
Introdução ao

Desdobramento do

Ansible na Omnitouch

Visão Geral

Os Serviços de Rede Omnitouch usam o Ansible como sua plataforma de

automação de infraestrutura para implantar soluções completas de rede celular

(4G/5G) de maneira consistente, repetível e automatizada. Este documento

fornece uma visão geral de como aproveitamos o Ansible para orquestrar

implantações complexas de telecomunicações.

O que é Ansible?

Ansible é uma ferramenta de automação de código aberto que permite:

Configurar sistemas

Implantar software

Orquestrar fluxos de trabalho complexos

Gerenciar infraestrutura como código

O Ansible usa uma abordagem declarativa - você descreve o estado desejado

de seus sistemas, e o Ansible garante que eles alcancem esse estado.

Como a Omnitouch Usa o Ansible

Conceitos Chave

1. Inventário (Arquivos de Hosts)

Define quais sistemas gerenciar. Cada implantação de cliente tem um arquivo

de hosts que descreve:

Todas as máquinas virtuais na rede

Seus endereços IP

Configuração de rede

Parâmetros específicos de serviço

Os arquivos de hosts são com os quais você trabalhará para definir sua rede.

Veja: Configuração do Arquivo de Hosts

2. Funções

Define como configurar cada componente. As funções são unidades

reutilizáveis que contêm:

Tarefas (etapas a serem executadas)

Modelos (modelos de arquivos de configuração)

Manipuladores (ações acionadas por alterações)

Variáveis (valores de configuração padrão)

Exemplos de funções para componentes do OmniCore: omnihss , omnisgwc ,

omnipgwc , omnidra , etc.

Estas são definidas pela equipe ONS, enquanto você pode editá-las,

geralmente há maneiras mais limpas de fazer quaisquer ajustes que você

possa precisar a partir do seu arquivo de hosts.

3. Playbooks

Orquestra quando e onde as funções são aplicadas:

Usamos esses essencialmente como grupos para as funções.

4. Variáveis de Grupo

Fornece configuração específica do cliente que substitui os padrões das

funções. É aqui que a personalização do cliente acontece sem modificar as

funções base.

Veja: Variáveis de Grupo e Configuração

Arquitetura de Implantação

Hosts File

Ansible PlaybookGroup Vars

Roles

SSH to Hosts Configure Systems Running Network

- name: Deploy EPC Core

 hosts: mme

 roles:

 - common

 - omnimme

O Processo de Implantação

1. Definir Infraestrutura

Crie um arquivo de hosts descrevendo sua topologia de rede:

Nota de Planejamento: Antes de definir a infraestrutura, revise o Padrão de

Planejamento de IP para orientações sobre segmentação de rede, alocação de

endereços IP e organização de sub-redes.

Usuários do Proxmox: Se implantando no Proxmox, veja Implantação de

VM/LXC do Proxmox para provisionamento automatizado de VM/conteiner.

Veja: Configuração do Arquivo de Hosts e Referência de Configuração

2. Personalizar Configuração

Defina variáveis específicas do cliente em group_vars :

#ToDo - Adicionar link aqui para referência de configuração para lista completa

3. Executar Playbooks

Implante a rede:

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 mme_code: 1

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: customer

4. Implantação Automatizada

O Ansible irá:

Criar/provisionar VMs (se usando integração Proxmox/VMware)

Configurar rede

Instalar pacotes de software do cache APT

Implantar código de aplicativo

Configurar serviços com configurações do cliente

Iniciar serviços

Validar implantação

Componentes Chave que

Implantamos

OmniCore (Plataforma de Core de Pacote

4G/5G)

OmniHSS - Servidor de Assinante Residencial

OmniSGW - Gateway de Serviço (plano de controle)

OmniPGW - Gateway de Pacote (plano de controle)

OmniUPF - Função de Plano do Usuário

OmniDRA - Agente de Roteamento Diameter

OmniTWAG - Gateway de Acesso WLAN Confiável

Veja: https://docs.omnitouch.com.au/docs/repos/OmniCore

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Plataforma de Voz e Mensagens)

OmniCall CSCF - Função de Controle de Sessão de Chamada (P-CSCF, I-

CSCF, S-CSCF)

OmniTAS - Servidor de Aplicação IMS (serviços VoLTE/VoNR)

OmniMessage - Centro de SMS (SMS-C)

OmniMessage SMPP - Suporte ao protocolo SMPP

OmniSS7 - Componentes de sinalização SS7 (STP, HLR, CAMEL)

VisualVoicemail - Funcionalidade de correio de voz

Veja: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM

Plataforma CRM - Gestão de relacionamento com o cliente, auto-

inscrição, faturamento

Veja: https://docs.omnitouch.com.au/docs/repos/OmniCharge

Serviços de Suporte

DNS - Resolução de DNS da rede

Servidor de Licenças - Gestão de licenças

Monitoramento - Prometheus, Grafana

Veja: Visão Geral da Arquitetura de Implantação

Gestão de Pacotes

Usamos um modelo de distribuição de pacotes híbrido:

Pacotes APT Pré-compilados

Todo o software da Omnitouch é distribuído como pacotes Debian (.deb files):

Construído a partir do código-fonte em nosso pipeline CI/CD

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Versionado e testado

Hospedado em repositórios de pacotes

Sistema de Cache APT

Os clientes podem escolher entre:

1. Cache APT Local - Espelho dos pacotes necessários no local para

implantação offline

2. Repositório Público - Acesso direto ao repositório de pacotes hospedado

pela Omnitouch

Veja: Sistema de Cache APT

Gestão de Licenças

Todos os componentes de software da Omnitouch requerem licenças válidas

gerenciadas através de um servidor de licenças central:

Os componentes verificam a validade da licença na inicialização

Recursos são ativados/desativados com base na licença

O servidor de licenças pode ser local ou hospedado na nuvem

Veja: Servidor de Licenças

Benefícios Desta Abordagem

Repetibilidade

Os mesmos playbooks do Ansible podem implantar:

Laboratórios de desenvolvimento

Ambientes de teste

Redes de produção

Sites de clientes

Consistência

Cada implantação usa as mesmas configurações testadas, reduzindo erros

humanos.

Controle de Versão

A infraestrutura é definida como código no Git:

Rastrear todas as alterações

Revisar antes da implantação

Reverter se necessário

Personalização Sem Complexidade

Os clientes podem personalizar sua implantação através de group_vars sem

modificar funções principais.

Implantação Rápida

Implante uma rede celular completa em horas em vez de dias ou semanas.

Começando

Pré-requisitos

Antes de executar os playbooks do Ansible, você precisa configurar um

ambiente virtual Python e instalar as dependências necessárias.

1. Criar um Ambiente Virtual Python

Crie um ambiente Python isolado para a implantação do Ansible:

2. Ativar o Ambiente Virtual

python3 -m venv .venv

Ative o ambiente virtual:

No Windows, use:

3. Instalar Pacotes Necessários

Instale todas as dependências do arquivo requirements.txt:

Isso instalará o Ansible e todos os pacotes Python necessários para a

automação de implantação da Omnitouch.

Nota: Mantenha o ambiente virtual ativado sempre que executar comandos do

Ansible. Você pode desativá-lo quando terminar executando deactivate .

Etapas de Implantação

1. Revise a Configuração do Arquivo de Hosts para entender como definir sua

rede

2. Aprenda sobre Variáveis de Grupo para personalização

3. Entenda o Sistema de Cache APT para gestão de pacotes

4. Revise a Arquitetura de Implantação para ver como tudo se encaixa

5. Implante!

Próximos Passos

Padrão de Planejamento de IP - Planeje sua arquitetura de rede e

alocação de IP

source .venv/bin/activate

.venv\Scripts\activate

pip install -r requirements.txt

Configuração do Arquivo de Hosts - Aprenda como definir sua topologia de

rede

Sistema de Cache APT - Entenda a distribuição de pacotes

Servidor de Licenças - Aprenda sobre gestão de licenças

Visão Geral da Arquitetura de Implantação - Veja o quadro completo

Configuração de Variáveis de Grupo - Personalize sua implantação

Playbooks Utilitários - Ferramentas operacionais para verificações de

saúde, backups e manutenção

Repositório APT e

Distribuição de Pacotes

Visão Geral

O sistema APT da Omnitouch fornece distribuição de pacotes para todas as

implantações. Dois tipos de conteúdo são servidos:

1. Pacotes APT — Pacotes Debian instalados via apt install

2. Lançamentos Binários — Binários pré-compilados baixados diretamente

(exportadores Prometheus, agentes, etc.)

Dois modelos de implantação são suportados:

1. Acesso Direto — VMs puxam pacotes diretamente de

apt.omnitouch.com.au

2. Espelho de Cache Local — Um servidor local sincroniza com a Omnitouch

e serve pacotes para VMs (para implantações offline/isoladas)

Arquitetura

Conteúdo Servido

O servidor APT hospeda todo o conteúdo necessário para implantações:

Tipo de

Conteúdo
Descrição Caminho

Pacotes

Omnitouch

Pacotes .deb

personalizados (omnihss,

omnimme, etc.)

/dists/<distro>/

Pacotes Ubuntu

Pacotes Ubuntu em cache

com todas as

dependências

/<distro>/pool/main/

Lançamentos

do GitHub

Binários pré-compilados

(Prometheus, Grafana,

Homer, etc.)

/releases/<org>/<repo>/

Tarballs de

Fonte

Arquivos de origem para

aplicativos web

(CGrateS_UI, speedtest)

/repos/

Pacotes de

Terceiros

Galera, FRR, InfluxDB,

KeyDB, etc.
/releases/<vendor>/

Variáveis de Configuração

Dois conjuntos de variáveis separadas controlam a distribuição de pacotes.

Compreender seus propósitos é essencial para uma configuração correta.

O Que Eles Configuram
Variáveis de

Configuração

apt_repo

(Fontes de pacotes APT)

remote_apt_*

(Downloads binários)

/etc/apt/sources.list

Downloads binários

/releases/*

Propósitos das Variáveis

Conjunto de

Variáveis
Propósito Usado Para

apt_repo

Configura

fontes de

pacotes APT

/etc/apt/sources.list e

/etc/apt/sources.list.d/*.list

remote_apt_*

Configura

URLs de

download

binário

Baixando arquivos do caminho

/releases/ (Node Exporter, Zabbix,

Nagios, etc.)

Quando Cada Conjunto de Variáveis É Usado

Cenário Fontes APT (apt_repo)
Downloads Binários

(remote_apt_*)

use_apt_cache:

true

Usa

apt_repo.apt_server
Usa apt_repo.apt_server

use_apt_cache:

false

Usa apt_repo.* com

credenciais

Usa remote_apt_* com

credenciais

Quando use_apt_cache: false , ambos os conjuntos de variáveis são

necessários.

Opção 1: Acesso Direto

Para implantações com conectividade à internet, as VMs puxam pacotes

diretamente do servidor APT da Omnitouch.

Requisitos de Rede

Whitelist de IP de Origem: Seu endereço IP público deve ser incluído na lista

de permissões no servidor APT da Omnitouch. Durante a configuração, forneça

suas sub-redes de origem para a Omnitouch. Em troca, você receberá:

Nome de usuário e senha para Autenticação Básica HTTP

FQDN para o servidor APT

Requisitos de Firewall: O acesso de saída aos seguintes intervalos de IP da

Omnitouch deve ser permitido:

Rede Intervalo

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:dec0::/48

ASN AS152894

Serviços que requerem acesso à infraestrutura da Omnitouch:

Serviço Porta Protocolo Propósito

Servidor APT 80 TCP Downloads de pacotes

Servidor APT 53 TCP/UDP
Resolução DNS para

apt.omnitouch.com.au

Servidor de

Licença
123 UDP

Sincronização de tempo NTP para

validação de licença

Servidor de

Licença
53 TCP/UDP

Resolução DNS para validação de

licença

Certifique-se de que o tráfego HTTP (TCP/80), NTP (UDP/123) e DNS

(TCP+UDP/53) seja permitido para os intervalos de IP da Omnitouch.

