remote endpoint (MSC/GMSC - gsmSSF)

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 # M3UA Parameters

 routing_context: 1,

 network_appearance: 0,

Configure Web UI Pages

The Web UI includes specialized pages for CAMEL operations:

 asp_identifier: 13

 }

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 Events"},

 {SS7.Web.TestClientLive, "/client", "SS7 Client"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.CAMELSessionsLive, "/camel_sessions", "CAP

Sessions"},

 {SS7.Web.CAMELRequestLive, "/camel_request", "CAP Requests"}

],

 page_order: ["/events", "/client", "/m3ua", "/camel_sessions",

 "/camel_request", "/application", "/configuration"]

CAP Operations Supported

Incoming Operations (from gsmSSF → gsmSCF)

Operation Opcode Description Ha

InitialDP 0

Initial

Detection

Point - call

setup

notification

handle_initial_d

EventReportBCSM 6

Basic Call

State Model

event

(answer,

disconnect,

etc.)

handle_event_rep

ApplyChargingReport 71

Charging

report from

gsmSSF

handle_apply_cha

AssistRequestInstructions 16

Request for

assistance

from

gsmSRF

handle_assist_re

Outgoing Operations (from gsmSCF → gsmSSF)

Operation Opcode Description

Connect 20

Connect call to

destination

number

CapRequestG

Continue 31

Continue call

processing

without

modification

CapRequestG

ReleaseCall 22
Release/terminate

the call
CapRequestG

RequestReportBCSMEvent 23

Request

notification of call

events

CapRequestG

ApplyCharging 35
Apply charging to

the call
CapRequestG

Web UI Features

CAMEL Sessions Page

URL: http://localhost/camel_sessions

Real-time monitoring of active CAMEL call sessions:

Features:

Live session list - Auto-refreshes every 2 seconds

Session details - OTID, Call ID, State, Duration

CAP Version - Displays protocol version (CAP v1/v2/v3/v4) detected from

InitialDP

Call information - IMSI, A-number, B-number, Service Key

State tracking - Initiated, Answered, Terminated

Duration timer - Real-time call duration display

Table Columns:

Call ID, State, Version, IMSI, Calling Number, Called Number, Service Key,

Duration, Start Time, OTID

Session States:

🟡 Initiated - InitialDP received, waiting for answer

🟢 Answered - Call answered, charging in progress

🔴 Terminated - Call ended, CDR generated

CAP Version Detection: The system automatically detects the CAP protocol

version from the InitialDP dialogue portion and displays it in the Version

column. This helps identify which CAP version each MSC is using.

CAMEL Request Builder

URL: http://localhost/camel_request

Interactive tool for building and sending CAP requests:

Features:

Request type selector - InitialDP, Connect, ReleaseCall, etc.

Dynamic form fields - Adapts to selected request type

SCCP/M3UA options - Advanced addressing configuration

Request history - Last 20 requests with status

Session tracking - Maintains OTID for follow-up requests

Real-time feedback - Success/error messages

Request Types:

1. InitialDP - Start new call session

Service Key (integer)

Calling Number (A-party)

Called Number (B-party)

2. Connect - Route call to destination

Destination Number

3. ReleaseCall - Terminate call

Cause Code (16=Normal, 17=Busy, 31=Unspecified)

4. RequestReportBCSMEvent - Request event notifications

Events: oAnswer, oDisconnect, tAnswer, tDisconnect

5. Continue - Continue call without modification

No parameters required

6. ApplyCharging - Apply call duration limits

Duration (seconds, 1-864000)

Release on Timeout (boolean)

See CAMEL Request Builder Guide for detailed usage

Advanced SCCP Options:

Called Party Global Title

Calling Party Global Title

Called SSN (default: 146 = gsmSSF)

Calling SSN (default: 146)

M3UA Options:

OPC (Originating Point Code, default: 5013)

DPC (Destination Point Code, default: 5011)

Integration with OCS

Call Lifecycle with Charging

1. Call Initiation (InitialDP)

When MSC sends InitialDP, CAMELGW:

1. Detects CAP version - Examines dialogue portion to identify CAP

v1/v2/v3/v4

2. Decodes CAP message - Extracts IMSI, calling/called numbers

3. Calls OCS - InitiateSession API

4. Receives authorization - MaxUsage (e.g., 30 seconds)

5. Stores session - In SessionStore (ETS table) with CAP version

6. Responds to MSC - RequestReportBCSMEvent + Continue (using same

CAP version)

Example:

2. Call Answer (EventReportBCSM - oAnswer)

When call is answered:

1. Receives oAnswer event - From MSC

2. Updates OCS - UpdateSession with usage=0

3. Starts debit loop - OCS begins charging

4. Updates session state - :answered in SessionStore

5. Continues call - Sends Continue to MSC

3. Periodic Updates (Optional)

For long calls, request additional credit:

Decoded InitialDP data

%{

 imsi: "310150123456789",

 calling_party_number: "14155551234",

 called_party_number: "14155556789",

 service_key: 1,

 msc_address: "19216800123",

 cap_version: :v2 # Detected from dialogue

}

OCS response

{:ok, %{max_usage: 30}} # 30 seconds authorized

SessionStore entry

%{

 call_id: "CAMEL-4B000173",

 initial_dp_data: %{...},

 cap_version: :v2, # Stored for response generation

 start_time: 1730246400,

 state: :initiated

}

Every 30 seconds

OCS.Client.update_session(call_id, %{}, current_usage)

If MaxUsage returns 0, subscriber has no credit → Send ReleaseCall

4. Call Termination (EventReportBCSM - oDisconnect)

When call ends:

1. Receives oDisconnect event - From MSC

2. Calculates total duration - From session start time

3. Terminates OCS session - TerminateSession API

4. CDR generated - By OCS with final cost

5. Cleans up session - Removes from SessionStore

6. Sends ReleaseCall - Confirms termination to MSC

CDR Analysis

CDRs are generated by your OCS and typically include:

CDR Fields from CAMEL:

Account - IMSI or calling number

Destination - Called party number

OriginID - Unique call identifier (CAMEL-OTID)

Usage - Total call duration (seconds)

Cost - Calculated cost

IMSI - Subscriber IMSI

CallingPartyNumber - A-party

CalledPartyNumber - B-party

MSCAddress - Serving MSC point code

ServiceKey - CAMEL service key

Testing

Manual Testing with Request Builder

1. Navigate to Request Builder:

2. Send InitialDP:

Select "InitialDP" from dropdown

Service Key: 100

Calling Number: 14155551234

Called Number: 14155556789

Click "Send InitialDP Request"

Note the OTID generated

3. Monitor Session:

Open new tab: http://localhost/camel_sessions

See active session with state "Initiated"

4. Simulate Call Answer:

Return to Request Builder

Select "EventReportBCSM"

Event Type: oAnswer

Click "Send EventReportBCSM Request"

Session state changes to "Answered"

5. End Call:

Select "ReleaseCall"

Cause Code: 16 (Normal)

Click "Send ReleaseCall Request"

Session state changes to "Terminated"

http://localhost/camel_request

Testing with Real MSC

Configure MSC CAMEL Service

On your MSC/VLR, configure CAMEL service:

Monitor Logs

Watch CAMELGW logs for incoming CAP messages:

Load Testing

Use the Request Builder in a loop for load testing:

Example Huawei MSC configuration

ADD CAMELSERVICE:

 SERVICEID=1,

 SERVICEKEY=100,

 GSMSCFADDR="55512341234", # CAMELGW Global Title

 DEFAULTCALLHANDLING=CONTINUE;

ADD CAMELSUBSCRIBER:

 IMSI="310150123456789",

 SERVICEID=1,

 TRIGGERTYPE=TERMCALL;

View logs in real-time

tail -f /var/log/omniss7/omniss7.log

Filter for CAP events

grep "CAP:" /var/log/omniss7/omniss7.log

View event log (JSON formatted)

curl http://localhost/api/events | jq '.[] | select(.map_event |

startswith("CAP:"))'

Monitoring & Operations

Prometheus Metrics

CAMELGW exposes metrics at http://localhost:8080/metrics :

CAP-specific metrics:

cap_requests_total{operation} - Total CAP requests by operation type

(e.g., initialDP, requestReportBCSMEvent)

Additional MAP/API metrics:

map_requests_total{operation} - Total MAP requests by operation type

map_request_duration_milliseconds{operation} - Request duration

histogram

map_pending_requests - Number of pending MAP transactions

M3UA STP metrics (if STP mode enabled):

m3ua_stp_messages_received_total{peer_name,point_code} - Messages

received from peers

m3ua_stp_messages_sent_total{peer_name,point_code} - Messages sent

to peers

Send 100 InitialDP requests

for i in {1..100}; do

 curl -X POST http://localhost/api/camel/initial_dp \

 -H "Content-Type: application/json" \

 -d '{

 "service_key": 100,

 "calling_number": "1415555'$i'",

 "called_number": "14155556789"

 }'

 sleep 0.1

done

m3ua_stp_routing_failures_total{reason} - Routing failures by reason

Example queries:

Health Checks

Logging Configuration

Adjust log level in config/runtime.exs :

CAP requests

curl http://localhost:8080/metrics | grep cap_requests_total

Total InitialDP received

curl http://localhost:8080/metrics | grep

'cap_requests_total{operation="initialDP"}'

MAP pending requests

curl http://localhost:8080/metrics | grep map_pending_requests

Check M3UA connectivity

curl http://localhost/api/m3ua-status

Check OCS connectivity

curl http://localhost/api/ocs-status

Check active sessions

curl http://localhost/api/camel/sessions/count

config :logger,

 level: :info # Options: :debug, :info, :warning, :error

Enable CAP debug logging

config :logger, :console,

 metadata: [:cap_operation, :otid, :call_id]

Troubleshooting

Issue: No CAP messages received

Symptoms: Request Builder works, but MSC doesn't send InitialDP

Check:

1. M3UA link status: curl http://localhost/api/m3ua-status

2. MSC CAMEL service configuration (Service Key, gsmSCF address)

3. SCCP routing (Global Title must route to CAMELGW)

4. Firewall rules (allow SCTP port 2905)

Solution:

Issue: OCS errors

Symptoms: INSUFFICIENT_CREDIT or timeout errors

Check:

1. OCS is reachable: curl http://your-ocs-server/api/health

2. Account has balance in OCS

3. Rating plan configured in OCS

4. Network connectivity to OCS

5. Authentication token is valid (if required)

Solution:

Verify OCS URL configuration in runtime.exs

Check OCS logs for errors

Verify M3UA connectivity

tcpdump -i eth0 sctp

Check if MSC can reach CAMELGW

ss -tuln | grep 2905

Test OCS API manually with curl

Verify firewall rules allow connectivity

Issue: Session not found

Symptoms: EventReportBCSM fails with "Session not found"

Cause: OTID mismatch or session expired

Solution:

1. Verify OTID in logs

2. Check session timeout (default: no expiration)

3. Ensure DTID matches OTID in Continue/End messages

Issue: Decode errors

Symptoms: Failed to decode InitialDP in logs

Cause: CAP version mismatch or malformed message

Solution:

1. Check CAP version configuration matches MSC

2. Verify ASN.1 encoding is correct

3. Capture PCAP and analyze with Wireshark

Check active sessions

iex> CAMELGW.SessionStore.list_sessions()

Capture CAP messages

tcpdump -i eth0 -w cap_trace.pcap sctp port 2905

Analyze with Wireshark (filter: m3ua)

wireshark cap_trace.pcap

Advanced Configuration

Multiple CAP Versions

Support different CAP versions per service key:

Summary

The CAMEL Gateway mode enables OmniSS7 to function as a complete

Intelligent Network platform with:

� Full CAP protocol support (v1/v2/v3/v4) � Real-time charging via OCS

integration � Call control operations (Connect, Release, Continue) � Session

management with ETS storage � Interactive testing via Web UI Request

Builder � Live monitoring of active call sessions � CDR generation for billing

and analytics � Production-ready performance and reliability

For additional information:

CAMEL Request Builder Documentation

Technical Reference - CAP Operations

Product: OmniSS7 CAMEL Gateway Documentation Version: 1.0 Last

Updated: 2025-10-26

config :omniss7,

 cap_version_map: %{

 100 => :v2, # Service Key 100 uses CAP v2

 200 => :v3, # Service Key 200 uses CAP v3

 300 => :v4 # Service Key 300 uses CAP v4

 },

 cap_version: :v2 # Default

Common Features

Guide

← Back to Main Documentation

This guide covers features common to all OmniSS7 operating modes.

Table of Contents

1. Web UI Overview

2. API Documentation

3. Monitoring and Metrics

4. Best Practices

5. SCTP Multihoming for Network Redundancy

Web UI Overview

The Web UI is accessible via your configured web server address.

Main Navigation

Events - Real-time SS7 signaling events and message logs

Application - Application status and runtime information

Configuration - System configuration viewer

M3UA Status - M3UA peer connections (STP mode)

SMS Queue - Outgoing SMS messages (SMSc mode)

Accessing the Web UI

1. Open your web browser

2. Navigate to configured hostname (e.g., http://localhost)

3. View system status dashboard

Swagger API Documentation

Interactive API documentation:

Web UI Configuration

Configure in config/runtime.exs :

Configuration Parameters:

http://your-server/swagger

config :control_panel,

 # Page order in navigation menu

 page_order: ["/events", "/application", "/configuration"],

 # Web server settings

 web: %{

 listen_ip: "0.0.0.0", # IP to bind (0.0.0.0 for all

interfaces)

 port: 80, # HTTP port (443 for HTTPS)

 hostname: "localhost", # Server hostname for URL generation

 enable_tls: false, # Set true to enable HTTPS

 tls_cert: "cert.pem", # Path to TLS certificate file

 tls_key: "key.pem" # Path to TLS private key file

 }

Parameter Type Default Description

page_order List

["/events",

"/application",

"/configuration"]

Order of pages in

navigation menu

listen_ip String "0.0.0.0"
IP address to bind

web server

port Integer 80
HTTP port (use 443

for HTTPS)

hostname String "localhost"
Server hostname

for URL generation

enable_tls Boolean false
Enable HTTPS with

TLS

tls_cert String "cert.pem"

Path to TLS

certificate (when

TLS enabled)

tls_key String "key.pem"

Path to TLS private

key (when TLS

enabled)

Logger Configuration

Configure logging level in config/runtime.exs :

Log Levels:

:debug - Detailed debugging information

config :logger,

 level: :debug # Options: :debug, :info, :warning, :error

:info - General informational messages

:warning - Warning messages for potential issues

:error - Error messages only

API Documentation

API Base URL

Response Codes

200 - Success

400 - Bad Request

504 - Gateway Timeout

OpenAPI Specification

Monitoring and Metrics

Prometheus Metrics Endpoint

Key Metrics Categories

M3UA/SCTP Metrics:

http://your-server/api

http://your-server/swagger.json

http://your-server/metrics

SCTP association state changes

M3UA ASP state transitions

Protocol data units sent/received

M2PA Metrics:

Link state transitions (DOWN → ALIGNMENT → PROVING → READY)

Messages and bytes sent/received per link

Link-specific errors (decode, encode, SCTP)

STP Metrics:

Messages received/sent per peer

Routing failures by reason

Traffic distribution across peers

MAP Client Metrics:

MAP requests by operation type

Request duration histograms

Pending transactions gauge

CAP Metrics:

CAP requests by operation type

CAMEL gateway operations

SMSc Metrics:

Queue depth

Delivery rates

Failed messages

Grafana Integration

OmniSS7 metrics are compatible with Prometheus and Grafana.

Best Practices

Security Recommendations

1. Network Isolation

Deploy in dedicated VLAN

Firewall rules to restrict access

Allow SCTP only from known addresses

2. Web UI Security

Enable TLS for production

Use reverse proxy with authentication

Restrict to management IPs

3. API Security

Implement rate limiting

Use API keys or OAuth

Log all requests for audit

Performance Tuning

1. TPS Limits

Configure appropriate TPS

Monitor system load

Adjust SCTP buffers

2. Database Optimization

Add indexes

Archive old messages

Monitor connection pool

3. M3UA Tuning

Adjust SCTP heartbeat intervals

Configure timeout values

Use multiple links for redundancy

SCTP Multihoming for Network

Redundancy

What is SCTP Multihoming?

SCTP Multihoming is a built-in feature of the SCTP protocol that allows a

single M3UA connection to bind to multiple IP addresses on the same network

interface or across different network interfaces. This provides automatic

failover and redundancy at the transport layer.

Key Benefits:

Automatic Failover: If one network path fails, SCTP automatically

switches to an alternate path without dropping the connection

Zero Configuration Failover: No application-level logic needed - SCTP

handles path monitoring and failover

Improved Reliability: Survive network failures, switch failures, or NIC

failures

Load Balancing: SCTP can distribute traffic across multiple paths

(implementation-dependent)

How It Works

When you configure multiple IP addresses for an M3UA connection, SCTP:

1. Binds to all IPs: The socket binds to all configured IP addresses

simultaneously

2. Monitors paths: SCTP continuously sends heartbeat packets on all paths

to monitor their health

3. Detects failures: If heartbeats fail on the primary path, SCTP marks it as

unreachable

4. Automatic failover: Traffic immediately switches to a backup path without

application intervention

5. Path recovery: When the failed path recovers, SCTP detects it and marks

it available again

Configuration

SCTP multihoming is configured by providing a list of IP addresses instead of

a single IP tuple.

Single IP (Traditional)

Multiple IPs (Multihoming Enabled)

Configuration Examples

Example 1: STP Peer with Multihoming

Single IP - no multihoming

local_ip: {10, 179, 4, 10}

Multiple IPs - multihoming enabled

First IP is primary, subsequent IPs are backup paths

local_ip: [{10, 179, 4, 10}, {10, 179, 4, 11}]

Example 2: MAP Client with Multihoming

Example 3: STP Listener with Multihoming

STP mode peer configuration

config :omniss7,

 m3ua_peers: [

 %{

 peer_id: 1,

 name: "Partner_STP_Redundant",

 role: :client,

 # Multihoming: bind to two local IPs for redundancy

 local_ip: [{213, 57, 23, 200}, {213, 57, 23, 201}],

 local_port: 0,

 # Remote peer also supports multihoming

 remote_ip: [{213, 57, 23, 100}, {213, 57, 23, 101}],

 remote_port: 2905,

 routing_context: 1,

 point_code: 100,

 network_indicator: :international

 }

]

MAP client mode with multihoming

config :omniss7,

 map_client_enabled: true,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # Multihoming: two local IPs for failover

 local_ip: [{10, 0, 0, 100}, {10, 0, 0, 101}],

 local_port: 2905,

 # Remote STP with multihoming support

 remote_ip: [{10, 0, 0, 1}, {10, 0, 0, 2}],

 remote_port: 2905,

 routing_context: 1

 }

Example 4: Mixed Configuration (Backward Compatible)

Standalone STP server with multihoming

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 # Listen on multiple IPs for incoming connections

 local_ip: [{172, 16, 0, 10}, {172, 16, 0, 11}],

 local_port: 2905,

 point_code: 100

 }

Mix of single and multi-homed peers

config :omniss7,

 m3ua_peers: [

 # Legacy peer - single IP

 %{

 peer_id: 1,

 name: "Legacy_STP",

 role: :client,

 local_ip: {10, 0, 0, 1}, # Single IP tuple

 local_port: 0,

 remote_ip: {10, 0, 0, 10},

 remote_port: 2905,

 routing_context: 1,

 point_code: 100

 },

 # New peer - multihoming

 %{

 peer_id: 2,

 name: "Redundant_STP",

 role: :client,

 local_ip: [{10, 0, 0, 2}, {10, 0, 0, 3}], # IP list

 local_port: 0,

 remote_ip: [{10, 0, 0, 20}, {10, 0, 0, 21}],

 remote_port: 2905,

 routing_context: 2,

 point_code: 200

 }

]

Network Topology Scenarios

Scenario 1: Dual NICs (Common Deployment)

Configuration:

Benefits:

Survives failure of one NIC

Survives failure of one switch

Automatic failover in <1 second

Scenario 2: Multiple Subnets

┌──────────────────────────┐

│ OmniSS7 Server │

│ │

│ eth0: 10.0.0.100 ──┐ │

│ eth1: 10.0.0.101 ──┤ │

└──────────────────────┴────┘

 │

 ┌────────┴────────┐

 │ │

 ┌────▼────┐ ┌───▼─────┐

 │ Switch A │ │ Switch B │

 └────┬────┘ └────┬────┘

 │ │

 └────────┬────────┘

 │

 ┌────────▼────────┐

 │ Remote STP │

 │ 10.1.0.1 │

 │ 10.1.0.2 │

 └─────────────────┘

local_ip: [{10, 0, 0, 100}, {10, 0, 0, 101}] # Both NICs

remote_ip: [{10, 1, 0, 1}, {10, 1, 0, 2}] # Remote peer

Configuration:

Benefits:

Survives subnet failure

Geographic redundancy possible

Independent routing paths

Monitoring and Logging

When multihoming is enabled, you'll see log messages indicating the

configuration:

Successful Multihoming

┌──────────────────────────┐

│ OmniSS7 Server │

│ │

│ eth0: 192.168.1.10 ──┐ │

│ eth1: 192.168.2.10 ──┤ │

└──────────────────────┴───┘

 │

 ┌─────────────┴──────────────┐

 │ │

 192.168.1.0/24 192.168.2.0/24

 │ │

 │ │

 ┌────▼────┐ ┌───▼─────┐

 │ STP A │ │ STP B │

 │ .1.100 │ │ .2.100 │

 └─────────┘ └─────────┘

local_ip: [{192, 168, 1, 10}, {192, 168, 2, 10}]

remote_ip: [{192, 168, 1, 100}, {192, 168, 2, 100}]

[info] SCTP client multihoming: bound 2 local IPs

[info] STP listener multihoming enabled: 2 local IPs bound

Path Failover Events

Web UI Display

The Web UI automatically displays multihoming information:

M3UA Status Page:

Single IP: Shows as 10.0.0.100

Multiple IPs: Shows as 10.0.0.100 (+1) or 10.0.0.100 (+2)

Details view: Shows all IPs with primary/backup labels

Best Practices

1. Network Design

Use different NICs for maximum redundancy

Different switches to survive switch failures

Different subnets if possible for routing diversity

Same datacenter initially - test before geographic separation

2. IP Address Planning

First IP is primary - ensure it's on the most reliable path

Order matters - list IPs in order of preference

Consistent addressing - use similar addressing schemes for

troubleshooting

3. Testing Failover

[warning] [MULTIHOMING] Path 10.0.0.100 is UNREACHABLE for peer

Partner_STP (assoc_id=1)

[info] [MULTIHOMING] Path 10.0.0.101 is now PRIMARY for peer

Partner_STP (assoc_id=1)

[info] [MULTIHOMING] Path 10.0.0.100 is now AVAILABLE for peer

Partner_STP (assoc_id=1)

4. Both Sides Should Support Multihoming

Optimal: Both local and remote use multiple IPs

Acceptable: Only one side uses multihoming

Note: Redundancy is best when both endpoints support it

5. Firewall Configuration

Troubleshooting

Issue: Multihoming Not Working

Symptoms: Only primary IP is used, no failover

Checks:

1. Verify Erlang SCTP support: erl -eval 'gen_sctp:open(9999, [binary,

{ip, {127,0,0,1}}]).'

2. Check kernel SCTP module: lsmod | grep sctp

3. Load SCTP if needed: sudo modprobe sctp

4. Verify both IPs are configured on system: ip addr show

Issue: Path Not Failing Over

Symptoms: Primary path marked down but traffic not switching

Disable primary interface to test failover

sudo ip link set eth0 down

Monitor logs for failover

tail -f /var/log/omniss7.log | grep MULTIHOMING

Re-enable interface

sudo ip link set eth0 up

Allow SCTP on all multihoming IPs

iptables -A INPUT -p sctp --dport 2905 -s 10.0.0.0/24 -j ACCEPT

iptables -A INPUT -p sctp --dport 2905 -s 10.1.0.0/24 -j ACCEPT

Checks:

1. Check SCTP heartbeat settings

2. Verify routing table has routes for all paths

3. Check firewall allows SCTP on all IPs

4. Review SCTP path monitoring logs

Issue: Frequent Path Flapping

Symptoms: Paths constantly switching between UP and DOWN

Checks:

1. Network instability - check physical links

2. SCTP heartbeat too aggressive - may need tuning

3. Firewall dropping SCTP heartbeats

4. MTU issues on one path

Performance Considerations

Minimal overhead: SCTP heartbeats are small and infrequent

No application changes: Multihoming is transparent to application layer

Fast failover: Typically <1 second detection and failover

Automatic recovery: No manual intervention needed

Compatibility

Backward compatible: Single IP tuple format still works

Mixed deployments: Can mix single-IP and multi-IP peers

All modes supported: Works in STP, HLR, SMSc, and MAP Client modes

Erlang requirement: Requires Erlang with SCTP support compiled in

Monitoring and Alerting

Key Metrics:

M3UA connection state

MAP request success rate

API response times

Message queue depth

Alert Thresholds:

M3UA down > 1 minute

MAP timeout rate > 10%

Queue depth > 1000

API error rate > 5%

Complete Configuration Reference

All Configuration Parameters

This section provides a complete reference of all available configuration

parameters across all operating modes.

