
OmniUPF API �档

概述

OmniUPF API �供了一个全面的 RESTful 接口，用于管理和监控基于 eBPF 的用户面功能。该 API 使所有 UPF 组件的实

时控制和可观察性成为可能。

API 功能

会话管理：

PFCP 会话：查询活动会话，查看会话详情，按 UE IP 或 TEID 过滤

PFCP 关联：监控控制平面节点关联和状态

流量规则：

数据包检测规则 (PDR)：检查上行和下行流量分类器 (IPv4/IPv6)

转发动作规则 (FAR)：查看转发、缓冲和丢弃策略

QoS 强制规则 (QER)：监控速率限制和 QoS 策略

使用报告规则 (URR)：跟踪每个会话的数据量计数器

数据包缓冲：

缓冲状态：查看每个 FAR 的缓冲数据包 (GET /buffer , GET /buffer/:far_id)

缓冲操作：刷新或清除缓冲数据包 (POST /buffer/:far_id/flush , DELETE

/buffer/:far_id , DELETE /buffer)

缓冲控制：手动通知触发 (POST /buffer/:far_id/notify)

通知状态：查看 DLDR 通知状态 (GET /buffer/notifications)

监控和统计：

数据包统计：按协议实时数据包计数 (GTP, IP, TCP, UDP, ICMP, ARP)

XDP 统计：数据路径性能指标 (通过、丢弃、重定向、中止)

N3/N6 接口统计：RAN 和数据网络流量分布

路由统计：FIB 查找性能 (缓存命中、查找、错误)

路由管理：

UE 路由：查询 UE IP 到 gNB 的路由表 (GET /routes)

FRR 集成：与 Free Range Routing 守护进程同步路由 (POST /routes/sync)

路由会话：查看路由协议会话 (GET /routing/sessions)

OSPF 数据库：查询 OSPF 外部路由数据库 (GET /ospf/database/external)

配置：

UPF 配置：检索和编辑配置 (GET /config , POST /config)

数据平面配置：查询数据平面特定配置 (GET /dataplane_config)

XDP 能力：查询 XDP 模式支持和接口能力 (GET /xdp_capabilities)

eBPF 映射容量：监控资源利用率和容量 (GET /map_info)