Configuração

Parâmetros

Fontes de Pacotes APT (apt_repo)

all:

 vars:

 use_apt_cache: false

 # Configuração das fontes de pacotes APT

 # Configura /etc/apt/sources.list para comandos apt install

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "seu-usuario"

 apt_repo_password: "sua-senha"

 # Configuração de downloads binários

 # Usado para baixar arquivos do caminho /releases/

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "seu-usuario"

 remote_apt_password: "sua-senha"

Parâmetro Tipo Requerido Padrão Descriçã

apt_repo.apt_server String Sim -

Nome do

host ou

endereço I

do servido

APT

apt_repo.apt_repo_username String Sim -

Nome de

usuário da

Autenticaç

Básica HTT

para fonte

APT

apt_repo.apt_repo_password String Sim -

Senha da

Autenticaç

Básica HTT

para fonte

APT

Downloads Binários (remote_apt_*)

Parâmetro Tipo Requerido Padrão Descrição

remote_apt_server String Sim -

Nome do host

ou IP do

servidor para

downloads

binários

remote_apt_port Inteiro Não 80

Porta do

servidor para

downloads

binários

remote_apt_protocol String Não http
Protocolo (http

ou https)

remote_apt_user String Sim -

Nome de

usuário da

Autenticação

Básica HTTP

para downloads

remote_apt_password String Sim -

Senha da

Autenticação

Básica HTTP

para downloads

Geral

Parâmetro Tipo Requerido Padrão Descrição

use_apt_cache Booleano Sim -
Deve ser false

para acesso direto

Padrões de URL (Acesso Direto)

Fontes de Pacotes APT (configuradas em /etc/apt/sources.list):

Downloads Binários (usados por tarefas Ansible get_url):

Como Funciona

As VMs se autenticam com Autenticação Básica HTTP tanto para pacotes APT

quanto para downloads binários. Pacotes de sistema Ubuntu também são

servidos do servidor Omnitouch (pré-cacheados), portanto, as VMs não

precisam de acesso a espelhos do Ubuntu.

deb [trusted=yes] http://{apt_repo_username}:

{apt_repo_password}@{apt_server}/ noble main

http://{remote_apt_user}:

{remote_apt_password}@{remote_apt_server}:

{remote_apt_port}/releases/prometheus/node_exporter/node_exporter-

1.8.1.linux-amd64.tar.gz

Opção 2: Espelho de Cache Local

Para implantações offline, isoladas ou com largura de banda restrita,

implemente um cache APT local que sincroniza todo o conteúdo da Omnitouch.

Arquitetura

Rede do Cliente

Infraestrutura

Omnitouch
Sincronização Inicial

(requer internet)

Servir Pacotes

(capaz offline)

Servir Pacotes

(capaz offline)

Servir Pacotes

(capaz offline)

apt.omnitouch.com.au
Espelho de Cache APT

(apt_cache_servers)

VM

VM

VM

Configuração

Defina o servidor de cache em seu arquivo de hosts com sua configuração de

repositório:

Como funciona:

Servidor de cache (192.168.1.100): Usa credenciais remote_apt_* para

sincronizar pacotes de apt.omnitouch.com.au:80

Todos os outros hosts: Derivam automaticamente

apt_repo.apt_server: "192.168.1.100" e puxam do cache na porta 8080

sem credenciais

Parâmetros

Fontes de Pacotes APT (apt_repo)

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # O servidor de cache sincroniza pacotes do repositório

autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "seu-usuario"

 remote_apt_password: "sua-senha"

all:

 vars:

 # use_apt_cache: true # Definido automaticamente quando o

grupo apt_cache_servers existe

 # apt_repo.apt_server: auto-derivado para 192.168.1.100

(primeiro servidor de cache)

Parâmetro Tipo Requerido Padrão Desc

apt_repo.apt_server String Sim
Auto-

derivado

IP do serv

cache loc

Derivado

automatic

do primei

apt_cach

se não

especifica

apt_repo.apt_repo_username String Não -

Não neces

usar cach

autentica

necessári

apt_repo.apt_repo_password String Não -

Não neces

usar cach

autentica

necessári

Sincronização do Servidor de Cache (remote_apt_*)

Essas variáveis configuram como o servidor de cache sincroniza conteúdo da

Omnitouch:

Parâmetro Tipo Requerido Padrão Descrição

remote_apt_server String Sim -

Servidor APT da

Omnitouch para

sincronização

remote_apt_port Inteiro Não 80

Porta do

servidor APT da

Omnitouch

remote_apt_protocol String Não http

Protocolo para

conexão de

sincronização

remote_apt_user String Sim -

Credenciais

para

sincronização

da Omnitouch

remote_apt_password String Sim -

Credenciais

para

sincronização

da Omnitouch

Geral

Parâmetro Tipo Requerido Padrão Descrição

use_apt_cache Booleano Não true

Definido

automaticamente

como true quando

o grupo

apt_cache_servers

existe

apt_cache_port Inteiro Não 8080

Porta que o

servidor de cache

local escuta

Padrões de URL (Modo Cache)

Fontes de Pacotes APT (configuradas em /etc/apt/sources.list):

Downloads Binários (usados por tarefas Ansible get_url):

Nenhuma credencial é necessária para acesso ao cache—ele usa a

configuração APT [trusted=yes] .

Implantando o Cache

1. Provisione o servidor de cache (VM ou contêiner LXC com disco de 50+

GB)

2. Execute o playbook de configuração do cache:

deb [trusted=yes] http://192.168.1.100:8080/noble noble main

http://192.168.1.100:8080/releases/prometheus/node_exporter/node_expo

1.8.1.linux-amd64.tar.gz

3. Verifique o cache navegando para http://192.168.1.100:8080/

O Que É Sincronizado

O espelho de cache sincroniza todo o conteúdo do servidor APT da

Omnitouch usando download recursivo com wget:

Espelho de Cache Local

apt.omnitouch.com.au

Pacotes .deb da

Omnitouch

/pool/main/

Pacotes Ubuntu + Deps

/noble/pool/main/

Lançamentos do GitHub

/releases/

Tarballs de Fonte

/repos/

Metadados APT

/dists/

Pacotes .deb da

Omnitouch
Pacotes Ubuntu + Deps Lançamentos do GitHub Tarballs de Fonte Metadados APT

Diretórios de conteúdo sincronizados:

Caminho Conteúdo

/dists/<distro>/
Metadados do repositório APT (Pacotes, arquivos

de Lançamento)

/pool/main/ Pacotes .deb personalizados da Omnitouch

/<distro>/pool/main/ Pacotes Ubuntu e todas as dependências

/releases/
Lançamentos do GitHub (Prometheus, Grafana,

Zabbix, etc.)

/repos/ Tarballs de fonte (Erlang, Elixir, CGrateS_UI, etc.)

Após a sincronização inicial, o cache pode servir todos os pacotes sem

conectividade à internet.

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Como Funciona

O espelho de cache usa wget --recursive com Autenticação Básica HTTP para

baixar todo o conteúdo do servidor APT da Omnitouch. Sincronizações

subsequentes baixam apenas arquivos novos/alterados (com base em

timestamp).

Configuração Automática

Quando um grupo apt_cache_servers existe em seu inventário, o sistema

automaticamente:

1. Define use_apt_cache: true para todos os hosts (a menos que

explicitamente sobrescrito)

2. Deriva apt_repo.apt_server do IP ansible_host do primeiro servidor de

cache

Exemplo de Configuração Mínima

O que acontece automaticamente:

Todos os hosts (exceto o servidor de cache) recebem use_apt_cache: true

Todos os hosts (exceto o servidor de cache) recebem

apt_repo.apt_server: "192.168.1.100"

Todos os hosts puxam de http://192.168.1.100:8080/ sem credenciais

O servidor de cache sincroniza pacotes de http://seu-usuario:sua-

senha@apt.omnitouch.com.au/

Sobrescrever Comportamento Automático

Para forçar o acesso direto mesmo com servidores de cache definidos:

apt_cache_servers:

 hosts:

 apt-cache-01:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # O servidor de cache sincroniza conteúdo do repositório

Omnitouch

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "seu-usuario"

 remote_apt_password: "sua-senha"

Resumo da Configuração

Cenário 1: Acesso Direto ao Servidor APT (Sem

Cache)

Todos os hosts puxam pacotes diretamente do servidor de repositório APT.

all:

 vars:

 use_apt_cache: false # Forçar acesso direto mesmo com

servidores de cache definidos

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "usuario"

 apt_repo_password: "senha"

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "usuario"

 remote_apt_password: "senha"

all:

 vars:

 use_apt_cache: false

 # Fontes de pacotes APT - usadas por todos os hosts

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "usuario"

 apt_repo_password: "senha"

 # Downloads binários - usados por todos os hosts

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "usuario"

 remote_apt_password: "senha"

Resultado: Todos os hosts geram deb [trusted=yes]

http://usuario:senha@apt.omnitouch.com.au/ noble main

Cenário 2: Servidor de Cache APT Definido no

Arquivo de Hosts (Automático)

O servidor de cache está em seu inventário e será implantado/sincronizado

pelo Ansible.

Resultado:

Servidor de Cache: Sincroniza de

http://usuario:senha@apt.omnitouch.com.au:80/

Todos os outros hosts: Geram deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sem credenciais)

apt_cache_servers:

 hosts:

 cache-server:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # O servidor de cache sincroniza pacotes do repositório

autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "usuario"

 remote_apt_password: "senha"

Nenhuma configuração necessária em all: vars:

Tudo auto-derivado do grupo apt_cache_servers

Cenário 3: Cache APT Remoto NÃO no Arquivo

de Hosts (Manual)

O servidor de cache existe em outro lugar e já está configurado (não

gerenciado pelo seu Ansible).

Resultado: Todos os hosts geram deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sem credenciais)

Exemplo Completo

Aqui está um exemplo completo de trabalho mostrando a configuração do

servidor de cache com múltiplos hosts de aplicativo:

all:

 vars:

 use_apt_cache: true

 # Apontar todos os hosts para o servidor de cache externo

 apt_repo:

 apt_server: "192.168.1.100" # IP do servidor de cache

externo

 apt_repo_port: 8080 # O cache normalmente funciona

na porta 8080

Nenhum grupo apt_cache_servers necessário

Nenhum remote_apt_* necessário (o cache já está configurado

externamente)

Grupo do Servidor de Cache APT

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 10.179.1.114

 gateway: 10.179.1.1

 host_vm_network: "vmbr0"

 num_cpus: 4

 memory_mb: 16384

 proxmoxLxcDiskSizeGb: 120

 vars:

 # O servidor de cache sincroniza pacotes do repositório

autenticado

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "usuario-cliente"

 remote_apt_password: "token-seguro-cliente"

Servidores de Aplicação

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.179.2.177

 gateway: 10.179.2.1

Configuração Global

all:

 vars:

 # Auto-configuração (nenhuma configuração manual necessária):

 # - use_apt_cache: true (auto-ativado quando apt_cache_servers

O que acontece durante a implantação:

1. Servidor de Cache (10.179.1.114):

Usa remote_apt_* de sua seção vars:

Baixa todos os pacotes de http://usuario-cliente:token-seguro-

cliente@apt.omnitouch.com.au:80/

Serve pacotes na porta 8080 via nginx

2. Hosts de Aplicação (customer-hss01 , customer-mme01 , customer-

dns01):

Detectam automaticamente que o grupo apt_cache_servers existe

Definem automaticamente use_apt_cache: true

Derivam automaticamente apt_repo.apt_server: "10.179.1.114"

Geram: deb [trusted=yes] http://10.179.1.114:8080/noble noble

main

Puxam todos os pacotes do servidor de cache (sem credenciais

necessárias)

Atualizando o Cache

Para sincronizar novos pacotes ou atualizações:

Isso sincroniza incrementalmente todo o conteúdo do servidor APT da

Omnitouch:

Novas versões de pacotes da Omnitouch

existe)

 # - apt_repo.apt_server: "10.179.1.114" (auto-derivado do

servidor de cache)

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Novos pacotes Ubuntu e dependências

Novos lançamentos do GitHub

Tarballs de fonte atualizados

A sincronização usa wget --timestamping , portanto, arquivos existentes não

alterados são pulados, tornando a re-sincronização rápida.

