
Introducción al

Despliegue de Ansible

en Omnitouch

Resumen

Omnitouch Network Services utiliza Ansible como su plataforma de

automatización de infraestructura para desplegar soluciones completas de red

celular (4G/5G) de manera consistente, repetible y automatizada. Este

documento proporciona una visión general de cómo aprovechamos Ansible

para orquestar despliegues complejos de telecomunicaciones.

¿Qué es Ansible?

Ansible es una herramienta de automatización de código abierto que te

permite:

Configurar sistemas

Desplegar software

Orquestar flujos de trabajo complejos

Gestionar infraestructura como código

Ansible utiliza un enfoque declarativo: describes el estado deseado de tus

sistemas, y Ansible se asegura de que alcancen ese estado.

Cómo Usa Omnitouch Ansible

Conceptos Clave

1. Inventario (Archivos de Hosts)

Define qué sistemas gestionar. Cada despliegue de cliente tiene un archivo de

hosts que describe:

Todas las máquinas virtuales en la red

Sus direcciones IP

Configuración de red

Parámetros específicos del servicio

Los archivos de hosts son con los que trabajarás para definir tu red.

Ver: Configuración del Archivo de Hosts

2. Roles

Define cómo configurar cada componente. Los roles son unidades reutilizables

que contienen:

Tareas (pasos a ejecutar)

Plantillas (plantillas de archivos de configuración)

Controladores (acciones desencadenadas por cambios)

Variables (valores de configuración predeterminados)

Ejemplos de roles para componentes de OmniCore: omnihss , omnisgwc ,

omnipgwc , omnidra , etc.

Estos son definidos por el equipo de ONS, mientras que puedes editarlos,

generalmente hay formas más limpias de hacer cualquier ajuste que puedas

necesitar desde tu archivo de hosts.

3. Playbooks

Orquesta cuándo y dónde se aplican los roles:

Los usamos esencialmente como grupos para los roles.

4. Variables de Grupo

Proporciona configuración específica del cliente que anula los valores

predeterminados del rol. Aquí es donde ocurre la personalización del cliente sin

modificar los roles base.

Ver: Variables de Grupo y Configuración

Arquitectura de Despliegue

Hosts File

Ansible PlaybookGroup Vars

Roles

SSH to Hosts Configure Systems Running Network

- name: Deploy EPC Core

 hosts: mme

 roles:

 - common

 - omnimme

El Proceso de Despliegue

1. Definir Infraestructura

Crea un archivo de hosts que describa tu topología de red:

Nota de Planificación: Antes de definir la infraestructura, revisa el Estándar

de Planificación de IP para obtener orientación sobre segmentación de red,

asignación de direcciones IP y organización de subredes.

Usuarios de Proxmox: Si despliegas en Proxmox, consulta Despliegue de

VM/LXC en Proxmox para la provisión automatizada de VM/contenedores.

Ver: Configuración del Archivo de Hosts y Referencia de Configuración

2. Personalizar Configuración

Establece variables específicas del cliente en group_vars :

#ToDo - Agregar enlace aquí a la referencia de configuración para la lista

completa

3. Ejecutar Playbooks

Desplegar la red:

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 mme_code: 1

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: customer

4. Despliegue Automatizado

Ansible hará:

Crear/provisionar VMs (si se utiliza la integración de Proxmox/VMware)

Configurar la red

Instalar paquetes de software desde la caché de APT

Desplegar código de aplicación

Configurar servicios con configuraciones del cliente

Iniciar servicios

Validar el despliegue

Componentes Clave que

Desplegamos

OmniCore (Plataforma de Núcleo de Paquete

4G/5G)

OmniHSS - Servidor de Suscriptores de Hogar

OmniSGW - Puerta de Enlace de Servicio (plano de control)

OmniPGW - Puerta de Enlace de Paquete (plano de control)

OmniUPF - Función de Plano de Usuario

OmniDRA - Agente de Enrutamiento Diameter

OmniTWAG - Puerta de Enlace de Acceso WLAN de Confianza

Ver: https://docs.omnitouch.com.au/docs/repos/OmniCore

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Plataforma de Voz y Mensajería)

OmniCall CSCF - Función de Control de Sesiones de Llamada (P-CSCF, I-

CSCF, S-CSCF)

OmniTAS - Servidor de Aplicaciones IMS (servicios VoLTE/VoNR)

OmniMessage - Centro de SMS (SMS-C)

OmniMessage SMPP - Soporte para el protocolo SMPP

OmniSS7 - Componentes de señalización SS7 (STP, HLR, CAMEL)

VisualVoicemail - Funcionalidad de correo de voz

Ver: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM

Plataforma CRM - Gestión de relaciones con clientes, auto-registro,

facturación

Ver: https://docs.omnitouch.com.au/docs/repos/OmniCharge

Servicios de Soporte

DNS - Resolución DNS de red

Servidor de Licencias - Gestión de licencias

Monitoreo - Prometheus, Grafana

Ver: Resumen de Arquitectura de Despliegue

Gestión de Paquetes

Utilizamos un modelo híbrido de distribución de paquetes:

Paquetes APT Precompilados

Todo el software de Omnitouch se distribuye como paquetes Debian (.deb):

Construidos a partir del código fuente en nuestra pipeline de CI/CD

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Versionados y probados

Alojados en repositorios de paquetes

Sistema de Caché APT

Los clientes pueden elegir entre:

1. Caché APT Local - Espejo de paquetes requeridos en el sitio para

despliegue fuera de línea

2. Repositorio Público - Acceso directo al repositorio de paquetes alojado

por Omnitouch

Ver: Sistema de Caché APT

Gestión de Licencias

Todos los componentes de software de Omnitouch requieren licencias válidas

gestionadas a través de un servidor de licencias central:

Los componentes verifican la validez de la licencia al iniciar

Las características se habilitan/deshabilitan según la licencia

El servidor de licencias puede ser local o alojado en la nube

Ver: Servidor de Licencias

Beneficios de Este Enfoque

Repetibilidad

Los mismos playbooks de Ansible pueden desplegar:

Laboratorios de desarrollo

Entornos de prueba

Redes de producción

Sitios de clientes

Consistencia

Cada despliegue utiliza las mismas configuraciones probadas, reduciendo el

error humano.

Control de Versiones

La infraestructura se define como código en Git:

Rastrear todos los cambios

Revisar antes del despliegue

Revertir si es necesario

Personalización Sin Complejidad

Los clientes pueden personalizar su despliegue a través de group_vars sin

modificar los roles centrales.

Despliegue Rápido

Desplegar una red celular completa en horas en lugar de días o semanas.

Comenzando

Requisitos Previos

Antes de ejecutar los playbooks de Ansible, necesitas configurar un entorno

virtual de Python e instalar las dependencias requeridas.

1. Crear un Entorno Virtual de Python

Crea un entorno aislado de Python para el despliegue de Ansible:

2. Activar el Entorno Virtual

python3 -m venv .venv

Activa el entorno virtual:

En Windows, usa:

3. Instalar Paquetes Requeridos

Instala todas las dependencias desde el archivo requirements.txt:

Esto instalará Ansible y todos los paquetes de Python necesarios para la

automatización del despliegue de Omnitouch.

Nota: Mantén el entorno virtual activado siempre que ejecutes comandos de

Ansible. Puedes desactivarlo cuando termines ejecutando deactivate .

Pasos de Despliegue

1. Revisa la Configuración del Archivo de Hosts para entender cómo definir tu

red

2. Aprende sobre Variables de Grupo para personalización

3. Comprende el Sistema de Caché APT para la gestión de paquetes

4. Revisa la Arquitectura de Despliegue para ver cómo encaja todo

5. ¡Despliega!

Próximos Pasos

Estándar de Planificación de IP - Planifica tu arquitectura de red y

asignación de IP

source .venv/bin/activate

.venv\Scripts\activate

pip install -r requirements.txt

Configuración del Archivo de Hosts - Aprende cómo definir tu topología de

red

Sistema de Caché APT - Comprende la distribución de paquetes

Servidor de Licencias - Aprende sobre la gestión de licencias

Resumen de Arquitectura de Despliegue - Ve la imagen completa

Configuración de Variables de Grupo - Personaliza tu despliegue

Playbooks de Utilidad - Herramientas operativas para chequeos de salud,

copias de seguridad y mantenimiento

Repositorio APT y

Distribución de

Paquetes

Descripción General

El sistema APT de Omnitouch proporciona distribución de paquetes para todos

los despliegues. Se sirven dos tipos de contenido:

1. Paquetes APT — Paquetes Debian instalados a través de apt install

2. Lanzamientos Binarios — Binarios precompilados descargados

directamente (exportadores de Prometheus, agentes, etc.)

Se admiten dos modelos de despliegue:

1. Acceso Directo — Las máquinas virtuales obtienen paquetes

directamente de apt.omnitouch.com.au

2. Espejo de Caché Local — Un servidor local sincroniza desde Omnitouch y

sirve paquetes a las máquinas virtuales (para despliegues fuera de

línea/aislados)

Arquitectura

Contenido Servido

El servidor APT alberga todo el contenido requerido para los despliegues:

Tipo de

Contenido
Descripción Ruta

Paquetes

Omnitouch

Paquetes .deb

personalizados (omnihss,

omnimme, etc.)

/dists/<distro>/

Paquetes de

Ubuntu

Paquetes de Ubuntu en

caché con todas las

dependencias

/<distro>/pool/main/

Lanzamientos

de GitHub

Binarios precompilados

(Prometheus, Grafana,

Homer, etc.)

/releases/<org>/<repo>/

Tarballs de

Fuente

Archivos fuente para

aplicaciones web

(CGrateS_UI, speedtest)

/repos/

Paquetes de

Terceros

Galera, FRR, InfluxDB,

KeyDB, etc.
/releases/<vendor>/

Variables de Configuración

Dos conjuntos de variables separadas controlan la distribución de paquetes.

Comprender sus propósitos es esencial para una configuración correcta.

Lo que Configuran

Variables de

Configuración

apt_repo

(fuentes de paquetes

APT)

remote_apt_*

(descargas binarias)

/etc/apt/sources.list

Descargas binarias

/releases/*

Propósitos de las Variables

Conjunto de

Variables
Propósito Usado Para

apt_repo

Configura las

fuentes de

paquetes APT

/etc/apt/sources.list y

/etc/apt/sources.list.d/*.list

remote_apt_*

Configura las

URL de

descarga de

binarios

Descargando archivos de la ruta

/releases/ (Node Exporter, Zabbix,

Nagios, etc.)

Cuándo Se Usa Cada Conjunto de Variables

Escenario
Fuentes APT

(apt_repo)

Descargas Binarias

(remote_apt_*)

use_apt_cache:

true

Usa

apt_repo.apt_server
Usa apt_repo.apt_server

use_apt_cache:

false

Usa apt_repo.* con

credenciales

Usa remote_apt_* con

credenciales

Cuando use_apt_cache: false , ambos conjuntos de variables son

requeridos.

Opción 1: Acceso Directo

Para despliegues con conectividad a Internet, las máquinas virtuales obtienen

paquetes directamente del servidor APT de Omnitouch.

Requisitos de Red

Lista Blanca de IP de Origen: Tu dirección IP pública debe estar en la lista

blanca en el servidor APT de Omnitouch. Durante la configuración, proporciona

tus subredes de origen a Omnitouch. A cambio, recibirás:

Nombre de usuario y contraseña para la autenticación básica HTTP

FQDN para el servidor APT

Requisitos de Firewall: Se debe permitir el acceso saliente a los siguientes

rangos de IP de Omnitouch:

Red Rango

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:dec0::/48

ASN AS152894

Servicios que requieren acceso a la infraestructura de Omnitouch:

Servicio Puerto Protocolo Propósito

Servidor APT 80 TCP Descargas de paquetes

Servidor APT 53 TCP/UDP
Resolución DNS para

apt.omnitouch.com.au

Servidor de

Licencias
123 UDP

Sincronización de tiempo NTP para

validación de licencias

Servidor de

Licencias
53 TCP/UDP

Resolución DNS para validación de

licencias

Asegúrate de que el tráfico HTTP (TCP/80), NTP (UDP/123) y DNS (TCP+UDP/53)

esté permitido hacia los rangos de IP de Omnitouch.

