Introduccion al
Despliegue de Ansible
en Omnitouch

Resumen

Omnitouch Network Services utiliza Ansible como su plataforma de
automatizacién de infraestructura para desplegar soluciones completas de red
celular (4G/5G) de manera consistente, repetible y automatizada. Este
documento proporciona una vision general de cédmo aprovechamos Ansible
para orquestar despliegues complejos de telecomunicaciones.

:Qué es Ansible?

Ansible es una herramienta de automatizacién de cédigo abierto que te

permite:

Configurar sistemas

Desplegar software

Orquestar flujos de trabajo complejos

Gestionar infraestructura como cédigo

Ansible utiliza un enfoque declarativo: describes el estado deseado de tus
sistemas, y Ansible se asegura de que alcancen ese estado.

Como Usa Omnitouch Ansible

Ansible Control Node

SSH_— SSH— SSH ~s5H T —_ssH
'r.' ¥ t ¥ -
MME Servers HS5 Servers IM5 Servers Support Services Monitoring

Conceptos Clave

1. Inventario (Archivos de Hosts)

Define qué sistemas gestionar. Cada despliegue de cliente tiene un archivo de
hosts que describe:

Todas las maquinas virtuales en la red

Sus direcciones IP

Configuracién de red

Parametros especificos del servicio
Los archivos de hosts son con los que trabajaras para definir tu red.
Ver:

2. Roles

Define como configurar cada componente. Los roles son unidades reutilizables
que contienen:

e Tareas (pasos a ejecutar)
e Plantillas (plantillas de archivos de configuracién)
e Controladores (acciones desencadenadas por cambios)

» Variables (valores de configuracién predeterminados)

Ejemplos de roles para componentes de OmniCore: omnihss, omnisgwc,
omnipgwc, omnidra, etc.

Estos son definidos por el equipo de ONS, mientras que puedes editarlos,
generalmente hay formas mas limpias de hacer cualquier ajuste que puedas
necesitar desde tu archivo de hosts.

3. Playbooks

Orguesta cuando y donde se aplican los roles:

- name: Deploy EPC Core
hosts: mme
roles:
- common
- omnimme

Los usamos esencialmente como grupos para los roles.

4. Variables de Grupo

Proporciona configuracion especifica del cliente que anula los valores
predeterminados del rol. Aqui es donde ocurre la personalizacion del cliente sin
modificar los roles base.

Ver:

Arquitectura de Despliegue

Hosts File \

Group Vars Ansible Playbook SSH to Hosts Configure Systems Running Network

oles /

El Proceso de Despliegue

1. Definir Infraestructura
Crea un archivo de hosts que describa tu topologia de red:

Nota de Planificacidon: Antes de definir la infraestructura, revisa el
para obtener orientacién sobre segmentacién de red,
asignacion de direcciones IP y organizacién de subredes.

Usuarios de Proxmox: Si despliegas en Proxmox, consulta
para la provisién automatizada de VM/contenedores.

Ver: Yy

mme :
hosts:
customer-mmeQ1l:
ansible host: 10.10.1.15
mme_code: 1

2. Personalizar Configuracion

Establece variables especificas del cliente en group vars:

plmn_id:
mcc: '001'
mnc: '01'

customer name short: customer

#ToDo - Agregar enlace aqui a la referencia de configuracion para la lista
completa

3. Ejecutar Playbooks

Desplegar la red:

ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

4. Despliegue Automatizado

Ansible hara:

e Crear/provisionar VMs (si se utiliza la integraciéon de Proxmox/VMware)
e Configurar la red

» Instalar paquetes de software desde la caché de APT

» Desplegar cédigo de aplicacién

e Configurar servicios con configuraciones del cliente

e Iniciar servicios

e Validar el despliegue

Componentes Clave que
Desplegamos

OmniCore (Plataforma de Nucleo de Paquete
4G/5G)

e OmniHSS - Servidor de Suscriptores de Hogar

OmniSGW - Puerta de Enlace de Servicio (plano de control)

OmniPGW - Puerta de Enlace de Paguete (plano de control)

OmniUPF - Funcién de Plano de Usuario

OmniDRA - Agente de Enrutamiento Diameter

OMmniTWAG - Puerta de Enlace de Acceso WLAN de Confianza

Ver:

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Plataforma de Voz y Mensajeria)

e OmniCall CSCF - Funcién de Control de Sesiones de Llamada (P-CSCF, |-
CSCF, S-CSCF)

e OmniTAS - Servidor de Aplicaciones IMS (servicios VOLTE/VONR)
¢ OmniMessage - Centro de SMS (SMS-C)

¢ OmniMessage SMPP - Soporte para el protocolo SMPP

e OmniSS7 - Componentes de sefializacion SS7 (STP, HLR, CAMEL)

¢ VisualVoicemail - Funcionalidad de correo de voz

Ver:

OmniCharge/OmniCRM

* Plataforma CRM - Gestidn de relaciones con clientes, auto-registro,
facturacion

Ver:

Servicios de Soporte

e DNS - Resolucién DNS de red
e Servidor de Licencias - Gestidon de licencias

¢ Monitoreo - Prometheus, Grafana

Ver:

Gestion de Paquetes

Utilizamos un modelo hibrido de distribucién de paquetes:

Paquetes APT Precompilados
Todo el software de Omnitouch se distribuye como paquetes Debian (.deb):

» Construidos a partir del cédigo fuente en nuestra pipeline de CI/CD

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

e Versionados y probados

e Alojados en repositorios de paquetes

Sistema de Caché APT

Los clientes pueden elegir entre:

1. Caché APT Local - Espejo de paquetes requeridos en el sitio para
despliegue fuera de linea

2. Repositorio Publico - Acceso directo al repositorio de paquetes alojado
por Omnitouch

Ver:

Gestion de Licencias

Todos los componentes de software de Omnitouch requieren licencias validas
gestionadas a través de un servidor de licencias central:

e Los componentes verifican la validez de la licencia al iniciar
» Las caracteristicas se habilitan/deshabilitan segun la licencia

e El servidor de licencias puede ser local o alojado en la nube

Ver:

Beneficios de Este Enfoque

Repetibilidad
Los mismos playbooks de Ansible pueden desplegar:

e Laboratorios de desarrollo
e Entornos de prueba
» Redes de produccidon

e Sitios de clientes

Consistencia

Cada despliegue utiliza las mismas configuraciones probadas, reduciendo el
error humano.

Control de Versiones
La infraestructura se define como cédigo en Git:

e Rastrear todos los cambios
e Revisar antes del despliegue

e Revertir si es necesario

Personalizacion Sin Complejidad

Los clientes pueden personalizar su despliegue a través de group vars sin
modificar los roles centrales.

Despliegue Rapido

Desplegar una red celular completa en horas en lugar de dias o semanas.

Comenzando

Requisitos Previos

Antes de ejecutar los playbooks de Ansible, necesitas configurar un entorno
virtual de Python e instalar las dependencias requeridas.

1. Crear un Entorno Virtual de Python

Crea un entorno aislado de Python para el despliegue de Ansible:

python3 -m venv .venv

2. Activar el Entorno Virtual

Activa el entorno virtual:
source .venv/bin/activate
En Windows, usa:

.venv\Scripts\activate

3. Instalar Paquetes Requeridos

Instala todas las dependencias desde el archivo requirements.txt:
pip install -r requirements.txt

Esto instalara Ansible y todos los paquetes de Python necesarios para la
automatizaciéon del despliegue de Omnitouch.

Nota: Mantén el entorno virtual activado siempre que ejecutes comandos de
Ansible. Puedes desactivarlo cuando termines ejecutando deactivate.

Pasos de Despliegue

1. Revisa la para entender cdémo definir tu
red

2. Aprende sobre para personalizacién

3. Comprende el para la gestidon de paquetes

4. Revisa la para ver cdmo encaja todo

5. iDespliega!

Proximos Pasos

. - Planifica tu arquitectura de red y
asignacion de IP

- Aprende cémo definir tu topologia de
red

- Comprende la distribucién de paguetes
- Aprende sobre la gestién de licencias
- Ve la imagen completa
- Personaliza tu despliegue

- Herramientas operativas para chequeos de salud,
copias de seguridad y mantenimiento

Repositorio APT y
Distribucion de
Paquetes

Descripcion General

El sistema APT de Omnitouch proporciona distribucion de paquetes para todos
los despliegues. Se sirven dos tipos de contenido:

1. Paquetes APT — Paquetes Debian instalados a través de apt install

2. Lanzamientos Binarios — Binarios precompilados descargados
directamente (exportadores de Prometheus, agentes, etc.)

Se admiten dos modelos de despliegue:

1. Acceso Directo — Las mdaquinas virtuales obtienen paquetes
directamente de apt.omnitouch.com.au

2. Espejo de Caché Local — Un servidor local sincroniza desde Omnitouch y
sirve paquetes a las mdaquinas virtuales (para despliegues fuera de
linea/aislados)

Arquitectura

Sincranizar Toda el
Contenido

D=z #Ut En

Caché APT Local

Pue=rto 8080
Paguetes + Paguetes +
Lanzami=ntos Lanzamientos
*
WM 4 W 3

Contenido Servido

Paquestes +
Lanzami=ritos

WM G

ni=rmet | Infrasstrecturs

e Oam
spt.omnitouch. Com.au

Puerto 80

Peguetes + Paguetes +
Larnzsmientos Lanzamientos

Desplisgue de AccEso

v Lo TN

WM 1 WM 2

Paguetes +
Larnzasmientos

v

W 3

El servidor APT alberga todo el contenido requerido para los despliegues:

Tipo de
Contenido

Paquetes
Omnitouch

Paquetes de
Ubuntu

Lanzamientos
de GitHub

Tarballs de
Fuente

Paquetes de
Terceros

Descripcion

Paquetes .deb
personalizados (omnihss,
omnimme, etc.)

Paquetes de Ubuntu en
caché con todas las
dependencias

Binarios precompilados
(Prometheus, Grafana,
Homer, etc.)

Archivos fuente para
aplicaciones web
(CGrateS_Ul, speedtest)

Galera, FRR, InfluxDB,
KeyDB, etc.

Ruta

/dists/<distro>/

/<distro>/pool/main/

/releases/<org>/<repo>/

/repos/

/releases/<vendor>/

Variables de Configuracion

Dos conjuntos de variables separadas controlan la distribucién de paquetes.
Comprender sus propdsitos es esencial para una configuracién correcta.

Propositos de las Variables

Conjunto de

] Propdsito
Variables
Configura las
apt repo fuentes de

paquetes APT

Configura las
URL de
descarga de
binarios

remote apt *

Usado Para

/etc/apt/sources.list y
/etc/apt/sources.list.d/*.list

Descargando archivos de la ruta
/releases/ (Node Exporter, Zabbix,
Nagios, etc.)

Cuando Se Usa Cada Conjunto de Variables

. Fuentes APT Descargas Binarias
Escenario
(apt_repo) (remote_apt_*)
use apt cache: Usa
Usa apt repo.apt server
true apt repo.apt server - -
use apt cache: Usa apt repo.* con Usa remote apt * con
false credenciales credenciales

Cuando use_apt_cache: false, ambos conjuntos de variables son
requeridos.

Opcion 1: Acceso Directo

Para despliegues con conectividad a Internet, las maquinas virtuales obtienen
paquetes directamente del servidor APT de Omnitouch.

Requisitos de Red

Lista Blanca de IP de Origen: Tu direccion IP publica debe estar en la lista
blanca en el servidor APT de Omnitouch. Durante la configuracién, proporciona
tus subredes de origen a Omnitouch. A cambio, recibiras:

* Nombre de usuario y contraseina para la autenticacién basica HTTP
e FQDN para el servidor APT

Requisitos de Firewall: Se debe permitir el acceso saliente a los siguientes
rangos de IP de Omnitouch:

Red Rango

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:decO::/48

ASN AS152894

Servicios que requieren acceso a la infraestructura de Omnitouch:

Servicio Puerto Protocolo Proposito

Servidor APT 80 TCP Descargas de paquetes

Resolucién DNS para

Servidor APT 53 TCP/UDP :
apt.omnitouch.com.au

Servidor de Sincronizaciéon de tiempo NTP para
. _ 123 UDP . . .

Licencias validacion de licencias

Servidor de Resolucién DNS para validacion de
, , 53 TCP/UDP , ,

Licencias licencias

Asegurate de que el trafico HTTP (TCP/80), NTP (UDP/123) y DNS (TCP+UDP/53)
esté permitido hacia los rangos de IP de Omnitouch.