Nota: O servidor APT da Omnitouch (apt.omnitouch.com.au) é a única fonte

de verdade para todos os pacotes. Execute services/apt.yml no servidor apt

primeiro para construir/atualizar pacotes, em seguida, execute

services/apt_cache.yml nos espelhos de cache para sincronizar.

Solução de Problemas

Atualização APT Falha com 401 Não Autorizado

Sintomas:

Possíveis causas:

Configuração apt_repo definida em all: vars: em vez de

apt_cache_servers: vars:

Hosts tentando acessar o repositório autenticado diretamente em vez do

cache

apt_repo_username ou apt_repo_password incorretos

IP de origem não incluído na lista de permissões no servidor APT da

Omnitouch

Usando credenciais de cache para acesso direto ou vice-versa

Resolução:

Falha ao buscar

http://10.179.1.115:80/noble/dists/noble/main/binary-

amd64/Packages 401 Não Autorizado

1. Verifique o escopo da configuração: Certifique-se de que apt_repo

com credenciais esteja definido em apt_cache_servers: vars: , NÃO em

all: vars:

2. Verifique o modo de cache: Ao usar cache, os hosts devem se conectar

ao servidor de cache (porta 8080), não ao repositório (porta 80)

3. Verifique as fontes geradas: No host com falha, verifique

/etc/apt/sources.list.d/omnitouch.list

Correto (modo cache): deb [trusted=yes]

http://10.179.1.114:8080/noble noble main

Incorreto (tem credenciais no lugar errado): deb [trusted=yes]

http://usuario:senha@10.179.1.115:80/noble noble main

4. Verifique se as credenciais estão corretas para seu modo de implantação

5. Confirme se seu IP público está na lista de permissões com a Omnitouch

(se estiver usando acesso direto)

Downloads Binários Falham (Node Exporter,

Zabbix, etc.)

Sintomas: O playbook Ansible falha ao baixar arquivos do caminho

/releases/

Possíveis causas:

Variáveis remote_apt_* não configuradas

remote_apt_user ou remote_apt_password incorretos

remote_apt_server ausente quando use_apt_cache: false

Resolução:

1. Certifique-se de que todas as variáveis remote_apt_* estejam definidas

2. Verifique se as credenciais correspondem às fornecidas pela Omnitouch

3. Verifique se remote_apt_server aponta para o host correto

Servidor de Cache Não Consegue Sincronizar

Sintomas: O playbook do servidor de cache falha ao baixar pacotes

Possíveis causas:

O servidor de cache não tem acesso à internet

Credenciais remote_apt_* incorretas

Firewall bloqueando conexões de saída para a Omnitouch

Resolução:

1. Verifique se o servidor de cache pode acessar apt.omnitouch.com.au na

porta 80

2. Verifique as credenciais remote_apt_*

3. Revise as regras do firewall para acesso de saída

Documentação Relacionada

Configuração do Arquivo de Hosts — Inventário e configuração de variáveis

Referência de Configuração — Referência completa de parâmetros

Arquitetura de Implantação — Arquitetura geral do sistema

Implantação Proxmox — Implantando o servidor de cache como contêiner

LXC

Referência de

Configuração

Visão Geral

Este documento fornece uma referência abrangente para configurar

implantações do OmniCore através de arquivos de hosts. A configuração é

definida principalmente em arquivos de inventário de hosts, com mínimas

substituições de group_vars necessárias para implantações modernas.

Para documentação específica do produto, veja:

OmniCore: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge: https://docs.omnitouch.com.au/docs/repos/OmniCharge

Abordagem de Configuração

Implantações modernas do OmniCore usam um modelo de configuração

simplificado:

Princípio Chave: A maior parte da configuração é definida diretamente no

arquivo de hosts. Os padrões de função lidam com a maioria das

configurações, com group_vars usados apenas para personalizações

espec��ficas.

Planejamento de Rede

Antes de configurar os hosts, revise o Padrão de Planejamento de IP para

orientações sobre:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Estratégias de segmentação de rede

Alocação de endereços IP

Organização de sub-redes

Tratamento de IPs públicos

Parâmetros Comuns de Host

#ToDo - Apenas diga para verificar hosts-file-configuration.md para isso

Flags Específicas de Serviço

Variáveis Globais (all:vars)

A seção all:vars contém configurações em todo o ambiente de implantação.

Implantações modernas usam mínimas variáveis globais, com a maior parte da

configuração nos padrões de função.

Variáveis Globais Essenciais

Autenticação e Acesso

cdrs_enabled: True # Habilitar geração de CDR

in_pool: False # Excluir do pool de

balanceamento de carga

online_charging_enabled: False # Habilitar integração OCS

recording: True # Habilitar gravação de chamadas

(AS)

populate_crm: False # Preencher CRM com dados

iniciais

Alternativa: Use chaves SSH em vez de senhas:

Identidade do Cliente

Configuração PLMN

Propósito: Identifica de forma única sua rede móvel. Usado para a construção

do domínio Diameter.

Nomes de Rede

ansible_connection: ssh

ansible_user: root

ansible_password: password

ansible_become_password: password

ansible_ssh_private_key_file: '/path/to/key.pem'

customer_name_short: omnitouch

customer_legal_name: "YKTN Lab"

site_name: YKTN

region: AU

TZ: Australia/Melbourne

plmn_id:

 mcc: '001' # Código do País Móvel (3 dígitos)

 mnc: '01' # Código da Rede Móvel (2-3 dígitos)

 mnc_longform: '001' # MNC com zeros à esquerda (sempre 3

dígitos)

diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

Exibido: Nomes de rede mostrados em dispositivos UE em Configurações >

Rede Móvel.

Configuração de DNS

Configuração do Repositório APT

Padrões Automáticos: Quando um grupo apt_cache_servers é definido com

hosts:

use_apt_cache automaticamente é definido como True (a menos que

explicitamente definido como False)

apt_repo.apt_server automaticamente é definido como o IP do primeiro

servidor de cache

network_name_short: Omni

network_name_long: Omnitouch

tac_list: [10100,100] # Lista TAC padrão (pode ser

substituída por MME)

netplan_DNS: False # Usar systemd-resolved em vez de

DNS netplan

Veja: Sistema de Cache APT

Servidor de Licença

Veja: Servidor de Licença

Configurações MME

Configurações SAEGW

Configuração manual (opcional se o grupo apt_cache_servers

existir)

use_apt_cache: True # Usar cache APT local vs acesso

direto ao repositório

apt_repo:

 apt_server: "10.10.1.114" # Servidor de cache APT ou

servidor de repositório

 # Credenciais necessárias apenas quando use_apt_cache: False

 # apt_repo_username: "omni"

 # apt_repo_password: "omni"

Configuração de downloads binários e sincronização de cache

Usado para: (1) baixar binários de /releases/ quando

use_apt_cache: false

(2) sincronização do servidor de cache do Omnitouch

quando use_apt_cache: true

remote_apt_server: "apt.omnitouch.com.au"

remote_apt_user: "omni"

remote_apt_password: "omni"

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

mme_dns: False # Habilitar resolução de DNS MME

mtu: 1400 # Unidade Máxima de Transmissão

Configurações IMS

Configuração do Monitor RAN

ims_dra_support: False # Roteia IMS através do DRA

enable_homer: False # Habilitar captura SIP Homer

Configuração de Firewall

use_nokia_monitor: True

use_casa_monitor: True

install_influxdb: True

influxdb_user: monitor

influxdb_password: "secure-password"

influxdb_organisation_name: omnitouch

influxdb_nokia_bucket_name: nokia-monitor

influxdb_casa_bucket_name: casa-monitor

influxdb_operator_token: "generated-token"

influxdb_url: http://127.0.0.1:8086

enable_pm_collection: False

enable_alarm_collection: False

enable_location_collection: False

enable_ran_status_collection: True

enable_nokia_rectifier_collection: False

collection_interval_in_seconds: 120

ran_monitor:

 sql:

 user: ran_monitor

 password: "secure-password"

 database_host: 127.0.0.1

 database_name: ran_monitor

 influxdb:

 address: 10.10.2.135

 port: 8086

 nokia:

 airscales:

 - address: 10.7.15.66

 name: site-Lab-Airscale

 port: 8080

 web_password: nemuuser

 web_username: Nemuadmin

Servidores DNS de Roaming

Usuários Locais (Chaves SSH)

firewall:

 allowed_ssh_subnets:

 - '10.0.1.0/24'

 - '10.0.0.0/24'

 allowed_ue_voice_subnets:

 - '10.0.1.0/24'

 allowed_carrier_voice_subnets:

 - '10.0.1.0/24'

 allowed_signaling_subnets:

 - '10.0.1.0/24'

roaming_dns_servers:

 wildcard: ['10.0.99.1']

 # DNS específico do operador (baseado em PLMN)

 123456: # Exemplo Operador 1

 - '10.10.2.197'

 654321: # Exemplo Operador 2

 - '10.10.0.4'

local_users:

 usera:

 name: Exemplo Usuário A

 public_key: "ssh-rsa AAAAB3Nza..."

 userb:

 name: Exemplo Usuário B

 public_key: "ssh-ed25519 AAAAC3..."

Configuração do Hypervisor

Proxmox

proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: password

 proxmoxApiTokenName: AnsibleToken

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve01

Configurações padrão do Proxmox

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve01'

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard_24.04-

2_amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD_RAID0

proxmoxLxcBridgeName: vmbr0

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"

proxmoxStorage: SSD_RAID0

vLabNetmask: 24

PROXMOX_API_TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask_cidr: 24

VMware vCenter

Documentação Relacionada

Padrão de Planejamento de IP - Diretrizes de arquitetura de rede e alocação

de IP

Configuração do Arquivo de Hosts - Como estruturar arquivos de hosts

Configuração de Variáveis de Grupo - Quando e como usar group_vars

Configuração do Netplan - IPs secundários e configuração de múltiplas NICs

Arquitetura de Implantação - Como os componentes interagem

Sistema de Cache APT - Gerenciamento de pacotes

Servidor de Licença - Configuração de licença

Documentação do Produto

Para guias operacionais detalhados e configuração avançada:

Componentes do OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore

vcenter_ip: "vcenter.example.com"

vcenter_username: "administrator@vsphere.local"

vcenter_password: "password"

vcenter_datacenter: "DC1"

vcenter_vm_template: ubuntu-24.04-model

vcenter_vm_disk_size: 50

vcenter_folder: "Omnicore"

host_vm_network: "Management"

vhosts:

 "10.0.0.23":

 vcenter_cluster_ip: 10.0.0.23

 vcenter_datastore: "datastore1 (3)"

netmask: 255.255.255.0

https://docs.omnitouch.com.au/docs/repos/OmniCore

Componentes do OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Visão Geral da

Arquitetura de

Implantação

Visão Geral

Este documento fornece uma visão completa de como o software de rede

celular da Omnitouch Network Services é implantado usando Ansible,

mostrando como todos os componentes se encaixam para criar uma rede

4G/5G funcional.

Consulte o Padrão de Planejamento de IP para diretrizes detalhadas sobre a

colocação de componentes, atribuição de endereços IP e manuseio de IPs

públicos.

Exemplo Completo de Implantação

0. Provisionamento de Infraestrutura

(Opcional)

Para implantações Proxmox, provisionar VMs/LXCs antes da configuração:

Veja: Implantação de VM/LXC no Proxmox

Implantar VMs no Proxmox

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Ou implantar contêineres LXC (apenas laboratório/teste)

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

1. Definição de Infraestrutura (Arquivo de

Hosts)

Veja: Configuração do Arquivo de Hosts

2. Personalização (group_vars)

A pasta group_vars é onde podemos armazenar quaisquer substituições de

configuração necessárias em nível de host, site ou rede.