Logger Configuration (:logger)

Web UI Configuration (:control_panel)

config :logger,

 level: :debug # :debug | :info | :warning | :error

Parameter Type Required Default Descriptio

page_order
List of

Strings
No

["/events",

"/application",

"/configuration"]

Navigation

menu page

order

web.listen_ip String Yes "0.0.0.0"

IP address t

bind web

server

web.port Integer Yes 80
HTTP/HTTPS

port numbe

web.hostname String Yes "localhost"
Server

hostname

web.enable_tls Boolean No false
Enable

HTTPS

web.tls_cert String
If TLS

enabled
"cert.pem"

TLS

certificate

path

web.tls_key String
If TLS

enabled
"key.pem"

TLS private

key path

config :control_panel,

 page_order: ["/events", "/application", "/configuration"],

 web: %{

 listen_ip: "0.0.0.0",

 port: 80,

 hostname: "localhost",

 enable_tls: false,

 tls_cert: "cert.pem",

 tls_key: "key.pem"

 }

M3UA STP Configuration (:omniss7)

Parameter Type Required Default Description

m3ua_stp.enabled Boolean Yes false
Enable STP

mode at boot

m3ua_stp.local_ip Tuple Yes

{127,

0, 0,

1}

IP to bind for

incoming

M3UA

m3ua_stp.local_port Integer Yes 2905
SCTP port for

M3UA

enable_gt_routing Boolean No false
Enable Global

Title routing

M3UA Peer Parameters:

config :omniss7,

 m3ua_stp: %{

 enabled: false,

 local_ip: {127, 0, 0, 1},

 local_port: 2905

 },

 enable_gt_routing: true,

 m3ua_peers: [...],

 m3ua_routes: [...],

 m3ua_gt_routes: [...]

Parameter Type Required Description

peer_id Integer Yes Unique peer identifier

name String Yes Descriptive peer name

role Atom Yes :client or :server

local_ip
Tuple or

List

If

:client

Local IP(s) to bind. Single:

{10, 0, 0, 1} or List:

[{10, 0, 0, 1}, {10, 0,

0, 2}]

local_port Integer
If

:client
Local port (0 for dynamic)

remote_ip
Tuple or

List
Yes

Remote peer IP(s). Single:

{10, 0, 0, 10} or List:

[{10, 0, 0, 10}, {10, 0,

0, 11}]

remote_port Integer
If

:client
Remote peer port

routing_context Integer Yes M3UA routing context

point_code Integer Yes SS7 point code

network_indicator Atom No
:international or

:national

M3UA Route Parameters:

Parameter Type Required Description

dest_pc Integer Yes Destination point code

peer_id Integer Yes Peer to route through

priority Integer Yes
Route priority (lower = higher

priority)

network_indicator Atom No
:international or

:national

M3UA GT Route Parameters:

Parameter Type Required Description

gt_prefix String Yes Global Title prefix to match

peer_id Integer Yes Destination peer

priority Integer Yes Route priority

description String No Route description for logging

source_ssn Integer No Match only if source SSN matches

dest_ssn Integer No Rewrite destination SSN to this value

MAP Client Configuration (:omniss7)

config :omniss7,

 map_client_enabled: false,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :map_client_asp,

 local_ip: {10, 0, 0, 100},

 local_port: 2905,

 remote_ip: {10, 0, 0, 1},

 remote_port: 2905,

 routing_context: 1

 }

Parameter Type Required Default

map_client_enabled Boolean Yes false

map_client_m3ua.mode String Yes "ASP"

map_client_m3ua.callback Tuple Yes

{MapClient,

:handle_payloa

[]}

map_client_m3ua.process_name Atom Yes :map_client_a

map_client_m3ua.local_ip Tuple Yes -

map_client_m3ua.local_port Integer Yes 2905

map_client_m3ua.remote_ip Tuple Yes -

map_client_m3ua.remote_port Integer Yes 2905

map_client_m3ua.routing_context Integer Yes -

SMS Center Configuration (:omniss7)

Parameter Type Required Default Description

auto_flush_enabled Boolean No false

Enable auto-

flush of SMS

queue

auto_flush_interval Integer No 10000

Queue poll

interval

(milliseconds)

auto_flush_dest_smsc String/nil No nil

Filter by dest

SMSC (nil =

all)

auto_flush_tps Integer No 10

Max

transactions

per second

HTTP API Configuration (:omniss7)

The SMS backend now uses HTTP API instead of direct database connections.

API Parameters:

config :omniss7,

 auto_flush_enabled: false,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: nil,

 auto_flush_tps: 10

config :omniss7,

 smsc_api_base_url: "https://10.5.198.200:8443",

 frontend_name: "omni-smsc01" # Optional: defaults to

hostname_SMSc

Parameter Type Required Default

smsc_api_base_url String Yes "https://10.5.198.200:8443"

frontend_name String No "{hostname}_SMSc"

API Endpoints Used:

POST /api/frontends - Register this frontend instance with backend

POST /api/messages_raw - Insert new SMS messages

GET /api/messages - Retrieve message queue (with smsc header)

PATCH /api/messages/{id} - Mark message as delivered

PUT /api/messages/{id} - Update message status

POST /api/events - Add event tracking

GET /api/status - Health check endpoint

Frontend Registration:

The system automatically registers itself with the backend API on startup and

re-registers every 5 minutes. Registration includes:

Frontend name and type (SMSc)

Hostname

Uptime in seconds

Configuration details (JSON format)

Configuration Notes:

SSL verification is disabled by default for self-signed certificates

HTTP requests timeout after 5 seconds

All timestamps are in ISO 8601 format

The API uses JSON for request/response bodies

Related Documentation

← Back to Main Documentation

STP Guide

MAP Client Guide

SMS Center Guide

HLR Guide

OmniSS7 by Omnitouch Network Services

Configuration

Reference

← Back to Main Documentation

This document provides a comprehensive reference for all OmniSS7

configuration parameters.

Table of Contents

1. Overview

2. Operational Mode Flags

3. HLR Mode Parameters

4. SMSc Mode Parameters

5. STP Mode Parameters

6. Global Title NAT Parameters

7. M3UA Connection Parameters

8. HTTP Server Parameters

9. Database Parameters

10. Hardcoded Values

Overview

OmniSS7 configuration is managed via config/runtime.exs . The system

supports three operational modes:

STP Mode - Signal Transfer Point for routing

HLR Mode - Home Location Register for subscriber management

SMSc Mode - SMS Center for message delivery

Configuration File: config/runtime.exs

Operational Mode Flags

Control which features are enabled.

Parameter Type Default Description Modes

map_client_enabled Boolean false

Enable MAP client

and M3UA

connectivity

All

hlr_mode_enabled Boolean false
Enable HLR-specific

features
HLR

smsc_mode_enabled Boolean false
Enable SMSc-

specific features
SMSc

Example:

HLR Mode Parameters

Configuration for HLR (Home Location Register) mode.

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false

HLR API Configuration

Parameter Type Default Required Desc

hlr_api_base_url String - Yes

Backen

API end

URL (SS

hardco

disable

hlr_service_center_gt_address String - Yes

HLR Gl

Title ad

returne

Update

respon

smsc_service_center_gt_address String - Yes

SMSC G

addres

returne

for-SM

respon

Example:

MSISDN ↔ IMSI Mapping

Configuration for synthetic IMSI generation from MSISDNs. For detailed

technical explanation of the mapping algorithm, see MSISDN ↔ IMSI Mapping in

HLR Guide.

config :omniss7,

 hlr_api_base_url: "https://10.180.2.140:8443",

 hlr_service_center_gt_address: "55512341111",

 smsc_service_center_gt_address: "55512341112"

Parameter Type Default Required Description

hlr_imsi_plmn_prefix String "50557" No

PLMN prefix

(MCC+MNC)

for synthetic

IMSI

generation

hlr_msisdn_country_code String "61" No

Country code

prefix for

IMSI→MSISDN

reverse

mapping

hlr_msisdn_nsn_offset Integer 0 No

Offset into

MSISDN

where NSN

starts

(typically

length of

country

code)

hlr_msisdn_nsn_length Integer 9 No

Length of

National

Subscriber

Number to

extract from

MSISDN

Example (2-digit country code):

Example (3-digit country code):

Important: Set nsn_offset to the length of your country code to properly

extract the NSN. For example:

Country code "9" (1 digit) → nsn_offset: 1

Country code "99" (2 digits) → nsn_offset: 2

Country code "999" (3 digits) → nsn_offset: 3

InsertSubscriberData (ISD) Configuration

Configuration for subscriber provisioning data sent to VLRs during

UpdateLocation. For detailed explanation of the ISD sequence and message

flow, see InsertSubscriberData Configuration in HLR Guide.

config :omniss7,

 hlr_imsi_plmn_prefix: "50557", # MCC 505 + MNC 57

 hlr_msisdn_country_code: "99", # Example 2-digit country

code

 hlr_msisdn_nsn_offset: 2, # Skip 2-digit country code

 hlr_msisdn_nsn_length: 9 # Extract 9-digit NSN

config :omniss7,

 hlr_imsi_plmn_prefix: "50557", # MCC 505 + MNC 57

 hlr_msisdn_country_code: "999", # Example 3-digit country

code

 hlr_msisdn_nsn_offset: 3, # Skip 3-digit country code

 hlr_msisdn_nsn_length: 8 # Extract 8-digit NSN

Parameter Type Default Required

isd_network_access_mode Atom :packetAndCircuit No

N

ty

:

:

:

isd_send_ss_data Boolean true No

S

S

S

isd_send_call_barring Boolean true No
S

C

Example:

CAMEL Configuration

Configuration for CAMEL-based intelligent call routing. For detailed explanation

of CAMEL integration and service keys, see CAMEL Integration in HLR Guide.

config :omniss7,

 isd_network_access_mode: :packetAndCircuit,

 isd_send_ss_data: true,

 isd_send_call_barring: true

Parameter Type Default Re

camel_service_key Integer 11_110 No

camel_trigger_detection_point Atom :termAttemptAuthorized No

camel_gsmscf_gt_address String (uses called GT) No

Example:

Home VLR Prefixes

Configuration for distinguishing home vs roaming subscribers. For detailed

explanation of home/roaming detection and PRN operations, see Roaming

Subscriber Handling in HLR Guide.

Parameter Type Default Required Description

home_vlr_prefixes List ["5551231"] No

VLR GT prefixes

considered

"home"

network

Example:

config :omniss7,

 camel_service_key: 11_110,

 camel_trigger_detection_point: :termAttemptAuthorized

SMSc Mode Parameters

Configuration for SMS Center mode.

SMSc API Configuration

Parameter Type Default Required

smsc_api_base_url String - Yes

smsc_name String
"

{hostname}_SMSc"
No

smsc_service_center_gt_address String - Yes

Example:

config :omniss7,

 home_vlr_prefixes: ["5551231", "5551234"]

Note: Frontend registration occurs every 5 minutes (hardcoded) via

SMS.FrontendRegistry module.

Auto-Flush Configuration

Parameter Type Default Required Description

auto_flush_enabled Boolean true No

Enable automati

SMS queue

processing

auto_flush_interval Integer 10_000 No

Queue processin

interval in

milliseconds

auto_flush_dest_smsc String - Yes
Destination SMS

name for auto-fl

auto_flush_tps Integer 10 No

Message proces

rate

(transactions/se

Example:

config :omniss7,

 smsc_api_base_url: "https://10.179.3.219:8443",

 smsc_name: "ipsmgw",

 smsc_service_center_gt_address: "55512341112"

config :omniss7,

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10

STP Mode Parameters

Configuration for M3UA Signal Transfer Point mode. For detailed routing

configuration and examples, see the STP Configuration Guide.

Standalone STP Server

Parameter Type Default Required Description

m3ua_stp.enabled Boolean false No

Enable

standalone

M3UA STP

server

m3ua_stp.local_ip
Tuple or

List

{127,

0, 0,

1}

No

IP address(es)

to listen for

connections.

Single IP: {10,

0, 0, 1} or

Multiple IPs for

SCTP

multihoming:

[{10, 0, 0,

1}, {10, 0,

0, 2}]

m3ua_stp.local_port Integer 2905 No
Port to listen

on

m3ua_stp.point_code Integer -
Yes (if

enabled)

This STP's own

SS7 point code

Example (Single IP):

Example (SCTP Multihoming):

Note: For detailed information on SCTP multihoming configuration and

benefits, see SCTP Multihoming in Common Guide.

Global Title Routing

Parameter Type Default Required Description

enable_gt_routing Boolean false No

Enable GT routing

in addition to PC

routing

Example:

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 point_code: 100

 }

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 # Multiple IPs for redundancy

 local_ip: [{10, 179, 4, 10}, {10, 179, 4, 11}],

 local_port: 2905,

 point_code: 100

 }

config :omniss7,

 enable_gt_routing: true

Global Title NAT Parameters

Global Title Network Address Translation allows different response GTs based on

calling party prefix. For detailed explanation and examples, see the Global Title

NAT Guide.

Parameter Type Default Required Description

gt_nat_enabled Boolean false No
Enable/disable GT

NAT feature

gt_nat_rules
List of

Maps
[]

Yes (if

enabled)

List of prefix-to-GT

mappings

Rule Format: Each rule in gt_nat_rules must be a map with:

calling_prefix : String prefix to match against calling GT

response_gt : Global Title to use in responses

Example:

See Also: GT NAT Guide for detailed usage and examples.

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # When called from GT starting with "8772", respond with

"55512341112"

 %{calling_prefix: "8772", response_gt: "55512341112"},

 # When called from GT starting with "8773", respond with

"55512341111"

 %{calling_prefix: "8773", response_gt: "55512341111"},

 # Default fallback (empty prefix matches all)

 %{calling_prefix: "", response_gt: "55512311555"}

]

M3UA Connection Parameters

M3UA connection configuration for MAP client mode. For detailed usage and

examples, see the MAP Client Guide.

Parameter Type Default Required D

map_client_m3ua.mode String - Yes
Conn

"ASP

map_client_m3ua.callback Tuple - Yes

Callb

mod

{Map

:han

[]}

map_client_m3ua.process_name Atom - Yes
Proce

regis

map_client_m3ua.local_ip
Tuple

or List
- Yes

Loca

addr

bind

0, 0

Mult

mult

[{10

{10,

map_client_m3ua.local_port Integer 2905 Yes Loca

map_client_m3ua.remote_ip
Tuple

or List
- Yes

Rem

IP ad

Sing

0, 1

Mult

0, 0

0, 0

map_client_m3ua.remote_port Integer 2905 Yes Rem

map_client_m3ua.routing_context Integer - Yes
M3U

cont

Example (Single IP):

Example (SCTP Multihoming):

Note: For detailed information on SCTP multihoming configuration and

benefits, see SCTP Multihoming in Common Guide.

HTTP Server Parameters

Configuration for the REST API HTTP server.

config :omniss7,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

config :omniss7,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # Multiple local IPs for redundancy

 local_ip: [{10, 179, 4, 11}, {10, 179, 4, 12}],

 local_port: 2905,

 # Multiple remote IPs for STP redundancy

 remote_ip: [{10, 179, 4, 10}, {10, 179, 4, 20}],

 remote_port: 2905,

 routing_context: 1

 }

Parameter Type Default Required Description

start_http_server Boolean true No

Enable/disable

HTTP server (port

8080)

Hardcoded Values (not configurable):

IP: 0.0.0.0 (all interfaces)

Port: 8080

Transport: Plug.Cowboy

Example:

API Endpoints:

REST API: http://[server-ip]:8080/api/*

Swagger UI: http://[server-ip]:8080/swagger

Prometheus metrics: http://[server-ip]:8080/metrics

See API Guide for details.

Database Parameters

Configuration for Mnesia database persistence.

config :omniss7,

 start_http_server: true # Set to false to disable

Parameter Type Default Required Description

mnesia_storage_type Atom :disc_copies No

Mnesia

storage type:

:disc_copies

or

:ram_copies

Example:

Storage Types:

:disc_copies - Persistent disk storage (survives restarts) -

Recommended for production

:ram_copies - In-memory only (lost on restart) - For testing only

Mnesia Tables:

m3ua_peer - M3UA peer connections

m3ua_route - Point Code routes

m3ua_gt_route - Global Title routes

Location: Mnesia.{node_name}/ directory

Hardcoded Values

The following values are hardcoded in the source code and cannot be

changed via configuration.

config :omniss7,

 mnesia_storage_type: :disc_copies # Production

 # mnesia_storage_type: :ram_copies # Testing only

Timeouts

Value Impact Workaround

MAP request timeout: 10

seconds

All MAP operations timeout

after 10s

Modify source

code

ISD timeout: 10

seconds

Each ISD message times

out after 10s

Modify source

code

HTTP Server

Value Impact Workaround

HTTP IP: 0.0.0.0 Server listens on all interfaces Modify source code

HTTP Port: 8080 REST API runs on port 8080 Modify source code

SSL Verification

Value Impact Workaround

HLR API SSL:

disabled

SSL verification always

disabled

Modify source

code

SMSc API SSL:

disabled

SSL verification always

disabled

Modify source

code

Registration Intervals

Value Impact Workaround

Frontend registration: 5

minutes

SMSc registers with

backend every 5 min

Modify source

code

Web UI Auto-Refresh

Page Interval

Routing Management 5 seconds

Active Subscribers 2 seconds

Configuration Examples

Minimal HLR Configuration

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false,

 hlr_api_base_url: "https://10.180.2.140:8443",

 hlr_service_center_gt_address: "55512341111",

 smsc_service_center_gt_address: "55512341112",

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

Minimal SMSc Configuration

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: true,

 smsc_api_base_url: "https://10.179.3.219:8443",

 smsc_name: "ipsmgw",

 smsc_service_center_gt_address: "55512341112",

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10,

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 local_ip: {10, 179, 4, 12},

 local_port: 2905,

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

STP with Standalone Server

Summary

Total Configuration Parameters: 32

By Category:

Operational Mode: 3 parameters

HLR Mode: 13 parameters

SMSc Mode: 7 parameters

config :omniss7,

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 enable_gt_routing: true,

 mnesia_storage_type: :disc_copies,

 m3ua_stp: %{

 enabled: true,

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 point_code: 100

 },

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 local_ip: {10, 179, 4, 10},

 local_port: 2906,

 remote_ip: {10, 179, 4, 11},

 remote_port: 2905,

 routing_context: 1

 }

STP Mode: 5 parameters

M3UA Connection: 8 parameters

HTTP Server: 1 parameter

Database: 1 parameter

Required Parameters (must be set):

hlr_api_base_url (HLR mode)

hlr_service_center_gt_address (HLR mode)

smsc_api_base_url (SMSc mode)

smsc_service_center_gt_address (SMSc/HLR mode)

All map_client_m3ua.* parameters

m3ua_stp.point_code (if STP enabled)

Related Documentation

HLR Guide - HLR-specific configuration

SMSc Guide - SMSc-specific configuration

STP Guide - STP routing configuration

API Guide - REST API reference

Web UI Guide - Web interface documentation

Global Title NAT Guide

Overview

Global Title Network Address Translation (GT NAT) is a feature that allows

OmniSS7 to respond with different Global Title addresses based on the calling

party's GT prefix, the called party's GT prefix, or a combination of both. This is

essential when operating with multiple Global Titles and needing to ensure

responses use the correct GT based on which network or peer is calling and/or

which GT they called.

What's New (Enhanced GT NAT)

The GT NAT feature has been enhanced with powerful new capabilities:

New Features

1. Called Party Prefix Matching: Rules can now match on called_prefix

in addition to calling_prefix

2. Combined Matching: Rules can match on both calling AND called prefixes

simultaneously

3. Weight-Based Prioritization: Rules now use a weight field (lower =

higher priority) instead of just prefix length

4. Flexible Matching: You can now create rules with:

Only calling prefix

Only called prefix

Both calling and called prefixes

Neither (wildcard/fallback rule)

New Rule Format

Required fields:

weight : Integer priority (lower = higher priority)

response_gt : The GT to respond with

Optional fields (at least one recommended for specific matching):

calling_prefix : Match on calling party GT prefix

called_prefix : Match on called party GT prefix

Example:

Use Cases

Multi-Network Operation

When you have multiple peer networks and each expects responses from a

specific GT:

Network A calls your GT 111111 and expects responses from 111111

Network B calls your GT 222222 and expects responses from 222222

Without GT NAT, you would need separate instances or complex routing. With

GT NAT, a single OmniSS7 instance can handle this intelligently.

gt_nat_rules: [

 # Specific rule with both prefixes - highest priority

 %{calling_prefix: "8772", called_prefix: "555", weight: 1,

response_gt: "111111"},

 # Specific rules - medium priority

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"},

 %{called_prefix: "555", weight: 10, response_gt: "333333"},

 # Wildcard fallback - lowest priority

 %{weight: 100, response_gt: "999999"}

]

Roaming Scenarios

When operating as an HLR or SMSc with roaming agreements:

Home network subscribers use GT 555000

Roaming partner 1 uses GT 555001

Roaming partner 2 uses GT 555002

GT NAT ensures each partner receives responses from the correct GT they're

configured to route to.

Testing and Migration

During network migrations or testing:

Gradually migrate traffic from old GT to new GT

Maintain both GTs during transition period

Route responses based on which GT the caller used

How It Works

Address Translation Flow

1. Incoming Request: OmniSS7 receives an SCCP message with:

Called Party GT: 55512341112 (your GT)

Calling Party GT: 877234567 (their GT)

2. GT NAT Lookup: System checks calling GT 877234567 against configured

prefix rules

3. Prefix Matching: Finds longest matching prefix (e.g., 8772 matches

877234567)

4. Response GT Selection: Uses response_gt from matched rule (e.g.,

55512341112)

5. Response Sent: SCCP response uses:

Called Party GT: 877234567 (reversed - their GT)

Calling Party GT: 55512341112 (NAT'd GT)

Affected Response Types

GT NAT applies to multiple layers of the SS7 stack:

SCCP Layer (All Responses)

SCCP Called/Calling GT addresses in all response messages

ISD (InsertSubscriberData) acknowledgments

UpdateLocation responses

Error responses

MAP Layer (Operation-Specific)

SRI-for-SM Responses: networkNode-Number (SMSc GT address)

UpdateLocation: hlr-Number in responses

InsertSubscriberData: HLR GT in ISD messages

Configuration

Basic Configuration

Add to config/runtime.exs :

Configuration Parameters

For complete configuration reference, see Global Title NAT Parameters in

Configuration Reference.

Parameter Type Required Description

gt_nat_enabled Boolean Yes
Enable/disable GT NAT

feature

gt_nat_rules
List of

Maps

Yes (if

enabled)

List of prefix matching

rules

Rule Format

Each rule is a map with the following keys:

config :omniss7,

 # Enable GT NAT

 gt_nat_enabled: true,

 # Define GT NAT rules

 gt_nat_rules: [

 # Rule 1: Calls from prefix "8772" get response from

"55512341112"

 %{calling_prefix: "8772", response_gt: "55512341112"},

 # Rule 2: Calls from prefix "8773" get response from

"55512341111"

 %{calling_prefix: "8773", response_gt: "55512341111"},

 # Default rule (empty prefix matches everything)

 %{calling_prefix: "", response_gt: "55512311555"}

]

Rule Fields:

calling_prefix (Optional): String prefix to match against incoming calling

GT

Matching is done by String.starts_with?/2

Empty string "" or nil acts as wildcard (matches any calling GT)

Can be omitted to match any calling GT

called_prefix (Optional): String prefix to match against incoming called

GT

Matching is done by String.starts_with?/2

Empty string "" or nil acts as wildcard (matches any called GT)

Can be omitted to match any called GT

weight (Required): Integer priority value

Lower weight = higher priority (processed first)

Must be >= 0

Used as primary sorting criterion for matching rules

response_gt (Required): The Global Title address to use in responses

Must be a valid E.164 number string

Should match one of your configured GTs

At least one of calling_prefix or called_prefix should be specified for

specific routing. Both can be omitted for a wildcard/fallback rule.

%{

 calling_prefix: "8772", # (Optional) Prefix to match

against calling GT

 called_prefix: "555", # (Optional) Prefix to match

against called GT

 weight: 10, # (Required) Priority value (lower

= higher priority)

 response_gt: "55512341112" # (Required) GT to use in responses

}

Rule Matching Logic

Rules are evaluated by weight first (ascending), then by combined prefix

specificity:

Matching Algorithm:

1. Filter rules where all specified prefixes match

If calling_prefix is set, it must match the calling GT

If called_prefix is set, it must match the called GT

If both are set, both must match

If neither is set, rule acts as a wildcard

2. Sort matching rules by:

Primary: Weight (ascending - lower values first)

Secondary: Combined prefix length (descending - longer = more

specific)

3. Return the first matching rule

Examples:

Examples

Example 1: Two Network Partners

Scenario: You operate an SMSc with two network partners. Each expects

responses from a different GT.