Web UI 集成

OmniUPF Web UI 基于此 API 构建，�供了一个交互式仪表板，涵盖所有 API 功能。请参见 Web UI 指南 获取截图和使用

示例。

Swagger API �档

该 API 使用 OpenAPI 3.0 (Swagger) 规范进行了全面文档化。交互式 Swagger UI �供：

完整��端点文档，包含请求/响应模式

直接从浏览器测试 API 调用的尝试功能

所有数据模型的模式定义

HTTP 状态码和错误响应

�互式 Swagger UI 显示 OmniUPF API 端点及详细文档。

访问 Swagger UI

Swagger 文档可在以下地址访问：

例如：http://10.98.0.20:8080/swagger/index.html

API 基础路径

所有 API 端点的前缀为：

http://<upf-host>:8080/swagger/index.html

/api/v1

响应格式：

API �性

分页

OmniUPF API 支持对返回大型数据集的端点进行分页。分页可以防止超时，并减少查询数千个会话、PDR 或 URR 时的内存使

用。

支持的分页样式：

1. **基于页面的分页**（推荐）：

 - `page`：页码（从 1 开始）

 - `page_size`：每页项目数（默认：100，最大：1000）

2. **基于偏移量的分页**：

 - `offset`：要跳过的项目数

 - `limit`：要返回的项目数（最大：1000）

示例请求：

```bash

# 基于页面：获取第二页，每页 50 项

GET /api/v1/pfcp_sessions?page=2&page_size=50

# 基于偏移量：跳过前 100 项，返回下 50 项

GET /api/v1/pfcp_sessions?offset=100&limit=50

# 默认行为（无分页参数）：前 100 项

GET /api/v1/pfcp_sessions



分页端点：

/api/v1/pfcp_sessions  - PFCP 会话列表

/api/v1/pfcp_associations  - PFCP 关联列表

/api/v1/routes  - UE IP 路由

/api/v1/uplink_pdr_map  - 上行 PDR（基本信息）

/api/v1/uplink_pdr_map/full  - 带有完整 SDF 过滤详细信息的上行 PDR

/api/v1/downlink_pdr_map  - 下行 PDR IPv4（基本信息）

/api/v1/downlink_pdr_map/full  - 带有完整 SDF 过滤详细信息的下行 PDR IPv4

/api/v1/downlink_pdr_map_ip6  - 下行 PDR IPv6（基本信息）

/api/v1/downlink_pdr_map_ip6/full  - 带有完整 SDF 过滤详细信息的下行 PDR IPv6

/api/v1/far_map  - 转发动作规则

/api/v1/qer_map  - QoS 强制规则

/api/v1/urr_map  - 使用报告规则

缓冲管理端点：

GET /api/v1/buffer  - 列出所有 FAR 缓冲区及其统计信息

GET /api/v1/buffer/:far_id  - 获取特定 FAR 的缓冲状态

GET /api/v1/buffer/notifications  - 列出 DLDR 通知状态

DELETE /api/v1/buffer  - 清除所有缓冲数据包

DELETE /api/v1/buffer/:far_id  - 清除特定 FAR 的缓冲

&#123;

  "data": [

    &#123; /* session object */ &#125;,

    &#123; /* session object */ &#125;,

    ...

  ],

  "pagination": &#123;

    "total": 5432,

    "page": 2,

    "page_size": 50,

    "total_pages": 109

  &#125;

&#125;



POST /api/v1/buffer/:far_id/flush  - 刷新（重放）缓冲数据包

POST /api/v1/buffer/:far_id/notify  - 手动发送 DLDR 通知

配置端点：

GET /api/v1/config  - 获取当前 UPF 配置

POST /api/v1/config  - 更新 UPF 配置（运行时可编辑字段）

GET /api/v1/dataplane_config  - 获取数据平面特定配置

路由集成端点：

GET /api/v1/routes  - 列出 UE 路由

POST /api/v1/routes/sync  - 触发与 FRR 的路由同步

GET /api/v1/routing/sessions  - 获取路由协议会话

GET /api/v1/ospf/database/external  - 获取 OSPF 外部 LSA 数据库

最佳实践：

对于 Web UI 显示，使用 page_size=100

对于批量导出，使用 page_size=1000（最大限制）

查询 pagination.total_pages  以确定迭代次数

增加 page_size  以�高 API 性能（请求更少）

CORS 支持

跨源资源共享 (CORS) 默认对所有 API 端点启用，允许 Web UI 和第三方应用程序从不同来源访问 API。

Prometheus 指标

除了 REST API，OmniUPF 还在 /metrics  端点（默认端口 :9090）上公开 Prometheus 指标。

指标�供：

每个对等体的 PFCP 消息计数和延迟

按协议类型的数据包统计

XDP 动作裁决



缓冲统计

eBPF 映射容量利用率

URR 体积跟踪

请参见 指标参考 获取完整文档。

相关�档

Web UI 指南 - 基于此 API 构建的交互式仪表板

指标参考 - Prometheus 指标文档

PFCP 原因代码 - PFCP 错误代码和故障排除

规则管理指南 - PDR、FAR、QER、URR 配置

路由管理指南 - FRR 集成和 UE 路由

监控指南 - 统计监控和容量规划

配置指南 - UPF 配置选项

Swagger UI - 交互式 API 文档（将 localhost  替换为您的 UPF 主机）

http://localhost:8080/swagger/index.html


OmniUPF 架构指南

目录

1. 概述

2. eBPF 技术基础

3. XDP 数据路径

4. 数据包处理管道

5. eBPF 映射架构

6. 缓冲机制

7. QoS 执行

8. 性能特征

9. 可扩展性与调优

概述

OmniUPF 利用 eBPF（扩展的伯克利数据包过滤器）和 XDP（快速数据路径）实现 5G/LTE 数据包处理的运营商级性能。通过直

接在 Linux 内核中运行数据包处理逻辑，OmniUPF 消除了用户空间处理的开销，并以微秒级延迟实现多千兆位的吞吐量。



架构层

关键设计原则

零拷贝处理：

数据包完全在内核空间处理

内核与用户空间之间不进行数据拷贝



使用 XDP ���接操作数据包

无锁数据结构：

eBPF 映射使用每 CPU 的哈希表

并发访问的原子操作

无互斥锁/自旋锁开销

硬件卸载准备：

XDP 卸载模式支持 SmartNIC 执行

与支持 XDP 的网络卡兼容

回退到驱动原生或通用模式

eBPF 技术基础

什么是 eBPF？

eBPF（扩展的伯克利数据包过滤器）是一项革命性的 Linux 内核技术，允许安全的沙箱程序在内核空间运行，而无需更改内核源代码或加载内

核模块。

关键特性：

安全性：eBPF 验证器确保程序不会崩溃内核

性能：以本地内核速度运行（无解释开销）

灵活性：可以在运行时更新而无需重启内核

可观察性：内置跟踪和统计功能



eBPF 程序生命周期

内核（eBPF 运行时）JIT 编译器eBPF 验证器用户空间

内核（eBPF 运行时）JIT 编译器eBPF 验证器用户空间

alt [验证成功]

[验证失败]

程序为每个数据包运行

映射原子更新

加载 eBPF 程序（ELF）

验证安全性:

- 无无限循环

- 有界内存访问

- 有效的映射操作

编译为本地代码

安装程序

返回程序 FD

返回错误

附加到 XDP 钩子

更新 eBPF 映射（PDR/FAR/QER/URR）

eBPF 映射

eBPF 映射是内核数据结构，在 eBPF 程序和用户空间之间共享。

OmniUPF 中使用的映射类型：



映射类型 描述 用例

BPF_MAP_TYPE_HASH 带键值对的哈希表 按 TEID 或 UE IP 查找 PDR

BPF_MAP_TYPE_ARRAY 按整数索引的数组 按 ID 查找 QER、FAR、URR

BPF_MAP_TYPE_PERCPU_HASH 每 CPU 的哈希表（无锁） 高性能 PDR 查找

BPF_MAP_TYPE_LRU_HASH LRU（最近最少使用）哈希 自动驱逐旧条目

映射操作：

查找：O(1) 哈希查找（亚微秒）

更新：来自用户空间的原子更新

删除：立即删除条目

迭代：映射转储的批量操作

XDP 数据路径

XDP 概述

XDP（快速数据路径）是一个 Linux 内核钩子，允许 eBPF 程序在尽可能早的时刻处理数据包——在网络驱动程序接收到数据包后，内

核网络栈之前。

XDP 附加模式

OmniUPF 支持三种 XDP 附加模式，每种模式具有���同的性能和兼容性特征。



1. XDP 卸载模式

硬件执行（最佳性能）：

eBPF 程序直接在 SmartNIC 硬件上运行

数据包处理在 NIC 内部，不触及 CPU

实现 100 Gbps+ 的吞吐量

需要兼容的 SmartNIC（Netronome、Mellanox ConnectX-6）

配置：



限制：

需要昂贵的 SmartNIC 硬件

限制 eBPF 程序复杂性

并非所有 eBPF 特性在硬件中受支持

2. XDP 原生模式（生产环境的默认模式）

驱动级��行（高性能）：

eBPF 程序在网络驱动程序上下文中运行

数据包在 SKB（套接字缓冲区）分配之前处理

每个核心实现 10-40 Gbps

需要支持 XDP 的驱动程序（大多数现代驱动程序）

配置：

优点：

性能非常高（每秒数百万包）

广泛的硬件兼容性

完整的 eBPF 特性集

支持的驱动程序：

英特尔：i40e、ice、ixgbe、igb

Mellanox：mlx4、mlx5

博通：bnxt

亚马逊：ena

大多数 10G+ 网络卡

xdp_attach_mode: offload

xdp_attach_mode: native



3. XDP 通用模式

软件仿真（兼容性）：

eBPF 程序在内核分配 SKB 后运行

XDP 行为的软件仿真

在任何网络接口上工作

适用于测试和开发

配置：

用例：

开发和测试

虚拟化环境（没有 SR-IOV 的 VM）

较旧的网络硬件

回环接口测试

性能：1-5 Gbps（显著低于原生/卸载）

XDP 返回代码

eBPF 程序返回 XDP 动作代码，以告诉内核对数据包执行什么操作：

xdp_attach_mode: generic



返回代码 意义 在 OmniUPF 中的使用

XDP_PASS 将数据包发送到内核网络栈 缓冲（本地交付）、ICMP、未知流量

XDP_DROP 立即丢弃数据包 无效数据包、速率限制、策略丢弃

XDP_TX 将数据包回传到相同接口 当前未使用

XDP_REDIRECT 将数据包发送到不同接口 主要转发路径（N3 ↔ N6）

XDP_ABORTED 处理错误，丢弃数据包并记录 eBPF 程序错误

数据包处理管道

程序结构

OmniUPF 使用 eBPF 尾调用创建模块化的数据包处理管道。

tail_call tail_call tail_call tail_call XDP_REDIRECT
upf_entrypoint

数据包分类

pdr_lookup

匹配 PDR

qer_enforce

应用 QoS

far_execute

转发

urr_account

流量跟踪
输出接口

尾调用：

允许 eBPF 程序调用其他 eBPF 程序

重用相同的栈帧（有界栈深度）

启用模块化管道设计

最大 33 次尾调用深度



上行数据包处理

N6 接口URR 记账FAR 处理QER 执行PDR 查找XDP 钩子N3 接口

N6 接口URR 记账FAR 处理QER 执行PDR 查找XDP 钩子N3 接口

alt [动作：转发]

[动作：缓冲]

[动作：丢弃]

alt [速率正常]

[速率超限]

alt [找到 PDR]

[未找到 PDR]

GTP-U 数据包（TEID 5678）

�取 TEID，查找 uplink_pdr_map

获取 FAR ID、QER ID、URR IDs

应用速率限制（MBR）

检查 FAR 动作

移除 GTP-U 头

减少 TTL，重新计算校验和

增加流量计数

XDP_REDIRECT 到 N6 接口

封装在 GTP-U 中（TEID=FAR_ID）

XDP_PASS 到缓冲套接字

XDP_DROP

XDP_DROP（速率限制）

XDP_DROP（未知 TEID）

下行数据包处理



eBPF 映射架构

映射内存布局

用户空间

内核内存

规则映射 PDR 映射

bpf_map_update_elem bpf_map_update_elem bpf_map_update_elembpf_map_update_elem bpf_map_update_elem bpf_map_update_elem bpf_map_lookup_elem bpf_map_lookup_elembpf_map_lookup_elem bpf_map_lookup_elem bpf_map_lookup_elem

uplink_pdr_map

哈希：TEID → PDR 信息

大小：131,070 条目

downlink_pdr_map

哈希：UE IPv4 → PDR 信息

大小：131,070 条目

downlink_pdr_map_ip6

哈希：UE IPv6 → PDR 信息

大小：131,070 条目

far_map

数组：FAR ID → FAR 信息

大小：131,070 条目

qer_map

数组：QER ID → QER 信息

大小：65,535 条目

urr_map

数组：URR ID → URR 信息

大小：131,070 条目

PFCP 处理程序REST API

映射大小

OmniUPF 根据 max_sessions  配置自动计算映射大小：

示例（max_sessions = 65,535）：

PDR 映射：每个 131,070 条目

FAR 映射：131,070 条目

QER 映射：65,535 条目

URR 映射：131,070 条目

总内存：

PDR 映射 = 2 × max_sessions  (上行 + 下行)

FAR 映射 = 2 × max_sessions  (上行 + 下行)

QER 映射 = 1 × max_sessions  (每会话共享)

URR 映射 = 3 × max_sessions  (每会话多个 URR)

PDR 映射：3 × 131,070 × 212 B = ~83 MB

FAR 映射： 131,070 × 20 B = ~2.6 MB

QER 映射： 65,535 × 36 B = ~2.3 MB

URR 映射： 131,070 × 20 B = ~2.6 MB

总计：~91 MB 内核内存



缓冲机制

缓冲概述

OmniUPF 实现数据包缓冲以应对切换场景，通过在 GTP-U 中封装数据包并通过 UDP 套接字发送到用户空间进程。

缓冲架构

Parse error on line 10: ...冲存储<br/>映射：FAR_ID → []数据包] end -----------------------^

Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'SQS'

�试

缓冲封装细节

当缓冲启用时（FAR 动作位 2 设置），eBPF 程序：

1. 计算原始数据包大小：

2. 扩展数据包头：

3. 构建外部 IP 头：

orig_packet_len = ntohs(ip->tot_len);  // � IP 头部获取

// 为：外部 IP + UDP + GTP-U 添加空间

gtp_encap_size = sizeof(struct iphdr) + sizeof(struct udphdr) + 

sizeof(struct gtpuhdr);

bpf_xdp_adjust_head(ctx, -gtp_encap_size);



4. 构建 UDP 头：

5. 构建 GTP-U 头：

6. 返回 XDP_PASS：

内核将数据包交付到本地 UDP 套接字端口 22152

用户空���缓冲管理器接收并存储数据包

缓冲刷新操作

当切换完成时，SMF 更新 FAR 以清除 BUFFER 标志。缓冲的数据包被重放：

ip->saddr = original_sender_ip;  // 保留源地址以避免火星过滤

ip->daddr = local_upf_ip;        // 用户空间监听器绑定的本地 IP

ip->protocol = IPPROTO_UDP;

ip->ttl = 64;

udp->source = htons(22152);  // BUFFER_UDP_PORT

udp->dest = htons(22152);

udp->len = htons(sizeof(udphdr) + sizeof(gtpuhdr) + 

orig_packet_len);

gtp->version = 1;

gtp->message_type = GTPU_G_PDU;

gtp->teid = htonl(far_id | (direction << 24));  // 编码 FAR ID 和方

向

gtp->message_length = htons(orig_packet_len);



缓冲管理参数

参数 默认值 描述

每 FAR 最大 10,000 数据包 每个 FAR 缓冲的最大数据包数

总最大 100,000 数据包 最大缓冲的数据包总数

数据包 TTL 30 秒 缓冲数据包过期前的时间

缓冲端口 22152 用于缓冲交付的 UDP 端口

缓冲清理间隔 60 秒 检查过期数据包的频率



QoS 执行

速率限制算法

OmniUPF 实现了 滑动窗口速率限制器 来执行 QoS。

Parse error on line 5: ...= packet_size × 8 × (NSEC_PER_SEC / rate ---------------

--------^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'PS'

�试

滑动窗口实现

算法（来自 qer.h）：



关键参数：

窗口大小：5ms（5,000,000 纳秒）

每个方向：上行和下行的独立窗口

原子更新：使用易失性指针进行并发访问

MBR = 0：视为无限带宽

static __always_inline enum xdp_action limit_rate_sliding_window(

    const __u64 packet_size,

    volatile __u64 *window_start,

    const __u64 rate)

{

    static const __u64 NSEC_PER_SEC = 1000000000ULL;

    static const __u64 window_size = 5000000ULL;  // 5ms 窗口

    // 速率 = 0 表示无限制

    if (rate == 0)

        return XDP_PASS;

    // 计算此数据包的传输时间

    __u64 tx_time = packet_size * 8 * (NSEC_PER_SEC / rate);

    __u64 now = bpf_ktime_get_ns();

    // 检查我们是否在窗口前面（数据包将在未来传输）

    __u64 start = *window_start;

    if (start + tx_time > now)

        return XDP_DROP;  // 超过速率限制

    // 如果窗口已过去，重置它

    if (start + window_size < now) {

        *window_start = now - window_size + tx_time;

        return XDP_PASS;

    }

    // 更新窗口以考虑此数据包

    *window_start = start + tx_time;

    return XDP_PASS;

}



QoS 示例计算

场景：MBR = 100 Mbps，数据包大小 = 1500 字节

1. 传输时间：

2. 速率检查：

如果最后一个数据包在 t=0  传输，下一数据包可以在 t=120μs  传输

如果数据包在 t=100μs  到达，则丢弃（太早）

如果数据包在 t=150μs  到达，则转发（窗口已推进）

3. 最大数据包速率：

性能特征

吞吐量

配置 吞吐量 数据包/秒 延迟

XDP 卸载（SmartNIC） 100 Gbps 148 Mpps < 1 μs

XDP 原生（10G NIC，单核） 10 Gbps 8 Mpps 2-5 μs

XDP 原生（10G NIC，4 核） 40 Gbps 32 Mpps 2-5 μs

XDP 通用 1-5 Gbps 0.8-4 Mpps 50-100 μs

tx_time = 1500 字节 × 8 位/字节 × (1,000,000,000 ns/sec ÷ 

100,000,000 bps)

tx_time = 1500 × 8 × 10 = 120,000 ns = 120 μs

Max PPS = (100 Mbps ÷ 8) ÷ 1500 字节 = 8,333 数据包/秒

数据包间隔 = 120 μs



延迟分解

总数据包处理延迟（XDP 原生）：

阶段 延迟 累计

NIC RX 0.5 μs 0.5 μs

XDP 钩子调用 0.1 μs 0.6 μs

PDR 查找（哈希） 0.3 μs 0.9 μs

QER 速率检查 0.1 μs 1.0 μs

FAR 处理 0.5 μs 1.5 μs

URR 更新 0.2 μs 1.7 μs

GTP-U 封装/解封装 0.8 μs 2.5 μs

XDP_REDIRECT 0.5 μs 3.0 μs

NIC TX 0.5 μs 3.5 μs

总计：每个数据包约 ~3.5 μs（XDP 原生，10G NIC）

CPU 利用率

每核处理能力：

单核：8-10 Mpps（XDP 原生）

启用超线程：12-15 Mpps

多核扩展：接近线性，最多 8 核

数据包速率的 CPU 使用率：



示例：2 Mpps 流量使用 ~20% 的一个核心

内存带宽

eBPF 映射访问：

哈希查找：~100 ns（缓存命中）

哈希查找：~300 ns（缓存未命中）

数组查找：~50 ns（始终缓存命中）

所需内存带宽：

示例：10 Mpps × (1500 B + 3 次查找 × 64 B) ≈ 160 Gbps 内存带宽

可扩展性与调优

水平扩展

多个 UPF 实例：

Setting SMF as parent of SMF would create a cycle

�试

会话分配：

SMF 在 UPF 实例之间分配会话

每个 UPF 处理一部分 UE 会话

不需要 UPF 之间的通信（无状态）

CPU % ≈ (数据包速率 / 10,000,000) × 100% 每核

带宽 = 数据包速率 × (平均数据包大小 + 映射查找 × 64 字节)



垂直扩展

CPU 调优：

1. 启用 XDP 处理的 CPU 亲和性

2. 使用 RSS（接收侧扩展）分配 RX 队列

3. 将 eBPF 程序固定到特定核心

NIC 调优：

1. 增加 RX 环形缓冲区大小

2. 启用多队列 NIC（RSS）

3. 使用流导向进行流量引导

内核调优：

容量规划

公式：

示例（100 万会话，20 Gbps 峰值）：

# 增加 eBPF 映射的锁定内存限制

ulimit -l unlimited

# 禁用 IRQ 平衡以适应 XDP 核心

systemctl stop irqbalance

# 将 CPU 调节器设置为性能

cpupower frequency-set -g performance

# 增加网络缓冲区大小

sysctl -w net.core.rmem_max=134217728

sysctl -w net.core.wmem_max=134217728

所需 CPU 核心 = (预期 PPS ÷ 10,000,000) × 1.5  (50% 余量)

所需内存 = (最大会话 × 212 B × 3) + 100 MB (eBPF 映射 + 开销)

所需网络 = (峰值吞吐量 × 2) + 10 Gbps (余量)



CPU: (20 Gbps ÷ 每核 10 Gbps) × 1.5 = 3-4 核

内存: (1M × 212 B × 3) + 100 MB ≈ 750 MB

网络: (20 Gbps × 2) + 10 Gbps = 50 Gbps 接口

相关�档

UPF 操作指南 - 一般 UPF 操作和部署

规则管理指南 - PDR、FAR、QER、URR 详细信息

监控指南 - 性能监控和指标

Web UI 操作指南 - 控制面板使用

故障排除指南 - 常见问题和诊断



OmniUPF 配置指南

目录

1. 概述

2. 操作模式

3. XDP 附加模式

4. 配置参数

5. 配置方法

6. 虚拟机监控程序兼容性

7. NIC 兼容性

8. 配置示例

9. 映射大小和容量规划

概述

OmniUPF 是一个多功能的用户平面功能，可以在多种模式下运行，以支持 4G (EPC) 和 5G 核心网络。配置通过 YAML 配置文

件进行管理。

操作模式

OmniUPF 是一个 统一平台，可以同时作为：



模式配置

操作模式由 控制平面 (SMF, PGW-C 或 SGW-C) 决定，该控制平面与 OmniUPF 建立 PFCP 关联。切换模式不需要特定

的 OmniUPF 配置。

同时操作：

OmniUPF 可以同时接受来自多个控制平面的 PFCP 关联

单个 OmniUPF 实例可以同时充当 UPF、PGW-U 和 SGW-U

来自不同控制平面的会话是隔离的，并独立管理

XDP 附加模式

OmniUPF 使用 XDP (eXpress Data Path) 进行高性能数据包处理。支持三种附加模式。

有关详细的 XDP 设置说明，特别是针对 Proxmox 和其他虚拟机监控程序，请参见 XDP 模式指南。



模式比较

模

式
附加点 性能 用例 NIC 要求

通

用
网络栈 (内核) ~1-2 Mpps 测试、开发、兼容性 任何 NIC

本

地
网络驱动 (内核)

~5-10

Mpps

生产 (裸金属，带 SR-IOV

的 VM)
支持 XDP 的驱动

卸

载

NIC 硬件

(SmartNIC)

~10-40

Mpps
高吞吐量生产

支持 XDP 卸载的

SmartNIC

Packet Path

offload mode

native mode

generic mode

��络接口卡

网络驱动

网络栈

应用

XDP Program

Hardware

XDP Program

Driver

XDP Program

Stack



通用模式 (默认)

描述：XDP 程序在内核网络栈中运行

优点：

适用于 任何 网络接口

无需特殊驱动或硬件要求

理想的测试和开发环境

与所有虚拟机监控程序和虚拟化平台兼容

缺点：

性能较低 (~1-2 Mpps 每个核心)

数据包在 XDP 处理之前已经通过驱动

配置：

最佳适用：

不支持 SR-IOV 的虚拟机

测试和验证环境

不支持 XDP 驱动的 NIC

如 Proxmox、VMware、VirtualBox 等虚拟机监控程序

本地模式 (推荐)

描述：XDP 程序在网络驱动级别运行

优点：

高性能 (~5-10 Mpps 每个核心)

数据包在进入网络栈之前被处理

延迟显著低于通用模式

xdp_attach_mode: generic



适用于裸金属和 SR-IOV 虚拟机

缺点：

需���支持 XDP 的网络驱动

并非所有 NIC/驱动都支持本地 XDP

配置：

最佳适用：

裸金属上的生产部署

带 SR-IOV 直通的虚拟机

具有 XDP 能力驱动的 NIC (如 Intel、Mellanox 等)

要求：

支持 XDP 的网络驱动 (见 NIC 兼容性)

Linux 内核 5.15+ 并启用 XDP 支持

卸载模式 (最大性能)

描述：XDP 程序直接在 SmartNIC 硬件上运行

优点：

最大性能 (~10-40 Mpps)

数据包处理的 CPU 开销为零

亚微秒延迟

释放 CPU 用于控制平面处理

缺点：

需要昂贵的 SmartNIC 硬件

SmartNIC 可用性有限

xdp_attach_mode: native



设置和配置复杂

配置：

最佳适用：

超高吞吐量的生产部署

对延迟要求严格的边缘计算

CPU 资源有限的环境

要求：

支持 XDP 卸载的 SmartNIC (如 Netronome Agilio CX、Mellanox BlueField)

专用固件和驱动

配置参数

网络接口

参数 描述
类

型
默认

interface_name N3/N6/N9 流量的网络接口 (XDP 附加点)
列

表
[lo]

n3_address
N3 接口的 IPv4 地址 (来自 RAN 的 GTP-

U)
IP 127.0.0.1

n9_address
N9 接口的 IPv4 地址 (UPF 到 UPF 的

ULCL)
IP

与 n3_address  相

同

示例：

xdp_attach_mode: offload



PFCP 配置

参数 描述 类型 默认

pfcp_address
PFCP 服务器的本地地址

(N4/Sxb/Sxc 接口)

主机:

端口
:8805

pfcp_node_id PFCP 协议的本地节点 ID IP 127.0.0.1

pfcp_remote_node
要连接的远程 PFCP 对等方

(SMF/PGW-C/SGW-C)
列表 []

association_setup_timeout 关联设置请求之间的超时时间 (秒) 整数 5

heartbeat_retries 在声明对等方死亡之前的心跳重试次数 整数 3

heartbeat_interval PFCP 心跳间隔 (秒) 整数 5

heartbeat_timeout PFCP 心跳超时 (秒) 整数 5

示例：

interface_name: [eth0, eth1]

n3_address: 10.100.50.233

n9_address: 10.100.50.234

pfcp_address: :8805

pfcp_node_id: 10.100.50.241

pfcp_remote_node:

  - 10.100.50.10  # OmniSMF

  - 10.100.60.20  # OmniPGW-C

heartbeat_interval: 10

heartbeat_retries: 5



API 和监控

参数 描述 类型 默认

api_address REST API 服务器的本地地址
主机:端

口
:8080

metrics_address Prometheus 指标端点的���地地址 (见 指标参考)
主机:端

口
:9090

logging_level
日志级别 (trace , debug , info , warn ,

error )
字符串 info

示例：

GTP 路径管理

参数 描述 类型 默认

gtp_peer GTP 对等方的列表，用于回声请求保持活动 列表 []

gtp_echo_interval GTP 回声请求之间的间隔 (秒) 整数 10

示例：

api_address: :8080

metrics_address: :9090

logging_level: debug

gtp_peer:

  - 10.100.50.50:2152  # gNB

  - 10.100.50.60:2152  # 另一个 UPF 用于 N9

gtp_echo_interval: 15



eBPF 映射容量

参数 描述 类型 默认 自动计算

max_sessions 最大并发会话数 整数 65535 用于计算映射大小

pdr_map_size PDR eBPF 映射的大小 整数 0 max_sessions × 2

far_map_size FAR eBPF 映射的大小 整数 0 max_sessions × 2

qer_map_size QER eBPF 映射的大小 整数 0 max_sessions

urr_map_size URR eBPF 映射的大小 整数 0 max_sessions × 2

注意：将映射大小设置为 0  (默认) 将根据 max_sessions  启用自动计算。如果需要自定义大小，请覆盖特定值。

示例：

自定义大小示例：

max_sessions: 100000

# 映射将自动调整大���：

# PDR: 200,000 条目

# FAR: 200,000 条目

# QER: 100,000 条目

# URR: 200,000 条目

max_sessions: 50000

pdr_map_size: 131070  # 自定义大小

far_map_size: 131070

qer_map_size: 65535

urr_map_size: 131070



缓冲区配置

参数 描述 类型 默认

buffer_port 用于来自 eBPF 的缓冲数据包的 UDP 端口 整数 22152

buffer_max_packets 每个 FAR 的最大缓冲数据包数 整数 10000

buffer_max_total 最大总缓冲数据包数 (0=无限制) 整数 100000

buffer_packet_ttl 缓冲数据包的 TTL（秒） (0=无过期) 整数 30

buffer_cleanup_interval 缓冲清理间隔（秒） (0=不清理) 整数 60

示例：

功能标志

参数 描述 类型 默认

feature_ueip 通过 OmniUPF 启用 UE IP 分配 布尔 false

ueip_pool UE IP 分配的 IP 池 (需要 feature_ueip ) CIDR 10.60.0.0/24

feature_ftup 通过 OmniUPF 启用 F-TEID 分配 布尔 false

teid_pool
F-TEID 分配的 TEID 池大小 (需要

feature_ftup )
整数 65535

buffer_port: 22152

buffer_max_packets: 20000

buffer_max_total: 200000

buffer_packet_ttl: 60

buffer_cleanup_interval: 30



示例 (UE IP 分配)：

示例 (F-TEID 分配)：

路由管理器配置

用于与 FRR (Free Range Routing) 守护进程同步 UE 路由。有关详细信息，请参见 路由管理指南。

参数 描述 类型 默认

route_manager_enabled 启用自动 UE 路由同步 布尔 false

route_manager_type
路由守护进程类型 (frr  支

持)
字符串 frr

route_manager_vtysh_path vtysh 命令的路径 字符串 /usr/bin/vtysh

route_manager_nexthop UE 路由的下一跳 IP
IP 地

址
`` (空)

示例：

何时启用：

feature_ueip: true

ueip_pool: 10.45.0.0/16  # �此池中分配 UE IP

feature_ftup: true

teid_pool: 1000000  # 允许最多 1M TEID 分配

route_manager_enabled: true

route_manager_type: frr

route_manager_vtysh_path: /usr/bin/vtysh

route_manager_nexthop: 10.0.1.1  # UE 路由的下一跳



需要路由广告的多 UPF 部署

与 OSPF 或 BGP 路由协议集成

需要安装和配置 FRRouting 守护进程

配置方法

YAML 配置�件 (推荐)

�件: config.yml



虚拟机监控程序兼容性

概述

OmniUPF 与所有主要虚拟机监控程序和虚拟化平台兼容。XDP 附加模式和网络配置取决于虚拟机监控程序的网络能力。

# 网络配置

interface_name: [eth0]

n3_address: 10.100.50.233

n9_address: 10.100.50.233

xdp_attach_mode: native

# PFCP 配置

pfcp_address: :8805

pfcp_node_id: 10.100.50.241

pfcp_remote_node:

  - 10.100.50.10

# API 和监控

api_address: :8080

metrics_address: :9090

logging_level: info

# 容量

max_sessions: 100000

# GTP 对等方

gtp_peer:

  - 10.100.50.50:2152

gtp_echo_interval: 10

# 功能

feature_ueip: true

ueip_pool: 10.45.0.0/16

feature_ftup: false

# 缓冲

buffer_max_packets: 15000

buffer_packet_ttl: 45



有关在 Proxmox 和其他虚拟机监控程序上启用本地 XDP 的逐步说明，请参见 XDP 模式指南。

Proxmox VE

支持的配置：

1. 桥接模式 (通用 XDP)

用例：标准 VM 网络

配置：

网络设备：VirtIO 或 E1000

XDP 模式：generic



性能：~1-2 Mpps

Proxmox VM 设置：

OmniUPF 配置：

2. SR-IOV 直通 (本地 XDP)

用例：高性能生产

配置：

网络设备：SR-IOV 虚拟功能

XDP 模式：native

性能：~5-10 Mpps

要求：

支持 SR-IOV 的物理 NIC (如 Intel X710、Mellanox ConnectX-5)

在 BIOS 中启用 SR-IOV

启用 IOMMU (intel_iommu=on  或 amd_iommu=on  在 GRUB 中)

在 Proxmox 上启用 SR-IOV：

网络设备: net0

模型: VirtIO (虚拟化)

桥接: vmbr0

interface_name: [eth0]

xdp_attach_mode: generic



Proxmox VM 设置：

OmniUPF 配置：

3. PCI 直通 (本地 XDP)

用例：为单个 VM �供专用 NIC

配置：

整个物理 NIC 传递给 VM

# 编辑 GRUB 配置

nano /etc/default/grub

# 添加到 GRUB_CMDLINE_LINUX_DEFAULT:

intel_iommu=on iommu=pt

# 更新 GRUB 并重启

update-grub

reboot

# 在 NIC 上启用 VFs (示例：在 eth0 上 4 个虚拟功能)

echo 4 > /sys/class/net/eth0/device/sriov_numvfs

# 使其持久化

echo "echo 4 > /sys/class/net/eth0/device/sriov_numvfs" >> 

/etc/rc.local

chmod +x /etc/rc.local

硬件 → 添加 → PCI 设备

选择: SR-IOV 虚拟功能

所有功能: 否

主 GPU: 否

PCI-Express: 是 (可选)

interface_name: [ens1f0]  # SR-IOV VF 名称

xdp_attach_mode: native



XDP 模式：native  或 offload  (如果是 SmartNIC)

性能：~5-40 Mpps (取决于 NIC)

Proxmox VM 设置：

OmniUPF 配置：

KVM/QEMU

桥接模式：

SR-IOV 直通：

硬件 → 添加 → PCI 设备

选择: 物理 NIC (例如，0000:01:00.0)

所有功能: 是

主 GPU: 否

PCI-Express: 是

interface_name: [ens1f0]

xdp_attach_mode: native  # 或 'offload' 对于 SmartNIC

virt-install \

  --name omniupf \

  --network bridge=br0,model=virtio \

  --disk path=/var/lib/libvirt/images/omniupf.qcow2 \

  ...

<interface type='hostdev' managed='yes'>

  <source>

    <address type='pci' domain='0x0000' bus='0x01' slot='0x10' 

function='0x1'/>

  </source>

</interface>



VMware ESXi

标准 vSwitch (通用 XDP)：

网��适配器：VMXNET3

XDP 模式：generic

SR-IOV (本地 XDP)：

在 ESXi 主机设置中启用 SR-IOV

将 SR-IOV 网络适配器添加到 VM

XDP 模式：native