Por exemplo, você teria uma pasta com sua configuração do OmniMessage

SMSc, os troncos SIP aos quais seu TAS se conecta estariam aqui, toda a sua

lógica de Roteamento Diameter, etc, etc.

Veja: Configuração de Variáveis de Grupo

3. Distribuição de Pacotes (Cache APT)

Definir o que implantar e onde

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

... todos os outros componentes

Configurar de onde obter pacotes

apt_repo:

 apt_server: "10.254.10.223" # IP do servidor de cache ou

servidor de repositório direto

use_apt_cache: false # true = usar cache local, false = acesso

direto ao repositório

Veja: Sistema de Cache APT

4. Configuração de Licença

Veja: Servidor de Licença

5. Executar Implantação

Componentes individuais podem ser implantados executando

services/twag.yml , por exemplo, mas o services/all.yml cuidará de tudo, e

você pode usar --limit=myhost ou --limit=mmee,sgw , etc, para limitar os

hosts em que estamos trabalhando.

Documentação Relacionada

Introdução à Implantação Ansible - Começando

Configuração do Arquivo de Hosts - Definindo infraestrutura

Padrão de Planejamento de IP - Arquitetura de rede e alocação de IP

Configuração de Variáveis de Grupo - Personalização

Sistema de Cache APT - Gerenciamento de pacotes

Servidor de Licença - Gerenciamento de licença

Apontar componentes para o servidor de licença

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

Implantar rede completa

ansible-playbook -i hosts/customer/host_files/production.yml

services/all.yml

Ou implantar componentes específicos

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/ims.yml

Documentação do Produto

Para informações detalhadas sobre a configuração de cada componente:

OmniCore (Núcleo de Pacote 4G/5G):

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS, OmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voz e Mensagens):

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Faturamento):

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentação Principal: https://docs.omnitouch.com.au/

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Configuração de

Variáveis de Grupo

Visão Geral

O diretório group_vars é onde você armazena arquivos de configuração

personalizados que substituem os modelos padrão.

É aqui que suas configurações específicas do cliente vivem - troncos SIP, regras

de roteamento Diameter, lógica de roteamento SMS, planos de discagem e

quaisquer outras personalizações onde você não deseja a configuração padrão

- Elas vivem em group_vars .

Localização: hosts/{Customer}/group_vars/

Como Funciona

Os papéis do Ansible têm modelos de configuração padrão. Para personalizar

para uma implantação específica, coloque seus arquivos personalizados em

group_vars e faça referência a eles em seu arquivo de hosts.

Exemplo 1: Modelo de

Configuração Personalizado

(OmniMessage)

Alguns componentes aceitam modelos de configuração Jinja2 personalizados.

Modelo Padrão do Papel → Substituição de group_vars (se

especificado) → Configuração Implantada

Estrutura de Arquivos

Referência no Arquivo de Hosts

O que acontece:

1. O Ansible encontra smsc_template_config: smsc_controller.exs

2. Procura em hosts/Customer/group_vars/smsc_controller.exs

3. Faz o template com Jinja2 (pode usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Implanta em /etc/omnimessage/runtime.exs

5. Reinicia o serviço

Sem smsc_template_config , o modelo padrão do papel é utilizado.

Detalhes da configuração: Veja

https://docs.omnitouch.com.au/docs/repos/OmniCall

Exemplo 2: Coleções de Arquivos

de Configuração (OmniTAS

hosts/Customer/

└── group_vars/

 └── smsc_controller.exs # Seu modelo de configuração

personalizado

omnimessage:

 hosts:

 customer-smsc-controller01:

 ansible_host: 10.10.3.219

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 smsc_template_config: smsc_controller.exs # Referencie o

nome do seu arquivo de modelo em group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCall

Gateways & Dialplans)

Alguns componentes usam diretórios de arquivos de configuração.

Estrutura de Arquivos

Referência no Arquivo de Hosts

O que acontece:

1. O Ansible encontra gateways_folder: "gateways_prod"

2. Copia todos os arquivos de hosts/Customer/group_vars/gateways_prod/

para /etc/freeswitch/sip_profiles/

hosts/Customer/

└── group_vars/

 ├── gateways_prod/ # Configurações do gateway SIP

 │ ├── gateway_carrier1.xml

 │ ├── gateway_carrier2.xml

 │ └── gateway_emergency.xml

 ├── gateways_lab/ # Gateways de laboratório

 │ └── gateway_test.xml

 └── dialplan/ # Regras de roteamento de

chamadas

 ├── mo_dialplan.xml # Originadas por Móvel (saída)

 ├── mt_dialplan.xml # Terminadas por Móvel

(entrada)

 └── emergency.xml

applicationserver:

 hosts:

 customer-tas01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 gateways_folder: "gateways_prod" # Referencie sua pasta de

gateways a ser usada neste host

3. Copia todos os arquivos de hosts/Customer/group_vars/dialplan/ para o

diretório de modelos do OmniTAS

4. Os serviços carregam as configurações

Ambientes diferentes: Use pastas diferentes por ambiente:

gateways_folder: "gateways_lab"

gateways_folder: "gateways_prod"

gateways_folder: "gateways_customer_specific"

Detalhes da configuração: Veja

https://docs.omnitouch.com.au/docs/repos/OmniCall

Exemplo 3: Modelo de

Configuração Personalizado

(OmniHSS)

O Home Subscriber Server aceita modelos de configuração em tempo de

execução personalizados.

Estrutura de Arquivos

hosts/Customer/

└── group_vars/

 └── hss_runtime.exs.j2 # Seu modelo de configuração HSS

personalizado

https://docs.omnitouch.com.au/docs/repos/OmniCall

Referência no Arquivo de Hosts

O que acontece:

1. O Ansible encontra hss_template_config: hss_runtime.exs.j2

2. Procura em hosts/Customer/group_vars/hss_runtime.exs.j2

3. Faz o template com Jinja2 (pode usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Implanta em /etc/omnihss/runtime.exs

5. Reinicia o serviço

Sem hss_template_config , o modelo padrão do papel é utilizado.

Detalhes da configuração: Veja

https://docs.omnitouch.com.au/docs/repos/OmniCore

Exemplo 4: Modelo de

Configuração Personalizado

(OmniMME)

O Mobility Management Entity aceita modelos de configuração em tempo de

execução personalizados.

omnihss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.3.50

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 hss_template_config: hss_runtime.exs.j2 # Referencie o

nome do seu arquivo de modelo em group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Estrutura de Arquivos

Referência no Arquivo de Hosts

O que acontece:

1. O Ansible encontra mme_template_config: mme_runtime.exs.j2

2. Procura em hosts/Customer/group_vars/mme_runtime.exs.j2

3. Faz o template com Jinja2 (pode usar {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Implanta em /etc/omnimme/runtime.exs

5. Reinicia o serviço

Sem mme_template_config , o modelo padrão do papel é utilizado.

Detalhes da configuração: Veja

https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── mme_runtime.exs.j2 # Seu modelo de configuração MME

personalizado

omnimme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.3.51

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 mme_template_config: mme_runtime.exs.j2 # Referencie o

nome do seu arquivo de modelo em group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Exemplo de Estrutura de Diretório

do Mundo Real

hosts/Customer/

├── host_files/

│ └── production.yml # O arquivo de hosts referencia os

arquivos de group_vars

└── group_vars/

 ├── smsc_controller.exs # Modelo personalizado do

OmniMessage

 ├── smsc_smpp.exs # Modelo SMPP personalizado do

OmniMessage

 ├── tas_runtime.exs.j2 # Modelo personalizado do TAS

 ├── hss_runtime.exs.j2 # Modelo personalizado do HSS

 ├── mme_runtime.exs.j2 # Modelo personalizado do MME

 ├── dra_runtime.exs.j2 # Modelo personalizado do DRA

 ├── pgwc_runtime.exs.j2 # Modelo personalizado do PGW

 ├── dea_runtime.exs.j2 # Modelo personalizado do DEA

 ├── upf_config.yaml # Configuração do UPF

 ├── crm_config.yaml # Configuração do CRM

 ├── stp.j2 # Modelo SS7 STP

 ├── hlr.j2 # Modelo SS7 HLR

 ├── camel.j2 # Modelo SS7 CAMEL

 ├── ipsmgw.j2 # Modelo IP-SM-GW

 ├── omnicore_smsc_ims.yaml.j2 # Configuração SMSC IMS

 ├── pytap.yaml # Configuração TAP3

 ├── sip_profiles/ # Gateways SIP (pasta)

 │ └── gateway_otw.xml

 └── dialplan/ # Regras de roteamento de chamadas

(pasta)

 ├── mo_dialplan.xml # Originadas por Móvel

 ├── mt_dialplan.xml # Terminadas por Móvel

 └── mo_emergency.xml # Roteamento de emergência

Parâmetros Comuns que

Referenciam group_vars

Parâmetro Componente Referências

smsc_template_config omnimessage

Arquivo de modelo

Jinja2 (ex:

smsc_controller.exs)

smsc_smpp_template_config omnimessage_smpp

Arquivo de modelo

Jinja2 (ex:

smsc_smpp.exs)

gateways_folder applicationserver
Nome da pasta (ex:

sip_profiles)

Dialplans (automático) applicationserver
Pasta dialplan/ de

XMLs de roteamento

tas_template_config applicationserver

Arquivo de modelo

Jinja2 (ex:

tas_runtime.exs.j2)

hss_template_config omnihss

Arquivo de modelo

Jinja2 (ex:

hss_runtime.exs.j2)

mme_template_config omnimme

Arquivo de modelo

Jinja2 (ex:

mme_runtime.exs.j2)

dra_template_config dra

Arquivo de modelo

Jinja2 (ex:

dra_runtime.exs.j2)

Parâmetro Componente Referências

pgwc_template_config pgwc

Arquivo de modelo

Jinja2 (ex:

pgwc_runtime.exs.j2)

frr_template_config omniupf

Arquivo de modelo

Jinja2 (ex:

frr.conf.j2)

Modelos SS7 ss7 (vários papéis)

Arquivos de modelo

Jinja2 (ex: stp.j2 ,

hlr.j2 , camel.j2)

Configurações YAML Vários componentes

Arquivos de

configuração diretos

(ex: upf_config.yaml ,

crm_config.yaml)

Pontos Chave

1. group_vars contém personalizações - Substituições para configurações

padrão

2. Referencie pelo nome - Use parâmetros como smsc_template_config ou

gateways_folder

3. Modelos suportam Jinja2 - Acesse qualquer variável do Ansible com {{

variable_name }}

4. Pastas implantam tudo - Todos os arquivos nas pastas referenciadas são

copiados

5. Controle de versão de tudo - Faça commit de todos os group_vars no Git

Quando Usar group_vars

� Use group_vars para:

Modelos de configuração de componentes personalizados

Definições de gateway SIP

Planos de discagem de roteamento de chamadas

Regras de roteamento Diameter

Configurações específicas do cliente que substituem os padrões

❌ Não use group_vars para:

Configuração básica de host (IPs, nomes de host) - Use o arquivo de hosts

Testes únicos - Use variáveis específicas do host no arquivo de hosts

Alterações temporárias - Edite no alvo, faça commit em group_vars se for

permanente

Documentação Relacionada

Referência de Configuração - Todos os parâmetros de host e o que eles

fazem

Configuração do Arquivo de Hosts - Como estruturar arquivos de hosts

Configuração do OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall - O que vai nos

arquivos de configuração

Configuração do OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore - Detalhes da

configuração do componente

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Playbooks de Utilidade

Visão Geral

Este repositório inclui vários playbooks de utilidade para manutenção,

monitoramento e tarefas operacionais. Estes complementam os playbooks

principais de implantação com capacidades de gerenciamento do dia a dia.