Example rules

gt_nat_rules: [

 # Weight 1: Highest priority - matches both prefixes

 %{calling_prefix: "8772", called_prefix: "555", weight: 1,

response_gt: "111111"},

 # Weight 10: Medium priority - specific rules

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"}, #

Calling only

 %{called_prefix: "555", weight: 10, response_gt: "333333"}, #

Called only

 # Weight 100: Lowest priority - wildcard fallback

 %{weight: 100, response_gt: "444444"} # Matches everything

]

Matching examples:

Calling: "877234567", Called: "555123" -> "111111" (weight 1,

both match)

Calling: "877234567", Called: "999999" -> "222222" (weight 10,

calling only)

Calling: "999999999", Called: "555123" -> "333333" (weight 10,

called only)

Calling: "999999999", Called: "888888" -> "444444" (weight 100,

wildcard)

Traffic Flow:

Example 2: HLR with Regional GTs

Scenario: National HLR with different GTs per region.

config :omniss7,

 gt_nat_enabled: true,

 # Default SMSc GT (used when GT NAT is disabled or no rule

matches)

 smsc_service_center_gt_address: "5551000",

 # GT NAT rules for partners

 gt_nat_rules: [

 # Partner A (prefix 4412) expects responses from GT 5551001

 %{calling_prefix: "4412", weight: 10, response_gt: "5551001"},

 # Partner B (prefix 4413) expects responses from GT 5551002

 %{calling_prefix: "4413", weight: 10, response_gt: "5551002"},

 # Default: use standard SMSc GT (wildcard fallback)

 %{weight: 100, response_gt: "5551000"}

]

Incoming SRI-for-SM from 44121234567:

 Called GT: 5551001 (your GT that Partner A uses)

 Calling GT: 44121234567 (Partner A's GT)

GT NAT Lookup:

 "44121234567" matches prefix "4412"

 Selected response_gt: "5551001"

Response SRI-for-SM to 44121234567:

 Called GT: 44121234567 (reversed)

 Calling GT: 5551001 (NAT'd)

 networkNode-Number: 5551001 (in MAP response)

Example 3: Migration Scenario

Scenario: Migrating from old GT to new GT gradually.

config :omniss7,

 gt_nat_enabled: true,

 hlr_service_center_gt_address: "555000", # Default HLR GT

 gt_nat_rules: [

 # Northern region VLRs (prefix 5551)

 %{calling_prefix: "5551", weight: 10, response_gt: "555100"},

 # Southern region VLRs (prefix 5552)

 %{calling_prefix: "5552", weight: 10, response_gt: "555200"},

 # Western region VLRs (prefix 5553)

 %{calling_prefix: "5553", weight: 10, response_gt: "555300"},

 # Default for other regions (wildcard)

 %{weight: 100, response_gt: "555000"}

]

config :omniss7,

 gt_nat_enabled: true,

 hlr_service_center_gt_address: "123456789", # Old GT (default)

 gt_nat_rules: [

 # Migrated networks (already updated their configs)

 %{calling_prefix: "555", weight: 10, response_gt:

"987654321"}, # New GT

 %{calling_prefix: "666", weight: 10, response_gt:

"987654321"}, # New GT

 # Everyone else still uses old GT (wildcard)

 %{weight: 100, response_gt: "123456789"} # Old GT

]

Example 4: Called Party Prefix Matching (NEW)

Scenario: You have multiple GTs for different services, and want to respond

with the correct GT based on which GT was called.

Traffic Flow:

Example 5: Combined Calling + Called Prefix

Matching (ADVANCED)

Scenario: Different partners call different GTs, and you want fine-grained

control.

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # When they call your SMS GT (5551xxx), respond with that GT

 %{called_prefix: "5551", weight: 10, response_gt: "555100"},

 # When they call your Voice GT (5552xxx), respond with that GT

 %{called_prefix: "5552", weight: 10, response_gt: "555200"},

 # When they call your Data GT (5553xxx), respond with that GT

 %{called_prefix: "5553", weight: 10, response_gt: "555300"},

 # Default fallback

 %{weight: 100, response_gt: "555000"}

]

Incoming request to Called GT: 555100 (your SMS GT)

Calling GT: 441234567 (any caller)

GT NAT Lookup:

 Called GT "555100" matches prefix "5551"

 Selected response_gt: "555100"

Response uses Calling GT: 555100 (matches what they called)

Matching Examples:

config :omniss7,

 gt_nat_enabled: true,

 gt_nat_rules: [

 # Partner A calling your SMS GT - highest priority (weight 1)

 %{calling_prefix: "4412", called_prefix: "5551", weight: 1,

response_gt: "555101"},

 # Partner B calling your SMS GT - highest priority (weight 1)

 %{calling_prefix: "4413", called_prefix: "5551", weight: 1,

response_gt: "555102"},

 # Anyone calling your SMS GT - medium priority (weight 10)

 %{called_prefix: "5551", weight: 10, response_gt: "555100"},

 # Partner A calling any GT - medium priority (weight 10)

 %{calling_prefix: "4412", weight: 10, response_gt: "555200"},

 # Default fallback - low priority (weight 100)

 %{weight: 100, response_gt: "555000"}

]

Partner A calls SMS GT

Calling: "441234567", Called: "555100"

→ Matches weight 1 rule (both prefixes) → "555101"

Partner A calls Voice GT

Calling: "441234567", Called: "555200"

→ Matches weight 10 rule (calling only) → "555200"

Unknown caller calls SMS GT

Calling: "999999999", Called: "555100"

→ Matches weight 10 rule (called only) → "555100"

Unknown caller calls Voice GT

Calling: "999999999", Called: "555200"

→ Matches weight 100 wildcard → "555000"

Operational Modes

GT NAT works across all OmniSS7 operational modes:

HLR Mode

GT NAT affects:

UpdateLocation responses (HLR GT in response)

InsertSubscriberData messages (HLR GT as calling party)

SendAuthenticationInfo responses

Cancel Location responses

For more information on HLR operations, see the HLR Configuration Guide.

Configuration:

SMSc Mode

GT NAT affects:

SRI-for-SM responses (networkNode-Number field) - see SRI-for-SM Details

MT-ForwardSM acknowledgments

For more information on SMSc operations, see the SMSc Configuration Guide.

config :omniss7,

 hlr_mode_enabled: true,

 hlr_service_center_gt_address: "5551234567", # Default HLR GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "331", weight: 10, response_gt:

"5551234568"}, # France

 %{calling_prefix: "44", weight: 10, response_gt:

"5551234569"}, # UK

 %{weight: 100, response_gt: "5551234567"} # Default wildcard

]

Configuration:

CAMEL Gateway Mode

GT NAT affects:

All SCCP-level responses (gsmSCF GT as Calling Party)

CAMEL/CAP operation responses (InitialDP, EventReportBCSM, etc.)

RequestReportBCSMEvent acknowledgments

ApplyCharging responses

Continue responses

Configuration:

config :omniss7,

 smsc_mode_enabled: true,

 smsc_service_center_gt_address: "5559999", # Default SMSc GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "1", weight: 10, response_gt: "5559991"},

North America

 %{calling_prefix: "44", weight: 10, response_gt: "5559992"},

UK

 %{calling_prefix: "86", weight: 10, response_gt: "5559993"},

China

 %{weight: 100, response_gt: "5559999"} # Default wildcard

]

Use Case: When operating as a gsmSCF (Service Control Function) for multiple

networks, each network's gsmSSF may expect responses from a specific

gsmSCF GT. GT NAT ensures the correct GT is used based on which gsmSSF is

calling.

Logging and Debugging

Enable GT NAT Logging

GT NAT includes automatic logging of all translations:

The context field shows where the NAT was applied:

"SRI-for-SM response" - In SRI-for-SM handler

"UpdateLocation ISD" - In InsertSubscriberData messages

"UpdateLocation END" - In UpdateLocation END response

config :omniss7,

 camelgw_mode_enabled: true,

 camel_gsmscf_gt_address: "55512341112", # Default gsmSCF GT

 gt_nat_enabled: true,

 gt_nat_rules: [

 %{calling_prefix: "555", weight: 10, response_gt:

"55512341111"}, # Network A

 %{calling_prefix: "666", weight: 10, response_gt:

"55512311555"}, # Network B

 %{weight: 100, response_gt: "55512341112"} # Default wildcard

]

In logs, you'll see:

[info] GT NAT [SRI-for-SM response]: Calling GT 877234567 ->

Response GT 55512341112

[info] GT NAT [UpdateLocation ISD]: Calling GT 331234567 ->

Response GT 55512341111

[info] GT NAT [MAP BEGIN response]: Calling GT 441234567 ->

Response GT 55512311555

"MAP BEGIN response" - Generic MAP BEGIN responses

"ISD ACK" - ISD acknowledgment

"HLR error response" - Error response from HLR

"CAMEL response" - CAMEL/CAP operation responses (gsmSCF)

Validation

The system validates GT NAT configuration at startup:

Testing GT NAT

Test GT NAT logic programmatically:

Check GT NAT config

iex> GtNat.validate_config()

{:ok, [

 %{calling_prefix: "8772", weight: 10, response_gt:

"55512341112"},

 %{calling_prefix: "8773", weight: 10, response_gt:

"55512341111"}

]}

Check if enabled

iex> GtNat.enabled?()

true

Get all rules

iex> GtNat.get_rules()

[

 %{calling_prefix: "8772", weight: 10, response_gt:

"55512341112"},

 %{calling_prefix: "8773", weight: 10, response_gt:

"55512341111"}

]

Troubleshooting

Issue: GT NAT Not Working

Check 1: Is it enabled?

Check 2: Are rules configured?

Test translation with calling GT only (called_gt is nil)

iex> GtNat.translate_response_gt("877234567", nil, "default_gt")

"55512341112"

Test translation with both calling and called GT

iex> GtNat.translate_response_gt("877234567", "555123",

"default_gt")

"55512341112"

Test with logging (nil called GT)

iex> GtNat.translate_response_gt_with_logging("877234567", nil,

"default_gt", "test")

Logs: GT NAT [test]: Calling GT 877234567 -> Response GT

55512341112

"55512341112"

Test with logging (both GTs)

iex> GtNat.translate_response_gt_with_logging("877234567",

"555123", "default_gt", "test")

Logs: GT NAT [test]: Calling GT 877234567, Called GT 555123 ->

Response GT 55512341112

"55512341112"

Test no match (returns default)

iex> GtNat.translate_response_gt("999999999", "888888",

"default_gt")

"default_gt"

iex> Application.get_env(:omniss7, :gt_nat_enabled)

true # Should be true

Check 3: Check logs Search for "GT NAT" in logs to see if translations are

happening.

Issue: Wrong GT in Responses

Symptom: Responses use unexpected GT address

Cause: Rule prefix matching might be too broad or default rule is catching

traffic

Solution: Review rule weights and prefixes:

Issue: GT NAT Not Applied to Specific Message

Type

Symptom: Some responses use NAT'd GT, others don't

iex> Application.get_env(:omniss7, :gt_nat_rules)

[%{calling_prefix: "8772", response_gt: "55512341112"}, ...] #

Should return list

BAD: Wildcard with low weight (catches everything first)

gt_nat_rules: [

 %{weight: 1, response_gt: "111111"}, # This

matches everything first!

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"} #

Never reached

]

GOOD: Specific rules with lower weight, wildcard with higher

weight

gt_nat_rules: [

 %{calling_prefix: "8772", weight: 10, response_gt: "222222"}, #

Specific, low weight

 %{weight: 100, response_gt: "111111"} # Wildcard, high weight

(fallback)

]

Current Coverage:

� SCCP Calling GT (all responses)

� SRI-for-SM responses (networkNode-Number)

� UpdateLocation ISD messages (HLR GT)

� UpdateLocation END responses

� ISD acknowledgments

� MAP BEGIN responses

If a specific message type isn't using GT NAT, it may not be implemented yet.

Check the source code or contact support.

Performance Considerations

Lookup Performance

GT NAT uses simple prefix matching with O(n) complexity where n is the

number of rules.

Performance tips:

Keep rule count under 100 for best performance

Use specific prefixes to reduce rule count

Default rule (empty prefix) should be last

Benchmark (typical system):

10 rules: < 1µs per lookup

50 rules: < 5µs per lookup

100 rules: < 10µs per lookup

Memory Usage

Each rule requires ~100 bytes of memory:

10 rules ≈ 1 KB

100 rules ≈ 10 KB

Best Practices

1. Always Include a Wildcard Fallback Rule

2. Use Meaningful Prefixes and Weights

3. Document Your Rules

gt_nat_rules: [

 %{calling_prefix: "8772", weight: 10, response_gt: "111111"},

 %{calling_prefix: "8773", weight: 10, response_gt: "222222"},

 %{weight: 100, response_gt: "default_gt"} # Always have a

wildcard with high weight

]

GOOD: Clear, specific prefixes with appropriate weights

%{calling_prefix: "331", weight: 10, response_gt: "..."} # France

%{calling_prefix: "44", weight: 10, response_gt: "..."} # UK

BAD: Overly broad prefixes or confusing weights

%{calling_prefix: "3", weight: 5, response_gt: "..."} # Too

many countries

%{calling_prefix: "331", weight: 100, response_gt: "..."} #

Weight should be lower for specific rules

gt_nat_rules: [

 # Partner XYZ - UK network (GT range: 4412xxxxxxx)

 # Weight 10: Standard partner priority

 %{calling_prefix: "4412", weight: 10, response_gt: "5551001"},

 # Partner ABC - France network (GT range: 33123xxxxxx)

 # Weight 10: Standard partner priority

 %{calling_prefix: "33123", weight: 10, response_gt: "5551002"}

]

4. Test Before Deployment

5. Monitor Logs

Enable INFO level logging to see all GT NAT translations in production.

Integration with Other Features

STP Mode

GT NAT works independently of STP routing. STP routes based on point codes

and destination GTs, while GT NAT handles response addressing.

For more information on STP routing, see the STP Configuration Guide.

CAMEL Integration

GT NAT is fully integrated with CAMEL/CAP operations:

SCCP Layer:

Calling Party GT in all CAMEL responses

Automatically applied based on incoming gsmSSF GT

Configuration:

camel_gsmscf_gt_address - Default gsmSCF GT (optional)

If not configured, uses the Called Party GT from incoming request

Test in iex before deploying

iex> GtNat.translate_response_gt("44121234567", nil, "default")

"5551001" # Expected result

Test with called GT

iex> GtNat.translate_response_gt("44121234567", "555123",

"default")

"5551001" # Expected result

GT NAT rules override the default based on calling party prefix

Example:

Load Balancing

GT NAT can be combined with M3UA load balancing for advanced traffic

management.

Migration Guide

Enabling GT NAT on Existing System

1. Prepare Configuration

2. Test Configuration

When gsmSSF 555123456 calls your gsmSCF

Incoming: Called=55512341112, Calling=555123456

GT NAT lookup: "555" -> response_gt="55512341111"

Response: Called=555123456, Calling=55512341111

Add to runtime.exs (keep disabled initially)

config :omniss7,

 gt_nat_enabled: false, # Start disabled

 gt_nat_rules: [

 # Your rules here with weights

 %{calling_prefix: "877", weight: 10, response_gt:

"111111"},

 %{weight: 100, response_gt: "999999"} # Wildcard fallback

]

3. Enable in Staging

4. Monitor Logs

5. Deploy to Production

Deploy during maintenance window

Monitor first 24 hours closely

Have rollback plan ready (set gt_nat_enabled: false)

Support

For issues or questions:

Check logs for "GT NAT" messages

Validate config with GtNat.validate_config()

Review this guide's troubleshooting section

Contact OmniSS7 support with log excerpts

See Also

HLR Guide - HLR mode configuration

SMSC Guide - SMSc mode configuration

Validate config compiles

mix compile

Test in iex

iex -S mix

iex> GtNat.validate_config()

gt_nat_enabled: true # Change to true

tail -f log/omniss7.log | grep "GT NAT"

STP Guide - STP routing configuration

Configuration Reference - Complete config reference

HLR Configuration

Guide

← Back to Main Documentation

This guide provides configuration for using OmniSS7 as a Home Location

Register (HLR/HSS) with OmniHSS as the backend subscriber database.

OmniHSS Integration

OmniSS7 HLR mode functions as an SS7 signaling frontend that

interfaces with OmniHSS, a full-featured Home Subscriber Server (HSS)

backend. This architecture separates concerns:

OmniSS7 (HLR Frontend): Handles all SS7/MAP protocol signaling, SCCP

routing, and network communication

OmniHSS (HSS Backend): Manages subscriber data, authentication,

provisioning, and advanced features

Why OmniHSS?

OmniHSS provides carrier-grade subscriber management with features

including:

Multi-IMSI Support: Each subscriber can have multiple IMSIs associated

with a single MSISDN for international roaming, network switching, and

eSIM provisioning

Flexible Authentication: Support for both Milenage (3G/4G/5G) and

COMP128 (2G) authentication algorithms

Circuit & Packet Session Tracking: Independent tracking of CS (circuit-

switched) and PS (packet-switched) network registrations

Advanced Provisioning: Customizable service profiles, supplementary

services, and CAMEL subscription data

API-First Design: RESTful HTTP API for integration with billing, CRM, and

provisioning systems

Real-time Updates: Location tracking, session management, and

authentication vector generation

All subscriber data, authentication credentials, and service configurations are

stored and managed in OmniHSS. OmniSS7 queries OmniHSS via HTTPS API

calls to respond to MAP operations like UpdateLocation,

SendAuthenticationInfo, and SendRoutingInfo.

Important: OmniSS7 HLR mode is a signaling frontend only. All subscriber

management logic, authentication algorithms, provisioning rules, and database

operations are handled by OmniHSS. This guide covers the SS7/MAP protocol

configuration in OmniSS7. For information about subscriber provisioning,

authentication configuration, service profiles, and administrative operations,

refer to the OmniHSS documentation.

Multi-IMSI Support

OmniHSS natively supports Multi-IMSI configurations, allowing a single

subscriber (identified by MSISDN) to have multiple IMSIs. This enables:

International Roaming Profiles: Different IMSIs for different regions to

reduce roaming costs

eSIM Multi-Profile: Multiple network profiles on a single eSIM-capable

device

Network Switching: Seamless switching between networks without

changing MSISDN

Dual SIM Coordination: Coordination across multiple physical or virtual

SIMs

Testing & Development: Multiple test IMSIs pointing to the same

subscriber

How it works:

Each IMSI has its own authentication credentials (Ki, OPc, algorithm)

Each IMSI can have independent circuit and packet session registrations

Subscriber services and profiles can be shared or customized per-IMSI

OmniSS7 queries OmniHSS by IMSI, and OmniHSS returns the appropriate

subscriber data

Billing systems can track usage per-IMSI while associating all IMSIs to a

single account

Example Multi-IMSI scenario:

All three IMSIs can be used independently for network registration, but they all

belong to the same subscriber account. OmniHSS manages the IMSI-to-

subscriber mapping and ensures proper authentication and provisioning for

each IMSI.

Subscriber MSISDN: +1-555-123-4567

├─ IMSI 1: 310260123456789 (US Home Network - Milenage auth)

├─ IMSI 2: 208011234567890 (France Roaming Profile - Milenage

auth)

└─ IMSI 3: 440201234567891 (UK Roaming Profile - COMP128 auth)

Table of Contents

1. OmniHSS Integration

2. Multi-IMSI Support

3. What is HLR Mode?

4. Enabling HLR Mode

5. Subscriber Database

6. Authentication Vectors

7. Location Updates

8. CAMEL Integration

9. Roaming Subscriber Handling

10. HLR Operations

Response Field Mapping

SendRoutingInfo (SRI)

UpdateLocation / ISD

SendRoutingInfoForSM

Field Source Summary

What is HLR Mode?

HLR Mode enables OmniSS7 to function as a Home Location Register for:

Subscriber Management: Store and manage subscriber data

Authentication: Generate authentication vectors for network access

Location Tracking: Process location updates from VLRs

Routing Information: Provide routing info for calls and SMS

HLR Architecture

Enabling HLR Mode

OmniSS7 can operate in different modes. To use it as an HLR, you need to

enable HLR mode in the configuration.

Switching to HLR Mode

OmniSS7's config/runtime.exs contains three pre-configured operational

modes. To enable HLR mode:

1. Open config/runtime.exs

2. Find the three configuration sections (lines 53-174):

Configuration 1: STP Mode (lines 53-85)

Configuration 2: HLR Mode (lines 87-123)

Configuration 3: SMSc Mode (lines 125-174)

3. Comment out the currently active configuration (add # to each line)

4. Uncomment the HLR configuration (remove # from lines 87-123)

5. Customize the configuration parameters as needed

6. Restart the application: iex -S mix

HLR Mode Configuration

The complete HLR configuration looks like this:

config :omniss7,

 # Mode flags - Enable HLR features only

 map_client_enabled: true,

 hlr_mode_enabled: true,

 smsc_mode_enabled: false,

 # OmniHSS Backend API Configuration

 hlr_api_base_url: "https://10.180.2.140:8443",

 # HLR Service Center GT Address for SMS operations

 hlr_service_center_gt_address: "1234567890",

 # MSISDN ↔ IMSI Mapping Configuration

 # See: MSISDN ↔ IMSI Mapping section for details

 hlr_imsi_plmn_prefix: "50557",

 hlr_msisdn_country_code: "61",

 hlr_msisdn_nsn_offset: 0,

 hlr_msisdn_nsn_length: 9,

 # InsertSubscriberData Configuration

 # Network Access Mode: :packetAndCircuit, :packetOnly, or

:circuitOnly

 isd_network_access_mode: :packetAndCircuit,

 # Send ISD #2 (Supplementary Services data)

 isd_send_ss_data: true,

 # Send ISD #3 (Call Barring data)

 isd_send_call_barring: true,

 # CAMEL Configuration (for SendRoutingInfo responses)

 # Service Key for CAMEL service initiation

 camel_service_key: 11_110,

 # CAMEL Trigger Detection Point

 # Options: :termAttemptAuthorized, :tBusy, :tNoAnswer, :tAnswer

 camel_trigger_detection_point: :termAttemptAuthorized,

 # Home VLR Prefixes

 # List of VLR address prefixes that are considered "home"

network

 # If subscriber's VLR starts with one of these prefixes, use

standard SRI response

 # Otherwise, subscriber is roaming and we need to send PRN to

get MSRN

 home_vlr_prefixes: ["123456"],

 # M3UA Connection Configuration

 # Connect as ASP for receiving MAP operations (UpdateLocation,

SendAuthInfo, etc.)

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :hlr_client_asp,

 # Local endpoint (HLR system)

 local_ip: {10, 179, 4, 11},

 local_port: 2905,

 # Remote STP endpoint

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the Configuration

Reference.

Parameter Type Default

hlr_api_base_url String Required

hlr_service_center_gt_address String Required

smsc_service_center_gt_address String Required

hlr_smsc_alert_gts List []

hlr_alert_location_expiry_seconds Integer 172800

hlr_imsi_plmn_prefix String "50557"

hlr_msisdn_country_code String "61"

Parameter Type Default

hlr_msisdn_nsn_offset Integer 0

hlr_msisdn_nsn_length Integer 9

isd_network_access_mode Atom :packetAndCircuit

isd_send_ss_data Boolean true

isd_send_call_barring Boolean true

camel_service_key Integer 11_110

camel_trigger_detection_point Atom :termAttemptAuthorized

home_vlr_prefixes List ["5551231"]

local_ip Tuple Required

Parameter Type Default

local_port Integer 2905

remote_ip Tuple Required

remote_port Integer 2905

routing_context Integer 1

What Happens When HLR Mode is Enabled

When hlr_mode_enabled: true , the web UI will show:

� SS7 Events - Event logging

� SS7 Client - MAP operation testing

� M3UA - Connection status

� HLR Links - HLR API status + subscriber management ← HLR-specific

� Resources - System monitoring

� Configuration - Config viewer

The Routing, Routing Test, and SMSc Links tabs will be hidden.

Important Notes

Required Configuration: The hlr_service_center_gt_address

parameter is mandatory. The application will fail to start if it is not

configured.

OmniHSS Backend: The OmniHSS API backend must be accessible at the

configured hlr_api_base_url

API Request Timeout: All OmniHSS API requests have a hardcoded 5-

second timeout

MAP Request Timeout: All MAP requests (SRI, UpdateLocation,

SendAuthInfo, etc.) have a hardcoded 10-second timeout

ISD Timeout: Each InsertSubscriberData (ISD) message in an

UpdateLocation sequence has a hardcoded 10-second timeout

M3UA connection to STP is required for receiving MAP operations

After changing modes, you must restart the application for changes to take

effect

Web UI: See the Web UI Guide for information on using the web interface

API Access: See the API Guide for REST API documentation and Swagger

UI access

Subscriber Database

OmniHSS manages all subscriber data including identities, authentication

credentials, service profiles, and location information. OmniSS7 retrieves this

data via RESTful API calls.

OmniHSS Subscriber Model

OmniHSS stores comprehensive subscriber information:

Multiple IMSIs per subscriber: Support for Multi-IMSI configurations

(eSIM, roaming profiles, network switching)

Authentication credentials: Ki, OPc, and algorithm selection (Milenage

or COMP128)

Service profiles: Subscriber category, allowed services, QoS parameters

Location tracking: Current VLR/MSC (circuit session) and SGSN/GGSN

(packet session) independent tracking

CAMEL subscription data: Service keys, trigger points, and gsmSCF

addresses

Supplementary services: Call forwarding, barring, waiting, CLIP/CLIR

configurations

Administrative state: Enabled/disabled, service restrictions, expiration

dates

Authentication Vectors

Generate Auth Vectors

OmniHSS generates authentication vectors using the Milenage or

COMP128 algorithms based on each subscriber's configured authentication

method. When OmniSS7 receives sendAuthenticationInfo MAP requests:

1. OmniSS7 extracts the IMSI from the MAP request

2. OmniSS7 calls the OmniHSS API to generate authentication vectors

3. OmniHSS retrieves the subscriber's Ki and OPc credentials

4. OmniHSS generates the requested number of vectors (RAND, XRES, CK, IK,

AUTN)

5. OmniSS7 encodes the vectors into MAP format and returns them to the

requesting VLR/SGSN

OmniHSS API Integration

OmniSS7 communicates with OmniHSS via HTTPS REST API to retrieve

subscriber information, update location data, and generate authentication

vectors:

When OmniSS7 receives MAP operations from the SS7 network, it queries

OmniHSS to:

Retrieve subscriber data by IMSI or MSISDN

Generate authentication vectors using stored Ki/OPc credentials

Update circuit session location when subscribers perform

UpdateLocation

Check subscriber status and service entitlements

config :omniss7,

 hlr_api_base_url: "https://omnihss-server:8443"

Location Updates

Update Location Processing

When receiving updateLocation MAP requests, OmniSS7 coordinates with

OmniHSS to register the subscriber at a new VLR:

1. Extract location info from UpdateLocation request (IMSI, new VLR GT,

new MSC GT)

2. Query OmniHSS to verify subscriber exists and is enabled

3. Update circuit session in OmniHSS with new VLR/MSC location

4. Send InsertSubscriberData (ISD) messages to provision the subscriber

at the new VLR

5. Return UpdateLocation response to VLR (includes HLR GT from

hlr_service_center_gt_address)

6. Send alertServiceCenter to configured SMSc GTs (if hlr_smsc_alert_gts

is populated)

Note: The hlr_service_center_gt_address configuration parameter specifies

the HLR's Global Title that is returned in UpdateLocation responses. This allows

the VLR/MSC to identify and route messages back to this HLR.

