
Configuration

Reference

Complete guide to all configuration parameters

Architecture Overview

The OmniMessage SMPP Gateway is a stateless protocol frontend that

translates SMPP messages to/from OmniMessage. All business logic, routing

decisions, and message storage are handled by OmniMessage Core - the

gateway simply:

1. Receives SMPP PDUs from carriers and clients

2. Translates them to OmniMessage format via REST API

3. Polls OmniMessage for messages to send

4. Sends SMPP PDUs to carriers

5. Reports delivery status back to OmniMessage

This is identical to how other OmniMessage frontends (Diameter, MAP, IMS)

work - they're all stateless protocol translators that delegate to OmniMessage

Core.

Configuration File Location

/opt/omnimessage-smpp/config/runtime.exs

Important: After changing configuration, restart the gateway:

sudo systemctl restart omnimessage-smpp

Configuration Structure

The configuration file uses Elixir syntax. Basic structure:

Global Settings

###API_BASE_URL

OmniMessage Core platform URL

Parameter Type Required Default

api_base_url String (URL) Yes -

Purpose: URL of the OmniMessage Core platform. The gateway communicates

with OmniMessage via REST API for all message processing:

import Config

Global settings

config :omnimessage_smpp,

 setting_name: value

SMPP binds

config :omnimessage_smpp, :binds, [

 %{

 name: "bind_name",

 # ... bind settings

 }

]

config :omnimessage_smpp,

 api_base_url: "https://omnimessage-core.example.com:8443"

Submit Messages: Send received SMPP messages to OmniMessage for

processing

Retrieve Messages: Poll for messages destined for SMPP carriers

Report Delivery Status: Update message delivery status back to

OmniMessage

System Health: Periodic health checks

Critical: This is where the gateway gets all its "brains". OmniMessage handles:

✓ Message validation and format checking

✓ Routing decisions (which carrier to use)

✓ Rate limiting and throttling

✓ Number validation

✓ Message storage and persistence

✓ Delivery retry logic

✓ Status tracking

The gateway simply translates SMPP ↔ OmniMessage format.

Examples:

Network Requirements:

Gateway must have network access to OmniMessage Core

Use HTTPS in production (configure verify_ssl_peer)

Firewall must allow outbound HTTPS on specified port

HTTPS with IP

api_base_url: "https://192.168.1.100:8443"

HTTPS with hostname

api_base_url: "https://omnimessage-core.company.com:8443"

HTTP (not recommended for production)

api_base_url: "http://192.168.1.100:8080"

SMPP_POLL_INTERVAL

Queue check frequency (milliseconds)

Parameter Type Required Default

smpp_poll_interval Integer No 100

Purpose: How often (in milliseconds) each client checks the message queue.

Guidelines:

High volume (>100 TPS): 100-500ms

Medium volume (10-100 TPS): 500-1000ms

Low volume (<10 TPS): 1000-2000ms

Environment variable: SMPP_POLL_INTERVAL

VERIFY_SSL_PEER

SSL certificate verification

Parameter Type Required Default

verify_ssl_peer Boolean No false

Purpose: Whether to verify SSL certificates when connecting to backend API.

Values:

config :omnimessage_smpp,

 smpp_poll_interval: 100

config :omnimessage_smpp,

 verify_ssl_peer: false

true : Verify certificates (production with valid certs)

false : Skip verification (self-signed certs, testing)

Environment variable: VERIFY_SSL_PEER

SMSC_NAME

Gateway identifier for registration

Parameter Type Required Default

smsc_name String No "smpp_gateway"

Purpose: Identifies this gateway instance in the message queue backend.

Environment variable: SMSC_NAME

SMPP Client Bind Configuration

Client binds are outbound connections where the gateway acts as an

ESME (client) connecting to carrier SMSC servers. In this mode, the gateway

initiates the connection to send and receive messages through external

carriers.

config :omnimessage_smpp,

 smsc_name: "smpp_gateway"

Complete Client Bind Example

Client Bind Parameters

name

Unique connection identifier

Type Required Example

String Yes "vodafone_uk"

Purpose: Uniquely identifies this SMPP connection.

config :omnimessage_smpp, :binds, [

 %{

 # Unique identifier for this connection

 name: "vodafone_uk",

 # Connection mode

 mode: :client,

 # SMPP bind type

 bind_type: :transceiver,

 # Carrier SMPP server address

 host: "smpp.vodafone.co.uk",

 port: 2775,

 # Authentication credentials

 system_id: "your_username",

 password: "your_password",

 # Rate limiting

 tps_limit: 100,

 # Queue check frequency

 queue_check_frequency: 1000

 }

]

Used in logs and metrics

Must be unique across all binds

Use descriptive names (carrier, region, purpose)

Naming conventions:

carrier_region : "vodafone_uk" , "att_us"

purpose_number : "marketing_1" , "alerts_primary"

mode

Connection type

Type Required Value

Atom Yes :client

Purpose: Defines this as an outbound connection where the gateway acts as

an ESME connecting to an external SMSC.

Fixed value: Always :client for outbound connections.

bind_type

SMPP session type

Type Required Allowed Values

Atom Yes :transmitter , :receiver , :transceiver

Purpose: Defines message direction capability.

Options:

:transmitter - Send messages only (submit_sm)

:receiver - Receive messages only (deliver_sm)

:transceiver - Send and receive (most common)

Recommendation: Use :transceiver unless carrier requires specific type.

host

Carrier SMPP server hostname or IP

Type Required Example

String Yes "smpp.carrier.com" or "10.5.1.100"

Purpose: Address of carrier's SMPP server.

Examples:

port

SMPP server port

Type Required Default Range

Integer Yes 2775 1-65535

Purpose: TCP port for SMPP connection.

Standard port: 2775

Examples:

system_id

host: "smpp.vodafone.co.uk"

host: "10.20.30.40"

host: "smpp-primary.carrier.net"

port: 2775 # Standard

port: 3000 # Custom

Authentication username

Type Required Example

String Yes "company_user"

Purpose: Username provided by carrier for authentication.

Security: Protect this credential - stored in configuration file.

password

Authentication password

Type Required Example

String Yes "secret_password"

Purpose: Password provided by carrier for authentication.

Security:

Protect this credential

Use strong passwords

Rotate periodically

tps_limit

Transactions per second limit

Type Required Default Range

Integer Yes 100 1-10000

Purpose: Maximum messages per second to send through this connection.

Guidelines:

Set to 70-80% of carrier's maximum

Prevents throttling/disconnection

Allows headroom for delivery receipts

Examples:

Calculation:

queue_check_frequency

Message queue polling interval (milliseconds)

Type Required Default Range

Integer Yes 1000 100-10000

Purpose: How often to check backend for new messages to send.

Guidelines:

High volume (>100 TPS): 500-1000ms

Medium volume (10-100 TPS): 1000-2000ms

Low volume (<10 TPS): 2000-5000ms

Trade-offs:

Lower value = faster message pickup, more API load

Higher value = slower pickup, less API load

tps_limit: 10 # Low volume

tps_limit: 50 # Medium volume

tps_limit: 100 # High volume (most common)

tps_limit: 1000 # Very high volume

If carrier max = 100 TPS

Set tps_limit = 70-80

Leaves 20-30 TPS headroom

Web UI Example:

SMPP Server Bind Configuration

Server binds define inbound connections where the gateway acts as an

SMSC (server) accepting connections from external ESMEs (clients). In this

mode, partner systems connect to the gateway to send and receive messages.

Complete Server Bind Example

Server Bind Parameters

name

Client identifier

Type Required Example

String Yes "partner_acme"

Purpose: Identifies the external client connecting to you.

Naming conventions: Use partner/client name for easy identification.

system_id

config :omnimessage_smpp, :server_binds, [

 %{

 # Unique identifier for this client

 name: "partner_acme",

 # Expected credentials from client

 system_id: "acme_corp",

 password: "acme_secret",

 # Allowed bind types

 allowed_bind_types: [:transmitter, :receiver, :transceiver],

 # IP restrictions

 ip_whitelist: ["192.168.1.0/24", "10.50.1.100"],

 # Rate limiting

 tps_limit: 50,

 # Queue check frequency

 queue_check_frequency: 1000

 }

]

Expected username from client

Type Required Example

String Yes "acme_corp"

Purpose: Username that external client must provide to authenticate.