Utilitário de Verificação de Saúde

O utilitário de Verificação de Saúde gera um relatório HTML mostrando a saúde

do sistema, status dos serviços, tempo de atividade e informações de versão

em todos os componentes do OmniCore.

Executa automaticamente como parte do playbook services/all.yml .

Uso

Execução Manual

Saída

O relatório é gerado em /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Abra em qualquer navegador da web para visualizar.

Conteúdos do Relatório

O relatório HTML exibe:

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Informações do Host

Nome do host e endereço IP

Rede/Sub-rede (do variável host_vm_network , ou N/A se não configurado)

CPU (contagem de vCPU)

RAM (memória total e livre)

Disco (espaço total e livre da partição raiz com porcentagem)

SO (distribuição e versão)

Status do Serviço

Status do serviço (ativo/inativo com indicadores de cor)

Tempo de atividade

Informações de versão/liberação

Pares de Diâmetro HSS

Status da conexão do banco de dados (conectado/desconectado)

Conexões de pares de diâmetro (IP, host de origem, status)

Obtido do endpoint de métricas HSS (porta 9568)

Outras Utilidades Comuns

Configuração do Sistema Base

Função Comum (services/common.yml)

Aplica a configuração base do sistema a todos os hosts

Configura repositórios, chaves SSH, fuso horário, NTP

Configura rede e endurecimento do sistema

Execute isso antes de implantar serviços

ansible-playbook -i hosts/customer/host_files/production.yml

services/common.yml

Configurar Usuários (services/setup_users.yml)

Cria e configura contas de usuário em todos os hosts

Gerencia chaves SSH e privilégios sudo

Garante configuração consistente de usuários

Reiniciar (services/reboot.yml)

Reinicia graciosamente todos os hosts alvo

Aguarda os sistemas voltarem online (timeout de 5 minutos)

Útil após atualizações de kernel ou alterações de configuração

Utilidades Operacionais

Gerador de Plano de IP (util_playbooks/ip_plan_generator.yml)

Gera relatório HTML de atribuições de endereços IP

Mostra a topologia completa da rede a partir do arquivo de hosts

Útil para documentação e solução de problemas

Backup HSS (util_playbooks/hss_backup.yml)

Faz backup das tabelas do banco de dados HSS

Copia o dump do MySQL para a máquina Ansible local

Prompts interativos para o caminho do backup

ansible-playbook -i hosts/customer/host_files/production.yml

services/setup_users.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/reboot.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Obter Captura Local (util_playbooks/getLocalCapture.yml)

Busca os dois arquivos de captura de pacotes mais recentes de todos os

hosts

Recupera arquivos pcap de /etc/localcapture/

Útil para depuração de problemas de conectividade

Atualizar MTU (util_playbooks/updateMtu.yml)

Atualiza as configurações de MTU da interface de rede

Aplica as mudanças via netplan

Útil para configuração de jumbo frames

Documentação Relacionada

README Principal - Visão geral e como começar

Introdução à Implantação Ansible - Executando playbooks

Configuração do Arquivo de Hosts - Configure seu inventário

Arquitetura de Implantação - Visão geral completa do sistema

Sistema de Cache APT - Gerenciamento de pacotes

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/hss_backup.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

Configuração do

Arquivo Hosts

Visão Geral

O arquivo hosts (também chamado de arquivo de inventário) é o documento de

configuração central que define toda a sua implantação de rede celular. Ele

especifica:

Quais funções de rede implantar

Onde elas são executadas (endereços IP, segmentos de rede)

Como estão configuradas (parâmetros específicos do serviço)

Configurações específicas do cliente (PLMN, credenciais, recursos)

Localização do Arquivo

Os arquivos hosts são organizados por cliente e ambiente:

Estrutura de Exemplo do Arquivo

Hosts

Aqui está um exemplo simplificado mostrando as seções principais:

services/hosts/

└── Nome_Do_Cliente/

 └── host_files/

 ├── production.yml

 ├── staging.yml

 └── lab.yml

Componentes EPC

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 network_name_short: Cliente

 tac_list: [600, 601, 602]

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 ip_pools:

 - '100.64.16.0/24'

Componentes IMS

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

Serviços de Suporte

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

Variáveis Globais

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

Parâmetros Comuns de Host

Configuração de Rede

Cada host normalmente inclui:

Nota: Para orientações sobre planejamento de endereços IP e estratégias de

segmentação de rede, consulte o Padrão de Planejamento de IP que descreve a

arquitetura recomendada de quatro sub-redes para implantações do OmniCore.

Usuários do Proxmox: O parâmetro host_vm_network especifica qual ponte

usar. Consulte Implantação de VM/LXC do Proxmox para provisionamento

automatizado.

Alocação de Recursos de VM

Para serviços que precisam de recursos específicos:

 customer_name_short: customer

 plmn_id:

 mcc: '001'

 mnc: '01'

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.1.15 # Endereço IP para acesso SSH

 gateway: 10.10.1.1 # Gateway padrão

 host_vm_network: "vmbr1" # nome da NIC a ser usada no

Hypervisor

num_cpus: 4 # Núcleos de CPU

memory_mb: 8192 # RAM em megabytes

proxmoxLxcDiskSizeGb: 50 # Tamanho do disco em GB

Parâmetros Específicos do Serviço

Cada função de rede tem seus próprios parâmetros. Exemplos:

MME:

PGW:

Para uma explicação detalhada sobre o que cada variável controla, consulte:

Referência de Configuração

Servidor de Aplicação:

Seção de Variáveis Globais

A seção all:vars contém configurações que se aplicam a toda a implantação:

mme_code: 1 # Identificador MME (1-255)

mme_gid: 1 # ID do Grupo MME

network_name_short: Cliente # Nome da rede (exibido nos

telefones)

network_name_long: Rede do Cliente

tac_list: [600, 601, 602] # Códigos de Área de Rastreamento

ip_pools: # Pools de IP para assinantes

 - '100.64.16.0/24'

 - '100.64.17.0/24'

combined_CP_UP: false # Controle/plano de usuário

separado

online_charging_enabled: true # Habilitar integração OCS

tas_branch: "main" # Branch de software a ser

implantada

gateways_folder: "gateways_prod" # Configuração do gateway SIP

Compreendendo Grupos de Hosts

O Ansible organiza hosts em grupos que correspondem a funções:

all:

 vars:

 # Autenticação

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 # Identidade do Cliente

 customer_name_short: customer

 customer_legal_name: "Cliente Inc."

 site_name: "Chicago DC1"

 region: US

 # Identificador PLMN (Rede Móvel)

 plmn_id:

 mcc: '001' # Código do País Móvel

 mnc: '01' # Código da Rede Móvel

 mnc_longform: '001' # MNC com zeros à esquerda

 # Nomes de Rede

 network_name_short: Cliente

 network_name_long: Rede do Cliente

 # Repositório APT

 # Nota: Se o grupo apt_cache_servers estiver definido com

hosts,

 # use_apt_cache padrão é true e apt_repo.apt_server

 # padrão é o IP do primeiro servidor de cache automaticamente

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Fuso Horário

 TZ: America/Chicago

Quando você executa um playbook direcionado a mme , ele se aplica a todos os

hosts na seção mme:hosts: .

Configuração com Modelos Jinja2

O Ansible usa modelagem Jinja2 para gerar arquivos de configuração a partir

das variáveis definidas no seu arquivo hosts e group_vars.

Como Funciona o Jinja2

Variáveis do Arquivo

Hosts

Modelo Jinja2Variáveis de Grupo

Valores Padrão de

Função

Arquivo de

Configuração Gerado

Exemplo de Uso de Modelo

Arquivo hosts define:

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: acme

Modelo Jinja2 (na função):

Arquivo de configuração gerado:

Padrões Comuns do Jinja2

Acessando variáveis aninhadas:

Lógica condicional:

Laços:

mme_config.yml.j2

network:

 plmn:

 mcc: {{ plmn_id.mcc }}

 mnc: {{ plmn_id.mnc }}

 operator: {{ customer_name_short }}

 realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org

network:

 plmn:

 mcc: 001

 mnc: 01

 operator: acme

 realm: epc.mnc001.mcc001.3gppnetwork.org

{{ plmn_id.mcc }}

{{ apt_repo.apt_server }}

{% if online_charging_enabled %}

 charging:

 enabled: true

 ocs_ip: {{ ocs_ip }}

{% endif %}

Formatação:

Sobrescrevendo Variáveis com

group_vars

Enquanto o arquivo hosts define infraestrutura e configurações específicas de

host, group_vars pode sobrescrever padrões para grupos de hosts.

Veja: Configuração de Variáveis de Grupo

Exemplo Completo de Arquivo

Hosts

Aqui está um exemplo mais completo (com dados sensíveis ocultos):

tracking_areas:

{% for tac in tac_list %}

 - {{ tac }}

{% endfor %}

Preencher com zeros até 3 dígitos

mnc{{ '%03d' | format(plmn_id.mnc|int) }}

EPC Core

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 mme_gid: 1

 network_name_short: Cliente

 network_name_long: Rede do Cliente

 tac_list: [600, 601, 602, 603]

 omnimme:

 sgw_selection_method: "random_peer"

 pgw_selection_method: "random_peer"

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 ip_pools:

 - '100.64.16.0/24'

 combined_CP_UP: false

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

IMS Core

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

 gateway: 10.10.4.1

 host_vm_network: "vmbr4"

icscf:

 hosts:

 customer-icscf01:

 ansible_host: 10.10.3.55

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

scscf:

 hosts:

 customer-scscf01:

 ansible_host: 10.10.3.45

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

applicationserver:

 hosts:

 customer-as01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 online_charging_enabled: false

 gateways_folder: "gateways_prod"

Serviços de Suporte

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

monitoring:

 hosts:

 customer-oam01:

 ansible_host: 10.10.2.135

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

 num_cpus: 4

 memory_mb: 8192

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.10.2.177

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

Variáveis Globais

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 customer_name_short: customer

 customer_legal_name: "Rede do Cliente Inc."

 site_name: "DC Primário"

 region: US

 TZ: America/Chicago

 # Configuração PLMN

 plmn_id:

 mcc: '001'

 mnc: '01'

 mnc_longform: '001'

 diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

 # Nomes de Rede

 network_name_short: Cliente

 network_name_long: Rede do Cliente

 tac_list: [600, 601]

 # Configuração APT

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Configuração de Cobrança

 charging:

Consulte Implantação de VM/LXC do Proxmox para detalhes completos de

configuração e configuração do Proxmox.

Referências da Documentação do

Produto

Para configuração detalhada de cada componente, consulte a documentação

oficial do produto:

Componentes OmniCore:

 data:

 online_charging:

 enabled: false

 voice:

 online_charging:

 enabled: true

 domain: "mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org"

 # Regras de Firewall

 firewall:

 allowed_ssh_subnets:

 - '10.0.0.0/8'

 - '192.168.0.0/16'

 allowed_ue_voice_subnets:

 - '10.0.0.0/8'

 allowed_signaling_subnets:

 - '10.0.0.0/8'

 # Configuração do Hypervisor (exemplo Proxmox)

 proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxApiTokenName: Cliente

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxNodeName: pve01

Documentação do OmniCore:

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS - Servidor de Assinante Residencial

OmniSGW - Gateway de Serviço (Plano de Controle)

OmniPGW - Gateway de Pacotes (Plano de Controle)

OmniUPF - Função do Plano de Usuário

OmniDRA - Agente de Roteamento Diameter

OmniTWAG - Gateway de Acesso WLAN Confiável

Componentes OmniCall:

Documentação do OmniCall:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS - Servidor de Aplicação IMS (VoLTE/VoNR)

OmniCall CSCF - Funções de Controle de Sessão de Chamada

OmniMessage - Centro de SMS

OmniMessage SMPP - Suporte ao Protocolo SMPP

OmniSS7 - Pilha de Sinalização SS7

VisualVoicemail - Correio de Voz

OmniCharge/OmniCRM:

Documentação do OmniCharge:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentação Relacionada

Introdução à Implantação do Ansible - Processo geral de implantação

Referência de Configuração - Guia completo para todas as variáveis de

configuração

Configuração de Variáveis de Grupo - Sobrescrevendo configurações

padrão

Padrão de Planejamento de IP - Arquitetura de rede e diretrizes de

alocação de IP

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Configuração do Netplan - IPs secundários e configuração avançada

de rede

Sistema de Cache APT - Distribuição de pacotes

Servidor de Licença - Gerenciamento de licenças

Visão Geral da Arquitetura de Implantação - Visão completa do sistema

Próximos Passos

1. Crie seu arquivo hosts com base neste modelo

2. Defina seu PLMN e identidade de rede

3. Configure o acesso ao repositório APT

4. Configure o servidor de licença

5. Personalize com group_vars conforme necessário

6. Implemente com playbooks do Ansible

Padrão de

Planejamento de IP do

OmniCore

Visão Geral

Este documento descreve a abordagem padrão de planejamento de IP para

implantações do OmniCore. A arquitetura requer quatro sub-redes internas

para segmentar adequadamente as funções de rede para segurança,

desempenho e clareza operacional.