Alert Service Center Integration

After a successful UpdateLocation, the HLR can automatically notify SMSc

systems that a subscriber is now reachable by sending alertServiceCenter

(MAP opcode 64) messages. For information on how the SMSc handles these

alerts, see Alert Service Center Handling in SMSc Guide.

Configuration

Configure the list of SMSc Global Titles to notify:

Flow Diagram

SMSc APISMScHLRVLR

SMSc APISMScHLRVLR

Subscriber registers at new VLR

Send InsertSubscriberData (ISD) sequence

Notify SMSc of subscriber reachability

loop [For each SMSc GT in hlr_smsc_alert_gts]

UpdateLocation (IMSI, VLR GT, MSC GT)

Verify subscriber exists

Update VLR location in database

InsertSubscriberData

ISD

InsertSubscriberData

ISD

InsertSubscriberData

ISD

UpdateLocation Response (hlr_service_center_gt_address)

alertServiceCenter (MSISDN)

Strip TON/NPI prefix from MSISDN

Calculate IMSI

POST /api/location (user_agent=HLR GT)

200 OK

Track in SubscriberTracker (active)

alertServiceCenter ACK

config :omniss7,

 # List of SMSc GTs to send alertServiceCenter after

UpdateLocation

 hlr_smsc_alert_gts: [

 "15559876543",

 "15559876544"

],

 # Location expiry time when SMSc receives alertServiceCenter

(default: 48 hours)

 hlr_alert_location_expiry_seconds: 172800

Behavior

When a subscriber performs UpdateLocation:

1. HLR sends alertServiceCenter to each SMSc GT in the hlr_smsc_alert_gts

list

2. Message includes the subscriber's MSISDN

3. HLR uses hlr_service_center_gt_address as the calling party GT

4. SCCP addressing: calling SSN=6 (HLR), called SSN=8 (SMSc)

The SMSc receives the alert and:

Strips TON/NPI prefix from MSISDN (e.g., "19123123213" →

"123123213")

Marks the subscriber as reachable in its location database (via POST to

/api/location)

Sets user_agent field to the HLR GT when calling the API (for tracking

which HLR sent the alert)

Sets location expiry time based on hlr_alert_location_expiry_seconds

Tracks the subscriber in the SMSc Subscriber Tracker for monitoring

Testing

Use the Active Subscribers page in the Web UI to manually send

alertServiceCenter messages for testing:

1. Navigate to the "Active Subscribers" tab

2. Find the "Test Alert Service Center" section

3. Enter MSISDN, SMSc GT, and HLR GT (defaults are pre-populated from

config)

SMSc GT defaults to first entry in hlr_smsc_alert_gts

HLR GT defaults to hlr_service_center_gt_address

4. Click "Send alertServiceCenter"

This is useful for testing SMSc alert handling without requiring a full

UpdateLocation flow. The form uses phx-blur validation to avoid showing

errors while typing.

InsertSubscriberData (ISD) Configuration

After a successful UpdateLocation, the HLR sends subscriber provisioning data

to the VLR using InsertSubscriberData (ISD) messages. The ISD

configuration allows you to customize what data is sent and how.

For configuration parameter reference, see ISD Configuration in Configuration

Reference.

ISD Sequence

The HLR can send up to 3 sequential ISD messages:

1. ISD #1 (Always sent) - Basic subscriber data:

IMSI

MSISDN

Subscriber category

Subscriber status (serviceGranted)

Bearer service list

Teleservice list

Network access mode

2. ISD #2 (Optional) - Supplementary Services (SS) data:

Call forwarding settings (unconditional, busy, no reply, not reachable)

Call waiting

Call hold

Multi-party service

Supplementary service status and features

3. ISD #3 (Optional) - Call Barring data:

Barring of all outgoing calls (BAOC)

Barring of outgoing international calls (BOIC)

Access restriction data

Configuration Options

Network Access Mode

The isd_network_access_mode parameter controls what type of network

access the subscriber is allowed:

Value Description Use Case

:packetAndCircuit

Both packet-switched

(GPRS/LTE) and circuit-

switched (voice)

Default - Full

service subscribers

:packetOnly
Packet-switched only

(data/LTE)

Data-only SIM

cards, IoT devices

:circuitOnly
Circuit-switched only

(voice/SMS)

Legacy devices,

voice-only plans

Controlling ISD Messages

You can control which ISD messages are sent based on your network

requirements:

Send all ISDs (Default - Full feature set):

InsertSubscriberData Configuration

Network Access Mode: :packetAndCircuit, :packetOnly, or

:circuitOnly

isd_network_access_mode: :packetAndCircuit,

Send ISD #2 (Supplementary Services data)

isd_send_ss_data: true,

Send ISD #3 (Call Barring data)

isd_send_call_barring: true,

isd_send_ss_data: true,

isd_send_call_barring: true,

Send only basic subscriber data (Minimal provisioning):

Send basic + supplementary services (No call barring):

ISD Flow Example

When UpdateLocation is received:

If isd_send_ss_data or isd_send_call_barring are set to false , those ISD

messages are skipped, and the UpdateLocation END is sent sooner.

Best Practices

Default Configuration: Use :packetAndCircuit and enable all ISDs for

maximum compatibility

IoT/M2M: Use :packetOnly and disable SS data/call barring for data-only

devices

Interoperability: Some older VLRs may not support all supplementary

services - disable isd_send_ss_data if encountering issues

isd_send_ss_data: false,

isd_send_call_barring: false,

isd_send_ss_data: true,

isd_send_call_barring: false,

VLR → HLR: UpdateLocation (BEGIN)

HLR → VLR: InsertSubscriberData #1 (CONTINUE) - Basic data

VLR → HLR: ISD #1 ACK (CONTINUE)

HLR → VLR: InsertSubscriberData #2 (CONTINUE) - SS data [if

enabled]

VLR → HLR: ISD #2 ACK (CONTINUE)

HLR → VLR: InsertSubscriberData #3 (CONTINUE) - Call barring [if

enabled]

VLR → HLR: ISD #3 ACK (CONTINUE)

HLR → VLR: UpdateLocation Response (END)

Performance: Disabling unused ISDs reduces message overhead and

speeds up location updates

CAMEL Integration

CAMEL Configuration for SendRoutingInfo

When responding to SendRoutingInfo (SRI) requests from a GMSC (Gateway

MSC), the HLR can instruct the GMSC to invoke CAMEL services for intelligent

call routing and service control.

For configuration parameter reference, see CAMEL Configuration in

Configuration Reference.

What is CAMEL?

CAMEL (Customized Applications for Mobile network Enhanced Logic) is a

protocol that enables intelligent network services in GSM/UMTS networks. It

allows network operators to implement value-added services like:

Prepaid billing

Call screening and barring

Virtual Private Networks (VPN)

Premium rate services

Call forwarding with custom logic

Location-based services

Configuration Options

CAMEL Configuration (for SendRoutingInfo responses)

Service Key for CAMEL service initiation

camel_service_key: 11_110,

CAMEL Trigger Detection Point

Options: :termAttemptAuthorized, :tBusy, :tNoAnswer, :tAnswer

camel_trigger_detection_point: :termAttemptAuthorized,

Service Key

The camel_service_key identifies which CAMEL service should be invoked at

the gsmSCF (Service Control Function). This is a numeric identifier configured in

your network:

Service Key Typical Use Case

11_110 Prepaid terminating call control (default)

100 Originating prepaid service

200 Call forwarding with custom logic

300 Virtual Private Network (VPN)

Custom Operator-specific services

Configuration Example:

Trigger Detection Point

The camel_trigger_detection_point specifies when the CAMEL service should

be triggered during call setup:

For prepaid terminating call control

camel_service_key: 11_110,

For VPN service

camel_service_key: 300,

Detection Point Description When Triggered

:termAttemptAuthorized
Call attempt

authorized (default)

Before call is routed

to subscriber

:tBusy Terminating busy
When subscriber is

busy

:tNoAnswer Terminating no answer
When subscriber

doesn't answer

:tAnswer Terminating answer
When subscriber

answers the call

Configuration Examples:

Standard prepaid control (trigger before routing):

Custom busy handling (trigger when busy):

Answer-based billing (trigger on answer):

SRI Response with CAMEL

When configured, SendRoutingInfo responses include CAMEL subscription

information:

camel_trigger_detection_point: :termAttemptAuthorized,

camel_trigger_detection_point: :tBusy,

camel_trigger_detection_point: :tAnswer,

Best Practices

Production Networks: Use standardized service keys agreed upon with

your gsmSCF provider

Testing: Use :termAttemptAuthorized for most comprehensive testing

Prepaid Services: Service key 11_110 is a common industry standard for

prepaid terminating calls

Fallback Handling: defaultCallHandling: :continueCall ensures calls

proceed if gsmSCF is unreachable

Roaming Subscriber Handling

Home VLR vs Roaming VLR Detection

When the HLR receives a SendRoutingInfo (SRI) request, it needs to

determine whether the subscriber is on a "home" VLR (within your network) or

on a roaming VLR (visiting another network). The behavior differs based on this

determination:

For configuration parameter reference, see Home VLR Prefixes in Configuration

Reference.

Home VLR: Return standard SRI response with CAMEL routing information

GMSC → HLR: SendRoutingInfo (BEGIN)

HLR → GMSC: SRI Response (END) with:

 - IMSI

 - VLR number

 - Subscriber state

 - CAMEL routing info:

 * Service Key: 11_110

 * gsmSCF Address: <configured address>

 * Trigger Detection Point: termAttemptAuthorized

 * Default Call Handling: continueCall

GMSC contacts gsmSCF at trigger point to execute CAMEL service

Roaming VLR: Send a Provide Roaming Number (PRN) request to obtain

an MSRN, then return it in the SRI response

Configuration

Configuration Example:

How It Works

1. Home Subscriber Flow (Standard)

When the subscriber's VLR address starts with a configured home prefix:

Home VLR Prefixes

List of VLR address prefixes that are considered "home" network

If subscriber's VLR address starts with one of these prefixes,

use standard SRI response

Otherwise, subscriber is roaming and we need to send PRN to get

MSRN

home_vlr_prefixes: ["555123"],

Single home network

home_vlr_prefixes: ["555123"],

Multiple home networks (e.g., different regions or subsidiaries)

home_vlr_prefixes: ["555123", "555124", "555125"],

GMSC → HLR: SendRoutingInfo (MSISDN: "1234567890")

HLR queries backend API for subscriber data

HLR checks VLR address: "5551234567"

HLR determines: VLR starts with "555123" → Home network

HLR → GMSC: SRI Response with CAMEL routing info:

 - IMSI

 - VLR number: "5551234567"

 - gsmSCF address (MSC): "5551234501"

 - CAMEL service key: 11_110

 - Trigger detection point: termAttemptAuthorized

2. Roaming Subscriber Flow (PRN Required)

When the subscriber's VLR address does NOT match any home prefix:

Response Structure Differences

Home Subscriber SRI Response

GMSC → HLR: SendRoutingInfo (MSISDN: "1234567890")

HLR queries backend API for subscriber data

HLR checks VLR address: "49170123456"

HLR determines: VLR doesn't start with "555123" → Roaming

HLR → MSC: ProvideRoamingNumber (PRN):

 - MSISDN: "1234567890"

 - IMSI: "999999876543210"

 - MSC number: "49170123456"

 - GMSC address: "5551234501"

MSC → HLR: PRN Response with MSRN: "49170999888777"

HLR → GMSC: SRI Response with routing info:

 - IMSI

 - VLR number: "49170123456"

 - Roaming Number (MSRN): "49170999888777"

Roaming Subscriber SRI Response

Provide Roaming Number (PRN) Operation

PRN Request Structure

The PRN request sent to the MSC/VLR contains:

%{

 imsi: "999999876543210",

 extendedRoutingInfo: {

 :camelRoutingInfo, %{

 gmscCamelSubscriptionInfo: %{

 "t-CSI": %{

 serviceKey: 11_110,

 "gsmSCF-Address": "5551234501",

 defaultCallHandling: :continueCall,

 "t-BcsmTriggerDetectionPoint": :termAttemptAuthorized

 }

 }

 }

 },

 subscriberInfo: %{

 locationInformation: %{"vlr-number": "5551234567"},

 subscriberState: {:notProvidedFromVLR, :NULL}

 }

}

%{

 imsi: "999999876543210",

 extendedRoutingInfo: {

 :routingInfo, %{

 roamingNumber: "49170999888777" # MSRN from PRN

 }

 },

 subscriberInfo: %{

 locationInformation: %{"vlr-number": "49170123456"},

 subscriberState: {:notProvidedFromVLR, :NULL}

 }

}

Field Source Description

MSISDN
SRI

request
Subscriber's phone number

IMSI HLR API Subscriber's IMSI

MSC Number HLR API
MSC serving the roaming subscriber

(serving_msc)

GMSC Address
SRI

request
GMSC making the original SRI request

Call Reference

Number
Static Call reference identifier

Supported CAMEL

Phases
Static CAMEL phases supported by GMSC

PRN Response Handling

The HLR expects a PRN response containing:

MSRN (Mobile Station Roaming Number): A temporary number allocated

by the visited network for routing the call

Error Handling:

If PRN times out → Returns error 27 (Absent Subscriber) in SRI response

If PRN fails → Returns error 27 (Absent Subscriber) in SRI response

If MSRN cannot be extracted → Returns error 27 (Absent Subscriber) in SRI

response

Configuration Examples

Single Home Network Operator

VLR 5551234567 → Home (CAMEL response)

VLR 5551235001 → Home (CAMEL response)

VLR 49170123456 → Roaming (PRN + MSRN response)

Multi-Region Operator

VLR 5551234567 → Home (region 1)

VLR 5552341234 → Home (region 2)

VLR 5553411111 → Home (region 3)

VLR 44201234567 → Roaming (international)

Testing Configuration

For testing PRN functionality, set an empty list to treat all VLRs as roaming:

Best Practices

Prefix Selection: Use the shortest unique prefix that identifies your

network's VLRs (e.g., country code + network code)

Multiple Prefixes: Include all VLR prefixes in your network, including

different regions and subsidiaries

Roaming Agreements: Ensure PRN is properly supported by roaming

partner networks

Testing: Test both home and roaming scenarios thoroughly before

production deployment

All VLR addresses starting with "555123" are considered home

home_vlr_prefixes: ["555123"],

Multiple home networks across different regions

home_vlr_prefixes: ["555123", "555124", "555125"],

All VLRs are treated as roaming (for testing PRN flow)

home_vlr_prefixes: [],

Monitoring: Monitor PRN timeout rates to identify connectivity issues with

roaming partners

Troubleshooting

Symptom: All subscribers treated as roaming

Cause: home_vlr_prefixes not configured or prefixes don't match VLR

addresses

Solution: Check VLR addresses in your database and update prefixes

accordingly

Symptom: PRN requests timing out

Cause: Network connectivity issues to roaming partner MSC/VLR

Solution: Verify M3UA/SCCP routing to remote MSC addresses

Symptom: Invalid MSRN in SRI response

Cause: PRN response format from roaming partner doesn't match expected

structure

Solution: Review PRN response logs and adjust extract_msrn_from_prn/1

if needed

HLR Operations

Supported MAP Operations

updateLocation (Opcode 2) - Register VLR location

sendAuthenticationInfo (Opcode 56) - Generate auth vectors

sendRoutingInfo (Opcode 22) - Provide MSRN for calls with CAMEL support

sendRoutingInfoForSM (Opcode 45) - Provide MSC GT for SMS

cancelLocation (Opcode 3) - Deregister from old VLR

insertSubscriberData (Opcode 7) - Push subscriber profile

Response Field Mapping

This section details where each field in HLR responses comes from.

SendRoutingInfo (SRI) Response

Purpose: Provides routing information for incoming calls to a subscriber.

The HLR provides two different response types based on whether the

subscriber is on a home VLR or roaming:

Home Subscriber Response (CAMEL Routing)

Used when the subscriber's VLR address starts with a configured

home_vlr_prefixes value.

Response Structure:

Field Source Description

IMSI
OmniHSS

API

Subscriber's IMSI from OmniHSS

database

VLR Number
OmniHSS

API

Current VLR serving the subscriber

(circuit_session.assigned_vlr)

Subscriber State Static Always notProvidedFromVLR

extendedRoutingInfo - Type: camelRoutingInfo

gsmSCF Address
OmniHSS

API

MSC serving the subscriber

(circuit_session.assigned_msc)

Service Key runtime.exs
CAMEL service identifier

(camel_service_key)

Trigger Detection

Point
runtime.exs

When to trigger CAMEL

(camel_trigger_detection_point)

CAMEL Capability

Handling
Static CAMEL phase support level

Default Call

Handling
Static Fallback if gsmSCF unreachable

Roaming Subscriber Response (MSRN Routing)

Used when the subscriber's VLR address does NOT match any configured

home_vlr_prefixes value.

Response Structure:

Field Source Description

IMSI
OmniHSS

API

Subscriber's IMSI from OmniHSS

database
"9

VLR Number
OmniHSS

API

Current VLR serving the

subscriber

(circuit_session.assigned_vlr)

"4

Subscriber State Static Always notProvidedFromVLR :n

extendedRoutingInfo - Type: routingInfo -

Roaming Number

(MSRN)

PRN

Response

MSRN obtained from

ProvideRoamingNumber request
"4

Routing Decision Logic:

Data Flow:

OmniSS7 queries OmniHSS for subscriber information

OmniHSS returns IMSI, current VLR/MSC location, and subscriber state

OmniSS7 uses this data to construct the MAP response

Configuration Requirements:

1. OmniSS7 receives SendRoutingInfo request

2. OmniSS7 queries subscriber data from OmniHSS API

3. OmniSS7 checks VLR address against home_vlr_prefixes:

 If VLR starts with home prefix:

 → Return CAMEL routing info (home subscriber flow)

 If VLR does NOT match any home prefix:

 → Send ProvideRoamingNumber (PRN) to MSC

 → Extract MSRN from PRN response

 → Return routing info with MSRN (roaming subscriber flow)

Error Responses:

If serving_vlr and serving_msc are null : Returns error 27 (Absent

Subscriber)

If subscriber not found: Returns error 1 (Unknown Subscriber)

If PRN request times out (roaming case): Returns error 27 (Absent

Subscriber)

If PRN response invalid (roaming case): Returns error 27 (Absent

Subscriber)

UpdateLocation Response with InsertSubscriberData

Purpose: Registers subscriber at new VLR and provisions subscriber data.

UpdateLocation END Response

Field Source Description Example

HLR

Number
runtime.exs

This HLR's Global Title

(hlr_service_center_gt_address)
"5551234568

TCAP

Message

Type

Static Final response after all ISDs END

InsertSubscriberData #1 (Basic Subscriber Data)

In runtime.exs

home_vlr_prefixes: ["555123"], # List of home VLR prefixes

Field Source Description Example

IMSI Request
From UpdateLocation

request
"9999998765432

MSISDN
OmniHSS

API

Subscriber's phone number

from OmniHSS
"555123456"

Category Static Subscriber category "\n" (0x0A)

Subscriber

Status
Static Service status :serviceGrante

Bearer

Service

List

Static Supported bearer services [<<31>>]

Teleservice

List
Static Supported teleservices

[<<17>>, "!

"\""]

Network

Access

Mode

runtime.exs
Packet/circuit access

(isd_network_access_mode)
:packetAndCirc

InsertSubscriberData #2 (Supplementary Services) - Optional

Field Source Description Controlled By

Provisioned

SS
Static

Supplementary services

data

isd_send_ss_data:

true

Call

Forwarding
Static

Forwarding

configurations

(unconditional, busy, no

reply, not reachable)

Config enabled

Call Waiting Static
Call waiting service

status
Config enabled

Multi-party

Service
Static Conference call support Config enabled

ISD #2 includes:

Call forwarding unconditional (SS code 21)

Call forwarding on busy (SS code 41)

Call forwarding on no reply (SS code 42)

Call forwarding on not reachable (SS code 62)

Call waiting (SS code 43)

Multi-party service (SS code 51)

CLIP/CLIR services

InsertSubscriberData #3 (Call Barring) - Optional

Field Source Description Controlled By

Call Barring

Info
Static

Call barring

configurations

isd_send_call_barring:

true

BAOC Static

Barring of All

Outgoing Calls (SS

code 146)

Config enabled

BOIC Static

Barring of

Outgoing

International Calls

(SS code 147)

Config enabled

Access

Restriction

Data

Static
Network access

restrictions
Config enabled

ISD Sequence Control:

ISD #1: Always sent - Contains essential subscriber data

ISD #2: Sent only if isd_send_ss_data: true in runtime.exs

ISD #3: Sent only if isd_send_call_barring: true in runtime.exs

SendRoutingInfoForSM (SRI-for-SM) Response

Purpose: Provides MSC/SMSC routing information for SMS delivery. When an

SMSc needs to deliver an SMS to a subscriber, it sends a SRI-for-SM request to

the HLR to determine where to route the message.

Response Structure:

Field Source Description How Generated

IMSI Calculated

Synthetic

IMSI derived

from

MSISDN

PLMN_PREFIX +

zero_padded_MSISDN

Network

Node

Number

runtime.exs

SMSC GT

address for

SMS routing

smsc_service_center_gt_address

Configuration Parameters (from runtime.exs):

MSISDN ↔ IMSI Mapping

Configuration Parameters:

These parameters control how OmniSS7 generates synthetic IMSIs from

MSISDNs for SRI-for-SM responses:

hlr_imsi_plmn_prefix : The MCC+MNC prefix to use when constructing

synthetic IMSIs (e.g., "50557" for MCC=505, MNC=57)

hlr_msisdn_country_code : Country code to prepend when doing reverse

IMSI→MSISDN mapping (e.g., "61" for Australia, "1" for USA/Canada)

hlr_msisdn_nsn_offset : Character position where the National Subscriber

Number (NSN) starts within the MSISDN (typically 0 if MSISDN doesn't

Service Center GT Address (returned in SRI-for-SM responses)

This tells the requesting SMSc where to send MT-ForwardSM

messages

smsc_service_center_gt_address: "5551234567", # Required

MSISDN ↔ IMSI Mapping Configuration

PLMN prefix: MCC (001 = Test Network) + MNC (01 = Test Operator)

hlr_imsi_plmn_prefix: "001001", # Only config

parameter needed!

include country code, or length of country code if it does)

hlr_msisdn_nsn_length : Number of digits to extract from the MSISDN as

the NSN

For additional configuration details, see MSISDN ↔ IMSI Mapping in

Configuration Reference.

Why is MSISDN to IMSI Mapping Needed?

The MAP protocol for SendRoutingInfoForSM (SRI-for-SM) requires the HLR to

return an IMSI (International Mobile Subscriber Identity) in its response.

However, the requesting SMSc only knows the subscriber's MSISDN (phone

number).

In a traditional network:

The SMSc sends SRI-for-SM with the destination MSISDN (e.g.,

"5551234567")

The HLR must look up the subscriber in its database to find their IMSI

The HLR returns the IMSI in the SRI-for-SM response

The SMSc then uses this IMSI when sending MT-ForwardSM to the MSC/VLR

OmniSS7's Approach - Synthetic IMSIs:

Instead of maintaining a full subscriber database with MSISDN-to-IMSI

mappings, OmniSS7 uses a simple encoding scheme to calculate synthetic

IMSIs directly from the MSISDN. This approach provides two key benefits:

1. Privacy: Real subscriber IMSIs stored in the HLR database are never

exposed in SRI-for-SM responses sent over the SS7 network

2. Simplicity: No need to query the HLR database for IMSI lookups during

SRI-for-SM operations - the IMSI is calculated on-the-fly from the MSISDN

How It Works:

MSISDNs are encoded directly into the subscriber portion of the IMSI (the digits

after MCC+MNC):

Where:

PLMN_PREFIX: MCC + MNC (e.g., "001001" for Test Network)

MSISDN: All numeric digits from the phone number

Zero Padding: Left-padded with zeros to fill IMSI to exactly 15 digits

Step-by-Step Example:

Complete Examples:

IMSI = PLMN_PREFIX + zero_padded_MSISDN

Configuration

plmn_prefix = "001001" # MCC 001 + MNC 01

Input: MSISDN from SRI-for-SM request (TBCD decoded)

msisdn = "555123456" # 9 digits

Step 1: Calculate available space for subscriber number

subscriber_digits = 15 - String.length("001001") # = 9 digits

Step 2: Left-pad MSISDN with zeros to fill subscriber portion

padded_msisdn = String.pad_leading("555123456", 9, "0") # =

"555123456" (no padding needed)

Step 3: Concatenate PLMN prefix + padded MSISDN

imsi = "001001" <> "555123456" # = "001001555123456" (exactly 15

digits)

Input

MSISDN

PLMN

Prefix

Subscriber

Digits

Available

Padded

MSISDN
Final IMSI

"555123456"
"001001"

(6)
9 "555123456" "0010015551234

"99"
"001001"

(6)
9 "000000099" "0010010000000

"999999999"
"001001"

(6)
9 "999999999" "0010019999999

"91123456789"
"001001"

(6)
9 "555123456" "0010015551234

Edge Case Handling:

Short MSISDNs: Left-padded with zeros (e.g., "99" → "000000099")

Long MSISDNs: Rightmost digits are kept, leftmost digits are truncated

(e.g., "91123456789" → "555123456")

IMSI Length: Always exactly 15 digits

Reverse Mapping (IMSI → MSISDN):

The SMSc can reverse this mapping to convert IMSIs back to MSISDNs:

Reverse Mapping Examples:

Input IMSI
PLMN

Prefix

Subscriber

Portion

Remove

Leading

Zeros

Final

MSISDN

"001001555123456" "001001" "555123456" "555123456" "55512345

"001001000000099" "001001" "000000099" "99" "99"

"001001999999999" "001001" "999999999" "999999999" "99999999

Properties of This Mapping:

� Deterministic: Same MSISDN always produces same IMSI

� Reversible: Can convert back from IMSI to MSISDN

� Minimal Configuration: Only requires hlr_imsi_plmn_prefix

� Privacy-Preserving: Real IMSIs never exposed

� No Database Lookup: Fast calculation, no API calls needed

� Always 15 Digits: IMSI is always exactly 15 digits

MSISDN Input Handling:

When the HLR receives a SRI-for-SM request, the MSISDN undergoes TBCD

decoding:

Input: IMSI from SRI-for-SM response

imsi = "001001555123456"

Step 1: Strip PLMN prefix

plmn_prefix = "001001"

subscriber_portion = String.slice(imsi, 6, 9) # = "555123456"

Step 2: Remove leading zeros to get actual MSISDN

msisdn = String.replace_leading(subscriber_portion, "0", "") # =

"555123456"

1. TBCD Decode: Convert binary TBCD to string (may include TON/NPI prefix

like "91")

2. Extract Digits: Keep only numeric digits, strip any non-digit characters

3. Normalize: If longer than available space, take rightmost digits; if shorter,

left-pad with zeros

4. Encode: Concatenate PLMN prefix + normalized MSISDN

Security Considerations:

The synthetic IMSIs returned in SRI-for-SM responses are purely for routing

purposes. They are NOT the real IMSIs stored in the HLR subscriber database.