Provide to client: Share this credential with your partner.

password

Expected password from client

Type Required Example

String Yes "secure_password"

Purpose: Password that external client must provide to authenticate.

Security:

Use strong passwords

Unique per client

Share securely with partner

allowed_bind_types

Permitted session types

Type Required Default

List of Atoms Yes -

Purpose: Restricts what bind types the client can use.

Options:

Recommendation: Allow all three unless you need restrictions.

ip_whitelist

Allowed client IP addresses

Type Required Default Format

List of Strings Yes [] IPs or CIDR notation

Purpose: Security - only allow connections from known IPs.

Formats:

Single IP: "192.168.1.100" (automatically /32)

CIDR subnet: "192.168.1.0/24" , "10.0.0.0/8"

Mix both: ["192.168.1.0/24", "10.50.1.100"]

Examples:

allowed_bind_types: [:transceiver] # Only transceiver

allowed_bind_types: [:transmitter, :receiver] # TX or RX

allowed_bind_types: [:transmitter, :receiver, :transceiver] # Any

Allow any IP (not recommended)

ip_whitelist: []

Single IP

ip_whitelist: ["203.0.113.50"]

Multiple IPs

ip_whitelist: ["203.0.113.50", "203.0.113.51"]

Subnet

ip_whitelist: ["192.168.1.0/24"]

Mixed

ip_whitelist: ["192.168.1.0/24", "10.50.1.100", "10.60.0.0/16"]

Common subnets:

/32 - Single IP (automatic for IPs without mask)

/24 - 256 addresses (e.g., 192.168.1.0-255)

/16 - 65,536 addresses (e.g., 10.50.0.0-255.255)

/8 - 16,777,216 addresses (e.g., 10.0.0.0-255.255.255.255)

tps_limit

Messages per second limit

Same as client bind tps_limit - controls outbound deliver_sm rate.

queue_check_frequency

Queue polling interval

Same as client bind queue_check_frequency - how often to check for messages

to deliver to this client.

Web UI Example:

Server Listen Configuration

When server binds are configured, gateway listens for incoming connections.

Complete Listen Example

Listen Parameters

host

IP address to bind to

Type Required Default Common Values

String No "0.0.0.0" "0.0.0.0" , "127.0.0.1"

Purpose: Which network interface to listen on.

Values:

"0.0.0.0" - Listen on all interfaces (recommended)

"127.0.0.1" - Listen on localhost only (testing)

"192.168.1.10" - Listen on specific IP

port

TCP port to listen on

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

Type Required Default Range

Integer No 2775 1-65535

Purpose: Port for incoming SMPP connections.

Standard: 2775

max_connections

Maximum concurrent connections

Type Required Default Range

Integer No 100 1-10000

Purpose: Limits total number of simultaneous client connections.

Guidelines:

Set based on expected clients

Higher values use more memory

Typical: 10-100 connections

Complete Configuration Examples

Example 1: Single Carrier Connection

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443",

 verify_ssl_peer: true,

 smsc_name: "smpp_prod"

config :omnimessage_smpp, :binds, [

 %{

 name: "att_primary",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.att.com",

 port: 2775,

 system_id: "company_user",

 password: "secure_pass_123",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

Example 2: Multiple Carriers

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443"

config :omnimessage_smpp, :binds, [

 # North America

 %{

 name: "att_us",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.att.com",

 port: 2775,

 system_id: "att_username",

 password: "att_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 },

 # Europe

 %{

 name: "vodafone_uk",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.vodafone.co.uk",

 port: 2775,

 system_id: "voda_username",

 password: "voda_password",

 tps_limit: 50,

 queue_check_frequency: 1000

 }

]

Example 3: Gateway with Server Binds

import Config

config :omnimessage_smpp,

 api_base_url: "https://smsc.company.com:8443"

Outbound connections

config :omnimessage_smpp, :binds, [

 %{

 name: "upstream_carrier",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.carrier.com",

 port: 2775,

 system_id: "my_username",

 password: "my_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

Inbound client definitions

config :omnimessage_smpp, :server_binds, [

 %{

 name: "partner_alpha",

 system_id: "alpha_corp",

 password: "alpha_secret",

 allowed_bind_types: [:transmitter, :receiver, :transceiver],

 ip_whitelist: ["203.0.113.0/24"],

 tps_limit: 50,

 queue_check_frequency: 1000

 },

 %{

 name: "partner_beta",

 system_id: "beta_inc",

 password: "beta_password",

 allowed_bind_types: [:transceiver],

 ip_whitelist: ["198.51.100.50"],

 tps_limit: 25,

 queue_check_frequency: 2000

 }

]

Configuration Validation

After editing configuration, validate before restarting:

Syntax Check

If syntax is invalid, you'll see an error. Fix before restarting.

Test Configuration

Press Ctrl+C twice to exit.

Security Best Practices

1. Protect configuration file:

Server listening

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

Check Elixir syntax

/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!

('config/runtime.exs')"

Restart in foreground to see errors

sudo -u omnimessage-smpp /opt/omnimessage-smpp/bin/omnimessage-

smpp console

2. Use strong passwords:

Minimum 12 characters

Mix letters, numbers, symbols

Unique per connection

3. Use IP whitelists:

Always configure ip_whitelist for server binds

Never use empty list [] in production

4. Enable SSL verification:

Set verify_ssl_peer: true with valid certificates

5. Regular credential rotation:

Change passwords quarterly

Coordinate with carriers/partners

Next Steps

Review MONITORING.md for metrics configuration

Read OPERATIONS.md for managing connections

See TROUBLESHOOTING.md for common issues

Return to README.md for overview

sudo chmod 600 /opt/omnimessage-smpp/config/runtime.exs

sudo chown omnimessage-smpp:omnimessage-smpp /opt/omnimessage-

smpp/config/runtime.exs

Glossary

Terms and Definitions

A

API (Application Programming Interface) Interface used to communicate

with the message queue backend system.

Auto-Scroll Feature in the web UI Logs tab that automatically scrolls to show

newest log entries.

B

Backend The message queue system that the SMPP Gateway connects to for

retrieving and storing messages.

Bind An SMPP connection between two systems. Can be transmitter, receiver,

or transceiver.

Bind Type The type of SMPP session:

Transmitter: Send messages only

Receiver: Receive messages only

Transceiver: Send and receive messages

Bind Failure When an SMPP authentication attempt fails, usually due to

incorrect credentials or IP restrictions.

C

CIDR (Classless Inter-Domain Routing) Notation for specifying IP address

ranges (e.g., 192.168.1.0/24 represents 256 IP addresses).

Client Bind An outbound SMPP connection where the gateway acts as an

ESME connecting to an external SMSC (typically a carrier's SMPP server). In

this mode, the gateway is the client.

Connection Status Current state of an SMPP bind:

Connected: Active and operational

Disconnected: Not connected

Reconnecting: Attempting to establish connection

Counter A metric that only increases (resets on service restart), used for totals

like messages sent.

D

Data Coding SMPP field specifying message character encoding (GSM-7, UCS-

2, etc.).

Delivery Failure When a message cannot be delivered, indicated by an error

response from the carrier.

Delivery Receipt (DLR) Confirmation from the carrier about message delivery

status.

dest_smsc Field in message queue indicating which SMPP connection should

handle the message.

Disconnection When an active SMPP connection is terminated, either

intentionally or due to error.

E

Enquire Link SMPP keepalive message sent periodically to verify connection is

active.

ESM Class SMPP field indicating message type and features.

ESME (External Short Message Entity) In SMPP terminology, the client

application that connects to an SMSC to send or receive messages. When the

gateway operates in Client mode, it acts as an ESME connecting to carrier

SMSCs. When it operates in Server mode, it accepts connections from

external ESMEs.

