OmniPGW
Configuration Guide

Complete Reference for runtime.exs Configuration

by Omnitouch Network Services

Table of Contents

o v A Wi+

10.
11.

Overview

OmniPGW uses runtime configuration defined in config/runtime.exs. This
file is evaluated at application startup and allows for dynamic configuration

based on environment variables or external sources.

Configuration Philosophy

_ » Application Config + Config Module = OminiPGW Components

Key Principles:

Single Source of Truth - All configuration in one file

Type Safety - Configuration validated at startup

Environment Flexibility - Support for dev, test, production

Clear Defaults - Sensible defaults with explicit overrides

Configuration File Structure
File Location

pgw c/
— config/

| | config.exs
runtime.exs)

| |— dev.exs # Development-specific config
| | prod.exs # Production-specific config
| L— runtime.exs # « Main configuration file

Base configuration (imports

=

e

.

]

Metrics Exporter

5S5/58 Broker

Sxb Broker

Gx Broker

Session Manager

Top-Level Structure

config/runtime.exs
import Config

config :logger, level: :info
config :pgw c,

metrics: %{...},
diameter: %{...},

s5s8: %{...
sxb: %{...},
ue: %{...},
pco: %{...}

Configuration Sections

o e e e e

Metrics Configuration

Purpose

Configure the Prometheus metrics exporter for monitoring OmniPGW.

Configuration Block

config :pgw c,
metrics: %{
Enable/disable metrics exporter
enabled: true,

IP address to bind HTTP server
ip address: "0.0.0.0",

Port for metrics endpoint
port: 9090,

How often to poll registries (milliseconds)
registry poll period ms: 10 000

}
Parameters
Parameter Type Default Description

Enable metrics

enabled Boolean true
exporter

_ Bind address
. String
ip address "0.0.0.0" (0.0.0.0 = all
(1P))

interfaces)
HTTP port for

port Integer 9090

/metrics endpoint

_ _ Polling interval for
registry poll period ms Integer 10 000 ,
registry counts

Examples

Production - Bind to specific IP:

metrics: %{
enabled: true,

ip address: "10.0.0.20", # Management network
port: 9090,

registry poll period ms: 5 000 # Poll every 5 seconds

Development - Localhost only:

metrics: %{
enabled: true,
ip address: "127.0.0.1",
port: 42069, # Non-standard port
registry poll period ms: 10 000

Disable metrics:

metrics: %{
enabled: false

Accessing Metrics

Default endpoint
curl http://<ip address>:<port>/metrics

Example
curl http://10.0.0.20:9090/metrics

See: for detailed metrics documentation.

Diameter/Gx Configuration

Purpose

Configure the Diameter protocol for Gx interface (PCRF communication).
Configuration Block

config :pgw c,
diameter: %{
IP address to listen for Diameter connections
listen ip: "0.0.0.0",

OmniPGW's Diameter identity (Origin-Host)
host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

OmniPGW's Diameter realm (Origin-Realm)
realm: "epc.mncOO0l.mcc001.3gppnetwork.org",

List of PCRF peers
peer list: [
%{
PCRF Diameter identity
host: "“pcrf.epc.mnc001l.mcc001.3gppnetwork.org",

PCRF realm
realm: "epc.mnc00l.mccO01.3gppnetwork.org",

PCRF IP address
ip: "10.0.0.30",

Initiate connection to PCRF
initiate connection: true

Parameters

Parameter Type Required
listen ip String (IP) Yes
String
host Yes
(FQDN)
String
realm , Yes
(Domain)
peer list List Yes

Peer Configuration:

Parameter Type

Strin

host J
(FQDN)
String

realm .
(Domain)

ip String (IP)

initiate connection Boolean

FQDN Format

Diameter identities MUST be FQDNSs:

Description

Diameter listen address

OmniPGW's Origin-Host (must
be FQDN)

OmniPGW's Origin-Realm

PCRF peer configurations

Required Description

Yes

Yes

Yes

Yes

PCRF Diameter
identity

PCRF realm

PCRF IP address

Whether OmniPGW
connects to PCRF

CORRECT
host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org"

INCORRECT
host: "omnipgw" # Not a FQDN
host: "10.0.0.20" # IP not allowed

3GPP Format:

<hostname>.epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org

Examples:

- omnipgw.epc.mnc001l.mccOOl.3gppnetwork.org (MCC=001, MNC=001)

- pgw-c.epc.mnc260.mcc310.3gppnetwork.org (MCC=310, MNC=260 - US
T-Mobile)

Examples

Single PCRF:

diameter: %{

listen ip: "0.0.0.0",

host: "omnipgw.epc.mnc001l.mcc@O1.3gppnetwork.org",

realm: "epc.mncOO0l.mcc001.3gppnetwork.org",

peer list: [

%{

host: "pcrf.epc.mnc001l.mcc001.3gppnetwork.org",
realm: "epc.mnc00l.mcc001.3gppnetwork.org",
ip: "10.0.0.30",
initiate connection: true

Multiple PCRFs (Redundancy):

diameter: %{

listen ip: "0.0.0.0",

host: "omnipgw.epc.mnc001l.mcc@O1l.3gppnetwork.org",

realm: "epc.mncOO0l.mcc001.3gppnetwork.org",

peer list: [

%{

host: "pcrf-primary.epc.mnc001l.mcc001.3gppnetwork.org",
realm: "epc.mnc001l.mcc001.3gppnetwork.org",
ip: "10.0.1.30",
initiate connection: true

host: "pcrf-backup.epc.mnc001l.mccO01l.3gppnetwork.org",
realm: "epc.mncOOl.mcc00l.3gppnetwork.org",

ip: "10.0.2.30",

initiate connection: true

PCRF-Initiated Connection:

diameter: %{

listen ip: "0.0.0.0",

host: "omnipgw.epc.mnc00l.mcc@O1.3gppnetwork.org",

realm: "epc.mncO0l.mcc@0l.3gppnetwork.org",

peer list: [

%{

host: "pcrf.epc.mnc001l.mcc001.3gppnetwork.org",
realm: "epc.mncOOl.mcc00l.3gppnetwork.org",
ip: "10.0.0.30",
initiate connection: false # Wait for PCRF to connect

}

See:

S5/S8 Configuration

Purpose

Configure the GTP-C interface for communication with SGW-C.

Configuration Block

config :pgw c,
s5s58: %{

Local IPv4 address for S5/S8 interface
local ipv4 address: "10.0.0.20",

Optional: Local IPv6 address
local ipv6 address: nil,

Optional: Override default GTP-C port (2123)
local port: 2123,

GTP-C request timeout in milliseconds (default: 500ms)
Timeout per attempt when waiting for GTP-C responses
request timeout ms: 500,

Number of retry attempts for GTP-C requests (default: 3)
Total maximum wait time = request timeout ms *

request attempts

}

request attempts: 3

Parameters

Parameter Type Default
Strin .
local ipv4 address g Required
- - (IPv4)
local ipv6_add String i1
ocal ipv6 address ni
—HPYE- (IPV6)
local port Integer 2123
request timeout ms Integer 500
request attempts Integer 3

Protocol Details

e Protocol: GTP-C Version 2
e Transport: UDP
e Standard Port: 2123

¢ Direction: Receives from SGW-C

Examples

IPv4 Only (Common):

s5s58: %{
local ipv4 address: "10.0.0.20"
}

IPv4 + IPv6 Dual-Stack:

Description

S5/S8 interface IPv4
address

S5/S8 interface IPv6
address (optional)

UDP port for GTP-C
(standard port 2123)

Timeout per retry attempt
in milliseconds

Number of retry attempts
before giving up

s5s8: %{
local ipv4 address: "10.0.0.20",
local ipv6 address: "2001:db8::20"
}

Custom Port (Non-Standard):

s5s8: %{
local ipv4 address: "10.0.0.20",
local port: 2124 # Custom port

}

High Latency Network:

s558: %{
local ipv4 address: "10.0.0.20",
request timeout ms: 1500, # 1.5 seconds

per attempt

request attempts: 3 # Total: 4.5 seconds max

}

Timeout Configuration

The S5/S8 interface uses configurable timeouts for GTP-C request/response
transactions (Create Bearer Request, Delete Bearer Request).

Total Wait Time Calculation:

Total Maximum Wait

Default: 500ms x 3 1.5 seconds

Tuning Guidelines:

request timeout ms x request attempts

Network Latency Recommended Timeout

Low latency (<50ms) 200-300ms

Normal (50-150ms) 500ms (default)

High latency (>150ms) 1000-2000ms

Satellite/unstable 2000-3000ms

When to Adjust:

Total Wait Time

600-900ms

1.5s

3-6s

6-9s

* Increase timeout if seeing frequent "Create Bearer Request timed out"

errors but Wireshark shows responses arriving

 Decrease timeout for faster failure detection in low-latency environments

* Increase retry attempts for unreliable networks with packet loss

Timeout Behavior:

e On timeout, erroris logged: "Create Bearer Request timed out"
* Diameter error returned to PCRF: Result-Code 5012 (UNABLE_TO_COMPLY)

e Bearer remains in early storage for cleanup when Charging-Rule-Remove

arrives

Network Planning
IP Address Selection:

e Use dedicated management/signaling network
e Ensure reachability from all SGW-C nodes
e Consider redundancy (VRRP/HSRP) for HA

Firewall Rules:

Allow GTP-C from SGW-C

iptables -A INPUT -p udp --dport 2123 -s <sgw c network> -j ACCEPT

Sxb/PFCP Configuration

Purpose

Configure the PFCP interface for communication with PGW-U (User Plane).
Configuration Block

config :pgw c,
sxb: %{
Local IP address for PFCP communication
local ip address: "10.0.0.20",

Optional: Override default PFCP port (8805)
local port: 8805

Parameters

Parameter Type Default Description
local ip address String (IP) Required PFCP listen address

local port Integer 8805 PFCP UDP port

Important:

e All UPF peers are automatically registered from the
upf selection configuration (rules + fallback pool) at startup

e Auto-registered UPFs use sensible defaults:
o Auto-generated name: "UPF-<ip>:<port>"

o Passive PFCP association (wait for UPF to initiate)

o 5-second heartbeat interval

e UPF selection rules and pools are configured in the separate
upf selection section. See below.

e Dynamic UPF registration is supported for DNS-discovered UPFs that
aren't in the configuration

Examples

Minimal Configuration:

sxb: %{
local ip address: "10.0.0.20"
}

ALl UPFs in upf selection will be automatically registered with:
- Auto-generated name: "UPF-10.0.0.21:8805"

- Passive PFCP association (wait for UPF to connect)
- 5-second heartbeat interval

Custom PFCP Port:

sxb: %{

local ip address: "10.0.0.20",

local port: 8806 # Non-standard PFCP port
}

Complete Example with UPF Selection:

sxb: %{
local ip address: "10.0.0.20"
}
upf selection: %{
rules: [
%{
name: "IMS Pool",
priority: 10,
match field: :apn,
match regex: ~r/”ims$/,
upf pool: [
%s{remote ip address: "10.0.1.21", remote port: 8805,
weight: 100},
%{remote ip address: "10.0.1.22", remote port: 8805,
weight: 100}
]
}
1,
fallback pool: [
%{remote ip address: "10.0.2.21", remote port: 8805, weight:
100}
]

}
ALl 3 UPFs (10.0.1.21, 10.0.1.22, 10.0.2.21) are automatically

registered

DNS-Based Selection (Dynamic Registration):

sxb: %{
local ip address: "10.0.0.20"
}
upf selection: %{
dns enabled: true,
dns query priority: [:ecgi, :tail],
dns suffix: "epc.3gppnetwork.org",
fallback pool: [
%{remote ip address: "10.0.2.21", remote port: 8805, weight:
100}
]
}

DNS-discovered UPFs will be dynamically registered on first use

UPF Selection Strategies

Important: UPF selection configuration has been simplified. All UPF peers are
automatically registered from the upf selection configuration.

Configuration Structure
UPF selection is configured in the upf_selection section which defines:

1. Static Rules - Pattern-based routing with load balancing pools
2. DNS Settings - Location-based dynamic UPF discovery

3. Fallback Pool - Default pool when no rules match and DNS fails

Selection Priority Order

1. Static Rules (Highest Priority) - Pattern-based routing with load balancing
pools

2. DNS-Based Selection (Lower Priority) - Location-based dynamic UPF
discovery

3. Fallback Pool (Lowest Priority) - Default pool when no rules match and
DNS fails

UPF Selection Decision Flow

L3 T L L] L3

metrics diameter =3x8 = e pCo
Frometheus Exparber GE Interiace GTP-C Interface FFLP Intertace IP Poal Managemernt Hetwork Parameters

Available Match Fields

Static rules can match on any of these session attributes:

Match Field

:imsi

:apn

:serving network plmn id

:sgw_ip address

:uli tai plmn_id

:uli ecgi plmn id

Description

International Mobile
Subscriber Identity

Access Point Name /
DNN

Serving network
identifier

SGW IP address

Tracking Area PLMN ID

E-UTRAN Cell PLMN ID

Example
Pattern

~313380.* (US
carrier)

~internet\. or

~ims\.

~313380%

~10\.100\. .*

~313. %

7313.%*

Selection Methods Comparison

Method

UPF Pools

APN-
Based

IMSI-
Based

DNS-
Based

Fallback
Pool

Dry-Run
Mode

When to Use

Production
deployments

Service
differentiation

Roaming
scenarios

MEC/Edge
computing

Safety net

Testing configs

Pros

Load balancing, HA,

flexible weights

Route IMS/Internet
separately

Geographic routing

Dynamic, location-
aware

Always have a UPF

Safe testing

Cons

Requires multiple
UPFs

Static
configuration

Regex complexity

Requires DNS
infrastructure

May not be
optimal

No real traffic

Complete Session Establishment Flow

This diagram shows the complete end-to-end flow of session establishment
including UPF selection and PCO population:

SGW-C PGW-C ‘ PCRF (Gx) ‘ ‘ OCS (Gy) ‘ ‘ DNS Server ‘ ‘ Selected UPF ‘

Create Session Request
(IMSI, APN, ULI, etc.)

1. Extract Session Attributes
IMSI, APN, PLMN, TAI, ECGI

Allocate UE IP
from APN Pool

CCR-Initial (Gx)
Request PCC Rules

CCA-Initial (Gx)
PCC Rules + Charging Info

2. Check if Online Charging
Required (Rating-Group present?)

_ [Online Charging Required]

CCR-Initial (Gy
Request Quota

CCA-Initial (Gy)
Grant Quota

3. UPF Selection Process

Evaluate Static Rules
by Priority (High-Low)

Iy [Rule Match Found]

Rule Matched!
Get UPF Pool from Rule

[No Rule Match]

| [DNS Enabled]

NAPTR Query
Based on ULI

UPF IP Address(es)

[DNS Disabled/Failed]

Use Fallback Pool

4. Filter to Healthy UPFs
Check PFCP Association + Heartbeats

Weighted Random Selection
Handle Active/Standby

Selected UPF Chosen!