Configuración

Parámetros

Fuentes de Paquetes APT (apt_repo)

all:

 vars:

 use_apt_cache: false

 # Configuración de fuentes de paquetes APT

 # Configura /etc/apt/sources.list para comandos apt install

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "tu-usuario"

 apt_repo_password: "tu-contraseña"

 # Configuración de descargas binarias

 # Usado para descargar archivos de la ruta /releases/

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "tu-usuario"

 remote_apt_password: "tu-contraseña"

Parámetro Tipo Requerido Predeterminado

apt_repo.apt_server Cadena Sí -

apt_repo.apt_repo_username Cadena Sí -

apt_repo.apt_repo_password Cadena Sí -

Descargas Binarias (remote_apt_*)

Parámetro Tipo Requerido Predeterminado Descr

remote_apt_server Cadena Sí -

Nombr

host o

servido

descar

binaria

remote_apt_port Entero No 80

Puerto

servido

descar

binaria

remote_apt_protocol Cadena No http

Protoco

(http

https

remote_apt_user Cadena Sí -

Nombr

usuario

autent

básica

para

descar

remote_apt_password Cadena Sí -

Contra

de

autent

básica

para

descar

General

Parámetro Tipo Requerido Predeterminado Descripció

use_apt_cache Booleano Sí -

Debe ser

false para

acceso

directo

Patrones de URL (Acceso Directo)

Fuentes de Paquetes APT (configuradas en /etc/apt/sources.list):

Descargas Binarias (usadas por tareas get_url de Ansible):

Cómo Funciona

deb [trusted=yes] http://{apt_repo_username}:

{apt_repo_password}@{apt_server}/ noble main

http://{remote_apt_user}:

{remote_apt_password}@{remote_apt_server}:

{remote_apt_port}/releases/prometheus/node_exporter/node_exporter-

1.8.1.linux-amd64.tar.gz

Las máquinas virtuales se autentican con autenticación básica HTTP tanto para

paquetes APT como para descargas binarias. Los paquetes del sistema Ubuntu

también se sirven desde el servidor de Omnitouch (pre-caché), por lo que las

máquinas virtuales no necesitan acceso a los espejos de Ubuntu.

Opción 2: Espejo de Caché Local

Para despliegues fuera de línea, aislados o con limitaciones de ancho de banda,

despliega una caché APT local que sincroniza todo el contenido desde

Omnitouch.

Arquitectura

Red del Cliente

Infraestructura de

Omnitouch
Sincronización Inicial

(requiere internet)

Servir Paquetes

(capaz de estar fuera

de línea)

Servir Paquetes

(capaz de estar fuera

de línea)

Servir Paquetes

(capaz de estar fuera

de línea)

apt.omnitouch.com.au
Espejo de Caché APT

(apt_cache_servers)

VM

VM

VM

Configuración

Define el servidor de caché en tu archivo de hosts con su configuración de

repositorio:

Cómo funciona:

Servidor de caché (192.168.1.100): Usa credenciales remote_apt_*

para sincronizar paquetes desde apt.omnitouch.com.au:80

Todos los demás hosts: Derivan automáticamente

apt_repo.apt_server: "192.168.1.100" y obtienen desde la caché en el

puerto 8080 sin credenciales

Parámetros

Fuentes de Paquetes APT (apt_repo)

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # El servidor de caché sincroniza paquetes desde el

repositorio autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "tu-usuario"

 remote_apt_password: "tu-contraseña"

all:

 vars:

 # use_apt_cache: true # Se establece automáticamente cuando

existe el grupo apt_cache_servers

 # apt_repo.apt_server: derivado automáticamente a

192.168.1.100 (primer servidor de caché)

Parámetro Tipo Requerido Predeterminado

apt_repo.apt_server Cadena Sí
Derivado

automáticamente

apt_repo.apt_repo_username Cadena No -

apt_repo.apt_repo_password Cadena No -

Sincronización del Servidor de Caché (remote_apt_*)

Estas variables configuran cómo el servidor de caché sincroniza contenido

desde Omnitouch:

Parámetro Tipo Requerido Predeterminado Descr

remote_apt_server Cadena Sí -

Servid

de Om

desde

sincron

remote_apt_port Entero No 80

Puerto

servido

de Om

remote_apt_protocol Cadena No http

Protoco

para la

conexi

sincron

remote_apt_user Cadena Sí -

Creden

para

sincron

desde

Omnito

remote_apt_password Cadena Sí -

Creden

para

sincron

desde

Omnito

General

Parámetro Tipo Requerido Predeterminado Descri

use_apt_cache Booleano No true

Se estable

automática

en true cu

existe el g

apt_cache

apt_cache_port Entero No 8080

Puerto en e

escucha el

de caché lo

Patrones de URL (Modo Caché)

Fuentes de Paquetes APT (configuradas en /etc/apt/sources.list):

Descargas Binarias (usadas por tareas get_url de Ansible):

No se requieren credenciales para el acceso a la caché; utiliza la configuración

APT [trusted=yes] .

Desplegando la Caché

1. Provisión del servidor de caché (VM o contenedor LXC con disco de 50+

GB)

2. Ejecuta el libro de jugadas de configuración de la caché:

deb [trusted=yes] http://192.168.1.100:8080/noble noble main

http://192.168.1.100:8080/releases/prometheus/node_exporter/node_expo

1.8.1.linux-amd64.tar.gz

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

3. Verifica la caché navegando a http://192.168.1.100:8080/

Qué Se Sincroniza

El espejo de caché sincroniza todo el contenido desde el servidor APT de

Omnitouch utilizando descarga recursiva con wget:

Espejo de Caché Local

apt.omnitouch.com.au

Paquetes .deb de

Omnitouch

/pool/main/

Paquetes de Ubuntu +

Deps

/noble/pool/main/

Lanzamientos de GitHub

/releases/

Tarballs de Fuente

/repos/

Metadatos APT

/dists/

Paquetes .deb de

Omnitouch

Paquetes de Ubuntu +

Deps
Lanzamientos de GitHub Tarballs de Fuente Metadatos APT

Directorios de contenido sincronizados:

Ruta Contenido

/dists/<distro>/
Metadatos del repositorio APT (archivos Packages,

Release)

/pool/main/ Paquetes .deb personalizados de Omnitouch

/<distro>/pool/main/ Paquetes de Ubuntu y todas las dependencias

/releases/
Lanzamientos de GitHub (Prometheus, Grafana,

Zabbix, etc.)

/repos/ Tarballs fuente (Erlang, Elixir, CGrateS_UI, etc.)

Después de la sincronización inicial, la caché puede servir todos los paquetes

sin conectividad a Internet.

Cómo Funciona

El espejo de caché utiliza wget --recursive con autenticación básica HTTP

para descargar todo el contenido desde el servidor APT de Omnitouch. Las

sincronizaciones posteriores solo descargan archivos nuevos/cambiados

(marcado de tiempo).

Configuración Automática

Cuando existe un grupo apt_cache_servers en tu inventario, el sistema

automáticamente:

1. Establece use_apt_cache: true para todos los hosts (a menos que se

anule explícitamente)

2. Deriva apt_repo.apt_server de la IP ansible_host del primer servidor de

caché

Ejemplo de Configuración Mínima

Lo que sucede automáticamente:

Todos los hosts (excepto el servidor de caché) obtienen use_apt_cache:

true

Todos los hosts (excepto el servidor de caché) obtienen

apt_repo.apt_server: "192.168.1.100"

Todos los hosts obtienen desde http://192.168.1.100:8080/ sin

credenciales

El servidor de caché sincroniza paquetes desde http://tu-usuario:tu-

contraseña@apt.omnitouch.com.au/

Anular Comportamiento Automático

Para forzar el acceso directo incluso con servidores de caché definidos:

apt_cache_servers:

 hosts:

 apt-cache-01:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # El servidor de caché sincroniza contenido desde el

repositorio de Omnitouch

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "tu-usuario"

 remote_apt_password: "tu-contraseña"

Resumen de Configuración

Escenario 1: Acceso Directo al Servidor APT

(Sin Caché)

Todos los hosts obtienen paquetes directamente del servidor del repositorio

APT.

all:

 vars:

 use_apt_cache: false # Forzar acceso directo incluso con

servidores de caché definidos

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "usuario"

 apt_repo_password: "contraseña"

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "usuario"

 remote_apt_password: "contraseña"

Resultado: Todos los hosts generan deb [trusted=yes]

http://usuario:contraseña@apt.omnitouch.com.au/ noble main

Escenario 2: Servidor de Caché APT Definido

en el Archivo de Hosts (Automático)

El servidor de caché está en tu inventario y será desplegado/sincronizado por

Ansible.

all:

 vars:

 use_apt_cache: false

 # Fuentes de paquetes APT - usadas por todos los hosts

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "usuario"

 apt_repo_password: "contraseña"

 # Descargas binarias - usadas por todos los hosts

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "usuario"

 remote_apt_password: "contraseña"

Resultado:

Servidor de caché: Sincroniza desde

http://usuario:contraseña@apt.omnitouch.com.au:80/

Todos los demás hosts: Generan deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sin credenciales)

Escenario 3: Caché APT Remota NO en el

Archivo de Hosts (Manual)

El servidor de caché existe en otro lugar y ya está configurado (no gestionado

por tu Ansible).

apt_cache_servers:

 hosts:

 cache-server:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # El servidor de caché sincroniza paquetes desde el

repositorio autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "usuario"

 remote_apt_password: "contraseña"

No se necesita configuración en all: vars:

Todo se deriva automáticamente del grupo apt_cache_servers

Resultado: Todos los hosts generan deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sin credenciales)

Ejemplo Completo

Aquí hay un ejemplo completo que muestra la configuración del servidor de

caché con múltiples hosts de aplicación:

all:

 vars:

 use_apt_cache: true

 # Apuntar todos los hosts al servidor de caché externo

 apt_repo:

 apt_server: "192.168.1.100" # IP del servidor de caché

externo

 apt_repo_port: 8080 # La caché generalmente se

ejecuta en el puerto 8080

No se necesita grupo apt_cache_servers

No se necesita remote_apt_* (la caché ya está configurada

externamente)

Grupo del Servidor de Caché APT

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 10.179.1.114

 gateway: 10.179.1.1

 host_vm_network: "vmbr0"

 num_cpus: 4

 memory_mb: 16384

 proxmoxLxcDiskSizeGb: 120

 vars:

 # El servidor de caché sincroniza paquetes desde el

repositorio autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "customer-username"

 remote_apt_password: "customer-secure-token"

Servidores de Aplicación

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.179.2.177

 gateway: 10.179.2.1

Configuración Global

all:

 vars:

 # Auto-configuración (no se necesita configuración manual):

 # - use_apt_cache: true (auto-habilitado cuando existe

Lo que sucede durante el despliegue:

1. Servidor de caché (10.179.1.114):

Usa remote_apt_* de su sección vars:

Descarga todos los paquetes desde http://customer-

username:customer-secure-token@apt.omnitouch.com.au:80/

Sirve paquetes en el puerto 8080 a través de nginx

2. Hosts de aplicación (customer-hss01 , customer-mme01 , customer-

dns01):

Detectan automáticamente que existe el grupo apt_cache_servers

Establecen automáticamente use_apt_cache: true

Derivan automáticamente apt_repo.apt_server: "10.179.1.114"

Generan: deb [trusted=yes] http://10.179.1.114:8080/noble noble

main

Obtienen todos los paquetes desde el servidor de caché (sin

credenciales requeridas)

Actualizando la Caché

Para sincronizar nuevos paquetes o actualizaciones:

Esto sincroniza de manera incremental todo el contenido desde el servidor APT

de Omnitouch:

Nuevas versiones de paquetes de Omnitouch

apt_cache_servers)

 # - apt_repo.apt_server: "10.179.1.114" (auto-derivado del

servidor de caché)

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Nuevos paquetes de Ubuntu y dependencias

Nuevos lanzamientos de GitHub

Tarballs de fuente actualizados

La sincronización utiliza wget --timestamping , por lo que se omiten los

archivos existentes sin cambios, haciendo que la re-sincronización sea rápida.