Exponential Backoff Retry strategy where wait time doubles after each failure

(1min, 2min, 4min, 8min...).

F

Firewall Network security system that controls incoming and outgoing network

traffic.

G

Gateway The SMPP Gateway application that bridges between message queue

and mobile networks.

Gauge A metric that can increase or decrease, representing current value

(e.g., connection status).

Grafana Popular visualization tool for displaying Prometheus metrics in

dashboards.

GSM-7 Standard 7-bit character encoding for SMS, supporting up to 160

characters per message.

H

HTTP/HTTPS Protocols used for web communication. HTTPS is encrypted

version.

I

IP Whitelist List of allowed IP addresses that can connect to the gateway

(security feature).

ISDN (Integrated Services Digital Network) Numbering plan commonly

used for telephone numbers.

J

(No terms)

K

Keepalive Periodic messages (enquire_link) sent to maintain connection and

detect failures.

KPI (Key Performance Indicator) Measurable value indicating system

performance (e.g., delivery success rate).

L

Label In Prometheus, key-value pairs attached to metrics for identification

(e.g., bind_name="vodafone_uk").

LiveView Phoenix framework technology used for real-time web UI updates.

M

Message Queue Backend system that stores messages waiting to be sent or

received.

Metrics Quantitative measurements of system performance, exposed in

Prometheus format.

MO (Mobile Originated) Messages sent from mobile phones to the gateway

(inbound).

MT (Mobile Terminated) Messages sent from the gateway to mobile phones

(outbound).

MSISDN (Mobile Station International Subscriber Directory Number)

Standard format for mobile phone numbers.

N

NPI (Numbering Plan Indicator) SMPP field specifying the numbering

scheme (e.g., ISDN).

O

Outbound Messages flowing from gateway to mobile networks.

Inbound Messages flowing from mobile networks to gateway.

P

PDU (Protocol Data Unit) Individual SMPP message packet (e.g., submit_sm,

deliver_sm).

Prometheus Open-source monitoring system that collects and stores time-

series metrics.

Q

Queue List of messages waiting to be processed or sent.

Queue Check Frequency How often (in milliseconds) the gateway polls the

backend for new messages.

Queue Worker Component that retrieves messages from queue and sends via

SMPP.

R

Rate Limiting Controlling message throughput to comply with carrier

restrictions. See TPS.

Receiver SMPP bind type that only receives messages (deliver_sm).

Reconnect Re-establishing a disconnected SMPP connection.

Retry Attempting to send a failed message again, usually with exponential

backoff.

S

Server Bind Configuration that allows external ESMEs (clients) to connect to

the gateway. In this mode, the gateway acts as an SMSC (server) accepting

inbound connections from partner systems.

Session Active SMPP connection between two systems.

SMPP (Short Message Peer-to-Peer) Industry-standard protocol for

exchanging SMS messages between systems.

SMSC (Short Message Service Center) In SMPP terminology, the server

component that accepts connections from ESMEs (clients) and handles SMS

message routing and delivery. When the gateway operates in Server mode, it

acts as an SMSC accepting connections from external ESMEs.

SSL/TLS Encryption protocols for secure communication.

Submit_SM SMPP PDU for submitting a message for delivery.

Submit_SM_Resp SMPP response to submit_sm, indicating success or failure.

System ID Username used for SMPP authentication.

T

Telemetry Automated collection and transmission of system metrics.

TON (Type of Number) SMPP field specifying number format (e.g.,

international, national).

TPS (Transactions Per Second) Rate limit for maximum messages per

second through a connection.

Transceiver SMPP bind type that can both send and receive messages (most

common).

Transmitter SMPP bind type that only sends messages (submit_sm).

Throughput Message processing rate, typically measured in messages per

second.

U

UCS-2 16-bit Unicode character encoding for SMS, supporting up to 70

characters per message.

Uptime Duration that a connection or service has been continuously

operational.

V

Validity Period Time limit for message delivery attempt before expiration.

W

Web Dashboard Browser-based user interface for monitoring and managing

the gateway.

Whitelist See IP Whitelist.

X

(No terms)

Y

(No terms)

Z

(No terms)

Acronym Quick Reference

Acronym Full Term

API Application Programming Interface

CIDR Classless Inter-Domain Routing

DLR Delivery Receipt

ESME External Short Message Entity

GSM Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IP Internet Protocol

ISDN Integrated Services Digital Network

KPI Key Performance Indicator

MO Mobile Originated

MSISDN Mobile Station International Subscriber Directory Number

MT Mobile Terminated

NPI Numbering Plan Indicator

PDU Protocol Data Unit

SMPP Short Message Peer-to-Peer

SMSC Short Message Service Center

Acronym Full Term

SMS Short Message Service

SSL Secure Sockets Layer

TLS Transport Layer Security

TON Type of Number

TPS Transactions Per Second

UCS Universal Coded Character Set

UI User Interface

URL Uniform Resource Locator

Related Documentation

README.md - System overview and getting started

CONFIGURATION.md - Configuration parameters explained

OPERATIONS.md - Day-to-day operations

MONITORING.md - Metrics and monitoring

TROUBLESHOOTING.md - Problem resolution

Monitoring and Metrics

Guide

Complete reference for monitoring the SMPP Gateway

Overview

The SMPP Gateway exposes metrics in Prometheus format for monitoring

connection health, message throughput, and system performance.

Critical: Since the gateway is stateless and depends on OmniMessage Core,

OmniMessage connectivity is the most important metric to monitor.

Monitor both:

1. SMPP Gateway metrics - Protocol-level health

2. OmniMessage API metrics - Backend connectivity and health

Metrics Endpoint

URL: http://your-server:4000/metrics

Format: Prometheus text format

Access: Open to localhost by default (configure firewall for remote access)

Quick Test

curl http://localhost:4000/metrics

Available Metrics

All metrics are prefixed with smpp_ and include labels for identification.

License Metrics

omnimessage_smpp_license_status

Type: Gauge Description: Current license status Values:

1 = Valid license

0 = Invalid/expired license

Labels: None

Example:

Use:

Alert when value is 0 (invalid license)

When license is invalid, outbound queue processing stops but SMPP binds

remain connected

Web UI remains accessible for troubleshooting

Product Name: omnimessage_smpp

Notes:

When license is invalid (license_status == 0), the gateway stops

processing outbound queues

SMPP binds (both client and server) remain connected and accept bind

requests

Inbound messages are still received but not processed

UI and monitoring remain accessible regardless of license status

omnimessage_smpp_license_status 1

Alerting Example:

Connection Status Metrics

smpp_connection_status

Type: Gauge Description: Current connection status of SMPP bind Values:

1 = Connected

0 = Disconnected

Labels:

bind_name - Connection name (e.g., "vodafone_uk")

mode - Connection type ("client" or "server")

host - Remote host (client mode only)

port - Remote port (client mode only)

bind_type - SMPP bind type (client mode only)

system_id - System ID used

Example:

Use:

- alert: SMPP_License_Invalid

 expr: omnimessage_smpp_license_status == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "SMPP Gateway license invalid or expired"

 description: "License status is invalid - outbound message

processing is blocked"

smpp_connection_status{bind_name="vodafone_uk",mode="client",host="sm

1

Alert when value is 0 (disconnected)

Track connection uptime percentage

Monitor reconnection frequency

Message Counters

smpp_messages_sent_total

Type: Counter Description: Total number of messages sent through SMPP bind

Unit: Messages

Labels: Same as connection_status

Example:

Use:

Calculate message rate (messages/second)

Track daily/monthly volume

Compare actual vs expected throughput

smpp_messages_received_total

Type: Counter Description: Total number of messages received through SMPP

bind Unit: Messages

Labels: Same as connection_status

Example:

Use:

smpp_messages_sent_total{bind_name="vodafone_uk",mode="client",...}

150234

smpp_messages_received_total{bind_name="partner_acme",mode="server",.