‘ 5. PCO Population Process ‘

- [Rule Matched
ith PCO
Override]

Use Rule PCO Override
+ Global PCO Fallback

[No PCO
Override]
Use Global PCO Config
| [P-CSCF Discovery Enabled]
- [Per-Rule Discovery FQDN]

Query p_cscf_discovery_fqdn
P-CSCF IP List
[Global Discovery Enabled]

Query Global P-CSCF DNS

P.CQCF ID | ict

- [DNS Success]

Use Discovered P-CSCF

[DNS Failed]

Use Static P-CSCF List
(Rule or Global)

[Discovery Disabled]

Use Static P-CSCF List

Build Complete PCO:
DNS, NBNS, P-CSCF, MTU

‘ 6. PFCP Session Establishment ‘

PFCP Session Establishment
PDRs, FARs, QERs, URRs

PFCP Session Establishment Response
F-TEID for S5/58-U

7. Return to SGW-C

Create Session Response
UE IP, PCO, Bearer Info

Session Established
User Traffic Flows Through UPF

Session Active
v UPF Selected: Health-Aware + Weighted
v PCO Configured: DNS + P-CSCF + MTU
v Charging: Quota Granted (if online)
v Traffic Flowing

Selected UPF

‘ e e ‘ ‘ ocsen ‘ ‘ oHs server ‘

Key Decision Points:
1. UPF Selection Priority:

o Static Rules (Pattern Match) - DNS Discovery - Fallback Pool
o Health filtering applied at all stages
o Active/Standby logic for high availability

o See: for UPF communication details

2. PCO Population Priority:

o Rule PCO Override = P-CSCF DNS Discovery = Global PCO Config

o Per-field merging (rule overrides specific fields, global provides
defaults)

o See: for detailed PCO parameters

3. P-CSCF Discovery Priority:

o Per-Rule FQDN — Global DNS Discovery — Static Rule PCO - Global
Static PCO

o See: for discovery metrics and health tracking
4. Charging Integration:

o PCRF determines if online charging required (Rating-Group + Online=1)

o OCS grants quota before session establishment

o PGW-C tracks quota and requests more via CCR-Update

o See: and for charging
details

Complete Configuration Example

Here's a complete example showing multi-pool UPF selection with automatic
peer registration:

config :pgw c,
PFCP Interface - All UPFs are auto-registered from
upf selection
sxb: %{
local ip address: "127.0.0.20"
},

UPF Selection Logic - ALl UPFs defined here are automatically
registered
upf selection: %{
DNS-based selection settings
dns enabled: false,
dns query priority: [:ecgi, :tai, :rai, :sai, :cgi],
dns suffix: "epc.3gppnetwork.org",
dns_timeout ms: 5000,

Static selection rules (evaluated in priority order)

rules: [
Rule 1: IMS Traffic - Highest Priority
%{

name: "IMS Traffic",
priority: 20,
match field: :apn,
match regex: "“ims",
upf pool: [
%s{remote ip address: "10.100.2.21", remote port: 8805,
weight: 80},
%s{remote ip address: "10.100.2.22", remote port: 8805,
weight: 20}
]
}

Rule 2: Enterprise APN
%{
name: "Enterprise Traffic",
priority: 15,
match field: :apn,
match regex: "”~(enterprise|corporate)\.apn”,
upf pool: [
%s{remote ip address: "10.100.3.21", remote port: 8805,
weight: 100}
]
¥,

Rule 3: Internet Traffic - Load Balanced
%{

name: "Internet Traffic",

priority: 5,

match field: :apn,

match regex: "“internet",

upf pool: [
%s{remote ip address: "10.100.1.21", remote port: 8805,
weight: 33},
%{remote ip address: "10.100.1.22", remote port: 8805,
weight: 33},

%s{remote ip address: "10.100.1.23", remote port: 8805,
weight: 34}
]
}
1,

Fallback pool - Used when no rules match and DNS fails
fallback pool: [
%s{remote ip address: "127.0.0.21", remote port: 8805,
weight: 100}
]

Key Features

Current Format:

[0 Automatic Registration: All UPFs from upf selection are
automatically registered at startup

[] Centralized Configuration: All UPF selection and peer configuration in
one section

[0 Required Pools: All rules use upf pool format (even for single UPF)

[0 Structured Fallback: Dedicated fallback pool with weighted
distribution

[0 DNS Integration: DNS settings alongside selection rules

[Dynamic Registration: DNS-discovered UPFs are automatically
registered on first use

¢ [] Health Monitoring: All configured UPFs are monitored with 5-second
heartbeats

Migration from Previous Format:

* Removed: sxb.peer list field (no longer needed)
* Removed: selection list embedded in peer configurations

* All UPF definitions now go in upf selection rules and fallback pool
How UPF Pools Work:
1. Health-Aware Selection: Only healthy UPFs receive traffic

o Healthy = PFCP association active + less than 3 consecutive missed
heartbeats

o Unhealthy UPFs are automatically filtered out
o Falls back to all UPFs if none are healthy (fail-fast)

2. Active/Standby Support: Use weight: 0 for standby UPFs

o Active UPFs (weight > 0): Receive traffic when healthy

o Standby UPFs (weight == 0): Only receive traffic when all active UPFs
are down

o Standby UPFs are treated as weight: 1 when activated

3. Weighted Random Selection: Each session is randomly assigned to a
healthy UPF based on weights

o In the example above: 70% go to .21, 20% to .22, 10% to .23
o Higher weight = more sessions assigned to that UPF

o Equal weights = equal distribution

4. Automatic Registration: All UPFs in pools are automatically registered at
startup

o Auto-generated names: "UPF-<ip>:<port>"
o Default settings: passive PFCP association, 5-second heartbeats

o Immediate health tracking for all configured UPFs

Health-Aware Selection with Active/Standby

Log: No healthy UPFs in
pool
Using full pool as
fallback

No, All

\ /

\
=
| cocsmnavan |

@

N\

No, nhealthy

Activate Standby UPFs
weight 0 - 1

- [erep (A it G orim

/

|
=D
Weighted Random Selection Example:

Pool: [
UPF-A: weight 50, healthy v
UPF-B: weight 30, healthy v
UPF-C: weight 20, healthy v
|

Total Weight: 50 + 30 + 20 = 100

Weight Ranges:
UPF-A: 0-49 (50%)
UPF-B: 50-79 (30%)
UPF-C: 80-99 (20%)

Random number: 63 - Selects UPF-B

Random number: 15 - Selects UPF-A
Random number: 91 - Selects UPF-C

Active/Standby Failover Example:

Initial Pool: [
UPF-A: weight 100, healthy v (Active)
UPF-B: weight 0, healthy v (Standby)
]

Scenario 1: UPF-A Healthy
- Use Active Pool: [UPF-A: 100]
-» All traffic to UPF-A

Scenario 2: UPF-A Fails

- No active UPFs healthy

- Activate Standby: [UPF-B: 1]

-» ALl traffic fails over to UPF-B

- Log: "All active UPFs down, activating standby UPFs"

Scenario 3: Both Unhealthy

-» No healthy UPFs

- Use full pool: [UPF-A: 100, UPF-B: 0]

- Select with weights (attempt connection, may fail)

- Log: "No healthy UPFs in pool, using full pool as fallback"

Common Weight Patterns:

Equal distribution (25% each)
upf pool: [
%s{remote ip address: "10.

0.1.1", remote port: 8805, weight: 1},
%s{remote ip address: "10.0.

0.

0.

.2", remote port: 8805, weight: 1},
%s{remote ip address: "10. .
%s{remote ip address: "10. .

3", remote port: 8805, weight: 1},
4", remote port: 8805, weight: 1}

e

Primary/backup load balanced (90% / 10%)
upf pool: [

%{remote ip address: "10.0.1.21", remote port: 8805, weight:
90},

%s{remote ip address: "10.0.1.22", remote port: 8805, weight: 10}
]

Active/Standby (100% primary, 0% standby until primary fails)
upf pool: [

%s{remote ip address: "10.0.1.21", remote port: 8805, weight:
100}, # Active

%s{remote ip address: "10.0.1.22", remote port: 8805, weight: 0}
Standby (only when active down)
]

Active with multiple standbys (load balanced when activated)
upf pool: [

%{remote ip address: "10.0.1.1", remote port: 8805, weight:
100}, # Active

%s{remote ip address: "10.0.1.2", remote port: 8805, weight: 0},
Standby 1

%{remote ip address: "10.0.1.3", remote port: 8805, weight: 0}
Standby 2
]
Result: Active gets 100%. If active fails, standbys get 50/50%.

A/B testing (50% / 50%)
upf pool: [

%s{remote ip address: "10.0.1.100", remote port: 8805, weight:
50}, # 0ld version

%s{remote ip address: "10.0.1.200", remote port: 8805, weight:
50} # New version

]

Use Cases:

e Active/Standby Failover: Use weight: 0 for hot standby UPFs that only
activate when primaries fail

¢ Health-Aware HA: Automatic failover when UPFs lose PFCP association or
miss heartbeats

e Horizontal Scaling: Distribute load across multiple UPFs to increase
capacity
e High Availability: Automatic distribution prevents single UPF overload

e Gradual Rollouts: Use weights for canary deployments (e.g., 95% old, 5%
new)

e Cost Optimization: Route more traffic to higher-capacity UPFs

e Geographic Distribution: Balance sessions across edge UPFs
PCO (Protocol Configuration Options) Overrides:

Each UPF selection rule can optionally specify custom PCO values that override
the default PCO configuration for matching sessions. This allows different APNs
or traffic types to receive different network parameters.

How PCO Overrides Work:

1. Partial Overrides: Only specify the PCO fields you want to override
2. Default Fallback: Unspecified fields use values from the main pco config
3. Rule-Specific: Each rule can have different PCO overrides

4. Priority Merging: Rule PCO takes priority over default PCO

PCO Population Hierarchy

SEW-C PGW-C PCRF (Gx) OCS (Gy) DS Server Selected LPE

Create Session Reguest
(IMS1, APN_ UL, etc.)

1. Extract Session Attributes
IMSI, APN, PLMN, TAI ECGI

Allocabe LE P
froam APH Pool

—

CCR-Iratsal |G
Reguest PCC Rules

OCAInitial [Gax)
POC Rusles + Charging Info

"

. Chedl if Online Charging
Aequired {Rating-Group present?)

ale [Oniine Charging Required]

CCR-Inatial {Gy)
Reguest Quota

OCA-Initial (Gy}
Grant Quota

OmniCharge OmniRAN

- -

Downloads ¥ English + Omnitouch Website [*

alt [Ruse Miatch Found)

Rule Matched!
Get LWPF Pood from Aule

[Mo Rule Match]

alt [DNS Enabled)

HAFTR Query
Based on UL

UPF IF Address]es)

[DME DisabledFailed]
Use Fallback Pool
4. Filter to Healthy UPFs
Check PFCP Association + Heartbeats

Weighted Random Selection
Handle ActiveyStandby

—

Selected UPF Chosen!

5. PCO Population Process

alt [Rule Matched
withi FPCO
Chrerride |

Use Aule PCO Overmide
+ Gilobal PCO Fallback

[He PEO
Orvermide]

Use Global PCO Config

alt [F-CSCF Discovery Enabled)

alk [Per-Rule Discovery FODM)

Query p_cscf_discovery_fogdn

P-CSCE IP Lisk

|Global Discovery Enabled]

Query Global P-C5CF DNS

BLFESrE I et

=4

alt [DME Success]

Use Discovered P-CSCF

DS Fadled)

Use Static P-CSCF List
(Rule ar Global)

Use Static P-CSCF Lisk

Build Complete PCO:
DHS, NBNS, POSCE, MTU

&. PFCP Sesmon Establishment

| Descovery Disabled]

PFCP Sesmion Estableshment
FDAs, FARs, GQERs, URARAs

FEOP Sescion Establishment Response
F-TEID far SS%8-U

7_ Return to SGW-C

Create Session Response
LUE IP, PCO, Bearer Info

L

Session Actrve

+ UPF Selected: Mealth-fsvare + ‘Wesghted
+ PO Configured: DNS + P-CSCF + MTU
+ Charging: Quota Granmted (if online)

« Traffic Flowing

SEW-C PGW-C

Session Established
User Traffic Flows Through UPF

PCRE [Gx) OCS [Gy) DS Server

Priority Order for Each PCO Field:

1. Rule PCO Override (Highest Priority)
2. P-CSCF DNS Discovery (for P-CSCF addresses only)
3. Global PCO Configuration (Lowest Priority / Fallback)

Example: IMS Rule Overrides DNS, Enterprise Rule Overrides

Everything

Selected UPF

IMS Session (matched "IMS Traffic" rule):

- DNS Servers: FROM GLOBAL (not overridden in rule)

- P-CSCF: FROM DNS DISCOVERY (p cscf discovery fqdn set in rule)
| L Fallback: FROM RULE if DNS fails

L- MTU: FROM GLOBAL (not overridden in rule)

Enterprise Session (matched "Enterprise Traffic" rule):
- DNS Servers: FROM RULE (192.168.1.10, 192.168.1.11)
|— P-CSCF: FROM GLOBAL (not overridden in rule)

L MTU: FROM RULE (1500)

Default Session (no rule matched):
- DNS Servers: FROM GLOBAL

- P-CSCF: FROM GLOBAL or DNS if global discovery enabled
L- MTU: FROM GLOBAL

Available PCO Override Fields:

e primary dns server address - Primary DNS server IP

e secondary dns server address - Secondary DNS server IP

e primary nbns server address - Primary WINS server IP

e secondary nbns server address - Secondary WINS server IP

e p cscf ipv4 address list - List of P-CSCF server IPs (for IMS) - See
and for dynamic P-CSCF discovery

ipv4 link mtu size - MTU size in bytes
P-CSCF Discovery Per Rule:

In addition to PCO overrides, UPF selection rules can specify dynamic P-CSCF
discovery:

* p cscf discovery fqdn - (String) FQDN for DNS-based P-CSCF discovery
(e.g., "pcscf.mnc380.mcc313.3gppnetwork.org")

When this parameter is set:

1. PGW-C performs DNS lookup for the specified FQDN during session
establishment

2. DNS server returns list of P-CSCF IP addresses

3. Discovered P-CSCF addresses are sent to UE via PCO

4. If DNS lookup fails, falls back to p_cscf ipv4 address list from PCO
override (if specified) or global PCO config
5. See for monitoring discovery success/failure rates

This is particularly useful for:

e IMS APNs - Different IMS networks with different P-CSCF servers

e Multi-tenant deployments - Different enterprises with dedicated P-CSCF
infrastructure

* Geographic routing - DNS returns closest P-CSCF based on UE location

e High availability - DNS automatically returns only healthy P-CSCF servers

Example: IMS Traffic with Custom P-CSCF:

rules: [
%q{
name: "IMS Traffic",
priority: 20,
match field: :apn,
match regex: "~ims",
upf pool: [
%{remote ip address: "10.100.2.21", remote port: 8805,
weight: 80},
%s{remote ip address: "10.100.2.22", remote port: 8805,
weight: 20}
15
P-CSCF Discovery: Dynamically query DNS for P-CSCF addresses
DNS lookup returns current P-CSCF IPs based on this FQDN
p cscf discovery fqdn: "pcscf.mnc380.mcc313.3gppnetwork.org",
IMS sessions get custom P-CSCF servers (used as fallback if
DNS fails)
pco: %{
p cscf ipv4 address list: ["10.101.2.100", "10.101.2.101"]
DNS, NBNS, MTU will use defaults from main pco config

}
}

Example: Enterprise Traffic with Custom DNS:

rules: [
%{
name: "Enterprise Traffic",
priority: 15,
match field: :apn,
match regex: ""(enterprise|corporate)\.apn",
upf pool: [
%s{remote ip address: "10.100.3.21", remote port: 8805,
weight: 100}
1,
Enterprise sessions get corporate DNS and custom MTU
pco: %{
primary dns server address: "192.168.1.10",
secondary dns server address: "192.168.1.11",
ipv4 link mtu size: 1500
P-CSCF, NBNS will use defaults from main pco config

Example: Complete Override (All PCO Fields):

rules: [
%q{
name: "IoT APN - Fully Custom",
priority: 10,
match field: :apn,
match regex: "“iot\.m2m",
upf pool: [
%s{remote ip address: "10.100.5.21", remote port: 8805,
weight: 100}

Il
IoT sessions get completely custom PCO

pco: %{

primary dns server address: "8.8.8.8",

secondary dns server address: "8.8.4.4",

primary nbns server address: "10.0.0.100",

secondary nbns server address: "10.0.0.101",

p cscf ipv4 address list: [], # No P-CSCF for IoT

ipv4 link mtu size: 1280 # Smaller MTU for constrained
devices

}
}

Use Cases:

e IMS/VOLTE: Provide carrier-specific P-CSCF servers for voice services

e Enterprise APNs: Route corporate traffic through company DNS servers
e l1oT/M2M: Use public DNS and optimized MTU for low-bandwidth devices
e Roaming: Provide local DNS servers for visiting subscribers

e Service Differentiation: Different network parameters per service type
DNS-Based UPF Selection:

Enable dynamic UPF selection based on User Location Information (ULI) using
DNS NAPTR queries. DNS settings are now configured within the

upf selection section.