Requisitos de Alocação de IP

Alocação Padrão: Quatro Sub-redes /24

Cada implantação do OmniCore requer quatro sub-redes distintas para rede

interna:

1. Rede de Núcleo de Pacotes - Primeira /24

2. Rede de Sinalização - Segunda /24

3. Rede Interna IMS - Terceira /24

4. Rede Pública de UE - Quarta /24

Importante: Estas são Recomendações, Não

Requisitos

A alocação de sub-rede descrita neste documento é uma melhor prática

recomendada para organizar implantações do OmniCore. No entanto, a

arquitetura é completamente flexível:

Todos os hosts em uma sub-rede: Você pode colocar todos os

componentes em uma única sub-rede se isso atender às suas necessidades

de implantação

Cada tipo de host em sua própria sub-rede: Você pode criar sub-redes

separadas para cada tipo de componente (uma para MMEs, uma para HSS,

etc.)

Agrupamentos personalizados: Você pode organizar hosts em qualquer

estrutura de sub-rede que faça sentido para seus requisitos específicos

Misturar IPs internos e públicos: Alguns hosts podem usar endereços

internos (RFC 1918), enquanto outros usam IPs públicos, todos dentro da

mesma implantação

A abordagem recomendada de quatro sub-redes fornece isolamento de

segurança, gerenciamento de tráfego e clareza operacional ideais,

razão pela qual sugerimos para implantações em produção. No entanto, você

deve adaptar o plano de IP para se adequar à sua topologia de rede específica,

espaço de endereços disponível e requisitos operacionais.

Desagregação do Segmento de

Rede

1. Rede de Núcleo de Pacotes (Primeira /24)

Propósito: Elementos do plano de usuário e do plano de controle central

Componentes:

OmniMME (Entidade de Gerenciamento de Mobilidade)

OmniSGW (Gateway de Serviço)

OmniPGW-C (Plano de Controle do Gateway PDN)

OmniUPF/PGW-U (Função do Plano de Usuário / Gateway PDN do Plano de

Usuário)

Exemplo: 10.179.1.0/24

2. Rede de Sinalização (Segunda /24)

Propósito: Funções de sinalização Diameter, política, cobrança e

gerenciamento

Componentes:

OmniHSS (Servidor de Assinante Residencial)

OmniCharge OCS (Sistema de Cobrança Online)

OminiHSS PCRF (Função de Regras de Política e Cobrança)

OmniDRA DRA (Agente de Roteamento Diameter)

Servidores DNS

Servidores TAP3/CDR

Monitoramento/OAM

Captura de SIP

Servidor de Licenças

Monitor de RAN

Omnitouch Warning Link CBC (Centro de Transmissão de Células) - se

implantado

Servidores de Cache APT - se implantado

Exemplo: 10.179.2.0/24

mme:

 hosts:

 omni-site-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

3. Rede Interna IMS (Terceira /24)

Propósito: Sinalização e serviços centrais do IMS (sinalização SIP interna)

Componentes:

OmniCSCF S-CSCF (Função de Controle de Sessão de Chamada Servidora)

OmniCSCF I-CSCF (Função de Controle de Sessão de Chamada

Interrogante)

OmniTAS (Servidor de Aplicação de Telefonia / Servidor de Aplicação)

OmniMessage (Controlador de SMS, SMPP, IMS)

OmniSS7 STP (Ponto de Transferência de Sinalização SS7)

OmniSS7 HLR (Registro de Localização Residencial) - para 2G/3G

OmniSS7 IP-SM-GW (MAP SMSc)

OmniSS7 CAMEL Gateway

Exemplo: 10.179.3.0/24

hss:

 hosts:

 omni-site-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

scscf:

 hosts:

 omni-site-scscf01:

 ansible_host: 10.179.3.45

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

4. Rede Pública de UE (Quarta /24)

Propósito: Serviços voltados para o usuário, como IMS e DNS

Componentes:

OmniCSCF P-CSCF (Função de Controle de Sessão de Chamada Proxy)

Servidores XCAP

Servidores de Correio de Voz Visual

DNS do Cliente

Exemplo: 10.179.4.0/24

Métodos de Implementação

O OmniCore suporta dois métodos principais para implementar essa

segmentação de rede:

Método 1: Interfaces de Rede Físicas/ Virtuais

(Recomendado para Produção)

Use NICs separadas ou pontes virtuais para cada segmento de rede. Isso

fornece o isolamento mais forte e é a abordagem recomendada para

implantações em produção.

Exemplo:

pcscf:

 hosts:

 omni-site-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Método 2: Segmentação Baseada em VLAN

Use uma única interface física com marcação VLAN para separar redes. Isso é

adequado para implantações menores ou quando as NICs físicas são limitadas.

Exemplo:

Núcleo de Pacotes - vmbr1

mme:

 hosts:

 omni-lab07-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

Sinalização - vmbr2

hss:

 hosts:

 omni-lab07-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

IMS Interno - vmbr3

icscf:

 hosts:

 omni-lab07-icscf01:

 ansible_host: 10.179.3.55

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

UE Público - vmbr4

pcscf:

 hosts:

 omni-lab07-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Configuração da Rede:

Configure VLANs no switch físico

Marque o tráfego adequadamente no nível do hipervisor

Roteie entre VLANs no gateway/firewall

Exemplo de Mapeamento de VLAN:

Todos os componentes usam vmbr12 com diferentes VLANs

applicationserver:

 hosts:

 ons-lab08sbc01:

 ansible_host: 10.178.2.213

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dra:

 hosts:

 ons-lab08dra01:

 ansible_host: 10.178.2.211

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dns:

 hosts:

 ons-lab08dns01:

 ansible_host: 10.178.2.178

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

VLAN 10: 10.x.1.0/24 (Núcleo de Pacotes)

VLAN 20: 10.x.2.0/24 (Sinalização)

VLAN 30: 10.x.3.0/24 (IMS Interno)

VLAN 40: 10.x.4.0/24 (UE Público)

Trabalhando com Endereços IP

Públicos

Visão Geral

Muitas implantações do OmniCore requerem que alguns componentes tenham

endereços IP públicos para conectividade externa, como:

DRA - Para sinalização diameter de roaming com operadoras externas

SGW/PGW de Roaming - Para tráfego GTP de parceiros de roaming

ePDG - Para chamadas WiFi (túneis IPsec de UEs)

Gateway SMSC - Para conexões SMPP com agregadores de SMS externos

P-CSCF (em algumas implantações) - Para registro SIP direto de UE

Como Atribuir IPs Públicos

IPs públicos são tratados exatamente da mesma forma que IPs internos

em seus arquivos de inventário de hosts. Basta especificar o endereço IP

público no campo ansible_host , juntamente com o gateway e a máscara de

rede apropriados.

Exemplo: SGW/PGW de Roaming com IPs Públicos

Exemplo: DRA com IP Público

Exemplo: ePDG com IP Público

sgw:

 hosts:

 # SGWs internos na rede privada

 opt-site-sgw01:

 ansible_host: 10.4.1.25

 gateway: 10.4.1.1

 host_vm_network: "v400-omni-packet-core"

 # SGWs de Roaming com IPs públicos

 opt-site-roaming-sgw01:

 ansible_host: 203.0.113.10

 gateway: 203.0.113.9

 netmask: 255.255.255.248 # /29 subnet

 host_vm_network: "498-public-servers"

 in_pool: False

 cdrs_enabled: True

smf: # PGWs

 hosts:

 # PGW de Roaming com IP público

 opt-site-roaming-pgw01:

 ansible_host: 203.0.113.20

 gateway: 203.0.113.17

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

 in_pool: False

 ip_pools:

 - '100.64.24.0/22'

dra:

 hosts:

 opt-site-dra01:

 ansible_host: 198.51.100.50

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

Misturando IPs Internos e Públicos

É comum ter uma mistura de IPs internos e públicos dentro do mesmo grupo de

componentes. Por exemplo:

SGWs internos para sites locais usando GTP

SGWs públicos especificamente para tráfego de roaming de operadoras

externas

O mesmo PGW-C pode gerenciar tanto SGWs internos quanto externos

A arquitetura do OmniCore lida com isso de forma transparente - basta

configurar cada host com seu endereçamento IP apropriado.

epdg:

 hosts:

 opt-site-epdg01:

 ansible_host: 198.51.100.51

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

Servidor de Licença

Visão Geral

O Servidor de Licença gerencia a ativação de recursos para todos os

componentes do Omnitouch. Cada componente valida sua licença na

inicialização e periodicamente durante a operação.

Configuração

1. Definir no Arquivo de Hosts

2. Fornecer o Arquivo de Licença

Coloque license.json (fornecido pelo Omnitouch) em

hosts/Customer/group_vars/

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

all:

 vars:

 customer_legal_name: "Nome do Cliente"

 license_server_api_urls: ["https://10.10.2.150:8443/api"]

 license_enforced: true

3. Implantar

Você pode verificar o status de todas as licenças acessando

https://license_server .

Requisitos de Rede

Configuração do Firewall

Os firewalls do site do cliente devem ser configurados para permitir tráfego

HTTPS (porta 443) para os seguintes servidores de validação de licença do

Omnitouch:

Nome do Host Endereço IP Propósito

time.omnitouch.com.au 160.22.43.18
Servidor de validação de

licença 1

time.omnitouch.com.au 160.22.43.66
Servidor de validação de

licença 2

time.omnitouch.com.au 160.22.43.114
Servidor de validação de

licença 3

Regras de saída necessárias:

Protocolo: HTTPS (TCP/443)

Destino: 160.22.43.18, 160.22.43.66, 160.22.43.114

Direção: Saída

ansible-playbook -i hosts/customer/host_files/production.yml

services/license_server.yml

Requisitos de DNS

O servidor de licença requer resolução de DNS funcional para se comunicar

com a infraestrutura de validação de licença do Omnitouch.

Configuração de DNS necessária:

O servidor de licença deve ter acesso a servidores DNS públicos

Configure o DNS para usar um dos seguintes:

1.1.1.1 (Cloudflare - suporta DNS seguro)

8.8.8.8 (Google Public DNS)

Não use servidores DNS internos/corporativos para o servidor de licença

Nota: Os servidores de licença do Omnitouch usam DNS seguro (DoH/DoT).

Usar servidores DNS públicos garante validação adequada do DNSSEC e

previne problemas com interceptação de DNS por dispositivos de segurança.