45123

Monitor inbound message volume

Track mobile-originated (MO) traffic

Alert on unexpected volume changes

Delivery Metrics

smpp_delivery_failures_total

Type: Counter Description: Total number of message delivery failures Unit:

Failures

Labels: Same as connection_status

Example:

Use:

Calculate delivery success rate

Alert on high failure rates

Identify problematic connections

Success Rate Calculation:

Bind Operation Metrics

smpp_bind_success_total

Type: Counter Description: Total number of successful bind operations Unit:

Bind attempts

smpp_delivery_failures_total{bind_name="vodafone_uk",mode="client",..

234

success_rate = (messages_sent - delivery_failures) / messages_sent

* 100

Example:

Use:

Track bind stability

Monitor authentication success

smpp_bind_failures_total

Type: Counter Description: Total number of failed bind operations Unit: Bind

attempts

Example:

Use:

Alert on authentication failures

Identify credential issues

Track carrier connection problems

Connection Event Metrics

smpp_connection_attempts_total

Type: Counter Description: Total number of connection attempts Unit:

Attempts

Example:

Use:

smpp_bind_success_total{bind_name="vodafone_uk",...} 45

smpp_bind_failures_total{bind_name="vodafone_uk",...} 3

smpp_connection_attempts_total{bind_name="vodafone_uk",...} 48

Track connection churn

Monitor reconnection frequency

smpp_disconnection_total

Type: Counter Description: Total number of disconnections Unit:

Disconnections

Example:

Use:

Alert on frequent disconnections

Identify network issues

Track connection stability

Uptime Metrics

smpp_uptime_seconds

Type: Gauge Description: Current uptime of SMPP bind in seconds Unit:

Seconds

Example:

Use:

Track connection stability

Calculate uptime percentage

Alert on recent restarts

smpp_disconnection_total{bind_name="vodafone_uk",...} 3

smpp_uptime_seconds{bind_name="vodafone_uk",...} 86400

OmniMessage API Health Metrics

While the gateway itself exposes SMPP-related metrics, OmniMessage API

health is critical. You should also monitor:

From OmniMessage Metrics (if available)

omnimessage_api_requests_total - Total API requests from gateway

omnimessage_api_request_duration_seconds - API response times

omnimessage_queue_depth - Messages pending in OmniMessage queue

From Gateway Logs (if metrics not exposed)

Look for these patterns to detect API issues:

"api.*connection refused" - Cannot reach OmniMessage

"api.*timeout" - OmniMessage not responding

"api.*http 503" - OmniMessage temporarily down

"api.*parse error" - Response format issue

Prometheus Configuration

Basic Scrape Config

Add to /etc/prometheus/prometheus.yml :

scrape_configs:

 - job_name: 'omnimessage-smpp'

 scrape_interval: 15s

 static_configs:

 - targets: ['your-server:4000']

 labels:

 environment: 'production'

 service: 'omnimessage-smpp'

Multiple Gateways

Service Discovery

Using file-based discovery:

File /etc/prometheus/targets/smpp-production.json :

scrape_configs:

 - job_name: 'omnimessage-smpp-instances'

 scrape_interval: 15s

 static_configs:

 - targets:

 - 'smpp-gw-1:4000'

 - 'smpp-gw-2:4000'

 - 'smpp-gw-3:4000'

 labels:

 environment: 'production'

scrape_configs:

 - job_name: 'omnimessage-smpp-instances'

 file_sd_configs:

 - files:

 - '/etc/prometheus/targets/smpp-*.json'

[

 {

 "targets": ["smpp-gw-1:4000", "smpp-gw-2:4000"],

 "labels": {

 "environment": "production",

 "datacenter": "us-east"

 }

 }

]

Grafana Dashboards

Sample Dashboard Panels

Connection Status Panel

Query:

Visualization: Stat Thresholds:

Red: value < 1 (disconnected)

Green: value == 1 (connected)

Message Rate Panel

Query:

Visualization: Graph Unit: messages/second Legend: {{bind_name}}

Delivery Success Rate Panel

Query:

Visualization: Gauge Unit: Percent (0-100) Thresholds:

Red: < 95%

Yellow: 95-98%

smpp_connection_status{job="omnimessage-smpp"}

rate(smpp_messages_sent_total{job="omnimessage-smpp"}[5m])

100 * (1 - (

 rate(smpp_delivery_failures_total{job="omnimessage-smpp"}[5m])

 /

 rate(smpp_messages_sent_total{job="omnimessage-smpp"}[5m])

))

Green: > 98%

Connection Uptime Panel

Query:

Visualization: Stat Unit: Hours

Alerting Rules

Prometheus Alert Rules

Save to /etc/prometheus/rules/smpp-alerts.yml :

smpp_uptime_seconds{job="omnimessage-smpp"} / 3600

groups:

 - name: smpp_gateway

 interval: 30s

 rules:

 # Connection down

 - alert: SMPPConnectionDown

 expr: smpp_connection_status == 0

 for: 2m

 labels:

 severity: critical

 annotations:

 summary: "SMPP connection {{ $labels.bind_name }} is

down"

 description: "Connection {{ $labels.bind_name }} has

been disconnected for more than 2 minutes."

 # High failure rate

 - alert: SMPPHighFailureRate

 expr: |

 (

 rate(smpp_delivery_failures_total[5m])

 /

 rate(smpp_messages_sent_total[5m])

) > 0.05

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "High delivery failure rate on {{

$labels.bind_name }}"

 description: "Delivery failure rate is {{ $value |

humanizePercentage }} on {{ $labels.bind_name }}."

 # Bind failures

 - alert: SMPPBindFailures

 expr: increase(smpp_bind_failures_total[10m]) > 3

 labels:

 severity: warning

 annotations:

 summary: "Multiple bind failures on {{ $labels.bind_name

}}"

 description: "{{ $labels.bind_name }} has failed to bind

{{ $value }} times in the last 10 minutes."

 # No messages sent (when expected)

 - alert: SMPPNoTraffic

 expr: rate(smpp_messages_sent_total[10m]) == 0

 for: 30m

 labels:

 severity: warning

 annotations:

 summary: "No messages sent on {{ $labels.bind_name }}"

 description: "{{ $labels.bind_name }} has not sent any

messages for 30 minutes."

 # Frequent disconnections

 - alert: SMPPFrequentDisconnections

 expr: increase(smpp_disconnection_total[1h]) > 5

 labels:

 severity: warning

 annotations:

 summary: "Frequent disconnections on {{

$labels.bind_name }}"

 description: "{{ $labels.bind_name }} has disconnected

{{ $value }} times in the last hour."

 # OmniMessage API unreachable

 - alert: OmniMessageAPIUnreachable

 expr: |

 count(count_over_time({job="omnimessage-smpp"} |=

"api.*connection refused"[5m])) > 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "OmniMessage API is unreachable"

 description: "The SMPP Gateway cannot reach OmniMessage

API. Check API_BASE_URL configuration and network connectivity."

 # OmniMessage API timeouts

 - alert: OmniMessageAPITimeout

 expr: |

 count(count_over_time({job="omnimessage-smpp"} |=

"api.*timeout"[5m])) > 5

 for: 2m

 labels:

 severity: warning

Load rules in prometheus.yml :

Web Dashboard Monitoring

The built-in web UI provides real-time monitoring without Prometheus.

Access

URL: https://your-server:8087

Live Status Page

Navigation: SMPP → Live Status

Features:

 annotations:

 summary: "OmniMessage API is timing out"

 description: "Multiple API timeouts detected.

OmniMessage may be slow or overloaded."