Configuracion

all:
vars:
use apt cache: false

Configuracidon de fuentes de paquetes APT
Configura /etc/apt/sources.list para comandos apt install
apt repo:

apt server: "apt.omnitouch.com.au"

apt repo username: "tu-usuario"

apt repo password: "tu-contraseia"

Configuracidon de descargas binarias

Usado para descargar archivos de la ruta /releases/
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80

remote apt protocol: "http"

remote apt user: "tu-usuario"

remote apt password: "tu-contrasena"

Parametros

Fuentes de Paquetes APT (apt_repo)

Parametro Tipo

apt repo.apt server Cadena

apt repo.apt repo_username Cadena

apt_repo.apt repo password Cadena

Descargas Binarias (remote_apt_*)

Requerido

Si

Si

Si

Predeterminado

Parametro

remote apt server

remote apt port

remote apt protocol

remote apt user

remote apt password

General

Tipo

Cadena

Entero

Cadena

Cadena

Cadena

Requerido

Si

No

No

Si

Predeterminado

80

http

Descr

Nombt
host o
servidi
descar
binaric

Puerto
servidi
descar
binaric

Protoc
(http
https

Nombr
usuaris
autent
basica
para

descar

Contra
de
autent
basica
para
descar

Parametro Tipo Requerido Predeterminado Descripcidé

Debe ser

, false para
use apt cache Booleano Si -
- acceso

directo

Patrones de URL (Acceso Directo)

Fuentes de Paquetes APT (configuradas en /etc/apt/sources.list):

deb [trusted=yes] http://{apt repo username}:
{apt_repo password}@{apt server}/ noble main

Descargas Binarias (usadas por tareas get url de Ansible):

http://{remote apt user}:

{remote apt password}@{remote apt server}:

{remote apt port}/releases/prometheus/node exporter/node exporter-
1.8.1.linux-amd64.tar.qgz

Como Funciona

Variables de

Coanfisrasisn - Lo que Configuran
apt repo
(fuentes de paquetes » /etc/apt/sources.list
APT)
remote apt * R Descargas binarias

(descargas binarias) [releases/*

Las maquinas virtuales se autentican con autenticacién basica HTTP tanto para
paquetes APT como para descargas binarias. Los paquetes del sistema Ubuntu
también se sirven desde el servidor de Omnitouch (pre-caché), por lo que las
maquinas virtuales no necesitan acceso a los espejos de Ubuntu.

Opcion 2: Espejo de Caché Local
Para despliegues fuera de linea, aislados o con limitaciones de ancho de banda,

despliega una caché APT local que sincroniza todo el contenido desde
Omnitouch.

Arquitectura

Sincronizacién Inicial
(requiere internet)

Configuracion

Define el servidor de caché en tu archivo de hosts con su configuracién de
repositorio:

apt cache servers:
hosts:
customer-apt-cache:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
El servidor de caché sincroniza paquetes desde el
repositorio autenticado
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "tu-usuario"
remote apt password: "tu-contrasefia"

all:
vars:
use apt cache: true # Se establece automaticamente cuando
existe el grupo apt cache servers
apt repo.apt server: derivado automaticamente a
192.168.1.100 (primer servidor de caché)

Cémo funciona:

e Servidor de caché (192.168.1.100): Usa credenciales remote apt *
para sincronizar paquetes desde apt.omnitouch.com.au:80

e Todos los demas hosts: Derivan automaticamente
apt repo.apt server: "192.168.1.100" y obtienen desde la caché en el
puerto 8080 sin credenciales

Parametros

Fuentes de Paquetes APT (apt_repo)

Parametro Tipo Requerido Predeterminado

Derivado

apt repo.apt server Cadena Si L.
B - automaticamente

apt repo.apt repo username Cadena No -

apt repo.apt repo password Cadena No -

Sincronizacion del Servidor de Caché (remote_apt_x*)

Estas variables configuran como el servidor de caché sincroniza contenido
desde Omnitouch:

Parametro

remote apt server

remote apt port

remote apt protocol

remote apt user

remote apt password

General

Tipo

Cadena

Entero

Cadena

Cadena

Cadena

Requerido

Si

No

No

Predeterminado

80

http

Descli

Servid
de Om
desde
sincror

Puerto
servidt
de Om

Protoc
para lc
conexi
sincrot

Creder
para

sincrot
desde
Omniti

Creder
para

sincrot
desde
Omnit

Parametro Tipo Requerido Predeterminado Descri

Se estable
automatic:
use apt cache Booleano No true en true cl
existe el g
apt cache

Puerto en !

apt _cache port Entero No 8080 escucha el
de caché I

Patrones de URL (Modo Caché)

Fuentes de Paquetes APT (configuradas en /etc/apt/sources.list):
deb [trusted=yes] http://192.168.1.100:8080/noble noble main
Descargas Binarias (usadas por tareas get url de Ansible):

http://192.168.1.100:8080/releases/prometheus/node exporter/node expc
1.8.1.linux-amd64.tar.gz

No se requieren credenciales para el acceso a la caché; utiliza la configuracién
APT [trusted=yes].

Desplegando la Caché

1. Provision del servidor de caché (VM o contenedor LXC con disco de 50+
GB)

2. Ejecuta el libro de jugadas de configuracion de la caché:

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

3. Verifica la caché navegando a http://192.168.1.100:8080/

Qué Se Sincroniza

El espejo de caché sincroniza todo el contenido desde el servidor APT de
Omnitouch utilizando descarga recursiva con wget:

Directorios de contenido sincronizados:

Ruta Contenido

. . Metadatos del repositorio APT (archivos Packages,
/dists/<distro>/
Release)

/pool/main/ Paquetes .deb personalizados de Omnitouch
/<distro>/pool/main/ Paquetes de Ubuntu y todas las dependencias

Lanzamientos de GitHub (Prometheus, Grafana,

releases
4 4 Zabbix, etc.)

/repos/ Tarballs fuente (Erlang, Elixir, CGrateS_Ul, etc.)

Después de la sincronizacién inicial, la caché puede servir todos los paguetes
sin conectividad a Internet.

Como Funciona

Red del Cliente

Servir Paguetes
(capaz de estar fuera —» VM

de linea)
Infraestructura de)
Pk e E—
i Sincronizacion Inicial Espejo de Cache APT e
aptomnitouch.com.au —— - - E— - ' — (capaz de estar fuera —» VM
(requiere intemet) (apt_cache_servers) de linea)

Servir Paguetes
(capaz de estar fuera = VM
de linea)

El espejo de caché utiliza wget --recursive con autenticacion basica HTTP
para descargar todo el contenido desde el servidor APT de Omnitouch. Las
sincronizaciones posteriores solo descargan archivos nuevos/cambiados
(marcado de tiempo).

Configuracion Automatica

Cuando existe un grupo apt_cache servers en tu inventario, el sistema
automaticamente:

1. Establece use apt cache: true para todos los hosts (a menos que se
anule explicitamente)

2. Deriva apt_repo.apt server dela IP ansible host del primer servidor de
caché

Ejemplo de Configuracion Minima

apt _cache servers:
hosts:
apt-cache-01:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
El servidor de caché sincroniza contenido desde el
repositorio de Omnitouch
remote apt server: "apt.omnitouch.com.au"
remote apt user: "tu-usuario"
remote apt password: "tu-contrasefia"

Lo que sucede automaticamente:

e Todos los hosts (excepto el servidor de caché) obtienen use apt cache:
true

» Todos los hosts (excepto el servidor de caché) obtienen
apt repo.apt server: "192.168.1.100"

¢ Todos los hosts obtienen desde http://192.168.1.100:8080/ sin
credenciales

» El servidor de caché sincroniza paquetes desde http://tu-usuario:tu-
contrasena@apt.omnitouch.com.au/

Anular Comportamiento Automatico

Para forzar el acceso directo incluso con servidores de caché definidos:

all:

vars:
use apt cache: false # Forzar acceso directo incluso con

servidores de caché definidos

apt repo:
apt server: "apt.omnitouch.com.au"
apt _repo _username: "usuario"
apt repo password: "contraseha"

remote apt server: "apt.omnitouch.com.au"

remote apt user: "usuario"
remote apt password: "contrasefa"

Resumen de Configuracion

Escenario 1: Acceso Directo al Servidor APT
(Sin Caché)

Todos los hosts obtienen paquetes directamente del servidor del repositorio
APT.

all:
vars:
use apt cache: false

Fuentes de paquetes APT - usadas por todos los hosts
apt repo:

apt server: "apt.omnitouch.com.au"

apt _repo _username: "usuario"

apt repo password: "contraseha"

Descargas binarias - usadas por todos los hosts
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80

remote apt protocol: "http"

remote apt user: "usuario"

remote apt password: "contraseha"

Resultado: Todos los hosts generan deb [trusted=yes]
http://usuario:contrasefia@apt.omnitouch.com.au/ noble main

Escenario 2: Servidor de Caché APT Definido
en el Archivo de Hosts (Automatico)

El servidor de caché estd en tu inventario y seréd desplegado/sincronizado por
Ansible.

apt cache servers:
hosts:
cache-server:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
El servidor de caché sincroniza paquetes desde el
repositorio autenticado
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "usuario"
remote apt password: "contrasefa"

No se necesita configuracidén en all: vars:
Todo se deriva automaticamente del grupo apt cache servers

Resultado:

* Servidor de caché: Sincroniza desde
http://usuario:contrasefa@apt.omnitouch.com.au:80/

e Todos los demas hosts: Generan deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (sin credenciales)

Escenario 3: Caché APT Remota NO en el
Archivo de Hosts (Manual)

El servidor de caché existe en otro lugar y ya esta configurado (no gestionado
por tu Ansible).

all:
vars:
use apt cache: true

Apuntar todos los hosts al servidor de caché externo
apt repo:
apt server: "192.168.1.100" # IP del servidor de caché

externo
apt_repo port: 8080 # La caché generalmente se
ejecuta en el puerto 8080

No se necesita grupo apt cache servers

No se necesita remote apt * (la caché ya esta configurada
externamente)

Resultado: Todos los hosts generan deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (sin credenciales)

Ejemplo Completo

Aqui hay un ejemplo completo que muestra la configuracién del servidor de
caché con multiples hosts de aplicacion:

Grupo del Servidor de Caché APT
apt cache servers:
hosts:
customer-apt-cache:
ansible host: 10.179.1.114
gateway: 10.179.1.1
host vm network: "vmbr@"
num cpus: 4
memory mb: 16384
proxmoxLxcDiskSizeGb: 120
vars:
El servidor de caché sincroniza paquetes desde el
repositorio autenticado
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "customer-username"
remote apt password: "customer-secure-token"

Servidores de Aplicacién

hss:
hosts:
customer-hss01l:
ansible host: 10.179.2.140
gateway: 10.179.2.1
mme :
hosts:
customer-mme0Q1:
ansible host: 10.179.1.15
gateway: 10.179.1.1
dns:
hosts:

customer-dns01:
ansible host: 10.179.2.177
gateway: 10.179.2.1

Configuracién Global
all:
vars:
Auto-configuracién (no se necesita configuracidén manual):
- use apt cache: true (auto-habilitado cuando existe

Lo que sucede durante el despliegue:
1. Servidor de caché (10.179.1.114):

o Usa remote apt * de su seccion vars:

o Descarga todos los paquetes desde http://customer-
username:customer-secure-token@apt.omnitouch.com.au:80/

o Sirve paquetes en el puerto 8080 a través de nginx

2. Hosts de aplicacion (customer-hss0l, customer-mme0l, customer-
dns01):

o Detectan automaticamente que existe el grupo apt cache servers

o Establecen automaticamente use apt cache: true

o Derivan automaticamente apt repo.apt server: "10.179.1.114"

o Generan: deb [trusted=yes] http://10.179.1.114:8080/noble noble
main

o Obtienen todos los paquetes desde el servidor de caché (sin
credenciales requeridas)

Actualizando la Cache

Para sincronizar nuevos paquetes o actualizaciones:

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

Esto sincroniza de manera incremental todo el contenido desde el servidor APT
de Omnitouch:

e Nuevas versiones de paguetes de Omnitouch

¢ Nuevos paguetes de Ubuntu y dependencias
¢ Nuevos lanzamientos de GitHub

e Tarballs de fuente actualizados

La sincronizacién utiliza wget --timestamping, por lo que se omiten los
archivos existentes sin cambios, haciendo que la re-sincronizacién sea rapida.