This provides an additional layer of privacy protection, as real subscriber IMSIs

are only exposed when absolutely necessary (e.g., during UpdateLocation or

SendAuthenticationInfo operations that require real authentication vectors).

Response Flow:

Configuration:

The following parameters are used in runtime.exs :

1. SMSc → HLR: SRI-for-SM Request

 - MSISDN (TBCD): "91123456789" (includes TON/NPI)

2. HLR Processing:

 - TBCD decode: "91123456789"

 - Extract digits: "91123456789" (11 digits)

 - Fit to 9 digits: "555123456" (rightmost 9)

 - Add PLMN: "001001" + "555123456" = "001001555123456"

 - Get SMSC GT from config: "5551234567"

3. HLR → SMSc: SRI-for-SM Response

 - IMSI: "001001555123456" (synthetic, always 15 digits)

 - Network Node Number: "5551234567" (where to send MT-

ForwardSM)

4. SMSc sends MT-ForwardSM to "5551234567" with IMSI

"001001555123456"

NSN Extraction Configuration:

If your MSISDNs include the country code (e.g., "68988000088" instead of just

"88000088"), you must configure NSN extraction:

hlr_msisdn_nsn_offset : Position where NSN starts (typically the length of

your country code)

hlr_msisdn_nsn_length : Number of digits in the NSN

Examples:

Example
Country

Code

MSISDN

Example
nsn_offset nsn_length

N

Ext

1-digit

CC
"9" "95551234567" 1 10 "5551

2-digit

CC
"99" "99412345678" 2 9 "4123

3-digit

CC
"999" "99988000088" 3 8 "8800

How It Works:

1. MSISDN → IMSI: Extract NSN from MSISDN, pad with leading zeros,

concatenate with PLMN prefix

PLMN prefix: MCC (001 = Test Network) + MNC (01 = Test Operator)

hlr_imsi_plmn_prefix: "001001",

NSN Extraction (if MSISDNs include country code)

hlr_msisdn_country_code: "1", # Used for reverse mapping

(IMSI→MSISDN)

hlr_msisdn_nsn_offset: 1, # Skip 1-digit country code

hlr_msisdn_nsn_length: 10 # Extract 10-digit NSN

2. IMSI → MSISDN: Strip PLMN prefix, remove leading zeros, prepend country

code

API Requirements: None - SRI-for-

SM uses calculated values and

MSISDN: "99988000088"

NSN: String.slice("99988000088", 3, 8) = "88000088"

Padded NSN: "088000088" (9 digits)

IMSI: "547050" + "088000088" = "547050088000088"

IMSI: "547050088000088"

Subscriber portion: "088000088"

Remove zeros: "88000088"

MSISDN: "+999" + "88000088" = "+99988000088"

config only. No backend API calls

are required.

Field Source Summary

Source

Type
Description Examples

OmniHSS

API

Dynamic data

from OmniHSS

subscriber

database

IMSI, MSISDN, serving VLR/MSC from

circuit_session

runtime.exs

OmniSS7

configuration

parameters

smsc_service_center_gt_address ,

camel_service_key ,

isd_network_access_mode

Static

Hardcoded

values in

response

generator

Subscriber status, bearer services, SS

codes

Request

Fields extracted

from incoming

MAP request

IMSI from UpdateLocation, MSISDN from

SRI

Calculated
Derived values

using logic

Synthetic IMSI in SRI-for-SM

(hlr_imsi_prefix + NSN)

Configuration Dependencies

Required in runtime.exs:

hlr_service_center_gt_address - Used in UpdateLocation responses

smsc_service_center_gt_address - Used in SRI-for-SM responses (where

MT-ForwardSM should be routed)

Optional in runtime.exs (with defaults):

camel_service_key - Default: 11_110

camel_trigger_detection_point - Default: :termAttemptAuthorized

isd_network_access_mode - Default: :packetAndCircuit

isd_send_ss_data - Default: true

isd_send_call_barring - Default: true

hlr_imsi_plmn_prefix - Default: "001001" (PLMN prefix for MSISDN↔IMSI

mapping)

Required from OmniHSS:

OmniHSS must provide REST API endpoints for:

Subscriber lookup by IMSI and MSISDN

Circuit session location updates (VLR/MSC assignment)

Authentication vector generation

Subscriber status and service profile queries

Related Documentation

OmniSS7 Documentation:

← Back to Main Documentation

Common Features Guide

MAP Client Guide

Technical Reference

Configuration Reference

OmniHSS Documentation: For subscriber management, provisioning,

authentication configuration, and administrative operations, refer to the

OmniHSS product documentation. OmniHSS contains all the subscriber

database logic, authentication algorithms, service provisioning rules, and Multi-

IMSI management capabilities.

OmniSS7 by Omnitouch Network Services

MAP Client

Configuration Guide

← Back to Main Documentation

This guide provides detailed configuration for using OmniSS7 as a MAP Client

to send MAP protocol requests to network elements.

Table of Contents

1. What is MAP Client Mode?

2. Enabling MAP Client Mode

3. Available MAP Operations

4. Sending Requests via API

5. Metrics and Monitoring

6. Troubleshooting

What is MAP Client Mode?

MAP Client Mode allows OmniSS7 to connect as an Application Server

Process (ASP) to an M3UA peer (STP or SGP) and send/receive MAP (Mobile

Application Part) messages for services like:

HLR Queries: SRI (Send Routing Info), SRI-for-SM, Authentication Info

Location Updates: Update Location, Cancel Location

Subscriber Management: Provide Roaming Number (PRN), Insert

Subscriber Data

Network Architecture

Enabling MAP Client Mode

Edit config/runtime.exs and configure MAP client settings. For complete

configuration reference, see M3UA Connection Parameters in Configuration

Reference.

Basic Configuration

config :omniss7,

 # Enable MAP Client mode

 map_client_enabled: true,

 # M3UA Connection for MAP Client (connects as ASP to remote

STP/SGP)

 map_client_m3ua: %{

 mode: "ASP", # M3UA mode: "ASP" (client)

or "SGP" (server)

 callback: {MapClient, :handle_payload, []}, # Callback for

incoming messages

 process_name: :map_client_asp, # Registered process name

 local_ip: {10, 0, 0, 100}, # Local IP address

 local_port: 2905, # Local SCTP port

 remote_ip: {10, 0, 0, 1}, # Remote STP/SGP IP

 remote_port: 2905, # Remote STP/SGP port

 routing_context: 1 # M3UA routing context

 }

Production Configuration Example

config :omniss7,

 # Enable MAP Client for production

 map_client_enabled: true,

 # Production M3UA connection

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :map_client_asp,

 local_ip: {10, 0, 0, 100},

 local_port: 2905,

 remote_ip: {10, 0, 0, 1}, # Production STP IP

 remote_port: 2905,

 routing_context: 1

 }

config :control_panel,

 web: %{

 listen_ip: "0.0.0.0",

 port: 443,

 hostname: "ss7-gateway.example.com",

 enable_tls: true,

 tls_cert: "/etc/ssl/certs/gateway.crt",

 tls_key: "/etc/ssl/private/gateway.key"

 }

Available MAP Operations

1. Send Routing Info for SM (SRI-for-SM)

Queries the HLR to determine the serving MSC for SMS delivery. For detailed

information on how the HLR processes SRI-for-SM requests, see SRI-for-SM in

HLR Guide.

API Endpoint: POST /api/sri-for-sm

Request:

Response:

cURL Example:

2. Send Routing Info (SRI)

Queries the HLR for voice call routing information.

API Endpoint: POST /api/sri

Request:

{

 "msisdn": "447712345678",

 "serviceCenter": "447999123456"

}

{

 "result": {

 "imsi": "234509876543210",

 "locationInfoWithLMSI": {

 "networkNode-Number": "447999555111"

 }

 }

}

curl -X POST http://localhost/api/sri-for-sm \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "447712345678",

 "serviceCenter": "447999123456"

 }'

Response:

3. Provide Roaming Number (PRN)

Requests a temporary roaming number (MSRN) from the serving MSC.

API Endpoint: POST /api/prn

Request:

{

 "msisdn": "447712345678",

 "gmsc": "447999123456"

}

{

 "result": {

 "imsi": "234509876543210",

 "extendedRoutingInfo": {

 "routingInfo": {

 "roamingNumber": "447999555222"

 }

 }

 }

}

{

 "msisdn": "447712345678",

 "gmsc": "447999123456",

 "msc_number": "447999555111",

 "imsi": "234509876543210"

}

4. Send Authentication Info

Requests authentication vectors from the HLR for subscriber authentication.

API Endpoint: POST /api/send-auth-info

Request:

Response:

5. Update Location

Registers a subscriber's current location with the HLR. For detailed information

on UpdateLocation processing and InsertSubscriberData sequences, see

Location Updates in HLR Guide.

API Endpoint: POST /api/updateLocation

Request:

{

 "imsi": "234509876543210",

 "vectors": 5

}

{

 "result": {

 "authenticationSetList": [

 {

 "rand": "0123456789ABCDEF0123456789ABCDEF",

 "xres": "ABCDEF0123456789",

 "ck": "0123456789ABCDEF0123456789ABCDEF",

 "ik": "FEDCBA9876543210FEDCBA9876543210",

 "autn": "0123456789ABCDEF0123456789ABCDEF"

 }

]

 }

}

MAP Operations Summary

Authentication

sendAuthenticationInfo

Opcode: 56

SMS Services

sendRoutingInfoForSM

Opcode: 45

mt-forwardSM

Opcode: 44

mo-forwardSM

Opcode: 46

Call Handling

sendRoutingInfo

Opcode: 22

initialDP

CAMEL Opcode: 0

Mobility Management

updateLocation

Opcode: 2

cancelLocation

Opcode: 3

provideRoamingNumber

Opcode: 4

{

 "imsi": "234509876543210",

 "vlr": "447999555111"

}

Sending Requests via API

Using Swagger UI

The Swagger UI provides an interactive interface for sending SS7 requests.

Access Swagger UI:

1. Navigate to http://your-server/swagger

2. Browse the available API endpoints

3. Click on any endpoint to expand its details

Sending a Request:

1. Click on the endpoint you want to use (e.g., /api/sri-for-sm)

2. Click the "Try it out" button

3. Fill in the required parameters in the request body

4. Click "Execute"

5. View the response below

API Response Codes

200 - Success, result returned in response body

400 - Bad Request, invalid parameters

504 - Gateway Timeout, no response from SS7 network within 10 seconds

MAP Client Metrics

Available Metrics

Request Metrics:

map_requests_total - Total number of MAP requests sent

Labels: operation (values: sri , sri_for_sm , prn ,

authentication_info , etc.)

map_request_errors_total - Total number of MAP request errors

Labels: operation

map_request_duration_milliseconds - Histogram of MAP request

durations

Labels: operation

map_pending_requests - Current number of pending MAP requests (gauge)

Example Prometheus Queries

Troubleshooting MAP Client

Issue: Requests Timeout

Symptoms:

API returns 504 Gateway Timeout

No response from HLR/MSC

Total SRI-for-SM requests in the last hour

increase(map_requests_total{operation="sri_for_sm"}[1h])

Average response time for SRI requests

rate(map_request_duration_milliseconds_sum{operation="sri"}[5m]) /

rate(map_request_duration_milliseconds_count{operation="sri"}[5m])

Error rate for all MAP operations

sum(rate(map_request_errors_total[5m])) by (operation)

Current pending requests

map_pending_requests

Checks:

1. Verify M3UA connection is ACTIVE:

2. Check network connectivity to STP

3. Verify routing context and SCCP addressing

4. Check logs for SCCP errors

Issue: SCCP Errors

Symptoms:

API returns SCCP error responses

Logs show "SCCP unitdata service" messages

Common SCCP Error Codes:

No Translation: Global Title not found in STP routing table

Subsystem Failure: Destination subsystem (HLR SSN 6) is unavailable

Network Failure: Network congestion or failure

Solutions:

Contact STP administrator to verify routing configuration

Verify destination Global Title is reachable

Check if destination subsystem is operational

Related Documentation

← Back to Main Documentation

In IEx console

:sys.get_state(:map_client_asp)

Common Features Guide - Web UI, API, Monitoring

STP Guide - Routing configuration

SMS Center Guide - SMS delivery

Technical Reference - Protocol specifications

OmniSS7 by Omnitouch Network Services

SMS Center (SMSc)

Configuration Guide

← Back to Main Documentation

This guide provides detailed configuration for using OmniSS7 as an SMS

Center (SMSc) frontend with OmniMessage as the backend message store

and delivery platform.

OmniMessage Integration

OmniSS7 SMSc mode functions as an SS7 signaling frontend that

interfaces with OmniMessage, a carrier-grade SMS platform. This architecture

separates concerns:

OmniSS7 (SMSc Frontend): Handles all SS7/MAP protocol signaling, SCCP

routing, and network communication

OmniMessage (SMS Backend): Manages message storage, queuing,

retry logic, delivery tracking, and routing decisions

Why OmniMessage?

OmniMessage provides carrier-grade SMS messaging capabilities with features

including:

Message Queue Management: Persistent storage with configurable retry

logic and priority queuing

Delivery Tracking: Real-time delivery status, delivery reports (DLR), and

failure reason tracking

Multi-SMSc Support: Multiple frontend instances can connect to a single

OmniMessage backend for load balancing and redundancy

Routing Intelligence: Advanced routing rules based on destination,

sender, message content, and time of day

Rate Limiting: Per-route TPS (transactions per second) controls to prevent

network congestion

API-First Design: RESTful HTTP API for integration with billing systems,

customer portals, and third-party applications

Analytics & Reporting: Message volume statistics, delivery success

rates, and performance metrics

All message data, delivery state, and routing configurations are stored and

managed in OmniMessage. OmniSS7 queries OmniMessage via HTTPS API calls

to retrieve pending messages, update delivery status, and register as an active

frontend.

Important: OmniSS7 SMSc mode is a signaling frontend only. All message

routing logic, queue management, retry algorithms, delivery tracking, and

business rules are handled by OmniMessage. This guide covers the SS7/MAP

protocol configuration in OmniSS7. For information about message routing,

queue configuration, delivery reports, rate limiting, and analytics, refer to the

OmniMessage documentation.

Table of Contents

1. OmniMessage Integration

2. What is SMS Center Mode?

3. Enabling SMSc Mode

4. HTTP API Configuration

5. SMS Message Flows

6. Loop Prevention

7. SMSc Subscriber Tracking

8. Auto-Flush Configuration

9. Metrics and Monitoring

10. Troubleshooting

What is SMS Center Mode?

Note: This section covers OmniSS7's SS7 signaling configuration only. For

message routing rules, queue management, delivery tracking, and business

logic configuration, see the OmniMessage product documentation.

SMS Center Mode enables OmniSS7 to function as an SMSc for:

MT-SMS Delivery: Mobile-Terminated SMS delivery to subscribers

MO-SMS Handling: Mobile-Originated SMS reception and routing

Message Queuing: Database-backed message queue with retry logic

Auto-Flush: Automatic SMS delivery from queue

Delivery Reports: Track message delivery status

SMS Center Architecture

Enabling SMSc Mode

OmniSS7 can operate in different modes. To use it as an SMSc, you need to

enable SMSc mode in the configuration.

Switching to SMSc Mode

OmniSS7's config/runtime.exs contains three pre-configured operational

modes. To enable SMSc mode:

1. Open config/runtime.exs

2. Find the three configuration sections (lines 53-204):

Configuration 1: STP Mode (lines 53-95)

Configuration 2: HLR Mode (lines 97-142)

Configuration 3: SMSc Mode (lines 144-204)

3. Comment out any other active configuration (add # to each line)

4. Uncomment the SMSc configuration (remove # from lines 144-204)

5. Customize the configuration parameters as needed

6. Restart the application: iex -S mix

SMSc Mode Configuration

The complete SMSc configuration looks like this:

config :omniss7,

 # Mode flags - Enable STP + SMSc features

 # Note: map_client_enabled is true because SMSc needs routing

capabilities

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: true,

 # OmniMessage Backend API Configuration

 smsc_api_base_url: "https://10.179.3.219:8443",

 # SMSc identification for registration with backend

 smsc_name: "ipsmgw",

 # Service Center GT Address for SMS operations

 smsc_service_center_gt_address: "5551234567",

 # Auto Flush Configuration (background SMS queue processing)

 auto_flush_enabled: true,

 auto_flush_interval: 10_000,

 auto_flush_dest_smsc: "ipsmgw",

 auto_flush_tps: 10,

 # M3UA Connection Configuration

 # Connect as ASP for sending/receiving MAP SMS operations

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 # Local endpoint (SMSc system)

 local_ip: {10, 179, 4, 12},

 local_port: 2905,

 # Remote STP endpoint

 remote_ip: {10, 179, 4, 10},

 remote_port: 2905,

 routing_context: 1

 }

config :control_panel,

 use_additional_pages: [

 {SS7.Web.EventsLive, "/events", "SS7 Events"},

 {SS7.Web.TestClientLive, "/client", "SS7 Client"},

 {SS7.Web.M3UAStatusLive, "/m3ua", "M3UA"},

 {SS7.Web.RoutingLive, "/routing", "Routing"},

 {SS7.Web.RoutingTestLive, "/routing_test", "Routing Test"},

Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the Configuration

Reference.

 {SS7.Web.SmscLinksLive, "/smsc_links", "SMSc Links"}

],

 page_order: ["/events", "/client", "/m3ua", "/routing",

"/routing_test", "/smsc_links", "/application", "/configuration"]

Parameter Type Default Des

smsc_api_base_url String Required

OmniM

backend

endpoin

smsc_name String
"

{hostname}_SMSc"

Your SM

for regis

smsc_service_center_gt_address String Required
Service

Global T

auto_flush_enabled Boolean true
Enable a

queue p

auto_flush_interval Integer 10_000

Queue p

interval

milliseco

auto_flush_dest_smsc String Required
Destinat

name fo

auto_flush_tps Integer 10

Message

rate

(transac

local_ip Tuple Required
Your SM

IP addre

local_port Integer 2905 Local SC

remote_ip Tuple Required
STP IP a

SS7 con

remote_port Integer 2905 Remote

Parameter Type Default Des

routing_context Integer 1
M3UA ro

context

What Happens When SMSc Mode is Enabled

When smsc_mode_enabled: true and map_client_enabled: true , the web UI

will show:

� SS7 Events - Event logging

� SS7 Client - MAP operation testing

� M3UA - Connection status

� Routing - Route table management (STP enabled)

� Routing Test - Route testing (STP enabled)

� SMSc Links - SMSc API status + SMS queue management ← SMSc-

specific

� Resources - System monitoring

� Configuration - Config viewer

The HLR Links tab will be hidden.

Important Notes

SMSc mode requires map_client_enabled: true for routing capabilities

OmniMessage Backend: The OmniMessage API backend must be

accessible at the configured smsc_api_base_url

Frontend Registration: The system automatically registers with

OmniMessage every 5 minutes via the SMS.FrontendRegistry module

API Request Timeout: All OmniMessage API requests have a hardcoded

5-second timeout

MAP Request Timeout: All MAP requests (SRI-for-SM, MT-ForwardSM, etc.)

have a hardcoded 10-second timeout

Auto-flush automatically processes the SMS queue in the background

M3UA connection to STP is required for sending/receiving MAP SMS

operations

After changing modes, you must restart the application for changes to take

effect

Web UI: See the Web UI Guide for information on using the web interface

API Access: See the API Guide for REST API documentation and Swagger

UI access

HTTP API Configuration

OmniMessage Backend Setup

OmniSS7 communicates with OmniMessage via HTTPS REST API to manage

message delivery, track subscriber state, and register as an active frontend:

Configuration Parameters:

config :omniss7,

 # OmniMessage API base URL

 smsc_api_base_url: "https://10.5.198.200:8443",

 # SMSC name identifier for registration (defaults to

hostname_SMSc if empty)

 smsc_name: "omni-smsc01",

 # Service Center GT Address for SMS operations

 smsc_service_center_gt_address: "5551234567"

Parameter Type Required Default

smsc_api_base_url String Yes "https://localho

smsc_name String No
"" (uses "

{hostname}_SMSc"

smsc_service_center_gt_address String No "5551234567"

Frontend Registration

The system automatically registers itself with OmniMessage on startup and re-

registers every 5 minutes via the SMS.FrontendRegistry module. This

allows OmniMessage to:

Track active frontends for load balancing

Monitor uptime and health status

Collect configuration information

Manage distributed SMS routing across multiple frontends

Implementation Details:

Registration Interval: 5 minutes (hardcoded)

Process: Started automatically when smsc_mode_enabled: true

Registration Payload:

Note: The frontend name is taken from the smsc_name configuration

parameter. If not set, it defaults to "{hostname}_SMSc" .

OmniMessage API Communication

When OmniSS7 receives MAP operations from the SS7 network or processes the

message queue, it communicates with OmniMessage to:

Register as an active frontend and report health status

Submit mobile-originated (MO) messages received from subscribers

Retrieve mobile-terminated (MT) messages from the queue for

delivery

Update delivery status with success/failure reports

Query routing information for message forwarding

{

 "frontend_name": "omni-smsc01",

 "configuration": "{...}",

 "frontend_type": "SS7",

 "hostname": "smsc-server01",

 "uptime_seconds": 12345

}

Endpoint Method Purpose Request Body

/api/frontends POST

Register

frontend

instance

{"frontend_name":

"...",

"frontend_type":

"SMSc", "hostname":

"...",

"uptime_seconds":

...}

/api/messages_raw POST
Insert new

SMS message

{"source_msisdn":

"...", "source_smsc":

"...",

"message_body":

"..."}

/api/messages GET
Get message

queue

Header: smsc:

<smsc_name>

/api/messages/{id} PATCH

Mark

message as

delivered

{"deliver_time":

"...", "dest_smsc":

"..."}

/api/messages/{id} PUT

Update

message

status

{"dest_smsc": null}

/api/locations POST

Insert/update

subscriber

location

{"msisdn": "...",

"imsi": "...",

"location": "...",

"ims_capable": true,

"csfb": false,

"expires": "...",

"user_agent": "...",

"ran_location":

"...", "imei": "...",

"registered": "..."}

Endpoint Method Purpose Request Body

/api/events POST
Add event

tracking

{"message_id": ...,

"name": "...",

"description":

"..."}

/api/status GET Health check -

API Response Format

All API responses use JSON format with the following conventions:

Success responses: HTTP 200-201 with JSON body containing result data

Error responses: HTTP 4xx/5xx with error details in response body

Timestamps: ISO 8601 format (e.g., "2025-10-21T12:34:56Z")

Message IDs: Integer or string identifiers

API Client Modules

The SMS system consists of three main modules:

1. SMSc.APIClient

Main API client module providing all HTTP API communication with

OmniMessage:

frontend_register/4 - Register frontend with OmniMessage

insert_message/3 - Insert raw SMS message (Python-compatible 3-

parameter version)

insert_location/9 - Insert/update subscriber location data

get_message_queue/2 - Retrieve pending messages from queue

mark_dest_smsc/3 - Mark message as delivered or failed

add_event/3 - Add event tracking for messages

flush_queue/2 - Process pending messages (SRI-for-SM + MT-forwardSM)

auto_flush/2 - Continuous queue processing loop

2. SMS.FrontendRegistry

Handles periodic frontend registration with the backend:

Automatically registers on startup

Re-registers every 5 minutes

Uses smsc_name from config (falls back to hostname)

Collects system configuration and uptime information

3. SMS.Utils

Utility functions for SMS operations:

generate_tp_scts/0 - Generate SMS timestamp in TPDU format

SMS Message Flows

Incoming SMS Flow (Mobile-Originated)

Forward-SM

M3UA receives SCTP

packet

M3UA decodes packet

Extract SCCP payload

Decode SCCP message

Extract TCAP/MAP

message

Parse MAP operation

Operation Type

Decode SMS TPDU

Extract message fields

Decode user data

POST to

/api/messages_raw

POST to /api/events

Send MAP response

Outgoing SMS Flow (Mobile-Terminated)

Key Steps Explained:

SRI-for-SM Request: The SMSc queries the HLR with the destination

MSISDN to determine where to route the SMS message. The HLR responds

with:

A synthetic IMSI (calculated from the MSISDN for privacy) - see MSISDN

↔ IMSI Mapping

The SMSC GT address (network node number) where the MT-ForwardSM

should be sent

For complete details on how this works, see SRI-for-SM in HLR Guide

MT-forwardSM Request: Once routing info is obtained, the SMSc sends

the actual SMS message to the MSC/VLR serving the subscriber

SMS TPDU Structure

SMS TPDU

Message Type Indicator Message Fields

SMS-DELIVER SMS-SUBMIT Originating Address Destination Address Data Coding Scheme User Data

GSM 7-bit

160 chars

UCS-2/Unicode

70 chars

Alert Service Center Handling

The SMSc can receive alertServiceCenter messages from the HLR to track

subscriber reachability status.