Nota: El servidor APT de Omnitouch (apt.omnitouch.com.au) es la única

fuente de verdad para todos los paquetes. Ejecuta services/apt.yml en el

servidor apt primero para construir/actualizar paquetes, luego ejecuta

services/apt_cache.yml en los espejos de caché para sincronizar.

Solución de Problemas

La Actualización de APT Falla con 401 No

Autorizado

Síntomas:

Causas posibles:

Configuración de apt_repo definida en all: vars: en lugar de

apt_cache_servers: vars:

Hosts intentando acceder al repositorio autenticado directamente en lugar

de a la caché

apt_repo_username o apt_repo_password incorrectos

IP de origen no en la lista blanca en el servidor APT de Omnitouch

Usando credenciales de caché para acceso directo o viceversa

Resolución:

Failed to fetch

http://10.179.1.115:80/noble/dists/noble/main/binary-

amd64/Packages 401 Unauthorized

1. Verifica el alcance de la configuración: Asegúrate de que apt_repo

con credenciales esté definido en apt_cache_servers: vars: , NO en all:

vars:

2. Verifica el modo de caché: Al usar caché, los hosts deben conectarse al

servidor de caché (puerto 8080), no al repositorio (puerto 80)

3. Verifica las fuentes generadas: En el host que falla, verifica

/etc/apt/sources.list.d/omnitouch.list

Correcto (modo caché): deb [trusted=yes]

http://10.179.1.114:8080/noble noble main

Incorrecto (tiene credenciales en el lugar equivocado): deb

[trusted=yes] http://usuario:contraseña@10.179.1.115:80/noble

noble main

4. Verifica que las credenciales sean correctas para tu modo de despliegue

5. Confirma que tu IP pública esté en la lista blanca con Omnitouch (si usas

acceso directo)

Las Descargas Binarias Fallan (Node Exporter,

Zabbix, etc.)

Síntomas: El libro de jugadas de Ansible falla al descargar archivos de la ruta

/releases/

Causas posibles:

Variables remote_apt_* no configuradas

remote_apt_user o remote_apt_password incorrectos

Falta remote_apt_server cuando use_apt_cache: false

Resolución:

1. Asegúrate de que todas las variables remote_apt_* estén definidas

2. Verifica que las credenciales coincidan con las proporcionadas por

Omnitouch

3. Verifica que remote_apt_server apunte al host correcto

El Servidor de Caché No Puede Sincronizar

Síntomas: El libro de jugadas del servidor de caché falla al descargar paquetes

Causas posibles:

El servidor de caché no tiene acceso a Internet

Credenciales remote_apt_* incorrectas

Firewall bloqueando conexiones salientes a Omnitouch

Resolución:

1. Verifica que el servidor de caché pueda alcanzar apt.omnitouch.com.au en

el puerto 80

2. Verifica las credenciales remote_apt_*

3. Revisa las reglas del firewall para el acceso saliente

Documentación Relacionada

Configuración del Archivo de Hosts — Configuración de inventario y

variables

Referencia de Configuración — Referencia completa de parámetros

Arquitectura de Despliegue — Arquitectura general del sistema

Despliegue en Proxmox — Desplegando el servidor de caché como

contenedor LXC

Referencia de

Configuración

Descripción General

Este documento proporciona una referencia completa para configurar

implementaciones de OmniCore a través de archivos de hosts. La configuración

se define principalmente en archivos de inventario de hosts con mínimas

sobreescrituras de group_vars necesarias para implementaciones modernas.

Para documentación específica del producto, consulte:

OmniCore: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge: https://docs.omnitouch.com.au/docs/repos/OmniCharge

Enfoque de Configuración

Las implementaciones modernas de OmniCore utilizan un modelo de

configuración simplificado:

Principio Clave: La mayor parte de la configuración se define directamente en

el archivo de hosts. Los valores predeterminados de los roles manejan la

mayoría de las configuraciones, con group_vars utilizados solo para

personalizaciones específicas.

Planificación de Red

Antes de configurar los hosts, revise el Estándar de Planificación de IP para

obtener orientación sobre:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Estrategias de segmentación de red

Asignación de direcciones IP

Organización de subredes

Manejo de IP públicas

Parámetros Comunes de Host

#ToDo - Solo diga que consulte hosts-file-configuration.md para esto

Flags Específicos del Servicio

Variables Globales (all:vars)

La sección all:vars contiene configuraciones a nivel de implementación. Las

implementaciones modernas utilizan variables globales mínimas con la mayor

parte de la configuración en los valores predeterminados de los roles.

Variables Globales Esenciales

Autenticación y Acceso

cdrs_enabled: True # Habilitar generación de CDR

in_pool: False # Excluir del grupo de balanceo

de carga

online_charging_enabled: False # Habilitar integración OCS

recording: True # Habilitar grabación de llamadas

(AS)

populate_crm: False # Población inicial de CRM

ansible_connection: ssh

ansible_user: root

ansible_password: password

ansible_become_password: password

Alternativa: Use claves SSH en lugar de contraseñas:

Identidad del Cliente

Configuración de PLMN

Propósito: Identifica de manera única su red móvil. Se utiliza para la

construcción del dominio Diameter.

Nombres de Red

Mostrado: Nombres de red que se muestran en dispositivos UE en

Configuración > Red Móvil.

Configuración de DNS

ansible_ssh_private_key_file: '/path/to/key.pem'

customer_name_short: omnitouch

customer_legal_name: "YKTN Lab"

site_name: YKTN

region: AU

TZ: Australia/Melbourne

plmn_id:

 mcc: '001' # Código de País Móvil (3 dígitos)

 mnc: '01' # Código de Red Móvil (2-3 dígitos)

 mnc_longform: '001' # MNC con ceros a la izquierda (siempre

3 dígitos)

diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

network_name_short: Omni

network_name_long: Omnitouch

tac_list: [10100,100] # Lista TAC predeterminada (se

puede sobrescribir por MME)

Configuración del Repositorio APT

Valores Predeterminados Automáticos: Cuando se define un grupo

apt_cache_servers con hosts:

use_apt_cache se establece automáticamente en True (a menos que se

establezca explícitamente en False)

apt_repo.apt_server se establece automáticamente en la IP del primer

servidor de caché

Consulte: Sistema de Caché APT

Servidor de Licencias

netplan_DNS: False # Usar systemd-resolved en lugar

de DNS de netplan

Configuración manual (opcional si existe el grupo

apt_cache_servers)

use_apt_cache: True # Usar caché APT local vs acceso

directo al repositorio

apt_repo:

 apt_server: "10.10.1.114" # Servidor de caché APT o

servidor de repositorio

 # Credenciales solo necesarias cuando use_apt_cache: False

 # apt_repo_username: "omni"

 # apt_repo_password: "omni"

Configuración de descargas de binarios y sincronización de caché

Usado para: (1) descargar binarios de /releases/ cuando

use_apt_cache: false

(2) sincronización del servidor de caché desde

Omnitouch cuando use_apt_cache: true

remote_apt_server: "apt.omnitouch.com.au"

remote_apt_user: "omni"

remote_apt_password: "omni"

Consulte: Servidor de Licencias

Configuración de MME

Configuración de SAEGW

Configuración de IMS

Configuración del Monitor RAN

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

mme_dns: False # Habilitar resolución DNS de MME

mtu: 1400 # Unidad de Transmisión Máxima

ims_dra_support: False # Rutar IMS a través de DRA

enable_homer: False # Habilitar captura SIP de Homer

Configuración del Cortafuegos

use_nokia_monitor: True

use_casa_monitor: True

install_influxdb: True

influxdb_user: monitor

influxdb_password: "secure-password"

influxdb_organisation_name: omnitouch

influxdb_nokia_bucket_name: nokia-monitor

influxdb_casa_bucket_name: casa-monitor

influxdb_operator_token: "generated-token"

influxdb_url: http://127.0.0.1:8086

enable_pm_collection: False

enable_alarm_collection: False

enable_location_collection: False

enable_ran_status_collection: True

enable_nokia_rectifier_collection: False

collection_interval_in_seconds: 120

ran_monitor:

 sql:

 user: ran_monitor

 password: "secure-password"

 database_host: 127.0.0.1

 database_name: ran_monitor

 influxdb:

 address: 10.10.2.135

 port: 8086

 nokia:

 airscales:

 - address: 10.7.15.66

 name: site-Lab-Airscale

 port: 8080

 web_password: nemuuser

 web_username: Nemuadmin

Servidores DNS de Roaming

Usuarios Locales (Claves SSH)

firewall:

 allowed_ssh_subnets:

 - '10.0.1.0/24'

 - '10.0.0.0/24'

 allowed_ue_voice_subnets:

 - '10.0.1.0/24'

 allowed_carrier_voice_subnets:

 - '10.0.1.0/24'

 allowed_signaling_subnets:

 - '10.0.1.0/24'

roaming_dns_servers:

 wildcard: ['10.0.99.1']

 # DNS específicos del operador (basados en PLMN)

 123456: # Ejemplo Operador 1

 - '10.10.2.197'

 654321: # Ejemplo Operador 2

 - '10.10.0.4'

local_users:

 usera:

 name: Ejemplo Usuario A

 public_key: "ssh-rsa AAAAB3Nza..."

 userb:

 name: Ejemplo Usuario B

 public_key: "ssh-ed25519 AAAAC3..."

Configuración del Hipervisor

Proxmox

proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: password

 proxmoxApiTokenName: AnsibleToken

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve01

Configuraciones predeterminadas de Proxmox

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve01'

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard_24.04-

2_amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD_RAID0

proxmoxLxcBridgeName: vmbr0

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"

proxmoxStorage: SSD_RAID0

vLabNetmask: 24

PROXMOX_API_TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask_cidr: 24

VMware vCenter

Documentación Relacionada

Estándar de Planificación de IP - Arquitectura de red y directrices de

asignación de IP

Configuración del Archivo de Hosts - Cómo estructurar archivos de hosts

Configuración de Variables de Grupo - Cuándo y cómo usar group_vars

Configuración de Netplan - IPs secundarias y configuración de múltiples NIC

Arquitectura de Implementación - Cómo interactúan los componentes

Sistema de Caché APT - Gestión de paquetes

Servidor de Licencias - Configuración de licencias

Documentación del Producto

Para guías operativas detalladas y configuración avanzada:

Componentes de OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore

vcenter_ip: "vcenter.example.com"

vcenter_username: "administrator@vsphere.local"

vcenter_password: "password"

vcenter_datacenter: "DC1"

vcenter_vm_template: ubuntu-24.04-model

vcenter_vm_disk_size: 50

vcenter_folder: "Omnicore"

host_vm_network: "Management"

vhosts:

 "10.0.0.23":

 vcenter_cluster_ip: 10.0.0.23

 vcenter_datastore: "datastore1 (3)"

netmask: 255.255.255.0

https://docs.omnitouch.com.au/docs/repos/OmniCore

Componentes de OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Descripción General de

la Arquitectura de

Despliegue

Descripción

Este documento proporciona una vista completa de cómo se despliega el

software de red celular de Omnitouch Network Services utilizando Ansible,

mostrando cómo todos los componentes encajan para crear una red 4G/5G

funcional.

Consulte el Estándar de Planificación IP para obtener pautas detalladas sobre la

ubicación de los componentes, la asignación de direcciones IP y el manejo de IP

públicas.

Ejemplo Completo de Despliegue

0. Aprovisionamiento de Infraestructura

(Opcional)

Para despliegues en Proxmox, aprovisione VMs/LXCs antes de la configuración:

Consulte: Despliegue de VM/LXC en Proxmox

Desplegar VMs en Proxmox

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

O desplegar contenedores LXC (solo laboratorio/prueba)

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

1. Definición de Infraestructura (Archivo de

Hosts)

Consulte: Configuración del Archivo de Hosts

2. Personalización (group_vars)

La carpeta group_vars es donde podemos almacenar cualquier anulación de

configuración necesaria a nivel de host, sitio o red.