Microsoft Hyper-V

虚拟交换机 (通用 XDP)：

网络适配器：合成

XDP 模式：generic

SR-IOV (本地 XDP)：

在 Hyper-V 管理器中启用 SR-IOV

在虚拟网络适配器上配置 SR-IOV

XDP 模式：native

VirtualBox

NAT/桥接模式 (仅通用 XDP)：

网络适配器：VirtIO-Net 或 Intel PRO/1000

XDP 模式：generic

注意：VirtualBox 不支持 SR-IOV



NIC 兼容性

理解 Mpps 与吞吐量

每秒数据包数 (Mpps) 和吞吐量 (Gbps) 并不直接等同 - 其关系完全取决于数据包大小。移动网络流量在数据包大小上变化很大，从微

小的 VoIP 数据包到大型视频流帧。

数据包大小对吞吐量的影响

在移动网络中，UPF 在 N3 接口上处理 GTP-U 封装的数据包，并在 N6 接口上处理原生 IP 数据包。

GTP-U 封装开销 (N3 接口)：

外部 IPv4 头：20 字节

外部 UDP 头：8 字节

GTP-U 头：8 字节

总 GTP-U 开销：36 字节

最小 GTP-U 数据包 (N3)：

内部 IP 头：20 字节 (IPv4)

内部 UDP 头：8 字��

最小有效载荷：1 字节

内部数据包总计：29 字节

加上 GTP-U 开销：36 字节

总数据包大小：65 字节

以 1 Mpps 的吞吐量计算最小 GTP-U 数据包：

最大 GTP-U 数据包 (N3，1500 MTU)：

内部 IP MTU：1500 字节 (完整内部 IP 数据包)

加上 GTP-U 开销：36 字节

总数据包大小：1536 字节

65 字节 × 1,000,000 pps × 8 位/字节 = 520 Mbps



以 1 Mpps 的吞吐量计算最大 GTP-U 数据包：

原生 IP 数据包 (N6 接口)：

在 N6 (朝向互联网) 上，数据包是原生 IP，没有 GTP-U：

最小 N6 数据包：

IP 头：20 字节

UDP 头：8 字节

最小有效载荷：1 字节

总计：29 字节

以 1 Mpps 的吞吐量计算最小 N6 数据包：

最大 N6 数据包 (1500 MTU)：

IP MTU：1500 字节

总计：1500 字节

以 1 Mpps 的吞吐量计算最大 N6 数据包：

实际性能示例

Intel X710 NIC (N3 接口的 10 Mpps 容量)：

1536 字节 × 1,000,000 pps × 8 位/字节 = 12,288 Mbps ≈ 12.3 Gbps

29 字节 × 1,000,000 pps × 8 位/字节 = 232 Mbps

1500 字节 × 1,000,000 pps × 8 位/字节 = 12,000 Mbps = 12 Gbps



流量模式 内部数据包大小 GTP-U 总计 10 Mpps 吞吐量 典型用例

VoIP 通话

(N3)
65-150 字节 101-186 字节

0.8-1.5

Gbps

AMR-WB 语音，

G.711

轻量级网页

(N3)
400-600 字节 436-636 字节

3.5-5.1

Gbps
HTTP/HTTPS，消息

现代移动

(N3)
1200 字节 1236 字节 9.9 Gbps 典型 2024 流量组合

视频流 (N3)
1400-1450

字节

1436-1486

字节

11.5-11.9

Gbps
HD/4K 视频块

最大 MTU

(N3)
1500 字节 1536 字节 12.3 Gbps 大型 TCP 下载

在 N6 接口 (原生 IP，无 GTP-U)：

流量模式 数据包大小 10 Mpps 吞吐量 典型用例

VoIP 数据包 65-150 字节 0.5-1.2 Gbps 语音 RTP 流

轻量级网页 400-600 字节 3.2-4.8 Gbps HTTP 请求

现代移动 1200 字节 9.6 Gbps 典型 2024 流量

视频流 1400-1450 字节 11.2-11.6 Gbps 视频下载

最大 MTU 1500 字节 12.0 Gbps 大文件传输

以 10 Mpps 的现代移动流量 (1200 字节平均)，预计 ~10 Gbps 吞吐量 在 N3 和 N6 接口上。

这对移动网络的重要性：

移动流量在数据包大小上变化 很大，而 GTP-U 开销 (36 字节) 对小数据包性能的影响显著：



内部数据包大小 (实际用户数据)：

VoIP (AMR-WB 编解码器)：65-80 字节 → 加上 GTP-U: 101-116 字节

物联网传感器数据：50-200 字节 → 加上 GTP-U: 86-236 字节

网页浏览 (HTTP/3)：400-800 字节 → 加上 GTP-U: 436-836 字节

视频流：1200-1450 字节 → 加上 GTP-U: 1236-1486 字节

大型下载：1500 字节 → 加上 GTP-U: 1536 字节

GTP-U 开销的影响：

小数据包 (< 200 字节)：~35-70% 开销 - Mpps 是限制因素

中等数据包 (200-800 字节)：~5-20% 开销 - 混合限制

大数据包 (> 1200 字节)：~3% 开销 - 链路速度是限制因素

性能规划：

标称为 10 Mpps 的 NIC 在 N3 接口上将实现：

VoIP 密集流量 (100 字节内部数据包)：~1.0 Gbps (GTP-U 开销主导)

现代移动组合 (1200 字节平均内部数据包)：~9.9 Gbps

视频密集流量 (1400 字节内部数据包)：~11.5 Gbps

最大吞吐量 (1500 字节内部数据包)：~12.3 Gbps

在 N6 接口 (无 GTP-U 开销)：

现代移动组合 (1200 字节数据包)：~9.6 Gbps 在 10 Mpps

最大吞吐量 (1500 字节数据包)：~12.0 Gbps 在 10 Mpps

���动 UPF 的经验法则：

小数据包流量 (VoIP、物联网、信令)：Mpps 是限制 - 计划每 10 Mpps 约 1-2 Gbps

现代移动流量 (1200 字节平均)：计划每 10 Mpps 容量约 9-10 Gbps

视频密集流量 (流媒体、下载)：计划每 10 Mpps 容量约 10-12 Gbps

始终考虑 N3 和 N6 - N3 有 GTP-U 开销，N6 没有

实际容量规划：

以 1200 字节平均数据包大小 (现代移动网络以视频流为主)：



NIC Mpps 容量 N3 吞吐量 (GTP-U) N6 吞吐量 (原生 IP) 现实部署

1 Mpps ~1.0 Gbps ~1.0 Gbps 小型基站，物联网网关

5 Mpps ~4.9 Gbps ~4.8 Gbps 中型基站，企业

10 Mpps ~9.9 Gbps ~9.6 Gbps 大型基站，小城市

20 Mpps ~19.7 Gbps ~19.2 Gbps 大都市，中型城市

40 Mpps ~39.4 Gbps ~38.4 Gbps 大型都市，区域中心

注意：这些估算假设 1200 字节平均有效载荷，这代表了现代移动流量，以视频流、社交媒体和云应用为主。实际吞吐量将根据流量组合变化。

XDP 能力网络驱动

OmniUPF 需要支持 XDP 的网络驱动以实现 本地 和 卸载 模式。通用模式适用于 任何 NIC。

Intel NICs

型号 驱动 XDP 支持 模式 性能

Intel X710 i40e 是 本地 ~10 Mpps

Intel XL710 i40e 是 本地 ~10 Mpps

Intel E810 ice 是 本地 ~15 Mpps

Intel 82599ES ixgbe 是 本地 ~8 Mpps

Intel I350 igb 有限 通用 ~1 Mpps

Intel E1000 e1000 否 仅通用 ~1 Mpps

Mellanox/NVIDIA NICs



型号 驱动 XDP 支持 模式 性能

Mellanox ConnectX-5 mlx5 是 本地 ~12 Mpps

Mellanox ConnectX-6 mlx5 是 本地 ~20 Mpps

Mellanox BlueField mlx5 是 本地 + 卸载 ~40 Mpps

Mellanox ConnectX-4 mlx4 有限 通用 ~2 Mpps

Broadcom NICs

型号 驱动 XDP 支持 模式 性能

Broadcom BCM57xxx bnxt_en 是 本地 ~8 Mpps

Broadcom NetXtreme II bnx2x 否 仅通用 ~1 Mpps

其他厂商

型号 驱动 XDP 支持 模式 性能

Netronome Agilio CX nfp 是 卸载 ~30 Mpps

Amazon ENA ena 是 本地 ~5 Mpps

Solarflare SFC9xxx sfc 是 本地 ~8 Mpps

VirtIO virtio_net 有限 通用 ~2 Mpps



检查 NIC XDP 支持

检查驱动是否支持 XDP：

验证 XDP 程序附加：

按用例推荐的 NIC

以 1200 字节平均数据包大小 (现代移动流量)：

# 查找 NIC 驱动

ethtool -i eth0 | grep driver

# 检查驱动中的 XDP 支持

modinfo <driver_name> | grep -i xdp

# 例如 Intel i40e

modinfo i40e | grep -i xdp

# 检查 XDP 程序是否附加

ip link show eth0 | grep -i xdp

# 示例输出 (XDP 附加):

# 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp qdisc mq



用例 推荐 NIC
模

式

Mpps 容

量

吞吐量

(N3)
部署场景

测试/开发
任何 NIC (VirtIO,

E1000)

通

用

1-2

Mpps

1-2

Gbps

实验室测

试，PoC

小型基站
Intel X710, Mellanox

CX-5

本

地

5-10

Mpps

5-10

Gbps

农村基站，

企业

中型基站/大都市
Intel E810, Mellanox

CX-6

本

地

10-20

Mpps

10-20

Gbps

城市基站，

小城市

大型都市
Mellanox CX-6, Intel

E810 (双)

本

地

20-40

Mpps

20-40

Gbps

大都市，中

型城市

区域中心
Mellanox BlueField,

Netronome Agilio

卸

载

40+

Mpps

40+

Gbps
区域聚合

Proxmox VM

(桥接)
VirtIO

通

用

1-2

Mpps

1-2

Gbps
仅测试

Proxmox VM

(SR-IOV)

Intel X710/E810 VF,

Mellanox CX-5 VF

本

地

5-10

Mpps

5-10

Gbps
生产 VM

吞吐量估算：

基于 1200 字节平均数据包大小和 GTP-U 封装 (N3 上 1236 字节)

N6 吞吐量略低 (~9.6 Gbps 每 10 Mpps) 因为没有 GTP-U 开销

实际性能因流量组合而异 - VoIP 密集网络将看到较低吞吐量

其他资源

官方 XDP �档：

XDP 项目

内核 XDP 文档

https://www.iovisor.org/technology/xdp
https://www.kernel.org/doc/html/latest/networking/af_xdp.html


NIC 兼容性列表：

Cilium XDP 硬件支持

IO Visor XDP 驱动

配置示例

示例 1：开发环境 (通用模式)

场景：在没有 SR-IOV 的笔记本或虚拟机上测试 OmniUPF

示例 2：生产裸金属 (本地模式)

场景：在带 Intel X710 NIC 的裸金属服务器上生产 UPF

# 开发配置

interface_name: [eth0]

xdp_attach_mode: generic

api_address: :8080

pfcp_address: :8805

pfcp_node_id: 127.0.0.1

n3_address: 127.0.0.1

metrics_address: :9090

logging_level: debug

max_sessions: 1000

https://docs.cilium.io/en/stable/operations/performance/tuning/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp


示例 3：Proxmox VM 带 SR-IOV (本地模式)

场景：在 Proxmox VM 上带 SR-IOV 直通的生产 UPF

# 生产裸金属配置

interface_name: [ens1f0, ens1f1]  # N3 在 ens1f0，N6 在 ens1f1

xdp_attach_mode: native

api_address: :8080

pfcp_address: 10.100.50.241:8805

pfcp_node_id: 10.100.50.241

n3_address: 10.100.50.233

n9_address: 10.100.50.234

metrics_address: :9090

logging_level: info

max_sessions: 500000

gtp_peer:

  - 10.100.50.10:2152  # gNB 1

  - 10.100.50.11:2152  # gNB 2

gtp_echo_interval: 30

pfcp_remote_node:

  - 10.100.50.50  # OmniSMF

heartbeat_interval: 10

feature_ueip: true

ueip_pool: 10.45.0.0/16

buffer_max_packets: 50000

buffer_packet_ttl: 60



示例 4：PGW-U 模式 (4G EPC)

场景：OmniUPF 在 4G EPC 网络中充当 PGW-U

# Proxmox SR-IOV 配置

interface_name: [ens1f0]  # SR-IOV VF

xdp_attach_mode: native

api_address: :8080

pfcp_address: 192.168.100.10:8805

pfcp_node_id: 192.168.100.10

n3_address: 192.168.100.10

metrics_address: :9090

logging_level: info

max_sessions: 100000

gtp_peer:

  - 192.168.100.50:2152

gtp_echo_interval: 15

pfcp_remote_node:

  - 192.168.100.20  # SMF

# PGW-U 配置

interface_name: [eth0]

xdp_attach_mode: native

api_address: :8080

pfcp_address: 10.200.1.10:8805

pfcp_node_id: 10.200.1.10

n3_address: 10.200.1.10  # S5/S8 接口 (GTP-U)

metrics_address: :9090

logging_level: info

max_sessions: 200000

gtp_peer:

  - 10.200.1.50:2152  # SGW-U

gtp_echo_interval: 20

pfcp_remote_node:

  - 10.200.2.10  # OmniPGW-C (Sxb 接口)

heartbeat_interval: 5



示例 5：多模式 (同时 UPF + PGW-U)

场景：OmniUPF 同时为 5G 和 4G 网络�供服务

示例 6：SmartNIC 卸载模式

场景：使用 Netronome Agilio CX SmartNIC 的超高吞吐量部署

# 多模式配置

interface_name: [eth0, eth1]

xdp_attach_mode: native

api_address: :8080

pfcp_address: :8805

pfcp_node_id: 10.50.1.100

n3_address: 10.50.1.100

n9_address: 10.50.1.101

metrics_address: :9090

logging_level: info

max_sessions: 300000

gtp_peer:

  - 10.50.2.10:2152  # 5G gNB

  - 10.50.2.20:2152  # 4G eNodeB (通过 SGW-U)

gtp_echo_interval: 15

pfcp_remote_node:

  - 10.50.3.10  # OmniSMF (5G)

  - 10.50.3.20  # OmniPGW-C (4G)

heartbeat_interval: 10

feature_ueip: true

ueip_pool: 10.60.0.0/16



映射大小和容量规划

自动调整大小 (推荐)

设置 max_sessions  并让 OmniUPF 自动计算映射大小：

# SmartNIC 卸载配置

interface_name: [enp1s0np0]  # SmartNIC 接口

xdp_attach_mode: offload

api_address: :8080

pfcp_address: 10.10.1.50:8805

pfcp_node_id: 10.10.1.50

n3_address: 10.10.1.50

metrics_address: :9090

logging_level: warn  # 减少开销

max_sessions: 1000000

pdr_map_size: 2000000

far_map_size: 2000000

qer_map_size: 1000000

gtp_peer:

  - 10.10.2.10:2152

  - 10.10.2.20:2152

  - 10.10.2.30:2152

gtp_echo_interval: 30

pfcp_remote_node:

  - 10.10.3.10

heartbeat_interval: 15

buffer_max_packets: 100000

buffer_max_total: 1000000

max_sessions: 100000

# 自动计算大小：

# PDR: 200,000 条目 (2 × max_sessions)

# FAR: 200,000 条目 (2 × max_sessions)

# QER: 100,000 条目 (1 × max_sessions)

# URR: 200,000 条目 (2 × max_sessions)



内存使用：~91 MB 用于 100K 会话

手动调整大小

覆盖自动计算以满足自定义要求：

容量估算

计算最大会话数：

示例：

PDR 映射：200,000

FAR 映射：200,000

QER 映射：100,000

Max Sessions = min(100,000, 100,000, 100,000) = 100,000

内存要求

每会话内存使用：

max_sessions: 100000

pdr_map_size: 300000  # 支持每个会话更多的 PDR

far_map_size: 200000

qer_map_size: 150000  # 比默认更多的 QER

urr_map_size: 200000

Max Sessions = min(

  pdr_map_size / 2,

  far_map_size / 2,

  qer_map_size

)



PDR: 2 × 212 B = 424 B

FAR: 2 × 20 B = 40 B

QER: 1 × 36 B = 36 B

URR: 2 × 20 B = 40 B

总计: ~540 B 每会话

对于 100K 会话：~52 MB 内核内存

建议：确保锁定的内存限制允许 2× 估算使用：

相关�档

架构指南 - eBPF/XDP 技术细节和性能优化

规则管理指南 - PDR、FAR、QER、URR 配置

监控指南 - 统计、容量监控和警报

指标参考 - 完整的 Prometheus 指标参考

Web UI 指南 - 控制面板操作

操作指南 - UPF 架构和部署概述

# 检查当前限制

ulimit -l

# 设置为无限制 (eBPF 需要)

ulimit -l unlimited



指标参考

本文档描述了 OmniUPF 在 /metrics  端点上暴露的所有 Prometheus 指标。

指标类别

1. PFCP 消息指标 - 控制平面协议消息计数器和每个对等体的延迟

2. XDP 动作指标 - 数据平面数据包裁决（丢弃、通过、重定向等）

3. 数据包指标 - 按协议类型接收的数据包计数器

4. PFCP 会话和关联指标 - 每个对等体的会话和关联计数

5. URR 指标 - 按 PFCP 对等体汇总的流量量计数器

6. 数据包缓冲指标 - 数据包缓冲状态、容量和吞吐量

7. 下行数据报告（通知）指标 - PFCP 会话报告请求通知和 FAR 索引跟踪

8. eBPF 映射容量指标 - eBPF 映射利用率和容量

指标参考

PFCP 消息指标

用于跟踪 UPF 与控制平面节点之间的 PFCP 协议消息的指标。



指标名称
类

型
标签 描述

upf_pfcp_rx

计

数

器

message_name ,

peer_address

每种消息类型和对等体接收的

PFCP 消息总数

upf_pfcp_tx

计

数

器

message_name ,

peer_address

每种消息类型和对等体传输的

PFCP 消息总数

upf_pfcp_rx_errors

计

数

器

message_name ,

cause_code ,

peer_address

每种消息类型和对等体因错误原因被拒

绝的 PFCP 消息总数

upf_pfcp_rx_latency
概

要

message_type ,

peer_address

每种消息类型和对等体的 PFCP 消

息处理时长（微秒，p50, p90,

p99 分位数）

注意： 所有计数器跟踪每个 PFCP 对等体的消息，以便对控制平面节点行为进行细粒度的可见性。

XDP 动作指标

按 XDP 程序动作/裁决的数据包计数器。这些指标跟踪每个数据包的数据平面决策。

指标名称 类型 标签 描述

upf_xdp_aborted 计数器 无 被中止的数据包总数（XDP_ABORTED）

upf_xdp_drop 计数器 无 被丢弃的数据包总数（XDP_DROP）

upf_xdp_pass 计数器 无 传递给内核的数据包总数（XDP_PASS）

upf_xdp_tx 计数器 无 传输的数据包总数（XDP_TX）

upf_xdp_redirect 计数器 无 被重定向的数据包总数（XDP_REDIRECT）



数据包指标

按协议类型接收的数据包计数器。所有指标使用 packet_type  标签。

指标名称 类型 标签 描述

upf_rx 计数器 packet_type 按类型接收的数据包总数

upf_route 计数器 packet_type 按查找结果路由的数据包总数

upf_rx packet_type 值：

arp  - ARP 数据包

icmp  - ICMP 数据包

icmp6  - ICMPv6 数据包

ip4  - IPv4 数据包

ip6  - IPv6 数据包

tcp  - TCP 数据包

udp  - UDP 数据包

other  - 其他数据包类型

gtp-echo  - GTP 回显请求/响应

gtp-pdu  - GTP-U PDU（封装用户数据）

gtp-other  - 其他 GTP 消息类型

gtp-unexp  - 意外/格式错误的 GTP 数据包

upf_route packet_type 值：

ip4-cache  - IPv4 路由缓存命中

ip4-ok  - IPv4 FIB 查找成功

ip4-error-drop  - IPv4 FIB 查找失败，数据包被丢弃

ip4-error-pass  - IPv4 FIB 查找失败，数据包传递给内核

ip6-cache  - IPv6 路由缓存命中

ip6-ok  - IPv6 FIB 查找成功

ip6-error-drop  - IPv6 FIB 查找失败，数据包被丢弃

ip6-error-pass  - IPv6 FIB 查找失败，数据包传递给内核



PFCP 会话和关联指标

用于跟踪 UPF 与控制平面节点之间的 PFCP 会话和关联的指标。

指标名称 类型 标签 描述

upf_pfcp_sessions
计量

器
无

当前建立的 PFCP 会话总数（所有

对等体）

upf_pfcp_associations
计量

器
无

当前建立的 PFCP 关联总数（所有

对等体）

upf_pfcp_association_status
计量

器

node_id ,

address

每个对等体的 PFCP 关联状态

（1=上行，0=下行）

upf_pfcp_sessions_per_node
计量

器

node_id ,

address

每个控制平面节点的活动 PFCP 会

话数量

URR（使用报告规则）指标

按 PFCP 对等体汇总的流量量指标。每个对等体的流量表示该控制平面节点所有会话的所有 URR 计数器的总和。

指标名称 类型 标签 描述

upf_urr_uplink_volume_bytes
计量

器
peer_address

此对等体所有会话的上行流量总量

（字节）

upf_urr_downlink_volume_bytes
计量

器
peer_address

此对等体所有会话的下行流量总量

（字节）

upf_urr_total_volume_bytes
计量

器
peer_address

此对等体所有会话的总流量（字

节）（上行 + 下行）

注意： 按 PFCP 对等体汇总流量以避免高基数问题。个别 URR 统计信息可通过 REST API 在 /api/v1/urr_map  获

取。



数据包缓冲指标

用于跟踪数据包缓冲状态和性能的指标。当 UE 处于空闲状态时，UPF 可以缓冲下行数据包，直到 UE 被寻呼并过渡到连接状态。



指标名称
类

型
标签 描述

upf_buffer_packets_total

计

数

器

无

添加到缓

冲区的数

据包总数

（所有时

间）

upf_buffer_packets_dropped

计

数

器

reason

从缓冲区

丢弃的数

据包总数

upf_buffer_packets_flushed

计

数

器

无

从缓冲区

冲洗的数

据包总数

upf_buffer_packets_current

计

量

器

无

当前缓冲

区中的数

据包数量

upf_buffer_bytes_total

计

数

器

无

添加到缓

冲区的总

字节数

（所有时

间）

upf_buffer_bytes_current

计

量

器

无

当前缓冲

区中的字

节数

upf_buffer_fars_active

计

量

器

无

当前有缓

冲数据包

的 FAR

数量



指标名称
类

型
标签 描述

upf_buffer_listener_packets_received_total

计

数

器

无

从

eBPF

数据平面

接收的缓

冲监听器

总数据包

upf_buffer_listener_packets_buffered_total

计

数

器

无

监听器成

功缓冲的

数据包总

数

upf_buffer_listener_errors_total

计

数

器

type

缓冲监听

器数据包

处理中的

错误

upf_buffer_listener_error_indications_sent_total

计

数

器

remote_peer

由于未知

TEID

发送的

GTP-

U 错误指

示消息总

数

upf_buffer_flush_success_total

计

数

器

无

成功的缓

冲冲洗操

作总数

upf_buffer_flush_errors_total

计

数

器

reason

失败的缓

冲冲洗操

作总数



指标名称
类

型
标签 描述

upf_buffer_flush_packets_sent_total

计

数

器

无

在冲洗操

作期间发

送的总数

据包数

upf_buffer_packets_dropped reason 值：

expired  - 由于 TTL 到期而丢弃的数据包

global_limit  - 由于达到总缓冲限制而丢弃

far_limit  - 由于达到每个 FAR 缓冲限制而丢弃

cleared  - 从缓冲区手动清除的数据包

upf_buffer_listener_errors_total type 值：

read_error  - 从缓冲套接字读取时出错

too_small  - 数据包太小，无法容纳 GTP 头

invalid_gtp_type  - 非 G-PDU GTP 消息类型

unknown_teid  - 找不到 TEID 的 PDR/FAR

not_buffering_far  - FAR 没有 BUFF 动作

truncated_ext  - GTP 扩展头���截断

no_payload  - GTP 数据包没有有效负载

buffer_full  - 超过缓冲容量

upf_buffer_flush_errors_total reason 值：

far_lookup_failed  - 无法从 eBPF 映射中查找 FAR 信息

no_forw_action  - FAR 没有设置 FORW 动作

connection_failed  - 创建用于冲洗的 UDP 连接失败

下行数据报告（通知）指标

用于 PFCP 会话报告请求通知的指标，当数据包被缓冲时发送到控制平面。这些通知触发控制平面寻呼 UE。



指标名称
类

型
标签 描述

upf_dldr_sent_total

计

数

器

无

发送给 SMF 的

下行数据报告

（DLDR）通知

总数

upf_dldr_send_errors

计

数

器

无
发送下行数据报告通

知时的错误总数

upf_dldr_active_notifications

计

量

器

无

当前有活动

DLDR 通知的

FAR 数量（尚未

清除）

upf_far_index_size

计

量

器

无

��前在

FarIndex 中

注册的 FAR 数量

upf_far_index_registrations_total

计

数

器

无

在 FarIndex

中的 FAR 注册总

数

upf_far_index_unregistrations_total

计

数

器

无

从 FarIndex

中取消注册的

FAR 总数

upf_buffer_notify_to_flush_duration_seconds

直

方

图

pfcp_peer

发送 DLDR 通

知和冲洗缓冲数据包

之间的时间

upf_buffer_notify_to_flush_duration_seconds:

直方图桶：0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 30.0, 60.0 秒

标签 pfcp_peer：SMF/PGW-C 地址（例如，10.100.50.241）



测量 UPF 发送通知到 SMF 和 SMF 响应以冲洗数据包的延迟

有助于监控控制平面在空闲到连接过渡期间的响应能力

GTP-U 错误指示指标

用于跟踪发送和接收的 GTP-U 错误指示消息的指标。当对等体接收到未知 TEID 的数据包时，会发送错误指示，表示隧道状态不匹配（通常

是由于对等体重启）。

指标名称
类

型
标签

upf_buffer_listener_error_indications_sent_total

计

数

器

node_id ,

peer_addres

upf_buffer_listener_error_indications_received_total

计

数

器

node_id ,

peer_addres

upf_buffer_listener_error_indication_sessions_deleted_total

计

数

器

node_id ,

peer_addres

标签定义：



node_id：来自关联的 PFCP 节点 ID（例如，"pgw-u-1"，"smf-1"）。如果该对等体没有 PFCP 关联，则

设置为 "unknown"。

peer_address：远程对等体的 IP 地址（例如，"192.168.50.10"）

发送错误指示的情况：

UPF 收到一个 TEID 的 GTP-U 数据包，但该 TEID 不存在（例如，在 UPF 重启后，会话已被删除）

发送方（eNodeB、gNodeB、上游 UPF）正在转发到过时/已删除的隧道

UPF 发送错误指示以通知发送方停止发送

接收错误指示的情况：

UPF 将 GTP-U 数据包转发到下游对等体（PGW-U、SGW-U、UPF），但 TEID 不明

远程对等体无法识别目标 TEID（例如，对等体重启并丢失隧道状态）

UPF 自动删除受影响的会话，以停止转发到死隧道

用例：

检测对等体重启（高错误指示率表明状态丢失）

识别配置不匹配（TEID 分配问题）

监控网络元素之间的隧道同步健康

对意外会话删除发出警报

示例 PromQL 查询：

eBPF 映射容量指标

用于跟踪 eBPF 映射利用率的指标。这些指标有助于监控资源使用情况并检测潜在的容量问题。

# 每个对等体接收的错误指示速率（每秒）

rate(upf_buffer_listener_error_indications_received_total[5m])

# 由于�定对等体的错误指示而删除的会话总数

upf_buffer_listener_error_indication_sessions_deleted_total{peer_addr

# 向此 UPF 发送未知 TEID 的对等体

sum by (node_id, peer_address) (upf_buffer_listener_error_indications



指标名称 类型 标签 描述

upf_ebpf_map_capacity 计量器 map_name eBPF 映射的最大容量

upf_ebpf_map_used 计量器 map_name eBPF 映射中当前条目的数量

常见 map_name 值：

pdr_map  - 数据包检测规则映射

far_map  - 转发动作规则映射

qer_map  - QoS 执行规则映射

session_map  - 会话查找映射

teid_map  - TEID 到会话的映射

ue_ip_map  - UE IP 地址到会话的映射

��用 Prometheus 指标

访问指标

指标在配置文件中指定的 metrics_address  地址的 /metrics  端点上暴露（默认 :9090）：

Prometheus 配置

将 OmniUPF 目标添加到您的 prometheus.yml：

# 查看原始指标

curl http://localhost:9090/metrics

# 示例输出

upf_pfcp_sessions 42

upf_pfcp_associations 2

upf_urr_total_volume_bytes{peer_address="10.100.50.241"} 

1048576000



Grafana 仪表板

将指标导入 Grafana 进行可视化：

会话计数和趋势

每个 PFCP 对等体的流量量

数据包处理速率

缓冲利用率

eBPF 映射容量监控

相关�档

监控指南 - 统计监控、容量规划和警报

配置指南 - 配置 metrics_address  和其他 UPF 选项

Web UI 指南 - 在统计页面查看指标

架构指南 - eBPF 数据路径和性能优化

规则管理指南 - 理解 PDR、FAR、QER、URR 指标

故障排除指南 - 使用指标进行诊断

scrape_configs:

  - job_name: 'omniupf'

    static_configs:

      - targets: ['localhost:9090']



监控指南

目录

1. 概述

2. 统计监控

3. 容量监控

4. 性能指标

5. 警报和阈值

6. 容量规划

7. 故障排除性能问题

概述

有效监控 OmniUPF 对于维护服务质量、预防容量耗尽和故障排除性能问题至关重要。OmniUPF 通过其 Web UI 和 REST

API �供全面的实时指标。

监控类别

类别 目的 更新频率 关键指标

数据包统计 跟踪数据包处理速率和错误 实时 RX/TX 数据包、丢包、协议分解

接口统计 监控 N3/N6 流量分布 实时 N3 RX/TX, N6 RX/TX

XDP 统计 跟踪内核数据路径性能 实时 XDP 处理、通过、丢弃、中止

路由统计 监控数据包路由决策 实时 FIB 查找、缓存命中/未命中

eBPF 映射容量 防止资源耗尽 每 10 秒 映射使用百分比、已用与容量

缓冲区统计 跟踪移动过程中的数据包缓冲 每 5 秒 缓冲的数据包、缓冲区年龄、FAR 计数



统计监控

N3/N6 接口统计

N3/N6 接口统计�供了 RAN (N3) 和数据网络 (N6) 之间流量分布的可见性。

指标：

RX N3：从 RAN 接收的数据包（上行 GTP-U 流量）

TX N3：发送到 RAN 的数据包（下行 GTP-U 流量）

RX N6：从数据网络接收的数据包（下行原生 IP）

TX N6：发送到数据网络的数据包（上行原生 IP）

总计：所有接口的聚合数据包计数

预期行为：

RX N3 ≈ TX N6：上行数据包从 RAN 流向数据网络

RX N6 ≈ TX N3：下行数据包从数据网络流向 RAN

显著的不平衡可能表明：

非对称流量（下载 >> 上传）

数据包丢失或转发错误

路由配置错误



XDP 统计

XDP (eXpress Data Path) 统计显示内核级数据包处理性能。

传入数据包

XDP Hook

eBPF 程序

XDP_PASS

发送到栈

XDP_DROP

丢弃

XDP_REDIRECT

直接转发

XDP_ABORTED

处理错误

指标：

中止：XDP 程序遇到错误（应始终为 0）



丢弃：XDP 程序故意丢弃的数据包

通过：传递给网络栈以进行进一步处理的数据包

重定向：直接重定向到输出接口的数据包

TX：通过 XDP 发送的数据包

解释：

中止 > 0：eBPF 程序或内核兼容性存在严重问题

丢弃 > 0：基于策略的丢弃或无效数据包

通过高：大多数数据包在网络栈中处理（正常）

重定向高：数据包直接转发（最佳性能）

数据包统计

详细的数据包协议分解和处理计数器。

协议计数器：

RX ARP：地址解析协议数据包

RX GTP ECHO：GTP-U 回声请求/响应（保持活动）

RX GTP OTHER：其�� GTP 控制消息

RX GTP PDU：GTP-U 封装的用户数据（主要流量）

RX GTP UNEXP：意外的 GTP 数据包类型

RX ICMP：互联网控制消息协议（ping，错误）

RX ICMP6：ICMPv6 数据包

RX IP4：IPv4 数据包

RX IP6：IPv6 数据包

RX OTHER：其他协议

RX TCP：传输控制协议数据包

RX UDP：用户数据报协议数据包

用例：

监控 GTP-U PDU 计数：主要用户流量指标

检查 ICMP 以获取连接性：网络可达性测试



跟踪 TCP 与 UDP 比率：应用流量模式

检测意外协议：安全或配置问题

路由统计

FIB (转发信息库) 查找统计用于路由决策。

IPv4 FIB 查找：

缓存：缓存的路由查找（快速路径）

OK：成功的路由查找

IPv6 FIB 查找：

缓存：缓存的 IPv6 路由查找

OK：成功的 IPv6 路由查找

性能指标：

高缓存命中率：表明良好的路由缓存性能

高 OK 计数：确认路由表配置正确

低或零查找：可能表明流量未流动或路由绕过

容量监控

eBPF 映射容量

eBPF 映射容量监控防止由于资源耗尽而导致会话建立失败。



关键 eBPF 映射

far_map (转发动作规则)：

容量：131,070 条目

键大小：4 B (FAR ID)

值大小：16 B (转发参数)

内存使用：~2.6 MB

重要性：高 - 用于所有数据包转发决策

pdr_map_downlin (下行 PDRs - IPv4)：

容量：131,070 条目

键大小：4 B (UE IPv4 地址)

值大小：208 B (PDR 信息)

内存使用：~27 MB

重要性：关键 - 如果满了会话建立失败

pdr_map_downlin_ip6 (下行 PDRs - IPv6)：

容量：131,070 条目

键大小：16 B (UE IPv6 地址)

值大小：208 B (PDR 信息)

内存使用：~29 MB

重要性：关键 - 如果满了 IPv6 会话建立失败



pdr_map_teid_ip (上行 PDRs)：

容量：131,070 条目

键大小：4 B (TEID)

值大小：208 B (PDR 信息)

内存使用：~27 MB

重要性：关键 - 如果满了上行流量失败

qer_map (QoS 执行规则)：

容量：65,535 条目

键大小：4 B (QER ID)

值大小：32 B (QoS 参数)

内存使用：~2.3 MB

重要性：中 - 仅用于 QoS 执行

urr_map (使用报告规则)：

容量：131,070 条目

键大小：4 B (URR ID)

值大小：16 B (流量计数器)

内存使用：~2.6 MB

重要性：低 - 仅影响计费



容量阈值

阈值 需要采取的行动

0-50% (绿色) 正常操作 - 无需采取行动