Nota: El servidor APT de Omnitouch (apt.omnitouch.com.au) es la Unica
fuente de verdad para todos los pagquetes. Ejecuta services/apt.yml en el
servidor apt primero para construir/actualizar paguetes, luego ejecuta
services/apt _cache.yml en los espejos de caché para sincronizar.

Solucion de Problemas

La Actualizacion de APT Falla con 401 No
Autorizado

Sintomas:

Failed to fetch
http://10.179.1.115:80/noble/dists/noble/main/binary-
amd64/Packages 401 Unauthorized

Causas posibles:

e Configuracion de apt repo definida en all: vars: en lugar de
apt_cache servers: vars:

e Hosts intentando acceder al repositorio autenticado directamente en lugar
de a la caché

e apt repo username 0 apt repo password incorrectos
e |IP de origen no en la lista blanca en el servidor APT de Omnitouch

* Usando credenciales de caché para acceso directo o viceversa

Resolucion:

1. Verifica el alcance de la configuracion: Asegurate de que apt repo
con credenciales esté definido en apt cache servers: vars:, NO en all:
vars:

2. Verifica el modo de caché: Al usar caché, los hosts deben conectarse al
servidor de caché (puerto 8080), no al repositorio (puerto 80)

3. Verifica las fuentes generadas: En el host que falla, verifica
/etc/apt/sources.list.d/omnitouch.list
o Correcto (modo caché): deb [trusted=yes]
http://10.179.1.114:8080/noble noble main

o Incorrecto (tiene credenciales en el lugar equivocado): deb
[trusted=yes] http://usuario:contrasefa@l0.179.1.115:80/noble
noble main

4. Verifica que las credenciales sean correctas para tu modo de despliegue

5. Confirma que tu IP puUblica esté en la lista blanca con Omnitouch (si usas
acceso directo)

Las Descargas Binarias Fallan (Node Exporter,
Zabbix, etc.)

Sintomas: El libro de jugadas de Ansible falla al descargar archivos de la ruta
/releases/

Causas posibles:

» Variables remote apt * no configuradas
* remote apt user O remote apt password incorrectos

e Falta remote apt server cuando use apt cache: false
Resolucioén:

1. Asegurate de que todas las variables remote apt * estén definidas

2. Verifica que las credenciales coincidan con las proporcionadas por
Omnitouch

3. Verifica que remote apt server apunte al host correcto

El Servidor de Caché No Puede Sincronizar
Sintomas: El libro de jugadas del servidor de caché falla al descargar paquetes
Causas posibles:

e El servidor de caché no tiene acceso a Internet
* Credenciales remote apt * incorrectas

e Firewall bloqueando conexiones salientes a Omnitouch
Resoluciodn:

1. Verifica que el servidor de caché pueda alcanzar apt.omnitouch.com.au en
el puerto 80

2. Verifica las credenciales remote apt *

3. Revisa las reglas del firewall para el acceso saliente

Documentacion Relacionada

. — Configuracién de inventario y
variables

. — Referencia completa de parametros

. — Arquitectura general del sistema

. — Desplegando el servidor de caché como

contenedor LXC

Referencia de
Configuracion

Descripcion General

Este documento proporciona una referencia completa para configurar
implementaciones de OmniCore a través de archivos de hosts. La configuracién
se define principalmente en archivos de inventario de hosts con minimas
sobreescrituras de group_vars necesarias para implementaciones modernas.

Para documentacidén especifica del producto, consulte:

¢ OmniCore:
¢« OmnicCall:

e OmniCharge:

Enfoque de Configuracion

Las implementaciones modernas de OmniCore utilizan un modelo de
configuracién simplificado:

' ; Component _
Hosts File * Ansible Roles * * Deployed Services

Configuration
Principio Clave: La mayor parte de la configuracién se define directamente en
el archivo de hosts. Los valores predeterminados de los roles manejan la
mayoria de las configuraciones, con group_vars utilizados solo para
personalizaciones especificas.

Planificacion de Red

Antes de configurar los hosts, revise el para
obtener orientacién sobre:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Estrategias de segmentacién de red

Asignacién de direcciones IP

Organizacion de subredes

Manejo de IP publicas

Parametros Comunes de Host

#ToDo - Solo diga que consulte hosts-file-configuration.md para esto

Flags Especificos del Servicio

cdrs _enabled: True # Habilitar generacidén de CDR

in pool: False # Excluir del grupo de balanceo
de carga

online charging enabled: False # Habilitar integracién 0CS
recording: True # Habilitar grabacidn de llamadas
(AS)

populate crm: False # Poblacién inicial de CRM

Variables Globales (all:vars)

La seccién all:vars contiene configuraciones a nivel de implementacién. Las
implementaciones modernas utilizan variables globales minimas con la mayor
parte de la configuracién en los valores predeterminados de los roles.

Variables Globales Esenciales

Autenticacion y Acceso

ansible connection: ssh

ansible user: root

ansible password: password
ansible become password: password

Alternativa: Use claves SSH en lugar de contrasefnas:

ansible ssh private key file: '/path/to/key.pem'

Identidad del Cliente

customer _name short: omnitouch
customer legal name: "YKTN Lab"
site name: YKTN

region: AU

TZ: Australia/Melbourne

Configuracion de PLMN

plmn_id:
mcc: '001' # C6digo de Pais Mévil (3 digitos)
mnc: 'O1' # Codigo de Red Movil (2-3 digitos)
mnc_longform: '001'’ # MNC con ceros a la izquierda (siempre
3 digitos)

diameter realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

Propdsito: Identifica de manera Unica su red movil. Se utiliza para la
construcciéon del dominio Diameter.

Nombres de Red

network name short: Omni
network name long: Omnitouch

tac list: [10100,100] # Lista TAC predeterminada (se
puede sobrescribir por MME)

Mostrado: Nombres de red que se muestran en dispositivos UE en
Configuracion > Red Movil.

Configuracion de DNS

netplan DNS: False # Usar systemd-resolved en lugar
de DNS de netplan

Configuracion del Repositorio APT

Valores Predeterminados Automaticos: Cuando se define un grupo
apt cache servers con hosts:

e use apt cache se establece automaticamente en True (a menos que se
establezca explicitamente en False)

e apt repo.apt _server se establece automaticamente en la IP del primer
servidor de caché

Configuracion manual (opcional si existe el grupo
apt cache servers)

use apt cache: True # Usar caché APT local vs acceso
directo al repositorio

apt_repo:
apt server: "10.10.1.114" # Servidor de caché APT o
servidor de repositorio
Credenciales solo necesarias cuando use apt cache: False
apt _repo username: "omni"
apt _repo password: "omni"

Configuracidon de descargas de binarios y sincronizacidn de caché
Usado para: (1) descargar binarios de /releases/ cuando

use apt cache: false

(2) sincronizacidén del servidor de caché desde
Omnitouch cuando use apt cache: true

remote apt server: "apt.omnitouch.com.au"

remote apt user: "omni"

remote apt password: "omni"

Consulte:

Servidor de Licencias

license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

Consulte:

Configuracion de MME

mme_dns: False # Habilitar resolucién DNS de MME

Configuracion de SAEGW

mtu: 1400 # Unidad de Transmisidon Maxima

Configuracion de IMS

ims dra support: False # Rutar IMS a través de DRA
enable homer: False # Habilitar captura SIP de Homer

Configuracion del Monitor RAN

use nokia monitor: True
use casa monitor: True
install influxdb: True

influxdb user: monitor

influxdb password: "secure-password"
influxdb organisation name: omnitouch
influxdb nokia bucket name: nokia-monitor
influxdb casa bucket name: casa-monitor
influxdb operator token: "generated-token"
influxdb url: http://127.0.0.1:8086

enable pm collection: False
enable alarm collection: False

enable location collection: False

enable ran status collection: True
enable nokia rectifier collection: False
collection interval in seconds: 120

ran_monitor:
sql:

user: ran_monitor

password: "secure-password"

database host: 127.0.0.1
database name: ran monitor
influxdb:

address: 10.10.2.135

port: 8086

nokia:

airscales:

- address: 10.7.15.66
name: site-Lab-Airscale
port: 8080
web password: nemuuser
web username: Nemuadmin

Configuracion del Cortafuegos

firewall:
allowed ssh subnets:
'10.0.1.0/24'
- '10.0.0.0/24'
allowed ue voice subnets:
- '10.0.1.0/24'
allowed carrier voice subnets:
- '10.0.1.0/24"
allowed signaling subnets:
- '10.0.1.0/24'

Servidores DNS de Roaming

roaming _dns_servers:
wildcard: ['10.0.99.1']
DNS especificos del operador (basados en PLMN)

123456: # Ejemplo Operador 1
- '10.10.2.197"'

654321: # Ejemplo Operador 2
- '10.10.0.4"

Usuarios Locales (Claves SSH)

local users:
usera:
name: Ejemplo Usuario A
public key: "ssh-rsa AAAAB3Nza..."
userb:
name: Ejemplo Usuario B
public key: "ssh-ed25519 AAAAC3..."

Configuracion del Hipervisor

Proxmox

proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100
proxmoxServerPort: 8006
proxmoxRootPassword: password
proxmoxApiTokenName: AnsibleToken
proxmoxApiTokenSecret: "token-secret"
proxmoxTemplateName: ubuntu-24.04-cloud-init-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve0l

Configuraciones predeterminadas de Proxmox
proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve0@l’

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard 24.04-
2 amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD RAIDO
proxmoxLxcBridgeName: vmbroO

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"
proxmoxStorage: SSD RAIDO

vLabNetmask: 24

PROXMOX API TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask cidr: 24

VMware vCenter

vcenter ip: "vcenter.example.com"

vcenter username: "administrator@vsphere.local"
vcenter password: "password"

vcenter datacenter: "DC1"

vcenter vm_ template: ubuntu-24.04-model
vcenter vm disk size: 50

vcenter folder: "Omnicore"

host vm network: "Management"

vhosts:
"10.0.0.23":
vcenter cluster ip: 10.0.0.23

vcenter datastore: "datastorel (3)"

netmask: 255.255.255.0

Documentacion Relacionada

. - Arquitectura de red y directrices de
asignacioén de IP

. - Coémo estructurar archivos de hosts

. - Cuando y cOmo usar group_vars

. - IPs secundarias y configuracién de multiples NIC
. - COmo interactlan los componentes

. - Gestidn de paquetes

. - Configuracion de licencias

Documentacion del Producto

Para guias operativas detalladas y configuracién avanzada:

e Componentes de OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore

e Componentes de OmniCall:

e OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Descripcion General de
la Arquitectura de
Despliegue

Descripcion

Este documento proporciona una vista completa de cémo se despliega el
software de red celular de Omnitouch Network Services utilizando Ansible,
mostrando cémo todos los componentes encajan para crear una red 4G/5G
funcional.

Consulte el para obtener pautas detalladas sobre la
ubicacion de los componentes, la asignacidn de direcciones IP y el manejo de IP
publicas.

Ejemplo Completo de Despliegue

0. Aprovisionamiento de Infraestructura
(Opcional)

Para despliegues en Proxmox, aprovisione VMs/LXCs antes de la configuracién:

Desplegar VMs en Proxmox
ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

0 desplegar contenedores LXC (solo laboratorio/prueba)

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox_lxc.yml

Consulte:

1. Definicion de Infraestructura (Archivo de
Hosts)

Definir qué desplegar y ddnde

mme :
hosts:
customer-mme0l:
ansible host: 10.10.1.15
hss:
hosts:
customer-hss01:
ansible host: 10.10.2.140
... todos los demas componentes
Consulte:

2. Personalizacion (group vars)

La carpeta group vars es donde podemos almacenar cualquier anulacién de
configuracién necesaria a nivel de host, sitio o red.

Por ejemplo, tendria una carpeta con su configuracién de SMSc de
OmniMessage, los troncales SIP a los que se conecta su TAS vivirian aqui, toda
su légica de enrutamiento Diameter, etc., etc.

Consulte:

3. Distribucion de Paquetes (Cache APT)

Configurar de donde obtener paquetes
apt _repo:

apt server: "10.254.10.223" # IP del servidor de caché o
servidor de repositorio directo
use apt cache: false # true = usar caché local, false = acceso
directo al repositorio

Consulte:

4. Configuracion de Licencia

Apuntar componentes al servidor de licencias
license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

Consulte:

5. Ejecutar Despliegue

Los componentes individuales se pueden desplegar ejecutando
services/twag.yml, por ejemplo, pero services/all.yml manejara todo, y
puede usar --limit=myhost o --limit=mmee, sgw, etc., para limitar los hosts
en los que estamos trabajando.