Note: This provides geographic or topology-based UPF selection. See
for PFCP association setup with dynamically discovered UPFs and
for session establishment flows.

upf selection: %{
Enable DNS-based selection
dns enabled: true,

Location types to query in priority order
dns query priority: [:ecgi, :tai, :rai, :sai, :cgil],

DNS suffix for 3GPP NAPTR queries
dns suffix: "epc.3gppnetwork.org",

DNS query timeout in milliseconds
dns_timeout ms: 5000,

... rules and fallback pool ...

DNS-based selection works as follows:

1. Priority: DNS selection is used only when NO static rules match (lower
priority)
2. Query Generation: Builds DNS NAPTR queries based on UE location:
o ECGI query: eci-
<hex>.ecgi.epc.mnc<MNC>.mcc<MCC>.epc.3gppnetwork.org
o TAl query: tac-lb<hex>.tac-
hb<hex>.tac.epc.mnc<MNC>.mcc<MCC>.epc.3gppnetwork.org
o RAlI, SAI, CGI queries follow similar 3GPP TS 23.003 format
3. Fallback Hierarchy: Tries each location type in priority order until a match
is found
4. Peer Matching: DNS results are filtered against configured peer list

5. Selection: Chooses matching peer (currently first match, load-based
selection coming soon)

Example DNS Records (configure on your DNS server):

; NAPTR record for TAC 100 in PLMN 313-380
tac-1b64.tac-hb00.tac.epc.mnc380.mcc313.epc.3gppnetwork.org IN
NAPTR 10 50 "a" "x-3gpp-upf:x-sxb" "" upf-edge-1l.example.com.

; A record for the UPF
upf-edge-1.example.com IN A 10.100.1.21

Use Cases:

e Multi-access Edge Computing (MEC): Route sessions to geographically
closest edge UPFs

e Dynamic UPF Discovery: Add/remove UPFs without reconfiguring PGW-C
e Load Balancing: Distribute load across UPFs based on location

e Network Slicing: Route different slices to different UPFs per location

UPF Health Monitoring

Automatic Health-Aware Selection: The PGW-C continuously monitors the
health of all UPFs and automatically excludes unhealthy UPFs from selection.

Health Check Criteria

A UPF is considered healthy when ALL of the following conditions are met:

1. PFCP Association Active: The UPF has an established PFCP association
2. Heartbeat Responsiveness: Less than 3 consecutive missed heartbeats

3. Process Alive: The UPF peer GenServer process is running

A UPF is considered unhealthy if ANY of the following are true:

e PFCP association is not established (associated: false)
e 3 or more consecutive heartbeat timeouts

e UPF peer process has crashed or is unresponsive

Monitoring Mechanism

For Configured UPFs (in upf selection):

Health tracking starts immediately at boot

PFCP association is monitored continuously

Heartbeats are sent every 5 seconds

missed heartbeats consecutive counter tracks consecutive failures

All UPFs from rules and fallback pool are automatically registered
For DNS-Discovered UPFs (dynamic registration):

¢ Assumed healthy until first session attempt
e Registered automatically on first use

e Health tracking begins after registration

Selection Behavior

Active/Standby Mode (when using weight: 0):

1. Filter to only healthy UPFs

2. Separate into active (weight > 0) and standby (weight == 0)

3. Use active UPFs if any are healthy

4. Activate standby UPFs (treat as weight 1) if all active are unhealthy
5. Fall back to full pool if no healthy UPFs exist

Load-Balanced Mode (all weight > 0):

1. Filter to only healthy UPFs
2. Perform weighted random selection among healthy UPFs

3. Fall back to full pool if no healthy UPFs exist

Logging:

[debug] Using active UPF pool (2/3 healthy UPFs, 1 standby)
[info] All active UPFs down, activating standby UPFs (1 standby
UPFs, treating weight 0 as 1)

[warning] No healthy UPFs in pool (3 total), using full pool as
fallback

Checking UPF Health

Programmatically:

Check if a specific UPF is healthy
iex> PGW C.PFCP Node.is peer healthy?({10, 100, 1, 21})
true

Get detailed health information
iex> PGW _C.PFCP_Node.get peer health({10, 100, 1, 21})
%q{

associated: true,

missed heartbeats: 0,

healthy: true,

registered: true

Via Web Ul:

e Navigate to /upf selection in the control panel
e View real-time health status for all UPFs in each pool

e Status badges: [] Active-UP, [] Standby-Ready, [] Active-DOWN, [] Not
Associated

e Role badges: ACTIVE (weight > 0), STANDBY (weight == 0), DYNAMIC (DNS-
discovered, not in config)

e Heartbeat miss counter displayed for associated UPFs

Health Monitoring Best Practices

1. Configure UPFs in upf_selection: All UPFs in rules and fallback pools are
automatically monitored

upf selection: %{
rules: [
%{
name: "Internet Traffic",
priority: 10,
match field: :apn,
match regex: "“internet",
upf pool: [
%s{remote ip address: "10.100.1.21", remote port: 8805,
weight: 100}
]
}

1
fallback pool: [

%{remote ip address: "10.100.2.21", remote port: 8805,
weight: 100}
]

}
ALl UPFs automatically get:

- 5-second heartbeats
- Health monitoring from startup
- Auto-generated names

2. Use standby UPFs: Configure hot standbys with weight: 0 for automatic
failover

upf pool: [

%s{remote ip address: "10.1.1.1", remote port: 8805, weight:
100}, # Active

%s{remote ip address: "10.1.1.2", remote port: 8805, weight:
0} # Standby
]

3. Monitor via Web Ul: Regularly check UPF health status in the control
panel

4. Heartbeat monitoring: The system uses a fixed threshold of 3
consecutive missed heartbeats to determine peer hea.

Dynamic UPF Registration

Feature: The PGW-C automatically registers and monitors UPFs discovered
through DNS, even if they aren't in the upf_selection configuration.

How It Works

When any selection method (static rules, pools, or DNS) returns a UPF that's
not already registered, the system automatically:

1. Creates a PFCP Peer: Generates a default peer configuration for the
unknown UPF

2. Initiates PFCP Association: Attempts to establish a PFCP association
with the UPF

3. Registers in Peer Registry: Adds the UPF to the internal peer tracking
system

4. Starts Heartbeat Monitoring: Begins periodic heartbeat exchanges (10-
second intervals)

5. Tracks Liveness: Monitors the UPF for failures and recovery

Default Configuration for Dynamic UPFs

When a UPF is dynamically registered, it receives the following default
configuration:

%{

name: "Dynamic-UPF-<IP>", # e.g., "Dynamic-UPF-10-
100-1-21"

remote ip address: <discovered ip>, # IP from DNS or
selection

remote port: 8805, # Standard PFCP port
(overridable)

initiate pfcp association setup: true, # PGW-C initiates
association

heartbeat period ms: 10 000 # 10-second heartbeat
interval

}

Note: Dynamic UPFs are registered purely for association management.
They are used as targets in upf selection rules, not as sources of
selection logic.

Example: DNS Returns Unknown UPF

DNS query returns: upf-edge-2.example.com -> 10.200.5.99
This UPF is NOT in your upf selection configuration

Dynamic registration flow:

1. System detects unknown UPF 10.200.5.99

2. Logs: "UPF {10, 200, 5, 99} not pre-configured, attempting

dynamic registration..."

3. Sends PFCP Association Setup Request to 10.200.5.99:8805

4. If UPF responds: Association established, session continues
normally

5. If UPF doesn't respond: Session fails gracefully with clear
error message

Benefits

[] True Dynamic Discovery: DNS-based UPF selection now works without pre-

configuration [J] Automatic Scaling: Add UPFs to your network without
restarting PGW-C [] Graceful Degradation: If association fails, sessions fail
cleanly (no crashes) [] Backwards Compatible: Pre-configured UPFs continue
to work exactly as before [J Full Monitoring: Dynamic UPFs get the same
heartbeat monitoring as static peers

Failure Handling

If a dynamically discovered UPF fails to respond to PFCP Association Setup:

[error] PFCP Association Setup failed for dynamic UPF {10, 200, 5,
99}: :timeout
[error] Failed to dynamically register UPF {10, 200, 5, 99}:
:timeout.

Session creation will fail. Consider adding this UPF to
the upf selection configuration.

The session creation will fail, but the PGW-C remains stable and continues

processing other sessions.

When to Pre-Configure vs. Dynamic Registration

Scenario

Production Core UPFs

DNS-Discovered Edge
UPFs

Test/Development
UPFs

Mission-Critical UPFs

Ephemeral/Auto-
Scaled UPFs

Monitoring Dynamic UPFs

Recommendation

Pre-configure in upf selection (explicit
configuration, monitored from startup)

Use dynamic registration (scales automatically
with infrastructure)

Either approach works (dynamic is more
convenient)

Pre-configure in upf selection (ensures
monitoring from startup)

Use dynamic registration (UPFs come and go
dynamically)

Dynamic UPFs appear in logs with their auto-generated names:

[info] Creating dynamic PFCP peer configuration for Dynamic-UPF-
10-200-5-99 ({10, 200, 5, 99}:8805)

[info] Dynamic UPF peer Dynamic-UPF-10-200-5-99 registered
successfully with PID #PID<0.1234.0>

You can query the peer registry to see all registered peers (both static and

dynamic):

Get all registered peers
PGW C.PFCP Node.registered peer count()

Check if a specific UPF is registered
PGW C.PFCP_Node.get peer({10, 200, 5, 99})
Returns: {:o0k, #PID<0.1234.0>} if registered, :error otherwise

Custom Port for Dynamic UPFs
If your UPFs use a non-standard PFCP port, you can manually trigger

registration:

Register UPF at custom port
PGW C.PFCP_Node.register dynamic peer({10, 200, 5, 99}, 9999)

However, DNS-based selection and automatic registration always use port 8805
(standard PFCP port).

UPF Selection Dry-Run Mode:

Test and validate your UPF selection configuration without affecting real
sessions:

config :pgw c,
Enable dry-run mode for testing (disabled by default)
upf selection dry run: true

When dry-run mode is enabled:

1. No Real Assignment: Sessions are not actually assigned to UPFs
2. Detailed Logging: Selection decisions are logged with full details
3. Error Return: assign sxb peer/1 returns {:error, :dry run mode}
4. Session Prevention: Returning an error prevents session creation

5. Both Methods: Works with both static rules and DNS-based selection

Log Output Example:

[warning] ~ UPF SELECTION DRY-RUN MODE ENABLED - No actual
assignment will occur

[info] [J DRY-RUN: Static rule matched
Method: Static Rule
Match Field: :apn
Match Regex: ~r/”internet\./
Priority: 10
Selected UPF: 10.0.1.21:8805

[warning] [J DRY-RUN: Would assign UPF but skipping actual
assignment

Session IMSI: 313380000000670

Session APN: internet.apn

Selection Method: static

Would Link To: 10.0.1.21:8805

A Returning error to prevent session creation

Testing via LiveView Ul:

The UPF Selection LiveView page (/upf selection) includes an interactive
testing interface:

1. Navigate to the UPF Selection page in the web panel
2. Scroll to the "Test UPF Selection" section

3. Enter test session attributes:
o |IMSI (e.g., 313380000000670)

o APN (e.g., internet.apn)
o Serving Network PLMN ID (e.g., 313380)
4. Click "Test Selection" to simulate the selection

5. View detailed results showing:
o Which rule matched (or if DNS would be used)

o Selected UPF and peer name
o Match field and pattern details
o Rule priority

The LiveView testing interface simulates the selection logic without requiring
dry-run mode to be enabled globally, making it safe to test in production

environments without affecting real traffic.

Use Cases:

Configuration Testing: Validate routing rules before deploying to
production

Troubleshooting: Understand why specific sessions route to specific UPFs

Training: Demonstrate UPF selection logic to operations teams

Development: Test new selection rules during development
Match Fields:

e :imsi - International Mobile Subscriber Identity

e :apn - Access Point Name (APN/DNN)

e :serving network plmn id - Serving network PLMN ID
e :sgw ip address - SGW IP address

e :uli tai plmn_id - Tracking Area PLMN ID

* :uli ecgi plmn id - E-UTRAN Cell PLMN ID

Heartbeat Tuning:

Aggressive (detect failures quickly)
heartbeat period ms: 2 000 # 2 seconds

Standard (recommended)
heartbeat period ms: 5 000 # 5 seconds

Relaxed (high-latency networks)
heartbeat period ms: 10 000 # 10 seconds

See:

UE IP Pool Configuration

Purpose

Configure IP address pools for UE allocation, organized by APN.

Configuration Block

config :pgw c,
ue: %{
subnet map: %{

APN "internet" pools

"internet" => [

"100.64.0.0/20"

1,

APN "ims" pools

Ilimsll => [

*100.64.16.0/22"

]'

Default pool for unknown APNs

default: [

"42.42.42.0/24"

Parameters

Parameter Type

subnet map Map

List

default
(Subnets)

Required

Yes

Yes

4094 usable IPs

1022 usable IPs

254 usable IPs

Description

Maps APN names to subnet
lists

Fallback pool for unknown
APNs

Subnet Format

CIDR Notation: <network address>/<prefix length>

Usable IP Calculation:

CIDR Total IPs

/24 256
/23 512
/22 1024
/21 2048
/20 4096
/16 65536
Examples

Usable IPs

254

510

1022

2046

4094

65534

Simple Configuration:

ue: %{
subnet map: %{
"internet" => ["100.64.1.0/24"],
["42.42.42.0/24"]

default:

Production Configuration:

Example Range

100.64.1.1 - 100.64.1.254

100.64.0.1 - 100.64.1.254

100.64.0.1 - 100.64.3.254

100.64.0.1 - 100.64.7.254

100.64.0.1 - 100.64.15.254

100.64.0.1 - 100.64.255.254

ue: %{
subnet map: %{
General internet - large pool
"internet" => |
"100.64.0.0/18" # 16,382 IPs
1,

IMS (VoLTE)
||ims|| = [

"100.64.64.0/22" # 1,022 IPs
1,

Enterprise APN
"enterprise.corp" => |
"10.100.0.0/16" # 65,534 IPs

]I

IoT devices
"iot.m2m" => [

"100.64.72.0/20" # 4,094 IPs
1,

Default fallback

default: |
"42.42.42.0/24" # 254 IPs

Load Balancing (Multiple Subnets per APN):

ue: %{
subnet map: %{
"internet" => |

"100.64.0.0/22", # 1022 IPs
"100.64.4.0/22", # 1022 IPs
*100.64.8.0/22", # 1022 IPs

*100.64.12.0/22" # 1022 IPs

1,
Total: 4088 IPs, randomly distributed

default: ["42.42.42.0/24"]

IPv6 Support:

ue: %{
subnet map: %{
IPv4 pools
“internet" => |
"100.64.0.0/20"
1,

IPv6 pools (prefix delegation)
"internet.ipv6" => [

"2001:db8:1::/48"
I,

default: |
"42.42.42.0/24"

Recommended IP Ranges
RFC 6598 (Carrier-Grade NAT):

* Range: 100.64.0.0/10

e Size: ~4 million IPs

e Purpose: Designed for service provider NAT
Private IP Ranges (RFC 1918):

e 10.0.0.0/8 - 16 million IPs
e 172.16.0.0/12 - 1 million IPs
e 192.168.0.0/16 - 65,534 IPs

See:

PCO Configuration

Purpose

Configure Protocol Configuration Options (PCO) sent to UE.
Configuration Block

config :pgw c,
pco: %{
DNS servers
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",

NBNS servers (optional, for Windows devices)
primary nbns server address: nil,
secondary nbns server address: nil,

P-CSCF addresses for IMS
p cscf ipv4 address list: ["10.0.0.50", "10.0.0.51"],

IPv4 MTU size
ipv4 link mtu size: 1400

Parameters

Parameter Type Default Description
: String _ Primary DNS
primary dns server address Required
- = - (IPv4) server
String _ Secondary DNS
secondary dns server address Optional
(IPv4) server

Primary NBNS

, String ,
primary nbns server address nil (NetBIOS)
(IPv4)
server
String , Secondary
secondary nbns server address nil
(IPv4) NBNS server
, P-CSCF
: , List
p cscf ipv4 address list [] addresses for
(IPv4)
IMS
Maximum
ipv4 link mtu size Integer 1400 Transmission
Unit size

Examples

Public DNS (Google):

pco: %{
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",
ipv4 link mtu size: 1400

¥

Private DNS:

pco: %{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11",
ipv4 link mtu size: 1400

}

IMS Configuration:

pco: S%{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11",

P-CSCF for IMS/VoLTE

p cscf ipv4 address list: [
"10.0.0.50", # Primary P-CSCF
"10.0.0.51" # Secondary P-CSCF

1

ipv4 link mtu size: 1400

NBNS (Windows Compatibility):

pco: %{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11",
primary nbns server address: "10.0.0.20",
secondary nbns server address: "10.0.0.21",
ipv4 link mtu size: 1400

MTU Tuning:

Standard Ethernet
ipv4 link mtu size: 1500

Reduced for tunneling overhead
ipv4 link mtu size: 1400

Jumbo frames (if supported)
ipv4 link mtu size: 9000

See:

Web Ul Configuration

Purpose

Configure the Control Panel web interface and REST API endpoints for
managing and monitoring OmniPGW.