50-70% (黄色) 注意 - 监控增长趋势，计划增加容量

70-90% (琥珀) 警告 - 在 1 周内安排增加容量

90-100% (红色) 紧急 - 需要立即采取行动，新会话将失败

增加容量程序

在增加容量之前：

1. 审查当前使用趋势

2. 估算未来增长率



3. 计算所需容量

增加映射容量的步骤：

1. 停止 OmniUPF 服务

2. 使用新映射大小更新 UPF 配置文件

3. 重新启动 OmniUPF 服务

4. 在容量视图中验证新容量

5. 监控会话建立是否成功

注意：更改 eBPF 映射容量需要重新启动 UPF，并清除所有现有会话。

性能指标

有关 OmniUPF 所暴露的所有 Prometheus 指标的详细信息，请参阅 指标参考。

数据包处理速率

计算：

示例：

初始 RX 数据包：7,000

10 秒后：17,000

数据包速率 = (17,000 - 7,000) / 10 = 1,000 pps

性能目标：

小型 UPF：10,000 - 100,000 pps

中型 UPF：100,000 - 1,000,000 pps

大型 UPF：1,000,000 - 10,000,000 pps

瓶颈指标：

数据包速率 (pps) = (数据包计数增量) / (时间增量（秒）)



XDP 中止计数增加

CPU 利用率高

数据包丢失增加

延迟增加

吞吐量计算

计算：

示例：

初始 RX 字节：500 MB

60 秒后：800 MB

吞吐量 = (300 MB × 8) / (60 × 1,000,000) = 40 Mbps

容量规划：

监控峰值吞吐量时间（例如，晚上）

与链路容量（N3/N6 接口速度）进行比较

计划 2 倍峰值吞吐量以留出余地

丢包率

计算：

可接受的阈值：

< 0.1%：优秀（正常的数据包丢失由于错误）

0.1% - 1%：良好（轻微问题或速率限制）

吞吐量 (Mbps) = (字节计数增量 × 8) / (时间增量（秒） × 1,000,000)

丢包率 (%) = (丢失的数据包 / 总 RX 数据包) × 100



1% - 5%：差（调查 QoS 或容量问题）

> 5%：紧急（重大转发或容量问题）

常见丢包原因：

QER 速率限制（MBR 超过）

eBPF 映射查找失败

无效的 TEID 或 UE IP

路由错误

警报和阈值

推荐警报

关键警报（需要立即响应）：

eBPF 映射容量 > 90%

XDP 中止计数 > 0

丢包率 > 5%

UPF 健康检查失败

警告警报（1 小时内响应）：

eBPF 映射容量 > 70%

丢包率 > 1%

数据包速率接近链路容量

缓冲区 TTL 超过（数据包超过 30 秒）

信息警报（监控趋势）：

eBPF 映射容量 > 50%

缓冲的数据包计数增加

新的 PFCP 关联已建立/释放

URR 流量阈值超过



警报配置

警报可以通过以下方式配置：

1. Prometheus 指标：导出指标以进行外部监控（请参见 指标参考 获取完整列表）

2. 日志监控：解析 OmniUPF 日志以查找错误模式

3. REST API 轮询：定期查询 /map_info、/packet_stats  端点

4. Web UI 监控：通过统计和容量页面进行手动监控

容量规划

会话容量估算

计算最大会话数：

示例：

PDR 映射容量：131,070

FAR 映射容量：131,070

QER 映射容量：65,535

最大会话数 = min(131,070 / 2, 131,070 / 2, 65,535) = 65,535 会话

内存容量

计算总 eBPF 映射内存：

最大会话数 = min(

  PDR 映射容量 / 2,  # ���行 + 上行 PDR 每会话

  FAR 映射容量 / 2,  # 下行 + 上行 FAR 每会话

  QER 映射容量       # 可选，每会话一个 QER

)

内存 = Σ (映射容量 × (键大小 + 值大小))



示例配置：

PDR 映射：3 × 131,070 × 212 B = 83.3 MB

FAR 映射：131,070 × 20 B = 2.6 MB

QER 映射：65,535 × 36 B = 2.3 MB

URR 映射：131,070 × 20 B = 2.6 MB

总计：~91 MB 的内核内存

内核内存注意事项：

确保足够的锁定内存限制（ulimit -l）

为安全边际保留 2 倍的估计使用量

监控内核内存可用性

流量容量

计算所需的吞吐量容量：

1. 估算平均会话吞吐量：

视频流：~5 Mbps

网页浏览：~1 Mbps

VoIP：~0.1 Mbps

2. 计算总吞吐量：

3. 增加余地：

示例：

10,000 个并发会话

每会话平均 2 Mbps

总吞吐量 = 会话数 × 平均会话吞吐量

所需容量 = 总吞吐量 × 2  # 100% 余地



总计：20 Gbps

所需容量：40 Gbps (N3 + N6 接口)

增长规划

趋势分析：

1. 记录每日峰值会话数

2. 计算每周增长率

3. 外推至容量限制

增长率公式：

示例：

当前会话：30,000

容量：65,535 会话

每周增长：2,000 会话

到达容量的周数：(65,535 - 30,000) / 2,000 = 17.8 周

行动：计划在 12 周内进行容量升级（留出 5 周的缓冲）。

故障排除性能问题

高丢包率

症状：丢包率 > 1%，用户投诉连接性差

诊断：

1. 检查统计 → 数据包统计

2. 确定丢包是否特定于协议

3. 查看 XDP 统计以获取 XDP 丢包与中止的对比

到达容量的周数 = (容量 - 当前使用) / (每周增长)



常见原因：

QER 速率限制：检查 QER MBR 值与实际流量

无效 TEID：验证上行 PDR TEID 是否与 gNB 分配匹配

未知 UE IP：验证下行 PDR 是否存在于 UE IP

缓冲区溢出：检查缓冲区统计

解决方案：

如果存在速率限制，则增加 QER MBR

验证 SMF 是否创建了正确的 PDR

如果检测到溢出，则清除缓冲区

XDP 处理错误

症状：XDP 中止 > 0

诊断：

1. 导航到统计 → XDP 统计

2. 检查中止计数

3. 查看 OmniUPF 日志以获取 eBPF 错误

常见原因：

eBPF 程序验证失败

内核版本不兼容

eBPF 映射访问错误

内存损坏

解决方案：

重新启动 OmniUPF 服务

检查内核版本是否满足最低要求（Linux 5.4+）

查看 eBPF 程序日志

如果问题仍然存在，请联系支持



容量耗尽

症状：会话建立失败，映射容量达到 100%

诊断：

1. 导航到容量页面

2. 确定哪个映射达到 100%

3. 检查会话是否卡住（未被删除）

立即缓解：

1. 确定过期会话（检查会话页面）

2. 请求 SMF 删除旧会话

3. 清除缓冲区以释放 FAR 条目

长期解决方案：

1. 增加 eBPF 映射容量

2. 安排 UPF 重新启动以使用更大的映射

3. 实施会话清理政策

性能下降

症状：高延迟、低吞吐量、CPU 饱和

诊断：

1. 检查数据包速率与历史基线的比较

2. 查看 XDP 统计以获取处理延迟

3. 监控 UPF 主机上的 CPU 利用率

4. 检查 N3/N6 接口利用率

常见原因：

流量超过 UPF 容量

数据包处理的 CPU 核心不足



网络接口瓶颈

eBPF 映射哈希冲突

解决方案：

横向扩展 UPF（添加更多实例）

升级 CPU 或启用 RSS（接收端负载均衡）

升级网络接口以�高速度

调整 eBPF 映射哈希函数

相关�档

指标参考 - 完整的 Prometheus 指标参考

UPF 操作指南 - 一般 UPF 架构和操作

规则管理指南 - PDR、FAR、QER、URR 配置

Web UI 操作指南 - 控制面板监控功能

故障排除指南 - 常见问题和诊断

架构指南 - eBPF 数据路径和性能优化



N9 Loopback：在同一实例上运行

SGWU 和 PGWU

概述

OmniUPF 支持在 同一实例 上运行 SGWU (服务网关用户平面) 和 PGWU (PDN 网关用户平面) 功能，并实现 零延迟

N9 回环。这种部署模式非常适合：

简化的 4G EPC 部署 - 单个 UPF 实例而不是两个

成本优化 - 降低基础设施和运营复杂性

边缘计算 - 最小化本地突破场景的延迟

实验室/测试环境 - 在单台服务器上实现完整的 EPC 用户平面

当为 N3 和 N9 接口配置相同的 IP 地址时，OmniUPF 自动检测 SGWU 和 PGWU 角色之间流动的流量，并完全在

eBPF 中处理，而无需将数据包发送到网络接口。

工作原理

传统部署（两个实例）

数据包流动：

1. eNodeB → SGWU：GTP 数据包 (TEID=100) 到达 S1-U

2. SGWU：匹配上行 PDR，封装到新的 GTP 隧道 (TEID=200)

3. 数据包通过物理 N9 网络发送 到 PGWU 实例

4. PGWU：接收 GTP (TEID=200)，解封装，转发到互联网

5. 总计：2 次 XDP 通过 + 1 次网络跳跃



N9 回环部署（单个实例）

S1-U GTP

TEID=100

N9 回环

TEID=200

内存中

SGi 普通 IP

eNodeB

LTE 基站

OmniUPF 单实例

SGWU + PGWU 组合

互联网

PDN

N9 回环的数据包流动：

1. eNodeB → SGWU 角色：GTP 数据包 (TEID=100) 到达 S1-U

2. SGWU 角色：匹配上行 PDR

3. 回环检测： 目标 IP = 本地 IP (10.0.1.10)

4. 就地处理： 更新 GTP TEID 为 200 (PGWU 会话)

5. PGWU 角色：解封装，转发到互联网

6. 总计：1 次 XDP 通过，零次网络跳跃

性能优势： 亚微秒的内部转发与网络往返的毫秒延迟相比

数据包处理细节

上行流：eNodeB → SGWU → PGWU → 互联网

代码路径： cmd/ebpf/xdp/n3n6_entrypoint.c  第 349-403 行

关键步骤：

1. 接收： 来自 eNodeB 的 GTP 数据包，TEID=100

2. PDR 匹配： 查找 SGWU 会话的上行 PDR (TEID=100)



3. FAR 操作： 用 TEID=200 封装 GTP，转发到 10.0.1.10

4. 回环检查： is_local_ip(10.0.1.10)  返回 TRUE

5. 更新 TEID： 将 ctx->gtp->teid  从 100 更改为 200 (在内核内存中)

6. 重新处理： 查找 TEID=200 的 PDR (PGWU 会话)

7. FAR 操作： 移除 GTP 头，转发到互联网

8. 路由： 将普通 IP 数据包发送到 N6 接口

下行流：互联网 → PGWU → SGWU → eNodeB

eNodeB
SGWU PDR/FAR

(TEID=200)

PGWU PDR/FAR

(UE IP)
eBPF/XDP互联网

eNodeB
SGWU PDR/FAR

(TEID=200)

PGWU PDR/FAR

(UE IP)
eBPF/XDP互联网

✅ 回环检测

is_local_ip(10.0.1.10) = TRUE

单次 XDP 通过

零次网络跳跃

普通 IP (8.8.8.8→UE 10.60.0.1)

根据 UE IP 查找下行 PDR

FAR 表示：封装 GTP TEID=200，dst=10.0.1.10

添加 GTP 头 TEID=200

根据 TEID=200 重新查找 PDR

FAR 表示：更新 GTP TEID=100，转发到 eNodeB

更新 GTP 隧道 (TEID=200 → 100)

转发 GTP(TEID=100, inner: 8.8.8.8→UE)

代码路径： cmd/ebpf/xdp/n3n6_entrypoint.c  第 137-194 行 (IPv4)，265-322 行 (IPv6)

关键步骤：

1. 接收： 来自互联网的普通 IP 数据包，目标为 UE (10.60.0.1)

2. PDR 匹配： 根据 UE IP 查找下行 PDR (PGWU 会话)

3. FAR 操作： 用 TEID=200 封装 GTP，转发到 10.0.1.10

4. 回环检查： is_local_ip(10.0.1.10)  返回 TRUE

5. 添加 GTP： 用 TEID=200 封装数据包

6. 重新处理： 查找 TEID=200 的 PDR (SGWU 会话)



7. FAR 操作： 更新 GTP 隧道到 eNodeB TEID=100

8. 路由： 将 GTP 数据包发送到 S1-U 接口 (eNodeB)

配置

要求

控制平面：

SGWU-C：必须连接到 OmniUPF PFCP 接口 (例如，192.168.1.10:8805 )

PGWU-C：必须连接到 相同 的 OmniUPF PFCP 接口

网络：

N3 和 N9 接口的单个 IP 地址

SGWU-C 和 PGWU-C 的不同 IP 地址（如果在同一主机上运行，请使用不同的端口）

OmniUPF 配置

config.yml:



关键配置：

✅ n3_address  和 n9_address  必须相同 以启用回环

✅ 控制平面使用单个 PFCP 监听地址

✅ 对于结合的 SGWU + PGWU 负载，确保 max_sessions  足够

控制平面配置

SGWU-C 配置

# 网络接口

interface_name: [eth0]              # S1-U 和 N9 的单个接口

xdp_attach_mode: native             # 使用原生模式以获得最佳性能

# PFCP 接口

pfcp_address: ":8805"               # 监听所有接口，端口 8805

pfcp_node_id: "192.168.1.10"        # OmniUPF 的 PFCP 节点 ID

# 用户平面接口

n3_address: "10.0.1.10"             # S1-U/N3 接口 IP

n9_address: "10.0.1.10"             # N9 接口 IP（与 N3 相同）

# APIs

api_address: ":8080"                # REST API

metrics_address: ":9090"            # Prometheus 指标（参见指标参考文档）

# 资源池

ueip_pool: "10.60.0.0/16"           # UE IP 地址池

teid_pool: 65535                    # TEID 分配池

# 容量

max_sessions: 100000                # 最大并发 UE 会话



PGWU-C 配置

重要：

两个控制平面连接到 相同的 PFCP 端点 (:8805 )

OmniUPF 为 SGWU-C 和 PGWU-C 创建 单独的 PFCP 关联

会话按控制平面隔离（通过节点 ID 跟踪）

会话流示例

UE 附加和 PDU 会话建立

场景： UE 附加到网络，建立数据会话

# 指向 OmniUPF PFCP 接口

upf_pfcp_address: "192.168.1.10:8805"

# S1-U 接口（与 OmniUPF n3_address 相同）

sgwu_s1u_address: "10.0.1.10"

# N9 接口用于转发到 PGWU（与 OmniUPF 相同）

sgwu_n9_address: "10.0.1.10"

# 指向相同的 OmniUPF PFCP 接口

upf_pfcp_address: "192.168.1.10:8805"

# N9 接口（接收来自 SGWU 的数据）

pgwu_n9_address: "10.0.1.10"

# SGi 接口用于互联网连接

pgwu_sgi_address: "192.168.100.1"



OmniUPF

(SGWU+PGWU)
OmniPGW-COmniSGW-CMMEeNodeBUE

OmniUPF

(SGWU+PGWU)
OmniPGW-COmniSGW-CMMEeNodeBUE

创建上行 PDR (TEID=100)

创建 FAR (封装，TEID=200，dst=10.0.1.10)

创建上行 PDR (TEID=200)

创建 FAR (解封装，转发到 N6)

创建下行 PDR (UE IP 10.60.0.1)

创建 FAR (封装，TEID=200，dst=10.0.1.10)

创建下行 PDR (TEID=200)

创建 FAR (更新隧道，TEID=100，eNodeB)

用户数据通过 OmniUPF 流动

SGWU→PGWU 回环内联

附加请求

初始 UE 消息

创建会话请求

PFCP 会话建立 (SGWU)

会话建立响应 (F-TEID: 10.0.1.10)

创建会话请求

PFCP 会话建立 (PGWU)

会话建立响应 (F-TEID: 10.0.1.10, UE IP)

创建会话响应 (UE IP 10.60.0.1)

PFCP 会话修改 (SGWU)

创建会话响应

附加接受 (S1-U F-TEID: 10.0.1.10)

附加接受

创建的 PFCP 会话：

SGWU 会话（来自 OmniSGW-C）：

上行 PDR： 匹配 TEID=100（来自 eNodeB）→ FAR：封装 TEID=200，dst=10.0.1.10

下行 PDR： 匹配 TEID=200（来自 PGWU）→ FAR：更新隧道 TEID=100，转发到 eNodeB

PGWU 会话（来��� OmniPGW-C）：

上行 PDR： 匹配 TEID=200（来自 SGWU）→ FAR：解封装，转发到互联网

下行 PDR： 匹配 UE IP=10.60.0.1 → FAR：封装 TEID=200，dst=10.0.1.10

监控和验证

验证 N9 回环是否激活

检查 XDP 日志：



预期输出：

通过 REST API 监控会话

列出 PFCP 关联：

预期输出：

# 查看实时 eBPF 调试输出

sudo cat /sys/kernel/debug/tracing/trace_pipe | grep loopback

upf: [n3] session for teid:100 -> 200 remote:10.0.1.10

upf: [n9-loopback] self-forwarding detected, processing inline 

TEID:200

upf: [n9-loopback] decapsulated, routing to N6

upf: [n6] use mapping 10.60.0.1 -> teid:200

upf: [n6-loopback] downlink self-forwarding detected, processing 

inline TEID:200

upf: [n6-loopback] SGWU updating GTP tunnel to eNodeB TEID:100

upf: [n6-loopback] forwarding to eNodeB

curl http://localhost:8080/api/v1/upf_pipeline | jq



验证两个单独的关联（一个用于 SGWU-C，一个用于 PGWU-C）

列出活动会话：

预期输出：

每个 UE 有两个会话：

{

  "associations": [

    {

      "node_id": "sgwc.example.com",

      "address": "192.168.1.20:8805",

      "sessions": 1000

    },

    {

      "node_id": "pgwc.example.com",

      "address": "192.168.1.21:8805",

      "sessions": 1000

    }

  ],

  "total_sessions": 2000

}

curl http://localhost:8080/api/v1/sessions | jq '.sessions[] | 

{local_seid, ue_ip, uplink_teid}'

{

  "local_seid": 12345,

  "ue_ip": "10.60.0.1",

  "uplink_teid": 100

}

{

  "local_seid": 67890,

  "ue_ip": "10.60.0.1",

  "uplink_teid": 200

}



来自 SGWU-C 的会话（TEID=100，S1-U 接口）

来自 PGWU-C 的会话（TEID=200，N9 接口）

性能指标

检查数据包统计：

关键指标：

xdp_processed：在 eBPF 中处理的总数据包

xdp_pass：传递到网络栈的数据包（对于回环流量应为零）

xdp_redirect：通过 XDP 重定向转发的数据包

xdp_tx：传输的数据包（回环流量使用此项）

对于 N9 回环流量：

xdp_pass  应该是 最小的（仅非回环流量）

xdp_tx  或 xdp_redirect  计数回环转发

故障排除

N9 流量发送到网络而不是回环

症状： 数据包发送到网络接口，延迟高

根本原因： n3_address  ≠ n9_address

解决方案：

curl http://localhost:8080/api/v1/xdp_stats | jq



验证：

应显示：

回环后未找到 PDR

症状： 日志显示 [n9-loopback] no PDR for destination TEID

根本原因： PGWU 会话未创建或 TEID 不匹配

诊断：

1. 检查 PFCP 会话：

2. 验证 FAR 配置：

# 错误：

n3_address: "10.0.1.10"

n9_address: "10.0.1.20"   # 不同的 IP，没有回环！

# 正确：

n3_address: "10.0.1.10"

n9_address: "10.0.1.10"   # 相同的 IP，启用回环

curl http://localhost:8080/api/v1/dataplane_config | jq

{

  "n3_ipv4_address": "10.0.1.10",

  "n9_ipv4_address": "10.0.1.10"

}

curl http://localhost:8080/api/v1/sessions | jq '.sessions[] | 

select(.uplink_teid == 200)'



解决方案： 确保 PGWU-C 创建与 SGWU-C 用于 N9 转发的匹配 TEID 的会话

CPU 使用率高

症状： CPU 使用率高于预期

根本原因： eBPF 程序多次处理数据包或过多的映射查找

诊断：

解决方案：

如果映射已满，请增加 max_sessions（导致查找失败）

验证 QER 速率��制未导致丢包和重传

检查是否存在过多的数据包缓冲

切换期间的数据包丢失

症状： 在 eNodeB 切换期间丢失数据包

根本原因： 未配置缓冲或缓冲限制不足

配置：

curl http://localhost:8080/api/v1/far_map | jq '.[] | 

select(.teid == 200)'

# 检查 eBPF 映射访问模式

sudo bpftool map dump name pdr_map_teid_ip4 | wc -l

sudo bpftool map dump name far_map | wc -l

buffer_port: 22152

buffer_max_packets: 20000      # 对于高移动网络增加

buffer_max_total: 100000

buffer_packet_ttl: 30          # 根据切换时间调整



验证：

N9 回环的好处

性能

指标 两个实例 单个实例 (N9 回环) 改进

延迟 1-5 毫秒 < 1 微秒 快 1000 倍

吞吐量 受网络限制 受 CPU/内存限制 高 2-3 倍

CPU 使用率 2× XDP 通过 + 网络栈 1× XDP 通过 减少 40-50%

数据包丢失 网络拥塞时风险 零（内存中） 消除

操作

简化部署： 单个 OmniUPF 实例而不是两个

减少基础设施： 一半的服务器、网络端口、IP 地址

降低复杂性： 单一配置，单一监控端点

成本节约： 降低硬件、电力、冷却、维护成本

更容易的故障排除： 单个数据包跟踪，单个 eBPF 调试输出

用例

理想适用于：

✅ 边缘计算： 最小化本地突破的延迟

✅ 小型/中型部署： < 100K 用户

✅ 实验室/测试： 在单个 VM 上实现完整的 EPC 用户平面

curl http://localhost:8080/api/v1/upf_buffer_info | jq



✅ 成本受限： 硬件预算有限

不推荐用于：

❌ 地理冗余： SGWU 和 PGWU 在不同的数据中心

❌ 大规模： > 1M 用户（考虑水平扩展）

❌ 监管要求： 强制分离 SGW 和 PGW

与其他部署模式的比较

单个实例 (N9 回环) 与分离实例

总结

N9 回环使 在单个 OmniUPF 实例上实现运营商级 4G EPC 用户平面 成为可能，通过完全在 eBPF 中处理

SGWU→PGWU 流量而无需网络跳跃。这�供了：



✅ 亚微秒延迟 的网关间转发

✅ 减少 40-50% 的 CPU 使用率 与分离实例相比

✅ 简化操作 - 单个实例、配置、监控

✅ 降低成本 - 一半的基础设施

✅ 完全符合 3GPP 标准 - 标准 PFCP、GTP-U 协议

当 n3_address == n9_address  时，配置是自动的 - 无需特殊标志或设置。OmniUPF 的 eBPF 数据路径检测回

环条件并在线处理数据包。

有关更多信息：

配置： CONFIGURATION.md

架构： ARCHITECTURE.md

指标参考： METRICS.md

监控： MONITORING.md

操作： OPERATIONS.md

故障排除： TROUBLESHOOTING.md



PFCP 原因代码参考

概述

PFCP（数据包转发控制协议）在响应消息中使用原因代码来指示请求的结果。本文档描述了在 OmniUPF 中实现的原因代码及其在

PFCP 消息处理过程中发生的情况。

所有原因代码符合 3GPP TS 129.244 规范，并在 PFCP 响应消息中返回，以指示成功、失败或特定错误条件。

监控原因代码

OmniUPF 使用 Prometheus 指标跟踪 PFCP 消息结果。每个 PFCP 响应都包含一个原因代码，该代码记录在：

这使得监控以下内容成为可能：

每种消息类型和控制平面节点的 成功率

指示配置错误或协议问题的 错误模式

基于拒绝率的 关联健康状况

请参见 指标参考 获取完整的 PFCP 指标文档。

原因代码类别

成功代码

代码 名称 发生时机

1 RequestAccepted 请求成功处理。所有必��的 IE 存在且有效。规则成功创建/修改/删除。

upf_pfcp_rx_errors{message_name="...", cause_code="...", 

peer_address="..."}



客户端错误代码

代码 名称 发生时机

64 RequestRejected
因未指定错误而一般拒绝。用于没有特定原因代码适用的情

况。

65 SessionContextNotFound
请求对未知 SEID 的会话修改或删除。指定的会话在此

UPF 上不存在。

66 MandatoryIEMissing

缺少必需的信息元素。示例：关联建立中缺少

NodeID，会话建立中缺少 F-SEID，缺少

RecoveryTimeStamp。

67 ConditionalIEMissing
基于其他 IE 存在的条件性必需 IE 缺失。用于 IE 彼

此依赖的情况。

69 MandatoryIEIncorrect

必需的 IE 存在但包含无效数据。示例：无法解析的

NodeID 格式，无效的

RecoveryTimeStamp 值，格式错误的

F-SEID。

72 NoEstablishedPFCPAssociation
尝试在没有活动关联的情况下进行会话操作。必须在创建会

话之前建立 PFCP 关联。

73 RuleCreationModificationFailure

将 PDR、FAR、QER 或 URR 规则应用于

eBPF 数据路径时出错。可能的原因：eBPF 映射容

量耗尽，无效的规则参数，资源分配失败。



服务器/资源错误代码

代码 名称 发生时机

74 PFCPEntityInCongestion UPF 正在经历高负载或资源耗尽。暂时无法处理请求。

75 NoResourcesAvailable
资源不足以满足请求。示例：eBPF 映射容量耗尽，内存分配失败，

TEID 池耗尽。

77 SystemFailure
关键内部错误阻止请求处理。示例：eBPF 程序失败，内核接口错误，数

据库损坏。

不支持的功能代码

代码 名称 发生时机

68 InvalidLength
IE 长度字段与实际数据长度不匹配。当前在 OmniUPF

中未使用。

70 InvalidForwardingPolicy UPF 不支持的转发策略。当前在 OmniUPF 中未使用。

71 InvalidFTEIDAllocationOption
不支持的 F-TEID 分配选项。当前在 OmniUPF 中未

使用。

76 ServiceNotSupported 请求的服务或功能未实现。当前在 OmniUPF 中未使用。

78 RedirectionRequested
UPF 请求重定向到另一个 UPF 实例。当前在

OmniUPF 中未使用。

常见场景和原因

关联建立失败

场景：缺少 NodeID



解决方案：确保 SMF 在所有关联建立请求中包含 NodeID IE。

场景：无效的 NodeID 格式

解决方案：NodeID 必须是有效的 FQDN 或 IPv4/IPv6 地址。

场景：缺少恢复时间戳

解决方案：在关联建立请求中包含 RecoveryTimeStamp。

会话建立失败

场景：未建立关联

解决方案：在创建会话之前建立 PFCP 关联。

场景：规则创建失败

SMF → UPF: 关联建立请求（无 NodeID）

UPF → SMF: 关联建立响应（原因：MandatoryIEMissing）

SMF → UPF: 关联建立请求（NodeID="invalid"）

UPF → SMF: 关联建立响应（原因：MandatoryIEIncorrect）

SMF → UPF: 关联建立请求（无 RecoveryTimeStamp）

UPF → SMF: 关联建立响应（原因：MandatoryIEMissing）

SMF → UPF: 会话建立请求

UPF → SMF: 会话建立响应（原因：NoEstablishedPFCPAssociation）

SMF → UPF: 会话建立请求

UPF 成功处理 FAR、QER、URR

UPF 无法创建 PDR（eBPF 映射已满）

UPF → SMF: 会话建立响应（原因：RuleCreationModificationFailure）



解决方案：

检查 eBPF 映射容量（参见 容量监控）

在 UPF 配置中增加映射大小

减少活动会话数量

场景：缺少 F-SEID

解决方案：在会话建立请求中包含 CP F-SEID。

会话修改失败

场景：未知 SEID

解决方案：

验证 SEID 是否与会话建立响应中的值匹配

检查会话是否已被删除

确保使用正确的 UPF 实例（N9 回环场景）

会话删除失败

场景：未知 SEID

解决方案：SEID 可能已经被删除或从未存在。

SMF → UPF: 会话建立请求（无 CP F-SEID）

UPF → SMF: 会话建立响应（原因：MandatoryIEMissing）

SMF → UPF: 会话修改请求（SEID=12345）

UPF 没有 SEID 12345 的会话

UPF → SMF: 会话修改响应（原因：SessionContextNotFound）

SMF → UPF: 会话删除请求（SEID=67890）

UPF 没有 SEID 67890 的会话

UPF → SMF: 会话删除响应（原因：SessionContextNotFound）



使用原因代码进行故障排除

使用 Prometheus 指标

查询 Prometheus 以识别错误模式：

使用 Web UI

导航到 会话 页面查看：

每个控制平面节点的活动会话数量

会话建立的成功/失败率

最近的会话错误

导航到 容量 页面进行诊断：

eBPF 映射利用率（RuleCreationModificationFailure 根本原因）

资源耗尽指标

请参见 Web UI 指南 获取详细的监控说明。

常见调试步骤

高 MandatoryIEMissing 率：

# 按原因代码的错误率

rate(upf_pfcp_rx_errors{cause_code!="RequestAccepted"}[5m])

# 主要拒绝原因

topk(5, sum by (cause_code) (upf_pfcp_rx_errors))

# 按 SMF 对等体的错误

sum by (peer_address, cause_code) 

(upf_pfcp_rx_errors{cause_code!="RequestAccepted"})

# 会话建立失败

upf_pfcp_rx_errors{message_name="SessionEstablishmentRequest", 

cause_code!="RequestAccepted"}



1. 检查 SMF 配置中的必需 IE

2. 验证 PFCP 库版本兼容性

3. 查看 SMF 日志以获取 IE 构造错误

频繁的 RuleCreationModificationFailure：

1. 检查 eBPF 映射容量： GET /api/v1/map_info

2. 监控映射使用情况： upf_ebpf_map_used / upf_ebpf_map_capacity

3. 如果使用率超过 70%，则在配置中增加映射大小

4. 参见 容量规划

NoEstablishedPFCPAssociation 错误：

1. 验证关联是否存在： GET /api/v1/pfcp_associations

2. 检查心跳超时配置

3. 查看关联建立日志

4. 确保 SMF 和 UPF 之间可以互相访问

会话修改时的 SessionContextNotFound：

1. 验证会话建立响应中的 SEID

2. 检查会话是否已被删除

3. 对于 N9 回环：确保使用正确的 UPF 端点

4. 查询活动会话： GET /api/v1/pfcp_sessions



原因代码对操作的影响

会话生命周期





指标和警报

推荐警报：

# 严重：高拒绝率

- alert: PfcpHighRejectionRate

  expr: |

    rate(upf_pfcp_rx_errors{cause_code!="RequestAccepted"}[5m]) > 0.1

  annotations:

    summary: "高 PFCP 拒绝率：{{ $value }}/s"

# 警告：容量问题

- alert: PfcpRuleCreationFailures

  expr: |

    

rate(upf_pfcp_rx_errors{cause_code="RuleCreationModificationFailure"}

[5m]) > 0

  annotations:

    summary: "检测到 PFCP 规则创建失败"

# 警告：关联问题

- alert: PfcpNoAssociation

  expr: |

    

rate(upf_pfcp_rx_errors{cause_code="NoEstablishedPFCPAssociation"}

[5m]) > 0

  annotations:

    summary: "在没有关联的情况下尝试 PFCP 会话"



3GPP 标准合规性

OmniUPF 根据以下内容实现原因代码：

3GPP TS 129.244 v16.4.0 - PFCP 规范

第 8.2.1 节 - 原因 IE 定义

第 8.19 节 - 原因值表

相关�档

PFCP 协议集成 - PFCP 架构和消息处理

指标参考 - upf_pfcp_rx_errors 指标文档

监控指南 - 容量监控和警报

故障排除指南 - PFCP 关联和会话问题

Web UI 指南 - 会话和关联监控



UE 路由管理

相关�档:

API 文档 - 包括路由管理端点的完整 API 参考

操作指南 - Web UI 操作和监控

概述

UPF（用户平面功能）与 FRR（自由范围路由） 集成，以动态管理用户设备（UE）IP 路由。此集成确保在 UE 会话建立或终止时，路由

基础设施会自动适应以反映当前网络拓扑。

什么是 FRR？

FRR（自由范围路由） 是一个强大的开源路由协议套件，适用于 Linux 和 Unix 平台。它实现了多种路由协议，包括 BGP、

OSPF、RIP 等。在我们的部署中，FRR 作为路由守护进程，维护内核路由表，并可以将路由重新分发到其他网络元素。

架构

https://docs.frrouting.org/


路由同步工作原理

路由生命周期

FRR DaemonRoute Sync EngineUser Plane Function5G Core SMF

FRR DaemonRoute Sync EngineUser Plane Function5G Core SMF

UE Session Active

PFCP Session Establishment

Create PDR/FAR Rules

Assign UE IP Address

Track UE Route

Add Route to Table

Update Kernel Routes

PFCP Session Termination

Remove PDR/FAR Rules

Remove UE Route

Delete Route from Table

Update Kernel Routes

自动同步

UPF 维护所有活动 UE IP 地址的内部注册表。当启用时，路由同步系统：

1. 监控 UE 会话：跟踪所有活动的 PFCP 会话及其相关的 UE IP 地址

2. 维护路由列表：保持需要在路由表中的路由的最新列表

3. 同步到 FRR：通过其 API 自动推送路由更新到 FRR 守护进程

4. 处理故障：跟踪每条路由的同步状态（已同步/失败）并根据需要重试



FRR 设置

配置

FRR 使用 Ansible 模板 部署和配置，以建立基本路由参数。您在 Ansible 剧本中定义 FRR 配置一次作为 Jinja2 模板，

Ansible 会在部署期间自动将其传播到所有 UPF 实例。

典型的 FRR Jinja2 配置模板包括：

部署模型：

1. 一次定义：在您的 Ansible 角色中创建 FRR Jinja2 模板（例如，

roles/frr/templates/frr.conf.j2）

2. 配置参数：为每个 UPF 主机在 Ansible 清单中设置变量

3. 全面部署：运行 Ansible 剧本将 FRR 配置部署到所有 UPF 节点

frr version 7.2.1

frr defaults traditional

hostname pgw02

log syslog informational

service integrated-vtysh-config

!

ip route {{ hostvars[inventory_hostname]['ansible_default_ipv4']

['gateway'] }}/32 {{ ansible_default_ipv4['interface'] }}

!

interface {{ ansible_default_ipv4['interface'] }}

 ip address ospf router-id {{hostvars[inventory_hostname]

['ansible_host']}}

 ip ospf authentication null

!

router ospf

 ospf router-id {{hostvars[inventory_hostname]['ansible_host']}}

 redistribute kernel

 network {{ hostvars[inventory_hostname]['ansible_default_ipv4']

['network'] }}/{{ mask_cidr }} area 0

 area 0 authentication message-digest

!

line vty

!

end



4. 自动定制：Ansible 使用特定于主机的变量（IP 地址、路由器 ID 等）定制每个 UPF 的 FRR 配置

Jinja2 模板中的可定制参数：

OSPF 参数：路由器 ID、区域配置、认证方法、网络广告

BGP 配置：ASN、邻居关系、路由策略、社区

路由重新分发：要重新分发的内核路由（例如，redistribute kernel）

路由过滤：路由映射、前缀列表、访问列表

接口设置：OSPF/BGP 接口参数

UPF 集成：一旦将基本 FRR 配置部署到每个 UPF 实例，UPF 会根据活动的 PFCP 会话动态将 UE IP 地址作为 /32 主机

路由 添加到内核路由表中。这些路由随后：

1. 由 UPF 路由同步引擎安装到内核路由表中

2. 通过 redistribute kernel  指令被 FRR 拾取

3. 根据您的 FRR 配置被路由协议（OSPF、BGP）通告

4. 传播到网络中，以便 UE 流量可以路由到该 UPF 实例

关键点：

一次设置，处处部署：在 Ansible 中定义 FRR Jinja2 模板一次，它会自动部署到所有 UPF 实例

Ansible 处理静态配置：Jinja2 模板设置所有路由协议参数（OSPF 区域、BGP 邻居、认证、路由策略等）