Desplegar red completa
ansible-playbook -i hosts/customer/host files/production.yml
services/all.yml

0 desplegar componentes especificos

ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

ansible-playbook -i hosts/customer/host files/production.yml
services/ims.yml

Documentacion Relacionada

. - Introduccién

. - Definicién de infraestructura

. - Arquitectura de red y asignacion de IP
. - Personalizacién

. - Gestidn de paquetes

. - Gestidon de licencias

Documentacion del Producto

Para obtener informacion detallada sobre la configuracién de cada
componente:

e OmniCore (NUcleo de Paquetes 4G/5G):

o OmniHSS, OMmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

* OmniCall (Voz y Mensajeria):

o OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

e OmniCharge/OmniCRM (Facturacién):

 Documentacion Principal.:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Configuracion de
Variables de Grupo

Descripcion General

El directorio group vars es donde almacenas archivos de configuracion
personalizados que sobrescriben las plantillas predeterminadas.

Aqui es donde viven tus configuraciones especificas del cliente: troncales SIP,
reglas de enrutamiento Diameter, l6gica de enrutamiento de SMS, planes de
marcado y cualquier otra personalizaciéon donde no desees la configuracién
predeterminada - Vive en group vars.

Ubicacidén: hosts/{Customer}/group vars/

Como Funciona

Los roles de Ansible tienen plantillas de configuracién predeterminadas. Para
personalizar para un despliegue especifico, coloca tus archivos personalizados
en group vars y haz referencia a ellos en tu archivo de hosts.

Plantilla Predeterminada del Rol - Sobrescritura de group vars (si
se especifica) -» Configuracién Desplegada

Ejemplo 1: Plantilla de
Configuracion Personalizada
(OmniMessage)

Algunos componentes aceptan plantillas de configuracion Jinja2 personalizadas.

Estructura de Archivos

hosts/Customer/
L— group vars/

L— smsc_controller.exs # Tu plantilla de configuracidn
personalizada

Referencia en el Archivo de Hosts

omnimessage:
hosts:
customer-smsc-controller0l:
ansible host: 10.10.3.219
gateway: 10.10.3.1
host vm network: "vmbr3"
smsc_template config: smsc_controller.exs

Qué sucede:

1. Ansible encuentra smsc template config: smsc controller.exs
2. Busca en hosts/Customer/group vars/smsc_controller.exs

3. Lo plantilla con Jinja2 (puede usar {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Despliega en /etc/omnimessage/runtime.exs

5. Reinicia el servicio
Sin smsc_template config, se utiliza la plantilla predeterminada del rol.

Detalles de configuracion: Ver

Ejemplo 2: Colecciones de Archivos
de Configuracion (Pasarelas y

https://docs.omnitouch.com.au/docs/repos/OmniCall

Planes de Marcado de OmniTAS)

Algunos componentes utilizan directorios de archivos de configuracion.

Estructura de Archivos

hosts/Customer/
L— group vars/
— gateways prod/
SIP
| — gateway carrierl.xml
| | gateway carrier2.xml
| L— gateway emergency.xml
— gateways lab/
| L— gateway test.xml
L— dialplan/
1lamadas
— mo dialplan.xml
— mt_dialplan.xml

Configuraciones de pasarelas

Pasarelas de laboratorio
Reglas de enrutamiento de

Movil Originado (saliente)
MOvil Terminado (entrante)

L— emergency.xml

Referencia en el Archivo de Hosts

applicationserver:
hosts:
customer-tas01l:

ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"
gateways folder: "gateways prod"

de pasarelas a usar en este host

Referencia tu carpeta

Qué sucede:

1. Ansible encuentra gateways folder: "gateways prod"

2. Copia todos los archivos de hosts/Customer/group vars/gateways prod/ a
/etc/freeswitch/sip profiles/

3. Copia todos los archivos de hosts/Customer/group vars/dialplan/ al
directorio de plantillas de OmniTAS

4. Los servicios cargan las configuraciones

Diferentes entornos: Usa diferentes carpetas por entorno:

e gateways folder: "gateways lab"
e gateways folder: "gateways prod"

* gateways folder: "gateways customer specific"

Detalles de configuracion: Ver

Ejemplo 3: Plantilla de
Configuracion Personalizada
(OMmniHSS)

El Servidor de Suscriptores en el Hogar acepta plantillas de configuraciéon de
tiempo de ejecucién personalizadas.

Estructura de Archivos

hosts/Customer/
L— group vars/

L— hss runtime.exs.j2 # Tu plantilla de configuracion
HSS personalizada

https://docs.omnitouch.com.au/docs/repos/OmniCall

Referencia en el Archivo de Hosts

omnihss:
hosts:
customer-hss01:
ansible host: 10.10.3.50
gateway: 10.10.3.1
host vm network: "vmbr3"
hss template config: hss_runtime.exs.j2

Qué sucede:

1. Ansible encuentra hss_template config: hss runtime.exs.j2
2. Busca en hosts/Customer/group vars/hss runtime.exs.j2

3. Lo plantilla con Jinja2 (puede usar {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Despliega en /etc/omnihss/runtime.exs

5. Reinicia el servicio

Sin hss template config, se utiliza la plantilla predeterminada del rol.

Detalles de configuracion: Ver

Ejemplo 4: Plantilla de
Configuracion Personalizada
(OmniMME)

La Entidad de Gestion de Movilidad acepta plantillas de configuraciéon de
tiempo de ejecucién personalizadas.

https://docs.omnitouch.com.au/docs/repos/OmniCore

Estructura de Archivos

hosts/Customer/
L— group vars/

L— mme runtime.exs.j2 # Tu plantilla de configuracidn
MME personalizada

Referencia en el Archivo de Hosts

omnimme:
hosts:
customer-mmeQ1l:
ansible host: 10.10.3.51
gateway: 10.10.3.1
host vm network: "vmbr3"

mme_ template config: mme_ runtime.exs.j2 # Referencia el
nombre de tu plantilla en group vars

Qué sucede:

1. Ansible encuentra mme_template config: mme runtime.exs.j2
2. Busca en hosts/Customer/group vars/mme runtime.exs.j2

3. Lo plantilla con Jinja2 (puede usar {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Despliega en /etc/omnimme/runtime.exs

5. Reinicia el servicio
Sin mme template config, se utiliza la plantilla predeterminada del rol.

Detalles de configuracion: Ver

https://docs.omnitouch.com.au/docs/repos/OmniCore

Ejemplo de Estructura de
Directorios del Mundo Real

hosts/Customer/

— host files/

| L— production.yml # E1 archivo de hosts hace
referencia a los archivos de group vars

L— group vars/

— smsc_controller.exs # Plantilla personalizada de
OmniMessage

— smsc smpp.exs # Plantilla personalizada SMPP de
OmniMessage

— tas runtime.exs.j2 # Plantilla personalizada de TAS

— hss_runtime.exs.j2 # Plantilla personalizada de HSS

— mme runtime.exs.j2 # Plantilla personalizada de MME

— dra runtime.exs.j2 # Plantilla personalizada de DRA

— pgwc_runtime.exs.j2 # Plantilla personalizada de PGW

— dea runtime.exs.j2 # Plantilla personalizada de DEA

— upf config.yaml # Configuracién de UPF

— crm config.yaml # Configuracién de CRM

— stp.j2 # Plantilla SS7 STP

F— hlr.j2 # Plantilla SS7 HLR

— camel.j2 # Plantilla SS7 CAMEL

— ipsmgw.j2 # Plantilla IP-SM-GW

— omnicore smsc_ims.yaml.j2 # Configuracién SMSC IMS

— pytap.yaml # Configuracién TAP3

— sip profiles/ # Pasarelas SIP (carpeta)

| L— gateway otw.xml

L— dialplan/ # Reglas de enrutamiento de
llamadas (carpeta)

— mo_dialplan.xml # Movil Originado
— mt _dialplan.xml # Movil Terminado

L— mo_emergency.xml # Enrutamiento de emergencia

Parametros Comunes que Hacen

Referencia a group _vars

Parametro

smsc_template config

smsc_smpp template config

gateways folder

Planes de Marcado

(automatico)

tas template config

hss template config

mme template config

dra template config

pgwc template config

Componente

omnimessage

omnimessage_smpp

applicationserver

applicationserver

applicationserver

omnihss

omnimme

dra

pgwc

Referencias

Archivo de plantilla
Jinja2 (por ejemplo,
smsc_controller.exs

Archivo de plantilla
Jinja2 (por ejemplo,
SMSC_Smpp.exs)

Nombre de carpeta
(por ejemplo,
sip profiles)

Carpeta dialplan/ de
XMLs de enrutamiento

Archivo de plantilla
Jinja2 (por ejemplo,
tas runtime.exs.j2)

Archivo de plantilla
Jinja2 (por ejemplo,
hss runtime.exs.j2)

Archivo de plantilla
Jinja2 (por ejemplo,
mme runtime.exs.j2)

Archivo de plantilla
Jinja2 (por ejemplo,
dra_runtime.exs.j2)

Archivo de plantilla
Jinja2 (por ejemplo,

Parametro Componente Referencias
pgwc runtime.exs.j2;
Archivo de plantilla

frr template config omniupf Jinja2 (por ejemplo,
frr.conf.j2)

Archivos de plantilla
Jinja2 (por ejemplo,

Plantillas SS7 ss7 (varios roles) , ,
stp.j2, hlr.j2,
camel.j2)

Archivos de
configuracién directos

Configuraciones YAML Varios componentes (por ejemplo,

upf config.yaml,
crm config.yaml)

Puntos Clave

1. group_vars contiene personalizaciones - Sobrescrituras para
configuraciones predeterminadas

2. Referencia por nombre - Usa parametros como smsc_template config o
gateways folder

3. Las plantillas soportan Jinja2 - Accede a cualquier variable de Ansible
con {{ variable name }}

4. Las carpetas despliegan todo - Todos los archivos en las carpetas
referenciadas son copiados

5. Control de versiones de todo - Comitea todos los group _vars a Git

Cuando Usar group vars

[Usa group_vars para:

* Plantillas de configuracion de componentes personalizados
e Definiciones de pasarelas SIP

e Planes de marcado de enrutamiento de llamadas

e Reglas de enrutamiento Diameter

» Configuraciones especificas del cliente que sobrescriben los valores
predeterminados

[0 No uses group_vars para:

e Configuracién basica de hosts (IPs, nombres de host) - Usa el archivo de
hosts

e Pruebas Unicas - Usa variables especificas del host en el archivo de hosts

e Cambios temporales - Edita en el objetivo, comitea a group_vars si es
permanente

Documentacion Relacionada

. - Todos los parametros de hosts y lo que hacen

. - Cémo estructurar archivos de hosts

Configuracion de OmnicCall:
- Qué incluir en los
archivos de configuracién

Configuracion de OmniCore:
- Detalles de
configuracién de componentes

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Libretas de Utilidad

Descripcion General

Este repositorio incluye varias libretas de utilidad para mantenimiento,
monitoreo y tareas operativas. Estas complementan las libretas de despliegue
principales con capacidades de gestién diaria.

Utilidad de Verificacion de Salud

La utilidad de Verificacidon de Salud genera un informe HTML que muestra la
salud del sistema, el estado del servicio, el tiempo de actividad y la
informacién de la version en todos los componentes de OmniCore.

Se ejecuta automaticamente como parte de la libreta services/all.yml.

Uso

Ejecucion Manual

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Salida
El informe se genera en /tmp/health check YYYY-MM-DD HH:MM:SS.html

Abrelo en cualquier navegador web para verlo.