Note: Web Ul configuration is only active in non-test environments. The

configuration is automatically skipped when config env() is :test,
:test mock, or :test impl.

Control Panel Configuration

config :control panel,
Define page navigation order
page order: [
"/application",
"/configuration",
"/topology",
"/ue search",
"/pgw sessions",
"/session history",
"/ip _pools",
"/diameter",
"/pfcp sessions",
"/upf status",
"/upf selection",
"/pcscf monitor",
"/gy simulator",
"/logs"

HTTPS Endpoint for Control Panel
config :control panel, ControlPanelWeb.Endpoint,
url: [host: "0.0.0.0", path: "/"],
https: [
port: 8086,
keyfile: "priv/cert/omnitouch.pem",
certfile: "priv/cert/omnitouch.crt"
1,
render errors: [
formats: [html: ControlPanelWeb.ErrorHTML, json:
ControlPanelWeb.ErrorJSON],
layout: false
]

Control Panel Parameters

Parameter

page order

url.host

url.path

https.port

https.keyfile

https.certfile

render _errors.formats

render errors.layout

Type

List (Strings)

String (IP)

String

Integer

String (Path)

String (Path)

Keyword List

Boolean/Module

Required

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Description

Navigation
menu page
order (list of
URL paths)

Host address for
URL generation

Base path for all
routes (usually
II/II)

HTTPS port for
web interface

Path to SSL/TLS
private key file

Path to SSL/TLS
certificate file

Error page
rendering
modules

Error page
layout (false =
no layout)

REST API Configuration

config :api ex,
api: %{
Network settings
port: 8443,
listen ip: "0.0.0.0",

API metadata

product name: "PGW-C",
title: "API - PGW-C",
hostname: "localhost",

TLS settings

enable tls: true,

tls cert path: "priv/cert/omnitouch.crt",
tls key path: "priv/cert/omnitouch.pem",

Route definitions
routes: [
%q{
path: "/status",
module: ApiEx.Api.StatusController,
actions: [:index]

APl Parameters

Parameter Type Default Description
port Integer 8443 HTTPS port for REST API

API listen address (0.0.0.0

listen i String (IP "0.0.0.0"
—¥ g/(IP) = all interfaces)

, Product name (for API
product name String "PGW-C"

metadata)

, “"API - PGW- , .
title String = APl documentation title
hostname String "localhost" APl server hostname
enable tls Boolean true Enable HTTPS for API

String _ Path to SSL/TLS certificate
tls cert path Required ,
(Path) file
String Path to SSL/TLS private key
tls key path Required
s (Path) a file
List N
routes [] API route definitions
(Maps)

Route Definition Format

Each route in the routes list is a map with:

Field Type Description Example

_ URL path for the
path String "/status"
route

Controller module : :
module Module , ApiEx.Api.StatusController
handling requests

: List Allowed controller ,
actions , [:index, :show]
(Atoms) actions

Examples

Default Configuration (Development):

Control Panel on localhost:8086
config :control panel, ControlPanelWeb.Endpoint,
url: [host: "localhost", path: "/"],
https: [
port: 8086,
keyfile: "priv/cert/dev-key.pem",
certfile: "priv/cert/dev-cert.crt"

API on localhost:8443
config :api_ex,
api: %{
port: 8443,
listen ip: "127.0.0.1", # localhost only
hostname: "localhost",
enable tls: true,
tls cert path: "priv/cert/dev-cert.crt",
tls key path: "priv/cert/dev-key.pem",
routes: [
%{path: "/status", module: ApiEx.Api.StatusController,
actions: [:index]}

]

Production Configuration:

Control Panel on all interfaces
config :control panel, ControlPanelWeb.Endpoint,
url: [host: "pgw-c.example.com", path: "/"],
https: [
port: 443, # Standard HTTPS port
keyfile: "/etc/ssl/private/pgw-c.key",
certfile: "/etc/ssl/certs/pgw-c.crt"
]

API on management interface
config :api ex,
api: %{
port: 8443,
listen ip: "10.0.0.20", # Management network
product name: "OmniPGW-C",
hostname: "pgw-c-api.example.com",
enable tls: true,
tls cert path: "/etc/ssl/certs/pgw-c-api.crt",
tls key path: "/etc/ssl/private/pgw-c-api.key",
routes: [
%s{path: "/status", module: ApiEx.Api.StatusController,
actions: [:index]},
%{path: "/sessions", module: ApiEx.Api.SessionController,
actions: [:index, :show]}

]

Custom Page Order:

Prioritize operational pages
config :control panel,
page order: [
"/ue search", # Most frequently used
"/pgw_sessions",
"/upf status",
"/logs",
"/diameter",
"/topology",
"/configuration",
"/ip pools",
"/pfcp sessions",
"/upf selection",
"/pcscf monitor",
"/gy simulator",
"/session history",
"/application"

Accessing Web Ul

Control Panel:

Default access
https://localhost:8086

Production
https://pgw-c.example.com

REST API:

Status endpoint
curl -k https://localhost:8443/status

With proper certificate
curl https://pgw-c-api.example.com:8443/status

TLS Certificate Setup

Generate Self-Signed Certificate (Development):

Generate private key and certificate
openssl req -x509 -newkey rsa:4096 -keyout priv/cert/omnitouch.pem
\

-out priv/cert/omnitouch.crt -days 365 -nodes \

-subj "/CN=localhost"

Production Certificate:
For production, use certificates from a trusted Certificate Authority (CA):

e Let's Encrypt (free, automated)
e Commercial CA (DigiCert, GlobalSign, etc.)

e Internal CA for enterprise deployments

Security Considerations

. Always use TLS in production - Set enable tls: true

. Restrict listen_ip - Use specific IP addresses in production (not 0.0.0.0)

. Use valid certificates - Avoid self-signed certs in production

Firewall protection - Restrict access to management ports (8086, 8443)
Strong key files - Use 4096-bit RSA or equivalent

I N

Regular updates - Rotate certificates before expiration

Troubleshooting

Issue: Cannot access Control Panel

Check if port is listening
netstat -tulpn | grep 8086

Check certificate files exist
ls -la priv/cert/

Check logs for startup errors
tail -f /var/log/pgw c/application.log

Issue: SSL/TLS errors

Verify certificate and key paths are correct

Ensure certificate matches the hostname

Check certificate expiration: openssl x509 -in cert.crt -text -noout

Verify key file permissions (should be readable by PGW-C process)

See: for Control Panel usage details

Complete Example

Production-Ready Configuration

config/runtime.exs
import Config

Logger configuration
config :logger, level: :info

config :pgw c,

Metrics (Prometheus)

metrics: %{
enabled: true,
ip address: "10.0.0.20", # Management network
port: 9090,
registry poll period ms: 5 000

},

Diameter/Gx (PCRF interface)
diameter: %{
listen ip: "0.0.0.0",
host: "omnipgw.epc.mnc001l.mcc@O1.3gppnetwork.org",
realm: "epc.mncOO0l.mcc001.3gppnetwork.org",
peer list: [
%{
host: "pcrf-primary.epc.mnc001l.mcc001.3gppnetwork.org",
realm: "epc.mncOO0l.mcc001.3gppnetwork.org",
ip: "10.0.1.30",
initiate connection: true

host: "pcrf-backup.epc.mnc60l.mccO01l.3gppnetwork.org",
realm: "epc.mncOOl.mcc00l.3gppnetwork.org",

ip: "10.0.2.30",

initiate connection: true

]
}

S5/S8 (SGW-C interface)
s5s58: %{

local ipv4 address: "10.0.0.20"
}

Sxb/PFCP (PGW-U interface)
sxb: %{

local ip address: "10.0.0.20"
I

UPF Selection
upf selection: %{

rules: [
%{
name: "Default Internet",
priority: 1,

match field: :apn,
match regex: ~r/"internet/,
upf pool: [
%s{remote ip address: "10.0.0.21", remote port: 8805,
weight: 100},
%s{remote ip address: "10.0.0.22", remote port: 8805,
weight: 0} # Standby
]
}
1,
fallback pool: [
%{remote ip address: "10.0.0.21", remote port: 8805, weight:
100}
]
}

UE IP Pools
ue: %{
subnet map: %{
"internet" => [
"100.64.0.0/18" # 16,382 IPs
1,
"ims" => [
"100.64.64.0/22" # 1,022 IPs
1,
“enterprise.corp" => [
“10.100.0.0/16" # 65,534 IPs
1,
default: [
"100.64.127.0/24" # 254 IPs

}
}I

Protocol Configuration Options

pco: %{
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",
p cscf ipv4 address list: ["10.0.0.50", "10.0.0.51"],
ipv4 link mtu size: 1400

Configuration Validation

Startup Validation

OmniPGW validates configuration at startup. Check logs:

[info] Loading configuration from runtime.exs
[info] Validating configuration...

[info] Configuration valid

[info] Starting OmniPGW. ..

Common Validation Errors
Invalid IP Address:

[error] Invalid IP address in s5s8.local ipv4 address: "10.0.0"
Missing Required Field:

[error] Missing required configuration: sxb.local ip address

Invalid CIDR:

[error] Invalid subnet in ue.subnet map: "100.64.1.0/33"
Invalid Diameter Identity:

[error] Diameter host must be FQDN, not IP: "10.0.0.20"

Configuration Testing

Test configuration without starting:

Validate syntax
mix compile

Check configuration loading
iex -S mix
iex> Application.get env(:pgw c, :metrics)

Environment-Specific Configuration

Development

config/dev.exs
import Config

config :logger, level: :debug

config :pgw c,
metrics: %{
enabled: true,
ip address: "127.0.0.1",
port: 42069,
registry poll period ms: 10 000
},
diameter: %{
listen ip: "0.0.0.0",
host: "omnipgw-dev.local",
realm: "local",
peer list: [
%{
host: "pcrf-dev.local”,
realm: "local",
ip: "127.0.0.1",
initiate connection: true

}

]
}
s558: %{

local ipv4 address: "127.0.0.10"
I
sxb: %{

local ip address: "127.0.0.20"
b

upf selection: %{
fallback pool: [
%{remote ip address: "127.0.0.21", remote port: 8805,
weight: 100}
]
}

ue: %{

subnet map: %{
"internet" => ["100.64.1.0/24"],
default: ["42.42.42.0/24"]
}
}
pco: %{
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",
ipv4 link mtu size: 1400
}

Using Environment Variables

config/runtime.exs
import Config

config :pgw c,
metrics: %{
enabled: System.get env("METRICS ENABLED", "true") == "true",
ip address: System.get env("METRICS IP", "0.0.0.0"),
port: String.to integer(System.get env("METRICS PORT",
“9090")),
registry poll period ms: 10 000
s
diameter: %{
listen ip: System.get env("DIAMETER LISTEN IP", "0.0.0.0"),
host: System.get env("DIAMETER HOST") || raise("DIAMETER HOST
required"),
realm: System.get env("DIAMETER REALM") ||
raise("DIAMETER REALM required"),
peer list: [
%{
host: System.get env("PCRF _HOST") || raise("PCRF_HOST
required"),
realm: System.get env("PCRF_REALM") ||
System.get env("DIAMETER REALM"),
ip: System.get env("PCRF_IP") || raise("PCRF_IP
required"),
initiate connection: true

}

-

... rest of config

Usage:

export DIAMETER HOST="omnipgw.epc.mnc001l.mcc@01l.3gppnetwork.org"
export DIAMETER REALM="epc.mnc001l.mcc@0O01l.3gppnetwork.org"

export PCRF HOST="pcrf.epc.mnc00l.mcc001.3gppnetwork.org"

export PCRF IP="10.0.0.30"

mix run --no-halt

Related Documentation

Interface Configuration

. - Sxb/PFCP configuration, UPF communication, session
establishment

. - PCRF policy control, PCC rules, QoS
management

. - OCS online charging, quota management, credit
control

. - GTP-C configuration, SGW-C communication

Network Configuration

. - IP pool management, APN-based allocation, DHCP
. - Protocol Configuration Options, DNS, P-CSCF, MTU
. - P-CSCF discovery monitoring, IMS health tracking

Operational Guides

. - PDN session lifecycle, bearer management
. - Prometheus metrics, alerts, dashboards
. - Offline charging records, billing integration

OmniPGW Configuration Guide - by Omnitouch Network Services

Data Charging Data
Record (CDR) Format

Offline Charging for PGW-C

OmniPGW by Omnitouch Network Services

Table of Contents

W e Nk WNRE

=
o

Overview

The Data CDR (Charging Data Record) format provides offline charging
capabilities for the Packet Gateway Control Plane (PGW-C). CDRs are generated
to record bearer session events, data usage, and subscriber information for
billing and analytics purposes.

This common format is compatible with SGW-C CDRs, ensuring consistency in
charging records across the EPC infrastructure.

Key Features

e CSV-based format - Simple, human-readable comma-separated values
e Event-based recording - Captures bearer start, update, and end events
¢ Volume metering - Records uplink and downlink data usage

* Automatic rotation - Configurable file rotation based on time intervals

e 3GPP compliant - Follows 3GPP TS 32.251 (PS domain charging) and TS
32.298 (CDR encoding)

Use Cases

Use Case Description
Offline Charging Generate CDRs for postpaid billing
Analytics Analyze subscriber usage patterns
Audit Trail Track all bearer session events
Capacity Planning Monitor network resource utilization

Troubleshooting Debug session and bearer issues

CDR File Format

File Naming Convention
<epoch timestamp>
Example:

1726598022

The filename is the Unix epoch timestamp (in seconds) of when the file was
Created.

File Location
Default directory:
* PGW-C: /var/log/pgw c/cdrs/

Configurable via cdr _directory parameter in config/runtime.exs.