UPF 处理动态路由：每个 UPF 实例根据其活动的 PFCP 会话动态管理仅 UE IP /32 路由

自动路由通告：每个 UPF 上的 FRR 根据您配置的策略自动重新分发本地 UE 路由

集中管理：更新 Ansible 模板并重新运行剧本以同时更改所有 UPF 的路由配置



路由通告

监控与管理

Web UI 集成

UPF 控制面板�供一个 路由 页面，显示：

路由状态：路由同步是否启用或禁用

总路由数：正在跟踪的 UE IP 地址数量

同步统计：成功同步的路由计数及任何失败

活动路由：当前在路由表中的所有 UE IP 地址的实时列表

OSPF 邻居：OSPF 邻接状态及邻居详细信息



BGP 对等体：BGP 会话状态和前缀统计（当配置时）

OSPF 重新分发的路由：显示 UE 路由如何被通告的外部 LSA 的完整视图

路由页面提供了对 UE 路由同步、路由协议邻居和重新分发路由广告的全面可见性。

手动同步操作

管理员可以通过 Web UI 使用 同步路由 按钮触发手动路由同步。此操作：

1. 重新读取 UPF 中当前活动 UE 会话的列表

2. 与 FRR 的路由表进行比较

3. 添加任何缺失的路由

4. 删除任何过时的路由

5. 返回更新的同步统计信息



路由流程



是 否

否

UE 连接

PFCP 会话创建

PDR/FAR 规则安装

UE IP 在路由列表中跟踪

路由同步启用？

推送路由到 FRR 仅跟踪路由

路由在网络中活动

UE 流量流动



是

会话结束？

从 FRR 中删除路由

路由已删除

优势

零接触配置：路由自动管理，无需人工干预

动态适应：网络路由实时适应 UE 移动和会话变化

可扩展性：支持数千个并发 UE 路由

弹性：跟踪失败的同步操作并可以重试

可见性：通过 Web UI 完全可见路由状态

技术细节

API 端点

UPF 暴露以下路由管理端点：

GET /api/v1/routes  - 列出所有跟踪的 UE 路由而不进行同步

POST /api/v1/routes/sync  - 将路由同步到 FRR 并返回更新的列表

GET /api/v1/route_stats  - 获取详细的路由统计信息

GET /api/v1/routing/sessions  - 获取路由协议会话（OSPF 邻居、BGP 对等体）

GET /api/v1/ospf/database/external  - 获取 OSPF AS-External LSA 数据库（重新分

发的路由）

另见：API 文档 - 路由管理 以获���完整的端点详细信息和示例



路由格式

路由以简单的 IP 地址（例如，100.64.18.5）存储和管理。路由守护进程处理完整的路由条目详细信息，包括：

目标前缀/掩码

网关/下一跳

接口绑定

指标和管理距离

FRR 验证

OSPF 外部 LSA 数据库

您可以通过检查 FRR OSPF 链路状态数据库来验证 UE 路由是否被正确重新分发到 OSPF。外部 LSA（类型 5）显示已从外部源注

入到 OSPF 的路由。

FRR OSPF 数据库显示外部 LSA，包括 UE 路由 100.64.18.5/32 被通告为 E2（外部类型 2）路由。

在上面的示例中，您可以看到：

网络 LSA (10.98.0.20)：UPF 自己的网络广告

路由器 LSA (192.168.1.1)：OSPF 路由器广告

外部 LSA：包括 UE 路由 100.64.18.5  以 E2（外部类型 2）指标重新分发到 OSPF

此验证确认：

1. UPF 正在成功跟踪 UE IP 地址



2. 路由同步引擎已将路由推送到 FRR

3. FRR 已将路由重新分发到 OSPF

4. OSPF 邻居正在接收路由广告



规则管理指南

目录

1. 概述

2. 数据包检测规则 (PDR)

3. 转发动作规则 (FAR)

4. QoS 强制规则 (QER)

5. 使用报告规则 (URR)

6. 规则关系

7. 常见操作

8. 故障排除

概述

OmniUPF 使用一组相互关联的规则来分类、转发、整形和跟踪用户平面流量。这些规则通过 SMF 通过 PFCP 安装，并存储在

eBPF 映射中，以实现高性能的数据包处理。理解这些规则及其关系对于操作和故障排除 UPF 至关重要。

规则类型

规则类型 目的 关键字段 安装者

PDR (数据包检测规则) 将数据包分类为流 TEID 或 UE IP SMF 通过 PFCP 会话建立/修改

FAR (转发动作规则) 确定转发动作 FAR ID SMF 通过 PFCP 会话建立/修改

QER (QoS 强制规则) 应用带宽限制和标记 QER ID SMF 通过 PFCP 会话建立/修改

URR (使用报告规则) 跟踪计费的数据量 URR ID SMF 通过 PFCP 会话建立/修改



规则处理流程

数据包检测规则 (PDR)

目的

PDR 将传入的数据包分类为流。它们是 UPF 中所有数据包处理的入口点。



PDR 结构

下行 PDR

关键: UE IP 地址

IPv4 或 IPv6

FAR ID

QER ID

URR IDs

SDF 模式

SDF 过滤器

上行 PDR

关键: TEID

32 位整数

FAR ID

QER ID

URR IDs

外部头部移除

上行 PDR

上行 PDR 匹配来自 RAN 的 N3 接口上到达的数据包。



关键字段: TEID (隧道端点标识符)

32 位无符号整数

由 SMF 分配并信号传递给 gNB

每个 UE 流量流唯一

值字段:

FAR ID: 转发动作规则的引用

QER ID: QoS 强制规则的引用（可选）

URR IDs: 使用报告规则的列表（可选）

外部头部移除: 移除 GTP-U 封装的标志

查找过程:

1. 从 GTP-U 头部�取 TEID

2. 在 uplink_pdr_map  eBPF 映射中进行哈希查找

3. 如果找到匹配项，检索 FAR ID、QER ID 和 URR IDs

4. 如果没有匹配项，丢弃数据包

示例:

TEID: 5678

FAR ID: 2

QER ID: 1

外部头部移除: False

SDF 模式: No SDF



下行 PDR

下行 PDR 匹配来自数据网络的 N6 接口上到达的数据包。

关键字段: UE IP 地址

IPv4 地址 (32 位) 或 IPv6 地址 (128 位)

在 PDU 会话建立期间由 SMF 分配

每个 UE 唯一

值字段:

FAR ID: 转发动作规则的引用

QER ID: QoS 强制规则的引用（可选）

URR IDs: 使用报告规则的列表（可选）

SDF 模式: 服务数据流过滤器模式

No SDF : 无过滤，所有流量匹配

SDF Only : 仅转发 SDF 匹配的流量



SDF + Default : SDF 匹配的流量使用特定规则，其他流量使用默认 FAR

SDF 过滤器: 应用特定的过滤器（端口、协议、IP 范围）

查找过程:

1. 从数据包头部�取目标 IP

2. 在 downlink_pdr_map  (IPv4) 或 downlink_pdr_map_ip6  (IPv6) 中进行哈希查找

3. 如果找到匹配项，检查 SDF 过滤器（如果已配置）

4. 检索 FAR ID、QER ID 和 URR IDs

5. 如果没有匹配项，丢弃数据包

示例:

UE IP: 10.45.0.1

FAR ID: 1

QER ID: 1

外部头部移除: False

SDF 模式: No SDF



SDF 过滤器 (服务数据流)

SDF 过滤器�供应用特定的流量分类。

用例:

区分 YouTube 流量与网页浏览

对 VoIP 与最佳努力数据应用不同的 QoS

通过不同的网络路径路由特定应用程序

过滤标准:

协议: TCP、UDP、ICMP

端口范围: 目标端口（例如，HTTPS 的 443，SIP 的 5060）

IP 地址范围: 特定目标网络

流描述: 3GPP 定义的流模板

示例 SDF 配置:

转发动作规则 (FAR)

目的

FAR 确定对匹配 PDR 的数据包的处理方式。它们定义转发动作、GTP-U 封装参数和目标端点。

PDR ID: 10

UE IP: 10.45.0.1

SDF 模式: SDF Only

SDF 过滤器:

  - 协议: UDP, 端口: 5060-5061 → FAR ID 5 (VoIP FAR)

  - 协议: TCP, 端口: 443 → FAR ID 1 (默认 FAR)



FAR 结构

动作标志

FAR 动作是可以组合的按位标志：



标志 位 值 描述

FORWARD 1 2 将数据包转发到目标

BUFFER 2 4 将数据包存储在缓冲区

DROP 0 1 丢弃数据包

NOTIFY 3 8 向控制平面发送通知

DUPLICATE 4 16 将数据包复制到多个目标

常见动作组合:

动作: 2 (FORWARD)  - 正常转发（最常见）

动作: 6 (FORWARD + BUFFER)  - 在切换期间转发并缓冲

动作: 4 (BUFFER)  - 仅缓冲（在路径切换期间）

动作: 1 (DROP)  - 丢弃数据包（少见，通常用于策略强制）

缓冲控制

BUFFER 标志（位 2）控制在移动事件期间的数据包缓冲。缓冲是 UPF 的一个关键特性，可以防止在 UE 状态转换期间丢失数据包。

使用缓冲的情况

从空闲到连接的过渡: 当下行数据包到达处于 IDLE 状态（未连接到 gNB）的 UE 时，UPF：

1. 缓冲数据包

2. 向 SMF 发送下行数据通知 (DLDR)

3. SMF 通过 AMF 向 UE 发起寻呼以唤醒并连接

4. 一旦连接，SMF 更新 FAR 为 FORWARD 动作

5. UPF 将缓冲的数���包刷新到 UE

切换（连接到连接）: 在 gNB 到 gNB 的切换期间，UPF 暂时缓冲数据包以防止丢失：

1. 旧的 gNB 连接被断开

2. SMF 将 FAR 动作设置为 BUFFER



3. 数据包在路径切换期间排队

4. UE 连接到新的 gNB

5. SMF 更新 FAR，设置新的 TEID 和 FORWARD 动作

6. UPF 将数据包刷新到新的 gNB

数据网络SMFOmniUPFgNBUE (IDLE)

数据网络SMFOmniUPFgNBUE (IDLE)

UE 处于 IDLE 状态

UE 转换为 CONNECTED

下行数据包到达

没有活动的 FAR 具有 FORWARD

FAR 具有 BUFF + NOCP 标志

缓冲数据包

PFCP 会话报告请求 (DLDR)

寻呼 UE

寻呼消息

RRC 连接建立

PFCP 会话修改

FAR 动作 = FORWARD, 更新 TEID

刷新缓冲的数据包

使用新 TEID 重放数据包

传递数据包

缓冲容量和限制

全局缓冲限制:

最大总数据包数: 100,000（可配置）

最大总字节数: 基于可用内存

TTL (生存时间): 60 秒（可配置）

超过 TTL 的数��包: 自动丢弃

每个 FAR 限制:

每个 FAR 的最大数据包数: 10,000（可配置）



目的: 防止单个 FAR 耗尽缓冲容量

缓冲溢出行为:

当达到全局或每个 FAR 限制时，新数据包将被丢弃

指标跟踪丢弃，原因为 reason="global_limit"  或 reason="far_limit"

最旧的数据包不会自动驱逐（仅在 TTL 到期时显式丢弃）

下行数据通知 (DLDR)

当 UPF 为处于 IDLE 状态的 UE 缓冲数据包时，它会向 SMF 发送 PFCP 会话报告请求：

DLDR 内容:

报告类型: 下行数据报告 (DLDR)

FAR ID: 触发缓冲的 FAR

下行数据服务信息: 可选的 QFI、寻呼策略指示符

SMF 对 DLDR 的操作:

1. 通过 AMF → gNB 寻呼 UE

2. 等待 UE 建立 RRC 连接

3. 发送 PFCP 会话修改请求以更新 FAR

4. FAR 动作从 BUFF+NOCP  更改为 FORW

5. UPF 刷新缓冲的数据包

DLDR 的指标:

upf_dldr_sent_total : 发送的 DLDR 总数

upf_dldr_send_errors : 失败的 DLDR

upf_buffer_notify_to_flush_duration_seconds : 从 DLDR 到刷新之间的延迟

请参见 指标参考 以获取完整列表。

缓冲操作

启用缓冲（设置 BUFF 标志）:

FAR 动作 |= 0x04（设置位 2）



示例: 动作: 2 (FORW)  → ��作: 6 (FORW+BUFF)

在切换准备期间使用

仅缓冲模式（BUFF 无 FORW）:

FAR 动作 = 0x04（仅 BUFF）

数据包被缓冲但不转发

用于 IDLE UE 状态（待寻呼）

禁用缓冲（清除 BUFF 标志）:

FAR 动作 &= ~0x04（清除位 2）

示例: 动作: 6 (FORW+BUFF)  → 动作: 2 (FORW)

缓冲的数据包在刷新或清除之前保持不变

刷新缓冲:

使用 当前 FAR 规则重放所有缓冲的数据包

数据包将使用更新的 TEID/目标进行转发

成功刷新后缓冲被清空

FAR 必须设置 FORW 动作

清除缓冲:

丢弃所有缓冲的数据包而不转发

在切换失败或会话被删除时使用

指标跟踪 reason="cleared"

监控缓冲的数据包

缓冲页面（Web UI）: 导航到 缓冲 以查看：

总缓冲数据包

总缓冲字节

具有缓冲数据包的 FAR 数量

每个 FAR 的数据包计数

最旧数据包的时间戳

启用/禁用每个 FAR 的缓冲



刷新或清除操作

关键指标:

数据包 > 10 秒: 潜在的寻呼延迟

数据包 > 30 秒: 可能的寻呼失败，清除缓冲

高数据包计数: 检查是否有卡住的会话或寻呼失败

Prometheus 指标:

upf_buffer_packets_current : 当前缓冲的数据包

upf_buffer_bytes_current : 当前缓冲的字节

upf_buffer_fars_active : 具有缓冲数据包的 FAR

upf_buffer_packets_dropped{reason} : 丢弃的数据包计数

请参见 指标参考 以获取完整的缓冲指标。

常见缓冲场景

场景 1: IDLE UE 下行数据

场景 2: 切换准备

初始状态:

- UE 处于 IDLE 模式（没有 gNB 连接）

- FAR 动作: 0x04 (仅 BUFF)

数据到达:

1. DN 发送下行数据包

2. UPF 匹配 PDR，应用 FAR

3. FAR 具有 BUFF 标志 → 数据包被缓冲

4. UPF 向 SMF 发送 DLDR

5. SMF 寻呼 UE

6. UE 连接到 gNB

7. SMF 修改 FAR: 动作 = 0x02 (FORW)

8. UPF 使用新 TEID 刷新缓冲的数据包



场景 3: 路径切换

初始状态:

- UE 连接到 gNB-1 (TEID 1234)

- FAR 动作: 0x02 (FORW)

切换过程:

1. SMF 修改 FAR: 动作 = 0x06 (FORW+BUFF)

2. 数据包转发到 gNB-1 并缓冲

3. UE 切换到 gNB-2

4. SMF 修改 FAR: TEID = 5678, 动作 = 0x02 (FORW)

5. UPF 将所有缓冲的数据包刷新到 gNB-2，使用新 TEID

6. 切换期间没有数据包丢失

初始状态:

- UE 连接，活动数据流

路径切换:

1. SMF 修改 FAR: 动作 = 0x04 (仅 BUFF)

2. 所有传入的数据包被缓冲（不转发）

3. 网络重新配置路径

4. SMF 修改 FAR: 动作 = 0x02 (FORW)，��目标

5. UPF 刷新所有缓冲的数据包到新路径



外部头部创建

确定是否应添加 GTP-U 封装。

上行 FAR (N3 → N6):

外部头部创建: False

动作: 移除 GTP-U，转发原生 IP 数据包

下行 FAR (N6 → N3):

外部头部创建: True

远程 IP: gNB IP 地址（例如，200.198.5.10）

TEID: UE 流量的隧道 ID

动作: 添加 GTP-U 头部，转发到 gNB

Web UI 中的 FAR 查找

规则管理页面�供按 ID 查找 FAR 的功能：



步骤:

1. 导航到 规则 → FARs 选项卡

2. 在搜索字段中输入 FAR ID

3. 点击 "查找" 查看 FAR 详细信息

显示的信息:

FAR ID

动作（数字 + 解码标志）

缓冲状态（开启/关闭）

外部头部创建

远程 IP 地址（带整数表示）

TEID

传输级标记

QoS 强制规则 (QER)

目的

QER 将服务质量参数应用于流量流，包括带宽限制和数据包标记。



QER 结构



QER 参数

QER ID

唯一标识符

QFI

QoS 流标识符

上行门状态

开启/关闭

下行门状态

开启/关闭

上行 MBR

最大比特率

下行 MBR

最大比特率

上行 GBR

保证比特率

下行 GBR

保证比特率



QoS 参数

QFI (QoS 流标识符):

6 位标识符，用于 5G QoS 流

值 1-9 是标准化的（例如，QFI 9 = 默认承载）

用于 5GC 中的数据包标记

门状态:

开启 (0): 允许流量

关闭 (非零): 阻止流量

最大比特率 (MBR):

流量流的最大允许带宽

以 kbps 为单位指定

MBR = 0: 无速率限制（无限制）

超过 MBR 的流量将被丢弃

保证比特率 (GBR):

为流量流保证的最小带宽

以 kbps 为单位指定

GBR = 0: 最佳努力（无保证）

GBR > 0: 优先流，具有保证带宽

QoS 流类型

最佳努力流 (GBR = 0):

QER ID: 1

QFI: 9

上行 MBR: 100000 kbps (100 Mbps)

下行 MBR: 100000 kbps (100 Mbps)

上行 GBR: 0 kbps

下行 GBR: 0 kbps



保证流 (GBR > 0):

QER ID: 2

QFI: 1

上行 MBR: 10000 kbps (10 Mbps)

下行 MBR: 10000 kbps (10 Mbps)

上行 GBR: 5000 kbps (5 Mbps)

下行 GBR: 5000 kbps (5 Mbps)



QoS 强制算法

MBR 强制机制

OmniUPF 通过在 eBPF 数据路径中实现的 滑动窗口速率限制器 强制执行 MBR（最大比特率）限制。该算法在纳秒精度下直接在

XDP 层操作，确保在没有内核上下文切换的情况下实现线速性能。

工作原理

算法: 滑动窗口速率限制

对于每个数据包，UPF 执行以下检查：

1. 门状态检查: 如果门状态为 CLOSED（非零），立即丢弃数据包

2. MBR 检查: 如果 MBR = 0，绕过速率限制（无限带宽）

3. 传输时间计算:



4. 窗口检查: 如果当前时间在 5ms 滑动窗口内，丢弃数据包

5. 窗口推进: 如果数据包被允许，按 tx_time  推进窗口

示例计算:

假设:

MBR = 100,000 kbps (100 Mbps)

数据包大小 = 1500 字节

窗口大小 = 5,000,000 ns (5 ms)

滑动窗口行为

5ms 窗口大小:

该算法使用 5 毫秒的滑动窗口

如果闲置超过 5 毫秒，窗口会自动重置

在强制执行平均速率的同时防止突发饥饿

突发处理:

tx_time = (packet_size_bytes × 8) × (1,000,000,000 ns/sec) / 

MBR_kbps

步骤 1: 以 100 Mbps 计��传输时间

tx_time = (1500 字节 × 8 位/字节) × (1,000,000,000 ns/sec) / 

100,000,000 bps

        = 12,000,000,000 / 100,000,000

        = 120 ns

步骤 2: 检查数据包是否适合窗口

current_time = 1000000000 ns

window_start = 999990000 ns

if (window_start + tx_time > current_time):

    丢弃数据包（将超过速率限制）

步骤 3: 如果允许，推进窗口

window_start = window_start + 120 ns

通过数据包



在 5ms 窗口内允许小突发

持续流量超过 MBR 会受到速率限制

比简单的令牌桶算法更准确

每个方向的速率限制:

上行 MBR 使用 qer->ul_start  时间戳

下行 MBR 使用 qer->dl_start  时间戳

每个方向独立进行速率限制

MBR 与观察到的吞吐量

为什么观察到的吞吐量可能与 MBR 不同:

协议开销: GTP-U、UDP、IP 头部每个数据包增加 ~50-60 字节

数据包大小变化: 较小的数据包 = 更多开销，效率更低

速率限制精度: 强制执行发生在每个数据包，而不是每字节

窗口重置行为: 5ms 的空闲期允许短暂的突发超过 MBR

示例:

如何验证速率限制:

1. 检查 URR 流量计数器随时间变化: upf_urr_*_volume_bytes

2. 计算吞吐量: (volume_delta_bytes × 8) / time_delta_seconds / 1000  = kbps

3. 与 QER 中配置的 MBR 进行比较

GBR (保证比特率)

重要: OmniUPF 当前不强制执行 GBR 最低值。GBR 存储在 QER 中，但不用于流量优先级或接纳控制。

GBR 行为:

GBR 值通过 PFCP 从 SMF 接收

GBR 存储在 QER 映射中，并通过 API 可见

配置的 MBR: 100 Mbps

观察到的吞吐量: ~95-98 Mbps（由于 GTP-U/UDP/IP 开销）



没有带宽预留或基于 GBR 的流量优先级

GBR 作为跟踪流类型（最佳努力与保证）的元数据

未来增强:

GBR 强制执行需要流量调度或加权排队

可能在未来版本中使用 eBPF QoS 功能实现

使用报告规则 (URR)

目的

URR 跟踪计费、分析和策略强制的数据量。它们维护数据包和字节计数，并报告给 SMF 以生成计费记录。



URR 结构

URR 计数器

URR ID

唯一标识符

上行流量

来自 UE 的字节

下行流量

发送到 UE 的字节

总流量

上行 + 下行

上行数据包

数据包计数

下行数据包

数据包计数

流量跟踪

上行流量:

从 UE 发送到数据网络的字节

在 GTP-U 解封装后测量

包括 IP 头部和有效载荷



下行流量:

从数据网络发送到 UE 的字节

在 GTP-U 封装前测量

包括 IP 头部和有效载荷

总流量:

上行和下行流量的总和

用于总使用报告

使用报告触发器

URR 可以基于以下条件触发报告：

流量阈值:

当流量超过配置的限制时报告

示例: 每 1 GB 使用报告一次

时间阈值:

在定期间隔报告

示例: 每 5 分钟报告一次

事件驱动:

在会话终止时报告

在 QoS 更改时报告

在切换时报告

流量显示格式

Web UI 自动将流量格式化为人类可读的单位：



字节 显示

0 - 1023 B (字节)

1024 - 1048575 KB (千字节)

1048576 - 1073741823 MB (兆字节)

1073741824 - 1099511627775 GB (千兆字节)

1099511627776+ TB (太字节)

示例:

URR ID: 0

上行流量: 12.3 KB

下行流量: 9.0 KB

总流量: 21.3 KB



URR 报告流程





规则关系

PDR → FAR → QER → URR 链

每个 PDR 引用一个 FAR，FAR 可能引用一个 QER 和一个或多个 URR。

FAR ID: 2

QER ID: 1

URR ID: 0

PDR

TEID: 5678

FAR ID: 2

动作: FORWARD

QER ID: 1

MBR: 100 Mbps

URR ID: 0

流量: 21.3 KB

示例会话配置

上行 PDR:

下行 PDR:

TEID: 5678

FAR ID: 2

QER ID: 1

URR IDs: [0]

外部头部移除: False



FAR ID 1 (下行):

FAR ID 2 (上行):

QER ID 1:

URR ID 0:

UE IP: 10.45.0.1

FAR ID: 1

QER ID: 1

URR IDs: [0]

SDF 模式: No SDF

动作: 2 (FORWARD)

外部头部创建: True

远程 IP: 200.198.5.10

TEID: 5678

动作: 2 (FORWARD)

外部头部创建: False

QFI: 9

上行 MBR: 100000 kbps

下行 MBR: 100000 kbps

上行 GBR: 0 kbps

下行 GBR: 0 kbps

上行流量: 12.3 KB

下行流量: 9.0 KB

总流量: 21.3 KB



常见操作

查看会话的规则

通过会话页面:

1. 导航到会话

2. 通过 IP 或 TEID 查找 UE

3. 点击 "展开" 查看所有规则 (PDR, FAR, QER, URR)

通过规则页面:

1. 导航到规则

2. 在 PDR 选项卡中使用 TEID（上行）或 UE IP（下行）查找

3. 注意 FAR ID、QER ID、URR IDs

4. 切换到 FAR/QER/URR 选项卡查看引用的规则

启用/禁用缓冲

场景: 在切换期间缓冲数据包以防止丢失

步骤:

1. 导航到 规则 → FARs

2. 在搜索字段中输入 FAR ID

3. 点击 "查找"

4. 如果缓冲为关闭，点击 "启用缓冲"

5. 验证 FAR 动作位 2 被设置（动作值增加 4）

通过缓冲页面的替代方法:

1. 导航到缓冲

2. 查看启用缓冲的 FAR

3. 在切换完成时点击 "禁用缓冲"



监控 QoS 合规性

检查流量是否受到速率限制:

1. 导航到 规则 → QERs

2. 查找与 UE 会话相关的 QER ID

3. 注意上行 MBR 和下行 MBR 值

4. 与 URR 流量增长率进行比较

计算平均吞吐量:

如果吞吐量接近 MBR，则流量受到速率限制。

跟踪数据使用情况

监控 URR 流量:

1. 导航到 规则 → URRs

2. 查看上行、下行和总流量

3. 按总流量排序以查找最高用户

4. 定期刷新以观察流量增长

用例:

验证计费集成

检测异常数据使用

根据流量模式规划容量

故障排除

没有流量流动

检查 PDR:

吞吐量 (kbps) = (流量增量字节 × 8) / (时间增量秒 × 1000)



1. 验证 TEID（上行）或 UE IP（下行）是否存在 PDR

2. 确认 FAR ID 是否有效

3. 检查 SDF 过滤器是否未阻止流量

检查 FAR:

1. 验证 FAR 动作是否为 FORWARD（而不是 DROP 或仅 BUFFER）

2. 确认外部头部创建是否与方向匹配

3. 验证下行的远程 IP 和 TEID 是否正确

检查 QER:

1. 验证门状态是否为开启（0）

2. 检查 MBR 是否不太严格

数据包被丢弃

检查 QER 速率限制:

1. 导航到 规则 → QERs

2. 验证 MBR 是否足够满足流量负载

3. 检查 URR 流量增长是否与预期吞吐量匹配

检查 FAR 动作:

1. 导航到 规则 → FARs

2. 验证动作是否为 FORWARD，而不是 DROP

3. 检查缓冲是否未卡在仅 BUFFER 模式中

缓冲问题

数据包卡在缓冲中:

1. 导航到缓冲页面

2. 检查最旧数据包的时间戳

3. 如果 > 30 秒，切换可能已失败

4. 手动刷新或清除缓冲



5. 在 FAR 上禁用缓冲

缓冲溢出:

1. 检查总数据包数与最大总数（默认 100,000）

2. 检查每个 FAR 的数据包数与每个 FAR 的最大数（默认 10,000）

3. 如果满，清除缓冲

4. 调查为何未禁用缓冲

URR 未跟踪

流量计数器为零:

1. 验证 PDR 是否引用 URR ID

2. 检查数据包是否匹配 PDR

3. 验证 FAR 是否转发（而不是丢弃）数据包

4. 确认 URR ID 是否存在于 URR 映射中

流量未报告给 SMF:

1. 检查 PFCP 会话报告配置

2. 验证 URR 报告触发器（流量/时间阈值）

3. 检查 PFCP 会话报告消息的日志

相关�档

UPF 操作指南 - OmniUPF 架构和组件概述

Web UI 操作指南 - 规则查看的控制面板使用

监控指南 - 统计和容量监控

故障排除指南 - 常见问题和诊断



OmniUPF 故障排除指南

目录

1. 概述

2. 诊断工具

3. 安装问题

4. 配置问题

5. PFCP 关联问题

6. 数据包处理问题

7. XDP 和 eBPF 问题

8. 性能问题

9. 特定于虚拟机监控程序的问题

10. NIC 和驱动程序问题

11. 会话建立失败

12. 缓冲问题

概述

本指南�供了针对常见 OmniUPF 问题的系统故障排除程序。每个部分包括症状、诊断步骤、根本原因和解决程序。

快速诊断检查表

在深入故障排除之前，请验证：



诊断工具

OmniUPF REST API

检查 UPF 状态：

检查 PFCP 关联：

检查会话计数：

检查 eBPF 映射容量：

# 1. 检查 OmniUPF 是否正在运行

systemctl status omniupf 

# 2. 检查 PFCP 关联

curl http://localhost:8080/api/v1/upf_pipeline

# 3. 检查 eBPF 映射是否已加载

ls /sys/fs/bpf/

# 4. 检查 XDP 程序是否已附加

ip link show | grep -i xdp

# 5. 检查内核日志中的错误

dmesg | tail -50

journalctl -u omniupf -n 50

curl http://localhost:8080/api/v1/upf_status

curl http://localhost:8080/api/v1/upf_pipeline

curl http://localhost:8080/api/v1/sessions | jq 'length'



检查数据包统计：

检查 XDP 统计：

eBPF 映射检查

列出所有 eBPF 映射：

显示映射详细信息：

计算映射中的条目：

XDP 程序检查

检查 XDP 程序是否已附加：

curl http://localhost:8080/api/v1/map_info

curl http://localhost:8080/api/v1/packet_stats

curl http://localhost:8080/api/v1/xdp_stats

ls -lh /sys/fs/bpf/

bpftool map list

bpftool map show

bpftool map dump name pdr_map_downlin

bpftool map dump name far_map | grep -c "key:"



列出所有 XDP 程序：

显示 XDP 程序详细信息：

转储 XDP 统计：

网络调试

捕获 N4 上的 PFCP 流量（控制平面）：

捕获 N3 上的 GTP-U 流量（需要带外捕获）：

ip link show eth0 | grep xdp

bpftool net list

bpftool prog show

bpftool prog dump xlated name xdp_upf_func

# PFCP 不被 XDP 处理，tcpdump 正常工作

tcpdump -i eth0 -n udp port 8805 -w /tmp/pfcp_traffic.pcap



监控数据包计数器：

检查路由表：

检查 ARP 表：

安装问题

问题：“eBPF �件系统未挂载”

症状：

# 警告：UPF 主机上的标准 tcpdump 无法捕获 XDP 处理的数据包！

# XDP 在内核网络栈看到数据包之前处理 GTP-U。

# 请改用带外捕获：

# 1. gNB 和 UPF 之间的网络 TAP

# 2. 交换机端口镜像/SPAN 复制 N3 流量

# 3. 虚拟交换机端口镜像到分析 VM

# 在分析/监控主机上（而不是 UPF）：

# tcpdump -i <mirror_interface> -n udp port 2152 -w 

/tmp/n3_capture.pcap

# 或使用统计 API 获取数据包计数：

curl http://localhost:8080/api/v1/packet_stats

curl http://localhost:8080/api/v1/n3n6_stats

watch -n 1 'ip -s link show eth0'

ip route show

ip route get 10.45.0.100  # 检查 UE IP 的路由

ip neigh show



原因：eBPF 文件系统未挂载

解决方案：

问题：内核版本过旧

症状：

原因：Linux 内核版本低于最低要求

解决方案：

ERRO[0000] failed to load eBPF objects: mount bpf filesystem at 

/sys/fs/bpf

# 挂载 eBPF 文���系统

sudo mount bpffs /sys/fs/bpf -t bpf

# 使其持久化（添加到 /etc/fstab）

echo "bpffs /sys/fs/bpf bpf defaults 0 0" | sudo tee -a /etc/fstab

# 验证挂载

mount | grep bpf

ERRO[0000] kernel version 5.4.0 is too old, minimum required is 

5.15.0



问题：缺少 libbpf 依赖

症状：

原因：未安装 libbpf 库

解决方案：

配置问题

问题：无效的配置�件

症状：

# 检查内核版本

uname -r

# 升级内核（Ubuntu/Debian）

sudo apt update

sudo apt install linux-generic-hwe-22.04

sudo reboot

# 验证新内核

uname -r  # 应该 >= 5.15.0

error while loading shared libraries: libbpf.so.0: cannot open 

shared object file

# 安装 libbpf（Ubuntu/Debian）

sudo apt update

sudo apt install libbpf-dev

# 验证安装

ldconfig -p | grep libbpf



原因：配置文件中的 YAML 语法错误

解决方案：

问题：找不到接口名称

症状：

原因：配置的接口不存在

解决方案：

ERRO[0000] unable to read config file: unmarshal errors

# 验证 YAML 语法

cat config.yml | python3 -c "import yaml, sys; 

yaml.safe_load(sys.stdin)"

# 常见问题：

# - 错误的缩进（使用空��而不是制表符）

# - 键后缺少冒号

# - 未加引号的�殊字符字符串

# - 列表项没有连字符

# 正确 YAML 的示例：

cat > config.yml <<EOF

interface_name: [eth0]

xdp_attach_mode: generic

api_address: :8080

pfcp_address: :8805

EOF

ERRO[0000] interface eth0 not found



问题：端口已被占用

症状：

原因：端口 8080、8805 或 9090 已被其他进程绑定

解决方案：

# 列出所有网络接口

ip link show

# 检查接口状态

ip addr show eth0

# 如果接口名称不同，请更新 config.yml：

interface_name: [ens1f0]  # 使用实际接口名称

# 对于虚拟机，请检查接口命名方案

ls /sys/class/net/

ERRO[0000] failed to start API server: address already in use

# 查找使用该端口的进程

sudo lsof -i :8080

sudo netstat -tulpn | grep :8080

# 杀死冲突进程

sudo kill <PID>

# 或在配置中更改 OmniUPF 端口

api_address: :8081

pfcp_address: :8806

metrics_address: :9091



问题：无效的 PFCP 节点 ID

症状：

原因：PFCP 节点 ID ���是有效的 IPv4 地址

解决方案：

PFCP 关联问题

问题：未建立 PFCP 关联

症状：

Web UI 显示“没有关联”

SMF 日志显示“PFCP 关联设置失败”

诊断：

ERRO[0000] invalid pfcp_node_id: must be valid IPv4 address

# 正确：使用 IP 地址（而不是主机名）

pfcp_node_id: 10.100.50.241

# 错误：

# pfcp_node_id: localhost

# pfcp_node_id: upf.example.com



常见原因及解决方案：

防火墙阻止 PFCP

解决方案：

错误的 PFCP 节点 ID

解决方案：

网络无法到达 SMF

解决方案：

# 1. 检查 PFCP 服务器是否在监听

sudo netstat -ulpn | grep 8805

# 2. 检查防火墙规则

sudo iptables -L -n | grep 8805

sudo ufw status

# 3. 捕获 PFCP 流量

tcpdump -i any -n udp port 8805 -vv

# 4. 通过 API 检查 PFCP 关联

curl http://localhost:8080/api/v1/upf_pipeline

# 允许 PFCP 流量（UDP 8805）

sudo ufw allow 8805/udp

sudo iptables -A INPUT -p udp --dport 8805 -j ACCEPT

# 将 PFCP 节点 ID 设置为正确的 N4 接口 IP

pfcp_node_id: 10.100.50.241  # 必须与 N4 网络上的 IP 匹配



SMF 配置了错误的 UPF IP

解决方案：

检查 SMF 配置中的 UPF 地址

确保 SMF 配置了 UPF 的 pfcp_node_id  IP

验证 SMF 能够路由到 UPF 的 N4 网络

问题：PFCP 心跳失败

症状：

诊断：

原因及解决方案：

网络数据包丢失

# 测试与 SMF 的连通性

ping <SMF_IP>

# 检查到 SMF 的路由

ip route get <SMF_IP>

# 如果缺少路由，请添加

sudo ip route add <SMF_NETWORK>/24 via <GATEWAY>

WARN[0030] PFCP heartbeat timeout for association 10.100.50.10

# 检查 PFCP 统计

curl http://localhost:8080/api/v1/upf_pipeline | jq 

'.associations[] | {remote_id, uplink_teid_count}'

# 监控心跳日志

journalctl -u omniupf -f | grep heartbeat



解决方案：

心跳间隔过于激进

解决方案：

数据包处理问题

问题：没有数据包流动（RX/TX 计数为 0）

症状：

统计页面显示 0 RX/TX 数据包

UE 无法建立数据会话

诊断：

# 检查到 SMF 的数据包丢失

ping -c 100 <SMF_IP> | grep loss

# 如果丢失率高，请调查网络：

# - 检查链路状态

# - 检查交换机/路由器健康

# - 检查是否拥堵

# 增加心跳间隔

heartbeat_interval: 30  # � 5 增加到 30 秒

heartbeat_retries: 5    # 增加重试次数

heartbeat_timeout: 10   # 增加超时时间



解决方案：

XDP 程序未附加

解决方案：

接口关闭或没有链路

解决方案：

配置了错误的接口

解决方案：

# 1. 检查 XDP 程序是否已附加

ip link show eth0 | grep xdp

# 2. 检查接口是否 UP

ip link show eth0

# 3. 检查数据包统计（XDP 感知）

# 注意：tcpdump 无法看到 XDP 处理的 GTP-U 数据包

curl http://localhost:8080/api/v1/packet_stats

# 重启 OmniUPF 以重新附加 XDP

sudo systemctl restart omniupf

# 验证附加

ip link show eth0 | grep xdp

bpftool net list

# 启动接口

sudo ip link set eth0 up

# 检查链路状态

ethtool eth0 | grep "Link detected"

# 如果链路关闭，请检查物理连接或虚拟机网络配置



问题：接收到数据包但未转发（丢包率高）

症状：

RX 计数增加但 TX 计数不变

丢包率 > 1%

诊断：

常见原因：

没有 PDR 匹配（未知 TEID 或 UE IP）

解决方案：

# 在 config.yml 中更新正确的接口

interface_name: [ens1f0]  # 使用 'ip link show' 中的实际接口名称

# 检查丢包统计

curl http://localhost:8080/api/v1/xdp_stats | jq '.drop'

# 检查路由统计

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'