Documentação Relacionada

Referência de Configuração

Configuração do Arquivo de Hosts

Configuração do

Netplan

Visão Geral

OmniCore pode configurar automaticamente interfaces de rede em VMs

implantadas usando netplan. Isso é útil para:

Configurar a interface de gerenciamento primária (eth0)

Adicionar interfaces secundárias para IPs públicos, conexões de peering ou

tráfego dedicado

Configurar rotas estáticas para destinos específicos

Habilitando a Configuração do

Netplan

Para habilitar a configuração automática do netplan para um host, adicione a

variável netplan_config apontando para um template Jinja2 na sua pasta

group_vars :

O template será obtido de hosts/<customer>/group_vars/netplan.yaml.j2 .

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

Referência do Template

Aqui está o template completo netplan.yaml.j2 com comentários explicando

cada seção:

network:

 version: 2

 ethernets:

 # Interface primária - usa ansible_host e gateway do

inventário

 eth0:

 addresses:

 - "{{ ansible_host }}/{{ mask_cidr | default(24) }}"

 nameservers:

 addresses:

{% if 'dns' in group_names %}

 # Se este host É um servidor DNS, use DNS externo para

evitar dependência circular

 - 8.8.8.8

{% else %}

 # Caso contrário, use servidores DNS do grupo 'dns' no

inventário

{% for dns_host in groups['dns'] | default([]) %}

 - {{ hostvars[dns_host]['ansible_host'] }}

{% endfor %}

{% endif %}

 search:

 - slice

 routes:

 - to: "default"

 via: "{{ gateway }}"

{% if secondary_ips is defined %}

 # Interfaces secundárias - percorre o dicionário secondary_ips

do inventário

 # Nomeação da interface: ens19, ens20, ens21... (18 +

loop.index)

{% for nic_name, nic_config in secondary_ips.items() %}

 ens{{ 18 + loop.index }}:

 addresses:

 - "{{ nic_config.ip_address }}/{{ mask_cidr | default(24)

}}"

{% if nic_config.routes is defined %}

 # Rotas estáticas para esta interface - cada rota usa o

gateway desta interface

 routes:

{% for route in nic_config.routes %}

 - to: "{{ route }}"

Pontos chave:

ansible_host e gateway vêm da entrada do inventário do host

Servidores DNS são puxados dinamicamente de hosts no grupo dns

Interfaces secundárias são nomeadas ens19 , ens20 , etc. para

corresponder à nomenclatura de NIC do Proxmox

Cada IP secundário pode ter seu próprio gateway e rotas estáticas

Configuração da Interface Primária

A interface primária (eth0) é configurada automaticamente usando:

ansible_host - O endereço IP

gateway - O gateway padrão

mask_cidr - Máscara de rede (padrão para 24)

Os servidores DNS são configurados automaticamente para:

Hosts no grupo dns (usa seus IPs ansible_host)

Reverte para 8.8.8.8 se o host for ele mesmo um servidor DNS

Interfaces Secundárias

Para hosts que requerem interfaces de rede adicionais (IPs públicos, peering,

etc.), use a configuração secondary_ips .

 via: "{{ nic_config.gateway }}"

{% endfor %}

{% endif %}

{% endfor %}

{% endif %}

Esquema

Nomeação de Interfaces

As interfaces secundárias são nomeadas automaticamente usando o esquema

de nomeação previsível do Ubuntu:

Primeira interface secundária: ens19

Segunda interface secundária: ens20

Terceira interface secundária: ens21

E assim por diante...

Isso corresponde aos nomes das interfaces atribuídos pelo Proxmox ao

adicionar NICs adicionais a uma VM.

secondary_ips:

 <logical_name>:

 ip_address: <ip_address>

 gateway: <gateway_ip>

 host_vm_network: <proxmox_bridge>

 vlanid: <vlan_id>

 routes: # Opcional - rotas estáticas via

esta interface

 - '<destination_cidr>'

 - '<destination_cidr>'

Exemplo de Configuração

Saída do Netplan Gerada

A configuração acima gera:

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 host_vm_network: "ovsbr1"

 vlanid: "100"

 netplan_config: netplan.yaml.j2

 secondary_ips:

 public_ip:

 ip_address: 192.0.2.50

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24'

 - '203.0.113.0/24'

 peering_ip:

 ip_address: 172.16.50.10

 gateway: 172.16.50.1

 host_vm_network: "ovsbr2"

 vlanid: "300"

 routes:

 - '172.17.0.0/16'

Integração com Proxmox

Ao usar o playbook proxmox.yml , NICs secundárias são criadas

automaticamente na VM:

1. Novas VMs: NICs secundárias são adicionadas durante a provisão inicial

2. VMs Existentes: NICs secundárias são adicionadas e a VM é reiniciada

para aplicar as alterações

A configuração do Proxmox usa:

network:

 version: 2

 ethernets:

 eth0:

 addresses:

 - "10.0.1.100/24"

 nameservers:

 addresses:

 - 10.0.1.53

 search:

 - slice

 routes:

 - to: "default"

 via: "10.0.1.1"

 ens19:

 addresses:

 - "192.0.2.50/24"

 routes:

 - to: "198.51.100.0/24"

 via: "192.0.2.1"

 - to: "203.0.113.0/24"

 via: "192.0.2.1"

 ens20:

 addresses:

 - "172.16.50.10/24"

 routes:

 - to: "172.17.0.0/16"

 via: "172.16.50.1"

host_vm_network - A ponte para anexar a NIC

vlanid - Tag VLAN para a interface

Como Funciona

1. Variáveis do arquivo de hosts são passadas para o template Jinja2

2. O template é renderizado para /etc/netplan/01-netcfg.yaml

3. Quaisquer configurações de netplan existentes são removidas para evitar

conflitos

4. netplan apply ativa a configuração

5. Endereços IP são verificados com ip addr show

Casos de Uso Comuns

Diameter Edge Agent (DEA) com IP Público

<hostname>:

 ansible_host: 10.0.1.100 # IP de gerenciamento interno

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 diameter_roaming:

 ip_address: 192.0.2.50 # IP público para parceiros

de roaming

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24' # Rede de parceiros de

roaming

PGW com Interface S5/S8

Servidor Multi-homed com Redes de

Gerenciamento e Dados Separadas

Referenciando IPs Secundários em

Templates

Você pode referenciar endereços IP secundários em outros templates Jinja2 e

arquivos de configuração.

<hostname>:

 ansible_host: 10.0.2.20 # IP interno

 gateway: 10.0.2.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 s5s8_interface:

 ip_address: 203.0.113.17 # IP público S5/S8

 gateway: 203.0.113.1

 host_vm_network: "vmbr0"

 vlanid: "50"

<hostname>:

 ansible_host: 10.0.1.100 # Rede de gerenciamento

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 data_network:

 ip_address: 10.0.2.100 # Rede de dados

 gateway: 10.0.2.1

 host_vm_network: "ovsbr2"

 vlanid: "200"

 backup_network:

 ip_address: 10.0.3.100 # Rede de backup

 gateway: 10.0.3.1

 host_vm_network: "ovsbr3"

 vlanid: "300"

No Mesmo Host

Ao configurar um serviço no mesmo host que possui IPs secundários, você

pode referenciar diretamente ou usar inventory_hostname :

De Outro Host

Quando você precisa referenciar um IP secundário de um host diferente (por

exemplo, configurando uma conexão de peer), use hostvars com o nome do

host de destino:

Exemplo: Configuração de Peer DRA

Configure um peer de diâmetro para vincular ao seu próprio IP público:

Referência direta (mais simples)

{{ secondary_ips.diameter_public_ip.ip_address }}

Ou explicitamente via inventory_hostname (mesmo resultado)

{{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Acesse outras propriedades

{{ secondary_ips.diameter_public_ip.gateway }}

{{ secondary_ips.diameter_public_ip.vlanid }}

Referência ao primeiro host no grupo dra

{{ hostvars[groups['dra'][0]]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Percorra todos os hosts DRA e obtenha seus IPs públicos

{% for host in groups['dra'] %}

{% if hostvars[host]['secondary_ips'] is defined %}

 - {{ hostvars[host]['secondary_ips']['diameter_public_ip']

['ip_address'] }}

{% endif %}

{% endfor %}

Verificando se os IPs Secundários Existem

Sempre verifique se a variável existe antes de usá-la:

Solução de Problemas

Verifique os Nomes das Interfaces

SSH na VM e verifique os nomes das interfaces:

Saída esperada para uma VM com duas interfaces secundárias:

Em dra_config.yaml.j2 - use inventory_hostname para o host atual

peers:

 - name: external_peer

 # Vincule ao IP público de diâmetro deste host

 local_ip: {{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

 remote_ip: 198.51.100.50

 port: 3868

{% if secondary_ips is defined and

secondary_ips.diameter_public_ip is defined %}

public_ip: {{ secondary_ips.diameter_public_ip.ip_address }}

{% else %}

public_ip: {{ ansible_host }}

{% endif %}

ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

3: ens19: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

4: ens20: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

Verifique a Configuração do Netplan

Aplique o Netplan Manualmente

Depure o Netplan

Verifique as Rotas

Documentação Relacionada

Configuração do Arquivo de Hosts - Configuração do inventário de hosts

Implantação de VM/LXC no Proxmox - Provisão de VM

Referência de Configuração - Todas as variáveis de configuração

cat /etc/netplan/01-netcfg.yaml

netplan apply

netplan --debug apply

ip route show

Implantação de VM/LXC

no Proxmox

A maioria dos nossos clientes executa a pilha OmniCore no Proxmox, este guia

explica em detalhes como usar os plays proxmox para configurar seu ambiente

usando o Proxmox.

Continuamos a oferecer suporte ao VMware, HyperV e nuvem (Atualmente Vultr

/ AWS / GCP) para implantações.

Veja Também:

Configuração do Arquivo Hosts - Definir VMs a serem implantadas

Padrão de Planejamento de IP - Diretrizes de atribuição de endereços IP

Configuração do Netplan - IPs secundários e configuração de múltiplas NICs

Arquitetura de Implantação - Fluxo de trabalho completo de implantação

LXC vs VM

Contêineres LXC:

Leves, compartilham o kernel do host

Inicialização rápida, baixa sobrecarga

Isolamento limitado

Não podem executar kernels ou módulos de kernel personalizados

Não adequado para implantações em produção

Não pode executar UPF (requer módulos de kernel/dispositivos TUN)

VMs (KVM):

Virtualização completa com kernel dedicado

Isolamento completo

Pode executar módulos de kernel e rede personalizada

Maior sobrecarga de recursos

Recomendado para produção

Necessário para implantações UPF

Casos de Uso:

VMs: Sites de produção, UPF, todas as funções de rede

LXC: Ambientes de laboratório/teste, serviços leves (apt-cache,

monitoramento)

Configuração do Proxmox

1. Criar Token de API

2. Criar Modelo de VM Cloud-Init (apenas para

VMs)

Execute este script no host Proxmox. Ele baixa a imagem de nuvem do Ubuntu

e cria um modelo com as credenciais do usuário do cloud-init.