For information on how the HLR sends alertServiceCenter messages, see Alert

Service Center Integration in HLR Guide.

What is alertServiceCenter?

When a subscriber performs an UpdateLocation at the HLR (i.e., registers with a

new VLR/MSC), the HLR can notify SMSc systems that the subscriber is now

reachable by sending an alertServiceCenter (MAP opcode 64) message.

Configuration

The location expiry time is configured in the HLR:

Behavior

When the SMSc receives an alertServiceCenter message:

1. Decode MSISDN: Extract the subscriber's MSISDN from the message

(TBCD format)

2. Strip TON/NPI prefix: Remove common prefixes like "19", "11", "91" (e.g.,

"19123123213" → "123123213")

3. Calculate IMSI: Generate synthetic IMSI using same mapping as SRI-for-

SM

4. POST to /api/location: Update location database with:

msisdn : Subscriber's phone number (cleaned)

imsi : Synthetic IMSI

location : SMSc name (e.g., "ipsmgw")

expires : Current time + hlr_alert_location_expiry_seconds

csfb : true (subscriber reachable via Circuit-Switched Fallback)

ims_capable : false (this is 2G/3G CS registration, not IMS/VoLTE)

user_agent : HLR GT that sent the alert (for tracking)

ran_location : "SS7"

5. Track in SMSc Subscriber Tracker: Record the subscriber with HLR GT,

status=active, message counters at 0

6. Send ACK: Reply to HLR with alertServiceCenter acknowledgment

Absent Subscriber Handling

When the SMSc attempts to deliver a message and receives an "absent

subscriber" error during SRI-for-SM (for more on SRI-for-SM, see SRI-for-SM in

HLR Guide):

1. Detect absence: SRI-for-SM returns absentSubscriberDiagnosticSM error

config :omniss7,

 # Location expiry time when SMSc receives alertServiceCenter

(default: 48 hours)

 hlr_alert_location_expiry_seconds: 172800

2. Expire location: POST to /api/location with expires=0 to mark subscriber

as unreachable

3. User agent: Set to "SS7_AbsentSubscriber" to identify the source

4. Update tracker: Mark subscriber as failed in SMSc Subscriber Tracker

This ensures the location database and tracker accurately reflect subscriber

reachability status.

Flow Diagram

SMSc APISMScHLR

SMSc APISMScHLR

Subscriber performs UpdateLocation at HLR

Later: SMS delivery attempt

alertServiceCenter(15551234567)

Calculate IMSI from MSISDN

POST /api/location (expires=48h)

200 OK

alertServiceCenter ACK

SRI-for-SM (15551234567)

Absent Subscriber Error

POST /api/location (expires=0)

200 OK

API Endpoint

POST /api/location

Note: The user_agent field contains the HLR GT that sent the

alertServiceCenter, allowing the SMSc to track which HLR is providing location

updates.

For absent subscribers, expires is set to current time (immediate expiry).

Loop Prevention

The SMSc implements automatic loop prevention to avoid infinite message

routing loops when messages originate from SS7 networks.

Why Loop Prevention is Important

When the SMSc receives mobile-originated (MO) SMS messages from the SS7

network, it inserts them into the message queue with a source_smsc field

identifying their origin (e.g., "SS7_GT_15551234567"). Without loop prevention,

these messages could be:

1. Received from SS7 network → Queued with source_smsc containing "SS7"

2. Retrieved from queue → Processed for delivery

3. Sent back to SS7 network → Creating a loop

{

 "msisdn": "15551234567",

 "imsi": "001010123456789",

 "location": "ipsmgw",

 "ims_capable": false,

 "csfb": true,

 "expires": "2025-11-01T12:00:00Z",

 "user_agent": "15551111111",

 "ran_location": "SS7",

 "imei": "",

 "registered": "2025-10-30T12:00:00Z"

}

How It Works

The SMSc automatically detects and prevents loops during message

processing:

Implementation

When processing messages from the queue, the SMSc checks the source_smsc

field:

If source_smsc contains "SS7":

Message is skipped

Event added: "Loop Prevention" with description explaining the skip

reason

Message marked as failed via PUT request

Logged with warning level

Otherwise:

Message processed normally

SRI-for-SM and MT-ForwardSM operations proceed

Source SMSC Values

Messages can have various source_smsc values:

Source Example Value Action

SS7 Network (MO-

FSM)
"SS7_GT_15551234567"

Skipped - Loop

prevention

External API/SMPP
"ipsmgw" or

"api_gateway"
Processed normally

Other SMSc "smsc-node-01" Processed normally

Event Tracking

When a message is skipped due to loop prevention, an event is recorded:

This event is visible in:

Web UI: SS7 Events page (/events)

Database: events table via API

Logs: Warning level log entries

Configuration

Loop prevention is always enabled and cannot be disabled. This is a critical

safety feature to prevent network disruption from message loops.

Example Scenario

Scenario: Mobile subscriber sends SMS via SS7 network

{

 "message_id": 12345,

 "name": "Loop Prevention",

 "description": "Message skipped - source_smsc

'SS7_GT_15551234567' contains 'SS7', preventing message loop"

}

Without loop prevention, step 8 would send the message back to the SS7

network, potentially creating an infinite loop.

SMSc Subscriber Tracking

The SMSc includes a Subscriber Tracker GenServer that maintains real-time

state for subscribers based on alertServiceCenter messages and message

delivery attempts.

Purpose

The tracker provides:

Reachability monitoring: Which subscribers are currently reachable

HLR tracking: Which HLR sent the alertServiceCenter for each subscriber

Message counters: Number of messages sent/received per subscriber

Failure tracking: Mark subscribers as failed when delivery attempts fail

Web UI visibility: Real-time dashboard showing all tracked subscribers

Tracked Information

For each subscriber, the tracker stores:

1. Mobile phone → MSC/VLR → SMSc (via MO-ForwardSM)

2. SMSc receives MO-FSM from GT 15551234567

3. SMSc inserts to queue: source_smsc = "SS7_GT_15551234567"

4. Auto-flush retrieves message from queue

5. SMSc detects "SS7" in source_smsc → SKIP

6. Event logged: "Loop Prevention"

7. Message marked as failed

8. No SRI-for-SM or MT-ForwardSM sent (loop prevented)

Field Description Example

msisdn
Subscriber's phone number

(key)
"15551234567"

imsi Subscriber's IMSI "001010123456789"

hlr_gt
HLR GT that sent

alertServiceCenter
"15551111111"

messages_sent
Count of MT-FSM messages

sent
5

messages_received
Count of MO-FSM messages

received
2

status :active or :failed :active

updated_at
Unix timestamp of last

update
1730246400

State Transitions

alertServiceCenter

received

Message sent/received

SRI-for-SM failure
Absent subscriber New alertServiceCenter

Manual removal

Manual removal

Active

Failed

Behavior

When alertServiceCenter is received:

Create or update subscriber entry

Set status = :active

Record HLR GT

Reset or preserve message counters

When SRI-for-SM succeeds:

Increment messages_sent counter

Update updated_at timestamp

When SRI-for-SM fails:

Set status = :failed

Keep in tracker for monitoring

When subscriber is removed:

Delete from ETS table

No longer appears in Web UI

Web UI - SMSc Subscribers Page

Path: /smsc_subscribers Auto-refresh: Every 2 seconds

Note: This page is only available when running in SMSc mode. After

uncommenting the SMSc configuration in config/runtime.exs , you must

restart the application for the route to become available.

The SMSc Subscribers page provides real-time monitoring of all tracked

subscribers:

Features

1. Subscriber Table

MSISDN, IMSI, HLR GT

Messages sent/received counters

Status badge (Active/Failed) with color coding

Last updated timestamp and duration

Remove button for individual subscribers

2. Summary Statistics

Total tracked subscribers

Count of active subscribers

Count of failed subscribers

Number of unique HLRs

3. Actions

Clear All: Remove all tracked subscribers

Remove: Remove individual subscriber

Example View

API Functions

The tracker exposes these functions for programmatic access:

┌──

│ SMSc Tracked Subscribers Total: 3

├──

│ MSISDN IMSI HLR GT Msgs Status

│ S/R

│

├──

│ 15551234567 001010123456789 15551111111 5/2 ● Active

│ 15559876543 001010987654321 15551111111 0/0 ● Active

│ 15551112222 001010111222233 15552222222 3/1 ○ Failed

└──

Summary: Total: 3 | Active: 2 | Failed: 1 | Unique HLRs: 2

Integration

The tracker is automatically integrated with:

alertServiceCenter handler: Calls alert_received/3 on successful

location update

SRI-for-SM handler: Increments messages_sent on successful routing

Absent subscriber handler: Calls mark_failed/1 when subscriber is

absent

Unknown subscriber errors: Calls mark_failed/1 when SRI-for-SM fails

Auto-Flush SMS Queue

The Auto-Flush service automatically processes pending SMS messages.

For configuration parameter reference, see Auto-Flush Configuration in

Configuration Reference.

Called when alertServiceCenter is received

SMSc.SubscriberTracker.alert_received(msisdn, imsi, hlr_gt)

Increment message counters

SMSc.SubscriberTracker.message_sent(msisdn)

SMSc.SubscriberTracker.message_received(msisdn)

Mark as failed (SRI-for-SM failure)

SMSc.SubscriberTracker.mark_failed(msisdn)

Remove from tracking

SMSc.SubscriberTracker.remove_subscriber(msisdn)

Query functions

SMSc.SubscriberTracker.get_active_subscribers()

SMSc.SubscriberTracker.get_subscriber(msisdn)

SMSc.SubscriberTracker.count_subscribers()

SMSc.SubscriberTracker.clear_all()

Configuration

How It Works

1. Polling: Every auto_flush_interval milliseconds, queries API for pending

messages

2. Filtering: Optionally filter by auto_flush_dest_smsc

3. Rate Limiting: Process up to auto_flush_tps messages per cycle

4. Delivery: For each message:

Send SRI-for-SM (Send Routing Info for Short Message) to HLR to get

routing info

The HLR returns a synthetic IMSI calculated from the MSISDN

The HLR returns the SMSC GT address where MT-ForwardSM should

be sent

See SRI-for-SM Details in HLR Guide for complete documentation

On success, send MT-forwardSM to MSC/VLR

Update message status via API (delivered/failed)

Add event tracking via API

� Technical Deep Dive: For a complete explanation of how SRI-for-SM

works, including MSISDN to IMSI mapping, service center GT address

configuration, and the privacy-preserving synthetic IMSI generation, see

the SRI-for-SM section in the HLR Configuration Guide.

config :omniss7,

 auto_flush_enabled: true, # Enable/disable auto-flush

 auto_flush_interval: 10_000, # Poll interval in

milliseconds

 auto_flush_dest_smsc: nil, # Filter: nil = all

 auto_flush_tps: 10 # Max transactions per

second

SMSc Metrics

Available Metrics

SMS Queue Metrics:

smsc_queue_depth - Current number of pending messages

smsc_messages_delivered_total - Total messages successfully delivered

smsc_messages_failed_total - Total messages that failed delivery

smsc_delivery_duration_milliseconds - Histogram of delivery times

Example Queries:

Troubleshooting SMSc

Issue: Messages Not Delivering

Checks:

1. Verify auto-flush is enabled

2. Check database connection

3. Monitor logs for errors

4. Verify M3UA connection is ACTIVE

Current queue depth

smsc_queue_depth

Delivery success rate (last 5 minutes)

rate(smsc_messages_delivered_total[5m]) /

(rate(smsc_messages_delivered_total[5m]) +

rate(smsc_messages_failed_total[5m]))

Average delivery time

rate(smsc_delivery_duration_milliseconds_sum[5m]) /

rate(smsc_delivery_duration_milliseconds_count[5m])

5. Check TPS limits

Issue: High Queue Depth

Possible Causes:

TPS limit too low

HLR timeout issues

Network connectivity problems

Invalid destination numbers

Solutions:

Increase auto_flush_tps

Check HLR availability

Review failed message logs

MT-forwardSM API

Send SMS via API

API Endpoint: POST /api/MT-forwardSM

Request:

Response:

{

 "imsi": "234509876543210",

 "destination_serviceCentre": "447999555111",

 "originating_serviceCenter": "447999123456",

 "smsPDU":

"040B917477218345F600001570301857140C0BD4F29C0E9281C4E1F11A"

}

Related Documentation

OmniSS7 Documentation:

← Back to Main Documentation

HLR Configuration Guide - HLR mode setup and operations

SRI-for-SM Technical Details - Complete documentation on MSISDN

to IMSI mapping and service center configuration

Common Features Guide - Web UI, API, Monitoring

MAP Client Guide - MAP operations

Technical Reference - Protocol specifications

OmniMessage Documentation: For message routing configuration, queue

management, delivery tracking, rate limiting, and analytics, refer to the

OmniMessage product documentation. OmniMessage contains all the

message routing logic, queue retry algorithms, delivery report handling, and

business rules engine.

OmniSS7 by Omnitouch Network Services

{

 "result": "success",

 "message_id": "12345"

}

M3UA STP

Configuration Guide

← Back to Main Documentation

This guide provides detailed configuration for using OmniSS7 as a Signaling

Transfer Point (STP).

Table of Contents

1. What is an STP?

2. STP Network Roles

3. Enabling STP Mode

4. Configuring Peers

5. M2PA Protocol Support

M3UA vs M2PA

Configuring M2PA Peers

Managing M2PA via Web UI

M2PA Metrics

6. Point Code Routing

7. Global Title Routing

8. Route Management Features

Disabling Routes

DROP Routes - Preventing Routing Loops

9. Advanced Routing

10. Testing Configuration

11. Metrics and Monitoring

12. M3UA Peer Monitoring

What is a Signaling Transfer Point

(STP)?

A Signaling Transfer Point (STP) is a critical network element in SS7 and IP-

based signaling networks that routes signaling messages between network

nodes.

STP Functions

Message Routing: Routes SS7 signaling traffic based on destination Point

Code (PC) or Global Title (GT)

Protocol Translation: Bridges traditional SS7 networks with IP-based

M3UA/SCTP networks

Load Distribution: Distributes traffic across multiple destinations using

priority-based routing

Network Gateway: Connects different signaling networks and service

providers

Topology Hiding: Can rewrite addresses to hide internal network topology

STP Network Diagram

STP Network Roles Explained

ASP (Application Server Process)

Role: Client connecting to a remote SGP/STP

Direction: Outbound connection

Use Case: Your STP connects to a partner network's STP

SGP (Signaling Gateway Process)

Role: Server accepting connections from ASPs

Direction: Inbound connection

Use Case: Partner networks connect to your STP

AS (Application Server)

Definition: Logical grouping of one or more ASPs

Purpose: Provides redundancy and load sharing

Use Case: Multiple ASPs serving the same destination

Enabling M3UA STP Mode

OmniSS7 can operate in different modes. To use it as an STP, you need to

enable STP mode in the configuration.

Switching to STP Mode

OmniSS7's config/runtime.exs contains three pre-configured operational

modes. To enable STP mode:

1. Open config/runtime.exs

2. Find the three configuration sections (lines 53-174):

Configuration 1: STP Mode (lines 53-85)

Configuration 2: HLR Mode (lines 87-123)

Configuration 3: SMSc Mode (lines 125-174)

3. Comment out the currently active configuration (add # to each line)

4. Uncomment the STP configuration (remove # from lines 53-85)

5. Customize the configuration parameters as needed

6. Restart the application: iex -S mix

STP Mode Configuration

The complete STP configuration looks like this:

Configuration Parameters to Customize

For a complete reference of all configuration parameters, see the Configuration

Reference.

config :omniss7,

 # Mode flags - Enable STP features only

 map_client_enabled: true,

 hlr_mode_enabled: false,

 smsc_mode_enabled: false,

 # M3UA Connection Configuration

 # Connect as ASP (Application Server Process) to remote STP/SGW

 map_client_m3ua: %{

 mode: "ASP",

 callback: {MapClient, :handle_payload, []},

 process_name: :stp_client_asp,

 # Local endpoint (this system)

 local_ip: {10, 179, 4, 10},

 local_port: 2905,

 # Remote STP/SGW endpoint

 remote_ip: {10, 179, 4, 11},

 remote_port: 2905,

 routing_context: 1

 }

Parameter Type Default Description Example

map_client_enabled Boolean true

Enable MAP

client and

routing

capabilities

true

local_ip
Tuple or

List
Required

Your system's IP

address(es).

Single: {10, 0,

0, 1} or List for

multihoming:

[{10, 0, 0,

1}, {10, 0, 0,

2}]

{10,

179, 4,

10}

local_port Integer 2905 Local SCTP port 2905

remote_ip
Tuple or

List
Required

Remote

STP/SGW IP

address(es).

Single or List for

multihoming

{10,

179, 4,

11}

remote_port Integer 2905
Remote SCTP

port
2905

routing_context Integer 1
M3UA routing

context ID
1

enable_gt_routing Boolean false

Enable Global

Title routing (in

addition to PC

routing)

true

Tip: Use SCTP multihoming by providing a list of IP addresses for local_ip

and/or remote_ip to enable automatic failover. See SCTP Multihoming

Guide.

What Happens When STP Mode is Enabled

When map_client_enabled: true , the web UI will show:

� SS7 Events - Event logging

� SS7 Client - MAP operation testing

� M3UA - Connection status

� Routing - Route table management ← STP-specific

� Routing Test - Route testing ← STP-specific

� Resources - System monitoring

� Configuration - Config viewer

The HLR Links and SMSc Links tabs will be hidden.

Important Notes

SCTP protocol (IP protocol 132) must be allowed through firewalls

Default M3UA port is 2905 (industry standard)

Ensure sufficient system resources for handling routing traffic

Routing Persistence: All routes configured via the Web UI or API are

stored in Mnesia database and survive restarts

Configuration Merge: Routes from runtime.exs are loaded at startup

and merged with Mnesia routes

After changing modes, you must restart the application for changes to take

effect

Web UI: See the Web UI Guide for managing routes via the web interface

API Access: See the API Guide for REST API documentation and Swagger

UI access

Standalone STP Mode

In addition to the STP routing capabilities available when map_client_enabled:

true , you can run a standalone M3UA STP server that listens for incoming

connections.

Enabling Standalone STP

Add this configuration to config/runtime.exs :

STP Configuration Parameters

Parameter Type Default Description Example

enabled Boolean false
Enable standalone

STP server
true

local_ip Tuple
{127, 0,

0, 1}

IP address to listen

for connections

{0, 0, 0,

0}

local_port Integer 2905 Port to listen on 2905

point_code Integer Required
This STP's own SS7

point code
100

config :omniss7,

 m3ua_stp: %{

 enabled: true,

 local_ip: {127, 0, 0, 1}, # IP address to listen on

 local_port: 2905, # Port to listen on

 point_code: 100 # This STP's own point code

 }

When to Use Standalone STP

Pure Routing: When you only need M3UA routing without MAP client

functionality

Central STP: To create a central signaling router for multiple network

elements

Hub Architecture: Connect multiple HLRs, MSCs, and SMSCs through a

central STP

Note: You can enable both map_client_m3ua and m3ua_stp simultaneously if

you need both outbound connections and inbound STP functionality.

Routing Table Persistence (Mnesia)

All routing tables (peers, Point Code routes, and Global Title routes) are stored

in a Mnesia database for persistence.

How Routing Works

1. Runtime.exs Routes: Routes defined in config/runtime.exs under

m3ua_peers , m3ua_routes , and m3ua_gt_routes are loaded at application

startup

2. Web UI Routes: Routes added via the Web UI Routing page are stored in

Mnesia

3. Route Merge: On restart, runtime.exs routes are merged with existing

Mnesia routes (no duplicates)

4. Persistence: All routes configured via Web UI survive application

restarts

Mnesia Storage Type

Control how routing tables are stored. For more details on database

configuration, see Database Parameters in Configuration Reference.

Storage

Type
Description Persistence Use Case

:disc_copies
Disk-backed

storage (default)

Survives

restarts

Production

environments

:ram_copies In-memory only Lost on restart
Testing,

development

Default: :disc_copies

Mnesia Database Location

Mnesia stores routing tables in the application's Mnesia directory:

Location: Mnesia.{node_name}/ (e.g., Mnesia.nonode@nohost/)

Tables: m3ua_peer , m3ua_route , m3ua_gt_route

Managing Routes

You have three options for managing routes:

1. Runtime.exs - Static configuration loaded at startup

2. Web UI - Interactive route management (see Web UI Guide)

3. REST API - Programmatic route management (see API Guide)

Best Practice: Use runtime.exs for base configuration and the Web UI for

dynamic route changes during operation.

config :omniss7,

 mnesia_storage_type: :disc_copies # or :ram_copies for testing

Configuring M3UA Peers

Peers represent M3UA connection endpoints (other STPs, HLRs, MSCs, SMSCs).

Add peers to config/runtime.exs .

Peer Configuration Example

config :omniss7,

 m3ua_peers: [

 # Outbound connection to Partner STP (role: :client)

 %{

 peer_id: 1, # Unique identifier

 name: "Partner_STP_West", # Descriptive name

 role: :client, # :client for

outbound, :server for inbound

 local_ip: {10, 0, 0, 1}, # Local IP to bind

 local_port: 0, # 0 = dynamic port

assignment

 remote_ip: {10, 0, 0, 10}, # Remote peer IP

 remote_port: 2905, # Remote peer port

 routing_context: 1, # M3UA routing context

 point_code: 100, # Point code of this

peer

 network_indicator: :international # :international or

:national

 },

 # Connection to Local HLR (role: :client)

 %{

 peer_id: 2,

 name: "Local_HLR",

 role: :client,

 local_ip: {10, 0, 0, 1},

 local_port: 0,

 remote_ip: {10, 0, 0, 20},

 remote_port: 2905,

 routing_context: 2,

 point_code: 200,

 network_indicator: :international

 },

 # Inbound connection from Remote MSC (role: :server)

 # For :server role, STP waits for incoming connection

 %{

 peer_id: 3,

 name: "Remote_MSC",

 role: :server, # Accept inbound

connection

 remote_ip: {10, 0, 0, 30}, # Expected source IP

 remote_port: 2905, # Expected source port

(0 = accept from any port)

 routing_context: 3,

 point_code: 300,

 network_indicator: :international

 },

 # Inbound connection with dynamic source port (no port

filtering)

 %{

 peer_id: 4,

 name: "Dynamic_Client",

 role: :server,

 remote_ip: {10, 0, 0, 40}, # Expected source IP

 remote_port: 0, # 0 = accept

connections from any source port

 routing_context: 4,

 point_code: 400,

 network_indicator: :international

 }

]

Peer Configuration Parameters

Parameter Type Required Description

peer_id Integer Yes
Unique numeric identifier for

the peer

name String Yes
Human-readable name for

logs and monitoring

role Atom Yes
:client (outbound) or

:server (inbound)

local_ip
Tuple

or List

Yes

(client)

Local IP address(es) to bind.

Single: {10, 0, 0, 1} or

Multiple for SCTP

multihoming: [{10, 0, 0,

1}, {10, 0, 0, 2}]

local_port Integer
Yes

(client)
Local port (0 for dynamic)

remote_ip
Tuple

or List
Yes

Remote peer IP address(es).

Single: {10, 0, 0, 10} or

Multiple: [{10, 0, 0, 10},

{10, 0, 0, 11}]

remote_port Integer Yes

Remote peer port (0 for

inbound = accept any source

port)

routing_context Integer Yes
M3UA routing context

identifier

point_code Integer Yes SS7 point code of this peer

Parameter Type Required Description

network_indicator Atom No
:international or

:national

SCTP Multihoming: For network redundancy, you can configure multiple

IP addresses for both local_ip and remote_ip . This enables automatic

failover if one network path fails. See SCTP Multihoming Guide for detailed

configuration examples and best practices.

Source Port Filtering for Inbound Connections

For inbound connections (role: :server), the remote_port parameter

controls source port filtering:

Specific Port (e.g., remote_port: 2905): Only accept connections from

that exact source port

Provides additional security by validating the source port

Use when the remote peer uses a fixed source port

Any Port (remote_port: 0): Accept connections from any source port

Useful when the remote peer uses dynamic/ephemeral source ports

Only validates the source IP address

More flexible but slightly less secure

Example:

M2PA Protocol Support

OmniSS7 supports both M3UA and M2PA protocols for SS7 signaling transport.

What is M2PA?

M2PA (MTP2 User Peer-to-Peer Adaptation Layer) is an IETF-standardized

protocol (RFC 4165) for transporting SS7 MTP3 messages over IP networks

using SCTP.

Accept only from 10.5.198.200:2905 (specific port)

%{

 peer_id: 1,

 name: "Strict_Peer",

 role: :server,

 remote_ip: {10, 5, 198, 200},

 remote_port: 2905,

 # ... other config

}

Accept from 10.5.198.200 with any source port

%{

 peer_id: 2,

 name: "Flexible_Peer",

 role: :server,

 remote_ip: {10, 5, 198, 200},

 remote_port: 0, # Accept from any source port

 # ... other config

}

M3UA vs M2PA: Key Differences

Feature M3UA M2PA

Architecture
Client/Server

(ASP/SGW)
Peer-to-Peer

Use Case
Gateway between SS7

and IP
Direct point-to-point links

Link State

Management

Application-level

(ASPUP/ASPAC)

MTP2-style (Alignment,

Proving, Ready)

Sequence

Numbers
No inherent sequencing

24-bit BSN/FSN for

ordered delivery

Typical

Deployment
SS7-to-IP gateway, STP

Direct signaling links

between nodes

RFC RFC 4666 RFC 4165

Protocol Selection Guidance

Recommendation: Use M3UA by default. Only use M2PA when

specifically required.