Contenidos del Informe

El informe HTML muestra:

Informacion del Host

* Nombre del host y direccién IP

 Red/Subred (de la variable host vm network, o N/A si no esta
configurada)

e CPU (nUmero de vCPU)
e RAM (memoria total y libre)
* Disco (espacio total y libre de la particidn raiz con porcentaje)

e SO (distribucion y versién)

Estado del Servicio

e Estado del servicio (activo/inactivo con indicadores de color)
e Tiempo de actividad

¢ Informacion de version/liberacion

Pares de Diametro HSS

» Estado de conexidn a la base de datos (conectado/desconectado)
» Conexiones de pares de Diametro (IP, host de origen, estado)
e Obtenido del endpoint de métricas HSS (puerto 9568)

Otras Utilidades Comunes

Configuracidon del Sistema Base

Rol Comun (services/common.yml)

* Aplica la configuracién base del sistema a todos los hosts
e Configura repositorios, claves SSH, zona horaria, NTP
e Configura la red y endurecimiento del sistema

e Ejecuta esto antes de desplegar servicios

ansible-playbook -i hosts/customer/host files/production.yml
services/common.yml

Configurar Usuarios (services/setup users.yml)

e Crea y configura cuentas de usuario en todos los hosts

e Gestiona claves SSH y privilegios sudo

e Asegura una configuracién de usuario consistente

ansible-playbook -i hosts/customer/host files/production.yml
services/setup users.yml

Reiniciar (services/reboot.yml)

e Reinicia de manera ordenada todos los hosts objetivo

» Espera a que los sistemas vuelvan a estar en linea (tiempo de espera de 5
minutos)

o Util después de actualizaciones del kernel o cambios de configuracién

ansible-playbook -i hosts/customer/host files/production.yml
services/reboot.yml

Utilidades Operativas
Generador de Plan de IP (util playbooks/ip plan generator.yml)

¢ Genera un informe HTML de asighaciones de direcciones IP
* Muestra la topologia de red completa desde el archivo de hosts

o Util para documentacién y solucién de problemas

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml

Respaldo de HSS (util playbooks/hss backup.yml)

e Respalda las tablas de la base de datos HSS

» Copia el volcado de MySQL a la méaquina local de Ansible

e Solicitudes interactivas para la ruta de respaldo

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/hss backup.yml

Obtener Captura Local (util playbooks/getLocalCapture.yml)

» Obtiene los dos archivos de captura de paquetes mas recientes de todos
los hosts

* Recupera archivos pcap de /etc/localcapture/

 Util para depurar problemas de conectividad

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Actualizar MTU (util playbooks/updateMtu.yml)

e Actualiza la configuracién de MTU de la interfaz de red
* Aplica cambios a través de netplan

« Util para la configuracién de tramas jumbo

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Documentacion Relacionada

. - Descripcién general y cémo empezar

. - Ejecucién de libretas

. - Configura tu inventario

. - Visién general completa del sistema

. - Gestidn de paquetes

Configuracion del
Archivo Hosts

Descripcion General

El archivo hosts (también llamado archivo de inventario) es el documento de
configuracién central que define toda tu implementaciéon de red celular.
Especifica:

Qué funciones de red desplegar

Dénde se ejecutan (direcciones IP, segmentos de red)

Cémo estan configuradas (parametros especificos del servicio)

Configuraciones especificas del cliente (PLMN, credenciales, caracteristicas)

Ubicacion del Archivo

Los archivos hosts estan organizados por cliente y entorno:

services/hosts/
L— Customer Name/
L— host files/
— production.yml
— staging.yml
L— lab.yml

Ejemplo de Estructura del Archivo
Hosts

Aqui hay un ejemplo simplificado que muestra las secciones clave:

Componentes EPC

mme :
hosts:
customer-mme0@1:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme code: 1
network name short: Customer
tac list: [600, 601, 602]
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
cdrs _enabled: true
pgwc:
hosts:

customer-pgw01l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
ip pools:
- '100.64.16.0/24"

Componentes IMS
pcscft:
hosts:
customer-pcscf0l:
ansible host: 10.10.4.165

Servicios de Soporte
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150

Variables Globales
all:
vars:
ansible connection: ssh
ansible password: password

customer name short: customer

plmn_id:
mcc: '001'
mnc: '01'

Parametros Comunes de Host

Configuracion de Red

Cada host tipicamente incluye:

pcscft:
hosts:
customer-pcscfOl:
ansible host: 10.10.1.15 # Direccidén IP para acceso SSH
gateway: 10.10.1.1 # Puerta de enlace
predeterminada
host vm network: "vmbrl" # nombre de la NIC a usar en

el Hipervisor

Nota: Para obtener orientacién sobre la planificacién de direcciones IP y
estrategias de segmentacién de red, consulta el

que describe la arquitectura recomendada de cuatro subredes para
implementaciones de OmniCore.

Usuarios de Proxmox: El parametro host vm network especifica qué puente
usar. Consulta para aprovisionamiento

automatizado.

Asignacion de Recursos de VM

Para servicios que necesitan recursos especificos:

num _cpus: 4 # Nucleos de CPU
memory mb: 8192 # RAM en megabytes
proxmoxLxcDiskSizeGb: 50 # Tamahno del disco en GB

Parametros Especificos del Servicio

Cada funcidn de red tiene sus propios parametros. Ejemplos:

MME:
mme code: 1 # Identificador de MME (1-255)
mme gid: 1 # ID del Grupo MME

network name_short: Customer # Nombre de la red (mostrado en
teléfonos)

network name long: Customer Network

tac list: [600, 601, 602] # Coédigos de Area de Seguimiento
PGW:
ip pools: # Grupos de IP para suscriptores

- '100.64.16.0/24"
- '100.64.17.0/24"

combined CP UP: false # Plano de control/usuario separado

Para una explicacién detallada de lo que controla cada variable, consulta:

Servidor de Aplicaciones:

online charging enabled: true # Habilitar integracién 0CS
tas branch: "main" # Rama de software a desplegar
gateways folder: "gateways prod" # Configuracion del gateway SIP

Seccion de Variables Globales

La seccidon all:vars contiene configuraciones que se aplican a toda la
implementacion:

all:
vars:
Autenticacion
ansible connection: ssh
ansible password: password
ansible become password: password

Identidad del Cliente
customer name short: customer
customer legal name: "Customer Inc."
site name: "Chicago DC1"

region: US

Identificador PLMN (Red Moévil)

plmn_id:
mcc: '001' # C6digo de Pais Mévil
mnc: '01° # Codigo de Red Movil
mnc_longform: '001' # MNC con ceros a la izquierda

Nombres de Red
network name short: Customer
network name long: Customer Network

Repositorio APT
Nota: Si el grupo apt cache servers esta definido con hosts,
use apt cache se establece en true de forma predeterminada y
apt repo.apt server
se establece automaticamente en la IP del primer servidor de
caché
apt_repo:
apt server: "10.254.10.223"
apt _repo_username: "customer"
apt repo password: "secure-password"
use apt cache: false

Zona Horaria
TZ: America/Chicago

Comprendiendo los Grupos de
Hosts

Ansible organiza los hosts en grupos que corresponden a roles:

Archivo Hosts

L v * *
grupo mime grupa sgw grupo hss grupo pesch
L L L l l
customer-mmell customermmel2 customer-sgwill customer-hss01 customer-pcscfilll

Cuando ejecutas un playbook dirigido a mme, se aplica a todos los hosts en la
seccién mme:hosts: .

Configuracion con Plantillas Jinja2

Ansible utiliza plantillas Jinja2 para generar archivos de configuracién a partir
de las variables definidas en tu archivo hosts y group_vars.

Como Funciona Jinja2

Ejemplo de Uso de Plantillas

El archivo hosts define:

plmn_id:

mcc: '001°

mnc: 'O1°
customer name short: acme

Plantilla Jinja2 (en rol):

mme config.yml. j2
network:
plmn:
mcc: {{ plmn _id.mcc }}
mnc: {{ plmn_id.mnc }}
operator: {{ customer name short }}
realm: epc.mnc{{ plmn _id.mnc longform }}.mcc{{ plmn _id.mcc
}}.3gppnetwork.org

Archivo de configuraciéon generado:

network:

plmn:
mcc: 001
mnc: 01

operator: acme
realm: epc.mnc001l.mcc001.3gppnetwork.org

Patrones Comunes de Jinja2
Accediendo a variables anidadas:

{{ plmn_id.mcc }}
{{ apt_repo.apt server }}

Ldogica condicional:

% if online charging enabled %}
charging:
enabled: true
ocs ip: {{ ocs ip }}
% endif %}

Bucles:

tracking areas:
{% for tac in tac list %}

- {{ tac }}

% endfor %}
Formateo:

Rellenar con ceros a 3 digitos
mnc{{ '%03d' | format(plmn_id.mnc|int) }}

Sobrescribiendo Variables con
group _vars

Mientras que el archivo hosts define la infraestructura y configuraciones
especificas del host, group vars puede sobrescribir los valores
predeterminados para grupos de hosts.

Consulta:

Ejemplo Completo de Archivo Hosts

Aqui hay un ejemplo mas completo (con datos sensibles oscurecidos):

EPC Core

mme :
hosts:
customer-mme01:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme_code: 1
mme gid: 1
network name short: Customer
network name long: Customer Network
tac_list: [600, 601, 602, 603]
omnimme:
sgw selection method: "random peer"
pgw selection method: "random peer"
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
host vm network: "vmbrl"
cdrs enabled: true
pgwc:
hosts:
customer-pgw0l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
host vm network: "vmbrl"
ip pools:
- '100.64.16.0/24'
combined CP_UP: false
hss:
hosts:
customer-hss01:
ansible host: 10.10.2.140
gateway: 10.10.2.1
host vm network: "vmbr2"
IMS Core

pcscft:

hosts:
customer-pcscfOl:
ansible host: 10.10.4.165
gateway: 10.10.4.1
host vm network: "vmbr4"

icscf:
hosts:
customer-icscf0l:
ansible host: 10.10.3.55
gateway: 10.10.3.1
host vm network: "vmbr3"

scscf:
hosts:
customer-scscfOl:
ansible host: 10.10.3.45
gateway: 10.10.3.1
host vm network: "vmbr3"

applicationserver:
hosts:
customer-as01l:

ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"
online charging enabled: false
gateways folder: "gateways prod"

Servicios de Soporte
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

monitoring:
hosts:
customer-oam0l:
ansible host: 10.10.2.135
gateway: 10.10.2.1
host vm network: "vmbr2"
num cpus: 4

memory mb: 8192

dns:
hosts:
customer-dns01l:
ansible host: 10.10.2.177
gateway: 10.10.2.1
host vm network: "vmbr2"

Variables Globales
all:
vars:
ansible connection: ssh
ansible password: password
ansible become password: password

customer name short: customer

customer legal name: "Customer Network Inc."
site name: "Primary DC"

region: US

TZ: America/Chicago

Configuracidén PLMN

plmn id:
mcc: '001'
mnc: '01'

mnc_longform: '001'
diameter realm: epc.mnc{{ plmn _id.mnc longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

Nombres de Red
network name short: Customer
network name long: Customer Network
tac list: [600, 601]

Configuracion APT
apt _repo:

apt _server: "10.254.10.223"

apt repo username: "customer"

apt _repo password: "secure-password"
use apt cache: false

Configuracidn de Carga
charging:

data:
online charging:
enabled: false
voice:
online charging:
enabled: true
domain: "mnc{{ plmn_id.mnc longform }}.mcc{{ plmn_id.mcc
}}.3gppnetwork.org"

Reglas de Firewall
firewall:
allowed ssh subnets:
- '10.0.0.0/8"
- '192.168.0.0/16"
allowed ue voice subnets:
- '10.0.0.0/8"
allowed signaling subnets:
- '10.0.0.0/8'

Configuracion del Hipervisor (ejemplo de Proxmox)
proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxApiTokenName: Customer

proxmoxApiTokenSecret: "token-secret"

proxmoxTemplateName: ubuntu-24.04-cloud-init-template

proxmoxNodeName: pve0l

Consulta para obtener detalles completos
sobre la configuracion y el establecimiento de Proxmox.

Referencias de Documentacion del
Producto

Para la configuracion detallada de cada componente, consulta la
documentacion oficial del producto:

Componentes de OmniCore:

e Documentacion de OmniCore:

e OmniHSS - Servidor de Suscriptores en Casa

e OmniSGW - Gateway de Servicio (Plano de control)

e OmniPGW - Gateway de Paquetes (Plano de control)
e OmniUPF - Funcion de Plano de Usuario

e OmniDRA - Agente de Enrutamiento Diameter

e OMnIiTWAG - Gateway de Acceso WLAN de Confianza

Componentes de OmniCall:

e Documentacion de OmniCall:

e OmnIiTAS - Servidor de Aplicaciones IMS (VoLTE/VoNR)

* OmniCall CSCF - Funciones de Control de Sesiones de Llamadas
e OmniMessage - Centro de SMS

e OmniMessage SMPP - Soporte para el Protocolo SMPP

* OmniSS7 - Pila de Senalizaciéon SS7

¢ VisualVoicemail - Buzdon de Voz
OmniCharge/OmniCRM:

» Documentacion de OmniCharge:

Documentacion Relacionada

. - Proceso general de despliegue
. - Guia completa de todas las variables de
configuracion

. - Sobrescribiendo configuraciones
predeterminadas

. - Arquitectura de red y directrices de
asignacion de IP

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

- IPs secundarias y configuracion avanzada
de red

- Distribucién de paquetes
- Gestién de licencias

- Vista completa del
sistema

Proximos Pasos

o U or W N e

. Crea tu archivo hosts basado en esta plantilla
. Define tu PLMN e identidad de red

. Configura el acceso al repositorio APT

Configura el servidor de licencias
Personaliza con segun sea necesario

Despliega con playbooks de Ansible

Estandar de
Planificacion de IP de
OmniCore

Descripcion general

Este documento describe el enfoque estandar de planificacién de IP para
implementaciones de OmniCore. La arquitectura requiere cuatro subredes
internas para segmentar adecuadamente las funciones de red por seguridad,
rendimiento y claridad operativa.