File Header

Each CDR file begins with a multi-line header containing metadata:

Data CDR File:

File Start Time: HH:MM:SS (unix timestamp)

File End Time: HH:MM:SS (unix timestamp)

Gateway Name: <gateway name>

#
epoch,imsi,event,charging id,msisdn,ue imei,timezone raw,plmn,tac,eci

Header Fields:

¢ File Start Time - When the CDR file was created (human-readable and
Unix timestamp)

¢ File End Time - When the file rotation will occur (human-readable and
Unix timestamp)

e Gateway Name - Identifier for the PGW-C instance (configured via
pgw name parameter)

¢ Column Headers - CSV field names for the data records

CDR Fields

Field Summary

Position

10

Field Name

epoch

imsi

event

charging_id

msisdn

ue_imei

timezone_raw

plmn

tac

eci

sgw_ip

Type

integer

string

string

integer

string

string

string

integer

integer

integer

string

Description

Event timestamp (Unix epoch
seconds)

International Mobile Subscriber
Identity

CDR event type (e.q.,
"default_bearer_start")

Unique charging identifier for the
bearer

Mobile Station ISDN Number (phone
number)

International Mobile Equipment
Identity

UE timezone (reserved, currently
empty)

Public Land Mobile Network identifier

Tracking Area Code

E-UTRAN Cell Identifier

SGW-C S5/S8 control plane IP
address

Position Field Name Type

11 ue_ip string
12 pgw_ip string
13 apn string
14 qci integer
15 octets _in integer
16 octets out integer

CDR Events

Event Types

Description

UE IP address (IPv4|IPv6 format)

PGW-C S5/S8 control plane IP

address

Access Point Name

QoS Class ldentifier

Downlink data volume (bytes)

Uplink data volume (bytes)

CDRs are generated for three types of events:

Event
Format

Type
Bearer " s tart

< e> bearer star
Start ype=_ -
Bearer " b =

< e> bearer update
Update YRe= P
Bearer

<type> bearer end
End

Description

Bearer
establishment

Usage
reporting
during session

Bearer
termination

When Generated

Create Session
Response sent

Periodic usage
reports from user
plane

Delete Session
Request/Response

Bearer Types:

e default - Default bearer (one per PDN connection)

e dedicated - Dedicated bearer (zero or more per PDN connection)

Event Examples

default bearer start - Default bearer established
default bearer update - Default bearer usage update
default bearer end - Default bearer terminated
dedicated bearer start - Dedicated bearer established
dedicated bearer update - Dedicated bearer usage update
dedicated bearer _end - Dedicated bearer terminated

File Structure

Example CDR File

Data CDR File:

File Start Time: 18:53:42 (1726598022)

File End Time: 19:53:42 (1726601622)

Gateway Name: sgw-c-prod-01

epoch,imsi,event,charging id,msisdn,ue imei,timezone raw,plmn,tac,e
1726598022,310260123456789,default bearer start,12345,15551234567,12:
1726598322,310260123456789,default bearer update,12345,15551234567, 1:
1726598622,310260123456789,default bearer update,12345,15551234567, 1:
1726598922,310260123456789,default bearer end,12345,15551234567,1234¢

File Rotation

CDR files are automatically rotated based on the configured duration:

WAL= A Y= SATTIERITIN

Downloads % English+ Omnitouch Websit

I
CDR Reporter starts

- -

J Filel
e Duration expires
;’ (e.g., 1 hour)
Filename: 1726598022)
File2
Records: 0-999
: Duration expires
Filename: 1726601622 m;“‘
Records: 1000-1999

"

Duration expires

Filed

Rotation Process:

1. Close current CDR file
2. Create new file with current timestamp
3. Write header to new file

4. Continue recording CDRs to new file

Configuration

Configuration Parameters

PGW-C CDR generation is configured in config/runtime.exs:

Parameter Type Description Default Reca

PGW
instance
) identifier "omni- Use hos
Bgh_Tane string (appears in pgw01" instance
CDR

headers)

, ,) File rotation
cdr file duration integer . 3600000 360000(
interval (ms)

CDR output
cdr directory string directory "tmp/pgw_c" /var/lc
path

URR
reporting
interval (ms)
usage report interval integer - how often 60000 60000 (
PGW-U
sends usage
reports

Configuration Examples

Minimal Configuration (config/runtime.exs):

config :pgw c,
CDR file configuration
pgw name: "“omni-pgw01l",
cdr file duration: 3 600 000,

cdr directory: "/var/log/pgw c/cdrs",

1 hour

URR configuration (triggers usage reports from PGW-U)

usage report interval: 60 000

Production:

config :pgw c,
pgw name: "pgw-c-prod-01",
cdr file duration: 3 600 000,

cdr directory: "/var/log/pgw c/cdrs",

usage report interval: 60 000

Development:

config :pgw c,

pgw name: "pgw-c-dev",

cdr file duration: 300 000,
testing

cdr _directory: "/tmp/pgw c cdrs",

usage report interval: 30 000
faster testing

High-Volume:

config :pgw c,
pgw _name: "“pgw-c-prod-heavy",
cdr file duration: 1 800 000,

cdr directory: "/mnt/fast-storage/cdrs",

usage report interval: 300 000
(reduce overhead)

60 seconds

1 hour rotation

1 minute updates

5 minute rotation for

30 second updates for

30 minute rotation

5 minute updates

URR (Usage Reporting Rules)

PGW-C uses PFCP URRs (Usage Reporting Rules) to trigger usage reports
from PGW-U. When a URR threshold is reached or time expires, PGW-U sends a
Session Report Request containing usage data, which triggers CDR generation.

How URR Configuration Works:

1. usage report _interval (in ms) is converted to seconds for PFCP time
threshold

2. PGW-C creates URR with time threshold during session establishment
3. PGW-U sends periodic usage reports at configured interval
4. Each usage report triggers a bearer update CDR event

5. Final usage report (on session deletion) triggers bearer end CDR event

Example: usage report interval: 60 000 means:

e PGW-U reports usage every 60 seconds
e CDR update events generated every 60 seconds

e Granular usage tracking for billing

URR Type Definition:

lib/core/session/types.ex
defmodule PGW C.Session.Types.URR do
typedstruct do
field :urr_id, non neg integer()
field :measurement method, :duration | nil
field :reporting triggers, :time threshold | nil
field :time_threshold, non neg integer() | nil # seconds
end
end

See for URR PFCP details and
lib/core/session/impl/procedures.ex:468 for URR creation during session
establishment.

CDR Generation Flow

Bearer Lifecycle CDR Events

PGW-C CDR Generation:

SGW-C PGW-C PGW-U

CDR Reporter

Session Establishment

Create Session Request

PFCP Session Establishment
(with URR)

PFCP Session Establishment Response

start_report(session, ebi)

Create Session Response

Generate CDR:
default_bearer_start
octets_in: 0
octets_out: 0

Session Active - Data Flowing

PFCP Session Report Request
(URR Usage Report)

update_report(session, urr_id, octets_in, octets_out)

Generate CDR:
default_bearer_update
octets_in: 1048576
octets_out: 524288

Session Termination

Delete Session Request
PFCP Session Deletion

PFCP Session Deletion Response
(Final URR Usage Report)

end_report(session, urr_id, octets_in, octets_out)

Delete Session Response

Generate CDR:
default_bearer_end
octets_in: 10485760
octets_out: 5242880

SGW-C PGW-C PGW-U

CDR Reporter

CDR Generation Events

1. Bearer Start:

When: Create Session Response is sent

Purpose: Records bearer establishment with zero usage

octets_in: 0

octets out: 0
2. Bearer Update:

e When: PFCP Session Report Request received from PGW-U (URR usage
report)

e Purpose: Records incremental data usage
e octets_in: Cumulative downlink bytes since bearer start
e octets out: Cumulative uplink bytes since bearer start

e Trigger: URR time threshold expires (configured via
usage report interval)

3. Bearer End:

e When: PFCP Session Deletion Response received from PGW-U (with final
usage report)

e Purpose: Records final data usage before session termination
e octets _in: Final total downlink bytes

e octets_out: Final total uplink bytes

Field Details

1. epoch (Timestamp)
Type: Unix epoch timestamp (seconds)

Description: The time when the CDR event occurred

Example:

1726598022 - 2025-09-17 18:53:42 UTC

2. imsi (Subscriber Identity)
Type: String (up to 15 digits)
Format: MCCMNC + MSIN

Description: International Mobile Subscriber Identity uniquely identifying the
subscriber

Example:

310260123456789

| | 1 | |
| | I

MCC MNC MSIN
(310) (260) (123456789)

Source: UE context, received in Create Session Request

3. event (CDR Event Type)
Type: String

Format: <bearer type> bearer <event>
Values:

e default bearer start
e default bearer update
¢ default bearer end

* dedicated bearer start

¢ dedicated bearer update

¢ dedicated bearer end
Determination:

e If EBI (EPS Bearer ID) equals LBI (Linked Bearer ID): default
e If EBI does not equal LBI: dedicated

Source: Bearer context (EBI vs LBl comparison)

4. charging id (Charging Identifier)
Type: Unsigned 32-bit integer

Description: Unique identifier for charging correlation across network
elements

Example:
12345

Source: Assigned by PGW-C, received in Create Session Response
Usage:

e Correlates charging events across SGW and PGW
e Used in Diameter Gy/Gz charging interfaces

e Unique per bearer

5. msisdn (Phone Number)
Type: String (E.164 format)
Description: Mobile Station ISDN Number (subscriber's phone number)

Format: Country code + national number

Example:

15551234567

L"I"H_'I'—'I

CC National
(1) (5551234567)

Source: UE context, typically from HSS via MME

6. ue_imei (Equipment ldentity)
Type: String (15 digits)
Format: TAC (8) + SNR (6) + Spare (1)

Description: International Mobile Equipment Identity (device identifier)

Example:
123456789012345
| : LU

TAC SNR S

Source: UE context, received from MME

7. timezone_raw (UE Timezone)

Type: String (currently reserved/empty)

Description: Reserved field for UE timezone information

Current Status: Not populated (empty field in CSV)

Future Use: May include timezone offset and daylight saving time flag

Example:

, (empty field)

8. plmn (Network Identifier)
Type: Integer (legacy format)

Description: Public Land Mobile Network identifier encoded as little-endian
hex

Encoding Process:

MCC: 505, MNC: 57
!
"50557"
l
Swap pairs: "055570"
!
Hex to decimal: 0x055570 = 349552

Example:
349552 - MCC: 505, MNC: 57

Source: UE location information from MME

Note: This is a legacy encoding format for backward compatibility

9. tac (Tracking Area Code)
Type: Unsigned 16-bit integer

Description: Tracking Area Code identifies the tracking area where the UE is
located

Range: 0 - 65535

Example:
1234

Source: UE location information, received from MME in Create Session Request
Usage:

e |dentifies mobility management area
e Used for paging and location updates

e Part of TAI (Tracking Area Identity)

10. eci (E-UTRAN Cell Identifier)

Type: Unsigned 28-bit integer

Description: E-UTRAN Cell Identifier uniquely identifies the cell serving the UE
Format: eNodeB ID (20 bits) + Cell ID (8 bits)

Range: 0 - 268,435,455

Example:
5678

Source: UE location information from MME
Usage:

e |dentifies specific cell tower and sector
e Used for handover and mobility management

e Granular location information

11. sgw _ip (SGW Control Plane IP)

Type: String (IPv4 or IPv6 address)
Description: SGW-C's S5/S8 control plane IP address (F-TEID)
Format: Dotted decimal (IPv4) or colon-hex (IPv6)

Example:

10.0.0.15 (IPv4)
2001:db8::15 (IPv6)

Source: Local configuration, assigned to S5/S8 interface

12. ue_ip (UE IP Address)
Type: String (IPv4|IPv6 format)
Description: IP address assigned to the UE for the PDN connection

Format: <ipv4>|<ipv6>

Examples:
172.16.1.100| (IPv4 only)
|2001:db8::1 (IPv6 only)
172.16.1.100|2001:db8::1 (Dual-stack)

Source: PDN Address Allocation (PAA) from PGW-C
Notes:

e Empty IPv4: No IPv4 address allocated
e Empty IPv6: No IPv6 address allocated

e Both present: Dual-stack PDN connection

13. pgw_ip (PGW Control Plane IP)

Type: String (IPv4 or IPv6 address)

Description: PGW-C's S5/S8 control plane IP address (remote F-TEID)
Format: Dotted decimal (IPv4) or colon-hex (IPv6)

Example:

10.0.0.20 (IPv4)
2001:db8::20 (IPv6)

Source: Received in Create Session Response from PGW-C

14. apn (Access Point Name)

Type: String (up to 100 characters)

Description: Access Point Name identifying the external network (PDN)
Format: DNS-like label format

Examples:

internet

ims

mms
enterprise.corporate

Source: Received in Create Session Request from MME
Usage:

¢ Determines which external network to connect to
e Drives policy and charging rules

e May determine IP address pool

15. qci (QoS Class Identifier)

Type: Unsigned 8-bit integer

Description: QoS Class Identifier defines the bearer's quality of service

Range: 1 - 9 (standardized), 128-254 (operator-specific)

Standardized QCI Values:

Resource

QClI

Type
1 GBR
2 GBR
3 GBR
4 GBR
5 Non-GBR
6 Non-GBR
7 Non-GBR
8 Non-GBR
9 Non-GBR

Example:

L Packet

Priority
Delay

2 100 ms
4 150 ms
3 50 ms
5 300 ms
1 100 ms
6 300 ms
7 100 ms
8 300 ms
9 300 ms

Packet
Loss

107™-2

107-3

107-3

107-6

107-6

107-6

107-3

107-6

107-6

Example
Service

Conversational
Voice

Conversational
Video

Real-time Gaming
Non-
conversational
Video

IMS Signaling

Video (buffered)

Voice, Video,
Gaming

Video (buffered)

Default Bearer

9 - Default bearer (best effort)

Source: Bearer QoS parameters from PGW-C

16. octets in (Downlink Volume)
Type: Unsigned 64-bit integer

Description: Number of bytes transmitted in the downlink direction (network
- UE)

Units: Bytes

Example:
1048576 - 1 MB downlink

Source: PFCP Volume Measurement from PGW-U (via URR usage reports)
Notes:

e Cumulative for update events
e Final total for end events
e Always O for start events

e Reports triggered by URR time threshold (configured via
usage report interval)

17. octets out (Uplink Volume)
Type: Unsigned 64-bit integer

Description: Number of bytes transmitted in the uplink direction (UE -
network)

Units: Bytes

Example:
524288 - 512 KB uplink

Source: PFCP Volume Measurement from PGW-U (via URR usage reports)

Notes:

e Cumulative for update events
e Final total for end events
e Always O for start events

e Reports triggered by URR time threshold (configured via
usage report interval)

Examples

Example 1: Basic Session with Single Update

Timeline:

1. Bearer established
2. 5 minutes later: Usage update (10 MB down, 5 MB up)

3. Session terminated

CDR Output:

Data CDR File:

File Start Time: 10:00:00 (1726570800)

File End Time: 11:00:00 (1726574400)

Gateway Name: pgw-c-01

epoch,imsi,event,charging id,msisdn,ue imei,timezone raw,plmn,tac,e
1726570800,310260111111111,default bearer start,10001,15551111111,11]
1726571100,310260111111111,default bearer update,10001,15551111111,11
1726571400,310260111111111,default bearer end,10001,15551111111,11111

Example 2: Dual-Stack Session with Multiple
Updates

Timeline:

1. Dual-stack bearer established (IPv4 + IPv6)
2. Multiple usage updates

3. Session terminated

CDR Output:

1726570800,310260222222222,default bearer start,10002,15552222222,22%
1726571100,310260222222222,default bearer update,10002,15552222222, 2%
1726571400,310260222222222 ,default bearer update,10002,15552222222, 2=
1726571700,310260222222222 ,default bearer update,10002,15552222222,2-
1726572000,310260222222222,default bearer end,10002,15552222222,2222-

Example 3: Session with Dedicated Bearer

Timeline:

. Default bearer established (QCI 9)
. Dedicated bearer created for video (QCI 6)
Usage updates for both bearers

. Dedicated bearer deleted

. Default bearer terminated

CDR Output:

1726570800,310260333333333,default_bearer start,10003,15553333333,33:
1726571100,310260333333333,dedicated bearer start,10004,15553333333,:
1726571400,310260333333333,default bearer update,10003,15553333333, 3:
1726571400,310260333333333,dedicated bearer update,10004,15553333333,
1726571700,310260333333333,dedicated bearer_end,10004,15553333333,33:
1726572000,310260333333333,default bearer end,10003,15553333333,3333:

Analysis:

e Default bearer (10003) carries background traffic (10 MB down, 4 MB up)
e Dedicated bearer (10004) carries video traffic (200 MB down, 2 MB up)

¢ Different QCI values (9 vs 6) reflect different QoS treatment

Integration

CDR Processing Pipeline

Downloads Xa English - Umnitouch website 4

Session Establishment

Create Session Regquest

PFCP Session Establishment
[with URR)

L

PFCP Session Establishment Response

-

start_report{session, ebi)

Generate CDR:
default_bearer_start
octets_in: 0
octets_owt: 0
Create Session Response
Session Active - Data Flowing
PFCP Session Report Request
(URR Usage Report)
update_report{sessien, urr_id, ectets_in, ectets_out)
Generate CDR:

default_bearer_update
octets_in: 1048576
octets_out: 524288

Session Termination

Delete Session Request

¥

PFCP Session Deletion

PFCP Session Deletion Response
(Final URR Usage Report)

end_report(session, urr_id, octets_in, octets_owt)

-
L

Generate CDR:
default_bearer_end
octets_in: 10485760
octets_out: 5242880

Delete Session Response

SGW-C PGW-C PGW-U CDR Reporter

CDR Collection Methods

1. File-based Collection:

Monitor CDR directory (PGW-C)
inotifywait -m /var/log/pgw c/cdrs/ -e close write | while read
path action file; do
File rotation completed, process CDR
process cdr "$path$file"
done

2. Real-time Streaming:

Tail and stream to processing pipeline
tail -F /var/log/pgw c/cdrs/* | process cdr stream

Related Documentation

. - Session lifecycle and CDR triggers

. - Usage reporting from PGW-U via URRs

. - CDR generation metrics and alerting

. - CDR and URR configuration parameters
. - Policy control for QCI values in CDRs
. - Online charging integration

3GPP References

TS 32.251 - Packet Switched (PS) domain charging

TS 29.274 - 3GPP Evolved Packet System (EPS); GTP-C protocol

TS 29.244 - Interface between CP and UP nodes (PFCP) - URR support
TS 32.298 - CDR encoding

CDR Format - Offline Charging Records for PGW-C

Developed by Omnitouch Network Services

Documentation Version: 1.0 Last Updated: 2025-12-28

Diameter Gx Interface
Documentation

Policy and Charging Rules Function (PCRF) Interface

Table of Contents

© Ko No kAW N+

Overview

The Gx interface connects PGW-C to the PCRF (Policy and Charging Rules
Function) or PCF (Policy Control Function) in 5G networks. This interface
enables:

Dynamic Policy Control - Real-time QoS and policy enforcement

Charging Control - Credit authorization and usage tracking

Service Awareness - Application-level traffic differentiation

Subscriber Profile Management - Per-user policy application

Gx in the Network Architecture

User Equipment

Mobile Device

Data

EPC ’CJ[E

SGW-C

/

55/58

Gx Diameter Sxb PFCP

1l

W

Sy sp
H H External 1hl+aairl.|':.nt:-rhc5
0Cs SFR

Internet/FDN

Online Charging Subscriber Profile

Key Functions

Function Description
Policy PCRF provides PCC rules defining how to handle
Provisioning traffic

Dynamic adjustment of bitrates and QoS

QoS Control

parameters
Charging Control Credit authorization for prepaid/postpaid scenarios
Gating Control Enable/disable traffic flows based on policy

Usage Monitoring Track data consumption per service

Gx Interface Basics

3GPP Reference

e Specification: 3GPP TS 29.212
 Diameter Application ID: 16777238 (Gx)
e Protocol: Diameter Base Protocol (RFC 6733)

Session Concept

Each UE PDN connection has a corresponding Gx session identified by a
Session-ID. This session:

¢ Created when UE attaches (CCR-Initial)
e Updated during the connection lifetime (CCR-Update) - optional

¢ Terminated when UE detaches (CCR-Termination)

Session ID Format

Session-ID: <0Origin-Host>;<high32>;<low32>[;<optional>]
Example: omni-
pgw c.epc.mnc999.mcc999.3gppnetwork.org;1234567890;98765

Components:

e Origin-Host: PGW-C's Diameter identity
e high32: High 32 bits of unique identifier

e low32: Low 32 bits of unique identifier

Diameter Protocol

Message Structure

Diameter messages are binary-encoded with the following structure:

Diameter Header (20 bytes)

— Version (1 byte) =1

— Message Length (3 bytes)

— Flags (1 byte)

| — R: Request (1) / Answer (0)
| |— P: Proxiable

| |+ E: Error

| L— T: Potentially retransmitted
— Command Code (3 bytes)

— Application ID (4 bytes) = 16777238 (Gx)
— Hop-by-Hop ID (4 bytes)

L— End-to-End ID (4 bytes)

AVPs (Attribute-Value Pairs)
— AVP Header
| |— AVP Code

| |} Flags (v, M, P)

| | AVP Length

| L— Vendor ID (optional)
L— AVP Data

Key Diameter Concepts
AVP (Attribute-Value Pair):

e Basic data unit in Diameter
e Contains a code, flags, and value
e Can be nested (Grouped AVP)

Command:

e Request/Answer pair
e CCR (Credit-Control-Request) / CCA (Credit-Control-Answer)

Result Codes:

e 2001 - DIAMETER_SUCCESS
e 3xxx - Protocol errors

e 4xxx - Transient failures

e 5xxx - Permanent failures

Credit Control Messages

PGW-C uses the Diameter Credit Control Application (RFC 4006) for Gx.

Message Types

UE Attach

Initial

CCA-Initial (Success)

CCA-Update

Policy Change (Optional) UE Detach CCA-Initial (Failure)

[Termination]

CCA-Termination

O]

CCR-Initial (Credit Control Request - Initial)

When: UE creates a new PDN connection
Purpose:

e Request initial policy and charging rules

e Provide UE and network context to PCRF

e Obtain QoS parameters and charging authorization

Key AVPs Sent by PGW-C:

AVP Name

Session-ld

Auth-Application-Id

Origin-Host

Origin-Realm

Destination-Realm

CC-Request-Type

CC-Request-Number

Subscription-ld

Called-Station-Id

Framed-IP-Address

IP-CAN-Type

RAT-Type

QoS-Information

Network-Request-
Support

AVP
Code

263

258

264

296

283

416

415

443

30

1027

1032

1016

1024

Type

UTF8String

Unsigned32

Diamldent

Diamldent

Diamldent

Enumerated

Unsigned32

Grouped

UTF8String

OctetString

Enumerated

Enumerated

Grouped

Enumerated

Description

Unique Gx session
identifier

16777238 (Gx)

PGW-C's Diameter
identity

PGW-C's Diameter realm

PCRF's realm

1 = INITIAL_REQUEST

Sequence number (starts
at 0)

UE identifier
(IMSI/MSISDN)

APN name

Allocated UE IPv4
address

5 = 3GPP-EPS

1004 = EUTRAN

Current QoS (AMBR)

Network-initiated
procedures

AVP L
AVP Name Type Description
Code

Supported-Features 628 Grouped Gx feature list

Example CCR-l Structure:

CCR (Command Code: 272, Request)

— Session-Id: "pgw c.example.com;123;456"

— Auth-Application-Id: 16777238

— Origin-Host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org"
— Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

— Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— CC-Request-Type: INITIAL REQUEST (1)

— CC-Request-Number: 0

— Subscription-Id (Grouped)

| | Subscription-Id-Type: END USER IMSI (1)

| L— Subscription-Id-Data: "310260123456789"

— Called-Station-Id: "internet"

— Framed-IP-Address: 100.64.1.42

— IP-CAN-Type: 3GPP-EPS (5)

— RAT-Type: EUTRAN (1004)

— QoS-Information (Grouped)

| — APN-Aggregate-Max-Bitrate-UL: 100000000 (100 Mbps)
| L— APN-Aggregate-Max-Bitrate-DL: 50000000 (50 Mbps)
— Network-Request-Support: 1

L— Supported-Features: [...]

CCA-Initial (Credit Control Answer - Initial)
Sent by: PCRF in response to CCR-I
Purpose:

e Authorize or reject the session
e Provide PCC rules for traffic handling

e Specify QoS parameters

Key AVPs Received by PGW-C:

AVP

AVP Name Description
Code
Result-Code 268 Success (2001) or error code
Experimental-Result 297 Vendor-specific result codes
, Authorized QoS (may differ from
QoS-Information 1016
request)

Charging-Rule-Install 1001 PCC rules to activate
Charging-Rule-) o

T 1003 Inline rule definitions
Definition
Default-EPS-Bearer-

1049 QoS for default bearer

QoS

Success Response Example:

CCA (Command Code: 272, Answer)
— Session-Id: "pgw c.example.com;123;456"
— Result-Code: DIAMETER SUCCESS (2001)
— Origin-Host: "pcrf.example.com"
— Origin-Realm: "example.com"
— Auth-Application-Id: 16777238
— CC-Request-Type: INITIAL REQUEST (1)
— CC-Request-Number: 0
— QoS-Information (Grouped)
| — APN-Aggregate-Max-Bitrate-UL: 50000000 (50 Mbps - reduced)
| L— APN-Aggregate-Max-Bitrate-DL: 100000000 (100 Mbps -
increased)
— Charging-Rule-Install (Grouped)
| | Charging-Rule-Name: "default internet rule"
| L— Charging-Rule-Name: "video streaming rule"
L— Charging-Rule-Definition (Grouped)
— Charging-Rule-Name: "default internet rule"
— QoS-Information: {...}
L— Precedence: 1000

CCR-Termination (Credit Control Request -
Termination)

When: UE detaches or PDN connection is deleted
Purpose:

e Notify PCRF of session termination

e Final accounting/charging record
Key Differences from CCR-I:

e (CC-Request-Type: TERMINATION REQUEST (3)
e May include usage statistics
e Simplified AVP set

Example CCR-T:

CCR (Command Code: 272, Request)

— Session-Id: "pgw c.example.com;123;456"

— Auth-Application-Id: 16777238

— Origin-Host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org"
— Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

— Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

— CC-Request-Type: TERMINATION REQUEST (3)

— CC-Request-Number: 1

L— Termination-Cause: DIAMETER LOGOUT (1)

CCA-Termination
Sent by: PCRF in response to CCR-T
Purpose:

e Acknowledge session termination

¢ No policy rules returned

Example CCA-T:

CCA (Command Code: 272, Answer)

— Session-Id: "pgw c.example.com;123;456"
— Result-Code: DIAMETER SUCCESS (2001)
— Origin-Host: "pcrf.example.com"

— Origin-Realm: "example.com"

— Auth-Application-Id: 16777238

— CC-Request-Type: TERMINATION REQUEST (3)
L— CC-Request-Number: 1

Policy and Charging Rules

PCC Rule Structure

A PCC (Policy and Charging Control) Rule defines how to handle specific
traffic flows:

UE Attach

v

Initial

__/_’_,_f"l

CCA- Initial (Success) \
/J Active {\
CCA-Update

K rulicy Change (Optional) UE Detach CCA-Initial (Failure)

. v
Update [Terminaticun

LS - LS -

!_

CCA-Termination

Rule Components
1. Rule Name:

e Unique identifier for the rule

e Example: "video streaming rule"
2. Precedence:

e Lower number = higher priority
* Range: 0-65535

e Used when multiple rules match
3. Flow Filters (TFT - Traffic Flow Template):

e Defines which packets match this rule

e Examples:
o |P 5-tuple: Protocol, Src/Dst IP, Src/Dst Port

o "permit out ip from any to 8.8.8.8 80"
4. QoS Information:

* QCI (QoS Class Identifier): 1-9 (standardized), 128-254 (operator-
specific)
o QCI 1: Conversational Voice
o QCI 5: IMS Signaling
o QCI 9: Default Internet
e ARP (Allocation and Retention Priority): Pre-emption capability
* MBR/GBR: Maximum/Guaranteed Bit Rates

5. Charging Information:

* Rating Group: Identifies charging category (used by OCS - see
)
* Metering Method: Volume, time, or event-based
e Online/Offline Charging: OCS (prepaid via) vs. offline CDRs
(postpaid - see)

6. Gating Status:

e OPEN: Allow traffic
e CLOSED: Block traffic

Dynamic Rule Provisioning
PCRF can provide rules in two ways:

1. Predefined Rules (by name):

Charging-Rule-Install (Grouped)
— Charging-Rule-Name: "gold subscriber internet"
L— Charging-Rule-Name: "video qos boost"

2. Dynamic Rules (inline definition):

Charging-Rule-Definition (Grouped)

— Charging-Rule-Name: "dynamic rule 123"

— Precedence: 100

— Flow-Information (Grouped)

| F— Flow-Description: "permit out ip from any to 192.0.2.0/24"
| L— Flow-Direction: DOWNLINK

— QoS-Information (Grouped)

| }— QoS-Class-Identifier: 5

| |— Max-Requested-Bandwidth-UL: 10000000

| L— Max-Requested-Bandwidth-DL: 50000000

L— Rating-Group: 1000

QoS Information AVP
APN-AMBR (Aggregate Maximum Bit Rate):

Applies to all non-GBR bearers for this APN:

QoS-Information (Grouped)
— APN-Aggregate-Max-Bitrate-UL: 100000000 # 100 Mbps
L— APN-Aggregate-Max-Bitrate-DL: 200000000 # 200 Mbps

PGW-C Response:

e Updates internal AMBR state
e Sends Session Modification Request to PGW-U with updated QER

Configuration

Basic Gx Configuration

Edit config/runtime.exs:

config :pgw c,
diameter: %{
IP address to listen for Diameter connections
listen ip: "0.0.0.0",

PGW-C's Diameter identity (Origin-Host)
host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org",

PGW-C's Diameter realm (Origin-Realm)
realm: "epc.mnc999.mcc999.3gppnetwork.org",

List of PCRF peers
peer list: [
%{
PCRF Diameter identity
host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

PCRF realm (usually same as PGW-C realm)
realm: "epc.mnc999.mcc999.3gppnetwork.org",

PCRF IP address
ip: "10.0.0.30",

Whether PGW-C initiates connection to PCRF
true = PGW-C connects to PCRF

false = Wait for PCRF to connect
initiate connection: true

Multiple PCRF Peers

For redundancy or geographic distribution:

config :pgw c,
diameter: %{
listen ip: "0.0.0.0",
host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
peer list: [
%{
host: "pcrf-primary.example.com",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "10.0.1.30",
initiate connection: true

-

o®
-~ ~

host: "pcrf-backup.example.com",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "10.0.2.30",

initiate connection: true

Load Balancing:

e Diameter protocol handles peer selection
e Requests distributed based on availability

e Automatic failover on peer failure

Hostname Resolution

Diameter Identities must be FQDNs (Fully Qualified Domain Names):

CORRECT - FQDN format
host: "pgw c.epc.mnc999.mcc999.3gppnetwork.org"

INCORRECT - Not a valid Diameter Identity

host: "pgw c"
host: "10.0.0.20" # IP addresses not allowed

Realm Format:

e Must be valid domain name

e Typically matches 3GPP PLMN format:
epc.mncXXX.mccYYY.3gppnetwork.org

Message Flows

Successful Session Establishment

SGW-C PGW-C PCRF PGW-U

Create Session Request (GTP-C)

1. Allocate UE IP
2. Generate Session-ID
3. Generate Charging-ID

CCR-Initial (Diameter Gx)

Includes:
- IMSI
- APN
-UEIP
- Requested QoS

Policy Decision:
1. Check subscriber profile
2. Apply policies
3. Determine QoS
4. Generate PCC rules

CCA-Initial (Success)

Includes:
- Result-Code: 2001
- QoS-Information
- PCC Rules

Apply policy:
- Update AMBR
- Store PCC rules

Session Establishment Request (PFCP)

Program QERs based on
PCRF-provided QoS
(see PFCP Interface doc)

Session Establishment Response

Create Session Response (GTP-C)

Session Active with PCRF Policy Applied

Note: QoS parameters from PCRF are translated into QERs (QoS Enforcement

Rules) and programmed into PGW-U via PFCP. See for QER
details.