Por ejemplo, tendría una carpeta con su configuración de SMSc de

OmniMessage, los troncales SIP a los que se conecta su TAS vivirían aquí, toda

su lógica de enrutamiento Diameter, etc., etc.

Consulte: Configuración de Variables de Grupo

3. Distribución de Paquetes (Cache APT)

Definir qué desplegar y dónde

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

... todos los demás componentes

Configurar de dónde obtener paquetes

apt_repo:

 apt_server: "10.254.10.223" # IP del servidor de caché o

servidor de repositorio directo

use_apt_cache: false # true = usar caché local, false = acceso

directo al repositorio

Consulte: Sistema de Caché APT

4. Configuración de Licencia

Consulte: Servidor de Licencias

5. Ejecutar Despliegue

Los componentes individuales se pueden desplegar ejecutando

services/twag.yml , por ejemplo, pero services/all.yml manejará todo, y

puede usar --limit=myhost o --limit=mmee,sgw , etc., para limitar los hosts

en los que estamos trabajando.

Documentación Relacionada

Introducción al Despliegue de Ansible - Introducción

Configuración del Archivo de Hosts - Definición de infraestructura

Estándar de Planificación IP - Arquitectura de red y asignación de IP

Configuración de Variables de Grupo - Personalización

Sistema de Caché APT - Gestión de paquetes

Servidor de Licencias - Gestión de licencias

Apuntar componentes al servidor de licencias

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

Desplegar red completa

ansible-playbook -i hosts/customer/host_files/production.yml

services/all.yml

O desplegar componentes específicos

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/ims.yml

Documentación del Producto

Para obtener información detallada sobre la configuración de cada

componente:

OmniCore (Núcleo de Paquetes 4G/5G):

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS, OmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voz y Mensajería):

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Facturación):

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentación Principal: https://docs.omnitouch.com.au/

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Configuración de

Variables de Grupo

Descripción General

El directorio group_vars es donde almacenas archivos de configuración

personalizados que sobrescriben las plantillas predeterminadas.

Aquí es donde viven tus configuraciones específicas del cliente: troncales SIP,

reglas de enrutamiento Diameter, lógica de enrutamiento de SMS, planes de

marcado y cualquier otra personalización donde no desees la configuración

predeterminada - Vive en group_vars .

Ubicación: hosts/{Customer}/group_vars/

Cómo Funciona

Los roles de Ansible tienen plantillas de configuración predeterminadas. Para

personalizar para un despliegue específico, coloca tus archivos personalizados

en group_vars y haz referencia a ellos en tu archivo de hosts.

Ejemplo 1: Plantilla de

Configuración Personalizada

(OmniMessage)

Algunos componentes aceptan plantillas de configuración Jinja2 personalizadas.

Plantilla Predeterminada del Rol → Sobrescritura de group_vars (si

se especifica) → Configuración Desplegada

Estructura de Archivos

Referencia en el Archivo de Hosts

Qué sucede:

1. Ansible encuentra smsc_template_config: smsc_controller.exs

2. Busca en hosts/Customer/group_vars/smsc_controller.exs

3. Lo plantilla con Jinja2 (puede usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Despliega en /etc/omnimessage/runtime.exs

5. Reinicia el servicio

Sin smsc_template_config , se utiliza la plantilla predeterminada del rol.

Detalles de configuración: Ver

https://docs.omnitouch.com.au/docs/repos/OmniCall

Ejemplo 2: Colecciones de Archivos

de Configuración (Pasarelas y

hosts/Customer/

└── group_vars/

 └── smsc_controller.exs # Tu plantilla de configuración

personalizada

omnimessage:

 hosts:

 customer-smsc-controller01:

 ansible_host: 10.10.3.219

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 smsc_template_config: smsc_controller.exs # Referencia el

nombre de tu plantilla en group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCall

Planes de Marcado de OmniTAS)

Algunos componentes utilizan directorios de archivos de configuración.

Estructura de Archivos

Referencia en el Archivo de Hosts

Qué sucede:

1. Ansible encuentra gateways_folder: "gateways_prod"

2. Copia todos los archivos de hosts/Customer/group_vars/gateways_prod/ a

/etc/freeswitch/sip_profiles/

hosts/Customer/

└── group_vars/

 ├── gateways_prod/ # Configuraciones de pasarelas

SIP

 │ ├── gateway_carrier1.xml

 │ ├── gateway_carrier2.xml

 │ └── gateway_emergency.xml

 ├── gateways_lab/ # Pasarelas de laboratorio

 │ └── gateway_test.xml

 └── dialplan/ # Reglas de enrutamiento de

llamadas

 ├── mo_dialplan.xml # Móvil Originado (saliente)

 ├── mt_dialplan.xml # Móvil Terminado (entrante)

 └── emergency.xml

applicationserver:

 hosts:

 customer-tas01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 gateways_folder: "gateways_prod" # Referencia tu carpeta

de pasarelas a usar en este host

3. Copia todos los archivos de hosts/Customer/group_vars/dialplan/ al

directorio de plantillas de OmniTAS

4. Los servicios cargan las configuraciones

Diferentes entornos: Usa diferentes carpetas por entorno:

gateways_folder: "gateways_lab"

gateways_folder: "gateways_prod"

gateways_folder: "gateways_customer_specific"

Detalles de configuración: Ver

https://docs.omnitouch.com.au/docs/repos/OmniCall

Ejemplo 3: Plantilla de

Configuración Personalizada

(OmniHSS)

El Servidor de Suscriptores en el Hogar acepta plantillas de configuración de

tiempo de ejecución personalizadas.

Estructura de Archivos

hosts/Customer/

└── group_vars/

 └── hss_runtime.exs.j2 # Tu plantilla de configuración

HSS personalizada

https://docs.omnitouch.com.au/docs/repos/OmniCall

Referencia en el Archivo de Hosts

Qué sucede:

1. Ansible encuentra hss_template_config: hss_runtime.exs.j2

2. Busca en hosts/Customer/group_vars/hss_runtime.exs.j2

3. Lo plantilla con Jinja2 (puede usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Despliega en /etc/omnihss/runtime.exs

5. Reinicia el servicio

Sin hss_template_config , se utiliza la plantilla predeterminada del rol.

Detalles de configuración: Ver

https://docs.omnitouch.com.au/docs/repos/OmniCore

Ejemplo 4: Plantilla de

Configuración Personalizada

(OmniMME)

La Entidad de Gestión de Movilidad acepta plantillas de configuración de

tiempo de ejecución personalizadas.

omnihss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.3.50

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 hss_template_config: hss_runtime.exs.j2 # Referencia el

nombre de tu plantilla en group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Estructura de Archivos

Referencia en el Archivo de Hosts

Qué sucede:

1. Ansible encuentra mme_template_config: mme_runtime.exs.j2

2. Busca en hosts/Customer/group_vars/mme_runtime.exs.j2

3. Lo plantilla con Jinja2 (puede usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Despliega en /etc/omnimme/runtime.exs

5. Reinicia el servicio

Sin mme_template_config , se utiliza la plantilla predeterminada del rol.

Detalles de configuración: Ver

https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── mme_runtime.exs.j2 # Tu plantilla de configuración

MME personalizada

omnimme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.3.51

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 mme_template_config: mme_runtime.exs.j2 # Referencia el

nombre de tu plantilla en group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Ejemplo de Estructura de

Directorios del Mundo Real

hosts/Customer/

├── host_files/

│ └── production.yml # El archivo de hosts hace

referencia a los archivos de group_vars

└── group_vars/

 ├── smsc_controller.exs # Plantilla personalizada de

OmniMessage

 ├── smsc_smpp.exs # Plantilla personalizada SMPP de

OmniMessage

 ├── tas_runtime.exs.j2 # Plantilla personalizada de TAS

 ├── hss_runtime.exs.j2 # Plantilla personalizada de HSS

 ├── mme_runtime.exs.j2 # Plantilla personalizada de MME

 ├── dra_runtime.exs.j2 # Plantilla personalizada de DRA

 ├── pgwc_runtime.exs.j2 # Plantilla personalizada de PGW

 ├── dea_runtime.exs.j2 # Plantilla personalizada de DEA

 ├── upf_config.yaml # Configuración de UPF

 ├── crm_config.yaml # Configuración de CRM

 ├── stp.j2 # Plantilla SS7 STP

 ├── hlr.j2 # Plantilla SS7 HLR

 ├── camel.j2 # Plantilla SS7 CAMEL

 ├── ipsmgw.j2 # Plantilla IP-SM-GW

 ├── omnicore_smsc_ims.yaml.j2 # Configuración SMSC IMS

 ├── pytap.yaml # Configuración TAP3

 ├── sip_profiles/ # Pasarelas SIP (carpeta)

 │ └── gateway_otw.xml

 └── dialplan/ # Reglas de enrutamiento de

llamadas (carpeta)

 ├── mo_dialplan.xml # Móvil Originado

 ├── mt_dialplan.xml # Móvil Terminado

 └── mo_emergency.xml # Enrutamiento de emergencia

Parámetros Comunes que Hacen

Referencia a group_vars

Parámetro Componente Referencias

smsc_template_config omnimessage

Archivo de plantilla

Jinja2 (por ejemplo,

smsc_controller.exs)

smsc_smpp_template_config omnimessage_smpp

Archivo de plantilla

Jinja2 (por ejemplo,

smsc_smpp.exs)

gateways_folder applicationserver

Nombre de carpeta

(por ejemplo,

sip_profiles)

Planes de Marcado

(automático)
applicationserver

Carpeta dialplan/ de

XMLs de enrutamiento

tas_template_config applicationserver

Archivo de plantilla

Jinja2 (por ejemplo,

tas_runtime.exs.j2)

hss_template_config omnihss

Archivo de plantilla

Jinja2 (por ejemplo,

hss_runtime.exs.j2)

mme_template_config omnimme

Archivo de plantilla

Jinja2 (por ejemplo,

mme_runtime.exs.j2)

dra_template_config dra

Archivo de plantilla

Jinja2 (por ejemplo,

dra_runtime.exs.j2)

pgwc_template_config pgwc Archivo de plantilla

Jinja2 (por ejemplo,

Parámetro Componente Referencias

pgwc_runtime.exs.j2)

frr_template_config omniupf

Archivo de plantilla

Jinja2 (por ejemplo,

frr.conf.j2)

Plantillas SS7 ss7 (varios roles)

Archivos de plantilla

Jinja2 (por ejemplo,

stp.j2 , hlr.j2 ,

camel.j2)

Configuraciones YAML Varios componentes

Archivos de

configuración directos

(por ejemplo,

upf_config.yaml ,

crm_config.yaml)

Puntos Clave

1. group_vars contiene personalizaciones - Sobrescrituras para

configuraciones predeterminadas

2. Referencia por nombre - Usa parámetros como smsc_template_config o

gateways_folder

3. Las plantillas soportan Jinja2 - Accede a cualquier variable de Ansible

con {{ variable_name }}

4. Las carpetas despliegan todo - Todos los archivos en las carpetas

referenciadas son copiados

5. Control de versiones de todo - Comitea todos los group_vars a Git

Cuándo Usar group_vars

� Usa group_vars para:

Plantillas de configuración de componentes personalizados

Definiciones de pasarelas SIP

Planes de marcado de enrutamiento de llamadas

Reglas de enrutamiento Diameter

Configuraciones específicas del cliente que sobrescriben los valores

predeterminados

❌ No uses group_vars para:

Configuración básica de hosts (IPs, nombres de host) - Usa el archivo de

hosts

Pruebas únicas - Usa variables específicas del host en el archivo de hosts

Cambios temporales - Edita en el objetivo, comitea a group_vars si es

permanente

Documentación Relacionada

Referencia de Configuración - Todos los parámetros de hosts y lo que hacen

Configuración del Archivo de Hosts - Cómo estructurar archivos de hosts

Configuración de OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall - Qué incluir en los

archivos de configuración

Configuración de OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore - Detalles de

configuración de componentes

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Libretas de Utilidad

Descripción General

Este repositorio incluye varias libretas de utilidad para mantenimiento,

monitoreo y tareas operativas. Estas complementan las libretas de despliegue

principales con capacidades de gestión diaria.