Na interface do Proxmox: Datacenter → Permissões → Tokens de API

Criar token: root@pam!<TokenName>

Copie o segredo do token (mostrado uma vez)

#!/bin/bash

set -e

TEMPLATE_ID=9000

IMAGE_URL="https://cloud-images.ubuntu.com/noble/current/noble-

server-cloudimg-amd64.img"

IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Baixando imagem de nuvem do Ubuntu ==="

cd /var/lib/vz/template/iso

wget -N "$IMAGE_URL"

echo "=== Limpando modelo antigo ==="

qm destroy $TEMPLATE_ID --purge 2>/dev/null || true

echo "=== Habilitando armazenamento de snippets ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Criando dados do usuário do cloud-init ==="

mkdir -p /var/lib/vz/snippets

cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'

#cloud-config

ssh_pwauth: true

users:

 - name: omnitouch

 plain_text_passwd: password

 lock_passwd: false

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

 groups: sudo

USERDATA

echo "=== Criando modelo de VM ==="

qm create $TEMPLATE_ID --name ubuntu-2404-template --memory 2048 -

-cores 2 --net0 virtio,bridge=vmbr0

qm importdisk $TEMPLATE_ID $IMAGE local-lvm

qm set $TEMPLATE_ID --scsihw virtio-scsi-pci --scsi0 local-

lvm:vm-${TEMPLATE_ID}-disk-0

qm set $TEMPLATE_ID --ide2 local-lvm:cloudinit

qm set $TEMPLATE_ID --boot c --bootdisk scsi0

qm set $TEMPLATE_ID --vga std

qm set $TEMPLATE_ID --agent enabled=1

qm set $TEMPLATE_ID --cicustom user=local:snippets/user-data.yml

Notas:

O modelo fornece um login de fallback: omnitouch / password (para acesso

ao console se o cloud-init falhar)

Ao clonar via Ansible, as credenciais são substituídas de local_users em

seu arquivo hosts:

Nome de usuário: Chave do primeiro usuário de local_users

Senha: Campo password do primeiro usuário (padrão para 'password'

se não definido)

Chave SSH: Campo public_key do primeiro usuário

--vga std garante que o console da web do Proxmox funcione

A flag -N no wget só baixa se for mais recente que a cópia local

Alternativa: Modelo Manual a partir de ISO

Se as imagens de nuvem não estiverem disponíveis ou você precisar de uma

instalação personalizada:

Passo 1: Criar VM via UI da Web

Criar Nova VM → ID da VM 9000, Nome: ubuntu-2404-template

SO: Carregar ISO do Ubuntu Server ou usar ISO existente

Sistema: Padrão (Controlador SCSI: VirtIO SCSI)

Discos: 32GB, Barramento: SCSI

CPU: 2 núcleos

Memória: 2048 MB

Rede: VirtIO, bridge vmbr0

Iniciar VM e instalar o Ubuntu Server

Passo 2: Dentro da VM - Limpar e preparar

qm template $TEMPLATE_ID

echo "=== Modelo $TEMPLATE_ID criado com sucesso ==="

Passo 3: Adicionar Cloud-Init e Converter em Modelo

Selecionar VM → Hardware → Adicionar → CloudInit Drive (selecionar

armazenamento, por exemplo, local-lvm)

Cloud-Init → Usuário: omnitouch , Senha: password

Hardware → Opções → Agente QEMU → Habilitar

Clique com o botão direito na VM → Converter em Modelo

3. Baixar Modelo LXC (apenas para LXC)

Instalar cloud-init

sudo apt update

sudo apt install cloud-init qemu-guest-agent -y

Limpar dados específicos da máquina

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id

sudo rm -f /etc/ssh/ssh_host_*

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Limpar histórico do bash e desligar

history -c

sudo poweroff

No shell do nó Proxmox:

pveam update

pveam download local ubuntu-24.04-standard_24.04-2_amd64.tar.zst

Configuração do Arquivo Hosts

Para Implantação de VM (proxmox.yml)

all:

 vars:

 proxmoxServers:

 pve-node-01:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: YourPassword

 proxmoxApiTokenName: ansible

 proxmoxApiTokenSecret: "your-token-secret-uuid"

 proxmoxTemplateName: ubuntu-2404-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve-node-01

 storage: local-lvm # opcional

 pve-node-02:

 # ... configuração do segundo nó

 # Credenciais do usuário - o primeiro usuário é usado para o

cloud-init da VM

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # padrão para 'password' se

não definido

mme:

 hosts:

 site-mme01:

 ansible_host: 192.168.1.10

 gateway: 192.168.1.1

 vlanid: "100" # opcional

Para Implantação de LXC (proxmox_lxc.yml)

all:

 vars:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # único ou

lista

 proxmoxApiTokenName: ansible

 PROXMOX_API_TOKEN: "your-token-secret-uuid"

 proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-

standard_24.04-2_amd64.tar.zst'

 proxmoxLxcCores: 2

 proxmoxLxcMemoryMb: 4096

 proxmoxLxcDiskSizeGb: 30

 proxmoxLxcRootFsStorageName: local-lvm

 mask_cidr: 24

 host_vm_network: vmbr0

 # Credenciais do usuário - o primeiro usuário é usado para

acesso inicial à VM/LXC

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # padrão para 'password' se

não definido

apt_cache_servers:

 hosts:

 site-cache:

 ansible_host: 192.168.1.20

 gateway: 192.168.1.1

 vlanid: "100" # opcional

 proxmoxLxcDiskSizeGb: 120 # substituição por host

Uso

Implantar VMs

Implantar Contêineres LXC

Deletar VMs/LXCs

Comportamento

proxmox.yml

Verifica se uma VM com o mesmo nome já existe no Proxmox

Distribui VMs entre os nós usando round-robin

Clona do modelo

Configura IP estático, tags e cloud-init

Define credenciais do usuário do cloud-init a partir da primeira

entrada de local_users

Suporta tagging VLAN

proxmox_lxc.yml

Verifica se o contêiner não existe pelo nome ou IP

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_delete.yml

Distribui LXCs entre os nós usando round-robin

Cria contêiner com IP estático

Cria automaticamente a primeira conta de local_users com acesso

sudo e chave SSH

Configura netplan para rede

Inicia contêineres automaticamente

Exclui hosts UPF

proxmox_delete.yml

Para e deleta VM/LXC correspondente ao nome do host do inventário

Pesquisa em todos os nós configurados

Para forçadamente após 20 segundos

Distribuição e Tagging de VM/LXC

Distribuição Round-Robin

VMs e LXCs são automaticamente distribuídos entre os nós do Proxmox usando

lógica de round-robin (módulo):

Exemplo com 3 hipervisores e 5 MMEs:

Como funciona:

1. O playbook identifica o grupo de funções do host (por exemplo, mme , sgw ,

hss)

2. Calcula o índice do host dentro desse grupo (base 0)

3. Usa a operação de módulo: host_index % number_of_nodes

mme01 → pve-node-01 (índice 0 % 3 = 0)

mme02 → pve-node-02 (índice 1 % 3 = 1)

mme03 → pve-node-03 (índice 2 % 3 = 2)

mme04 → pve-node-01 (índice 3 % 3 = 0)

mme05 → pve-node-02 (índice 4 % 3 = 1)

4. Seleciona o hipervisor com base no resultado

Configuração:

Tagging Automático

VMs e LXCs são automaticamente marcados com:

Nomes de Função/Grupo: Todos os grupos Ansible aos quais o host

pertence

Nome do Site: A variável site_name

Exemplo:

Resultado: VM/LXC marcada com: mme , melbourne-prod

As tags são visíveis na interface do Proxmox e úteis para filtragem/organização.

Substituições por Host

Substitua os padrões em hosts específicos:

Para VMs (proxmox.yml) - defina vários servidores

proxmoxServers:

 pve-node-01: { ... }

 pve-node-02: { ... }

 pve-node-03: { ... }

Para LXCs (proxmox_lxc.yml) - liste vários nós

proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

site_name: "melbourne-prod"

mme:

 hosts:

 melbourne-mme01: { ... }

hosts:

 high-spec-host:

 ansible_host: 192.168.1.50

 gateway: 192.168.1.1

 proxmoxLxcCores: 8 # substituição de núcleos

 proxmoxLxcMemoryMb: 16384 # substituição de memória

 proxmoxLxcDiskSizeGb: 100 # substituição de disco

Playbooks de Utilidade

Os playbooks de utilidade fornecem ferramentas operacionais para gerenciar a

infraestrutura do OmniCore implantada. Esses playbooks estão localizados no

diretório util_playbooks/ e podem ser executados de forma independente

para realizar tarefas comuns de manutenção e solução de problemas.

Referência Rápida

Playbook Propósito

health_check.yml
Gerar relatório de saúde abrangente para todos

os serviços

restore_hss.yml
Restaurar banco de dados HSS e/ou

configuração a partir do backup

ip_plan_generator.yml
Gerar documentação de rede com diagramas

Mermaid

get_ports.yml
Auditar portas abertas e serviços em escuta em

todos os hosts

getLocalCapture.yml
Recuperar arquivos de captura de pacotes dos

hosts

delete_local_user.yml
Remover uma conta de usuário local de todos os

hosts

updateMtu.yml
Definir MTU para 9000 (frames jumbo) nas

interfaces de rede

systemctl status.yml
Verificar o status do serviço nos componentes

EPC

Verificação de Sa��de

Arquivo: util_playbooks/health_check.yml

Gera um relatório de saúde HTML abrangente cobrindo todos os serviços

implantados do OmniCore e OmniCall.

Saída: /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Informações Coletadas

Componente Dados Coletados

Todos os serviços Status do serviço, versão, tempo de atividade

OmniHSS Status do banco de dados, conexões de pares Diameter

OmniDRA Conexões de pares Diameter e status

OmniTAS Chamadas ativas, sessões, registros, uso da CPU

OCS Status de replicação do KeyDB

Restauração do HSS

Arquivo: util_playbooks/restore_hss.yml

Restaura o OmniHSS a partir de arquivos de backup. Suporta a restauração

apenas do banco de dados, apenas da configuração ou de ambos.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Formatos de Arquivo de Backup

Tipo Padrão de Nome de Arquivo Conteúdos

Banco de

dados
hss_dump_<hostname>_<timestamp>.sql

Dump MySQL do

banco de dados

omnihss

Configuração hss_<hostname>_<timestamp>.tar.gz

Arquivo do

diretório

/etc/omnihss

Gerador de Plano de IP

Arquivo: util_playbooks/ip_plan_generator.yml

Gera documentação de rede a partir do inventário, incluindo:

Atribuições de IP dos hosts (NICs primárias e secundárias)

Visão geral do segmento de rede

Diagramas de conectividade de interface (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/restore_hss.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Arquivos de Saída

Arquivo Formato Descrição

/tmp/ip_plan_<customer>_<site>.md Markdown
Documentação

baseada em texto

/tmp/ip_plan_<customer>_<site>.html HTML

Diagrama

interativo com

camadas filtráveis

Auditoria de Portas

Arquivo: util_playbooks/get_ports.yml

Audita todas as portas em escuta na implantação e gera documentação.

Arquivos de Saída

Arquivo Descrição

/tmp/all_ports.csv CSV com hostname, IP, protocolo, porta, serviço

./open_ports.rst Tabela reStructuredText para documentação Sphinx

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/get_ports.yml

Dados Coletados

Campo Descrição

Hostname Nome do host no inventário

IP Endereço IP do ansible_host do host

Versão do IP IPv4 ou IPv6

Transporte TCP ou UDP

Porta Número da porta em escuta

Serviço Nome do processo

Recuperação de Captura Local

Arquivo: util_playbooks/getLocalCapture.yml

Recupera os dois arquivos de captura de pacotes mais recentes do diretório

/etc/localcapture de cada host.

Saída: ./localCapturePcaps/<hostname>/*.pcap

Gerenciamento de Usuários

Arquivo: util_playbooks/delete_local_user.yml

Remove uma conta de usuário local de todos os hosts no inventário.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

Prompt: Digite o nome de usuário a ser excluído quando solicitado.

Configuração de MTU

Arquivo: util_playbooks/updateMtu.yml

Define o MTU para 9000 (frames jumbo) na interface ens160 em todos os

hosts.

Nota: Este playbook é codificado para a interface ens160 . Modifique o

playbook se seu ambiente usar nomes de interface diferentes.

Executando Playbooks de Utilidade

Sintaxe Básica

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/delete_local_user.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

ansible-playbook -i <inventory_file> util_playbooks/<playbook>.yml

Opções Comuns

Opção Descrição

-i <inventory> Especificar arquivo de inventário

--limit <hosts> Limitar a hosts ou grupos específicos

-v / -vv / -vvv Aumentar a verbosidade

--check Execução de teste (mostrar o que mudaria)

--diff Mostrar diferenças de arquivos

Exemplos

Executar verificação de saúde na produção

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/health_check.yml

Restaurar HSS em um host específico

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/restore_hss.yml --limit hss01

Gerar plano de IP com saída detalhada

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/ip_plan_generator.yml -v