Policy Update (Network-Initiated)

PCRF PGW-C PGW-U

Policy change triggered:
- Time of day
- Usage threshold
- External system

Re-Auth-Request (RAR)

Includes updated PCC rules

Re-Auth-Answer (RAA)

Trigger CCR-Update

CCR-Update

CCA-Update (New Policy)

Apply new policy:
- Update QoS
- Modify PCC rules

Session Modification Request (PFCP)

Update QERs with
new bitrates
(see PFCP Interface doc)

Session Modification Response

Updated Policy Active

PCRF PGW-C PGW-U

Session Termination

SGW-C PGW-C PCRF PGW-U

Create Session Request (GTP-C)

Ll

1. Allocate UE IP
2. Generate Session-1D
3. Generate Charging-ID

CCR-Initial {Diameter Gx)

L

InCludes:
- IM5I
- APN
-UEIP
- Requested Qo5
Policy Decision:
1. Check subscriber profile
2. Apply policies
3. Determine Qo5
4. Generate PCC rules
CCA-Initial (Success)
Includes:
- Result-Code: 2001
- DoS5-Information
- PCC Rules
Apply policy:
- Update AMBR

- Store PCC rules

Session Establishment Request (PFCP)

T

Program QERs based on
PCRF-provided Qo5
(see PFCP Interface doc)

Session Establishment Response

&

Create Session Response (GTP-C)

-+

Session Active with PCRF Policy Applied

SGW-C PGW-C PCRF PGW-U

Error Handling

Result Codes

PGW-C handles various Diameter result codes in CCA messages:

Success Codes:

Code Name Action

2001 DIAMETER_SUCCESS Continue session establishment

Permanent Failures (5xxx):

Code Name PGW-C Action
5002 DIAMETER_UNKNOWN_SESSION_ID Log error, fail session

Reject i

5030 DIAMETER_USER_UNKNOWN eject session (User
- - Unknown)

5140 DIAMETER_ERROR_INITIAL_PARAMETERS Log error, retry or fail

Reject session (Not

5003 DIAMETER _AUTHORIZATION REJECTED _
- - Authorized)

Transient Failures (4xxx):

Code Name PGW-C Action
4001 DIAMETER _AUTHENTICATION_REJECTED Retry or fail session
4010 DIAMETER TOO BUSY Retry with backoff

4012 DIAMETER_UNABLE TO_COMPLY Log error, may retry

Experimental Result Codes

Vendor-specific error codes:

Experimental-Result (Grouped)
— Vendor-Id: 10415 (3GPP)
L— Experimental-Result-Code: <vendor-specific code>

Common 3GPP Experimental Codes:

Code Name Meaning
5065 IP_CAN_SESSION _NOT_AVAILABLE PCRF cannot establish session

5143 INVALID_SERVICE_INFORMATION Service data invalid

Timeout Handling

CCR-l Timeout:

If PCRF doesn't respond to CCR-Initial within timeout:

1. PGW-C waits for configured timeout (e.g., 5 seconds)
2. If no CCA received:

- Log: "CCR-Initial timeout for Session-ID: ..."

- Respond to SGW-C with error cause

- Clean up allocated resources

3. SGW-C receives: Create Session Response (Cause: Remote Peer Not
Responding)

Error Response to SGW-C:

When CCR-Initial times out, the PGW-C sends a Create Session Response with
cause code :remote peer not responding to the SGW-C.

Failure Scenarios

Scenario 1: PCRF Rejects Session (User Unknown)

SGW-C PGW-C ‘ PCRF l

Create Session Request

CCR-Initial (IMSI: 999...)

IMSI not found
in subscriber database

CCA-Initial
(Result-Code: 5030 USER_UNKNOWN)

Session rejected

Create Session Response
(Cause: User Unknown)

Cleanup:
- Release UE IP
- No Gx session created

SGW-C PGW-C PCRF

Scenario 2: PCRF Temporarily Unavailable

PCRF PGW-C

Policy change triggered:
- Time of day
- Usage threshold
- External system

Re-Auth-Request (RAR)

L J

Includes updated PCC rules

Re-Auth-Answer (RAA)

F 1

Trigger CCR-Update

CCR-Update

Y

CCA-Update {(New Policy)

Apply new policy:

- Update Qo5
- Modify PCC rules

Session Modification Request (PFCP)

Update QERs with
new bitrates
{see PFCP Interface doc)

Session Modification Response

F 1

kL

Updated Policy Active

PCRF PGW-C

Troubleshooting

Common Issues
1. Diameter Peer Connection Fails
Symptoms:

e Log: "Diameter peer not connected"
¢ No CCR-Initial sent

Possible Causes:

PCRF not reachable

Incorrect PCRF IP in configuration

Firewall blocking Diameter port (3868)

Incorrect Diameter identities (host/realm)

Resolution:

Test network connectivity
ping <pcrf ip>

Test Diameter port (TCP 3868)
telnet <pcrf ip> 3868

Check Diameter identity configuration
Ensure host and realm are FQDNs, not IPs

Verify Configuration:

config :pgw c,
diameter: %{
Must be FQDN, not IP
host: "pgw c.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
peer list: [
%{
host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",
ip: "10.0.0.30"
}

2. CCR-Initial Timeouts
Symptoms:

e Create Session Request fails

e Log: "CCR-Initial timeout"

Possible Causes:

e PCRF overloaded
e Network latency

e PCRF not responding to this Session-ID
Resolution:

1. Check PCRF logs for errors
2. Verify PCRF is processing requests
3. Check network latency: ping <pcrf ip>

4. Increase timeout if network latency is high
3. Sessions Rejected by PCRF
Symptoms:

e CCA-Initial with Result-Code '= 2001

e Create Session Response fails

Common Result Codes:

Result Likelv C
ike ause
Code Y
IMSI not in subscriber
5030
database
5003 Authorization rejected
4010 PCRF too busy

Check Logs:

Resolution

Provision subscriber in
HSS/SPR

Check subscriber
permissions

Retry or add PCRF capacity

PGW-C logs show:

[error] Diameter Gx error: Result-Code 5030
(DIAMETER USER UNKNOWN)

[error] IMSI 310260999999999 rejected by PCRF

4. QoS Not Applied
Symptoms:

e Session established but wrong QoS

e Bitrates don't match expected values
Debugging Steps:
1. Check CCA-Initial:

o Verify QoS-Information AVP present
o Check APN-Aggregate-Max-Bitrate-UL/DL values

2. Check PFCP Session Establishment:

o Verify QER created with correct MBR values
o Check PGW-U logs for QER installation

3. Verify PCRF Policy:

o Check PCRF configuration

o Verify subscriber profile includes correct QoS
5. Diameter Routing Issues
Symptoms:

e Diameter messages not reaching PCRF

e Log: "No route to Destination-Realm"
Cause:

¢ Realm mismatch between configuration and messages

Resolution:

Ensure consistency:

ALl must match
config :pgw c,
diameter: %{
realm: "epc.mnc999.mcc999.3gppnetwork.org”, # PGW-C's realm
peer list: [
%{
realm: "epc.mnc999.mcc999.3gppnetwork.org" # PCRF's realm
(usually same)

}

In CCR-Initial:

Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

Monitoring Gx Health

Key Metrics:

GX message rates
rate(gx inbound messages total{message type="gx CCA"}[5m])
rate(gx outbound messages total{message type="gx CCR"}[5m])

Gx error rates
rate(gx inbound errors total[5m])

Gx response success rate (new metric)
sum(rate(gx outbound responses total{result code class="2xxx"}

[5m])) /
sum(rate(gx outbound responses total[5m])) * 100

Gx response failures by PCRF host
rate(gx outbound responses total{result code class!="2xxx"}[5m])
by (diameter host)

Gx session count
session id registry count

Gx message handling duration
histogram quantile(0.95,
rate(gx_inbound handling duration bucket[5m]))

Response Metrics by Result Code Class:

The gx outbound responses total metric provides detailed visibility into
Diameter responses sent to PCRF peers, categorized by:

e message_type: Response message type (gx RAA, gx CCA)
* result_code class: Result code category (2xxx, 3xxx, 4xxx, 5xxx)

e diameter_host: PCRF peer receiving the response

Common Result Codes:

2001 (DIAMETER_SUCCESS) - Successful response

3001 (DIAMETER_COMMAND_UNSUPPORTED) - Protocol error
(
(

5012 (DIAMETER _UNABLE _TO_COMPLY) - Cannot execute request
5030 (DIAMETER_USER_UNKNOWN) - Subscriber not found

Alert Examples:

Alert on high Gx error rate
- alert: GxErrorRateHigh

expr: rate(gx_inbound errors total[5m]) > 0.1
for: 5m

annotations:
summary: "High Gx error rate detected"

Alert on high Gx response failure rate
- alert: GxResponseFailureRate
expr: |

sum(rate(gx _outbound responses total{result code class!="2xxx"}
[5ml)) /

sum(rate(gx outbound responses total[5m])) > 0.1
for: 5m

annotations:

summary: "High Gx response failure rate"

description: "More than 10% of Gx responses are failures"

Alert on PCRF-specific failures
- alert: GxPCRFFailures
expr:

rate(gx outbound responses total{result code class=~"4xxx|5xxx"}
[5m]) by (diameter host) > 0.05
for: 3m

annotations:

summary: "PCRF {{ $labels.diameter host }} receiving failure
responses”

description: "High failure rate for PCRF host"

Alert on session rejection
- alert: GxSessionRejection

expr: rate(gx inbound errors total{result code="5030"}[5m]) >
0.01

for: 5m
annotations:

summary: "PCRF rejecting sessions (USER UNKNOWN)"

Debug Logging

Enable verbose Diameter logging:

config/runtime.exs
config :logger, level: :debug

Or at runtime
iex> Logger.configure(level: :debug)

Look for:

* [debug] Sending CCR-Initial for Session-ID:
* [debug] Received CCA-Initial: Result-Code 2001

e [error] Diameter error:

Web Ul - Diameter Peer Monitoring

OmniPGW includes a real-time Web Ul for monitoring Diameter peer
connections and status.

Diameter Peers Page

Access: http://<omnipgw-ip>:<web-port>/diameter

Purpose: Monitor Diameter Gx peer connectivity to PCRF in real-time
Features:
1. Peer Connection Overview

e Connected Count - Number of PCRF peers with active connection
e Disconnected Count - Number of configured but not connected peers

e Auto-refreshes every 1 second (fastest refresh of all pages)
2. Per-Peer Status Information For each configured PCRF peer:

e Host - Diameter identity (Origin-Host)

e IP Address - PCRF IP

e Port - Diameter port (default 3868)

e Status - Connected (green) / Disconnected (red)

e Transport - TCP or SCTP

¢ Connection Initiation - Who initiates (PGW or PCRF)

* Realm - Diameter realm

e Product Name - PCRF product identifier (if advertised)

e Application IDs - Supported Diameter applications (e.g., Gx = 16777238)

3. Expandable Details Click any peer row to see:

Complete peer configuration
Capabilities Exchange (CER/CEA) details

Supported features

Full connection state

Operational Use Cases

Monitor PCRF Connectivity:

A W DN

. Open Diameter page in browser

. Verify all PCRF peers show "Connected"

. Check Connection Initiation matches configuration
. Verify Application IDs include Gx (16777238)

Troubleshoot Session Creation Failures (Gx Issues):

. User sessions failing with "PCRF timeout" errors
. Open Diameter page
. Check peer status:

- Disconnected?
- Check network connectivity
- Verify PCRF is running
- Check firewall rules for TCP 3868
- Connected but sessions failing?
- Issue is at application level (check logs)
- PCRF may be rejecting subscribers

Verify Diameter Configuration:

u B W N -

. After configuring new PCRF peer

. Open Diameter page

. Verify peer appears in list

. Check status changes to "Connected"

Expand peer to verify:

- Realm matches configuration

- Application IDs include Gx

- Product Name shows PCRF identifier

Monitor Failover:

Scenario: Primary PCRF fails

1.

Diameter page shows primary "Disconnected"

2. Verify backup PCRF still "Connected"
3.
4. When primary recovers, status returns to "Connected"

New sessions automatically use backup

Detect Diameter Routing Issues:

e Peer shows "Connected" but wrong realm
e Application IDs don't include Gx (16777238)

e Product Name doesn't match expected PCRF

Identify Configuration Mismatches:

Web UI shows:

Connection Initiation: "Peer initiates"
But configuration says:

initiate connection: true

This indicates:
- OmniPGW attempts to connect
- But PCRF also initiating
- May cause connection race conditions

Advantages:

e Fastest refresh rate - 1 second updates

¢ Visual connection status - Immediate red/green indication

e No Diameter tools needed - No need for diameter CLI tools

e Peer configuration visible - Verify settings without checking config files
e Application-level details - See supported Diameter applications

* Realm verification - Confirm Diameter routing configuration
Integration with Metrics

While the Web Ul provides real-time status, combine with Prometheus for:

e Historical Gx error rates
e CCR/CCA message counts

e Latency trends

Web Ul = "Is it working right now?" Metrics = "How has it been working over
time?"

Related Documentation

Configuration and Policy

. - Diameter configuration, PCRF peer setup

. - QoS enforcement via QERs from PCC rules

. - Session lifecycle with policy integration

. - Detailed QoS configuration and bearer
setup

Charging Integration

. - Online charging triggered by PCC rules

. - Offline charging records with policy info

. - P-CSCF delivery for IMS policy control
Operations

. - Gx metrics, policy tracking, PCRF connectivity alerts

. - Bearer management integration with policy

Diameter Online
Charging (Gy/Ro
Interface)

Online Charging System (OCS) Interface

Table of Contents

© 0 N o U A WwDNH

[
N P O

Overview

The Gy interface (also called Ro interface in IMS contexts) connects PGW-C
to the Online Charging System (OCS) for real-time credit control. This

enables:

e Prepaid Charging - Real-time credit authorization and deduction

Real-time Credit Control - Grant quota before service delivery

Service-Based Charging - Different charging for voice, data, SMS, etc.

Immediate Account Updates - Credit balance updates in real-time

Service Denial - Block service when credit exhausted

Online vs. Offline Charging

Online Charging

Aspect Offline Charging (Gz/Rf)
P (Gy/Ro) ging
Timing Real-time, before service After service delivery
Use Case Prepaid subscribers Postpaid subscribers
Credit Yes, before granting ,
_ No, bill generated later

Check service

OCS (Online Charging CGF/CDF (Charging Data
System .