# 监控数据包丢失

watch -n 1 'curl -s http://localhost:8080/api/v1/packet_stats | jq 

".total_rx, .total_tx, .total_drop"'



路由失败

解决方案：

QER 速率限制

症状：

吞吐量低于预期

流量限制在特定速率

URR 卷计数显示平台行为

在流量突发期间 XDP 丢包计数增加

诊断：

1. 检查会话的 MBR 配置：

# 检查会话是否存在

curl http://localhost:8080/api/v1/sessions

# 如果没有会话，请验证：

# - PFCP 关联已建立

# - SMF 已创建会话

# - 会话建立成功

# 检查 PDR 映射条目

bpftool map dump name pdr_map_teid_ip | grep -c key

bpftool map dump name pdr_map_downlin | grep -c key

# 检查 FIB 查找失败

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'

# 测试 UE IP 的路由

ip route get 10.45.0.100

# 添加缺失的路由

sudo ip route add 10.45.0.0/16 dev eth1  # 将 UE 池路由到 N6



2. 验证门状态：

3. 从 URR 计算实际吞吐量：

4. 比较 MBR 与实际吞吐量：

预期吞吐量 ≈ MBR 的 95-98%（由于协议开销）

如果吞吐量显著低于 MBR，请检查其他瓶颈

如果吞吐量恰好与 MBR 相符，则速率限制按预期工作

解决方案：

如果 MBR 太低：请求 SMF 通过 PFCP 会话修改更新 QER，增加 MBR

如果门关闭：调查 SMF 关闭门的原因（策略、配额或错误）

如果速率限制意外：验证 SMF 策略配置和 QoS 配置文件

理解 MBR 执行：

# 查找会话的 QER ID

curl http://localhost:8080/api/v1/pfcp_sessions | jq '.data[] | 

select(.ue_ip == "10.45.0.1")'

# 查找 QER 配置

curl http://localhost:8080/api/v1/qer_map | jq '.data[] | 

select(.qer_id == 1)'

# 门状态应为 0（打开），上行和下行均如此

curl http://localhost:8080/api/v1/qer_map | jq '.data[] | 

{qer_id, ul_gate: .ul_gate_status, dl_gate: .dl_gate_status}'

# 在两个时间点查询 URR 卷计数

curl http://localhost:8080/api/v1/urr_map | jq '.data[] | 

select(.urr_id == 0)'

# 计算吞吐量（手动）：

# throughput_kbps = (volume_delta_bytes × 8) / 

time_delta_seconds / 1000



OmniUPF 使用滑动窗口算法以纳秒精度在 eBPF 数据路径中执行 MBR 限制。有关如何根据数据包大小和速率决定丢包决策的详细说

明，请参见 规则管理指南 - MBR 执行机制。

常见场景：

VoIP 通话掉线：检查 MBR 是否足以支持编解码器比特率（G.711 = ~80 kbps）

视频流缓冲：确保 MBR > 视频比特率 + 开销（1080p = ~5-10 Mbps）

突发流量：在 5ms 窗口内允许小的突发流量，持续流量受限

问题：单向流量（上行正常，下行不正常）

症状：

RX N3 数据包但没有 TX N3 数据包（下行问题）

RX N6 数据包但没有 TX N6 数据包（上行问题）

诊断：

上行故障（RX N3，无 TX N6）：

原因：没有 FAR 操作或到 N6 的路由问题

解决方案：

# 检查 N3/N6 接口统计（XDP 感知方法）

curl http://localhost:8080/api/v1/n3n6_stats

curl http://localhost:8080/api/v1/packet_stats

# 注意：标准 tcpdump 无法捕获 XDP 处理的 GTP-U 流量

# 使用统计 API 或 xdpdump 进行流量分析

# 请参见“使用 XDP 捕获数据包”部分了解详细信息



下行故障（RX N6，无 TX N3）：

原因：没有下行 PDR 或缺少 GTP 封装

解决方案：

XDP 和 eBPF 问题

有关详细的 XDP 配置、模式选择和故障排除，请参见 XDP 模式指南。

问题：XDP 程序加载失败

症状：

# 检查 FAR 是否具有 FORWARD 操作

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

select(.applied_action == 2)'

# 检查 N6 路由是否存在

ip route get 8.8.8.8  # 测试到互联网的路由

# 如果缺少默认路由，请添加

sudo ip route add default via <N6_GATEWAY> dev eth1

# 检查 UE IP 的下行 PDR 是否存在

curl http://localhost:8080/api/v1/sessions | jq '.[].pdrs[] | 

select(.pdi.ue_ip_address)'

# 验证 FAR 是否具有 OUTER_HEADER_CREATION

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

.outer_header_creation'

# 检查 gNB 可达性

ping <GNB_N3_IP>

ERRO[0000] failed to load XDP program: invalid argument



诊断：

原因及解决方案：

内核缺乏 XDP 支持

解决方案：

XDP 程序验证失败

解决方案：

# 检查内核 XDP 支持

grep XDP /boot/config-$(uname -r)

# 应显示：

# CONFIG_XDP_SOCKETS=y

# CONFIG_BPF=y

# CONFIG_BPF_SYSCALL=y

# 检查 dmesg 以获取详细错误

dmesg | grep -i bpf

# 重新构建内核以支持 XDP 或升级到更新的内核

# Ubuntu 22.04+ 默认启用 XDP

sudo apt install linux-generic-hwe-22.04

sudo reboot

# 检查 OmniUPF 日志以获取验证错误

journalctl -u omniupf | grep verifier

# 常见问题：

# - eBPF 复杂性超过限制（增加内核限制）

# - 无效的内存访问（eBPF 代码中的错误）

# 增加 eBPF 验证器日志级别以进行调试

sudo sysctl kernel.bpf_stats_enabled=1



问题：XDP 中止计数增加

症状：

XDP 统计显示 aborted > 0

数据包丢失增加

诊断：

原因：eBPF 程序遇到运行时错误

解决方案：

问题：eBPF 映射已满（容量耗尽）

症状：

会话建立失败

映射容量达到 100%

诊断：

# 检查 XDP 中止计数

curl http://localhost:8080/api/v1/xdp_stats | jq '.aborted'

# 监控 XDP 统计

watch -n 1 'curl -s http://localhost:8080/api/v1/xdp_stats'

# 检查内核日志以获取 eBPF 错误

dmesg | grep -i bpf

# 重启 OmniUPF 以重新加载 eBPF 程序

sudo systemctl restart omniupf

# 如果问题仍然存在，请启用 eBPF 日志记录（需要重新构建）：

# 使用 BPF_ENABLE_LOG=1 构建 OmniUPF



立即缓解：

长期解决方案：

重要：更改映射大小需要重启 OmniUPF，并且 会清除所有现有会话。

# 检查映射容量

curl http://localhost:8080/api/v1/map_info | jq '.[] | {map_name, 

capacity, used, usage_percent}'

# 确定满映射

curl http://localhost:8080/api/v1/map_info | jq '.[] | 

select(.usage_percent > 90)'

# 1. 确定过期会话

curl http://localhost:8080/api/v1/sessions | jq '.[] | {seid, 

uplink_teid, created_at}'

# 2. 请求 SMF 删除旧会话

# （通过 SMF 管理界面或 API）

# 3. 监控映射使用情况减少

watch -n 5 'curl -s http://localhost:8080/api/v1/map_info | jq ".

[] | select(.map_name==\"pdr_map_downlin\") | .usage_percent"'

# 在 config.yml 中增加映射容量

max_sessions: 200000  # � 100000 增加

# 或设置单个映射大小

pdr_map_size: 400000

far_map_size: 400000

qer_map_size: 200000



性能问题

问题：吞吐量低（低于预期）

症状：

吞吐量 < 1 Gbps 尽管 NIC 能力足够

CPU 利用率高

诊断：

解决方案：

使用通用 XDP 模式

解决方案：

单核瓶颈

解决方案：

# 检查数据包速率

curl http://localhost:8080/api/v1/packet_stats | jq '.total_rx, 

.total_tx'

# 检查 NIC 统计

ethtool -S eth0 | grep -i drop

# 检查 XDP 模式

ip link show eth0 | grep xdp

# 切换到本地模式以获得更好的性能

xdp_attach_mode: native  # 需要支持 XDP 的 NIC/驱动程序



缓冲膨胀

解决方案：

问题：高延迟

症状：

Ping 延迟 > 50ms

用户体验下降

诊断：

解决方案：

# 在 NIC 上启用 RSS（接收侧负载均衡）

ethtool -L eth0 combined 4  # 使用 4 个 RX/TX 队列

# 验证 RSS 是否启用

ethtool -l eth0

# 将中断固定到�定 CPU

# 请参见 /proc/interrupts 并使用 irqbalance 或手动亲和性

# 减少缓冲限制以降低延迟

buffer_max_packets: 5000

buffer_packet_ttl: 15

# 测试到 UE 的延迟

ping -c 100 <UE_IP> | grep avg

# 检查缓冲的数据包

curl http://localhost:8080/api/v1/upf_buffer_info | jq 

'.total_packets_buffered'

# 检查路由缓存性能

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'



数据包被过度缓冲

解决方案：

FIB 查找延迟

解决方案：

问题：负载下的数据包丢失

症状：

丢包率随着流量增加

NIC 上的 RX 错误

诊断：

# 检查为什么数据包被缓冲

curl http://localhost:8080/api/v1/upf_buffer_info | jq '.buffers[] 

| {far_id, packet_count, direction}'

# 如果卡住，请清除缓冲区

# （重启 OmniUPF 或触发 PFCP 会话修改以应用 FAR）

# 确保启用路由缓存（构建时选项）

# 使用 BPF_ENABLE_ROUTE_CACHE=1 构建

# 优化路由表

# 使用更少、更具体的路由，而不是许多小路由



解决方案：

特定于虚��机监控程序的问题

有关逐步虚拟机监控程序配置说明，请参见 XDP 模式指南。

Proxmox：VM 中的 XDP 无法工作

症状：

无法以本地模式附加 XDP 程序

仅通用模式有效

原因：虚拟机使用桥接网络而没有 SR-IOV

解决方案：

选项 1：使用通用模式（最简单）

# 检查 NIC 错误

ethtool -S eth0 | grep -E "drop|error|miss"

# 检查环形缓冲区大小

ethtool -g eth0

# 实时监控丢失

watch -n 1 'ethtool -S eth0 | grep -E "drop|miss"'

# 增加 RX 环形缓冲区大小

ethtool -G eth0 rx 4096

# 增加 TX 环形缓冲区大小

ethtool -G eth0 tx 4096

# 验证新设置

ethtool -g eth0



选项 2：配置 SR-IOV 直通

VMware：需要混杂模式

症状：

OmniUPF 未接收到数据包

原因：vSwitch 阻止不匹配的 MAC 地址

解决方案：

xdp_attach_mode: generic

# 在 Proxmox 主机上：

# 1. 启用 IOMMU

nano /etc/default/grub

# 添加：intel_iommu=on iommu=pt

update-grub

reboot

# 2. 创建 VF

echo 4 > /sys/class/net/eth0/device/sriov_numvfs

# 3. 在 Proxmox UI 中将 VF 分配给 VM

# 硬件 → 添加 → PCI 设备 → 选择 VF

# 在 VM 中：

interface_name: [ens1f0]  # SR-IOV VF

xdp_attach_mode: native

# 在 vSphere 客户端中启用 vSwitch 的混杂模式：

# 1. 选择 vSwitch → 编辑设置

# 2. 安全性 → 混杂模式：接受

# 3. 安全性 → MAC 地址更改：接受

# 4. 安全性 → 伪造传输：接受



VirtualBox：性能非常低

症状：

吞吐量 < 100 Mbps

原因：VirtualBox 不支持 SR-IOV 或本地 XDP

解决方案：

NIC 和驱动程序问题

问题：NIC 驱动程序不支持 XDP

症状：

诊断：

# 使用通用模式（唯一选项）

xdp_attach_mode: generic

# 优化 VirtualBox 设置：

# - 使用 VirtIO-Net 适配器（如果可用）

# - 启用“允许所有”混杂模式

# - 为虚拟机分配更多 CPU 核心

# - 使用桥接网络而不是 NAT

# 考虑迁移到 KVM/Proxmox 以获得更好的性能

ERRO[0000] failed to attach XDP program: operation not supported



解决方案：

选项 1：使用通用模式

选项 2：更新 NIC 驱动程序

选项 3：更换 NIC

问题：驱动程序崩溃或内核恐慌

症状：

# 检查 NIC 驱动程序

ethtool -i eth0 | grep driver

# 检查驱动程序是否支持 XDP

modinfo <driver_name> | grep -i xdp

# 列出支持 XDP 的接口

ip link show | grep -B 1 "xdpgeneric\|xdpdrv\|xdpoffload"

xdp_attach_mode: generic

# 检查驱动程序更新（Ubuntu）

sudo apt update

sudo apt install linux-modules-extra-$(uname -r)

# 或安装供应商�定的驱动程序

# 示例：英�尔：

# 从 https://downloadcenter.intel.com/ 下载

# 使用支持 XDP 的 NIC：

# - Intel X710、E810

# - Mellanox ConnectX-5、ConnectX-6

# - Broadcom BCM57xxx（bnxt_en 驱动程序）



附加 XDP 后内核恐慌

NIC 停止响应

诊断：

解决方案：

会话建立失败

问题：会话建立失败

症状：

SMF 报告会话建立失败

UE 无法建立 PDU 会话

请参见 PFCP 原因代码参考 以获取常见失败场景和解决方案。

# 检查内核日志

dmesg | tail -100

# 检查驱动程序错误

journalctl -k | grep -E "BUG:|panic:"

# 1. 更新内核和驱动程序

sudo apt update

sudo apt upgrade

sudo reboot

# 2. 禁用 XDP 直通（仅使用本地模式）

xdp_attach_mode: native

# 3. 作为解决方法使用通用模式

xdp_attach_mode: generic

# 4. 向 NIC 供应商或 Linux 内核团队报告错误



诊断：

常见原因：

映射容量已满

解决方案：

无效的 PDR/FAR 参数

解决方案：

不支持的功能（UEIP/FTUP）

# 检查 OmniUPF 日志中的会话错误

journalctl -u omniupf | grep -i "session establishment"

# 检查 PFCP 会话计数

curl http://localhost:8080/api/v1/sessions | jq 'length'

# 在会话建立期间捕获 PFCP 流量

tcpdump -i any -n udp port 8805 -w /tmp/pfcp_session.pcap

# 检查映射使用情况

curl http://localhost:8080/api/v1/map_info | jq '.[] | 

select(.usage_percent > 90)'

# 增加容量（请参见 eBPF 映射已满部分）

# 检查 OmniUPF 日志中的验证错误

journalctl -u omniupf | grep -E "invalid|error" | tail -20

# 常见问题：

# - 无效的 UE IP 地址（0.0.0.0 或重复）

# - 无效的 TEID（0 或重复）

# - PDR 缺少 FAR

# - 无效的 FAR 操作

# 验证 SMF 配置和会话参数



解决方案：

缓冲问题

问题：数据包卡在缓冲区

症状：

缓冲的数据包计数增加

交接后数据包未交付

诊断：

原因及解决方案：

FAR 从未更新为 FORWARD

原因：SMF 从未发送 PFCP 会话修改以应用 FAR

# 如果需要，启用所需的功能

feature_ueip: true  # 由 UPF 分配 UE IP

ueip_pool: 10.60.0.0/16

feature_ftup: true  # 由 UPF 分配 F-TEID

teid_pool: 100000

# 检查缓冲统计

curl http://localhost:8080/api/v1/upf_buffer_info

# 检查单个 FAR 缓冲区

curl http://localhost:8080/api/v1/upf_buffer_info | jq '.buffers[] 

| {far_id, packet_count, oldest_packet_ms}'

# 监控缓冲区大小

watch -n 5 'curl -s http://localhost:8080/api/v1/upf_buffer_info | 

jq ".total_packets_buffered"'



解决方案：

缓冲 TTL 过期

原因：数据包在 FAR 更新之前过期

解决方案：

缓冲溢出

原因：每个 FAR 缓冲的数据包过多

解决方案：

# 检查 FAR 状态

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

{far_id, applied_action}'

# 操作 BUFF = 1（缓冲）

# 操作 FORW = 2（转发）

# 如果卡在 BUFF 状态，请请求 SMF：

# - 发送 PFCP 会话修改请求

# - 更新 FAR 以进行 FORW 操作

# 增加缓冲 TTL

buffer_packet_ttl: 60  # � 30 增加到 60 秒

# 增加缓冲限制

buffer_max_packets: 20000  # 每个 FAR

buffer_max_total: 200000   # 全局限制



高级调试

启用调试日志

eBPF 程序跟踪

使用 XDP 捕获数据包

理解 XDP 数据包捕获限制：

XDP 在内核网络栈 之前 处理数据包，因此标准 tcpdump  无法看到 XDP 处理的流量。N3 上的 GTP-U 数据包（UDP

2152）被 XDP 处理，并且不会出现在 UPF 主机上的 tcpdump 中。

流量分析的推荐方法：

logging_level: debug  # trace | debug | info | warn | error

# 使用调试日志重启 OmniUPF

sudo systemctl restart omniupf

# 实时监控日志

journalctl -u omniupf -f --output cat

# 跟踪 eBPF 程序执行（需要 bpftrace）

sudo bpftrace -e 'tracepoint:xdp:* { @[probe] = count(); }'

# 跟踪映射操作

sudo bpftrace -e 'tracepoint:bpf:bpf_map_lookup_elem { 

printf("%s\n", str(args->map_name)); }'



带外捕获设置示例：

物理网络：

虚拟环境（VMware、KVM 等）：

# 方法 1：使用统计 API 进行监控（推荐）

curl http://localhost:8080/api/v1/xdp_stats

curl http://localhost:8080/api/v1/packet_stats | jq

curl http://localhost:8080/api/v1/n3n6_stats

# 方法 2：捕获 PFCP 流量（不受 XDP 影响）

tcpdump -i any -n udp port 8805 -w /tmp/pfcp.pcap

# 方法 3：带外数据包捕获（推荐用于 GTP-U）

# 使用网络 TAP 或交换机端口镜像捕获流量

# 示例：

# - gNB 和 UPF 之间的物理 TAP

# - 交换机 SPAN/镜像端口复制 N3 流量到分析器

# - 虚拟交换机端口镜像到 hypervisor 中的分析器

#

# 在捕获主机上（而不是 UPF）：

# tcpdump -i <mirror_interface> -n udp port 2152 -w 

/tmp/n3_mirror.pcap

# 使用网络 TAP 或配置交换机端口镜像

# 示例：Cisco 交换机 SPAN 配置

(config)# monitor session 1 source interface Gi1/0/1

(config)# monitor session 1 destination interface Gi1/0/24

# 在连接到 Gi1/0/24 的监控主��上：

tcpdump -i eth0 -n udp port 2152 -w /tmp/n3_capture.pcap

# 配置虚拟交换机端口镜像，将 UPF 流量发送到分析器 VM

# 示例：Linux 桥接与 tcpdump 在不同的 VM 上

# 在 hypervisor 上，将 UPF 的 N3 接口镜像到分析器接口

# 在分析器 VM 上：

tcpdump -i eth1 -n udp port 2152 -w /tmp/n3_virtual.pcap



为什么需要带外：

XDP 完全绕过内核网络栈

数据包在 NIC 驱动程序或硬件中处理

主机上的 tcpdump 在 XDP 处理后看到数据包（太晚了）

带外捕获看到原始线流量，在 UPF 处理之前

您可以在 UPF 主机上捕获的内容：

✅ PFCP 流量（UDP 8805） - 控制平面，未被 XDP 处理

✅ API 响应和指标

❌ GTP-U 流量（UDP 2152） - 数据平面，被 XDP 处理

寻求帮助

如果故障排除步骤未能解决您的问题：

1. 收集诊断信息：

# 系统信息

uname -a

cat /etc/os-release

# OmniUPF 信息

curl http://localhost:8080/api/v1/upf_status

curl http://localhost:8080/api/v1/map_info

curl http://localhost:8080/api/v1/packet_stats

# 日志

journalctl -u omniupf --since "1 hour ago" > /tmp/omniupf.log

dmesg > /tmp/dmesg.log

# 网络信息

ip addr > /tmp/network.txt

ip route >> /tmp/network.txt

ethtool eth0 >> /tmp/network.txt



2. 报告问题：

OmniUPF 版本

Linux 内核版本

网络拓扑图

配置文件（去除敏感信息）

相关日志摘录

重现步骤

相关�档

配置指南 - 配置参数和示例

架构指南 - eBPF/XDP 内部和性能调优

监控指南 - 统计、容量和警报

指标参考 - 用于故障排除的 Prometheus 指标

PFCP 原因代码 - PFCP 错误代码和故障排除

规则管理指南 - PDR、FAR、QER、URR 概念

操作指南 - UPF 架构和概述



Web UI 操作指南

目录

1. 概述

2. 访问控制面板

3. 会话视图

4. 规则管理

5. 缓冲区管理

6. 统计仪表板

7. 容量监控

8. 配置视图

9. 路由视图

10. XDP 能力视图

11. 日志查看器

概述

OmniUPF Web UI �供了一个全面的控制面板，用于实时监控和管理用户平面功能。该界面基于 Phoenix LiveView 构

建，�供：

实时可视化 PFCP 会话和活动 PDU 连接

规则检查 PDR、FAR、QER 和 URR 跨所有会话

缓冲区管理 在移动事件期间进行数据包缓冲

统计监控 数据包处理、路由和接口

容量跟踪 eBPF 映射使用情况和限制

实时日志查看 以进行故障排除

架构

控制面板通过其 REST API 与多个 OmniUPF 实例进行通信，以：



查询 PFCP 会话和关联

检查数据包检测和转发规则

监控数据包缓冲区及其状��

访问实时统计和性能指标

跟踪 eBPF 映射的容量和利用率

访问控制面板

默认访问

控制面板可以通过 HTTPS 在 OmniUPF 管理服务器上访问：

默认端口：443（带自签名证书的 HTTPS）

配置

控制面板需要在 config/config.exs  中配置 OmniUPF 主机：

可以为多实例部署配置多个 UPF 实例：

upf_hosts  配置定义了在 UI 中的主机选择下拉列表中可用的 OmniUPF 实例。

导航

控制面板为每个操作区域�供导航选项卡：

会话 - /sessions  - PFCP 会话和关联

规则 - /rules  - PDR、FAR、QER、URR 规则检查

缓冲区 - /buffers  - 数据包缓冲监控和控制

统计 - /statistics  - 数据包、路由、XDP 和接口统计

容量 - /capacity  - eBPF 映射使用和容量监控

配置 - /upf_config  - UPF 配置和数据平面地址

https://<upf-server>:443/



路由 - /routes  - UE 路由和路由协议会话（OSPF、BGP）

XDP 能力 - /xdp_capabilities  - XDP 模式支持和性能能力

日志 - /logs  - 实时日志流

会话视图

URL：/sessions

特性

会话视图显示来自所选 OmniUPF 实例的所有活动 PFCP 会话和关联。

PFCP 关联摘要

显示所有活动 PFCP 关联（来自 SMF/PGW-C 的控制连接）：

列 描述

节点 ID SMF 或 PGW-C 节点标识符（FQDN 或 IP）

地址 SMF/PGW-C 用于 PFCP 通信的 IP 地址

下一个会话 ID 此关联的下一个可用 PFCP 会话 ID

目的：

验证 SMF 与 UPF 的连接性

监控控制平面连接的数量

跟踪每个关联的会话 ID 分配

活动会话表

显示所有 PFCP 会话，代表活动的 UE PDU 会话：



列 描述

本地 SEID UPF 分配的会话端点标识符

远程 SEID SMF 分配的会话端点标识符

UE IP 用户设备的 IPv4 或 IPv6 地址

TEID 上行流量的 GTP-U 隧道端点标识符

PDRs 会话中的数据包检测规则数量

FARs 会话中的转发动作规则数量

QERs 会话中的 QoS 执行规则数量

URRs 会话中的使用报告规则数量

操作 展开按钮以查看详细的规则信息

特性：

按 IP 过滤：查找特定 UE IP 地址的会话

按 TEID 过滤：按隧道端点 ID 查找会话

展开会话：查看完整的 PDR/FAR/QER/URR JSON 详细信息

自动刷新：每 10 秒更新一次

展开的会话视图：

当您点���会话上的“展开”时，视图显示：

数据包检测规则 (PDRs)：包含 TEID、UE IP、FAR ID、QER ID、SDF 过滤器的完整 JSON

PDR ID 可点击 - 点击以导航到规则选项卡并查看完整的 PDR 详细信息

上行 PDR（TEID ≠ 0）链接到上行 PDR 查找

下行 PDR（IPv4）链接到下行 PDR 查找

下行 PDR（IPv6）链接到 IPv6 下行 PDR 查找

转发动作规则 (FARs)：动作标志、外部头创建、目标端点



QoS 执行规则 (QERs)：MBR、GBR、QFI 和其他 QoS 参数

使用报告规则 (URRs)：体积计数器（上行、下行、总字节）

展开的会话视图显示特定会话的详细 PDRs、FARs 和 QERs。

用例

验证 UE 连接性：

1. 导航到会话视图

2. 在过滤器中输入 UE IP 地址

3. 确认会话存在且 TEID 正确

4. 展开以验证 PDR/FAR 配置

监控会话计数：

检查标题中的总会话计数

在多个 UPF 实例之间进行比较

跟踪会话随时间的增长



故障排除会话问题：

搜索特定的 UE IP 或 TEID

展开会话以检查规则配置

验证 FAR 转发参数

检查 QER QoS 设置

实时更新

会话视图每 10 秒自动刷新一次。健康检查指示器显示 UPF 连接状态：

健康（绿色）：UPF 可访问且响应

不健康（红色）：UPF 不可访问或未响应

未知（灰色）：健康状态尚未确定

规则管理

URL：/rules

规则视图�供对所有数据包检测、转发、QoS 和使用报告规则的全面检查，跨所有会话。

PDR 选项卡 - 数据包检测规则

查看和检查 UPF 中的所有 PDR，带有 查找表单 和 可点击导航：

上行 PDRs (N3 → N6):

查找表单：按 TEID 搜索以查看特定上行 PDR 详细信息

TEID：来自 gNB 的 GTP-U 隧道端点 ID（可点击 - 导航到查找）

FAR ID：关联的转发动作规则（可点击 - 导航到 FAR 选项卡）

QER ID：关联的 QoS 执行规则（可点击 - 导航到 QER 选项卡）

URR IDs：关联的使用报告规则（可点击 - 导航到 URR 选项卡）

外部头移除：GTP-U 解封装标志

SDF 过滤器：服务数据流分类规则

下行 PDRs (N6 → N3):



查找表单：按 UE IPv4 地址搜索以查看特定下行 PDR 详细信息

UE IP：用户设备的 IPv4 地址（在查找结果中显示）

FAR ID：关联的转发动作规则（可点击 - 导航到 FAR 选项卡）

QER ID：关联的 QoS 执行规则（可点击 - 导航到 QER 选项卡）

URR IDs：关联的使用报告规则（可点击 - 导航到 URR 选项卡）

SDF 模式：服务数据流过滤模式（无、仅 sdf、sdf + 默认）

分页：使用页面控件浏览 PDR（默认每页 100，最大 1000）

IPv6 下行 PDRs：

API 支持 IPv6 下行 PDR 的分页

结构与 IPv4 相同，但按 IPv6 地址键入

如果需要，可以添加完整的 UI 选项卡

FAR 选项卡 - 转发动作规则

查看所有 FAR 及其转发动作和参数：

特性：

查找表单：按 FAR ID 搜索以查看特定 FAR 详细信息

自动查找：从 PDR 详细信息中点击 FAR ID 会自动填充查找

实时更新：FAR 状态反映当前缓冲状态

列 描述

FAR ID 唯一的转发规则标识符

动作 转发动作标志（FORWARD、DROP、BUFFER、DUPLICATE、NOTIFY）

缓冲 当前缓冲状态（启用/禁用）

目标 外部头创建参数（TEID、IP 地址）

FAR 动作标志：

FORWARD (1)：将数据包转发到目标



DROP (2)：丢弃数据包

BUFFER (4)：将数据包存储在缓冲区

NOTIFY (8)：向控制平面发送通知

DUPLICATE (16)：将数据包复制到多个目标

缓冲切换：

点击“启用缓冲���或“禁用缓冲”以切换缓冲标志

对于故障排除切换场景非常有用

在 eBPF 映射中立即更改 FAR 动作

QER 选项卡 - QoS 执行规则

查看应用于流量流的 QoS 规则：

特性：

可点击导航：从 PDR 详细信息中点击 QER ID 导航并突出显示特定 QER

自动高亮：当从 PDR 导航时，QER 行会高亮显示

分页：使用页面控件浏览 QER（默认每页 100，最大 1000）

列 描述

QER ID 唯一的 QoS 规则标识符（从 PDR 引用时可点击）

MBR（上行） 上行流量的最大比特率（kbps）

MBR（下行） 下行流量的最大比特率（kbps）

GBR（上行） 上行流量的保证比特率（kbps）

GBR（下行） 下行流量的保证比特率（kbps）

QFI QoS 流标识符（5G 标记）

QoS 解释：



MBR = 0：没有速率限制

GBR = 0：尽力而为（没有保证带宽）

GBR > 0：保证比特率流（优先级）

URR 选项卡 - 使用报告规则

查看使用跟踪规则和体积计数器：

特性：

查找表单：按 URR ID 搜索以查找并突出显示特定 URR

可点击导航：从 PDR 详细信息中点击 URR ID 导航并突出显示特定 URR

自动高亮：当从 PDR 或通过查找搜索时，URR 行在蓝色中高亮显示

分页：使用页面控件浏览 URR（默认每页 100，最大 1000）

列 描述

URR ID 唯一的使用报告规则标识符（从 PDR 引用时可点击）

上行体积 从 UE 发送到数据网络的字节数

下行体积 从数据网络发送到 UE 的字节数

总体积 双向的总字节数

操作 删除按钮以重置此 URR 的计数器

体积显示：

自动格式化（B、KB、MB、GB、TB）

实时计数器每次刷新时更新

用于计费和分析

过滤：

仅显示体积非零的 URR

过滤掉所有计数器为 0 的非活动 URR，以�高性能



用例

检查流量分类：

1. 导航到规则 → PDR 选项卡

2. 搜索特定 TEID 或 UE IP

3. 验证 PDR 与正确的 FAR 和 QER 关联

故障排除转发问题：

1. 导航到规则 → FAR 选项卡

2. 从会话 PDR 中找到 FAR ID

3. 验证动作为 FORWARD（而不是 DROP 或 BUFFER）

4. 检查外部头创建参数

监控 QoS 执行：

1. 导航到规则 → QER 选项卡

2. 验证 MBR 和 GBR 值与策略匹配

3. 检查 5G 流的 QFI 标记

跟踪数据使用：

1. 导航到规则 → URR 选项卡

2. 按总量排��以查找最高用户

3. 监控体积随时间的增长

4. 验证计费集成

缓冲区管理

URL：/buffers

特性

缓冲区视图显示 UPF 在移动事件或路径切换期间维护的数据包缓冲区。

总统计



仪表板显示汇总的缓冲区统计信息：

总数据包：所有 FAR 中缓冲的数据包数量

总字节：缓冲的数据总大小

总 FARs：具有缓冲数据包的 FAR 数量

每个 FAR 的最大数量：每个 FAR 允许的最大数据包数量

最大总数：最大缓冲的数据包总数

数据包 TTL：缓冲数据包的生存时间（秒）

按 FAR 的缓冲区

所有具有缓冲数据包的 FAR 的表：

列 描述

FAR ID 转发动作规则标识符

数据包计数 此 FAR 缓冲的数据包数量

字节计数 此 FAR 缓冲的总字节数

最旧数据包 最旧缓冲数据包的时间戳

最新数据包 最新缓冲数据包的时间戳

操作 缓冲控制按钮（药丸样式）

缓冲区控制操作

对于每个具有缓冲数据包的 FAR，�供以下药丸样式按钮：

缓冲控制：

禁用缓冲（红色）：关闭此 FAR 的缓冲（更新 FAR 动作标志）

启用缓冲（紫色���：开启此 FAR 的缓冲

缓冲操作：



刷新（蓝色）：使用当前 FAR 规则重放所有缓冲的数据包

清除（灰色）：在不转发的情况下删除所有缓冲的数据包

清除所有缓冲区：

标题中的红色“清除所有”按钮

清除所有 FAR 的缓冲区

需要确认

用例

监控切换缓冲：

1. 在切换期间，验证数据包正在被缓冲

2. 检查 FAR 的缓冲状态（应启用）

3. 监控数据包计数和年龄

完成切换：

1. 在路径切换后，点击“刷新”以重放缓冲的数据包

2. 验证数据包转发到新路径

3. 点击“禁用缓冲”以停止缓冲

清除卡住的缓冲区：

1. 确定具有旧缓冲数据包的 FAR（检查最旧时间戳）

2. 点击“清除”以丢弃过时的数据包

3. 或点击“禁用缓冲”以防止进一步缓冲

故障排除缓冲溢出：

1. 检查总数据包计数与最大总数的比较

2. 确定具有过度缓冲的 FAR

3. 验证 SMF 是否已发送会话修改以禁用缓冲

4. 如果 SMF 命令丢失，手动禁用缓冲



实时更新

缓冲区视图每 5 秒自动刷新一次，以显示当前缓冲状态。

统计仪表板

URL：/statistics

特性

统计视图�供来自 OmniUPF 数据平面的实时性能指标。有关 Prometheus 指标的详细信息，请参见 指标参考。

数据包统计

汇总的数据包处理计数器：

接收数据包：在所有接口上接收到的总数据包

发送数据包：在所有接口上发送的总数据包

丢弃的数据包：由于错误或策略而丢弃的数据包

GTP-U 数据包：使用 GTP-U 封装处理的数据包

用途：监控整体 UPF 流量负载和数据包丢弃率

路由统计

每条路由的转发指标（如果可用）：

路由命中：每个路由规则匹配的数据包

转发成功：成功转发的数据包计数

转发错误：转发尝试失败的次数

用途：识别繁忙路由和转发错误

XDP 统计

eXpress Data Path 性能指标：

XDP 处理：在 XDP 层处理的总数据包



XDP 通过：发送到网络栈的数据包

XDP 丢弃：在 XDP 层丢弃的数据包

XDP 中止：XDP 程序中的处理错误

用途：监控 XDP 性能并检测处理错误

XDP 丢弃原因：

无效的数据包格式

eBPF 映射查找失败

基于策略的丢弃

资源耗尽

N3/N6 接口统计

每个接口的流量计数器：

N3 接口（RAN 连接）：

接收 N3：从 gNB/eNodeB 接收到的数据包

发送 N3：发送到 gNB/eNodeB 的数据包

N6 接口（数据网络连接）：

接收 N6：从数据网络（互联网/IMS）接收到的数据包

发送 N6：发送到数据网络的数据包

总计：跨接口的汇总数据包计数

用途：监控流量平衡和接口特定问题

用例

监控流量负载：

1. 检查数据包接收/发送速率

2. 验证流量在两个方向上流动

3. 比较 N3 与 N6 流量（应大致相等）



检测数据包丢弃：

1. 检查丢弃的数据包计数器

2. 查看 XDP 丢弃计数器

3. 如果丢弃率高，调查日志中的原因

性能分析：

1. 监控 XDP 处理与通过的比率

2. 检查 XDP 中止（指示错误）

3. 验证 N3/N6 接口流量分布

容量规划：

1. 跟踪数据包速率随时间的变化

2. 与 UPF 容量限制进行比较

3. 如果接近限制，计划扩展

实时更新

统计信息每 5 秒自动刷新。

容量监控

URL：/capacity

特性

容量视图显示 UPF 数据平面中所有映射的 eBPF 映射使用和容量限制。

eBPF 映射使用表

所有 eBPF 映射及其使用信息的表：



列 描述

映射名称 eBPF 映射名称（例如，uplink_pdr_map、far_map）

已使用 当前映射中的条目数量

容量 映射中允许的最大条目数量

使用情况 带百分比的可视化进度条

键大小 映射键的大小（以字节为单位）

值大小 映射值的大小（以字节为单位）

彩色使用指示器

使用进度条根据利用率进行颜色编码：

绿色（<50%）：正常操作，容量充足

黄色（50-70%）：小心，监控增长

琥珀色（70-90%）：警告，计划增加容量

红色（>90%）：危急，需要立即采取行动

需要监控的关键映射

uplink_pdr_map：

存储按 TEID 键入的上行 PDR

每个上行流量流一个条目

关键：耗尽会阻止新会话的建立

downlink_pdr_map / downlink_pdr_map_ip6：

存储按 UE IP 地址键入的下行 PDR

每个 UE IPv4/IPv6 地址一个条目

关键：耗尽会阻止新会话的建立



far_map：

存储按 FAR ID 键入的转发动作规则

在多个 PDR 之间共享

高优先级：影响转发决策

qer_map：

存储按 QER ID 键入的 QoS 执行规则