 # No message flow (API issue)

 - alert: NoMessageFlow

 expr: rate(smpp_messages_sent_total[10m]) == 0 and

rate(smpp_messages_received_total[10m]) == 0

 for: 30m

 labels:

 severity: warning

 annotations:

 summary: "No message flow detected - check OmniMessage

connectivity"

 description: "No messages sent or received for 30

minutes. Check OmniMessage API connectivity and queue status."

rule_files:

 - '/etc/prometheus/rules/smpp-alerts.yml'

Real-time connection status

Message counters

Connection uptime

Manual reconnect/disconnect controls

Auto-refresh every 5 seconds

Use:

Quick status check

Manual intervention

Real-time troubleshooting

The dashboard displays:

Total Binds: Combined count of all client and server connections

Client Binds: Outbound connections to carriers (showing

connected/disconnected count)

Server Binds: Inbound connections from partners (showing active/waiting

count)

Server Listening: Configuration of the inbound server socket (host, port,

max connections)

Log Monitoring

System Logs

View logs:

Web UI Logs

Navigation: Logs tab in web UI

Features:

Real-time log streaming

Filter by level (debug, info, warning, error)

Search logs

Pause/resume

Clear logs

Follow logs in real-time

sudo journalctl -u omnimessage-smpp -f

Last 100 lines

sudo journalctl -u omnimessage-smpp -n 100

Since specific time

sudo journalctl -u omnimessage-smpp --since "1 hour ago"

Filter by level

sudo journalctl -u omnimessage-smpp -p err

The logs view allows you to:

Level Filter: Select log level (All, Debug, Info, Warning, Error)

Search: Find specific log entries by text content

Auto-scroll: Enable/disable automatic scrolling as new logs arrive

Pause/Resume: Pause log updates to review specific entries

Clear: Clear all displayed logs

Key Performance Indicators (KPIs)

Connection Health

Metric: Connection uptime percentage

Target: > 99.9%

Message Delivery Rate

Metric: Messages delivered per second

avg_over_time(smpp_connection_status[24h]) * 100

Target: Matches expected volume

Delivery Success Rate

Metric: Percentage of successful deliveries

Target: > 98%

Bind Stability

Metric: Bind attempts per hour

Target: < 10 per hour (indicates stable connection)

Monitoring Best Practices

1. Set Up Alerts

Configure Prometheus alerts for critical metrics

Use PagerDuty/OpsGenie for 24/7 alerting

Test alerts regularly

2. Create Dashboards

Build Grafana dashboards for each gateway

rate(smpp_messages_sent_total[5m])

100 * (1 - rate(smpp_delivery_failures_total[5m]) /

rate(smpp_messages_sent_total[5m]))

rate(smpp_bind_success_total[1h]) * 3600

Include all connections on one dashboard

Add capacity planning panels

3. Regular Reviews

Review metrics weekly

Identify trends and patterns

Plan capacity adjustments

4. Document Baselines

Record normal message volumes

Document expected TPS rates

Note peak times/days

5. Correlate with Backend

Monitor backend API metrics

Track end-to-end message flow

Identify bottlenecks

Troubleshooting with Metrics

Connection Issues

Check: smpp_connection_status

Value 0 = Review logs, check network, verify credentials

Frequent changes = Network instability

Poor Delivery Rates

Check: smpp_delivery_failures_total

High rate = Check carrier status, review message format

Compare across connections = Identify problem carrier

Low Throughput

Check: smpp_messages_sent_total rate

Below expected = Check TPS limits, queue availability

Check backend API metrics

Bind Problems

Check: smpp_bind_failures_total

Increasing = Authentication issues, credential problems

Check system_id and password in config

Related Documentation

CONFIGURATION.md - Configure monitoring settings

OPERATIONS.md - Operational procedures

TROUBLESHOOTING.md - Resolve issues

README.md - Overview and quickstart

Operations Guide

Day-to-day operational procedures

Critical Dependency: OmniMessage

Core

IMPORTANT: The OmniMessage SMPP Gateway cannot function without access

to OmniMessage Core. All message processing happens in OmniMessage - the

gateway is just a protocol translator.

If OmniMessage becomes unavailable:

� New messages cannot be submitted

� Pending messages cannot be retrieved

� Delivery status cannot be reported

� System appears to hang or timeout

Check OmniMessage Health:

Daily Operations

Morning Health Check

Perform these checks at the start of each day:

1. Access Web Dashboard

Test API connectivity

curl -k https://omnimessage-

core.example.com:8443/api/system/health

Check configured API URL in logs

grep api_base_url /opt/omnimessage-smpp/config/runtime.exs

URL: https://your-server:8087

Check if dashboard loads properly

2. Check Connection Status

Navigate to: SMPP → Live Status

Verify all connections show "Connected" (green)

Note any disconnected binds

3. Review Message Metrics

Navigate to: Queue tab

Check message counts are reasonable

Verify no unexpected queue buildup

4. Check System Logs

Navigate to: Logs tab

Look for error messages (red)

Note any warning patterns

5. Review Prometheus Metrics

curl http://localhost:4000/metrics

Or check Grafana dashboards

Verify message rates are normal

Continuous Monitoring

Set up alerts for:

Connection failures (> 2 minutes down)

High delivery failure rates (> 5%)

No traffic for extended periods

Frequent disconnections

See MONITORING.md for alert configuration.

Managing SMPP Connections

How SMPP Peers Are Configured

SMPP connections (peers) can be configured using two methods:

Method 1: Web UI (Recommended)

Advantage: Changes take effect immediately, no restart required

Location: SMPP → Client Peers / Server Peers tabs

Operations: Add, edit, delete peers

Persistence: Stored in Mnesia database

Best for: Day-to-day operations, testing, quick changes

Method 2: Configuration File

Advantage: Configuration as code, version control

Location: /opt/omnimessage-smpp/config/runtime.exs

Operations: Define peers in Elixir configuration

Persistence: File-based, survives restarts

Requires: Service restart after changes

Best for: Initial setup, infrastructure as code

Note: Web UI changes are stored separately and override configuration file

settings.

See CONFIGURATION.md for configuration file reference.

Adding a New Client Connection

Purpose: Configure the gateway to act as an ESME (client) connecting to a

carrier's SMSC (server)

Preparation: Gather information from carrier:

SMPP server hostname/IP

Port number (usually 2775)

System ID (username)

Password

Bind type (usually transceiver)

TPS limit

Choose one of the following methods:

Option A: Via Web UI (Recommended)

Advantages: Immediate effect, no restart required

Steps:

1. Navigate to Client Peers:

Open Web UI: https://your-server:8087

Navigate to: SMPP → Client Peers

2. Add New Peer:

Click "Add New Client Peer"

Fill in the form:

Name: vodafone_uk (unique identifier)

Host: smpp.vodafone.co.uk

Port: 2775

System ID: your_username

Password: your_password

Bind Type: Transceiver

TPS Limit: 100

Queue Check Frequency: 1000

Click "Save"

3. Connection Establishes Automatically:

Gateway immediately attempts connection

Navigate to: SMPP → Live Status

Status should change to "Connected" (green) within 10-30 seconds

Check Logs tab for successful bind message

4. Test Message Flow:

Navigate to: Queue tab

Submit test message with dest_smsc matching bind name

Monitor in Live Status for transmission

Verify delivery confirmation

Option B: Via Configuration File

Advantages: Infrastructure as code, version control

Steps:

1. Edit Configuration File:

2. Add New Bind to Configuration:

3. Save and Restart Service:

4. Verify Connection:

Navigate to: SMPP → Live Status

Find new connection

Status should be "Connected" (green)

Check logs for successful bind

5. Test Message Flow:

sudo nano /opt/omnimessage-smpp/config/runtime.exs

config :omnimessage_smpp, :binds, [

 # Existing binds...

 # Add new bind

 %{

 name: "vodafone_uk",

 mode: :client,

 bind_type: :transceiver,

 host: "smpp.vodafone.co.uk",

 port: 2775,

 system_id: "your_username",

 password: "your_password",

 tps_limit: 100,

 queue_check_frequency: 1000

 }

]

Save file (Ctrl+X, Y, Enter in nano)

Restart service

sudo systemctl restart omnimessage-smpp

Navigate to: Queue tab

Submit test message with dest_smsc matching new bind name

Monitor in Live Status for transmission

Verify delivery confirmation

Adding a Server Bind

Purpose: Configure the gateway to act as an SMSC (server) accepting

connections from external ESMEs (partner clients)

Preparation:

1. Generate Credentials:

Create unique system_id: partner_name

Create strong password

Document and share securely with partner

2. Get Partner Information:

Partner's source IP addresses

Expected message volume (for TPS limit)

Required bind types

Choose one of the following methods:

Option A: Via Web UI (Recommended)