When to Use M3UA (Recommended)

M3UA is the recommended protocol for most deployments:

STP Deployments: Standard signaling transfer point implementations

Gateway Functions: Bridging SS7 networks with IP-based signaling

Network Element Connections: Connecting HLRs, MSCs, SMSCs, and

other network elements to your STP

Signaling Gateway (SGW): Central gateway accepting connections from

multiple Application Servers

Flexible Topologies: Client/server architectures with centralized control

Multi-vendor Networks: Widely supported industry standard (RFC 4666)

Use M3UA for connecting network elements (HLR, MSC, SMSC, VLR,

etc.) to your STP.

When to Use M2PA (Special Cases Only)

M2PA should only be used in specific scenarios:

STP-to-STP Links: Direct point-to-point connections between Signal

Transfer Points in a multi-STP network

Legacy TDM Replacement: Replacing traditional SS7 TDM links when the

remote system specifically requires M2PA

MTP2 Compatibility Required: When connecting to legacy systems that

mandate MTP2-style link state management

Partner Requirement: When a partner or interconnect specifically

requires M2PA protocol

Important: Do not use M2PA for connecting network elements (HLR, MSC,

SMSC) to your STP - use M3UA instead. M2PA is designed for STP-to-STP

interconnections where both sides operate as routing nodes.

Configuring M2PA Peers

M2PA peers are configured the same way as M3UA peers, with an additional

protocol parameter.

M2PA Peer Configuration

Add M2PA peers to your m3ua_peers configuration in config/runtime.exs

(yes, they share the same configuration section despite being different

protocols):

Key Parameters for M2PA:

Parameter Value Description

protocol :m2pa
Specifies M2PA protocol (defaults

to :m3ua if omitted)

role
:client or

:server
Connection direction

local_port Integer
Local SCTP port (standard M2PA

port is 3565)

remote_port Integer
Remote SCTP port (standard

M2PA port is 3565)

point_code Integer Your point code

adjacent_point_code Integer
Remote peer's point code (M2PA-

specific)

Note: M2PA uses port 3565 as the industry standard (different from M3UA's

port 2905).

M2PA Link States

M2PA links progress through several states during initialization:

1. Down - No connection established

2. Alignment - Initial synchronization phase (~1 second)

3. Proving - Link quality verification (~2 seconds)

4. Ready - Link active and ready for traffic

The link state progression ensures reliable signaling before traffic is exchanged.

Managing M2PA Peers via Web UI

The Routing page in the Web UI provides full support for managing M2PA

peers:

1. Navigate to the Routing page

2. Select the "Peers" tab

3. Click "Add New Peer"

4. Choose "M2PA (RFC 4165)" from the Protocol dropdown

5. Fill in the peer configuration:

Peer Name (descriptive identifier)

Protocol: M2PA

Role: client or server

Point Code (your PC)

Local/Remote IP addresses

Local/Remote ports (typically 3565 for M2PA)

Network Indicator (international or national)

6. Click "Save Peer"

The peers table displays the protocol type with color coding:

Blue - M3UA peers

Green - M2PA peers

M2PA Routing Behavior

M2PA peers integrate seamlessly with OmniSS7's routing system:

Point Code Routes: Work identically for M2PA and M3UA

Global Title Routes: Fully supported on M2PA links

Route Priority: M2PA and M3UA peers can be mixed in the same routing

tables

Message Relay: Messages can arrive on M2PA and be routed to M3UA,

and vice versa

M2PA Metrics

M2PA provides comprehensive Prometheus metrics for monitoring link health

and traffic:

Traffic Metrics:

m2pa_messages_sent_total - Total MTP3 messages sent per link

m2pa_messages_received_total - Total MTP3 messages received per link

m2pa_bytes_sent_total - Total bytes sent over M2PA

m2pa_bytes_received_total - Total bytes received over M2PA

All traffic metrics are labeled by: link_name , point_code , adjacent_pc

Link State Metrics:

m2pa_link_state_changes_total - Link state transitions (DOWN →

ALIGNMENT → PROVING → READY)

Labels: link_name , from_state , to_state

Error Metrics:

m2pa_errors_total - Total errors by type

decode_error - M2PA message decode failures

encode_error - M2PA message encode failures

sctp_send_error - SCTP transmission failures

Labels: link_name , error_type

Access Metrics:

Prometheus endpoint: http://your-server:8080/metrics

Metrics auto-register on application startup

M2PA Best Practices

1. Port Selection: Use port 3565 for M2PA (industry standard)

2. Link Monitoring: Monitor link state changes via metrics

3. Firewall Rules: Ensure SCTP (IP protocol 132) is allowed

4. Point Codes: Ensure adjacent point codes are correctly configured on both

sides

5. Network Indicator: Must match between peers (international or national)

6. Testing: Use the Routing Test page to verify connectivity after

configuration

Configuring Point Code Routing

Point Code routing directs messages based on the Destination Point Code

(DPC) in the MTP3 header.

Understanding Point Codes in SS7 Protocol

Stack

Point codes exist at different layers of the SS7 protocol stack. Understanding

this distinction is important:

Protocol Stack Layers:

Two Types of Point Codes:

1. MTP3 Layer Point Codes (Used for Routing):

Located in the MTP3 routing label (DPC, OPC)

Present in M3UA Protocol Data parameter (tag 528)

Present in M2PA User Data messages

STP uses these DPC values for routing decisions

These determine where the message is ultimately delivered

2. M3UA Layer Point Codes (Used for Network Management):

┌───┐

│ Application Layer (SCCP/TCAP/MAP) │

├───┤

│ MTP3 Layer │ ← User Data Routing

│ - Routing Label: DPC, OPC, SLS │ ← Used for STP routing

│ - Service Information Octet (SIO) │

├───┤

│ M3UA or M2PA (Adaptation Layer) │ ← Transport Protocol

│ - Protocol Data (contains MTP3) │

│ - Network Management (DUNA/DAVA) │ ← Network Status

├───┤

│ SCTP (Transport) │

└───┘

Present in M3UA management messages (DUNA, DAVA, SCON, DUPU)

Indicate affected point codes for network status

Tell peers which destinations are available/unavailable

Not used for routing user data

How STP Routing Works:

For M3UA DATA messages: STP extracts the MTP3 message from the

Protocol Data parameter (tag 528), which contains the MTP3 routing label

(DPC, OPC, SLS). The DPC from the MTP3 layer is used to look up routes.

For M2PA User Data messages: STP extracts the MTP3 message from

the M2PA user data field, then reads the DPC from the MTP3 routing label.

M3UA management messages: Network management messages (DUNA,

DAVA, SCON) contain affected point codes at the M3UA layer for signaling

network status between peers.

Basic Point Code Routes

Add routes to config/runtime.exs :

Note: The mask field is optional and defaults to 14 (exact point code match).

Only specify mask when you need range-based routing (see Point Code Masks

section below).

config :omniss7,

 m3ua_routes: [

 # Route all traffic for PC 100 to peer 1 (Partner STP)

 %{

 dest_pc: 100, # Destination point code

 peer_id: 1, # Peer to route through

 priority: 1, # Priority (lower = higher

priority)

 network_indicator: :international

 # mask: 14 # Optional: defaults to 14

(exact match)

 },

 # Route all traffic for PC 200 to peer 2 (Local HLR)

 %{

 dest_pc: 200,

 peer_id: 2,

 priority: 1,

 network_indicator: :international

 },

 # Load balancing example: PC 300 with primary and backup

routes

 %{

 dest_pc: 300,

 peer_id: 3, # Primary route

 priority: 1,

 network_indicator: :international

 },

 %{

 dest_pc: 300,

 peer_id: 4, # Backup route (higher

priority number)

 priority: 2,

 network_indicator: :international

 }

]

Routing Logic

1. STP receives M3UA DATA or M2PA User Data message

2. STP extracts the MTP3 message from the Protocol Data (M3UA) or User

Data (M2PA) field

3. STP reads the Destination Point Code (DPC) from the MTP3 routing label

4. Looks up routing table for matching DPC (considering masks)

5. If multiple routes exist, selects the route with most specific mask (highest

mask value), then lowest priority number

6. Wraps the MTP3 message in M3UA DATA or M2PA User Data for the

destination peer

7. Routes the message to the corresponding peer

8. If the selected peer is down, tries the next highest priority route

Point Code Masks

Point codes are 14-bit values (range 0-16383). By default, routes match a

single point code exactly (mask /14). However, you can use point code

masks to create routes that match ranges of point codes.

Understanding Masks

The mask specifies how many most significant bits must match between the

route's destination PC and the incoming message's DPC. The remaining bits can

be any value, creating a range of matching point codes.

Mask Reference Table:

Mask Point Codes Matched Use Case

/14 1 PC (exact match) Single destination (default)

/13 2 PCs Small range

/12 4 PCs Small range

/11 8 PCs Small range

/10 16 PCs Medium range

/9 32 PCs Medium range

/8 64 PCs Medium range

/7 128 PCs Medium-large range

/6 256 PCs Large range

/5 512 PCs Large range

/4 1,024 PCs Very large range

/3 2,048 PCs Very large range

/2 4,096 PCs Extremely large range

/1 8,192 PCs Half of all PCs

/0 16,384 PCs All PCs (default/fallback route)

Point Code Mask Examples

Note: The mask field is optional in all examples. If omitted, it defaults to 14

(exact match).

Example 1: Single Point Code (Default Behavior)

Example 2: Small Range

Example 3: Medium Range

Without mask field (recommended for single PC)

%{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 network_indicator: :international

}

Mask defaults to 14 - Matches: Only PC 1000

Explicit mask (same result)

%{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 mask: 14, # Explicit exact match

 network_indicator: :international

}

Matches: Only PC 1000

%{

 dest_pc: 1000,

 peer_id: 2,

 priority: 1,

 mask: 12, # Matches 4 PCs

 network_indicator: :international

}

Matches: PC 1000, 1001, 1002, 1003

Example 4: Default/Fallback Route

Combining Specific and Masked Routes

You can combine specific routes with masked routes for flexible routing:

%{

 dest_pc: 1000,

 peer_id: 3,

 priority: 1,

 mask: 8, # Matches 64 PCs

 network_indicator: :international

}

Matches: PC 1000-1063 (64 consecutive point codes)

%{

 dest_pc: 0,

 peer_id: 4,

 priority: 10, # Low priority (high

number)

 mask: 0, # Matches all PCs

 network_indicator: :international

}

Matches: All point codes (0-16383)

Use as a catch-all/default route with low priority

Routing Decision for DPC 1000:

1. Matches mask /14 route (PC 1000 exactly) - Selected (most specific)

2. Also matches mask /8 route (PC 1000-1063 range) - Ignored (less specific)

3. Also matches mask /0 route (all PCs) - Ignored (least specific)

Routing Decision for DPC 1015:

1. Does not match mask /14 route (PC 1000 only)

2. Matches mask /8 route (PC 1000-1063 range) - Selected (most specific

match)

config :omniss7,

 m3ua_routes: [

 # Specific route for PC 1000 (takes precedence)

 %{

 dest_pc: 1000,

 peer_id: 1,

 priority: 1,

 network_indicator: :international

 # mask defaults to 14 (exact match)

 },

 # Range route for PCs 1000-1063

 %{

 dest_pc: 1000,

 peer_id: 2,

 priority: 1,

 mask: 8, # Matches 64 PCs

 network_indicator: :international

 },

 # Default/fallback route for all other PCs

 %{

 dest_pc: 0,

 peer_id: 3,

 priority: 10, # Low priority

 mask: 0, # Matches all PCs

 network_indicator: :international

 }

]

3. Also matches mask /0 route (all PCs) - Ignored (less specific)

Routing Decision for DPC 5000:

1. Does not match mask /14 route

2. Does not match mask /8 route

3. Matches mask /0 route (all PCs) - Selected (only match, fallback route)

Best Practices

1. Omit mask for Single Destinations: For exact point code matches, omit

the mask field entirely (defaults to /14)

2. Use /14 Explicitly Only When Needed: Only specify mask: 14 when

you need to make it clear in documentation or when mixing with range

routes

3. Use Range Masks for Network Blocks: Route entire network segments

to specific peers with masks /0 through /13

4. Use /0 as Fallback: Create a default route with low priority to catch

unmatched traffic

5. Most Specific Wins: The routing engine always selects the most specific

(highest mask value) matching route first

6. Priority as Tiebreaker: If multiple routes have the same mask, lowest

priority number wins

Configuring Global Title (GT)

Routing

Global Title routing enables content-based routing using phone numbers or

IMSI values instead of point codes. For advanced Global Title address

translation based on calling/called party, see the Global Title NAT Guide.

Prerequisites

Enable GT routing: enable_gt_routing: true in config/runtime.exs

GT Route Configuration

config :omniss7,

 # Enable GT routing

 enable_gt_routing: true,

 m3ua_gt_routes: [

 # Route all UK numbers (prefix 44) to peer 1

 %{

 gt_prefix: "44", # Global Title prefix to

match

 peer_id: 1, # Destination peer

 priority: 1, # Priority (lower = higher)

 description: "UK numbers" # Description for logging

 },

 # Route US numbers (prefix 1) to peer 2

 %{

 gt_prefix: "1",

 peer_id: 2,

 priority: 1,

 description: "US numbers"

 },

 # More specific route: UK mobile numbers starting with 447

 %{

 gt_prefix: "447", # Longest prefix match wins

 peer_id: 3,

 priority: 1,

 description: "UK mobile numbers"

 },

 # SSN-specific routing (optional)

 %{

 gt_prefix: "555",

 source_ssn: 8, # Only match if source SSN

= 8 (SMSC)

 peer_id: 4,

 dest_ssn: 6, # Rewrite destination SSN

to 6 (HLR)

 priority: 1,

 description: "SMS traffic for 61 prefix"

GT Routing Logic

The GT routing algorithm follows this decision process:

 }

]

Yes

Yes

Incoming SCCP Message

Extract Called GT, SSN,

TT, NPI, NAI

GT Routing

Enabled?

Find All Matching Routes

GT prefix + SSN + TT +

NPI + NAI

Any

Matches?

Sort by Specificity:

1. Longest GT Prefix

2. Specific SSN >

Wildcard

3. Specific TT >

No

No

No
Yes

Use Point Code Routing

p

Wildcard

4. Specific NPI >

Wildcard

5. Specific NAI >

Wildcard

6. Lowest Priority

Select Most Specific

Route

Route

Enabled?

Apply Rewrites:

- dest_ssn

- dest_tt

- dest_npi

- dest_nai

Rewrite OPC to STP's

Point Code

Forward to Destination

Peer

Lookup by DPC

Message Routed

Routing Steps:

1. Longest Prefix Match: The STP finds all GT routes where the prefix

matches the beginning of the Global Title

Example: GT "447712345678" matches both "44" and "447", but "447"

wins (longest match)

2. SSN Matching (Optional):

If source_ssn is specified, the route only matches when the SCCP

Called Party SSN equals that value

If source_ssn is nil , the route matches any SSN (wildcard)

3. TT/NPI/NAI Matching (Optional):

If source_tt , source_npi , or source_nai are specified, routes must

match those indicators

nil values act as wildcards (match any value)

4. Specificity-Based Selection:

Routes with more specific matching criteria win over wildcards

Priority order: GT Prefix Length → SSN → TT → NPI → NAI → Priority

Number

5. Indicator Rewriting (Optional):

If dest_ssn , dest_tt , dest_npi , or dest_nai are specified, the STP

rewrites those indicators

Useful for protocol normalization and network interconnection

6. Fallback to Point Code:

If no GT route matches, the STP falls back to Point Code routing using

the DPC

Advanced GT Routing: Translation Type, NPI,

and NAI

In addition to GT prefix and SSN matching, the STP supports routing and

transformation based on SCCP Global Title indicators:

Translation Type (TT): Identifies the numbering plan and address type

Numbering Plan Indicator (NPI): Defines the numbering plan (e.g.,

ISDN, Data, Telex)

Nature of Address Indicator (NAI): Specifies the address format (e.g.,

International, National, Subscriber)

Matching (Source Indicators)

Routes can match on incoming message indicators:

source_tt : Match messages with specific Translation Type

source_npi : Match messages with specific Numbering Plan Indicator

source_nai : Match messages with specific Nature of Address Indicator

nil value = wildcard (matches any value)

Transformation (Destination Indicators)

Routes can rewrite indicators when forwarding:

dest_tt : Transform Translation Type to new value

dest_npi : Transform Numbering Plan Indicator to new value

dest_nai : Transform Nature of Address Indicator to new value

nil value = preserve original value (no transformation)

Specificity-Based Selection

When multiple routes match, the most specific route is selected using this

priority order:

1. Longest GT prefix match

2. Specific source SSN over wildcard SSN

3. Specific source TT over wildcard TT

4. Specific source NPI over wildcard NPI

5. Specific source NAI over wildcard NAI

6. Lowest priority number

Configuration Examples

config :omniss7,

 enable_gt_routing: true,

 m3ua_gt_routes: [

 # Example 1: Match and transform Translation Type

 %{

 gt_prefix: "44",

 peer_id: 1,

 source_tt: 0, # Match TT=0 (Unknown)

 dest_tt: 3, # Transform to TT=3 (National)

 priority: 1,

 description: "UK numbers: TT 0→3 transformation"

 },

 # Example 2: Match specific NPI and transform NAI

 %{

 gt_prefix: "1",

 peer_id: 2,

 source_npi: 1, # Match NPI=1 (ISDN/Telephony)

 source_nai: 4, # Match NAI=4 (International)

 dest_nai: 3, # Transform to NAI=3 (National)

 priority: 1,

 description: "US numbers: International→National NAI"

 },

 # Example 3: Combined SSN and indicator routing

 %{

 gt_prefix: "33",

 source_ssn: 8, # Match SMSC traffic

 source_tt: 0, # Match TT=0

 dest_ssn: 6, # Rewrite SSN to HLR

 dest_tt: 2, # Transform to TT=2

 dest_npi: 1, # Set NPI=1 (ISDN)

 dest_nai: 4, # Set NAI=4 (International)

 peer_id: 3,

 priority: 1,

 description: "French SMS: Full normalization"

 },

 # Example 4: Wildcard TT, specific NPI

 %{

 gt_prefix: "49",

 source_tt: nil, # Match any TT (wildcard)

Common TT/NPI/NAI Values

Translation Type (TT):

0 = Unknown

1 = International

2 = National

3 = Network Specific

Numbering Plan Indicator (NPI):

0 = Unknown

1 = ISDN/Telephony (E.164)

3 = Data (X.121)

4 = Telex (F.69)

6 = Land Mobile (E.212)

Nature of Address Indicator (NAI):

0 = Unknown

1 = Subscriber Number

2 = Reserved for National Use

3 = National Significant Number

4 = International Number

Routing Decision Example

For an incoming message with:

GT: "447712345678"

 source_npi: 6, # Match NPI=6 (Data)

 dest_npi: 1, # Transform to NPI=1 (ISDN)

 peer_id: 4,

 priority: 1,

 description: "German data network normalization"

 }

]

SSN: 8

TT: 0

NPI: 1

NAI: 4

With these configured routes:

Result: Route C is selected (most specific: matches GT + TT + NPI)

The message is forwarded with indicators transformed per Route C's dest_tt ,

dest_npi , dest_nai values.

Route A: Wildcard TT

%{gt_prefix: "447", peer_id: 1, priority: 1}

Route B: Specific TT

%{gt_prefix: "447", source_tt: 0, peer_id: 2, priority: 1}

Route C: Specific TT + NPI

%{gt_prefix: "447", source_tt: 0, source_npi: 1, peer_id: 3,

priority: 1}

GT Routing Examples

Called GT
Source

SSN
TT NPI NAI

Matched

Route
Reason

447712345678 6 - - -
"447" →

peer 3

Longest prefix

match

441234567890 6 - - -
"44" →

peer 1

Prefix match, no

more specific

route

12125551234 6 - - -
"1" →

peer 2

Prefix match for

US numbers

555881234567 8 - - -

"555"

(SSN 8)

→ peer 4

GT + SSN

match, rewrites

SSN to 6

555881234567 6 - - -

"555"

(SSN

wildcard)

→ peer X

GT match, no

SSN rewrite

441234567890 6 0 1 4

"44"

(TT=0) →

peer 1

GT + TT match,

transforms TT to

3

12125551234 8 0 1 4

"1"

(TT=0,

NPI=1,

NAI=4)

Most specific:

GT+TT+NPI+NAI

match

Practical Use Cases for TT/NPI/NAI Routing

1. Network Interconnection Normalization

Different networks may use different indicator conventions

Transform indicators at the interconnection point to ensure

compatibility

Example: Partner network uses TT=0 for international, your network

uses TT=1

2. Protocol Conversion

Convert between numbering plans when routing between different

network types

Example: Route from mobile network (NPI=6) to PSTN (NPI=1)

3. Address Format Standardization

Normalize all incoming traffic to use consistent NAI values

Example: Convert all international format (NAI=4) to national format

(NAI=3) for domestic routing

4. Carrier-Specific Routing

Route based on translation type to different service providers

Example: TT=0 routes to Carrier A, TT=2 routes to Carrier B

5. Legacy System Integration

Modern systems might use different indicator values than legacy

systems

Transform at the STP to maintain backward compatibility

Route Management Features

Disabling Routes

Routes can be temporarily disabled without deleting them. This is useful for

testing, maintenance, or traffic management.

Enabled Flag

Both Point Code and Global Title routes support an optional enabled flag:

Default Behavior:

If enabled is not specified, routes default to enabled: true

Disabled routes are completely skipped during route lookup

Use the Web UI to toggle routes on/off without editing config

Use Cases:

config :omniss7,

 m3ua_routes: [

 # Active route

 %{

 dest_pc: 100,

 peer_id: 1,

 priority: 1,

 network_indicator: :international,

 enabled: true # Route is active (default if omitted)

 },

 # Disabled route (not evaluated during routing)

 %{

 dest_pc: 200,

 peer_id: 2,

 priority: 1,

 network_indicator: :international,

 enabled: false # Route is disabled

 }

],

 m3ua_gt_routes: [

 # Disabled GT route

 %{

 gt_prefix: "44",

 peer_id: 1,

 priority: 1,

 description: "UK numbers - temporarily disabled",

 enabled: false

 }

]

Testing traffic flow changes

Temporary maintenance windows

A/B testing different routing paths

Gradual rollout of new routes

DROP Routes - Preventing Routing Loops

DROP routes (with peer_id: 0) silently discard traffic instead of forwarding it.

This prevents routing loops and enables advanced traffic filtering.

Configuring DROP Routes

How DROP Routes Work

When a message matches a DROP route:

1. The routing engine identifies peer_id: 0

config :omniss7,

 m3ua_routes: [

 # DROP route for specific point code

 %{

 dest_pc: 999,

 peer_id: 0, # peer_id=0 means DROP

 priority: 1,

 network_indicator: :international

 }

],

 m3ua_gt_routes: [

 # DROP route for GT prefix

 %{

 gt_prefix: "999",

 peer_id: 0, # peer_id=0 means DROP

 priority: 99,

 description: "Block test range"

 }

]

2. The message is silently discarded (not forwarded)

3. An INFO log is generated: "DROP route matched for DPC 999" or "DROP

route matched for GT 999"

4. The routing lookup returns {:error, :dropped}

Important: Dropped traffic is logged at INFO level for monitoring and

troubleshooting.

Common Use Case: Prefix Whitelisting

One of the most powerful uses of DROP routes is prefix whitelisting - allowing

only specific numbers within a large range while blocking all others.

The Pattern:

1. Create a DROP route for the entire prefix with high priority number (e.g.,

99)

2. Create specific allow routes for individual numbers with low priority

numbers (e.g., 1)

3. Since lower priority numbers are evaluated first, allowed routes match

before the DROP route

4. Any number not explicitly allowed gets caught by the DROP route

Example Scenario:

You have a GT prefix 1234 that represents a range of 10,000 numbers

(1234000000 - 1234999999), but you only want to route 3 specific numbers:

1234567890 , 1234555000 , and 1234111222 .

Routing Behavior:

config :omniss7,

 m3ua_gt_routes: [

 # DROP route with HIGH priority number (evaluated last)

 %{

 gt_prefix: "1234",

 peer_id: 0, # DROP

 priority: 99, # High number = low priority =

evaluated last

 description: "Block all 1234* except whitelisted numbers"

 },

 # Specific allow routes with LOW priority numbers (evaluated

first)

 %{

 gt_prefix: "1234567890",

 peer_id: 1, # Route to peer 1

 priority: 1, # Low number = high priority =

evaluated first

 description: "Allowed number 1"

 },

 %{

 gt_prefix: "1234555000",

 peer_id: 1,

 priority: 1,

 description: "Allowed number 2"

 },

 %{

 gt_prefix: "1234111222",

 peer_id: 1,

 priority: 1,

 description: "Allowed number 3"

 }

]

Incoming

GT

Matching

Routes
Selected Route Action

1234567890

� "1234567890"

(priority 1)

� "1234" DROP

(priority 99)

"1234567890" (most

specific, highest

priority)

Routed to

peer 1

1234555000

� "1234555000"

(priority 1)

� "1234" DROP

(priority 99)

"1234555000" (most

specific, highest

priority)

Routed to

peer 1

1234111222

� "1234111222"

(priority 1)

� "1234" DROP

(priority 99)

"1234111222" (most

specific, highest

priority)

Routed to

peer 1

1234999999
� "1234" DROP

(priority 99)

"1234" DROP (only

match)

Dropped +

logged

1234000000
� "1234" DROP

(priority 99)

"1234" DROP (only

match)

Dropped +

logged

Result:

� Only 3 specific numbers are routed to peer 1

❌ All other 1234* numbers are silently dropped

📊 All dropped traffic is logged for monitoring

Logs Generated:

DROP Routes for Point Codes

[INFO] DROP route matched for GT 1234999999

[INFO] DROP route matched for GT 1234000000

The same whitelist pattern works for Point Code routing:

Result: Only PCs 1010, 1020, and 1030 are routed. All other PCs in the 1000-

1063 range are dropped.