Utilidad de Verificación de Salud

La utilidad de Verificación de Salud genera un informe HTML que muestra la

salud del sistema, el estado del servicio, el tiempo de actividad y la

información de la versión en todos los componentes de OmniCore.

Se ejecuta automáticamente como parte de la libreta services/all.yml .

Uso

Ejecución Manual

Salida

El informe se genera en /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Ábrelo en cualquier navegador web para verlo.

Contenidos del Informe

El informe HTML muestra:

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Información del Host

Nombre del host y dirección IP

Red/Subred (de la variable host_vm_network , o N/A si no está

configurada)

CPU (número de vCPU)

RAM (memoria total y libre)

Disco (espacio total y libre de la partición raíz con porcentaje)

SO (distribución y versión)

Estado del Servicio

Estado del servicio (activo/inactivo con indicadores de color)

Tiempo de actividad

Información de versión/liberación

Pares de Diámetro HSS

Estado de conexión a la base de datos (conectado/desconectado)

Conexiones de pares de Diámetro (IP, host de origen, estado)

Obtenido del endpoint de métricas HSS (puerto 9568)

Otras Utilidades Comunes

Configuración del Sistema Base

Rol Común (services/common.yml)

Aplica la configuración base del sistema a todos los hosts

Configura repositorios, claves SSH, zona horaria, NTP

Configura la red y endurecimiento del sistema

Ejecuta esto antes de desplegar servicios

Configurar Usuarios (services/setup_users.yml)

Crea y configura cuentas de usuario en todos los hosts

Gestiona claves SSH y privilegios sudo

Asegura una configuración de usuario consistente

Reiniciar (services/reboot.yml)

Reinicia de manera ordenada todos los hosts objetivo

Espera a que los sistemas vuelvan a estar en línea (tiempo de espera de 5

minutos)

Útil después de actualizaciones del kernel o cambios de configuración

Utilidades Operativas

Generador de Plan de IP (util_playbooks/ip_plan_generator.yml)

Genera un informe HTML de asignaciones de direcciones IP

Muestra la topología de red completa desde el archivo de hosts

Útil para documentación y solución de problemas

Respaldo de HSS (util_playbooks/hss_backup.yml)

ansible-playbook -i hosts/customer/host_files/production.yml

services/common.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/setup_users.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/reboot.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Respalda las tablas de la base de datos HSS

Copia el volcado de MySQL a la máquina local de Ansible

Solicitudes interactivas para la ruta de respaldo

Obtener Captura Local (util_playbooks/getLocalCapture.yml)

Obtiene los dos archivos de captura de paquetes más recientes de todos

los hosts

Recupera archivos pcap de /etc/localcapture/

Útil para depurar problemas de conectividad

Actualizar MTU (util_playbooks/updateMtu.yml)

Actualiza la configuración de MTU de la interfaz de red

Aplica cambios a través de netplan

Útil para la configuración de tramas jumbo

Documentación Relacionada

README Principal - Descripción general y cómo empezar

Introducción al Despliegue de Ansible - Ejecución de libretas

Configuración del Archivo de Hosts - Configura tu inventario

Arquitectura de Despliegue - Visión general completa del sistema

Sistema de Caché APT - Gestión de paquetes

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/hss_backup.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

Configuración del

Archivo Hosts

Descripción General

El archivo hosts (también llamado archivo de inventario) es el documento de

configuración central que define toda tu implementación de red celular.

Especifica:

Qué funciones de red desplegar

Dónde se ejecutan (direcciones IP, segmentos de red)

Cómo están configuradas (parámetros específicos del servicio)

Configuraciones específicas del cliente (PLMN, credenciales, características)

Ubicación del Archivo

Los archivos hosts están organizados por cliente y entorno:

Ejemplo de Estructura del Archivo

Hosts

Aquí hay un ejemplo simplificado que muestra las secciones clave:

services/hosts/

└── Customer_Name/

 └── host_files/

 ├── production.yml

 ├── staging.yml

 └── lab.yml

Componentes EPC

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 network_name_short: Customer

 tac_list: [600, 601, 602]

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 ip_pools:

 - '100.64.16.0/24'

Componentes IMS

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

Servicios de Soporte

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

Variables Globales

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

Parámetros Comunes de Host

Configuración de Red

Cada host típicamente incluye:

Nota: Para obtener orientación sobre la planificación de direcciones IP y

estrategias de segmentación de red, consulta el Estándar de Planificación IP

que describe la arquitectura recomendada de cuatro subredes para

implementaciones de OmniCore.

Usuarios de Proxmox: El parámetro host_vm_network especifica qué puente

usar. Consulta Despliegue de VM/LXC en Proxmox para aprovisionamiento

automatizado.

Asignación de Recursos de VM

Para servicios que necesitan recursos específicos:

 customer_name_short: customer

 plmn_id:

 mcc: '001'

 mnc: '01'

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.1.15 # Dirección IP para acceso SSH

 gateway: 10.10.1.1 # Puerta de enlace

predeterminada

 host_vm_network: "vmbr1" # nombre de la NIC a usar en

el Hipervisor

num_cpus: 4 # Núcleos de CPU

memory_mb: 8192 # RAM en megabytes

proxmoxLxcDiskSizeGb: 50 # Tamaño del disco en GB

Parámetros Específicos del Servicio

Cada función de red tiene sus propios parámetros. Ejemplos:

MME:

PGW:

Para una explicación detallada de lo que controla cada variable, consulta:

Referencia de Configuración

Servidor de Aplicaciones:

Sección de Variables Globales

La sección all:vars contiene configuraciones que se aplican a toda la

implementación:

mme_code: 1 # Identificador de MME (1-255)

mme_gid: 1 # ID del Grupo MME

network_name_short: Customer # Nombre de la red (mostrado en

teléfonos)

network_name_long: Customer Network

tac_list: [600, 601, 602] # Códigos de Área de Seguimiento

ip_pools: # Grupos de IP para suscriptores

 - '100.64.16.0/24'

 - '100.64.17.0/24'

combined_CP_UP: false # Plano de control/usuario separado

online_charging_enabled: true # Habilitar integración OCS

tas_branch: "main" # Rama de software a desplegar

gateways_folder: "gateways_prod" # Configuración del gateway SIP

all:

 vars:

 # Autenticación

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 # Identidad del Cliente

 customer_name_short: customer

 customer_legal_name: "Customer Inc."

 site_name: "Chicago DC1"

 region: US

 # Identificador PLMN (Red Móvil)

 plmn_id:

 mcc: '001' # Código de País Móvil

 mnc: '01' # Código de Red Móvil

 mnc_longform: '001' # MNC con ceros a la izquierda

 # Nombres de Red

 network_name_short: Customer

 network_name_long: Customer Network

 # Repositorio APT

 # Nota: Si el grupo apt_cache_servers está definido con hosts,

 # use_apt_cache se establece en true de forma predeterminada y

apt_repo.apt_server

 # se establece automáticamente en la IP del primer servidor de

caché

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Zona Horaria

 TZ: America/Chicago

Comprendiendo los Grupos de

Hosts

Ansible organiza los hosts en grupos que corresponden a roles:

Cuando ejecutas un playbook dirigido a mme , se aplica a todos los hosts en la

sección mme:hosts: .

Configuración con Plantillas Jinja2

Ansible utiliza plantillas Jinja2 para generar archivos de configuración a partir

de las variables definidas en tu archivo hosts y group_vars.

Cómo Funciona Jinja2

Variables del Archivo

Hosts

Plantilla Jinja2Variables de Grupo

Valores

Predeterminados de Rol

Archivo de

Configuración Generado

Ejemplo de Uso de Plantillas

El archivo hosts define:

Plantilla Jinja2 (en rol):

Archivo de configuración generado:

Patrones Comunes de Jinja2

Accediendo a variables anidadas:

Lógica condicional:

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: acme

mme_config.yml.j2

network:

 plmn:

 mcc: {{ plmn_id.mcc }}

 mnc: {{ plmn_id.mnc }}

 operator: {{ customer_name_short }}

 realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org

network:

 plmn:

 mcc: 001

 mnc: 01

 operator: acme

 realm: epc.mnc001.mcc001.3gppnetwork.org

{{ plmn_id.mcc }}

{{ apt_repo.apt_server }}

Bucles:

Formateo:

Sobrescribiendo Variables con

group_vars

Mientras que el archivo hosts define la infraestructura y configuraciones

específicas del host, group_vars puede sobrescribir los valores

predeterminados para grupos de hosts.

Consulta: Configuración de Variables de Grupo

Ejemplo Completo de Archivo Hosts

Aquí hay un ejemplo más completo (con datos sensibles oscurecidos):

{% if online_charging_enabled %}

 charging:

 enabled: true

 ocs_ip: {{ ocs_ip }}

{% endif %}

tracking_areas:

{% for tac in tac_list %}

 - {{ tac }}

{% endfor %}

Rellenar con ceros a 3 dígitos

mnc{{ '%03d' | format(plmn_id.mnc|int) }}

EPC Core

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 mme_gid: 1

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601, 602, 603]

 omnimme:

 sgw_selection_method: "random_peer"

 pgw_selection_method: "random_peer"

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 ip_pools:

 - '100.64.16.0/24'

 combined_CP_UP: false

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

IMS Core

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

 gateway: 10.10.4.1

 host_vm_network: "vmbr4"

icscf:

 hosts:

 customer-icscf01:

 ansible_host: 10.10.3.55

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

scscf:

 hosts:

 customer-scscf01:

 ansible_host: 10.10.3.45

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

applicationserver:

 hosts:

 customer-as01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 online_charging_enabled: false

 gateways_folder: "gateways_prod"

Servicios de Soporte

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

monitoring:

 hosts:

 customer-oam01:

 ansible_host: 10.10.2.135

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

 num_cpus: 4

 memory_mb: 8192

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.10.2.177

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

Variables Globales

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 customer_name_short: customer

 customer_legal_name: "Customer Network Inc."

 site_name: "Primary DC"

 region: US

 TZ: America/Chicago

 # Configuración PLMN

 plmn_id:

 mcc: '001'

 mnc: '01'

 mnc_longform: '001'

 diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

 # Nombres de Red

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601]

 # Configuración APT

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Configuración de Carga

 charging:

Consulta Despliegue de VM/LXC en Proxmox para obtener detalles completos

sobre la configuración y el establecimiento de Proxmox.

Referencias de Documentación del

Producto

Para la configuración detallada de cada componente, consulta la

documentación oficial del producto:

Componentes de OmniCore:

 data:

 online_charging:

 enabled: false

 voice:

 online_charging:

 enabled: true

 domain: "mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org"

 # Reglas de Firewall

 firewall:

 allowed_ssh_subnets:

 - '10.0.0.0/8'

 - '192.168.0.0/16'

 allowed_ue_voice_subnets:

 - '10.0.0.0/8'

 allowed_signaling_subnets:

 - '10.0.0.0/8'

 # Configuración del Hipervisor (ejemplo de Proxmox)

 proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxApiTokenName: Customer

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxNodeName: pve01

Documentación de OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS - Servidor de Suscriptores en Casa

OmniSGW - Gateway de Servicio (Plano de control)

OmniPGW - Gateway de Paquetes (Plano de control)

OmniUPF - Función de Plano de Usuario

OmniDRA - Agente de Enrutamiento Diameter

OmniTWAG - Gateway de Acceso WLAN de Confianza

Componentes de OmniCall:

Documentación de OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS - Servidor de Aplicaciones IMS (VoLTE/VoNR)

OmniCall CSCF - Funciones de Control de Sesiones de Llamadas

OmniMessage - Centro de SMS

OmniMessage SMPP - Soporte para el Protocolo SMPP

OmniSS7 - Pila de Señalización SS7

VisualVoicemail - Buzón de Voz

OmniCharge/OmniCRM:

Documentación de OmniCharge:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentación Relacionada

Introducción al Despliegue de Ansible - Proceso general de despliegue

Referencia de Configuración - Guía completa de todas las variables de

configuración

Configuración de Variables de Grupo - Sobrescribiendo configuraciones

predeterminadas

Estándar de Planificación IP - Arquitectura de red y directrices de

asignación de IP

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Configuración de Netplan - IPs secundarias y configuración avanzada

de red

Sistema de Caché APT - Distribución de paquetes

Servidor de Licencias - Gestión de licencias

Descripción General de la Arquitectura de Despliegue - Vista completa del

sistema

Próximos Pasos

1. Crea tu archivo hosts basado en esta plantilla

2. Define tu PLMN e identidad de red

3. Configura el acceso al repositorio APT

4. Configura el servidor de licencias

5. Personaliza con group_vars según sea necesario

6. Despliega con playbooks de Ansible

Estándar de

Planificación de IP de

OmniCore

Descripción general

Este documento describe el enfoque estándar de planificación de IP para

implementaciones de OmniCore. La arquitectura requiere cuatro subredes

internas para segmentar adecuadamente las funciones de red por seguridad,

rendimiento y claridad operativa.