Requisitos de Asignacion de IP

Asignacion Estandar: Cuatro Subredes /24

Cada implementaciéon de OmniCore requiere cuatro subredes distintas para la
red interna:

1. Red de Nucleo de Paquetes - Primera /24
2. Red de Senalizacion - Segunda /24

3. Red Interna IMS - Tercera /24

4. Red Publica de UE - Cuarta /24

Importante: Estas son Recomendaciones, No
Requisitos

La asignacién de subredes descrita en este documento es una mejor practica
recomendada para organizar las implementaciones de OmniCore. Sin
embargo, la arquitectura es completamente flexible:

e Todos los hosts en una subred: Puedes colocar todos los componentes
en una sola subred si eso se ajusta a tus necesidades de implementacion.

e Cada tipo de host en su propia subred: Puedes crear subredes
separadas para cada tipo de componente (una para MMEs, una para HSS,
etc.)

e Agrupaciones personalizadas: Puedes organizar los hosts en cualquier
estructura de subred que tenga sentido para tus requisitos especificos.

* Mezclar IPs internas y publicas: Algunos hosts pueden usar direcciones

internas (RFC 1918) mientras que otros usan IPs publicas, todo dentro de la
misma implementacién.

El enfoque recomendado de cuatro subredes proporciona una aislamiento de
seguridad, gestion de trafico y claridad operativa 6ptimos, por lo que lo
sugerimos para implementaciones en produccién. Sin embargo, debes adaptar
el plan de IP para que se ajuste a tu topologia de red especifica, espacio de
direcciones disponible y requisitos operativos.

Desglose de Segmentos de Red

1. Red de Nucleo de Paquetes (Primera /24)
Propdsito: Elementos del plano de usuario y del plano de control central

Componentes:

OmniMME (Entidad de Gestién de Movilidad)

OmniSGW (Puerta de Enlace de Servicio)

OmniPGW-C (Plano de Control de Puerta de Enlace de PDN)
OmniUPF/PGW-U (Funcién de Plano de Usuario / Puerta de Enlace de PDN)

Ejemplo: 10.179.1.0/24

mme :
hosts:
omni-site-mmeO@1l:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

2. Red de Senalizacion (Segunda /24)
Propdsito: Funciones de sefializacion Diameter, politicas, facturacién y gestién
Componentes:

e OmniHSS (Servidor de Suscriptores Local)

* OmniCharge OCS (Sistema de Facturacién en Linea)

e OminiHSS PCRF (Funcién de Reglas de Politicas y Facturacién)
¢ OmniDRA DRA (Agente de Enrutamiento Diameter)

e Servidores DNS

e Servidores TAP3/CDR

e Monitoreo/OAM

e Captura de SIP

e Servidor de Licencias

e Monitor de RAN

e Omnitouch Warning Link CBC (Centro de Difusiéon Celular) - si se despliega

e Servidores de Caché APT - si se despliega

Ejemplo: 10.179.2.0/24

hss:
hosts:
omni-site-hss01:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"

3. Red Interna IMS (Tercera /24)

Propdsito: Sefalizacion y servicios centrales de IMS (sefializacidon SIP interna)
Componentes:

e OmniCSCF S-CSCF (Funcién de Control de Sesiones de Llamada de Servicio)

¢ OmniCSCF I-CSCF (Funcién de Control de Sesiones de Llamada
Interrogante)

e OmniTAS (Servidor de Aplicaciones de Telefonia / Servidor de Aplicaciones)
¢ OmniMessage (Controlador de SMS, SMPP, IMS)

e OmniSS7 STP (Punto de Transferencia de Senalizacién SS7)

e OmniSS7 HLR (Registro de Ubicacion del Hogar) - para 2G/3G

e OmniSS7 IP-SM-GW (MAP SMSc)

e OmniSS7 Puerta de Enlace CAMEL

Ejemplo: 10.179.3.0/24

scscft:
hosts:
omni-site-scscfOl:
ansible host: 10.179.3.45
gateway: 10.179.3.1
host vm network: "vmbr3"

4. Red Publica de UE (Cuarta /24)

Propdsito: Servicios orientados al usuario como IMS y DNS

Componentes:

OmniCSCF P-CSCF (Funcion de Control de Sesiones de Llamada Proxy)
Servidores XCAP

Servidores de Correo de Voz Visual
DNS del Cliente

Ejemplo: 10.179.4.0/24

pcscft:
hosts:
omni-site-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Meétodos de Implementacion

OmniCore admite dos métodos principales para implementar esta
segmentacién de red:

Meétodo 1: Interfaces de Red Fisicas/Virtuales
(Recomendado para Produccion)

Utiliza NICs separadas o puentes virtuales para cada segmento de red. Esto
proporciona el aislamiento mas fuerte y es el enfoque recomendado para
implementaciones en produccién.

Ejemplo:

Nicleo de Paquetes - vmbrl
mme:
hosts:
omni-1lab07-mmeO1l:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

Senalizacion - vmbr2
hss:
hosts:
omni-lab07-hss01:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"

IMS Interno - vmbr3
icscf:
hosts:
omni-lab07-icscfOl:
ansible host: 10.179.3.55
gateway: 10.179.3.1
host vm network: "vmbr3"

UE Publica - vmbr4
pcscft:
hosts:
omni-lab07-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Método 2: Segmentacion Basada en VLAN

Utiliza una Unica interfaz fisica con etiquetado de VLAN para separar redes.
Esto es adecuado para implementaciones mas pequefas o cuando las NICs
fisicas son limitadas.

Ejemplo:

Todos los componentes usan vmbrl2 con diferentes VLANs
applicationserver:
hosts:
ons-1ab08sbcO1l:
ansible host: 10.178.2.213
gateway: 10.178.2.1
host vm network: "ovsbrl"

vlianid: "402"
dra:
hosts:
ons-1ab08dra0l:
ansible host: 10.178.2.211
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlianid: "402"
dns:
hosts:

ons-1lab08dns01:
ansible host: 10.178.2.178
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlanid: "402"

Configuracion de Red:

e Configura VLANs en el switch fisico
» Etiqueta el trafico apropiadamente a nivel del hipervisor

e Rutea entre VLANs en el gateway/firewall

Ejemplo de Mapeo de VLAN:

VLAN 10: 10.x.1.0/24 (Nicleo de Paquetes)
VLAN 20: 10.x.2.0/24 (Senalizaciédn)

VLAN 30: 10.x.3.0/24 (IMS Interno)

VLAN 40: 10.x.4.0/24 (UE Publica)

Trabajando con Direcciones IP
Publicas

Descripcion general

Muchas implementaciones de OmniCore requieren que algunos componentes
tengan direcciones IP pUblicas para conectividad externa, como:

* DRA - Para sefalizacidon diameter de roaming con operadores externos
» SGW/PGW de Roaming - Para trafico GTP de socios de roaming
* ePDG - Para llamadas WiFi (tuneles IPsec desde UEs)

* Puerta de Enlace SMSC - Para conexiones SMPP a agregadores de SMS
externos

e P-CSCF (en algunas implementaciones) - Para registro SIP directo de UE

Como Asignar IPs Publicas

Las IPs publicas se manejan exactamente de la misma manera que las IPs
internas en tus archivos de inventario de hosts. Simplemente especifica la
direccién IP publica en el campo ansible host junto con la puerta de enlace y
la mascara de red apropiadas.

Ejemplo: SGW/PGW de Roaming con IPs Publicas

sgw:
hosts:
SGWs internos en red privada
opt-site-sgw01l:
ansible host: 10.4.1.25
gateway: 10.4.1.1
host vm network: "v400-omni-packet-core"

SGWs de roaming con IPs publicas
opt-site-roaming-sgwO1l:

ansible host: 203.0.113.10

gateway: 203.0.113.9

netmask: 255.255.255.248 # subred /29

host vm network: "498-public-servers"

in pool: False

cdrs _enabled: True

smf: # PGWs
hosts:

PGW de roaming con IP publica

opt-site-roaming-pgw0O1l:
ansible host: 203.0.113.20
gateway: 203.0.113.17
netmask: 255.255.255.240 # subred /28
host vm network: "497-public-services-LTE"
in pool: False
ip pools:

- '100.64.24.0/22'

Ejemplo: DRA con IP Publica

dra:
hosts:
opt-site-dra0l:
ansible host: 198.51.100.50
gateway: 198.51.100.49
netmask: 255.255.255.240 # subred /28
host vm network: "497-public-services-LTE"

Ejemplo: ePDG con IP Publica

epdg:
hosts:
opt-site-epdg01l:
ansible host: 198.51.100.51
gateway: 198.51.100.49
netmask: 255.255.255.240 # subred /28
host vm network: "497-public-services-LTE"

Mezclando IPs Internas y Publicas

Es comUn tener una mezcla de IPs internas y publicas dentro del mismo grupo
de componentes. Por ejemplo:

e SGWs internos para sitios locales usando GTP
* SGWs publicas especificamente para trafico de roaming de operadores
externos

e El mismo PGW-C puede gestionar tanto SGWs internas como externas

La arquitectura de OmniCore maneja esto sin problemas: simplemente
configura cada host con su direccionamiento IP apropiado.

Servidor de Licencias

Descripcion General

El Servidor de Licencias gestiona la activacién de caracteristicas para todos los
componentes de Omnitouch. Cada componente valida su licencia al iniciar y
periédicamente durante su operacion.

Configuracion
1. Definir en el Archivo de Hosts

license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

all:
vars:
customer legal name: "Customer Name"
license server api urls: ["https://10.10.2.150:8443/api"]

license enforced: true

2. Proporcionar el Archivo de Licencia

Coloque license.json (proporcionado por Omnitouch) en

hosts/Customer/group vars/

3. Desplegar

ansible-playbook -i hosts/customer/host files/production.yml
services/license server.yml

Puede verificar el estado de todas las licencias navegando a
https://license_server .

Requisitos de Red

Configuracion del Cortafuegos

Los cortafuegos del sitio del cliente deben estar configurados para permitir
trafico HTTPS (puerto 443) a los siguientes servidores de validacién de licencias
de Omnitouch:

Nombre de Host Direccion IP Propdsito

Servidor de validacion de
licencias 1

time.omnitouch.com.au 160.22.43.18

Servidor de validacion de

time.omnitouch.com.au 160.22.43.66 i ,
licencias 2

_ , Servidor de validacién de
time.omnitouch.com.au 160.22.43.114 _ ,
licencias 3

Reglas de salida requeridas:

e Protocolo: HTTPS (TCP/443)
e Destino: 160.22.43.18, 160.22.43.66, 160.22.43.114

¢ Direccidn: Saliente

Requisitos de DNS

El servidor de licencias requiere resolucion DNS funcional para comunicarse
con la infraestructura de validacion de licencias de Omnitouch.

Configuracion de DNS requerida:

» El servidor de licencias debe tener acceso a servidores DNS publicos

e Configure DNS para usar uno de los siguientes:
o 1.1.1.1 (Cloudflare - soporta DNS seguro)

o 8.8.8.8 (Google Public DNS)

e No use servidores DNS internos/corporativos para el servidor de licencias

Nota: Los servidores de licencias de Omnitouch utilizan DNS seguro (DoH/DoT).
Usar servidores DNS publicos asegura una validacién adecuada de DNSSEC y
previene problemas con la interceptacion de DNS por dispositivos de seguridad.