Monitoring DROP Routes

Check Logs:

Via Web UI:

Navigate to System Logs tab

Filter by INFO level

config :omniss7,

 m3ua_routes: [

 # DROP entire range /8 (64 point codes: 1000-1063)

 %{

 dest_pc: 1000,

 peer_id: 0,

 priority: 99,

 mask: 8,

 network_indicator: :international

 },

 # Allow specific PCs

 %{dest_pc: 1010, peer_id: 1, priority: 1, network_indicator:

:international},

 %{dest_pc: 1020, peer_id: 1, priority: 1, network_indicator:

:international},

 %{dest_pc: 1030, peer_id: 1, priority: 1, network_indicator:

:international}

]

Monitor for dropped traffic

tail -f logs/app.log | grep "DROP route matched"

Expected output:

[INFO] DROP route matched for GT 1234999999

[INFO] DROP route matched for DPC 1050

Search for "DROP route matched"

Best Practices:

1. ⚠️ Monitor logs regularly to ensure DROP routes aren't blocking legitimate

traffic

2. 📝 Use descriptive description fields to document why routes are dropped

3. 🔢 Use high priority numbers (90-99) for DROP routes to ensure they're

catch-all routes

4. � Test DROP route behavior before deploying to production

5. 📊 Set up alerts for unexpected increases in dropped traffic

Advanced Routing: SSN-Based

Routing and Rewriting

Subsystem Numbers (SSN)

Subsystem Numbers identify the application layer:

SSN 6: HLR (Home Location Register)

SSN 7: VLR (Visitor Location Register)

SSN 8: MSC (Mobile Switching Center) / SMSC (SMS Center)

SSN 9: GMLC (Gateway Mobile Location Center)

SSN-Based Routing Example

Route SMS traffic to different HLR based on number prefix:

Testing STP Routing Configuration

After configuring peers and routes, verify your configuration:

1. Check Peer Status

Via Web UI:

Navigate to http://localhost

Check M3UA Status page

Verify peers show Status: ACTIVE

Via IEx Console:

m3ua_gt_routes: [

 # Route SMS for UK numbers to UK HLR, rewrite SSN from 8 (SMSC)

to 6 (HLR)

 %{

 gt_prefix: "44",

 source_ssn: 8, # Match incoming SSN 8

(SMSC)

 peer_id: 1,

 dest_ssn: 6, # Rewrite to SSN 6 (HLR)

 priority: 1,

 description: "UK SMS to HLR"

 },

 # Route voice traffic for UK numbers (SSN 6) without rewriting

 %{

 gt_prefix: "44",

 source_ssn: 6, # Match incoming SSN 6 (HLR)

 peer_id: 1,

 dest_ssn: nil, # No SSN rewrite

 priority: 1,

 description: "UK voice traffic"

 }

]

http://localhost/

2. Test Point Code Routing

Get all peer statuses

M3UA.STP.get_peers_status()

Expected output:

[

%{peer_id: 1, name: "Partner_STP_West", status: :active,

point_code: 100, ...},

%{peer_id: 2, name: "Local_HLR", status: :active, point_code:

200, ...}

]

Send test M3UA message to DPC 100

test_payload = <<1, 2, 3, 4>> # Dummy payload

M3UA.STP.route_by_pc(100, test_payload, 0)

Check logs for routing decision

Expected log: "Routing message: OPC=... -> DPC=100 via peer 1"

3. Test Global Title Routing

4. Monitor Routing Metrics

Access Prometheus metrics at /metrics

Key metrics:

STP Metrics and Monitoring

Available Metrics

Per-Peer Traffic Metrics:

Look up GT route manually

M3UARouting.lookup_peer_by_gt("447712345678")

Expected output:

{:ok, {:m3ua_peer, 3, "UK_Mobile_Peer", ...}, nil}

Look up GT route with SSN

M3UARouting.lookup_peer_by_gt("555881234567", 8)

Expected output with SSN rewrite:

{:ok, {:m3ua_peer, 4, "SMS_HLR_Peer", ...}, 6}

Messages received per peer

m3ua_stp_messages_received_total{peer_name="Partner_STP_West",point_c

1523

Messages sent per peer

m3ua_stp_messages_sent_total{peer_name="Local_HLR",point_code="200"}

Routing failures

m3ua_stp_routing_failures_total{reason="no_route"} 5

m3ua_stp_routing_failures_total{reason="no_gt_route"} 2

m3ua_stp_messages_received_total - Total messages received from each

peer

Labels: peer_name , point_code

m3ua_stp_messages_sent_total - Total messages forwarded to each peer

Labels: peer_name , point_code

Routing Failure Metrics:

m3ua_stp_routing_failures_total - Count of routing failures by reason

Labels: reason (values: no_route , no_gt_route)

Metric Interpretation

High message counts: Indicates active traffic flow

Routing failures: Indicates missing routes or misconfiguration

no_route : No Point Code route found for destination

no_gt_route : No Global Title route found, and PC routing also failed

Troubleshooting with Metrics

Scenario: No traffic reaching destination

1. Check if messages are being received:

2. Check if messages are being sent:

3. Check for routing failures:

Solution: If routing failures are high, add missing routes in configuration.

m3ua_stp_messages_received_total{peer_name="Source_Peer"} > 0

m3ua_stp_messages_sent_total{peer_name="Dest_Peer"} > 0

m3ua_stp_routing_failures_total{reason="no_route"} > 0

M3UA Peer Status Monitoring

Understanding M3UA

M3UA (MTP3 User Adaptation Layer) is a protocol that allows SS7 signaling to

be transported over IP networks using SCTP.

M3UA Connection States

M3UA connections progress through several states:

State Descriptions:

DOWN - No SCTP connection

CONNECTING - SCTP connection in progress

ASPUP_SENT - Waiting for ASPUP acknowledgment

INACTIVE - ASP is up but not active

ASPAC_SENT - Waiting for ASPAC acknowledgment

ACTIVE - Ready for traffic, fully operational

ASPDOWN_SENT - Graceful shutdown in progress

Monitoring M3UA Peers via Web UI

The Web UI provides real-time monitoring of M3UA peer connections.

Accessing M3UA Status Page:

1. Navigate to the Web UI home page

2. Click on "M3UA Status" in the navigation menu

3. The page auto-refreshes every second

M3UA Status Table:

Column Description

Name Connection name (e.g., testASP)

PID Process identifier

Status UP (green) or DOWN (red)

ASP State Current M3UA state (e.g., ACTIVE, INACTIVE)

Assoc/SCTP SCTP association state

Local Local IP:Port

Remote Remote IP:Port

RC Routing Context ID

Status Indicators:

Green (UP) - Connection is active and healthy

Red (DOWN) - Connection is down or unavailable

ASP State - Shows current M3UA connection state

Assoc/SCTP - Shows SCTP association status

M3UA Message Flow

M3UA Server (SGP)M3UA Client (ASP)

M3UA Server (SGP)M3UA Client (ASP)

SCTP Association Setup

M3UA ASP State Management

Active - Data Transfer

Graceful Shutdown

SCTP INIT

SCTP INIT ACK

SCTP COOKIE ECHO

SCTP COOKIE ACK

ASPUP

ASPUP ACK

ASPAC

ASPAC ACK

DATA (M3UA Protocol Data)

DATA (M3UA Protocol Data)

ASPDOWN

ASPDOWN ACK

SCTP SHUTDOWN

Troubleshooting M3UA Connections

Issue: Connection Won't Establish

Symptoms:

Status shows DOWN

No SCTP association

Checks:

1. Verify network connectivity: ping remote_ip

2. Check firewall allows SCTP (protocol 132)

3. Verify remote STP/SGP is listening on correct port

4. Check remote_ip and remote_port in config

5. Review application logs for SCTP errors

Issue: Connection Established but ASP Not Active

Symptoms:

SCTP association exists

ASP state stuck in INACTIVE or ASPUP_SENT

Checks:

1. Verify routing context matches remote configuration

2. Check remote STP accepts your point code

3. Review logs for ASPUP/ASPAC rejections

4. Verify no authentication/security requirements

Issue: Data Not Flowing

Symptoms:

ASP state shows ACTIVE

No messages being routed

Checks:

1. Verify routing context in messages

2. Check SCCP addressing (GT format, SSN values)

3. Verify routing tables configured correctly

4. Review /events page for SCCP errors

5. Check point code routing at STP level

M2PA Peer Status Monitoring

Understanding M2PA

M2PA (MTP2 User Peer-to-Peer Adaptation Layer) is a protocol defined in RFC

4165 that provides point-to-point MTP3 message transport over SCTP. Unlike

M3UA which uses an ASP/SGP architecture, M2PA provides peer-to-peer links

similar to traditional TDM SS7 links.

M2PA Link States

M2PA links progress through several states during establishment:

Initial State

SCTP Connect

SCTP Established

Link Status Exchange

(~1s)

Alignment Complete

Link Testing (~2s)

Proving Complete

Data Transfer

Link Status Change

Connection Lost

Alignment Failed

Proving Failed

DOWN

CONNECTING

ALIGNMENT

PROVING

READY

State Descriptions:

DOWN - No SCTP connection, link inactive

CONNECTING - SCTP association in progress

ALIGNMENT - Link Status messages exchanged (~1 second)

PROVING - Link proving period, testing link integrity (~2 seconds)

READY - Link operational, ready for MTP3 user data transfer

ALIGNMENT (re-entry) - Link status change requires re-alignment

Link State Progression:

1. SCTP Connection: Establishes SCTP association (DOWN → CONNECTING)

2. Alignment: Exchanges Link Status messages to synchronize (CONNECTING

→ ALIGNMENT)

3. Proving: Tests link reliability and sequence number synchronization

(ALIGNMENT → PROVING)

4. Ready: Link becomes operational for data transfer (PROVING → READY)

M2PA Message Flow

Monitoring M2PA Peers via Web UI

The Web UI provides real-time monitoring of M2PA peer connections.

Accessing Routing Management Page:

1. Navigate to the Web UI home page

2. Click on "Routing Management" in the navigation menu

3. View the "M3UA/M2PA Peers" table

M2PA Peer Table:

Column Description

Peer ID Unique peer identifier

Name Peer name (e.g., M2PA_Link_STP_A)

Protocol Shows "M2PA" in green

Point Code Local point code

Adj. PC Adjacent peer point code

Local Local IP:Port (typically port 3565)

Remote Remote IP:Port

Status Link state (e.g., READY, ALIGNMENT, DOWN)

Status Indicators:

READY (Green) - Link is operational and passing traffic

ALIGNMENT (Yellow) - Link is aligning, not yet ready

PROVING (Yellow) - Link is in proving state

DOWN (Red) - Link is down or unavailable

Troubleshooting M2PA Connections

Issue: Link Stuck in ALIGNMENT

Symptoms:

Link state shows ALIGNMENT for extended period

No progression to PROVING or READY

Checks:

1. Verify both sides are configured with correct point codes

2. Check SCTP firewall allows protocol 132

3. Verify point_code and adjacent_point_code are correctly set

4. Review application logs for Link Status message errors

5. Ensure remote peer is also in ALIGNMENT state

Issue: Link Stuck in PROVING

Symptoms:

Link reaches PROVING but doesn't transition to READY

Proving period exceeds 2-3 seconds

Checks:

1. Verify network stability (no packet loss)

2. Check for SCTP association errors

3. Review logs for sequence number mismatches

4. Ensure remote peer is also in PROVING state

5. Verify SCTP multihoming isn't causing routing issues

Issue: Link Flapping (DOWN ↔ READY)

Symptoms:

Link repeatedly cycles between READY and DOWN

Frequent re-alignments

Checks:

1. Check network connectivity stability

2. Verify SCTP heartbeat settings

3. Review firewall session timeout settings

4. Check for MTU/fragmentation issues

5. Verify no duplicate IP addresses

Issue: Data Not Flowing

Symptoms:

Link state shows READY

No MTP3 messages being transferred

Checks:

1. Verify routing tables include routes to this peer

2. Check MTP3 point code routing is configured

3. Review DPC values in messages match expected routes

4. Check /events page for routing errors

5. Verify sequence numbers (BSN/FSN) are incrementing

Related Documentation

← Back to Main Documentation

Common Features Guide - Web UI, API, Monitoring

MAP Client Guide - Sending MAP requests

SMS Center Guide - SMS delivery

Technical Reference - Protocol specifications

OmniSS7 by Omnitouch Network Services

Web UI Guide

← Back to Main Documentation

This guide provides comprehensive documentation for using the OmniSS7 Web

UI (Phoenix LiveView interface).

Table of Contents

1. Overview

2. Accessing the Web UI

3. Routing Management Page

4. Active Subscribers Page

5. Common Operations

6. Auto-Refresh Behavior

Overview

The OmniSS7 Web UI is a Phoenix LiveView application that provides real-

time monitoring and management capabilities. The available pages depend on

which operational mode is active (STP, HLR, or SMSc).

Web UI Architecture

Server Configuration

Protocol: HTTPS

Port: 443 (configured in config/runtime.exs)

Default IP: 0.0.0.0 (listens on all interfaces)

Certificates: Located in priv/cert/

Access URL: https://[server-ip]:443

Accessing the Web UI

Prerequisites

1. SSL Certificates: Ensure valid SSL certificates are present in priv/cert/ :

omnitouch.crt - Certificate file

omnitouch.pem - Private key file

2. Application Running: Start the application with iex -S mix

3. Firewall: Ensure port 443 is open for HTTPS traffic

Available Pages by Mode

Page
STP

Mode

HLR

Mode

SMSc

Mode
Description

SS7 Events � � �
Event logging and

SCCP message capture

SS7 Client � � �
Manual MAP operation

testing

M3UA � � �
M3UA connection

status

Routing � ❌ �
M3UA routing table

management

Routing Test � ❌ �
Route testing and

validation

HLR Links ❌ � ❌

HLR API status and

subscriber

management

Active

Subscribers
❌ � ❌

Real-time subscriber

location tracking (HLR)

SMSc Links ❌ ❌ �
SMSc API status and

queue management

SMSc

Subscribers
❌ ❌ �

Real-time subscriber

tracking (SMSc)

Application � � �
System resources and

monitoring

Configuration � � � Configuration viewer

Routing Management

Page: /routing Modes: STP, SMSc Auto-Refresh: Every 5 seconds

The Routing Management page provides a tabbed interface for managing M3UA

routing tables.

Page Layout

Data Storage

Routing Page

Tab Navigation

Peers Tab

Point Code Routes Tab

Global Title Routes Tab

Mnesia DB

Peers Tab

Manage M3UA peer connections (other STPs, HLRs, MSCs, SMSCs).

Peer Table Columns

Column Description Example

ID Unique peer identifier 1

Name Human-readable peer name "STP_West"

Role Connection role client , server , stp

Point Code Peer's SS7 point code 100

Remote Remote IP:Port 10.0.0.10:2905

Status Connection status active , aspup , down

Actions Edit/Delete buttons -

Adding a Peer

1. Click the Peers tab

2. Fill in the form fields:

Peer ID: Auto-generated if left empty

Peer Name: Descriptive name (required)

Role: Select client , server , or stp

Point Code: SS7 point code (required)

Local IP: Your system's IP address

Local Port: 0 for dynamic port assignment

Remote IP: Peer's IP address

Remote Port: Peer's port (typically 2905)

Routing Context: M3UA routing context ID

Network Indicator: international or national

3. Click "Add Peer"

Persistence: Peer is immediately saved to Mnesia and survives restart.

Editing a Peer

1. Click the "Edit" button on the peer row

2. Modify the form fields as needed

3. Click "Update Peer"

Note: If you change the Peer ID, the old peer is deleted and a new one is

created.

Deleting a Peer

1. Click the "Delete" button on the peer row

2. Confirm the deletion (all routes using this peer will also be removed)

Peer Status Indicators

Status Color Description

active 🟢 Green Peer is connected and routing messages

aspup 🟡 Yellow ASP is up but not yet active

down 🔴 Red Peer is disconnected

Point Code Routes Tab

Configure routing rules based on destination Point Codes.

Route Table Columns

Column Description Example

Destination

PC

Target point code (zone.area.id

format)
1.2.3 (100)

Mask Subnet mask for PC matching
/14 (exact), /8

(range)

Peer ID Target peer for this route 1

Peer Name Name of target peer "STP_West"

Priority Route priority (1 = highest) 1

Network Network indicator international

Actions Edit/Delete buttons -

Adding a Point Code Route

1. Click the "Point Code Routes" tab

2. Fill in the form fields:

Destination Point Code: Enter as zone.area.id (e.g., 1.2.3) or

integer (0-16383)

Mask: Select mask /14 for exact match, lower values for ranges

Peer ID: Select target peer from dropdown

Priority: Enter priority (1 = highest, default)

Network Indicator: Select international or national

3. Click "Add Route"

Point Code Format: You can enter point codes in two formats:

3-8-3 Format: zone.area.id (e.g., 1.2.3)

Integer Format: 0-16383 (e.g., 1100)

The system automatically converts between formats.

Understanding Masks

Point codes are 14-bit values (0-16383). The mask specifies how many most

significant bits must match:

Mask PCs Matched Use Case

/14 1 (exact match) Route to specific destination

/13 2 PCs Small range

/8 64 PCs Medium range

/0 All 16,384 PCs Default/fallback route

Examples:

PC 1000 /14 → Matches only PC 1000

PC 1000 /8 → Matches PC 1000-1063 (64 consecutive PCs)

PC 0 /0 → Matches all point codes (default route)

Point Code Mask Reference Card

The web page includes an interactive reference showing all mask values and

their ranges.

Global Title Routes Tab

Configure routing rules based on SCCP Global Title addresses.

Requirement: Global Title routing must be enabled in configuration:

Route Table Columns

config :omniss7,

 enable_gt_routing: true

Column Description Example

GT Prefix Called party GT prefix (empty = fallback) "1234" , ""

Source SSN Match on called party SSN (optional) 6 (HLR), any

Peer ID Target peer 1

Peer Peer name "HLR_West (1)"

Dest SSN Rewrite SSN when forwarding (optional) 6 , preserve

Priority Route priority 1

Description Route description "US numbers"

Actions Edit/Delete buttons -

Adding a Global Title Route

1. Click the "Global Title Routes" tab

2. Fill in the form fields:

GT Prefix: Leave empty for fallback route, or enter digits (e.g.,

"1234")

Source SSN: Optional - filter by called party SSN

Peer ID: Select target peer

Dest SSN: Optional - rewrite SSN when forwarding

Priority: Route priority (1 = highest)

Description: Human-readable description

3. Click "Add Route"

Fallback Routes: If GT Prefix is empty, the route acts as a catch-all for GTs

that don't match any other route.

Common SSN Values

The page includes a reference card with common SSN values:

SSN Network Element

6 HLR (Home Location Register)

7 VLR (Visitor Location Register)

8 MSC (Mobile Switching Center)

9 EIR (Equipment Identity Register)

10 AUC (Authentication Center)

142 RANAP

145 gsmSCF (Service Control Function)

146 SGSN

SSN Rewriting

Source SSN: Match on the Called Party SSN in incoming messages

Dest SSN: If set, rewrites the Called Party SSN when forwarding

Empty = preserve original SSN

Value = replace with this SSN

Use Case: Route messages with SSN=6 (HLR) to a peer, and rewrite to SSN=7

(VLR) on the outgoing side.

Routing Table Persistence

All routes are stored in Mnesia and survive application restarts.

How Routes Persist

1. Web UI Changes: All add/edit/delete operations are immediately saved to

Mnesia

2. Application Restart: Routes are loaded from Mnesia on startup

3. Runtime.exs Merge: Static routes from config/runtime.exs are merged

with Mnesia routes (no duplicates)

Route Priority

When multiple routes match a destination:

1. More Specific First: Higher mask values (more specific) take precedence

2. Priority Field: Lower priority numbers route first (1 = highest priority)

3. Peer Status: Only routes to active peers are used

Active Subscribers

Page: /subscribers Mode: HLR only Auto-Refresh: Every 2 seconds

Displays real-time tracking of subscribers who have sent UpdateLocation

requests.

Page Features

Subscriber Table Columns

Column Description Example

IMSI Subscriber IMSI "50557123456789"

VLR

Number
Current VLR GT address "555123155"

MSC

Number
Current MSC GT address "555123155"

Updated At
Last UpdateLocation

timestamp

"2025-10-25 14:23:45

UTC"

Duration Time since registration "2h 15m 34s"

Statistics Summary

When subscribers are present, a summary card displays:

Total Active: Total number of registered subscribers

Unique VLRs: Number of distinct VLR addresses

Unique MSCs: Number of distinct MSC addresses

Clearing Subscribers

Clear All Button: Removes all active subscribers from the tracker.

Confirmation: Requires confirmation before clearing (cannot be undone).

Use Case: Clear stale subscriber records after network maintenance or testing.

Auto-Refresh

The page automatically refreshes every 2 seconds to show real-time

subscriber updates.

SMSc Subscribers

Page: /smsc_subscribers Mode: SMSc only Auto-Refresh: Every 2 seconds

Displays real-time tracking of subscribers based on alertServiceCenter

messages received from HLRs, message delivery status, and failure tracking.

Page Features

WebUITrackerSMScHLR

WebUITrackerSMScHLR

alertServiceCenter (MSISDN)

Add subscriber (active)

Auto-refresh (2s)

Display subscriber

SRI-for-SM

Absent Subscriber

Mark failed

Auto-refresh (2s)

Update status badge

Subscriber Table Columns

Column Description Example

MSISDN Subscriber's phone number "15551234567"

IMSI Subscriber IMSI "001010123456789"

HLR GT
HLR GT that sent

alertServiceCenter
"15551111111"

Msgs Sent
Count of MT-FSM messages

sent
5

Msgs Rcvd
Count of MO-FSM messages

received
2

Status
Active or Failed (color-

coded)
● Active

Last

Updated
Last update timestamp

"2025-10-30 14:23:45

UTC"

Duration Time since last update "15m 34s"

Status Indicators

● Active (Green): Subscriber is reachable, last alertServiceCenter received

successfully

○ Failed (Red): Last delivery attempt failed (SRI-for-SM or absent

subscriber error)

Statistics Summary

When subscribers are present, a summary card displays:

Total Tracked: Total number of tracked subscribers

Active: Number of subscribers with active status

Failed: Number of subscribers with failed status

Unique HLRs: Number of distinct HLRs sending alerts

Managing Subscribers

Remove Button: Removes individual subscriber from tracking.

Clear All Button: Removes all tracked subscribers.

Confirmation: Clear All requires confirmation before clearing (cannot be

undone).

Use Case:

Remove stale entries after network issues

Clear test data after development

Monitor which HLRs are sending alerts

Message Counters

The tracker automatically increments counters:

Messages Sent: Incremented when SRI-for-SM succeeds and MT-FSM is

sent

Messages Received: Incremented when MO-FSM is received from

subscriber

Auto-Refresh

The page automatically refreshes every 2 seconds to show real-time

subscriber and status updates.

Common Operations

Searching and Filtering

Currently, the Web UI does not include built-in search/filter functionality. To find

specific routes:

1. Use your browser's find function (Ctrl+F / Cmd+F)

2. Search for peer names, point codes, or GT prefixes

Bulk Operations

To perform bulk route changes:

1. Option 1: Use the REST API for programmatic access

2. Option 2: Edit config/runtime.exs and restart the application

3. Option 3: Use the Web UI for individual route changes

Export/Import

Note: The Web UI does not currently support exporting or importing routing

tables. Routes are:

Stored in Mnesia database files

Configured in config/runtime.exs

To backup routes:

1. Mnesia: Backup the Mnesia.{node_name}/ directory

2. Config: Version control config/runtime.exs

Auto-Refresh Behavior

Different pages have different refresh intervals:

Page
Refresh

Interval
Reason

Routing

Management
5 seconds Route changes are infrequent

Active Subscribers 2 seconds
Subscriber state changes

frequently

M3UA Status Varies by page Connection state monitoring

WebSocket Connection: All pages use Phoenix LiveView WebSocket

connections for real-time updates.

Network Interruption: If the WebSocket connection is lost, the page will

attempt to reconnect automatically.

Troubleshooting

Page Not Loading

1. Check HTTPS Certificate: Ensure priv/cert/omnitouch.crt and .pem

are present

2. Verify Port 443: Check firewall rules allow HTTPS traffic

3. Application Running: Confirm application is running with iex -S mix

4. Browser Console: Check for SSL certificate errors (self-signed cert

warnings)

Routes Not Persisting

1. Check Mnesia Storage: Verify mnesia_storage_type: :disc_copies in

config

2. Mnesia Directory: Ensure Mnesia directory is writable

3. Check Logs: Look for Mnesia errors in application logs

Auto-Refresh Not Working

1. WebSocket Connection: Check browser console for WebSocket errors

2. Network: Verify stable network connection

3. Page Reload: Try refreshing the page (F5)

Related Documentation

STP Guide - Detailed routing configuration

HLR Guide - Subscriber management

API Guide - REST API for programmatic access

Configuration Reference - All configuration parameters

Summary

The OmniSS7 Web UI provides intuitive, real-time management of routing

tables and subscriber tracking:

� Real-time Updates - Auto-refresh keeps data current � Persistent Storage

- Mnesia ensures routes survive restarts � Role-Based UI - Pages adapt to

operational mode (STP/HLR/SMSc) � Interactive Management - Add, edit,

delete routes without restart � Status Monitoring - Live connection and peer

status

For advanced operations or automation, see the API Guide.