Requisitos de Asignación de IP

Asignación Estándar: Cuatro Subredes /24

Cada implementación de OmniCore requiere cuatro subredes distintas para la

red interna:

1. Red de Núcleo de Paquetes - Primera /24

2. Red de Señalización - Segunda /24

3. Red Interna IMS - Tercera /24

4. Red Pública de UE - Cuarta /24

Importante: Estas son Recomendaciones, No

Requisitos

La asignación de subredes descrita en este documento es una mejor práctica

recomendada para organizar las implementaciones de OmniCore. Sin

embargo, la arquitectura es completamente flexible:

Todos los hosts en una subred: Puedes colocar todos los componentes

en una sola subred si eso se ajusta a tus necesidades de implementación.

Cada tipo de host en su propia subred: Puedes crear subredes

separadas para cada tipo de componente (una para MMEs, una para HSS,

etc.)

Agrupaciones personalizadas: Puedes organizar los hosts en cualquier

estructura de subred que tenga sentido para tus requisitos específicos.

Mezclar IPs internas y públicas: Algunos hosts pueden usar direcciones

internas (RFC 1918) mientras que otros usan IPs públicas, todo dentro de la

misma implementación.

El enfoque recomendado de cuatro subredes proporciona una aislamiento de

seguridad, gestión de tráfico y claridad operativa óptimos, por lo que lo

sugerimos para implementaciones en producción. Sin embargo, debes adaptar

el plan de IP para que se ajuste a tu topología de red específica, espacio de

direcciones disponible y requisitos operativos.

Desglose de Segmentos de Red

1. Red de Núcleo de Paquetes (Primera /24)

Propósito: Elementos del plano de usuario y del plano de control central

Componentes:

OmniMME (Entidad de Gestión de Movilidad)

OmniSGW (Puerta de Enlace de Servicio)

OmniPGW-C (Plano de Control de Puerta de Enlace de PDN)

OmniUPF/PGW-U (Función de Plano de Usuario / Puerta de Enlace de PDN)

Ejemplo: 10.179.1.0/24

2. Red de Señalización (Segunda /24)

Propósito: Funciones de señalización Diameter, políticas, facturación y gestión

Componentes:

OmniHSS (Servidor de Suscriptores Local)

OmniCharge OCS (Sistema de Facturación en Línea)

OminiHSS PCRF (Función de Reglas de Políticas y Facturación)

OmniDRA DRA (Agente de Enrutamiento Diameter)

Servidores DNS

Servidores TAP3/CDR

Monitoreo/OAM

Captura de SIP

Servidor de Licencias

Monitor de RAN

Omnitouch Warning Link CBC (Centro de Difusión Celular) - si se despliega

Servidores de Caché APT - si se despliega

Ejemplo: 10.179.2.0/24

mme:

 hosts:

 omni-site-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

hss:

 hosts:

 omni-site-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

3. Red Interna IMS (Tercera /24)

Propósito: Señalización y servicios centrales de IMS (señalización SIP interna)

Componentes:

OmniCSCF S-CSCF (Función de Control de Sesiones de Llamada de Servicio)

OmniCSCF I-CSCF (Función de Control de Sesiones de Llamada

Interrogante)

OmniTAS (Servidor de Aplicaciones de Telefonía / Servidor de Aplicaciones)

OmniMessage (Controlador de SMS, SMPP, IMS)

OmniSS7 STP (Punto de Transferencia de Señalización SS7)

OmniSS7 HLR (Registro de Ubicación del Hogar) - para 2G/3G

OmniSS7 IP-SM-GW (MAP SMSc)

OmniSS7 Puerta de Enlace CAMEL

Ejemplo: 10.179.3.0/24

4. Red Pública de UE (Cuarta /24)

Propósito: Servicios orientados al usuario como IMS y DNS

Componentes:

OmniCSCF P-CSCF (Función de Control de Sesiones de Llamada Proxy)

Servidores XCAP

Servidores de Correo de Voz Visual

DNS del Cliente

scscf:

 hosts:

 omni-site-scscf01:

 ansible_host: 10.179.3.45

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

Ejemplo: 10.179.4.0/24

Métodos de Implementación

OmniCore admite dos métodos principales para implementar esta

segmentación de red:

Método 1: Interfaces de Red Físicas/Virtuales

(Recomendado para Producción)

Utiliza NICs separadas o puentes virtuales para cada segmento de red. Esto

proporciona el aislamiento más fuerte y es el enfoque recomendado para

implementaciones en producción.

Ejemplo:

pcscf:

 hosts:

 omni-site-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Método 2: Segmentación Basada en VLAN

Utiliza una única interfaz física con etiquetado de VLAN para separar redes.

Esto es adecuado para implementaciones más pequeñas o cuando las NICs

físicas son limitadas.

Ejemplo:

Núcleo de Paquetes - vmbr1

mme:

 hosts:

 omni-lab07-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

Señalización - vmbr2

hss:

 hosts:

 omni-lab07-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

IMS Interno - vmbr3

icscf:

 hosts:

 omni-lab07-icscf01:

 ansible_host: 10.179.3.55

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

UE Pública - vmbr4

pcscf:

 hosts:

 omni-lab07-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Configuración de Red:

Configura VLANs en el switch físico

Etiqueta el tráfico apropiadamente a nivel del hipervisor

Rutea entre VLANs en el gateway/firewall

Ejemplo de Mapeo de VLAN:

Todos los componentes usan vmbr12 con diferentes VLANs

applicationserver:

 hosts:

 ons-lab08sbc01:

 ansible_host: 10.178.2.213

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dra:

 hosts:

 ons-lab08dra01:

 ansible_host: 10.178.2.211

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dns:

 hosts:

 ons-lab08dns01:

 ansible_host: 10.178.2.178

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

VLAN 10: 10.x.1.0/24 (Núcleo de Paquetes)

VLAN 20: 10.x.2.0/24 (Señalización)

VLAN 30: 10.x.3.0/24 (IMS Interno)

VLAN 40: 10.x.4.0/24 (UE Pública)

Trabajando con Direcciones IP

Públicas

Descripción general

Muchas implementaciones de OmniCore requieren que algunos componentes

tengan direcciones IP públicas para conectividad externa, como:

DRA - Para señalización diameter de roaming con operadores externos

SGW/PGW de Roaming - Para tráfico GTP de socios de roaming

ePDG - Para llamadas WiFi (túneles IPsec desde UEs)

Puerta de Enlace SMSC - Para conexiones SMPP a agregadores de SMS

externos

P-CSCF (en algunas implementaciones) - Para registro SIP directo de UE

Cómo Asignar IPs Públicas

Las IPs públicas se manejan exactamente de la misma manera que las IPs

internas en tus archivos de inventario de hosts. Simplemente especifica la

dirección IP pública en el campo ansible_host junto con la puerta de enlace y

la máscara de red apropiadas.

Ejemplo: SGW/PGW de Roaming con IPs Públicas

Ejemplo: DRA con IP Pública

Ejemplo: ePDG con IP Pública

sgw:

 hosts:

 # SGWs internos en red privada

 opt-site-sgw01:

 ansible_host: 10.4.1.25

 gateway: 10.4.1.1

 host_vm_network: "v400-omni-packet-core"

 # SGWs de roaming con IPs públicas

 opt-site-roaming-sgw01:

 ansible_host: 203.0.113.10

 gateway: 203.0.113.9

 netmask: 255.255.255.248 # subred /29

 host_vm_network: "498-public-servers"

 in_pool: False

 cdrs_enabled: True

smf: # PGWs

 hosts:

 # PGW de roaming con IP pública

 opt-site-roaming-pgw01:

 ansible_host: 203.0.113.20

 gateway: 203.0.113.17

 netmask: 255.255.255.240 # subred /28

 host_vm_network: "497-public-services-LTE"

 in_pool: False

 ip_pools:

 - '100.64.24.0/22'

dra:

 hosts:

 opt-site-dra01:

 ansible_host: 198.51.100.50

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # subred /28

 host_vm_network: "497-public-services-LTE"

Mezclando IPs Internas y Públicas

Es común tener una mezcla de IPs internas y públicas dentro del mismo grupo

de componentes. Por ejemplo:

SGWs internos para sitios locales usando GTP

SGWs públicas específicamente para tráfico de roaming de operadores

externos

El mismo PGW-C puede gestionar tanto SGWs internas como externas

La arquitectura de OmniCore maneja esto sin problemas: simplemente

configura cada host con su direccionamiento IP apropiado.

epdg:

 hosts:

 opt-site-epdg01:

 ansible_host: 198.51.100.51

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # subred /28

 host_vm_network: "497-public-services-LTE"

Servidor de Licencias

Descripción General

El Servidor de Licencias gestiona la activación de características para todos los

componentes de Omnitouch. Cada componente valida su licencia al iniciar y

periódicamente durante su operación.

Configuración

1. Definir en el Archivo de Hosts

2. Proporcionar el Archivo de Licencia

Coloque license.json (proporcionado por Omnitouch) en

hosts/Customer/group_vars/

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

all:

 vars:

 customer_legal_name: "Customer Name"

 license_server_api_urls: ["https://10.10.2.150:8443/api"]

 license_enforced: true

3. Desplegar

Puede verificar el estado de todas las licencias navegando a

https://license_server .

Requisitos de Red

Configuración del Cortafuegos

Los cortafuegos del sitio del cliente deben estar configurados para permitir

tráfico HTTPS (puerto 443) a los siguientes servidores de validación de licencias

de Omnitouch:

Nombre de Host Dirección IP Propósito

time.omnitouch.com.au 160.22.43.18
Servidor de validación de

licencias 1

time.omnitouch.com.au 160.22.43.66
Servidor de validación de

licencias 2

time.omnitouch.com.au 160.22.43.114
Servidor de validación de

licencias 3

Reglas de salida requeridas:

Protocolo: HTTPS (TCP/443)

Destino: 160.22.43.18, 160.22.43.66, 160.22.43.114

Dirección: Saliente

ansible-playbook -i hosts/customer/host_files/production.yml

services/license_server.yml

Requisitos de DNS

El servidor de licencias requiere resolución DNS funcional para comunicarse

con la infraestructura de validación de licencias de Omnitouch.

Configuración de DNS requerida:

El servidor de licencias debe tener acceso a servidores DNS públicos

Configure DNS para usar uno de los siguientes:

1.1.1.1 (Cloudflare - soporta DNS seguro)

8.8.8.8 (Google Public DNS)

No use servidores DNS internos/corporativos para el servidor de licencias

Nota: Los servidores de licencias de Omnitouch utilizan DNS seguro (DoH/DoT).

Usar servidores DNS públicos asegura una validación adecuada de DNSSEC y

previene problemas con la interceptación de DNS por dispositivos de seguridad.

Documentación Relacionada

Referencia de Configuración

Configuración del Archivo de Hosts

Configuración de

Netplan

Descripción general

OmniCore puede configurar automáticamente las interfaces de red en las VMs

desplegadas utilizando netplan. Esto es útil para:

Configurar la interfaz de gestión principal (eth0)

Agregar interfaces secundarias para IPs públicas, conexiones de

emparejamiento o tráfico dedicado

Configurar rutas estáticas para destinos específicos

Habilitación de la Configuración de

Netplan

Para habilitar la configuración automática de netplan para un host, agrega la

variable netplan_config que apunte a una plantilla Jinja2 en tu carpeta

group_vars :

La plantilla se obtendrá de hosts/<customer>/group_vars/netplan.yaml.j2 .