中等优先级：影响 QoS，但不影响基本连接性

urr_map：

存储按 URR ID 键入的使用报告规则

低优先级：影响计费，但不影响连接性

用例

容量规划：

1. 监控映射使用趋势

2. 确定哪些映射增长最快

3. 在达到限制之前计划增加容量

防止会话建立失败：

1. 在预期流量激增之前检查 PDR 映射使用情况

2. 如果接近限制，增加映射容量

3. 在容量增加后监控以验证

故障排除会话失败：

1. 当会话建立失败时，检查容量视图

2. 如果 PDR 映射为红色（>90%），则容量已耗尽

3. 增加映射容量或清除过时会话

优化映射配置：

1. 查看键和值的大小



2. 计算每个映射的内存使用

3. 根据实际使用模式优化映射大小

容量配置

eBPF 映射容量在 UPF 启动时在 UPF 配置文件中配置。典型值：

小型部署：每个映射 10,000 - 100,000 条目

中型部署：每个映射 100,000 - 1,000,000 条目

大型部署：每个映射 1,000,000+ 条目

内存计算：

例如，一个具有 100 万条目和 64 字节值的 PDR 映射大约使用 64 MB 的内核内存。

实时更新

容量视图每 10 秒自动刷新。

配置视图

URL：/upf_config

特性

配置视图显示 UPF 操作参数和数据平面配置。

UPF 配置

显示静态 UPF 配置：

PFCP 接口：SMF/PGW-C 连接的 IP 地址和端口

N3 接口：RAN（gNB/eNodeB）连接的 IP 地址

N6 接口：数据网络连接的 IP 地址

映射内存 = (键大小 + 值大小) × 容量



N9 接口：UPF 之间通信的 IP 地址（可选）

API 端口：REST API 监听端口

版本：OmniUPF 软件版本

数据平面（eBPF）配置

显示活动的运行时数据平面参数：

活动 N3 地址：运行时 N3 接口绑定

活动 N9 地址：运行时 N9 接口绑定（如果启用）

这些值反映实际的 eBPF 数据路径配置，如果接口已更改，可能与静态配置不同。

用例

验证 UPF 连接性：

1. 检查 N3 接口 IP 是否与 gNB 配置匹配

2. 验证 N6 接口是否可以路由到数据网络

3. 确认 PFCP 接口是否可从 SMF 访问

故障排除接口问题：

1. 将静态配置与数据平面活动地址进行比较

2. 验证接口是否正确绑定

3. 检查接口配置更改

�档和审计：

1. 记录 UPF 配置以便文档使用

2. 验证部署是否符合设计规范

3. 审计接口分配

路由视图

URL：/routes



特性

路由视图�供对用户设备（UE）IP 路由和路由协议会话（OSPF 和 BGP）的全面监控。

路由状态概述

仪表板显示汇总的路由统计信息：

状态：路由启用或禁用

总路由：UE IP 路由的总数

已同步：成功同步的路由数量

失败：未能同步的路由数量

活动 UE IP 路由

显示所有活动用户设备 IP 路由的表：

列 描述

索引 路由索引号

UE IP 地址 分配给 UE 的 IPv4 或 IPv6 地址

目的：

查看所有已配置路由的 UE IP 地址

验证路由分发到路由协议

监控路由同步状态

OSPF 邻居

OSPF（开放最短路径优先）协议邻居的表：



列 描述

邻居 ID OSPF 路由器标识符

地址 OSPF 邻居的 IP 地址

接口 用于 OSPF 邻接的接口

状态 OSPF 邻接状态（完全、初始化等）

优先级 OSPF 优先级值

运行时间 邻居已运行的时间

死亡时间 邻居被视为死亡的时间

OSPF 状态：

完全（绿色）：完全邻接并交换路由信息

其他状态（黄色）：邻接形成或不完整

BGP 对等体

BGP（边界网关协议）对等体的表：



列 描述

邻居 IP BGP 对等体的 IP 地址

ASN 对等体的自治系统编号

状态 BGP 会话状态（已建立、空闲等）

上/下 ��前状态的持续时间

接收的前缀 从对等体接收的路由前缀数量

发送的消息 发送给对等体的总 BGP 消息

接收的消息 从对等体接收的总 BGP 消息

BGP 状态：

已建立（绿色）：活动的 BGP 会话，交换路由

其他状态（红色）：会话关闭或正在建立

标题还显示本地 BGP 路由器 ID 和 ASN（当 BGP 配置时）。

OSPF 重分发路由

显示重分发的 UE 路由的 OSPF 外部 LSA（链路状态广告）的表：



列 描述

链路状态 ID LSA 标识符（通常是网络地址）

掩码 路由的网络掩码

广告路由器 广告此外部路由的路由器 ID

度量类型 OSPF 外部度量类型（E1 或 E2）

度量 路由的 OSPF 成本度量

年龄 LSA 生成后的时间（秒）

序列号 LSA 的版本序列号

目的：

验证 UE 路由是否被重分发到 OSPF

监控哪个路由器正在广告外部路由

跟踪 LSA 的老化和更新

路由控制操作

同步路由按钮：

手动触发路由同步到 FRR（自由范围路由）

强制更新路由协议与当前 UE 路由

在配置更改后或从同步失败中恢复时非常有用

刷新按钮：

手动刷新所有路由信息

更新 OSPF 邻居、BGP 对等体和路由表



用例

监控路由协议健康：

1. 导航到路由视图

2. 检查 OSPF 邻居状态（应为“完全”）

3. 验证 BGP 对等体为“已建立”

4. 确认预期的邻居/对等体数量

验证 UE 路由分发：

1. 检查活动 UE IP 路由表中的特定 UE

2. 滚动到 OSPF 重分发路由部分

3. 验证 UE 路由是否出现在外部 LSA 中

4. 确认广告路由器与预期的 UPF 匹配

故障排除路由同步问题：

1. 检查状态概述中的已同步与失败计数器

2. 如果路由失败，点击“同步路由”按钮

3. 如果同步失败，监控红色横幅中的错误消息

4. 检查各自部分中的 OSPF/BGP 错误消息

验证多 UPF 部署：

1. 从下拉列表中选择不同的 UPF 实例

2. 比较各实例之间的路由计数

3. 验证 OSPF 邻居是否互相可见

4. 检查 BGP 对等关系

监控路由扩展：

1. 随着 UE 会话的增加，跟踪总路由计数

2. 验证路由是否分发到路由协议

3. 监控 OSPF LSA 数量增长

4. 检查 BGP 接收到的前缀计数



实时更新

路由视图每 10 秒自动刷新一次，以显示当前路由协议状态和 UE 路由。

路由集成

路由视图与在 UPF 上运行的 FRR（自由范围路由）集成：

OSPF：路由作为外部类型 2 LSA 被重分发

BGP：路由被广告给配置的 BGP 对等体

同步机制：REST API 调用触发 vtysh 命令以更新 FRR

XDP 能力视图

URL：/xdp_capabilities

特性

XDP 能力视图显示 eXpress Data Path (XDP) 模式支持、性能能力和 UPF 数据平面的吞吐量计算。

接口配置

显示网络接口和驱动程序信息：

字段 描述

接口名称 用于 XDP 的网络接口（例如，eth0、ens1f0）

驱动程序 网络驱动程序名称（例如，i40e、ixgbe、virtio_net）

驱动程序版本 驱动程序版本字符串

当前模式 活动的 XDP 模式（DRV、SKB 或 NONE）

多队列计数 用于并行处理的 NIC 队列对数



XDP 模式

该视图显示所有 XDP 模式及其支持状态和性能特征：

XDP_DRV（驱动模式）：

性能：~5-10 Mpps（百万数据包每秒）

描述：驱动程序中的原生 XDP 支持，最高性能

要求：具有原生 XDP 支持的 NIC 驱动程序（i40e、ixgbe、mlx5 等）

状态：如果驱动程序具有 XDP 钩子，则支持

指示器：如果支持则为绿色勾号（✓），如果不支持则为红色 X（✗��

XDP_SKB（通用模式）：

性能：~1-2 Mpps

描述：使用内核网络堆栈的回退模式

要求：任何网络接口

状态：始终支持

指示器：绿色勾号（✓）

当前模式指示器：

当前活动 XDP 模式旁边的蓝点

显示实际使用的模式

不支持模式原因：

如果某个模式不受支持，“原因”字段解释原因

常见原因：驱动程序缺乏 XDP 支持、接口类型不兼容



XDP 能力视图显示接口配置、支持的模式和�互式 Mpps 吞吐量计算器

推荐

该视图根据当前配置显示彩色推荐横幅：

绿色（最佳）：

"✓ 最佳：启用 XDP_DRV 模式并具有原生驱动程序支持"

活动的是最高性能模式

黄色（警告）：

"⚠ 考虑升级到 XDP_DRV 模式以获得更好的性能"

在驱动模式可用时以通用模式运行

"⚠ 警告：此驱动程序不支持 XDP_DRV"

硬件限制阻止最佳性能

蓝色（信息）：

有关 XDP 配置的一般信息



Mpps 性能计算器

交互式计算器将数据包速率（Mpps）转换为吞吐量（Gbps）：

输入参数

数据包速率（Mpps）：

范围：0.1 - 100 Mpps

默认��当前 XDP 模式的最大 Mpps

表示每秒处理的百万数据包

平均数据包大小（字节）：

范围：64 - 9000 字节

默认：1200 字节（典型 GTP 数据包）

包含完整数据包及 GTP 封装

快速预设按钮：

64B（最小）：最小以太网帧大小

128B：小数据包

256B：控制平面或信令

512B：中等大小的数据包

1024B：大数据包

1518B（最大）：没有巨型帧的最大以太网帧大小

计算结果

总吞吐量（Gbps）：

包括所有头的线速吞吐量

公式：Gbps = Mpps × Packet_Size × 8 / 1000

包括 GTP、UDP、IP 和以太网头

用户数据速率（Gbps）：

实际用户有效载荷吞吐量



不包括 ~50 字节的 GTP 封装开销

公式：Gbps = Mpps × (Packet_Size - 50) / 1000

数据包速率：

显示 Mpps 和每秒数据包数，带千位分隔符

示例：10 Mpps = 10,000,000 每秒数据包

公式显示：

显示逐步计算分解

示例：10 Mpps × 1200 字节 × 8 位/字节 ÷ 1000 = 96 Gbps

理解 Mpps

该视图包括一个解释部分，涵盖：

什么是 Mpps：

每秒百万数据包

数据包处理性能的关键指标

与数据包大小无关

与吞吐量的关系：

使用更大数据���的相同 Mpps = 更高的 Gbps

使用更小数据包的相同 Mpps = 更低的 Gbps

吞吐量取决于速率和数据包大小

GTP 封装开销：

以太网头：14 字节

IP 头：20 字节（IPv4）或 40 字节（IPv6）

UDP 头：8 字节

GTP 头：8 字节（最小）

总典型开销：每个数据包 ~50 字节



用例

评估 XDP 性能：

1. 导航到 XDP 能力视图

2. 检查当前 XDP 模式（应为 DRV 以获得最佳性能）

3. 注意 Mpps 性能范围

4. 查看推荐横幅

计算预期吞吐量：

1. 输入预期的数据包速率（Mpps）

2. 输入您的流量配置的平均数据包大小

3. 查看计算的吞吐量（Gbps）

4. 与链路容量或性能要求进行比较

优化 XDP 配置：

1. 检查是否支持但未激活 XDP_DRV 模式

2. 查看驱动程序版本和兼容性

3. 如果可用，请遵循建议升级到驱动程序模式

4. 验证多队列计数是否与 CPU 核心匹配

容量规划：

1. 使用计算器确定目标吞吐量所需的 Mpps

2. 与当前 XDP 模式能力进行比较

3. 确定是否需要硬件升级

4. 规划新部署的接口和驱动程序选择

故障排除性能问题：

1. 验证 XDP 模式为 DRV，而不是 SKB

2. 检查驱动程序版本以获取已知性能问题

3. 验证多队列计数是否足够

4. 计算当前模式是否支持所需的吞吐量



性能优化提示

驱动模式（XDP_DRV）：

使用具有原生 XDP 支持的 NIC（Intel i40e/ixgbe、Mellanox mlx5）

更新 NIC 驱动程序到最新版本

启用多队列（RSS）以进行并行处理

调整 NIC 环形缓冲区大小

通用模式（XDP_SKB）：

适合开发和测试

不推荐用于生产高吞吐量

考虑硬件升级以用于生产部署

多队列配置：

队列数量应与 CPU 核心数匹配或超过

启用跨核心的并行数据包处理

通过 RSS（接收侧负载均衡）分配负载

实时更新

XDP 能力视图每 30 秒刷新一次，以更新接口状态和模式信息。

日志查看器

URL：/logs

特性

实时查看 OmniUPF 应用程序日志。

特性：

通过 Phoenix LiveView 实现实时日志流

日志生成时实时更新



可滚动的日志历史

在活动会话期间用于故障排除

日志级别

OmniUPF 日志使用标准 Elixir Logger 级别：

DEBUG：详细的诊断信息

INFO：一般信息消息（默认）

WARNING：非关键问题的警告消息

ERROR：失败的错误消息

用例

故障排除会话建立：

1. 打开日志视图

2. 从 SMF 启动会话建立

3. 观察 PFCP 消息日志和任何错误

监控 PFCP 通信：

1. 查看 PFCP 关联设置消息

2. 跟踪会话创建/修改/删除

3. 验证心跳消息

调试转发问题：

1. 查找数据包处理错误

2. 检查 eBPF 映射操作日志

3. 确定 FAR/PDR 配置问题



最佳实践

操作指南

监控：

定期检查容量视图以防止映射耗尽

监控统计信息以发现异常流量模式或丢包

跟踪会话计数随时间的增长

关注 XDP 处理错误

缓冲区管理：

在切换场景中监控缓冲区

如果数据包超过 TTL，请清除卡住的缓冲区

验证切换完成后禁用缓冲

使用“刷新”而不是“清除”以避免数据包丢失

会话管理：

使用过滤器快速定位特定 UE 会话

展开会话以验证规则配置

在多个 UPF 实例之间比较会话

在故障排除之前检查健康指示器

故障排除：

使用日志进行实时调试

检查会话视图以验证 UE 连接性

验证规则配置以获取流量流

监控统计信息以发现数据包丢失或转发错误

性能

控制面板自动刷新时间为 5-10 秒，具体取决于视图

大型会话列表可能需要时间加载



规则视图按活动条目（URR 的非零体积）进行过滤

缓冲操作在选定的 UPF 上立即执行

相关�档

规则管理指南 - PDR、FAR、QER、URR 配置

监控指南 - 统计、指标和容量规划

指标参考 - 完整的 Prometheus 指标参考

PFCP 原因代码 - PFCP 错误代码和会话诊断

API �档 - REST API 参考和分页

路由指南 - UE 路由和 FRR 集成详细信息

XDP 模式指南 - 详细的 XDP 模式文档和 eBPF 信息

故障排除指南 - 常见问题和诊断

UPF 操作指南 - 一般 UPF 操作和架构



OmniUPF 的 XDP 附加模式

目录

1. 概述

2. XDP 模式比较

3. 通用模式（默认）

4. 本地模式（推荐用于生产）

5. 卸载模式（SmartNIC）

6. 在 Proxmox VE 上启用本地 XDP

7. 在其他虚拟机监控程序上启用本地 XDP

8. 验证 XDP 模式

9. 排除 XDP 问题

概述

OmniUPF 使用 XDP (eXpress Data Path) 进行高性能数据包处理。XDP 是一种 Linux 内核技术，允许数

据包处理程序（eBPF）在网络栈中尽早执行，从而�供微秒级延迟和每秒数百万个数据包的吞吐量。

XDP 附加模式决定了 eBPF 程序在数据包路径中的执行位置：



选择正确的 XDP 模式对 OmniUPF 性能有显著影响，并决定您是否能够实现生产级的数据包处理。



XDP 模式比较

方面 通用模式 本地模式 卸载模式

附加点 Linux 网络栈 网络驱动程序 NIC 硬件

性能 ~1-2 Mpps ~5-10 Mpps ~10-40 Mpps

延迟 ~100 μs ~10 μs ~1 μs

CPU

使用率
高 中 低

NIC 要

求
任何 NIC 支持 XDP 的驱动 支持 XDP 的 SmartNIC

虚拟机监

控程序支

持

所有虚拟机监控程序 大多数（需要多队列） 稀有（PCI 直通）

使用案例 测试、开发 生产（推荐） 高吞吐量边缘站点

配置
xdp_attach_mode:

generic

xdp_attach_mode:

native

xdp_attach_mode:

offload

推荐：在生产部署中使用 本地模式。通用模式仅适合测试。

通用模式（默认）

描述

通用 XDP 在驱动程序处理数据包 后 在 Linux 网络栈中运行 eBPF 程序。这是最慢的 XDP 模式，但适用于任何网络接口。



性能特征

吞吐量：~1-2 百万数据包每秒 (Mpps)

延迟：每个数据包 ~100 微秒

CPU 开销：高（数据包在 XDP 之前复制到内核栈）

何时使用

仅用于开发和测试

实验室环境，性能不重要

初始部署，在优化之前验证功能

配置

警告：通用模式 不适合生产。在高数据包速率下会造成瓶颈并浪费 CPU 资源。

本地模式（推荐用于生产）

描述

本地 XDP 在网络驱动程序 内部 运行 eBPF 程序，在数据包到达 Linux 网络栈之前。这�供了接近硬件的性能，同时保持内核级的灵活

性。

性能特征

吞吐量：每个核心 ~5-10 百万数据包每秒 (Mpps)

延迟：每个数据包 ~10 微秒

CPU 开销：低（数据包在驱动级处理）

扩展性：��� CPU 核心和 NIC 队列线性扩展

# config.yaml

interface_name: [eth0]

xdp_attach_mode: generic  # 默认模式



何时使用

生产部署（推荐）

需要高吞吐量的运营商级网络

具有性能要求的边缘计算场景

任何对性能重要的部署

NIC 驱动要求

本地 XDP 需要支持 XDP 的网络驱动程序。大多数现代 NIC 支持本地 XDP：

物理 NIC（裸金属）：

英特尔：ixgbe（10G）、i40e（40G）、ice（100G）

博通：bnxt_en

梅兰克斯：mlx4_en、mlx5_core

Netronome：nfp（具有卸载支持）

Marvell：mvneta、mvpp2

虚拟 NIC（虚拟机监控程序）：

VirtIO：virtio_net（KVM、Proxmox、OpenStack）✓

VMware：vmxnet3  ✓

微软：hv_netvsc（Hyper-V）✓

亚马逊：ena（AWS）✓

SR-IOV：ixgbevf、i40evf（PCI 直通）✓

注意：VirtualBox 不支持本地 XDP（仅使用通用模式）。

配置

多队列要求：为了获得最佳性能，请在虚拟 NIC 上启用多队列（请参见下面的 Proxmox 部分）。

# config.yaml

interface_name: [eth0]

xdp_attach_mode: native



卸载模式（SmartNIC）

描述

卸载 XDP 在 NIC 硬件（SmartNIC）上 直接运行 eBPF 程序，完全绕过 CPU 进行数据包处理。这�供了最高的性能，但需要

专��硬件。

性能特征

吞吐量：~10-40 百万数据包每秒 (Mpps)

延迟：每个数据包 ~1 微秒

CPU 开销：接近零（在 NIC 上处理）

何时使用

超高吞吐量 部署（每个 UPF 实例 10G+）

具有硬件加速的边缘站点

对成本敏感的 部署（减少 CPU 要求）

硬件要求

目前只有 Netronome Agilio SmartNIC 支持 XDP 卸载：

Netronome Agilio CX 10G/25G/40G/100G

注意：卸载模式需要 裸金属 或 PCI 直通 - 在标准虚拟机配置中不可用。

配置

# config.yaml

interface_name: [eth0]

xdp_attach_mode: offload



在 Proxmox VE 上启用本地 XDP

Proxmox VE 使用 VirtIO 网络设备用于虚拟机，这些设备通过 virtio_net  驱动程序支持本地 XDP。然而，您必须启

用 多队列 以获得最佳性能。

步骤 1：了解要求

为什么多队列很重要：

单队列（默认）：所有网络流量由一个 CPU 核心处理 → 瓶颈

多队列：流量分布在多个 CPU 核心上 → 线性扩展



多队列（最佳）

NIC

队��� 1 队列 2 队列 3 队列 4

CPU 核心 1 CPU 核心 2 CPU 核心 3 CPU 核心 4

单队列（默认）

NIC

队列 1

CPU 核心 1

瓶颈

步骤 2：在 Proxmox 中启用多队列

选项 A：通过 Proxmox Web UI

1. 完全关闭虚拟机（不仅仅是重启）

在 Proxmox Web 界面中选择您的虚拟机

点击 关闭



2. 编辑网络设备

转到 硬件 标签

点击您的网络设备（例如，net0）

点击 编辑

3. 设置多队列

找到 "多队列" 字段

设置为 8（或与您的 vCPU 数量匹配，最多 16）

点击 确定

4. 启动虚拟机

点击 启动

选项 B：通过 Proxmox 命令行

队列数量建议：

4 个队列：生产的最低要求（适合 2-4 vCPU 虚拟机）

8 个队列：适合大多数部署的推荐（4-8 vCPU 虚拟机）

16 个队列：高性能的最大值（8+ vCPU 虚拟机）

# SSH 到您的 Proxmox 主机

# 查找您的虚拟机 ID

qm list

# 设置多队列（将 XXX 替换为您的虚拟机 ID）

qm set XXX -net0 virtio=XX:XX:XX:XX:XX:XX,bridge=vmbr0,queues=8

# 示例：对于虚拟机 191，MAC 为 BC:24:11:1D:BA:00

qm set 191 -net0 virtio=BC:24:11:1D:BA:00,bridge=vmbr0,queues=8

# ��闭虚拟机

qm shutdown XXX

# 等待关闭，然后启动

qm start XXX



步骤 3：在虚拟机内验证多队列

虚拟机重启后，SSH 进入虚拟机并验证：

步骤 4：在 OmniUPF 中启用本地 XDP

编辑 OmniUPF 配置：

更改 XDP 模式：

重启 OmniUPF：

# 检查队列配置

ethtool -l eth0

# 预期输出：

# eth0 的通道参数：

# Combined: 8        <-- 应与您配置的值匹配

# 计算实际队列

ls -1d /sys/class/net/eth0/queues/rx-* | wc -l

ls -1d /sys/class/net/eth0/queues/tx-* | wc -l

# 两者应显示 8（或您配置的值）

# 编辑配置文件

sudo nano /config.yaml

# 之前

xdp_attach_mode: generic

# 之后

xdp_attach_mode: native

sudo systemctl restart omniupf



步骤 5：验证本地 XDP 是否处于活动状态

检查日志：

通过 API 检查：

常见 Proxmox 问题

问题："无法附加 XDP 程序"

解决方案：

验证是否启用多队列（ethtool -l eth0）

检查内核版本：uname -r（必须 ≥ 5.15）

确保加载了 VirtIO 驱动程序：lsmod | grep virtio_net

问题：尽管配置了 1 个队列

解决方案：

虚拟机必须 完全关闭（而不是重启）以进行队列更改

使用 qm shutdown XXX && sleep 5 && qm start XXX

在 Proxmox 配置中验证：grep net0 /etc/pve/qemu-server/XXX.conf

# 查看启动日志

journalctl -u omniupf --since "1 minute ago" | grep -i 

"xdp\|attach"

# 预期输出：

# xdp_attach_mode:native

# XDPAttachMode:native

# 附加 XDP 程序到接口 "eth0"（索引 2）

# 查询配置

curl -s http://localhost:8080/api/v1/config | grep xdp_attach_mode

# 预期输出：

# "xdp_attach_mode": "native",



问题：使用本地模式时性能没有改善

解决方案：

检查 CPU 绑定（避免过度分配）

监控 top  - CPU 使用率应分布在多个核心上

验证 XDP 统计信息：curl http://localhost:8080/api/v1/xdp_stats

在其他虚拟机监控程序上启用本地 XDP

VMware ESXi / vSphere

VMware 使用 vmxnet3  驱动程序，支持本地 XDP。

要求：

ESXi 6.7 或更高版本

虚拟机中 vmxnet3 驱动程序版本 1.4.16 及以上

虚拟机硬件版本 14 或更高

启用多队列：

1. 关闭虚拟机

2. 编辑虚拟机设置：

右键单击虚拟机 → 编辑设置

网络适配器 → 高级

将 接收端负载均衡 设置为 启用

3. 编辑 .vmx �件（可选，更多队列）：

4. 启动虚拟机并验证：

ethernet0.pnicFeatures = "4"

ethernet0.multiqueue = "8"



配置 OmniUPF：

KVM / libvirt（原始）

通过 virsh 启用多队列：

在网络接口部分添加：

重启虚拟机并验证：

Microsoft Hyper-V

Hyper-V 使用 hv_netvsc  驱动程序，支持本地 XDP。

要求：

Windows Server 2016 或更高版本

虚拟机中 Linux 集成服务 4.3 及以上

ethtool -l ens192  # 检查队列数量

interface_name: [ens192]  # VMware 通常使用 ens192

xdp_attach_mode: native

# 编辑虚拟机配置

virsh edit your-vm-name

<interface type='network'>

  <source network='default'/>

  <model type='virtio'/>

  <driver name='vhost' queues='8'/>

</interface>

ethtool -l eth0



第二代虚拟机

启用多队列：

在 Hyper-V 主机上使用 PowerShell：

配置 OmniUPF：

VirtualBox

警告：VirtualBox 不支持本地 XDP。

原因：VirtualBox 网络驱动程序（e1000，virtio-net）未实现 XDP 钩子。

解决方法：仅使用通用模式：

验证 XDP 模式

在配置本地 XDP 后，验证其是否正常工作：

# 设置 VMQ（虚拟机队列） - Hyper-V 的多队列

Set-VMNetworkAdapter -VMName "YourVM" -VrssEnabled $true -

VmmqEnabled $true

interface_name: [eth0]

xdp_attach_mode: native

xdp_attach_mode: generic  # VirtualBox 唯一选项



1. 检查 OmniUPF 日志

2. 通过 API 检查

3. 检查 XDP 统计信息

# 查看最近的日志

journalctl -u omniupf --since "5 minutes ago" | grep -i xdp

# 查找：

# ✓ "xdp_attach_mode:native"

# ✓ "附加 XDP 程序到接口"

# ✗ "无法附加" 或 "回退到通用"

# 查询配置端点

curl -s http://localhost:8080/api/v1/config | jq .xdp_attach_mode

# 预期输出：

# "native"

# 查看 XDP 处理统计信息

curl -s http://localhost:8080/api/v1/xdp_stats | jq

# 示例输出：

{

  "xdp_aborted": 0,      # 应为 0（错误）

  "xdp_drop": 1234,      # 丢弃的数据包

  "xdp_pass": 5678,      # 传递给栈的数据包

  "xdp_redirect": 9012,  # 重定向的数据包

  "xdp_tx": 3456         # 发送的数据包

}



4. 验证驱动支持

5. 性能测试

比较启用前后的数据包处理：

排除 XDP 问题

问题：启动时 "无法附加 XDP 程序"

症状：

诊断：

1. 检查驱动支持：

# 检查驱动���否支持 XDP

ethtool -i eth0 | grep driver

# 对于 Proxmox/KVM：应显示 "virtio_net"

# 对于 VMware：应显示 "vmxnet3"

# 对于 Hyper-V：应显示 "hv_netvsc"

# 监控数据包速率

watch -n 1 'curl -s http://localhost:8080/api/v1/packet_stats | jq 

.rx_packets'

# 通用模式：~1-2 Mpps

# 本地模式：~5-10 Mpps（提升 5-10 倍）

错误：无法将 XDP 程序附加到接口 eth0



2. 检查内核版本：

3. 检查是否存在现有的 XDP 程序：

解决方案：

如果较旧，请更新内核到 5.15+

确保加载了 virtio_net 驱动程序：modprobe virtio_net

如果驱动程序不支持本地 XDP，则回退到通用模式

问题：本地模式回退到��用

症状：

诊断：

检查 dmesg  中的驱动错误：

ethtool -i eth0 | grep driver

# 如果驱动不是 virtio_net/vmxnet3/hv_netvsc，则本地 XDP 将无法工作

uname -r

# 必须 ≥ 5.15 才能可靠支持 XDP

ip link show eth0 | grep xdp

# 如果附加了另一个 XDP 程序，请先卸载它

ip link set dev eth0 xdp off

警告：回退到通用 XDP 模式

dmesg | grep -i xdp | tail -20



常见原因：

1. 驱动程序不支持本地 XDP：

VirtualBox 驱动程序（不支持本地 XDP）

较旧的 NIC 驱动程序

2. 未启用多队列：

检查：ethtool -l eth0

应显示 > 1 的组合队列

3. 内核 XDP 支持被禁用：

解决方案：

启用多队列（请参见 Proxmox 部分）

更新到支持的驱动程序

如果必要，重新构建内核以支持 XDP

问题：使用本地模式时性能没有改善

症状：启用本地模式，但数据包速率与通用模式相同

诊断：

1. 验证多队列分布：

# 检查内核中是否启用了 XDP

grep XDP /boot/config-$(uname -r)

# 应显示：

# CONFIG_XDP_SOCKETS=y

# CONFIG_BPF=y



2. 检查 CPU 利用率：

3. 验证 XDP 是否实际在本地模式下运行：

解决方案：

增加队列数量（8-16 个队列）

启用 CPU 绑定以防止核心迁移

检查虚拟机监控程序上的 CPU 过度分配

问题：XDP 程序中止（xdp_aborted > 0）

症状：

诊断：

# 检查每个队列的统计信息

ethtool -S eth0 | grep rx_queue

# 流量应分布在多个队列上

# 监控每个核心的 CPU 使用率

mpstat -P ALL 1

# 应该看到负载分布在多个 CPU 上

# ���查 bpftool（如果可用）

sudo bpftool net list

# 应显示 XDP 附加到接口

curl http://localhost:8080/api/v1/xdp_stats

{

  "xdp_aborted": 1234,  # 非零表示错误

  ...

}



XDP 中止意味着 eBPF 程序在执行过程中遇到错误。

1. 检查 eBPF 验证器日志：

2. 检查映射大小限制：

解决方案：

增加配置中的 eBPF 映射大小

检查是否有损坏的数据包导致 eBPF 错误

验证 Linux 内核 eBPF 支持是否完整

问题：Proxmox 中多队列不起作用

症状：ethtool -l eth0  显示只有 1 个队列，尽管配置了多个

诊断：

1. 检查 Proxmox 虚拟机配置：

2. 验证虚拟机是否完全关闭：

dmesg | grep -i bpf | tail -20

# eBPF 映射可能已满

curl http://localhost:8080/api/v1/map_info

# 查找容量为 100% 的映射

# 在 Proxmox 主机上

grep net0 /etc/pve/qemu-server/YOUR_VM_ID.conf

# 应显示：queues=8



解决方案：

重要：队列数量的更改需要 完全关闭虚拟机，而不仅仅是从虚拟机内部重启。

问题：附加 XDP 时权限被拒绝

症状：

诊断：

XDP 操作需要 CAP_NET_ADMIN  和 CAP_SYS_ADMIN  权限。

解决方案：

1. 以 root 身份运行 OmniUPF（或使用权限）：

2. 如果使用 systemd，验证服务文件具有权限：

# 在 Proxmox 主机上

qm status YOUR_VM_ID

# 必须显示 "status: stopped" 才能启动

# 在 Proxmox 主机上

# 强制关闭并重启

qm shutdown YOUR_VM_ID

sleep 10

qm start YOUR_VM_ID

# 然后在虚拟机内检查

ethtool -l eth0

错误：附加 XDP 程序时权限被拒绝

sudo systemctl restart omniupf



3. 如果使用 Docker，使用 --privileged  运行：

性能影响总结

OmniUPF 数据包处理的实际性能比较：

场景 通用模式 本地模式 改进

数据包速率 1.5 Mpps 8.2 Mpps 提升 5.5 倍

延迟 95 μs 12 μs 降低 8 倍

CPU 使用率（1 Gbps） 85%（1 核心） 15%（分布式） 提高 5 倍效率

最大吞吐量 ~1.2 Gbps ~10 Gbps 提高 8 倍

推荐：始终在生产部署中使用 本地模式，并启用 多队列。

XDP 硬件推荐

⚠️ 重要：在购买任何硬件之前，请咨询 Omnitouch 支持以确认其与您的特定配置和部署要求 100% 兼容。

已知支持本地 XDP 模式的 NIC

这些 NIC 已验证支持 OmniUPF 的本地 XDP 模式：

# /lib/systemd/system/omniupf.service

[Service]

CapabilityBoundingSet=CAP_NET_ADMIN CAP_SYS_ADMIN CAP_NET_RAW

AmbientCapabilities=CAP_NET_ADMIN CAP_SYS_ADMIN CAP_NET_RAW

docker run --privileged -v /sys/fs/bpf:/sys/fs/bpf ...



英特尔 NIC（推荐用于裸金属）

型号 速度 驱动程序 XDP 支持 备注

Intel X520 10GbE ixgbe 本地 ✓ 经过验证，广泛可用，性价比高

Intel X710 10/40GbE i40e 本地 ✓ 优秀的多队列支持

Intel E810 100GbE ice 本地 ✓ 最新一代，最佳性能

Intel i350 1GbE igb 本地 ✓（内核 5.10+） 适合较低带宽需求

梅兰克斯/NVIDIA NIC（高性能）

型号 速度 驱动程序 XDP 支持 备注

ConnectX-4 25/50/100GbE mlx5 本地 ✓ 高吞���量，适合边缘计算

ConnectX-5 25/50/100GbE mlx5 本地 ✓ 优秀性能，硬件加速

ConnectX-6 50/100/200GbE mlx5 本地 ✓ 最新一代，适合超高吞吐量

BlueField-2 100/200GbE mlx5 本地 ✓ 具有 DPU 功能的 SmartNIC

博通 NIC

型号 速度 驱动程序 XDP 支持 备注

BCM57xxx 系列 10/25/50GbE bnxt_en 本地 ✓ 常见于 Dell/HP 服务器

虚拟 NIC（虚拟机部署）



平台 NIC 类型 驱动程序
XDP

支持
多队列 备注

Proxmox/KVM VirtIO virtio_net 本地 ✓
是（可

配置）
最佳用于虚拟机

VMware ESXi vmxnet3 vmxnet3 本地 ✓ 是 需要 ESXi 6.7+

Hyper-V 合成 NIC hv_netvsc 本地 ✓ 是
Windows

Server 2016+

AWS ENA ena 本地 ✓ 是 EC2 裸金属实例

VirtualBox 任何 各种 仅通用 ❌ 否 不推荐用于生产

支持硬件卸载的 NIC

真正的 XDP 硬件卸载（eBPF 在 NIC 上运行）：

供应商 型号 速度 备注

Netronome Agilio CX 10G 10GbE 仅确认支持 XDP 卸载

Netronome Agilio CX 25G 25GbE 需要特殊固件

Netronome Agilio CX 40G 40GbE 非常昂贵（~$2,500-5,000）

Netronome Agilio CX 100G 100GbE 企业级仅

注意：硬件卸载 NIC 稀有且昂贵，需要裸金属部署。大多数部署应使用本地 XDP。

测试过的配置

这些配置已在生产中验证与 OmniUPF 一起使用：

预算选项（1-10 Gbps）



NIC：Intel X520（10GbE 双端口）

模式：本地 XDP

吞吐量：每个 UPF 实例 ~8-10 Gbps

成本：~$100-200（二手/翻新）

中档（10-50 Gbps）

NIC：Intel X710（40GbE）或 Mellanox ConnectX-4（25GbE）

模式：本地 XDP

吞吐量：每个 UPF 实例 ~25-40 Gbps

成本：~$300-800

高端（50-100+ Gbps）

NIC：Mellanox ConnectX-5/6（100GbE）

模式：本地 XDP

吞吐量：每个 UPF 实例 ~80-100 Gbps

成本：~$1,000-2,500

虚拟机部署（Proxmox/KVM）

NIC：VirtIO，8-16 个队列

模式：本地 XDP

吞吐量：每个 UPF 实例 ~5-10 Gbps

成本：无额外硬件成本

不要购买的硬件

避免这些用于生产 OmniUPF 部署：



NIC/平台 原因 替代方案

Realtek NICs 无 XDP 支持，Linux 驱动���序差 Intel i350 或更好

VirtualBox 无本地 XDP 支持 迁移到 Proxmox/KVM

消费级 NICs 限制队列支持，不可靠 服务器级 Intel/Mellanox

非常旧的 NICs（<2014） 无 XDP 驱动程序支持 Intel X520 或更新

购买前检查清单

在购买硬件之前，请验证：

1. ✅ 驱动支持：检查 Linux 驱动程序是否支持 XDP

2. ✅ 内核版本：确保内核 ≥ 5.15 以获得可靠的 XDP

3. ✅ 多队列：验证 NIC 是否支持多个队列（RSS/VMDq）

4. ✅ PCI 带宽：确保 PCIe 插槽具有足够的通道

10GbE：PCIe 2.0 x4 最低

40GbE：PCIe 3.0 x8 最低

100GbE：PCIe 3.0 x16 或 PCIe 4.0 x8

5. ✅ 部署类型：

裸金属：需要物理 NIC

虚拟机：需要 VirtIO 或 SR-IOV 支持

容器：主机 NIC 配置继承

# 在类似系统上

modinfo <driver_name> | grep -i xdp

uname -r



⚠️ 不要仅根据本指南购买硬件 - 始终先与 Omnitouch 支持确认！

其他资源

配置指南：CONFIGURATION.md - 完整配置参考

故障排除指南：TROUBLESHOOTING.md - 综合问题诊断

架构指南：ARCHITECTURE.md - eBPF 和 XDP 架构细节

监控指南：MONITORING.md - 性能监控和统计信息

快速参考

Proxmox 本地 XDP 设置（TL;DR）

验证 XDP 模式是否处于活动状态

# 在 Proxmox 主机上：

qm set <VM_ID> -net0 virtio=<MAC>,bridge=vmbr0,queues=8

qm shutdown <VM_ID> && sleep 10 && qm start <VM_ID>

# 在虚拟机内：

ethtool -l eth0  # 验证 8 个队列

sudo nano /etc/omniupf/config.yaml  # 设置：xdp_attach_mode: native

sudo systemctl restart omniupf

journalctl -u omniupf --since "1 min ago" | grep xdp  # 验证本地模式

# 检查配置

curl -s http://localhost:8080/api/v1/config | grep xdp_attach_mode

# 检查统计信息

curl -s http://localhost:8080/api/v1/xdp_stats | jq

# 检查队列

ethtool -l eth0



OmniUPF 操作指南

目录

1. 概述

2. 理解 5G 用户平面架构

3. UPF 组件

4. PFCP 协议与 SMF 集成

5. 常见操作

6. 故障排除

7. 附加文档

8. 术语表

概述

OmniUPF（基于 eBPF 的用户平面功能）是一种高性能的 5G/LTE 用户平面功能，�供运营商级的数据包转发、QoS 强制执行和

移动网络的流量管理。基于 Linux eBPF（扩展伯克利包过滤器）技术构建，并增强了全面的管理能力，OmniUPF �供了 5G

SA、5G NSA 和 LTE 网络所需的核心数据包处理基础设施。

什么是用户平面功能？

用户平面功能（UPF）是 3GPP 标准化的网络元素，负责 5G 和 LTE 网络中的数据包处理和转发。它�供：

高速数据包转发：在移动设备和数据网络之间

服务质量（QoS）：对不同流量类型的强制执行