Advantages: Immediate effect, no restart required

Steps:

1. Navigate to Server Peers:

Open Web UI: https://your-server:8087

Navigate to: SMPP → Server Peers

2. Add New Server Peer:

Click "Add New Server Peer"

Fill in the form:

Name: partner_acme (unique identifier)

System ID: acme_corp

Password: secure_password_123

Allowed Bind Types: Select all (Transmitter, Receiver,

Transceiver)

IP Whitelist: 203.0.113.0/24 (comma-separated for multiple)

TPS Limit: 50

Queue Check Frequency: 1000

Click "Save"

3. Gateway Ready for Connection:

Server peer is now active and waiting for partner connection

No restart required

4. Share Information with Partner:

Gateway IP address

Port: 2775

System ID: acme_corp

Password: secure_password_123

Bind Type: As configured

5. Wait for Partner Connection:

Navigate to: SMPP → Live Status

Watch for incoming connection

Verify authentication success

Check IP matches whitelist

Option B: Via Configuration File

Advantages: Infrastructure as code, version control

Steps:

1. Edit Configuration File:

2. Add Server Bind and Listen Configuration:

sudo nano /opt/omnimessage-smpp/config/runtime.exs

3. Save and Restart Service:

4. Share Information with Partner:

Gateway IP address

Port: 2775

System ID: acme_corp

Password: secure_password_123

Bind Type: As configured

5. Wait for Partner Connection:

Navigate to: SMPP → Live Status

Add to server_binds list

config :omnimessage_smpp, :server_binds, [

 # Existing server binds...

 # Add new server bind

 %{

 name: "partner_acme",

 system_id: "acme_corp",

 password: "secure_password_123",

 allowed_bind_types: [:transmitter, :receiver,

:transceiver],

 ip_whitelist: ["203.0.113.0/24"],

 tps_limit: 50,

 queue_check_frequency: 1000

 }

]

Ensure listen configuration exists (only needed once)

config :omnimessage_smpp, :listen, %{

 host: "0.0.0.0",

 port: 2775,

 max_connections: 100

}

sudo systemctl restart omnimessage-smpp

Watch for incoming connection

Verify authentication success

Check IP matches whitelist

Modifying Existing Connection

Purpose: Update connection parameters (TPS limits, passwords, IP whitelist,

etc.)

Choose one of the following methods:

Option A: Via Web UI (Recommended)

Advantages: Immediate effect, no restart required

Steps:

1. Navigate to Peers:

Open Web UI: https://your-server:8087

For client connections: SMPP → Client Peers

For server connections: SMPP → Server Peers

2. Edit Peer:

Find the peer to modify

Click "Edit" button

Update desired parameters:

Common changes: TPS limit, password, IP whitelist, host/port

Click "Save"

3. Changes Apply Immediately:

Connection automatically reconnects with new settings

No service restart required

Navigate to: SMPP → Live Status to verify

4. Verify Changes:

Check connection establishes successfully

Monitor Logs tab for errors

Test message flow if applicable

Option B: Via Configuration File

Advantages: Infrastructure as code, version control

Steps:

1. Edit Configuration File:

2. Modify Bind Parameters:

Find the bind in the :binds or :server_binds list

Update desired parameters:

Common changes: TPS limit, passwords, IP whitelist, host/port

Example:

3. Save and Restart Service:

4. Verify Changes:

Navigate to: SMPP → Live Status

Check connection establishes successfully

Monitor logs for errors

sudo nano /opt/omnimessage-smpp/config/runtime.exs

%{

 name: "vodafone_uk",

 # ... other params

 tps_limit: 150, # Changed from 100

 password: "new_password" # Updated password

}

sudo systemctl restart omnimessage-smpp

Test message flow

Removing a Connection

Purpose: Decommission an SMPP connection

Steps:

1. Notify Stakeholders:

Inform carrier/partner

Coordinate downtime window

2. Disconnect via Web UI:

Navigate to: SMPP → Live Status

Find connection

Click "Drop Connection"

Confirm action

3. Remove Configuration:

Navigate to: SMPP → Client/Server Peers

Find connection

Click "Delete"

Confirm removal

4. Verify Removal:

Check Live Status - connection should be gone

Review logs for clean shutdown

Managing Message Flow

Checking Message Queue

Purpose: Monitor pending messages

Steps:

1. Access Queue:

Navigate to: Queue tab

View list of pending messages

2. Check Message Details:

Click on message row

Review:

Destination number

Message body

Target SMSC (dest_smsc)

Delivery attempts

Status

3. Search for Specific Message:

Use search filter

Filter by destination, content, or SMSC

Troubleshooting Stuck Messages

Symptoms: Messages not being delivered

Steps:

1. Check Connection Status:

Navigate to: SMPP → Live Status

Verify target connection is connected

If disconnected, see Reconnecting

2. Check Message Details:

Navigate to: Queue tab

Find stuck message

Check dest_smsc field matches connection name

Check deliver_after timestamp (retry scheduling)

3. Check Delivery Attempts:

High attempts = repeated failures

Check logs for error messages

May indicate invalid format or carrier rejection

4. Manual Intervention (if needed):

Contact carrier to verify issue

May need to cancel and resubmit message

Check with backend team for queue issues

Connection Troubleshooting

Reconnecting a Bind

Symptoms: Connection shows "Disconnected" (red)

Steps:

1. Check Network Connectivity:

2. Check Logs for Errors:

Navigate to: Logs tab

Filter: Error level

Look for authentication failures, network timeouts

3. Verify Credentials:

Navigate to: SMPP → Client/Server Peers

Check system_id and password are correct

Contact carrier if unsure

ping -c 3 carrier-smpp-server.com

telnet carrier-smpp-server.com 2775

4. Manual Reconnect:

Navigate to: SMPP → Live Status

Find disconnected bind

Click "Reconnect" button

Wait 10-30 seconds

Check if status changes to "Connected"

5. If Reconnect Fails:

Check firewall rules

Verify carrier server is operational

Contact carrier support

See TROUBLESHOOTING.md

Handling Authentication Failures

Symptoms: Repeated bind failures in logs

Causes:

Incorrect username/password

IP not whitelisted at carrier

Account suspended/expired

Steps:

1. Verify Credentials:

Navigate to: SMPP → Client Peers

Double-check system_id and password

Confirm with carrier

2. Check IP Whitelisting:

Confirm your gateway IP with carrier

Request carrier verify IP whitelist

3. Check Account Status:

Verify account is active

Check for expired contracts

Contact carrier billing

4. Update Configuration:

If credentials changed, update in Web UI

Click "Reconnect" to retry with new credentials

Monitoring and Alerting

Checking Prometheus Metrics

Quick check:

Expected output:

All values should be 1 (connected).

Responding to Alerts

Connection Down Alert:

1. Check Web UI → SMPP → Live Status

2. Attempt manual reconnect

3. Check logs for errors

4. Contact carrier if prolonged outage

curl http://localhost:4000/metrics | grep smpp_connection_status

smpp_connection_status{bind_name="vodafone_uk",...} 1

smpp_connection_status{bind_name="att_us",...} 1

5. See TROUBLESHOOTING.md

High Failure Rate Alert:

1. Check logs for error patterns

2. Review recent configuration changes

3. Contact carrier about rejections

4. Check message format compliance

No Traffic Alert:

1. Check backend queue has messages

2. Verify dest_smsc routing is correct

3. Check TPS limits aren't too restrictive

4. Review queue_check_frequency setting

Maintenance Procedures

Routine Maintenance

Perform monthly:

1. Review Metrics:

Analyze message volume trends

Check delivery success rates

Identify optimization opportunities

2. Update Documentation:

Document any configuration changes

Update contact information

Note carrier maintenance windows

3. Credential Audit:

Review all SMPP passwords

Plan credential rotation

Verify IP whitelists are current

4. Capacity Planning:

Review peak message rates

Check against TPS limits

Plan for growth

Service Restart

When needed:

After configuration file changes

After system updates

During troubleshooting

Steps:

Verify via Web UI:

1. Access dashboard (may take 30-60 seconds to come online)

2. Navigate to: SMPP → Live Status

3. Wait for all connections to establish (1-2 minutes)

4. Check logs for errors

Check current status

sudo systemctl status omnimessage-smpp

Restart service

sudo systemctl restart omnimessage-smpp

Verify restart

sudo systemctl status omnimessage-smpp

Check logs

sudo journalctl -u omnimessage-smpp -n 50

Configuration Backup

Backup critical files before changes:

Restore if needed:

Emergency Procedures

Complete Service Outage

Steps:

1. Check service status:

2. If service stopped, start it:

Backup configuration

sudo cp /opt/omnimessage-smpp/config/runtime.exs \

 /opt/omnimessage-smpp/config/runtime.exs.backup.$(date +%Y%m%d)

Backup certificates

sudo tar -czf /tmp/smpp-certs-$(date +%Y%m%d).tar.gz \

 /opt/omnimessage-smpp/priv/cert/

Restore configuration

sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup.YYYYMMDD \

 /opt/omnimessage-smpp/config/runtime.exs

Restart service

sudo systemctl restart omnimessage-smpp

sudo systemctl status omnimessage-smpp

sudo systemctl start omnimessage-smpp

3. Check logs for crash reason:

4. If won't start:

Check configuration syntax errors

Verify SSL certificates exist

Check disk space: df -h

Check memory: free -h

5. Contact support if unresolved

Carrier Requests Emergency Disconnect

Steps:

1. Drop connection immediately:

Navigate to: SMPP → Live Status

Find affected connection

Click "Drop Connection"

2. Document reason:

Note carrier name

Record time and reason

Save correspondence

3. Investigate issue:

Check recent message patterns

Review logs for errors

Identify root cause

4. Coordinate resolution:

Work with carrier

sudo journalctl -u omnimessage-smpp -n 100

Implement fixes

Test before reconnecting

High Volume Spike

Symptoms: Unexpectedly high message traffic

Steps:

1. Check TPS limits:

Navigate to: SMPP → Live Status

Verify connections aren't throttling

May need to increase TPS limits temporarily

2. Monitor carrier stability:

Watch for disconnections

Check delivery success rates

3. Coordinate with backend:

Verify message source is legitimate

May need to implement rate limiting upstream

4. Scale if needed:

May need additional gateway instances

Contact support for scaling advice

Best Practices

Daily Checklist

 Check all SMPP connections are connected

 Review error logs for any issues

 Monitor message queue for buildup

 Check Prometheus/Grafana dashboards

 Verify delivery success rates > 98%

Weekly Tasks

 Review metrics trends

 Check for pattern anomalies

 Test disaster recovery procedures

 Update documentation as needed

 Review and acknowledge alerts

Monthly Tasks

 Credential audit

 Capacity planning review

 Update carrier contacts

 Review and optimize TPS settings

 Backup configuration files

Related Documentation

CONFIGURATION.md - Configure connections and settings

MONITORING.md - Set up Prometheus alerting

TROUBLESHOOTING.md - Resolve common issues

README.md - System overview

Troubleshooting Guide

Common issues and solutions

OmniMessage Connectivity Issues

Since the SMPP Gateway is stateless and depends entirely on OmniMessage

Core, connectivity problems with OmniMessage are the most critical issues.

Symptoms of OmniMessage Disconnection

No outbound messages: Queue builds up, messages not being sent

No inbound messages: Partners can't submit messages

Timeouts: API calls timing out or hanging

Logs show: "Connection refused", "Timeout", "HTTP 503", "Connection

reset"

Diagnosis

1. Check OmniMessage Availability:

2. Check Configured API URL:

Test connectivity

curl -k -v https://omnimessage-

core.example.com:8443/api/system/health

Test from gateway host specifically

ssh gateway-server 'curl -k https://omnimessage-

core.example.com:8443/api/system/health'

3. Check Gateway Logs for API Errors:

Solutions

If OmniMessage is down:

1. Contact OmniMessage operations team

2. Pending messages will accumulate in the queue

3. Gateway will keep retrying (see SMPP_POLL_INTERVAL)

4. Check OmniMessage status page or monitoring

If OmniMessage is up but gateway can't reach it:

1. Check firewall rules allow outbound HTTPS

2. Check DNS resolution: nslookup omnimessage-core.example.com

3. Check network routing: traceroute omnimessage-core.example.com

4. Verify SSL certificates if using HTTPS

If API URL is misconfigured:

1. Edit /opt/omnimessage-smpp/config/runtime.exs

2. Verify api_base_url is correct (must be HTTPS for production)

3. Restart gateway: sudo systemctl restart omnimessage-smpp

Review the configuration

grep -A1 'api_base_url' /opt/omnimessage-smpp/config/runtime.exs

Check for network connectivity

ping omnimessage-core.example.com

nc -zv omnimessage-core.example.com 8443

Look for API-related errors

sudo journalctl -u omnimessage-smpp -f | grep -i

'api\|omnimessage\|connect'

Search logs for recent errors

sudo journalctl -u omnimessage-smpp -n 200 | grep -i error

Connection Problems

Connection Won't Establish

Symptoms:

Status shows "Disconnected" (red)

No successful bind in logs

Repeated connection attempts

Possible Causes & Solutions:

1. Network Connectivity Issues

Check:

Solutions:

If DNS fails: Use IP address instead of hostname in configuration

If ping fails: Check firewall rules, contact carrier

If port fails: Verify correct port number, check firewall

2. Incorrect Credentials

Check:

Test DNS resolution

nslookup smpp.carrier.com

Test connectivity

ping -c 3 smpp.carrier.com

Test port

telnet smpp.carrier.com 2775

or

nc -zv smpp.carrier.com 2775

Logs show "bind failed" or "authentication error"

Web UI: SMPP → Client Peers → verify system_id and password

Solutions:

Confirm credentials with carrier

Check for typos (case-sensitive)

Update configuration and reconnect

3. IP Not Whitelisted

Check:

Connection rejected immediately

Carrier logs show unauthorized IP

Solutions:

Confirm your gateway's public IP:

Request carrier add IP to whitelist

Verify IP hasn't changed (dynamic IP)

4. Firewall Blocking

Check:

Solutions:

curl ifconfig.me

Check if port is open

sudo iptables -L -n | grep 2775

Check UFW (Ubuntu/Debian)

sudo ufw status | grep 2775

Check firewalld (RHEL/CentOS)

sudo firewall-cmd --list-ports | grep 2775

Connection Keeps Dropping

Symptoms:

Connection established but frequently disconnects

smpp_disconnection_total metric increasing

Logs show repeated reconnections

Possible Causes & Solutions:

1. Network Instability

Check:

Solutions:

Contact carrier about network issues

Check with ISP if on your end

Consider backup connection/route

2. Enquire Link Timeout

Check:

Ubuntu/Debian

sudo ufw allow out 2775/tcp

RHEL/CentOS

sudo firewall-cmd --permanent --add-port=2775/tcp

sudo firewall-cmd --reload

Monitor packet loss

ping -c 100 smpp.carrier.com | grep loss

Check network errors

netstat -s | grep -i error

Logs show "enquire_link timeout"

Connection drops after periods of inactivity

Solutions:

Default timeout is 30 seconds

Verify network allows keepalive packets

Check for aggressive firewalls timing out idle connections

3. TPS Limit Exceeded

Check:

High message rate at disconnect time

Carrier throttling messages

Solutions:

Review tps_limit setting

Reduce TPS to 70-80% of carrier maximum

Spread traffic across multiple binds

4. Carrier Server Issues

Check:

Check carrier service status

Contact carrier support

Solutions:

Wait for carrier to resolve

Configure backup carrier if available

Message Delivery Problems

Messages Not Being Sent

Symptoms:

Messages stuck in queue

smpp_messages_sent_total not increasing

Connection shows connected

Possible Causes & Solutions:

1. Wrong dest_smsc Routing

Check:

Web UI → Queue → Check message dest_smsc field

Compare with connection name in SMPP → Live Status

Solutions:

Messages route based on dest_smsc field

Verify backend is setting correct dest_smsc

If dest_smsc is NULL, check default routing

2. Messages Scheduled for Future

Check:

Web UI → Queue → Check deliver_after field

Messages with future timestamp won't send yet

Explanation:

Retry system sets deliver_after for failed messages

Messages wait until that time before retry

Solutions:

Wait for scheduled time

If urgent, contact backend team to reset timestamp

3. TPS Limit Too Low

Check:

Large queue buildup

Messages sending very slowly

Solutions:

Increase tps_limit in configuration

Verify carrier can handle higher rate

See CONFIGURATION.md

4. Queue Worker Not Running

Check:

Service status

Logs for errors

Solutions:

High Delivery Failure Rate

Symptoms:

smpp_delivery_failures_total increasing

Logs show "submit_sm_resp" with error status

Restart service

sudo systemctl restart omnimessage-smpp

Check logs

sudo journalctl -u omnimessage-smpp -f

Messages not reaching recipients

Possible Causes & Solutions:

1. Invalid Destination Numbers

Check:

Logs for specific error codes

Review message destination format

Common Error Codes:

0x0000000B - Invalid destination

0x00000001 - Invalid message length

0x00000003 - Invalid command

Solutions:

Validate number format (E.164 recommended)

Check number includes country code

Verify with carrier requirements

2. Invalid Message Content

Check:

Message length

Special characters

Encoding

Solutions:

GSM-7: Max 160 characters

UCS-2: Max 70 characters

Remove unsupported characters

Check encoding settings

3. Carrier Rejection

Check:

Specific error codes from carrier

Patterns in rejected messages

Solutions:

Contact carrier for rejection reason

May need content filtering

Check for spam/abuse patterns

4. Expired Messages

Check:

Message expires timestamp

Delivery attempt timing

Solutions:

Increase message validity period

Reduce retry delay for time-sensitive messages

Web UI Problems

Can't Access Web Dashboard

Symptoms:

Browser can't connect to https://your-server:8087

Timeout or connection refused

Possible Causes & Solutions:

1. Service Not Running

Check:

https://your-server:8087/

Solutions:

2. Firewall Blocking Port 8087

Check:

Solutions:

3. SSL Certificate Issues

Check:

Browser shows security warning

Certificate expired or invalid

Solutions:

Accept security exception (if self-signed)

sudo systemctl status omnimessage-smpp

If stopped, start it

sudo systemctl start omnimessage-smpp

Check logs for errors

sudo journalctl -u omnimessage-smpp -n 50

sudo ufw status | grep 8087

or

sudo firewall-cmd --list-ports | grep 8087

Ubuntu/Debian

sudo ufw allow 8087/tcp

RHEL/CentOS

sudo firewall-cmd --permanent --add-port=8087/tcp

sudo firewall-cmd --reload

Install valid SSL certificate

Check certificate files exist:

4. Wrong URL

Check:

Verify using HTTPS (not HTTP)

Verify correct server IP/hostname

Verify port 8087

Web UI Shows Errors

Symptoms:

Page loads but shows errors

Functions don't work

Data not displaying

Solutions:

1. Clear Browser Cache:

Ctrl+F5 (hard refresh)

Clear browser cache and cookies

2. Check Browser Console:

Press F12

Check Console tab for JavaScript errors

Report to support if errors found

3. Try Different Browser:

Test in Chrome, Firefox, Edge

Isolate browser-specific issues

ls -l /opt/omnimessage-smpp/priv/cert/

4. Check Service Logs:

Metrics Problems

Prometheus Metrics Not Available

Symptoms:

curl http://localhost:4000/metrics fails

Prometheus can't scrape metrics

Empty or error response

Possible Causes & Solutions:

1. Service Not Running

Check:

Solutions:

2. Port Not Accessible

Check:

sudo journalctl -u omnimessage-smpp -f

sudo systemctl status omnimessage-smpp

sudo systemctl start omnimessage-smpp

Solutions:

If local works but remote doesn't: Check firewall

Open port 4000 in firewall for Prometheus server

3. Wrong Endpoint

Verify:

Endpoint is /metrics (not /prometheus or /stats)

Port is 4000 (not 8087)

Metrics Show Unexpected Values

Symptoms:

Counters reset to zero

Gauges show wrong values

Missing metrics for some binds

Solutions:

1. Service Restart Resets Counters:

Counters reset on service restart

This is normal behavior

Use increase() or rate() in Prometheus queries

2. New Binds Not Showing:

Metrics only appear after first event

Test locally

curl http://localhost:4000/metrics

Test remotely

curl http://your-server-ip:4000/metrics

Send test message to populate metrics

Check bind is enabled and connected

3. Stale Metrics:

Old binds may still show in metrics

Restart service to clear stale entries

Or use Prometheus relabeling to filter

Performance Problems

High CPU Usage

Check:

Possible Causes:

Very high message volume

Too many connections

Configuration issue

Solutions:

Check message rate is within capacity

Review TPS limits

Contact support if sustained high CPU

High Memory Usage

Check:

top -p $(pgrep -f omnimessage-smpp)

ps aux | grep omnimessage-smpp

Possible Causes:

Large message queue in memory

Memory leak (rare)

Solutions:

Restart service to clear memory

Check message queue size

Contact support if memory grows continuously

Slow Message Processing

Symptoms:

Messages take long to send

Queue building up

Low message rate

Check:

1. TPS limits - may be too restrictive

2. queue_check_frequency - may be too high

3. Backend API response time - may be slow

4. Network latency to carrier

Solutions:

Increase TPS if carrier allows

Decrease queue_check_frequency for faster polling

Optimize backend API

Check network latency

Configuration Problems

Configuration File Syntax Errors

Symptoms:

Service won't start after config change

Logs show "syntax error" or "parse error"

Check:

Common Mistakes:

Missing comma between map entries

Mismatched quotes (" vs ')

Unmatched brackets or braces

Missing import Config at top

Solutions:

Restore from backup

Carefully review syntax

Use text editor with Elixir syntax highlighting

Changes Not Taking Effect

Symptoms:

Modified configuration but no change in behavior

Old settings still active

Solutions:

Validate Elixir syntax

/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!

('config/runtime.exs')"

Emergency Recovery

Complete System Failure

Steps:

1. Check basic system health:

2. Check service status:

3. Review recent logs:

Configuration changes require restart

sudo systemctl restart omnimessage-smpp

Verify restart succeeded

sudo systemctl status omnimessage-smpp

Check logs for errors

sudo journalctl -u omnimessage-smpp -n 50

Disk space

df -h

Memory

free -h

CPU load

uptime

sudo systemctl status omnimessage-smpp

sudo journalctl -u omnimessage-smpp -n 200

4. Try service restart:

5. If restart fails:

Check configuration syntax

Verify SSL certificates exist

Check file permissions

Review logs for specific error

6. Restore from backup (if needed):

7. Contact support if unresolved

Getting Help

Information to Gather

Before contacting support, collect:

1. Version: cat /opt/omnimessage-smpp/VERSION

2. Recent Logs:

3. Configuration (sanitize passwords):

sudo systemctl restart omnimessage-smpp

Restore config

sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup \

 /opt/omnimessage-smpp/config/runtime.exs

Restart

sudo systemctl restart omnimessage-smpp

sudo journalctl -u omnimessage-smpp -n 200 > /tmp/smpp-logs.txt

4. Metrics Output:

5. System Info:

Contact Support

Email: support@omnitouch.com

Phone: +61 XXXX XXXX (24/7)

Include: All information from above

Related Documentation

OPERATIONS.md - Normal operational procedures

CONFIGURATION.md - Configuration reference

MONITORING.md - Monitoring and metrics

README.md - System overview

sudo cp /opt/omnimessage-smpp/config/runtime.exs

/tmp/config.exs

Edit /tmp/config.exs to remove passwords before sending

curl http://localhost:4000/metrics > /tmp/metrics.txt

uname -a > /tmp/system-info.txt

free -h >> /tmp/system-info.txt

df -h >> /tmp/system-info.txt

mailto:support@omnitouch.com