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

Referencia de la Plantilla

Aquí está la plantilla completa netplan.yaml.j2 con comentarios que explican

cada sección:

network:

 version: 2

 ethernets:

 # Interfaz primaria - utiliza ansible_host y gateway del

inventario

 eth0:

 addresses:

 - "{{ ansible_host }}/{{ mask_cidr | default(24) }}"

 nameservers:

 addresses:

{% if 'dns' in group_names %}

 # Si este host ES un servidor DNS, usa DNS externo para

evitar dependencia circular

 - 8.8.8.8

{% else %}

 # De lo contrario, usa servidores DNS del grupo 'dns' en

el inventario

{% for dns_host in groups['dns'] | default([]) %}

 - {{ hostvars[dns_host]['ansible_host'] }}

{% endfor %}

{% endif %}

 search:

 - slice

 routes:

 - to: "default"

 via: "{{ gateway }}"

{% if secondary_ips is defined %}

 # Interfaces secundarias - recorre el diccionario

secondary_ips del inventario

 # Nomenclatura de interfaces: ens19, ens20, ens21... (18 +

loop.index)

{% for nic_name, nic_config in secondary_ips.items() %}

 ens{{ 18 + loop.index }}:

 addresses:

 - "{{ nic_config.ip_address }}/{{ mask_cidr | default(24)

}}"

{% if nic_config.routes is defined %}

 # Rutas estáticas para esta interfaz - cada ruta utiliza la

puerta de enlace de esta interfaz

 routes:

{% for route in nic_config.routes %}

 - to: "{{ route }}"

Puntos clave:

ansible_host y gateway provienen de la entrada del inventario del host

Los servidores DNS se obtienen dinámicamente de los hosts en el grupo

dns

Las interfaces secundarias se nombran ens19 , ens20 , etc. para coincidir

con la nomenclatura de NIC de Proxmox

Cada IP secundaria puede tener su propia puerta de enlace y rutas

estáticas

Configuración de la Interfaz

Primaria

La interfaz primaria (eth0) se configura automáticamente utilizando:

ansible_host - La dirección IP

gateway - La puerta de enlace predeterminada

mask_cidr - Máscara de red (predeterminado a 24)

Los servidores DNS se configuran automáticamente a:

Hosts en el grupo dns (utiliza sus IPs ansible_host)

Se retrocede a 8.8.8.8 si el host es él mismo un servidor DNS

Interfaces Secundarias

Para hosts que requieren interfaces de red adicionales (IPs públicas,

emparejamiento, etc.), utiliza la configuración secondary_ips .

 via: "{{ nic_config.gateway }}"

{% endfor %}

{% endif %}

{% endfor %}

{% endif %}

Esquema

Nomenclatura de Interfaces

Las interfaces secundarias se nombran automáticamente utilizando el esquema

de nomenclatura predecible de Ubuntu:

Primera interfaz secundaria: ens19

Segunda interfaz secundaria: ens20

Tercera interfaz secundaria: ens21

Y así sucesivamente...

Esto coincide con los nombres de las interfaces asignados por Proxmox al

agregar NICs adicionales a una VM.

secondary_ips:

 <logical_name>:

 ip_address: <ip_address>

 gateway: <gateway_ip>

 host_vm_network: <proxmox_bridge>

 vlanid: <vlan_id>

 routes: # Opcional - rutas estáticas a

través de esta interfaz

 - '<destination_cidr>'

 - '<destination_cidr>'

Ejemplo de Configuración

Salida Generada de Netplan

La configuración anterior genera:

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 host_vm_network: "ovsbr1"

 vlanid: "100"

 netplan_config: netplan.yaml.j2

 secondary_ips:

 public_ip:

 ip_address: 192.0.2.50

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24'

 - '203.0.113.0/24'

 peering_ip:

 ip_address: 172.16.50.10

 gateway: 172.16.50.1

 host_vm_network: "ovsbr2"

 vlanid: "300"

 routes:

 - '172.17.0.0/16'

Integración con Proxmox

Al utilizar el playbook proxmox.yml , las NICs secundarias se crean

automáticamente en la VM:

1. Nuevas VMs: Las NICs secundarias se agregan durante la provisión inicial

2. VMs Existentes: Las NICs secundarias se agregan y la VM se reinicia para

aplicar los cambios

La configuración de Proxmox utiliza:

network:

 version: 2

 ethernets:

 eth0:

 addresses:

 - "10.0.1.100/24"

 nameservers:

 addresses:

 - 10.0.1.53

 search:

 - slice

 routes:

 - to: "default"

 via: "10.0.1.1"

 ens19:

 addresses:

 - "192.0.2.50/24"

 routes:

 - to: "198.51.100.0/24"

 via: "192.0.2.1"

 - to: "203.0.113.0/24"

 via: "192.0.2.1"

 ens20:

 addresses:

 - "172.16.50.10/24"

 routes:

 - to: "172.17.0.0/16"

 via: "172.16.50.1"

host_vm_network - El puente al que se adjunta la NIC

vlanid - Etiqueta VLAN para la interfaz

Cómo Funciona

1. Las variables del archivo de hosts se pasan a la plantilla Jinja2

2. La plantilla se renderiza en /etc/netplan/01-netcfg.yaml

3. Cualquier configuración de netplan existente se elimina para evitar

conflictos

4. netplan apply activa la configuración

5. Las direcciones IP se verifican con ip addr show

Casos de Uso Comunes

Diameter Edge Agent (DEA) con IP Pública

<hostname>:

 ansible_host: 10.0.1.100 # IP de gestión interna

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 diameter_roaming:

 ip_address: 192.0.2.50 # IP pública para socios de

roaming

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24' # Red de socios de roaming

PGW con Interfaz S5/S8

Servidor Multihomed con Redes de Gestión y

Datos Separadas

Referenciando IPs Secundarias en

Plantillas

Puedes referenciar direcciones IP secundarias en otras plantillas Jinja2 y

archivos de configuración.

<hostname>:

 ansible_host: 10.0.2.20 # IP interna

 gateway: 10.0.2.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 s5s8_interface:

 ip_address: 203.0.113.17 # IP pública S5/S8

 gateway: 203.0.113.1

 host_vm_network: "vmbr0"

 vlanid: "50"

<hostname>:

 ansible_host: 10.0.1.100 # Red de gestión

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 data_network:

 ip_address: 10.0.2.100 # Red de datos

 gateway: 10.0.2.1

 host_vm_network: "ovsbr2"

 vlanid: "200"

 backup_network:

 ip_address: 10.0.3.100 # Red de respaldo

 gateway: 10.0.3.1

 host_vm_network: "ovsbr3"

 vlanid: "300"

En el Mismo Host

Al configurar un servicio en el mismo host que tiene IPs secundarias, puedes

referenciar directamente o usar inventory_hostname :

Desde Otro Host

Cuando necesitas referenciar una IP secundaria de un host diferente (por

ejemplo, configurando una conexión de emparejamiento), utiliza hostvars con

el nombre del host de destino:

Referencia directa (más simple)

{{ secondary_ips.diameter_public_ip.ip_address }}

O explícitamente a través de inventory_hostname (mismo

resultado)

{{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Acceder a otras propiedades

{{ secondary_ips.diameter_public_ip.gateway }}

{{ secondary_ips.diameter_public_ip.vlanid }}

Referencia al primer host en el grupo dra

{{ hostvars[groups['dra'][0]]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Recorre todos los hosts DRA y obtiene sus IPs públicas

{% for host in groups['dra'] %}

{% if hostvars[host]['secondary_ips'] is defined %}

 - {{ hostvars[host]['secondary_ips']['diameter_public_ip']

['ip_address'] }}

{% endif %}

{% endfor %}

Ejemplo: Configuración de Emparejamiento

DRA

Configura un par de diámetro para vincularse a su propia IP pública:

Comprobando si Existen IPs Secundarias

Siempre verifica si la variable existe antes de usarla:

Solución de Problemas

Verificar Nombres de Interfaces

SSH a la VM y verifica los nombres de las interfaces:

Salida esperada para una VM con dos interfaces secundarias:

En dra_config.yaml.j2 - usa inventory_hostname para el host

actual

peers:

 - name: external_peer

 # Vincular a la IP pública de diámetro de este host

 local_ip: {{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

 remote_ip: 198.51.100.50

 port: 3868

{% if secondary_ips is defined and

secondary_ips.diameter_public_ip is defined %}

public_ip: {{ secondary_ips.diameter_public_ip.ip_address }}

{% else %}

public_ip: {{ ansible_host }}

{% endif %}

ip link show

Verificar la Configuración de Netplan

Aplicar Netplan Manualmente

Depurar Netplan

Verificar Rutas

Documentación Relacionada

Configuración del Archivo de Hosts - Configuración del inventario de hosts

Despliegue de Proxmox VM/LXC - Provisión de VM

Referencia de Configuración - Todas las variables de configuración

1: lo: <LOOPBACK,UP,LOWER_UP> ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

3: ens19: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

4: ens20: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

cat /etc/netplan/01-netcfg.yaml

netplan apply

netplan --debug apply

ip route show

Implementación de

VM/LXC en Proxmox

La mayoría de nuestros clientes ejecutan la pila de OmniCore en Proxmox, esta

guía explica en detalle cómo usar los plays de proxmox para configurar su

entorno utilizando Proxmox.

Seguimos apoyando VMware, HyperV y la nube (Actualmente Vultr / AWS / GCP)

para implementaciones.

Ver También:

Configuración del Archivo de Hosts - Definir VMs a implementar

Estándar de Planificación de IP - Directrices para la asignación de

direcciones IP

Configuración de Netplan - IPs secundarias y configuración de múltiples NIC

Arquitectura de Implementación - Flujo de trabajo completo de

implementación

LXC vs VM

Contenedores LXC:

Livianos, comparten el núcleo del host

Inicio rápido, bajo overhead

Aislamiento limitado

No pueden ejecutar núcleos o módulos de núcleo personalizados

No son adecuados para implementaciones en producción

No pueden ejecutar UPF (requiere módulos de núcleo/dispositivos TUN)

VMs (KVM):

Virtualización completa con núcleo dedicado

Aislamiento completo

Pueden ejecutar módulos de núcleo y redes personalizadas

Mayor overhead de recursos

Recomendado para producción

Requerido para implementaciones de UPF

Casos de Uso:

VMs: Sitios de producción, UPF, todas las funciones de red

LXC: Entornos de laboratorio/prueba, servicios livianos (apt-cache,

monitoreo)

Configuración de Proxmox

1. Crear Token de API

2. Crear Plantilla de VM Cloud-Init (solo para

VMs)

Ejecute este script en el host de Proxmox. Descarga la imagen de nube de

Ubuntu y crea una plantilla con las credenciales de usuario de cloud-init.