Documentacion Relacionada

Configuracion de
Netplan

Descripcion general

OmniCore puede configurar automaticamente las interfaces de red en las VMs
desplegadas utilizando netplan. Esto es (til para:

e Configurar la interfaz de gestién principal (eth0)

e Agregar interfaces secundarias para IPs publicas, conexiones de
emparejamiento o trafico dedicado

e Configurar rutas estaticas para destinos especificos

Habilitacion de la Configuracion de
Netplan

Para habilitar la configuracién automatica de netplan para un host, agrega la
variable netplan config que apunte a una plantilla Jinja2 en tu carpeta

group vars:

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
netplan config: netplan.yaml.j2

La plantilla se obtendrd de hosts/<customer>/group vars/netplan.yaml.j2.

Referencia de la Plantilla

Aqui esta la plantilla completa netplan.yaml.j2 con comentarios que explican
cada seccién:

network:
version: 2
ethernets:
Interfaz primaria - utiliza ansible host y gateway del
inventario
ethO:
addresses:
"{{ ansible host }}/{{ mask cidr | default(24) }}"
nameservers:
addresses:
% if 'dns' in group names %}
Si este host ES un servidor DNS, usa DNS externo para
evitar dependencia circular
- 8.8.8.8
{% else %}
De lo contrario, usa servidores DNS del grupo 'dns' en
el inventario
s for dns_host in groups['dns'] | default([]) %}
- {{ hostvars[dns host]['ansible host'] }}
endfor %}
endif %}
search:
- slice
routes:
- to: "default"
via: "{{ gateway }}"

I, -~
o °

o°

{% 1if secondary ips 1is defined %}
Interfaces secundarias - recorre el diccionario
secondary ips del inventario
Nomenclatura de interfaces: ensl9, ens20, ens2l... (18 +
loop.index)
{% for nic name, nic config in secondary ips.items() %}
ens{{ 18 + loop.index }}:
addresses:
"{{ nic config.ip address }}/{{ mask cidr | default(24)
I3
% if nic_config.routes is defined %}
Rutas estaticas para esta interfaz - cada ruta utiliza la
puerta de enlace de esta interfaz
routes:
{% for route in nic _config.routes %}
- to: "{{ route }}"

via: "{{ nic config.gateway }}"
{% endfor %}
{% endif %}
{% endfor %}
{% endif %}

Puntos clave:

* ansible host y gateway provienen de la entrada del inventario del host
* Los servidores DNS se obtienen dindmicamente de los hosts en el grupo
dns

e Las interfaces secundarias se nombran ens19, ens20, etc. para coincidir
con la nomenclatura de NIC de Proxmox

e Cada IP secundaria puede tener su propia puerta de enlace y rutas
estaticas

Configuracion de la Interfaz
Primaria

La interfaz primaria (ethQ) se configura automaticamente utilizando:

e ansible host - La direccién IP
e gateway - La puerta de enlace predeterminada

e mask cidr - Mascara de red (predeterminado a 24)
Los servidores DNS se configuran automaticamente a:

* Hosts en el grupo dns (utiliza sus IPs ansible host)

e Se retrocede a 8.8.8.8 si el host es él mismo un servidor DNS

Interfaces Secundarias

Para hosts que requieren interfaces de red adicionales (IPs publicas,
emparejamiento, etc.), utiliza la configuracion secondary ips.

Esquema

secondary ips:
<logical name>:
ip address: <ip address>
gateway: <gateway ip>
host vm network: <proxmox bridge>
vlanid: <vlan id>
routes: # Opcional - rutas estaticas a
través de esta interfaz
- '<destination cidr>'
- '<destination cidr>'

Nomenclatura de Interfaces

Las interfaces secundarias se nombran automaticamente utilizando el esquema
de nomenclatura predecible de Ubuntu:

Primera interfaz secundaria: ens19

Segunda interfaz secundaria: ens20

Tercera interfaz secundaria: ens21

Y asi sucesivamente...

Esto coincide con los nombres de las interfaces asignados por Proxmox al
agregar NICs adicionales a una VM.

Ejemplo de Configuracion

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
host vm network: "ovsbrl"
vlanid: "100"
netplan config: netplan.yaml.j2
secondary_ ips:
public ip:
ip address: 192.0.2.50
gateway: 192.0.2.1
host vm network: "vmbrQ"
vlanid: "200"
routes:
- '198.51.100.0/24"
- '203.0.113.0/24"
peering ip:
ip address: 172.16.50.10
gateway: 172.16.50.1
host vm network: "ovsbr2"
vlanid: "300"
routes:
- '172.17.0.0/16"

Salida Generada de Netplan

La configuracién anterior genera:

network:
version: 2
ethernets:
ethO:
addresses:
- "10.0.1.100/24"
nameservers:
addresses:
- 10.0.1.53
search:
- slice
routes:
- to: "default"
via: "10.0.1.1"
ensl9:
addresses:
- "192.0.2.50/24"

routes:
- to: "198.51.100.0/24"

via: "192.0.2.1"
- to: "203.0.113.0/24"
via: "192.0.2.1"

ens20:
addresses:
- "172.16.50.10/24"

routes:
- to: "172.17.0.0/16"

via: "172.16.50.1"

Integracion con Proxmox

Al utilizar el playbook proxmox.yml, las NICs secundarias se crean

automaticamente en la VM:

1. Nuevas VMs: Las NICs secundarias se agregan durante la provision inicial
2. VMs Existentes: Las NICs secundarias se agregan y la VM se reinicia para

aplicar los cambios

La configuraciéon de Proxmox utiliza:

* host vm network - El puente al que se adjunta la NIC

e vlanid - Etiqueta VLAN para la interfaz

Como Funciona

. Las variables del archivo de hosts se pasan a la plantilla Jinja2
2. La plantilla se renderiza en /etc/netplan/01-netcfg.yaml

3. Cualquier configuracion de netplan existente se elimina para evitar
conflictos

4. netplan apply activa la configuracién

5. Las direcciones IP se verifican con ip addr show

Casos de Uso Comunes

Diameter Edge Agent (DEA) con IP Publica

<hostname>:
ansible host: 10.0.1.100 # IP de gestion interna
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
diameter roaming:
ip address: 192.0.2.50 # IP publica para socios de
roaming
gateway: 192.0.2.1
host vm network: "vmbro"
vlianid: "200"
routes:
- '198.51.100.0/24"' # Red de socios de roaming

PGW con Interfaz S5/S8

<hostname>:
ansible host: 10.0.2.20 # IP interna
gateway: 10.0.2.1
netplan config: netplan.yaml.j2
secondary ips:
s5s8 interface:
ip address: 203.0.113.17 # IP publica S5/S8
gateway: 203.0.113.1
host vm network: "vmbr@"
vlanid: "50"

Servidor Multihomed con Redes de Gestion y
Datos Separadas

<hostname>:
ansible host: 10.0.1.100 # Red de gestidn
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
data network:
ip address: 10.0.2.100 # Red de datos
gateway: 10.0.2.1
host vm network: "ovsbr2"
vlanid: "200"
backup network:
ip address: 10.0.3.100 # Red de respaldo
gateway: 10.0.3.1
host vm network: "ovsbr3"
vlanid: "300"

Referenciando IPs Secundarias en
Plantillas

Puedes referenciar direcciones IP secundarias en otras plantillas Jinja2 y
archivos de configuracion.

En el Mismo Host

Al configurar un servicio en el mismo host que tiene IPs secundarias, puedes
referenciar directamente o usar inventory hostname:

Referencia directa (mds simple)
{{ secondary ips.diameter public ip.ip address }}

0 explicitamente a través de inventory hostname (mismo
resultado)

{{ hostvars[inventory hostname]['secondary ips"']
['diameter public ip']['ip address'] }}

Acceder a otras propiedades
{{ secondary ips.diameter public ip.gateway }}
{{ secondary ips.diameter public ip.vlanid }}

Desde Otro Host

Cuando necesitas referenciar una IP secundaria de un host diferente (por
ejemplo, configurando una conexién de emparejamiento), utiliza hostvars con
el nombre del host de destino

Referencia al primer host en el grupo dra
{{ hostvars[groups['dra'][0]]['secondary ips"']
['diameter public ip']['ip address'] }}

Recorre todos los hosts DRA y obtiene sus IPs publicas
{% for host in groups['dra'] %}
% if hostvars[host]['secondary ips'] is defined %}
- {{ hostvars[host]['secondary ips']['diameter public ip"']
['ip address'] }}
% endif %}
% endfor %}

Ejemplo: Configuracion de Emparejamiento
DRA

Configura un par de diametro para vincularse a su propia IP publica:

En dra config.yaml.j2 - usa inventory hostname para el host
actual
peers:
- name: external peer

Vincular a la IP plblica de didmetro de este host

local ip: {{ hostvars[inventory hostname]['secondary ips"']
['diameter_public_ip']['ip_address'] }}

remote ip: 198.51.100.50

port: 3868

Comprobando si Existen IPs Secundarias

Siempre verifica si la variable existe antes de usarla:

% if secondary ips is defined and

secondary ips.diameter public ip is defined %}

public ip: {{ secondary ips.diameter public ip.ip address }}
% else %}

public ip: {{ ansible host }}

% endif %}

Solucion de Problemas

Verificar Nombres de Interfaces

SSH a la VM y verifica los nombres de las interfaces:
ip link show

Salida esperada para una VM con dos interfaces secundarias:

: lo: <LOOPBACK,UP,LOWER UP> ...

: ethO: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ensl9: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ens20: <BROADCAST,MULTICAST,UP,LOWER UP> ...

B W DN =

Verificar la Configuracion de Netplan

cat /etc/netplan/01l-netcfg.yaml

Aplicar Netplan Manualmente

netplan apply

Depurar Netplan

netplan --debug apply

Verificar Rutas

ip route show

Documentacion Relacionada

. - Configuracion del inventario de hosts
. - Provisiéon de VM

. - Todas las variables de configuracién

Implementacion de
VM/LXC en Proxmox

La mayoria de nuestros clientes ejecutan la pila de OmniCore en Proxmox, esta
guia explica en detalle cémo usar los plays de proxmox para configurar su
entorno utilizando Proxmox.

Seguimos apoyando VMware, HyperV y la nube (Actualmente Vultr / AWS / GCP)
para implementaciones.

Ver También:

. - Definir VMs a implementar

. - Directrices para la asignacién de
direcciones IP

. - IPs secundarias y configuracién de multiples NIC

. - Flujo de trabajo completo de
implementacion

LXC vs VM

Contenedores LXC:

* Livianos, comparten el nucleo del host

 |Inicio rapido, bajo overhead

¢ Aislamiento limitado

* No pueden ejecutar nucleos o mdédulos de nucleo personalizados
* No son adecuados para implementaciones en produccion

* No pueden ejecutar UPF (requiere mdédulos de nlcleo/dispositivos TUN)
VMs (KVM):

 Virtualizacién completa con nucleo dedicado

¢ Aislamiento completo

Pueden ejecutar médulos de nucleo y redes personalizadas

Mayor overhead de recursos

Recomendado para produccion

Requerido para implementaciones de UPF
Casos de Uso:

* VMs: Sitios de produccidn, UPF, todas las funciones de red

e LXC: Entornos de laboratorio/prueba, servicios livianos (apt-cache,
monitoreo)

Configuracion de Proxmox

1. Crear Token de API

En la interfaz de Proxmox: Datacenter - Permisos - Tokens de API
Crear token: root@pam!<TokenName>
Copiar el secreto del token (se muestra una vez)

2. Crear Plantilla de VM Cloud-Init (solo para
VMs)

Ejecute este script en el host de Proxmox. Descarga la imagen de nube de
Ubuntu y crea una plantilla con las credenciales de usuario de cloud-init.