基于数据包过滤器和规则的流量检测和路由

使用报告：用于计��和分析

数据包缓冲：用于移动性和会话管理场景

合法拦截：支持合规性

OmniUPF 实现了 3GPP TS 23.501（5G）和 TS 23.401（LTE）中定义的完整 UPF 功能，�供了一个完整的、

生产就绪的用户平面解决方案，使用 Linux 内核 eBPF 技术以实现最大性能。



OmniUPF 关键能力

数据包处理：

完全符合 3GPP 标准的用户平面数据包处理

基于 eBPF 的数据路径，�供内核级性能

GTP-U（通用分组无线服务隧道协议）封装和解封装

支持 IPv4 和 IPv6 的接入和数据网络

XDP（快速数据路径）用于超低延迟处理

多线程数据包处理

QoS 和流量管理：

带宽管理的 QoS 强制执行规则（QER）

流量分类的包检测规则（PDR）

路由决策的转发动作规则（FAR）

针对特定应用的服务数据流（SDF）过滤

用于流量跟踪和计费的使用报告规则（URR）

控制和管理：

PFCP（数据包转发控制协议）接口与 SMF/PGW-C

用于监控和诊断的 RESTful API

实时统计和指标

eBPF 映射容量监控

基于 Web 的控制面板

性能特性：

通过 eBPF 实现零拷贝数据包处理

内核级数据包转发（无用户空间开销）

多核可扩展性

支持硬件加速的卸���能力

针对云原生部署进行了优化

有关详细的控制面板使用，请参见 Web UI 操作。



理解用户平面架构

OmniUPF 是一个统一的用户平面解决方案，为 5G 独立（SA）、5G 非独立（NSA）和 4G LTE/EPC 网络�供运营商级的

数据包转发。OmniUPF 是一个单一产品，可以同时作为：

UPF（用户平面功能） - 5G/NSA 用户平面（通过 N4/PFCP 由 OmniSMF 控制）

PGW-U（PDN 网关用户平面） - 4G EPC 网关到外部网络（通过 Sxc/PFCP 由 OmniPGW-C 控制）

SGW-U（服务网关用户平面） - 4G EPC 服务网关（通过 Sxb/PFCP 由 OmniSGW-C 控制）

OmniUPF 可以在 任何组合 模式下运行：

仅 UPF：纯 5G 部署

PGW-U + SGW-U：组合 4G 网关（典型 EPC 部署）

UPF + PGW-U + SGW-U：同时支持 4G 和 5G（迁移场景）

所有模式使用相同的基于 eBPF 的数据包处理引擎和 PFCP 协议，无论作为 UPF、PGW-U、SGW-U，还是同时作为三者，均�

供一致的高性能。

5G 网络架构（SA 模式）

OmniUPF 解决方案位于 5G 网络的数据平面，�供连接移动设备与数据网络和服务的高速数据包转发层。



4G LTE/EPC 网络架构

OmniUPF 还支持 4G LTE 和 EPC（演进分组核心）部署，视网络架构的不同，作为 OmniPGW-U 或 OmniSGW-

U 运行。



组合 PGW-U/SGW-U 模式（典型 4G 部署）

在此模式下，OmniUPF 同时作为 SGW-U 和 PGW-U，由不同的控制平面功能控制。

数据网络

控制平面网关

EPC - 用户平面

EPC - 控制平面无线接入网络

用户数据

GTP-U

S1-U 接口

GTP-U 隧道

SGi 接口

原生 IP

S11

Sxb PFCP

会话控制

Sxc PFCP

会话控制

S11 Gx

Gy

S6a

UE

移动设备

eNodeB

LTE 基站

MME

移动管理

OmniPCF

策略与计费规则

HSS

用户数据库

OCS

在线计费

OmniUPF

功能作为 PGW-U + SGW-U

OmniPGW-C

PDN 网关控制

OmniSGW-C

服务网关控制

PDN

互联网/IMS/企业

分离的 SGW-U 和 PGW-U 模式（漫游/多站点）

在漫游或多站点部署中，可以部署两个独立的 OmniUPF 实例 - 一个作为 SGW-U，另一个作为 PGW-U。



N9 循环回路模式（单实例 SGWU+PGWU）

对于简化的部署，OmniUPF 可以在 单个实例上运行 SGWU 和 PGWU 角色，并在 eBPF 中完全处理 N9 循环回路。



数据网络

控制平面网关

EPC - 用户平面

EPC - 控制平面无线接入网络

用户数据

GTP-U

S1-U 接口

GTP-U 隧道

N9 循环回路

内存中

零网络跳数

SGi 接口

原生 IP

S11 S11

Sxb PFCP Sxc PFCP

Gx

UE

移动设备

eNodeB

LTE 基站

MME

移动管理

OmniPCF

策略与计费规则

OmniUPF 单实例

功能作为 PGW-U + SGW-U

启用 N9 循环回路

OmniSGW-C

服务网关控制

OmniPGW-C

PDN 网关控制

PDN

互联网/IMS/企业

关键特性：

✅ 亚微秒 N9 延迟 - 完全在 eBPF 中处理，从不触及网络

✅ 40-50% CPU 减少 - 单次 XDP 处理与两个独立实例相比

✅ 简化部署 - 一个实例，一个配置文件

✅ 自动检测 - 当 n3_address  = n9_address  时，启用循环回路

✅ 完全符合 3GPP 标准 - 标准 PFCP 和 GTP-U 协议

配置：



何时使用：

边缘计算部署（最小化延迟）

成本受限的环境（单台服务器）

实验室/测试（简化设置）

小型到中型部署（< 100K 订阅者）

何时不使用：

需要地理冗余（SGWU 和 PGWU 在不同位置）

法规要求分离网关

大规模（> 1M 订阅者）

有关完整的详细信息、配置示例、故障排除和性能指标，请参见 N9 ���环回路操作指南。

用户平面功能在网络中的工作原理

用户平面功能（OmniUPF、OmniPGW-U 或 OmniSGW-U）作为转发平面，由相应的控制平面控制：

1. 会话建立

5G：OmniSMF 通过 N4 接口与 OmniUPF 建立 PFCP 关联

4G：OmniPGW-C 或 OmniSGW-C 通过 Sxb/Sxc 与 OmniPGW-U/OmniSGW-U 建

立 PFCP 关联

控制平面为每个 UE PDU 会话（5G）或 PDP 上下文（4G）创建 PFCP 会话

用户平面通过 PFCP 接收 PDR、FAR、QER 和 URR 规则

eBPF 映射填充转发规则

2. 上行数据包处理（UE → 数据网络）

5G：数据包通过 N3 接口从 gNB 到达，带有 GTP-U 封装

# OmniUPF config.yml

interface_name: [eth0]

n3_address: "10.0.1.10"      # S1-U 接口 IP

n9_address: "10.0.1.10"      # 相同 IP 启用 N9 循环回路

pfcp_address: ":8805"         # SGWU-C 和 PGWU-C 都在此连接



4G：数据包通过 S1-U 接口（SGW-U）或 S5/S8 接口（PGW-U）从 eNodeB 到达，带有 GTP-U

封装

用户平面根据 TEID 匹配上行数据包与 PDR

eBPF 程序应用 QER（速率限制、标记）

FAR 确定转发动作（转发、丢弃、缓冲、重复）

移除 GTP-U 隧道，数据包转发到 N6（5G）或 SGi（4G）接口

URR 跟踪数据包和字节计数以进行计费

3. 下行数据包处理（数据网络 → UE）

5G：数据包通过 N6 接口作为原生 IP 到达

4G：数据包通过 SGi 接口作为原生 IP 到达

用户平面根据 UE IP 地址匹配下行数据包与 PDR

SDF 过滤器可能进一步根据端口、协议或应用程序分类流量

FAR 确定 GTP-U 隧道和转发参数

使用适当的 TEID 添加 GTP-U 封装

5G：数据包转发到 N3 接口朝向 gNB

4G：数据包转发到 S1-U（SGW-U）或 S5/S8（PGW-U）朝向 eNodeB

4. 移动性和切换

5G：在切换场景中，OmniSMF 更新 PDR/FAR 规则

4G：OmniSGW-C/OmniPGW-C 在 eNodeB 之间切换或 TAU（跟踪区域更新）期间更新规则

用户平面在路径切换期间可能缓冲数据包

在基站之间无缝过渡，无数据包丢失

与控制平面的集成（4G 和 5G）

OmniUPF 通过标准的 3GPP 接口与 5G 和 4G 控制平面功能集成：

5G 接口



接口 从 → 到 目的 3GPP 规范

N4 OmniSMF ↔ OmniUPF PFCP 会话建立、修改、删除 TS 29.244

N3 gNB → OmniUPF 来自 RAN 的用户平面流量（GTP-U） TS 29.281

N6 OmniUPF → 数据网络 到 DN 的用户平面流量（原生 IP） TS 23.501

N9 OmniUPF ↔ OmniUPF 漫游/边缘的 UPF 之间通信 TS 23.501

4G/EPC 接口

接口 从 → 到 目的 3GPP 规范

Sxb
OmniSGW-C ↔ OmniUPF（SGW-

U 模式）
服务网关的 PFCP 会话控制

TS

29.244

Sxc
OmniPGW-C ↔ OmniUPF（PGW-

U 模式）
PDN 网关的 PFCP 会话控制

TS

29.244

S1-U
eNodeB → OmniUPF（SGW-U 模

式）

来自 RAN 的用户平面流量

（GTP-U）

TS

29.281

S5/S8
OmniUPF（SGW-U）↔ OmniUPF

（PGW-U）
网关之间的用户平面（GTP-U）

TS

29.281

SGi OmniUPF（PGW-U 模式）→ PDN
到数据网络的用户平面流量（原生

IP）

TS

23.401

注意：所有 PFCP 接口（N4、Sxb、Sxc）使用 TS 29.244 中定义的相同 PFCP 协议。接口名称不同，但协议和消息格式是

相同的。



UPF 组件

eBPF 数据路径

eBPF 数据路径是运行在 Linux 内核中的核心数据包处理引擎，以实现最大性能。

核心功能：

GTP-U 处理：GTP-U 隧道的封装和解封装

数据包分类：根据 TEID、UE IP 或 SDF 过滤器匹配数据包

QoS 强制执行：根据 QER 规则应用速率限制和数据包标记

转发决策：执行 FAR 动作（转发、丢弃、缓冲、重复、通知）

使用跟踪：为基于流量的计费递增 URR 计数器

eBPF 映射： 数据路径使用 eBPF 映射（内核内存中��哈希表）进行规则存储：

映射名称 目的 键 值

uplink_pdr_map 上行 PDR
TEID（32

位）

PDR 信息（FAR ID、QER

ID、URR IDs）

downlink_pdr_map
下行 PDR

（IPv4）
UE IP 地址 PDR 信息

downlink_pdr_map_ip6
下行 PDR

（IPv6）

UE IPv6

地址
PDR 信息

far_map 转发规则 FAR ID 转发参数（动作、隧道信息）

qer_map QoS 规则 QER ID QoS 参数（MBR、GBR、标记）

urr_map 使用跟踪 URR ID 流量计数器（上行、下行、总计）

sdf_filter_map SDF 过滤器 PDR ID 应用过滤器（端口、协议）

性能特性：



零拷贝：数据包完全在内核空间处理

XDP 支持：在网络驱动程序级别附加以实现亚微秒延迟

多核：在 CPU 核心之间扩展，支持每 CPU 映射

容量：在 eBPF 映射中可容纳数百万个 PDR/FAR（受限于内核内存）

有关容量监控，请参见 容量管理。

PFCP 接口处理程序

PFCP 接口实现 3GPP TS 29.244，用于与 SMF 或 PGW-C 的通信。

核心功能：

关联管理：PFCP 心跳和关联设置/释放

会话生命周期：创建、修改和删除 PFCP 会话

规则安装：将 PFCP 信息元素转换为 eBPF 映射条目

事件报告：通知 SMF 使用阈值、错误或会话事件

支持的 PFCP 消息：

消息类型 方向 目的

关联设置 SMF → UPF 建立 PFCP 控制关联

关联释放 SMF → UPF 拆除 PFCP 关联

心跳 双向 保持关联活跃

会话建立 SMF → UPF 创建新 PDU 会话，包含 PDR/FAR/QER/URR

会话修改 SMF → UPF 更新移动性、QoS 变更的规则

会话删除 SMF → UPF 移除会话及所有关联规则

会话报告 UPF → SMF 报告使用情况、错误或事件



支持的信息元素（IE）：

创建 PDR、FAR、QER、URR

更新 PDR、FAR、QER、URR

移除 PDR、FAR、QER、URR

数据包检测信息（UE IP、F-TEID、SDF 过滤器）

转发参数（网络实例、外部头创建）

QoS 参数（MBR、GBR、QFI）

使用报告触发器（流量阈值、时间阈值）

REST API 服务器

REST API �供对 UPF 状态和操作的编程访问。

核心功能：

会话监控：查询活动的 PFCP 会话和关联

规则检查：查看 PDR、FAR、QER、URR 配置

统计信息：检索数据包计数器、路由统计、XDP ��计

缓冲管理：查看和控制数据包缓冲

映射信息：监控 eBPF 映射的使用情况和容量

API 端点：（共 34 个端点）



类别 端点 描述

健康 /health 健康检查和状态

配置 /config UPF 配置

会话 /pfcp_sessions , /pfcp_associations
PFCP 会话/关

联数据

PDRs
/uplink_pdr_map , /downlink_pdr_map ,

/downlink_pdr_map_ip6 , /uplink_pdr_map_ip6
数据包检测规则

FARs /far_map 转发动作规则

QERs /qer_map
QoS 强制执行规

则

URRs /urr_map 使用报告规则

缓冲 /buffer
数据包缓冲状态和控

制

统计
/packet_stats , /route_stats , /xdp_stats ,

/n3n6_stats
性能指标

容量 /map_info
eBPF 映射容量

和使用情况

数据平面 /dataplane_config
N3/N9 接口地

址

有关 API 详细信息和使用，请参见 监控指南。

Web 控制面板

Web 控制面板�供 UPF 监控和管理的实时仪表板。



特性：

会话视图：浏览活动 PFCP 会话，显示 UE IP、TEID 和规则计数

规则管理：查看和管理所有会话中的 PDR、FAR、QER 和 URR

缓冲监控：跟踪缓冲的数据包并根据 FAR 控制缓冲

统计仪表板：实时数据包、路由、XDP 和 N3/N6 接口统计

容量监控：eBPF 映射使用情况，带有颜色编码的容量指示器

配置视图：显示 UPF 配置和数据平面地址

日志查看器：实时日志流以进行故障排除

有关详细的 UI 操作，请参见 Web UI 操作指南。

PFCP 协议与 SMF 集成

PFCP 关联

在会话创建之前，SMF 必须与 UPF 建立 PFCP 关联。

关联生命周期：



OmniUPFSMF/PGW-C

OmniUPFSMF/PGW-C

loop [心跳（每 60 秒）]

关联保持活动

PFCP 关联设置请求

验证节点能力

PFCP 关联设置响应（节点 ID、功能）

PFCP 心跳请求

PFCP 心跳响应

PFCP 关联释放请求

清理所有会话

PFCP 关联释放响应

关键点：

每个 SMF 与 UPF 建立一个关联

UPF 通过节点 ID（FQDN 或 IP 地址）跟踪关联

心跳消息保持关联的活跃性

如果释放关联，则删除该关联下的所有会话

有关查看关联的信息，请参见 ��话视图。



SMF 重启检测和孤立会话清理

OmniUPF 自动检测 SMF 重启并根据 3GPP TS 29.244 规范清理孤立会话。

工作原理：

当 SMF 建立 PFCP 关联时，它�供一个 恢复时间戳，指示其启动时间。OmniUPF 为每个关联存储此时间戳。如果 SMF 重启：

1. SMF 丢失内存中的所有会话状态

2. SMF 重新与 UPF 建立 PFCP 关联

3. SMF 发送 新的恢复时间戳（与之前不同）

4. UPF 检测到时间戳变化 = SMF 重启

5. UPF 自动删除 所有孤立会话，来自旧的 SMF 实例

6. SMF 为活动用户创建新的会话

重启检测流程：



日志示例：

当 SMF 重启时，您会看到：



重要说明：

1. 隔离：仅删除重启的 SMF 的会话。其他 SMF 关联及其会话 不受影响。

2. 时间戳比较：如果恢复时间戳 相同，则会话 保留（SMF 重新连接而未重启）。

3. 3GPP 合规性：此行为由 3GPP TS 29.244 第 5.22.2 节规定：

“如果 CP 功能的恢复时间戳自上次关联设置以来发生变化，UP 功能应认为 CP 功能已重启，并应删除与该 CP 功能关联的

所有 PFCP 会话。”

有关故障排除孤立��话的信息，请参见 孤立会话检测。

GTP-U 错误指示处理

OmniUPF 根据 3GPP TS 29.281 规范处理来自下游对等方（PGW-U、SGW-U、eNodeB、gNodeB）的

GTP-U 错误指示消息。

什么是错误指示：

当 OmniUPF 将 GTP-U 数据包转发到远程对等方（例如，SGW-U 部署中的 PGW-U）时，如果对等方不识别 TEID（隧道

端点标识符），则可能会发送 错误指示。这表示：

远程对等方已重启并丢失隧道状态

远程端未曾创建隧道（配置不匹配）

远程端已删除隧道

工作原理：

1. UPF 转发数据包 → 发送带有 TEID X 的 GTP-U 数据包到远程对等方（端口 2152）

WARN: 与 NodeID: smf-1 和地址: 192.168.1.10 的关联已存在

WARN: SMF 恢复时间戳已更改（旧：2025-01-15T10:00:00Z，新：2025-01-15T10:30:15Z） 

- SMF 重启，删除 245 个孤立会话

INFO: 删除孤立会话 2（LocalSEID）由于 SMF 重启

INFO: 删除孤立会话 3（LocalSEID）由于 SMF 重启

...

INFO: 删除孤立会话 246（LocalSEID）由于 SMF 重启



2. 远程对等方不识别 TEID X → 在其隧道表中查找 TEID，未找到

3. 远程对等方发送错误指示 → GTP-U 消息类型 26，包含错误 TEID 的 IE

4. UPF 接收错误指示 → 解析消息以�取 TEID X

5. UPF 查找受影响的会话 → 搜索所有会话以查找转发到 TEID X 的 FAR

6. UPF 删除会话 → 从 eBPF 映射和 PFCP 状态中移除会话

7. UPF 更新指标 → 为监控递增 Prometheus 计数器

错误指示流程：



PGW-U
OmniUPF

(SGW-U 角色)
UE

PGW-U 有活动隧道

TEID: 0x12345678

正常转发

⚠️ PGW-U 重启

丢失所有隧道状态！

上行数据包

GTP-U G-PDU

(TEID: 0x12345678)

上行数据包

GTP-U G-PDU

(TEID: 0x12345678)

查找 TEID 0x12345678

❌ 未找到

⚠️ GTP-U 错误指示

(错误 TEID: 0x12345678)

解析错误指示

�取 TEID: 0x12345678

查找具有 FAR

转发到 TEID 0x12345678 的会话

删除受影响的会话

- 从 eBPF 映射中移除

- 清除 PFCP 状态

更新指标：

error_indications_received++

sessions_deleted++



PGW-U
OmniUPF

(SGW-U 角色)
UE

停止转发到

死隧道 TEID 0x12345678

数据包格式（3GPP TS 29.281 第 7.3.1 节）：

何时重要：

场景 1：PGW-U 在 S5/S8 GTP 架构中重启

SGW-U（OmniUPF）将 S5/S8 流量转发到 PGW-U

PGW-U 重启并丢失所有 S5/S8 隧道状态

SGW-U 继续转发到旧 TEID

PGW-U 发送错误指示

SGW-U 自动停止使用死隧道

场景 2：对等 UPF 在 N9 架构中重启

UPF-1（OmniUPF）将 N9 流量转发到 UPF-2

GTP-U 错误指示：

┌─────────────────────────────────────────┐

│ GTP-U 头部（12 字节）                   │

├──────────────────────────────────��──────┤

│ 版本、PT、标志         │ 0x32        │

│ 消息类型              │ 26 (0x1A)   │

│ 长度                  │ 9 字节      │

│ TEID                  │ 0 (始终)    │

│ 序列号                │ 变化        │

│ N-PDU 编号            │ 0           │

│ 下一个扩展头部       │ 0           │

├─────────────────────────────────────────┤

│ IE: TEID 数据 I（5 字节）               │

├─────────────────────────────────────────┤

│ 类型                  │ 16 (0x10)   │

│ 错误 TEID             │ 4 字节      │

└─────────────────────────────────────────┘



UPF-2 重启

UPF-1 接收错误指示

UPF-1 清理会话

日志示例：

当接收到错误指示时：

Prometheus 指标：

监控错误指示活动，按对等方和节点粒度：

指标标签：

node_id：来自关联的 PFCP 节点 ID（或在没有关联时为“未知”）

peer_address：远程对等方的 IP 地址

这些指标有助于识别有问题的对等方并跟踪每个控制平面节点的错误指示模式。

WARN: 从 192.168.50.10:2152 接收到 GTP-U 错误指示，TEID 0x12345678 - 远程对等方不

识别此 TEID

WARN: 找到会话 LocalSEID=42，FAR GlobalId=1 转发到错误 TEID 0x12345678，来自对等方 

192.168.50.10

INFO: 删除会话 LocalSEID=42，因来自 192.168.50.10 的 TEID 0x12345678 的 GTP-

U 错误指示

WARN: 删除 1 个会话，因来自 192.168.50.10 的 TEID 0x12345678 的 GTP-U 错误指示

# 从对等方接收到的错误指示总数

upf_buffer_listener_error_indications_received_total{node_id="pgw-u-

1",peer_address="192.168.50.10"}

# 由于错误指示删除的会话

upf_buffer_listener_error_indication_sessions_deleted_total{node_id="

u-1",peer_address="192.168.50.10"}

# 发送的错误指示（对于未知的传入 TEID）

upf_buffer_listener_error_indications_sent_total{node_id="enodeb-

1",peer_address="10.60.0.1"}



重要说明：

1. 自动清理：无需操作员干预 - 会话会自动删除

2. TEID 匹配：仅删除转发到确切错误 TEID 的会话

3. 每对等方隔离：来自一个对等方的错误指示仅影响转发到该对等方的会话

4. 多个会话：如果多个会话转发到同一死 TEID，所有会话都会被删除

5. 与恢复时间戳互补：

恢复时间戳检测 = 主动（在关联设置期间检测重启）

错误指示处理 = 被动（在流量流动时检测死隧道）

6. 格式错误的数据包处理：无效的错误指示被记录并忽略（不删除会话）

有关故障排除错误指示的信息，请参见 GTP-U 错误指示调试。

PFCP 会话创建

当 UE 建立 PDU 会话（5G）或 PDP 上下文（LTE）时，SMF 在 UPF 上创建 PFCP 会话。

会话建立流程：



典型会话内容：

上行 PDR：匹配 N3 TEID，通过 FAR 转发到 N6

下行 PDR：匹配 UE IP 地址，通过 FAR 转发到 N3，带有 GTP-U 封装

FAR：转发参数（外部头创建、网络实例）

QER：QoS 限制（MBR、GBR）和数据包标记（QFI）

URR：用于计费的流量报告（可选）



PFCP 会话修改

SMF 可以修改会话以应对移动事件（切换）、QoS 变化或服务更新。

常见修改场景：

1. 切换（基于 N2）

使用新的 gNB 隧道端点（F-TEID）更新上行 FAR

可选地在路径切换期间缓冲数据包

在准备就绪时刷新缓冲区

2. QoS 变更

使用新的 MBR/GBR 值更新 QER

可在 PDR 中添加/删除 SDF 过滤器以实现特定应用的 QoS

3. 服务更新

为额外流量流添加新的 PDR

修改 FAR 以进行路由更改

会话修改流程：



OmniUPFSMF/PGW-C

OmniUPFSMF/PGW-C

数据包立即使用更新的规则

PFCP 会话修改请求（更新 FAR）

根据远程 SEID 查找会话

使用新 FAR 参数更新 eBPF 映射

PFCP 会话修改响应

有关规则管理的信息，请参见 规则管理指南。

PFCP 会话删除

当 PDU 会话被释放时，SMF 删除 UPF 上的 PFCP 会话。

会话删除流程：



OmniUPFSMF/PGW-CUE

OmniUPFSMF/PGW-CUE

所有会话资源已释放

PDU 会话释放请求

PFCP 会话删除请求

根据远程 SEID 查找会话

从 eBPF 映射中移除所有 PDR

移除所有 FAR、QER、URR

清除缓冲的数据包（如果有）

完成 URR 报告

PFCP 会话删除响应（最终使用报告）

PDU 会话已释放

执行的清理：

移除所有 PDR（上行和下行）

移除所有 FAR、QER、URR

清除数据包缓冲

发送最终使用报告给 SMF 以进行计费



常见操作

OmniUPF 通过其基于 Web 的控制面板和 REST API �供全面的操作能力。本节涵盖常见操作任务及其重要性。

会话监控

理解 PFCP 会话：

PFCP 会话代表活动的 UE PDU 会话（5G）或 PDP 上下文（LTE）。每个会话包含：

本地和远程 SEID（会话端点标识符）

用于数据包分类的 PDR

用于转发决策的 FAR

QoS 强制执行的 QER（可选）

用于使用跟踪的 URR（可选）

关键会话操作：

查看所有会话，显示 UE IP 地址、TEID 和规则计数

按 IP 地址或 TEID 过滤会话

检查会话详细信息，包括完整的 PDR/FAR/QER/URR 配置

监控每个 PFCP 关联的会话计数

有关详细的会话程序，请参见 会话视图。

规则管理

数据包检测规则（PDR）：

PDR 确定哪些数据包匹配特定的流量流。操作员可以：

查看上行 PDR，以 N3 接口的 TEID 为键

查看下行 PDR，以 UE IP 地址（IPv4 和 IPv6）为键

检查 SDF 过滤器以进行特定应用的分类

监控 PDR 计数和容量使用情况



转发动作规则（FAR）：

FAR 定义对匹配数据包的处理。操作员可以：

查看 FAR 动作（转发、丢弃、缓冲、重复、通知）

检查转发参数（外部头创建、目标）

监控每个 FAR 的缓冲状态

在故障排除期间切换缓冲特定 FAR

QoS 强制执行规则（QER）：

QER 应用带宽限制和数据包标记。操作员可以：

查看 QoS 参数（MBR、GBR、数据包延迟预算）

监控每个会话的活动 QER

检查 QFI 标记以进行 5G QoS 流

使用报告规则（URR）：

URR 跟踪计费的流量。操作员可以：

查看流量计数器（上行、下行、总字节）

监控使用阈值和报告触发器

检查所有会话中的活动 URR

有关规则操作的信息，请参见 规则管理指南。

数据包缓冲

为什么缓冲对 UPF 至关重要

数据包缓冲是 UPF 最重要的功能之一，因为它防止在移动事件和会话重新配置期间发生数据包丢失。如果没有缓冲，用户在移动基站之间或网络条

件变化时会经历掉线、下载中断和实时通信失败。

问题：移动期间的数据包丢失

在移动网络中，用户不断移动。当设备从一个基站移动到另一个基站时（切换），或者当���络需要重新配置数据路径时，会有一个关键窗口，

在此窗口中，数据包正在传输，但新路径尚未准备好：





没有缓冲：在此关键窗口期间到达的 ~40ms 的数据包（可能是数千个）将被 丢弃，导致：

TCP 连接停滞或重置（网页浏览、下载中断）

视频通话冻结或掉线（Zoom、Teams、WhatsApp 通话失败）

游戏会话断开（在线游戏、实时应用失败）

VoIP 通话出现间隙或完全掉线（电话通话中断）

下载失败并需要重新开始

有缓冲：OmniUPF 暂时保存数据包，直到新路径建立，然后无缝转发。用户体验到 零中断。

缓冲发生的时间

OmniUPF 在以下关键场景中缓冲数据包：

1. 基于 N2 的切换（5G）/基于 X2 的切换（4G）

当 UE 在基站之间移动时：



互联网OmniUPFSMF/MME新 gNB旧 gNBUE

互联网OmniUPFSMF/MME新 gNB旧 gNBUE

UE 从基站 A 移动到基站 B

开始缓冲下行数据包

将缓冲区刷新到新 gNB

路径切换请求

PFCP 会话修改

(更新 FAR: BUFF=1，新 F-TEID)

到 UE 的数据包

缓冲数据包（新路径尚未准备好）

会话修改响应

路径切换确认

PFCP 会话修改

(更新 FAR: BUFF=0，FORW=1)

通过新隧道转发缓冲的数据包

通过新隧道转发新数据包

无缝交付

时间线：

T+0ms：旧路径仍然有效

T+10ms：SMF 告诉 UPF 缓冲（旧路径关闭，新路径尚未准备好）

T+10-50ms：关键缓冲窗口 - 数据包到达但无法转发

T+50ms：新路径���备就绪，SMF 告诉 UPF 转发

T+50ms+：UPF 将缓冲的数据包刷新到新路径，然后立即转发新数据包

没有缓冲：~40ms 的数据包（可能是数千个）将被 丢弃。 有缓冲：零数据包丢失，无缝切换。

2. 会话修改（QoS 变更、路径更新）

当网络需要更改会话参数时：

QoS 升级/降级：用户从 4G 移动到 5G 覆盖（NSA 模式）

策略变更：企业用户进入公司校园（流量引导变化）

网络优化：核心网络将流量重新路由到更靠近的 UPF（ULCL 更新）

在修改期间，控制平面可能需要原子地更新多个规则。缓冲确保数据包不会在部分/不一致的规则集下转发。



3. 下行数据通知（空闲模式恢复）

当 UE 处于空闲模式（屏幕关闭、节省电池）并且下行数据到达时：

UE（空闲）gNBAMFSMFOmniUPF互联网

UE（空闲）gNBAMFSMFOmniUPF互联网

没有上行隧道（UE 空闲）

会话重新建立

下行数据包到达

缓冲数据包

下行数据通知

paging 请求

paging

唤醒！

服务请求

初始 UE 消息

更新 FAR（BUFF=0，新隧道）

交付缓冲的数据包

转发新数据包

没有缓冲：触发通知的初始数据包将被 丢弃，要求发送方重新传输（增加延迟）。 有缓冲：唤醒 UE 时立即交付触发 UE 的数据包。

4. 跨 RAT 切换（4G ↔ 5G）

当 UE 在 4G 和 5G 覆盖之间移动时：

架构变化（eNodeB ↔ gNB）

隧道端点变化（不同的 TEID 分配）

缓冲确保在 RAT 类型之间平滑过渡

OmniUPF 中的缓冲工作原理

技术机制：

OmniUPF 使用 两阶段缓冲架构：

1. eBPF 阶段（内核）：根据 FAR 动作标志检测需要缓冲的数据包



2. 用户空间阶段：在内存中存储和管理缓冲的数据包

缓冲过程：

关键细节：

缓冲端口：UDP 端口 22152（数据包从 eBPF 发送到用户空间）

封装：数据包以 GTP-U 封装，FAR ID 作为 TEID

存储：每个 FAR 的内存中存储缓冲，带有元数据（时间戳、方向、数据包大小）

限制：

每个 FAR 限制：10,000 个数据包（默认）

全局限制：所有 FAR 的总计 100,000 个数据包

TTL：30 秒（默认） - 超过 TTL 的数据包将被丢弃

清理：后台进程每 60 秒删除过期数据包

缓冲生命周期：

1. 缓冲启用：SMF 通过 PFCP 会话修改设置 FAR 动作 BUFF=1（第 2 位）

2. 数据包缓冲：eBPF 检测 BUFF 标志，封装数据包，发送到端口 22152



3. 用户空间存储：缓冲管理器使用 FAR ID、时间戳、方向存储数据包

4. 缓冲禁用：SMF 通过新转发参数设置 FAR 动作 FORW=1，BUFF=0

5. 刷新缓冲：用户空间重放缓冲的数据包，使用新 FAR 规则（新隧道端点）

6. 恢复正常：新数据包立即通过新路径转发

这对用户体验的重要性

现实世界影响：

场景 没有缓冲 有缓冲

切换期间的视频通话 通话冻结 1-2 秒，可能掉线 无缝，未中断

基站边缘的�件下载 下载失败，必须重新开始 下载持续不中断

移动中的在线游戏 连接掉线，游戏被踢 平稳游戏，无断开

汽车中的 VoIP 通话 通话在每次切换时掉线 清晰无缝，无掉线

火车上的视频流 视频缓冲，质量下降 平稳播放

笔记本电脑的移动热点 SSH 会话掉线，视频通话失败 所有连接保持

网络运营商的好处：

降低通话掉线率（CDR）：关键 KPI

提高客户满意度：用户不会注意到切换

降低支持成本：减少关于掉线的投诉

竞争优势：营销“最佳覆盖网络”

缓冲管理操作

操作员可以��过 Web UI 和 API 监控和控制缓冲：

监控：



查看每个 FAR ID 的缓冲数据包（计数、字节、年龄）

跟踪缓冲使用情况与限制（每个 FAR、全局）

对缓冲溢出发出警报或缓冲持续时间过长

识别卡住的缓冲（数据包缓冲 > TTL 阈值）

控制操作：

刷新缓冲：手动触发缓冲重放（故障排除）

清除缓冲：丢弃缓冲的数据包（清理卡住的缓冲）

调整 TTL：更改数据包过期时间

修改限制：增加每个 FAR 或全局缓冲容量

故障排除：

缓冲未刷新：检查 SMF 是否发送了 FAR 更新以禁用缓冲

缓冲溢出：增加限制或调查为何缓冲持续时间过长

缓冲中的旧数据包：TTL 可能太高，或 FAR 更新延迟

过度缓冲：可能表明移动性问题或 SMF 问题

有关缓冲操作的详细信息，请参见 缓冲管理指南。

缓冲配置

在 config.yml  中配置缓冲行为：

建议：

高移动性网络（高速公路、火车）：将 buffer_max_packets  增加到 20,000+

密集城市地区（频繁切换）：将 buffer_packet_ttl  减少到 15 秒

低延迟应用：将 buffer_packet_ttl  设置为 10 秒以防止过时数据

# 缓冲设置

buffer_port: 22152                # 缓冲数据包的 UDP 端口（默认）

buffer_max_packets: 10000         # 每个 FAR 的最大数据包（防止内存耗尽）

buffer_max_total: 100000          # 所有 FAR 的最大总数据包

buffer_packet_ttl: 30             # TTL（秒）（丢弃旧数据包）

buffer_cleanup_interval: 60       # 清理间隔（秒）



物联网网络：减少限制（物联网设备在切换期间产生的流量较少）

有关完整的配置选项，请参见 配置指南。

统计和监控

数据包统计：

实时数据包处理指标，包括：

接收数据包：来自所有接口的总接收量

发送数据包：发送到所有接口的总量

丢弃数据包：因错误或策略丢弃的数据包

GTP-U 数据包：隧道数据包计数

路由统计：

每条路由的转发指标：

路由命中：每条路由匹配的数据包

转发计数：每个目标的成功/失败

错误计数：无效 TEID、未知 UE IP

XDP 统计：

快速数据路径性能指标：

XDP 处理：在 XDP 层处理的数据包

XDP 通过：发送到网络栈的数据包

XDP 丢弃：在 XDP 层丢弃的数据包

XDP 中止：处���错误

N3/N6 接口统计：

每个接口的流量计数器：

N3 RX/TX：来自 RAN（gNB/eNodeB）的流量

N6 RX/TX：来自数据网络的流量



总数据包计数：汇总接口统计信息

有关监控详细信息，请参见 监控指南。

容量管理

eBPF 映射容量监控：

UPF 性能取决于 eBPF 映射容量。操作员可以：

实时监控映射使用情况，显示百分比指示器

查看每个 eBPF 映射的容量限制

颜色编码警报：

绿色（<50%）：正常

黄色（50-70%）：注意

琥珀色（70-90%）：警告

红色（>90%）：危急

需要监控的关键映射：

uplink_pdr_map：上行流量分类

downlink_pdr_map：下行 IPv4 流量分类

far_map：转发规则

qer_map：QoS 规则

urr_map：使用跟踪

容量规划：

每个 PDR 消耗一个映射条目（键大小 + 值大小）

映射容量在 UPF 启动时配置（内核内存限制）

超过容量将导致会话建立失败

有关容量监控，请参见 容量管理。



配置管理

UPF 配置：

查看和验证 UPF 操作参数：

N3 接口：与 RAN 连接的 IP 地址（GTP-U）

N6 接口：与数据网络连接的 IP 地址

N9 接口：用于 UPF 之间通信的 IP 地址（可选）

PFCP 接口：与 SMF 连接的 IP 地址

API 端口：REST API 监听端口

指标端点：Prometheus 指标端口

数据平面配置：

活动的 eBPF 数据路径参数：

活动 N3 地址：运行时 N3 接口绑定

活动 N9 地址：运行时 N9 接口绑定（如果启用）

有关配置查看的信息，请参见 配置视图。

故障排除

本节涵盖常见操作问题及其解决策略。

会话建立失败

症状：PFCP 会话无法创建，UE 无法建立数据连接

常见根本原因：

1. PFCP 关联未建立

验证 SMF 是否可以访问 UPF PFCP 接口（端口 8805）

检查会话视图中的 PFCP 关联状态

验证节点 ID 配置在 SMF 和 UPF 之间是否匹配



2. eBPF 映射容量耗尽

检查容量视图是否显示红色（>90%）映射使用情况

增加 UPF 配置中的 eBPF 映射大小

删除过时会话以释放映射空间

3. 无效的 PDR/FAR 配置

验证 UE IP 地址是否唯一且有效

检查 TEID 分配是否存在冲突

确保 FAR 引用有效的网络实例

4. 接口配置问题

验证 N3 接口 IP 是否��以从 gNB 访问

检查路由表以确保 N6 与数据网络的连接

确认 GTP-U 流量未被防火墙阻止

有关详细故障排除的信息，请参见 故障排除指南。

数据包丢失或转发问题

症状：UE 有连接但经历数据包丢失或没有流量

常见根本原因：

1. PDR 配置错误

验证上行 PDR TEID 是否与 gNB 分配的 TEID 匹配

检查下行 PDR UE IP 是否与分配的 IP 匹配

检查 SDF 过滤器是否过于严格

2. FAR 动作问题

验证 FAR 动作是否为转发（而不是丢弃或缓冲）

检查外部头创建参数是否正确

确保目标端点正确



3. QoS 限制超出

检查 QER MBR（最大比特率）设置

验证 GBR（保证比特率）分配

监控因速率限制导致的数据包丢失

4. 接口 MTU 问题

验证 GTP-U 开销（40-50 字节）是否导致分片

检查 N3/N6 接口的 MTU 配置

监控 ICMP 分片所需消息

缓冲相关问题

症状：数据包无限期缓冲，缓冲溢出

常见根本原因：

1. 缓冲在切换后未禁用

检查 FAR 缓冲标志（第 2 位）

验证 SMF 是否发送会话修改以禁用缓冲

如果卡住，手动通过控制面板禁用缓冲

2. 缓冲 TTL 到期

检查缓冲视图中的数据包年龄

验证缓冲 TTL 配置（默认可能过长）

手动清除过期缓冲

3. 缓冲容量耗尽

监控总缓冲使用情况和每个 FAR 的限制

检查是否存在导致过度缓冲的错误配置规则

调整 max_per_far 和 max_total 缓冲限制

有关缓冲故障排除的信息，请参见 缓冲操作。



统计异常

症状：意外的数据包计数，缺失的统计信息

常见根本原因：

1. 计数器溢出

eBPF 映射使用 64 位计数器（不应溢出）

检查日志中的计数器重置事件

验证 URR 报告是否正常工作

2. 路由统计未更新

验证 eBPF 程序是否附加到接口

检查内核版本是否支持所需的 eBPF 特性

查看 XDP 统计信息以查找处理错误

3. 接口统计不匹配

将 N3/N6 统计信息与内核接口计数器进行比较

检查流量是否绕过 eBPF（例如，本地路由）

验证所有流量是否通过 XDP 钩子

性能下降

症状：高延迟、低吞吐量、CPU 饱和

诊断：

1. 监控 XDP 统计：检查 XDP 丢弃或中止

2. 检查 eBPF 映射访问时间：��希查找应为亚微秒

3. 查看 CPU 利用率：eBPF 应在核心之间分配

4. 分析网络接口：验证 NIC 是否支持 XDP 卸载

可扩展性考虑：

XDP 性能：每个核心 10M+ 数据包每秒



PDR 容量：数百万个 PDR 仅受限于内核内存

会话计数：每个 UPF 实例数千个并发会话

吞吐量：在适当的 NIC 卸载下实现多千兆吞吐量

有关性能调整的信息，请参见 架构指南。

附加�档

组件特定操作指南

有关每个 UPF 组件的详细操作和故障排除：

配置指南

完整的配置参考，包括：

配置参数（YAML、环境变量、CLI）

操作模式（UPF/PGW-U/SGW-U）

XDP 附加模式概述

虚拟化兼容性（Proxmox、VMware、KVM、Hyper-V、VirtualBox）

NIC 兼容性和 XDP 驱动程序支持

不同场景的配置示例

映射大小和容量规划

XDP 模式指南

详细的 XDP 配置和优化，包括：

XDP 附加模式说明（通用/本地/卸载）

性能比较和基准测试

Proxmox VE 本地 XDP 设置的逐步指南

多队列配置以实现最佳性能

VMware ESXi、KVM 和 Hyper-V 的 XDP 设置