En la interfaz de Proxmox: Datacenter → Permisos → Tokens de API

Crear token: root@pam!<TokenName>

Copiar el secreto del token (se muestra una vez)

#!/bin/bash

set -e

TEMPLATE_ID=9000

IMAGE_URL="https://cloud-images.ubuntu.com/noble/current/noble-

server-cloudimg-amd64.img"

IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Descargando imagen de nube de Ubuntu ==="

cd /var/lib/vz/template/iso

wget -N "$IMAGE_URL"

echo "=== Limpiando plantilla antigua ==="

qm destroy $TEMPLATE_ID --purge 2>/dev/null || true

echo "=== Habilitando almacenamiento de snippets ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Creando datos de usuario de cloud-init ==="

mkdir -p /var/lib/vz/snippets

cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'

#cloud-config

ssh_pwauth: true

users:

 - name: omnitouch

 plain_text_passwd: password

 lock_passwd: false

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

 groups: sudo

USERDATA

echo "=== Creando plantilla de VM ==="

qm create $TEMPLATE_ID --name ubuntu-2404-template --memory 2048 -

-cores 2 --net0 virtio,bridge=vmbr0

qm importdisk $TEMPLATE_ID $IMAGE local-lvm

qm set $TEMPLATE_ID --scsihw virtio-scsi-pci --scsi0 local-

lvm:vm-${TEMPLATE_ID}-disk-0

qm set $TEMPLATE_ID --ide2 local-lvm:cloudinit

qm set $TEMPLATE_ID --boot c --bootdisk scsi0

qm set $TEMPLATE_ID --vga std

qm set $TEMPLATE_ID --agent enabled=1

qm set $TEMPLATE_ID --cicustom user=local:snippets/user-data.yml

Notas:

La plantilla proporciona un inicio de sesión de respaldo: omnitouch /

password (para acceso a la consola si cloud-init falla)

Al clonar a través de Ansible, las credenciales se sobrescriben desde

local_users en su archivo de hosts:

Nombre de usuario: Clave del primer usuario de local_users

Contraseña: Campo password del primer usuario (por defecto es

'password' si no se establece)

Clave SSH: Campo public_key del primer usuario

--vga std asegura que la consola web de Proxmox funcione

La bandera -N en wget solo descarga si es más nueva que la copia local

Alternativa: Plantilla Manual desde ISO

Si las imágenes de nube no están disponibles o necesita una instalación

personalizada:

Paso 1: Crear VM a través de la Interfaz Web

Crear Nueva VM → ID de VM 9000, Nombre: ubuntu-2404-template

SO: Subir ISO de Ubuntu Server o usar ISO existente

Sistema: Predeterminado (Controlador SCSI: VirtIO SCSI)

Discos: 32GB, Bus: SCSI

CPU: 2 núcleos

Memoria: 2048 MB

Red: VirtIO, puente vmbr0

Iniciar VM e instalar Ubuntu Server

Paso 2: Dentro de la VM - Limpiar y preparar

qm template $TEMPLATE_ID

echo "=== Plantilla $TEMPLATE_ID creada con éxito ==="

Paso 3: Agregar Cloud-Init y Convertir a Plantilla

Seleccionar VM → Hardware → Agregar → Unidad CloudInit (seleccionar

almacenamiento, por ejemplo, local-lvm)

Cloud-Init → Usuario: omnitouch , Contraseña: password

Hardware → Opciones → Agente QEMU → Habilitar

Hacer clic derecho en la VM → Convertir a Plantilla

3. Descargar Plantilla LXC (solo para LXC)

Instalar cloud-init

sudo apt update

sudo apt install cloud-init qemu-guest-agent -y

Limpiar datos específicos de la máquina

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id

sudo rm -f /etc/ssh/ssh_host_*

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Limpiar historial de bash y apagar

history -c

sudo poweroff

En la shell del nodo Proxmox:

pveam update

pveam download local ubuntu-24.04-standard_24.04-2_amd64.tar.zst

Configuración del Archivo de Hosts

Para Implementación de VM (proxmox.yml)

all:

 vars:

 proxmoxServers:

 pve-node-01:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: YourPassword

 proxmoxApiTokenName: ansible

 proxmoxApiTokenSecret: "your-token-secret-uuid"

 proxmoxTemplateName: ubuntu-2404-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve-node-01

 storage: local-lvm # opcional

 pve-node-02:

 # ... configuración del segundo nodo

 # Credenciales de usuario - el primer usuario se utiliza para

cloud-init de VM

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # por defecto es 'password'

si no se establece

mme:

 hosts:

 site-mme01:

 ansible_host: 192.168.1.10

 gateway: 192.168.1.1

 vlanid: "100" # opcional

Para Implementación de LXC

(proxmox_lxc.yml)

all:

 vars:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # único o

lista

 proxmoxApiTokenName: ansible

 PROXMOX_API_TOKEN: "your-token-secret-uuid"

 proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-

standard_24.04-2_amd64.tar.zst'

 proxmoxLxcCores: 2

 proxmoxLxcMemoryMb: 4096

 proxmoxLxcDiskSizeGb: 30

 proxmoxLxcRootFsStorageName: local-lvm

 mask_cidr: 24

 host_vm_network: vmbr0

 # Credenciales de usuario - el primer usuario se utiliza para

el acceso inicial a VM/LXC

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # por defecto es 'password'

si no se establece

apt_cache_servers:

 hosts:

 site-cache:

 ansible_host: 192.168.1.20

 gateway: 192.168.1.1

 vlanid: "100" # opcional

 proxmoxLxcDiskSizeGb: 120 # anulación por host

Uso

Implementar VMs

Implementar Contenedores LXC

Eliminar VMs/LXCs

Comportamiento

proxmox.yml

Verifica si ya existe una VM con el mismo nombre en Proxmox

Distribuye VMs entre nodos usando round-robin

Clona desde la plantilla

Configura IP estática, etiquetas y cloud-init

Establece las credenciales de usuario de cloud-init desde la

primera entrada de local_users

Soporta etiquetado VLAN

proxmox_lxc.yml

Verifica que el contenedor no exista por nombre o IP

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_delete.yml

Distribuye LXCs entre nodos usando round-robin

Crea contenedor con IP estática

Crea automáticamente la primera cuenta de local_users con

acceso sudo y clave SSH

Configura netplan para la red

Inicia automáticamente los contenedores

Excluye hosts UPF

proxmox_delete.yml

Detiene y elimina VM/LXC que coincidan con el nombre de host del

inventario

Busca en todos los nodos configurados

Fuerza la detención después de 20 segundos

Distribución y Etiquetado de

VM/LXC

Distribución Round-Robin

Las VMs y LXCs se distribuyen automáticamente entre los nodos de Proxmox

utilizando lógica de round-robin (módulo):

Ejemplo con 3 hipervisores y 5 MMEs:

Cómo funciona:

1. El playbook identifica el grupo de roles del host (por ejemplo, mme , sgw ,

hss)

mme01 → pve-node-01 (índice 0 % 3 = 0)

mme02 → pve-node-02 (índice 1 % 3 = 1)

mme03 → pve-node-03 (índice 2 % 3 = 2)

mme04 → pve-node-01 (índice 3 % 3 = 0)

mme05 → pve-node-02 (índice 4 % 3 = 1)

2. Calcula el índice del host dentro de ese grupo (basado en 0)

3. Utiliza la operación de módulo: host_index % number_of_nodes

4. Selecciona el hipervisor según el resultado

Configuración:

Etiquetado Automático

Las VMs y LXCs se etiquetan automáticamente con:

Nombres de Rol/Grupo: Todos los grupos de Ansible a los que pertenece

el host

Nombre del Sitio: La variable site_name

Ejemplo:

Resultado: VM/LXC etiquetada con: mme , melbourne-prod

Las etiquetas son visibles en la interfaz de Proxmox y son útiles para

filtrado/organización.

Para VMs (proxmox.yml) - definir múltiples servidores

proxmoxServers:

 pve-node-01: { ... }

 pve-node-02: { ... }

 pve-node-03: { ... }

Para LXCs (proxmox_lxc.yml) - listar múltiples nodos

proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

site_name: "melbourne-prod"

mme:

 hosts:

 melbourne-mme01: { ... }

Anulaciones por Host

Anule los valores predeterminados en hosts específicos:

hosts:

 high-spec-host:

 ansible_host: 192.168.1.50

 gateway: 192.168.1.1

 proxmoxLxcCores: 8 # anular núcleos

 proxmoxLxcMemoryMb: 16384 # anular memoria

 proxmoxLxcDiskSizeGb: 100 # anular disco

Libretas de Utilidad

Las libretas de utilidad proporcionan herramientas operativas para gestionar la

infraestructura de OmniCore desplegada. Estas libretas se encuentran en el

directorio util_playbooks/ y se pueden ejecutar de forma independiente para

realizar tareas comunes de mantenimiento y resolución de problemas.

Referencia Rápida

Libreta Propósito

health_check.yml
Generar un informe de salud completo para

todos los servicios

restore_hss.yml
Restaurar la base de datos HSS y/o la

configuración desde una copia de seguridad

ip_plan_generator.yml
Generar documentación de red con diagramas

de Mermaid

get_ports.yml
Auditar puertos abiertos y servicios en escucha

en todos los hosts

getLocalCapture.yml
Recuperar archivos de captura de paquetes de

los hosts

delete_local_user.yml
Eliminar una cuenta de usuario local de todos los

hosts

updateMtu.yml
Establecer MTU en 9000 (tramas jumbo) en las

interfaces de red

systemctl status.yml
Verificar el estado del servicio en los

componentes EPC

Verificación de Salud

Archivo: util_playbooks/health_check.yml

Genera un informe de salud HTML completo que cubre todos los servicios de

OmniCore y OmniCall desplegados.

Salida: /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Información Recopilada

Componente Datos Recopilados

Todos los

servicios
Estado del servicio, versión, tiempo de actividad

OmniHSS
Estado de la base de datos, conexiones de pares

Diameter

OmniDRA Conexiones de pares Diameter y estado

OmniTAS Llamadas activas, sesiones, registros, uso de CPU

OCS Estado de replicación de KeyDB

Restauración de HSS

Archivo: util_playbooks/restore_hss.yml

Restaura OmniHSS a partir de archivos de copia de seguridad. Soporta la

restauración solo de la base de datos, solo de la configuración, o de ambos.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Formatos de Archivos de Copia de Seguridad

Tipo Patrón de Nombre de Archivo Contenidos

Base de

datos
hss_dump_<hostname>_<timestamp>.sql

Volcado de

MySQL de la

base de datos

omnihss

Configuración hss_<hostname>_<timestamp>.tar.gz

Archivo del

directorio

/etc/omnihss

Generador de Plan de IP

Archivo: util_playbooks/ip_plan_generator.yml

Genera documentación de red a partir del inventario, incluyendo:

Asignaciones de IP de hosts (NICs primarias y secundarias)

Visión general del segmento de red

Diagramas de conectividad de interfaces (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/restore_hss.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Archivos de Salida

Archivo Formato Descripción

/tmp/ip_plan_<customer>_<site>.md Markdown
Documentación

basada en texto

/tmp/ip_plan_<customer>_<site>.html HTML

Diagrama

interactivo con

capas filtrables

Auditoría de Puertos

Archivo: util_playbooks/get_ports.yml

Audita todos los puertos en escucha a través del despliegue y genera

documentación.

Archivos de Salida

Archivo Descripción

/tmp/all_ports.csv
CSV con nombre de host, IP, protocolo, puerto,

servicio

./open_ports.rst Tabla reStructuredText para documentación Sphinx

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/get_ports.yml

Datos Recopilados

Campo Descripción

Nombre de Host Nombre de host del inventario

IP Dirección IP ansible_host del host

Versión de IP IPv4 o IPv6

Transporte TCP o UDP

Puerto Número de puerto en escucha

Servicio Nombre del proceso

Recuperación de Captura Local

Archivo: util_playbooks/getLocalCapture.yml

Recupera los dos archivos de captura de paquetes más recientes del directorio

/etc/localcapture de cada host.

Salida: ./localCapturePcaps/<hostname>/*.pcap

Gestión de Usuarios

Archivo: util_playbooks/delete_local_user.yml

Elimina una cuenta de usuario local de todos los hosts en el inventario.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

Solicitud: Ingrese el nombre de usuario a eliminar cuando se le solicite.

Configuración de MTU

Archivo: util_playbooks/updateMtu.yml

Establece el MTU en 9000 (tramas jumbo) en la interfaz ens160 en todos los

hosts.

Nota: Esta libreta está codificada para la interfaz ens160 . Modifique la libreta

si su entorno utiliza nombres de interfaz diferentes.

Ejecución de Libretas de Utilidad

Sintaxis Básica

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/delete_local_user.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

ansible-playbook -i <inventory_file> util_playbooks/<playbook>.yml

Opciones Comunes

Opción Descripción

-i <inventory> Especificar archivo de inventario

--limit <hosts> Limitar a hosts o grupos específicos

-v / -vv / -vvv Aumentar la verbosidad

--check Ejecución en seco (mostrar lo que cambiaría)

--diff Mostrar diferencias de archivos

Ejemplos

Ejecutar verificación de salud en producción

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/health_check.yml

Restaurar HSS en un host específico

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/restore_hss.yml --limit hss01

Generar plan de IP con salida detallada

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/ip_plan_generator.yml -v