#!/bin/bash
set -e

TEMPLATE ID=9000

IMAGE URL="https://cloud-images.ubuntu.com/noble/current/noble-
server-cloudimg-amd64.img"
IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Descargando imagen de nube de Ubuntu ==="
cd /var/lib/vz/template/iso

wget -N "$IMAGE URL"

echo "=== Limpiando plantilla antigua ==="

gm destroy $TEMPLATE ID --purge 2>/dev/null || true
echo "=== Habilitando almacenamiento de snippets ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Creando datos de usuario de cloud-init ==="
mkdir -p /var/lib/vz/snippets
cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'
#cloud-config
ssh _pwauth: true
users:
- name: omnitouch

plain_text passwd: password

lock passwd: false

shell: /bin/bash

sudo: ALL=(ALL) NOPASSWD:ALL

groups: sudo
USERDATA

echo "=== Creando plantilla de VM ==="

gm create $TEMPLATE ID --name ubuntu-2404-template --memory 2048 -
-cores 2 --net0O virtio,bridge=vmbro

gm importdisk $TEMPLATE ID $IMAGE local-lvm

gm set $TEMPLATE ID --scsihw virtio-scsi-pci --scsi® local-
lvm:vm-${TEMPLATE ID}-disk-0

gm set $TEMPLATE ID --ide2 local-lvm:cloudinit

gm set $TEMPLATE ID --boot c --bootdisk scsi0

gm set $TEMPLATE ID --vga std

gm set $TEMPLATE ID --agent enabled=1

gm set $TEMPLATE ID --cicustom user=local:snippets/user-data.yml

gm template $TEMPLATE ID

echo "=== Plantilla $TEMPLATE ID creada con éxito ==="

Notas:

La plantilla proporciona un inicio de sesidn de respaldo: omnitouch /
password (para acceso a la consola si cloud-init falla)

Al clonar a través de Ansible, las credenciales se sobrescriben desde
local users en su archivo de hosts:
o Nombre de usuario: Clave del primer usuario de local users

o Contrasena: Campo password del primer usuario (por defecto es
'‘password' si no se establece)

o Clave SSH: Campo public key del primer usuario

--vga std asegura que la consola web de Proxmox funcione

La bandera -N en wget solo descarga si es mas nueva que la copia local

Alternativa: Plantilla Manual desde ISO

Si las imagenes de nube no estan disponibles o necesita una instalacion
personalizada:

Paso 1: Crear VM a través de la Interfaz Web

e Crear Nueva VM - ID de VM 9000, Nombre: ubuntu-2404-template
e SO: Subir ISO de Ubuntu Server o usar ISO existente

e Sistema: Predeterminado (Controlador SCSI: VirtlO SCSI)

e Discos: 32GB, Bus: SCSI

e CPU: 2 nucleos

e Memoria: 2048 MB

e Red: VirtlO, puente vmbr0

e |niciar VM e instalar Ubuntu Server

Paso 2: Dentro de la VM - Limpiar y preparar

Instalar cloud-init
sudo apt update
sudo apt install cloud-init gemu-guest-agent -y

Limpiar datos especificos de la maquina

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id
sudo rm -f /etc/ssh/ssh host *

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Limpiar historial de bash y apagar
history -c
sudo poweroff

Paso 3: Agregar Cloud-Init y Convertir a Plantilla

e Seleccionar VM - Hardware - Agregar = Unidad CloudInit (seleccionar
almacenamiento, por ejemplo, local-lvm)

e Cloud-Init - Usuario: omnitouch, Contrasefa: password
e Hardware — Opciones - Agente QEMU - Habilitar

e Hacer clic derecho en la VM - Convertir a Plantilla

3. Descargar Plantilla LXC (solo para LXC)

En la shell del nodo Proxmox:
pveam update
pveam download local ubuntu-24.04-standard 24.04-2 amd64.tar.zst

Configuracion del Archivo de Hosts

Para Implementacion de VM (proxmox.yml)

all:
vars:
proxmoxServers:

pve-node-01:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxRootPassword: YourPassword
proxmoxApiTokenName: ansible
proxmoxApiTokenSecret: "your-token-secret-uuid"
proxmoxTemplateName: ubuntu-2404-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve-node-01
storage: local-lvm # opcional

pve-node-02:
... configuracién del segundo nodo

Credenciales de usuario - el primer usuario se utiliza para
cloud-init de WM
local users:
admin user:
name: Admin User
public key: "ssh-rsa AAAA..."
password: "optional-password" # por defecto es 'password'
s1 no se establece

mme:
hosts:
site-mmeOl:
ansible host: 192.168.1.10
gateway: 192.168.1.1
vlanid: "100" # opcional

Para Implementacion de LXC
(proxmox_Ixc.yml)

all:
vars:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # dnico o
lista

proxmoxApiTokenName: ansible

PROXMOX API TOKEN: "your-token-secret-uuid"

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-
standard 24.04-2 amd64.tar.zst'

proxmoxLxcCores: 2

proxmoxLxcMemoryMb: 4096

proxmoxLxcDiskSizeGb: 30

proxmoxLxcRootFsStorageName: local-1lvm

mask cidr: 24

host vm network: vmbrO

Credenciales de usuario - el primer usuario se utiliza para
el acceso inicial a VM/LXC
local users:
admin_user:
name: Admin User
public key: "ssh-rsa AAAA..."
password: "optional-password" # por defecto es 'password'
si no se establece

apt cache servers:
hosts:
site-cache:
ansible host: 192.168.1.20
gateway: 192.168.1.1
vlanid: "100" # opcional
proxmoxLxcDiskSizeGb: 120 # anulacidn por host

Uso

Implementar VMs

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Implementar Contenedores LXC

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox 1lxc.yml

Eliminar VMs/LXCs

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox_delete.yml

Comportamiento

proxmox.yml

e Verifica si ya existe una VM con el mismo nombre en Proxmox
e Distribuye VMs entre nodos usando round-robin

e Clona desde la plantilla

e Configura IP estatica, etiquetas y cloud-init

 Establece las credenciales de usuario de cloud-init desde la
primera entrada de local users

e Soporta etiquetado VLAN

proxmox_Ixc.yml

e Verifica que el contenedor no exista por nombre o IP

e Distribuye LXCs entre nodos usando round-robin
» Crea contenedor con IP estatica

* Crea automaticamente la primera cuenta de local users con
acceso sudo y clave SSH

e Configura netplan para la red
¢ |nicia automaticamente los contenedores

e Excluye hosts UPF

proxmox_delete.yml

e Detiene y elimina VM/LXC que coincidan con el nombre de host del
inventario

e Busca en todos los nodos configurados

» Fuerza la detencién después de 20 segundos

Distribucion y Etiquetado de
VM/LXC

Distribucion Round-Robin

Las VMs y LXCs se distribuyen automaticamente entre los nodos de Proxmox
utilizando légica de round-robin (mdédulo):

Ejemplo con 3 hipervisores y 5 MMEs:

o°

mme®l - pve-node-01 (indice
mme02 - pve-node-02 (indice
mme03 - pve-node-03 (indice
(
(

o

o°

A W NNERER O
o°

w w w w w
I

cereeS

mme04 - pve-node-01 (indice
mme05 - pve-node-02 (indice

o°

Cémo funciona:

1. El playbook identifica el grupo de roles del host (por ejemplo, mme, sgw,
hss)

2. Calcula el indice del host dentro de ese grupo (basado en 0)
3. Utiliza la operacién de médulo: host index % number of nodes

4. Selecciona el hipervisor segun el resultado

Configuracion:

Para VMs (proxmox.yml) - definir multiples servidores
proxmoxServers:

pve-node-01: { ... }
pve-node-02: { ... }
pve-node-03: { ... }

Para LXCs (proxmox lxc.yml) - listar maltiples nodos
proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

Etiquetado Automatico
Las VMs y LXCs se etiqguetan automaticamente con:

e Nombres de Rol/Grupo: Todos los grupos de Ansible a los que pertenece
el host

* Nombre del Sitio: La variable site name

Ejemplo:

site name: "melbourne-prod"
mme :

hosts:
melbourne-mme01: { ... }

Resultado: VM/LXC etiquetada con: mme, melbourne-prod

Las etiquetas son visibles en la interfaz de Proxmox y son Utiles para
filtrado/organizacion.

Anulaciones por Host

Anule los valores predeterminados en hosts especificos:

hosts:
high-spec-host:
ansible host: 192.168.1.50
gateway: 192.168.1.1
proxmoxLxcCores: 8 # anular nudcleos
proxmoxLxcMemoryMb: 16384 # anular memoria
proxmoxLxcDiskSizeGb: 100 # anular disco

Libretas de Utilidad

Las libretas de utilidad proporcionan herramientas operativas para gestionar la

infraestructura de OmniCore desplegada. Estas libretas se encuentran en el
directorio util playbooks/ y se pueden ejecutar de forma independiente para

realizar tareas comunes de mantenimiento y resolucion de problemas.

Referencia Rapida

Libreta

health check.yml

restore hss.yml

ip plan generator.yml

get ports.yml

getLocalCapture.yml

delete local user.yml

updateMtu.yml

systemctl status.yml

Propadsito

Generar un informe de salud completo para
todos los servicios

Restaurar la base de datos HSS y/o la
configuracién desde una copia de seguridad

Generar documentacién de red con diagramas
de Mermaid

Auditar puertos abiertos y servicios en escucha
en todos los hosts

Recuperar archivos de captura de paquetes de
los hosts

Eliminar una cuenta de usuario local de todos los
hosts

Establecer MTU en 9000 (tramas jumbo) en las
interfaces de red

Verificar el estado del servicio en los
componentes EPC

Verificacion de Salud

Archivo: util playbooks/health check.yml

Genera un informe de salud HTML completo que cubre todos los servicios de
OmniCore y OmniCall desplegados.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Salida: /tmp/health check YYYY-MM-DD HH:MM:SS.html

Informacion Recopilada

Componente Datos Recopilados

Todos los . . .

o Estado del servicio, version, tiempo de actividad
servicios

, Estado de la base de datos, conexiones de pares
OmniHSS)

Diameter

OmniDRA Conexiones de pares Diameter y estado
OmniTAS Llamadas activas, sesiones, registros, uso de CPU
0Cs Estado de replicacién de KeyDB

Restauracion de HSS

Archivo: util playbooks/restore hss.yml

Restaura OmniHSS a partir de archivos de copia de seguridad. Soporta la
restauracion solo de la base de datos, solo de la configuracién, o de ambos.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/restore hss.yml

Formatos de Archivos de Copia de Seguridad

Tipo Patron de Nombre de Archivo Contenidos

Volcado de

Base de . MySQL de la
datos hss dump <hostname> <timestamp>.sql

base de datos
omnihss

Archivo del
Configuracion hss _<hostname> <timestamp>.tar.gz directorio

/etc/omnihss

Generador de Plan de IP

Archivo: util playbooks/ip plan generator.yml
Genera documentacién de red a partir del inventario, incluyendo:

e Asignaciones de IP de hosts (NICs primarias y secundarias)

» Visidn general del segmento de red

e Diagramas de conectividad de interfaces (Diameter, GTP, PFCP, SIP, S57)

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml

Archivos de Salida

Archivo Formato Descripcion

Documentacion

/tmp/ip plan <customer> <site>.md Markdown
- - - basada en texto

Diagrama
/tmp/ip plan <customer> <site>.html HTML interactivo con
capas filtrables

Auditoria de Puertos

Archivo: util playbooks/get ports.yml

Audita todos los puertos en escucha a través del despliegue y genera
documentacion.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/get ports.yml

Archivos de Salida

Archivo Descripcion

CSV con nombre de host, IP, protocolo, puerto,
/tmp/all ports.csv .
servicio

./open _ports.rst Tabla reStructuredText para documentaciéon Sphinx

Datos Recopilados

Campo Descripcion

Nombre de Host Nombre de host del inventario

IP Direccion IP ansible host del host
Versién de IP IPv4 o IPv6

Transporte TCP o UDP

Puerto NUmero de puerto en escucha
Servicio Nombre del proceso

Recuperacion de Captura Local

Archivo: util playbooks/getLocalCapture.yml

Recupera los dos archivos de captura de paquetes mas recientes del directorio
/etc/localcapture de cada host.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Salida: ./localCapturePcaps/<hostname>/*.pcap

Gestion de Usuarios

Archivo: util playbooks/delete local user.yml

Elimina una cuenta de usuario local de todos los hosts en el inventario.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/delete local user.yml

Solicitud: Ingrese el nombre de usuario a eliminar cuando se le solicite.

Configuracion de MTU

Archivo: util playbooks/updateMtu.yml

Establece el MTU en 9000 (tramas jumbo) en la interfaz ens160 en todos los
hosts.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Nota: Esta libreta esta codificada para la interfaz ens160. Modifique la libreta
si su entorno utiliza nombres de interfaz diferentes.

Ejecucion de Libretas de Utilidad

Sintaxis Basica

ansible-playbook -i <inventory file> util playbooks/<playbook>.yml

Opciones Comunes

Opcién Descripcion
-i <inventory> Especificar archivo de inventario

--limit <hosts> Limitar a hosts o grupos especificos

-v [/ -vv /[-vvv Aumentar la verbosidad

- -check Ejecucién en seco (mostrar lo que cambiaria)

--diff Mostrar diferencias de archivos
Ejemplos

Ejecutar verificacién de salud en produccion
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/health check.yml

Restaurar HSS en un host especifico
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/restore hss.yml --limit hssO1

Generar plan de IP con salida detallada
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/ip plan generator.yml -v