System) Function)
Risk No revenue loss Risk of unpaid bills

High (real-time

Complexit _
P y requirements)

Lower (batch processing)

User Impact Service denied if no credit Service always available

See also: for offline charging records (postpaid billing)

See also: for complete PDN session lifecycle including
charging integration

Gy in the Network Architecture

User Equipment

‘ Mobile Device ‘

OmniCharge OmniRAN

- -

Downloads ¥ English+ Omnitouch Website (@

55/58 GTP-C

Gx Diameter

Sxb PFCP .
Policy Control

Policy & Charging

Gy Diameter
Credit Control

sy

External Networks
¥

Internet/PDN

Sh/Cx

Subsc ri&er Data

HSS
Subscriber DB

Key Functions

Function
Credit Authorization

Quota Management

Credit Depletion
Detection

Re-authorization

Service Termination

Final Settlement

Description

Request quota from OCS before allowing
traffic

Track granted units (bytes, time, events)

Monitor remaining quota

Request additional quota when threshold
reached

Stop service when credit exhausted

Report actual usage upon session end

3GPP Charging Architecture

Charging Reference Points

CGF
CDR Collection

Online Charging

Charging Trigger Function (CTF)
PGW-C acts as a CTF (Charging Trigger Function), responsible for:

1. Detecting chargeable events - Session start, data usage, session end
2. Requesting credit authorization - Before allowing service

3. Tracking quota consumption - Monitor granted units

4. Generating charging events - Trigger credit requests

5. Enforcing credit control - Block traffic when quota exhausted

Online Charging Function (OCF)
The OCS implements the OCF (Online Charging Function):

1. Account balance management - Track subscriber credit
2. Rating - Determine price per unit (per MB, per second, etc.)
3. Credit reservation - Reserve credit for granted quota

4. Credit deduction - Deduct upon usage report

5. Policy decisions - Grant or deny based on balance

Gy/Ro Interface Basics

3GPP Reference

Specification: 3GPP TS 32.299 (Charging architecture)
Protocol: 3GPP TS 32.251 (PS domain charging)

Diameter Application ID: 4 (Gy/Ro - Credit Control Application)
Base Protocol: RFC 4006 (Diameter Credit Control Application)

Session Concept

Each UE PDN connection requiring online charging has a Gy/Ro session
identified by a Session-ID. This session:

e Created when bearer requires online charging (CCR-Initial)
e Updated when quota is consumed (CCR-Update)

¢ Terminated when session ends (CCR-Termination)

Session ID Format

Session-ID: <Origin-Host>;<high32>;<low32>[;<optional>]
Example: omni-
pgw c.epc.mnc999.mcc999.3gppnetwork.org;9876543210;12345; gy

Components:

e Origin-Host: PGW-C's Diameter identity
e high32: High 32 bits of unique identifier
e low32: Low 32 bits of unique identifier

e optional: Additional identifier (e.g., "gy" to distinguish from Gx)

Credit Control Messages

Message Types

CTF - Charging Trigger CDF - Chargllng Data

Function

Gz
Offline Charging

OCF - Online Charging

Gy
Online Charging

CCR-Initial (Credit Control Request - Initial)

When: UE creates a PDN connection and bearer requires online charging
Purpose:

e Request initial credit authorization from OCS
e Reserve quota for service delivery

e Establish Gy/Ro session

Key AVPs Sent by PGW-C:

AVP Name

Session-ld

Auth-Application-Id

Origin-Host

Origin-Realm

Destination-Realm

CC-Request-Type

CC-Request-Number

Subscription-ld

Service-Context-ld

Multiple-Services-
Credit-Control

Requested-Service-
Unit

Used-Service-Unit

Service-ldentifier

AVP
Code

263

258

264

296

283

416

415

443

461

456

437

446

439

Type

UTF8String

Unsigned32

Diamldent

Diamldent

Diamldent

Enumerated

Unsigned32

Grouped

UTF8String

Grouped

Grouped

Grouped

Unsigned32

Description

Unique Gy session
identifier

4 (Credit Control)

PGW-C's Diameter
identity

PGW-C's Diameter realm

OCS's realm

1 = INITIAL_REQUEST

Sequence number (starts
at 0)

UE identifier
(IMSI/MSISDN)

Charging context
identifier

Service-specific credit
requests

Requested quota (bytes,
time, etc.)

Used quota (0 for initial)

Service type identifier

AVP

AVP Name Type Description
Code

hargi t
Rating-Group 432 Unsigned32 C argl|.ng CaE=a0ny
identifier

Example CCR-l Structure:

CCR (Command Code: 272, Request)
— Session-Id: "pgw c.example.com;123;456;gy"
— Auth-Application-Id: 4
— Origin-Host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org"
— Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— CC-Request-Type: INITIAL REQUEST (1)
— CC-Request-Number: 0
— Subscription-Id (Grouped)
| }— Subscription-Id-Type: END USER IMSI (1)
| L— Subscription-Id-Data: "310260123456789"
— Subscription-Id (Grouped)
| }— Subscription-Id-Type: END USER E164 (0)
| L— Subscription-Id-Data: "15551234567"
— Service-Context-Id: "32251@3gpp.org"
— Multiple-Services-Credit-Control (Grouped)
| | Service-Identifier: 1
| |— Rating-Group: 100
| L— Requested-Service-Unit (Grouped)
| L— CC-Total-Octets: 10000000 (request 10 MB)
L— Used-Service-Unit (Grouped)
L— CC-Total-Octets: 0 (no usage yet)

CCA-Initial (Credit Control Answer - Initial)
Sent by: OCS in response to CCR-I
Purpose:

e Grant or deny credit authorization

e Provide quota for service delivery

e Specify rating and charging parameters

Key AVPs Received by PGW-C:

AVP Name

Result-Code

Multiple-Services-Credit-
Control

Granted-Service-Unit

Validity-Time

Result-Code

Final-Unit-Indication

Volume-Quota-Threshold

Success Response Example:

AVP
Code

268

456

431

448

268

430

Description

Success (2001) or error code

Service-specific credit grants

Granted quota (bytes, time,
etc.)

Quota validity period
(seconds)

Per-service result code

Action when quota exhausted

Threshold for re-authorization

CCA (Command Code: 272, Answer)
— Session-Id: "pgw c.example.com;123;456;gy"
— Result-Code: DIAMETER SUCCESS (2001)
— Origin-Host: "ocs.example.com"
— Origin-Realm: "example.com"
— Auth-Application-Id: 4
— CC-Request-Type: INITIAL REQUEST (1)
— CC-Request-Number: 0
L— Multiple-Services-Credit-Control (Grouped)
— Result-Code: DIAMETER SUCCESS (2001)
— Service-Identifier: 1
— Rating-Group: 100
— Granted-Service-Unit (Grouped)
| L— CC-Total-Octets: 10000000 (granted 10 MB)
— validity-Time: 3600 (quota valid for 1 hour)
L— Volume-Quota-Threshold: 8000000 (re-auth at 8 MB used,
80%

of

CCR-Update (Credit Control Request - Update)

When:

Granted quota threshold reached (e.g., 80% consumed)

Validity time expires

Service change requires re-authorization

Tariff time change
Purpose:

e Request additional quota
e Report usage of previously granted quota

e Update charging parameters
Key Differences from CCR-I:

* (CC-Request-Type: UPDATE REQUEST (2)
e (CC-Request-Number incremented

e Used-Service-Unit contains actual usage

* Requested-Service-Unit for more quota

Example CCR-U Structure:

CCR (Command Code: 272, Request)
— Session-Id: "pgw c.example.com;123;456;gy"
— Auth-Application-Id: 4
— Origin-Host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org"
— Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— CC-Request-Type: UPDATE REQUEST (2)
— CC-Request-Number: 1
L— Multiple-Services-Credit-Control (Grouped)

— Service-Identifier: 1

— Rating-Group: 100

— Used-Service-Unit (Grouped)

| L— CC-Total-Octets: 8000000 (8 MB used so far)

L— Requested-Service-Unit (Grouped)

L— CC-Total-Octets: 10000000 (request another 10 MB)

CCA-Update (Credit Control Answer - Update)
Sent by: OCS in response to CCR-U
Purpose:

e Grant additional quota (if credit available)
e Acknowledge usage

e Update charging parameters
Possible Outcomes:

1. More Quota Granted:

CCA (Update)
L— Multiple-Services-Credit-Control
— Result-Code: DIAMETER SUCCESS (2001)

— Granted-Service-Unit
| L— CC-Total-Octets: 10000000 (another 10 MB)

L— validity-Time: 3600
2. Final Quota (Credit Exhausted):

CCA (Update)
L— Multiple-Services-Credit-Control
— Result-Code: DIAMETER SUCCESS (2001)
— Granted-Service-Unit
| L— CC-Total-Octets: 1000000 (only 1 MB left)
L— Final-Unit-Indication
L— Final-Unit-Action: TERMINATE (0)

3. No Credit Available:

CCA (Update)
— Result-Code: DIAMETER CREDIT LIMIT REACHED (4012)
L— Multiple-Services-Credit-Control
F—— Result-Code: DIAMETER CREDIT LIMIT REACHED (4012)
L— Final-Unit-Indication
L— Final-Unit-Action: TERMINATE (0O)

CCR-Termination (Credit Control Request -
Termination)

When:

e UE detaches
e PDN connection deleted

e Session terminated for any reason

Purpose:

e Final usage report
¢ Close Gy/Ro session

e Final settlement
Key Differences:

e (CC-Request-Type: TERMINATION REQUEST (3)
e Used-Service-Unit contains final usage
* No Requested-Service-Unit (no more quota needed)

¢ Includes Termination-Cause

Example CCR-T Structure:

CCR (Command Code: 272, Request)
— Session-Id: "pgw c.example.com;123;456;gy"
— Auth-Application-Id: 4
— Origin-Host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org"
— Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"
— CC-Request-Type: TERMINATION REQUEST (3)
— CC-Request-Number: 5
— Termination-Cause: DIAMETER LOGOUT (1)
L— Multiple-Services-Credit-Control (Grouped)

— Service-Identifier: 1

— Rating-Group: 100

L— Used-Service-Unit (Grouped)

L— CC-Total-Octets: 18500000 (18.5 MB total usage)

CCA-Termination (Credit Control Answer -
Termination)

Sent by: OCS in response to CCR-T
Purpose:

e Acknowledge session termination
e Complete accounting

¢ Release reserved credit

Example CCA-T:

CCA (Command Code: 272, Answer)
— Session-Id: "pgw c.example.com;123;456;gy"
— Result-Code: DIAMETER SUCCESS (2001)

— Origin-Host: "ocs.example.com"

— Origin-Realm: "example.com"
— Auth-Application-Id: 4

— CC-Request-Type: TERMINATION REQUEST (3)
L— CC-Request-Number: 5

Online Charging Flows

Service Unit Types

The OCS can grant quota in different units:

Unit Type

Time

Volume

Volume
(separate)

Service-
Specific

Events

AVP

CC-Time

CC-Total-Octets

CC-Input-Octets,
CC-Output-Octets

CC-Service-
Specific-Units

Description

Seconds

Bytes (total
up+down)

Bytes
(separate)

Custom units

Counted events

Use Case

Voice calls,

session duration

Data services

Asymmetric
charging

SMS, MMS, API
calls

Pay-per-use
services

Quota Threshold Management
Problem: How does PGW-C know when to request more quota?

Solution: OCS provides a Volume-Quota-Threshold or Time-Quota-
Threshold. PGW-C monitors usage via PFCP Session Reports from PGW-U (see

).

Example Flow:

1. 0CS grants 10 MB quota with 80% threshold (8 MB)
2. PGW-C monitors usage via PGW-U usage reports (PFCP Session
Reports)
3. When usage reaches 8 MB:
-» PGW-C sends CCR-Update
- Continue allowing traffic (don't wait for response)
4. 0CS responds with more quota
5. If quota exhausted before CCR-Update sent:
- PGW-C must block traffic

Threshold Calculation:

Granted-Service-Unit: 10000000 bytes (10 MB)
Volume-Quota-Threshold: 8000000 bytes (8 MB)

When 8 MB consumed - Trigger CCR-Update
Remaining buffer: 2 MB (allows time for OCS response)

PGW-C Monitoring:

PGW-C monitors usage via PFCP Session Reports from PGW-U:

PGW-U PGW-C OCS

Granted: 10 MB
Threshold: 8 MB
Used: 0 MB

Session Report (Usage: 2 MB)

Used: 2 MB
(below threshold)

Session Report (Usage: 6 MB)

Used: 6 MB
(below threshold)

Session Report (Usage: 8 MB)

Used: 8 MB
THRESHOLD REACHED!

CCR-Update
(Used: 8 MB, Request: 10 MB)

Session Report (Usage: 9 MB)

Still below granted 10 MB,
allow traffic

CCA-Update
(Granted: 10 MB more)

New total: 20 MB
New threshold: 18 MB

=R

Final Unit Indication
What happens when credit is exhausted?

OCS includes Final-Unit-Indication AVP in CCA to specify action:

Final-Unit-Action Value PGW-C Behavior

TERMINATE 0 Block all traffic, initiate session termination
REDIRECT 1 Redirect traffic to portal (e.qg., top-up page)

Allow access only to specific services (e.qg.,

RESTRICT ACCESS 2
- top-up server)

Example: Final Unit with Redirect

CCA (Update)
L— Multiple-Services-Credit-Control
— Result-Code: DIAMETER SUCCESS (2001)
— Granted-Service-Unit
| L— CC-Total-Octets: 1000000 (final 1 MB)
L— Final-Unit-Indication
— Final-Unit-Action: REDIRECT (1)
L— Redirect-Server (Grouped)
— Redirect-Address-Type: URL (2)
L— Redirect-Server-Address:
"http://topup.example.com"”

PGW-C Actions:

1. TERMINATE: Send CCR-T, delete bearer
2. REDIRECT: Install PFCP rule to redirect HTTP to top-up URL
3. RESTRICT_ACCESS: Install PFCP rules allowing only whitelisted IPs

Bearer Charging Control

What Controls if a Bearer is Charged?

3GPP Specification: TS 23.203, TS 29.212, TS 32.251

Bearer charging is controlled by PCC Rules provisioned by the PCRF via the Gx
interface. See for complete PCC rule documentation.

Charging Decision Flow:

Does PCC Rule
specify online
charging?

Quota

PCC Rule with Charging Information

PCRF Response (CCA-l on Gx):

CCA (Gx Interface)
L— Charging-Rule-Definition (Grouped)
— Charging-Rule-Name: "prepaid data rule"
— Rating-Group: 100
— Online: 1 (enable online charging)
— offline: 0 (disable offline charging)
— Metering-Method: VOLUME (1)
— Precedence: 100
— Flow-Information: [...]
L— QoS-Information: [...]

Key Charging AVPs in PCC Rules:

AVP

AVP Name Values Description
Code
. . Charging category
Rating-Group 432 Unsigned32 T
(maps to tariff in OCS)
. O=Disable, Enable online charging
Online 1009
1=Enable (Gy)
=Disable, E le offli hargi
Offline 1008 O0=Disable nable offline charging
1=Enable (Gz)
Metering- 1007 O=Duration, What t -
meter
Method 1=Volume, 2=Both attomete
Reporting- 1011 0=Service, Granularity of usage
Level 1=Rating Group reports

Bearer Charging Decision Matrix

Online Offline Rating-Group Behavior

1 0 Present Online charging only (prepaid)

0 1 Present Offline charging only (postpaid)

1 1 Present Both online and offline (convergent)
0 0 - No charging (free service)

Multiple Rating Groups

A single PDN connection can have multiple bearers with different rating
groups:

Example Scenario:

Default Bearer (Internet)

— Rating-Group: 100 (Standard Data)
L— Online: 1

Dedicated Bearer 1 (Video Streaming)

— Rating-Group: 200 (Video Service)
L— Online: 1

Dedicated Bearer 2 (IMS Voice)
— Rating-Group: 300 (Voice)
L— Online: 1

PGW-C Gy Behavior:

¢ Single CCR-I with multiple MSCC (Multiple-Services-Credit-Control)
sections:

CCR-Initial

— Session-Id: "..."

L— Multiple-Services-Credit-Control
— [Rating-Group: 100] - Standard Data
— [Rating-Group: 200] - Video Service
L— [Rating-Group: 300] - Voice

OCS Response:

CCA-Initial
L— Multiple-Services-Credit-Control
— [Rating-Group: 100] - Granted: 10 MB

— [Rating-Group: 200] - Granted: 5 MB (video more expensive)
L— [Rating-Group: 300] - Granted: 60 seconds

Per-Service Charging Enforcement

PGW-C tracks quota per Rating-Group:

Pseudocode

state.charging quotas = %{
100 => %{granted: 10 000 000, used: 0, threshold: 8 000 000},
200 => %{granted: 5 000 000, used: 0, threshold: 4 000 000},
300 => %{granted: 60 000, used: 0, threshold: 48 000} #

milliseconds

}

Usage Monitoring per Bearer:

PGW-U PGW-C Qcs

Granted: 10 MB
Threshold: 8 MB
Used: 0 MB

Session Report (Usage: 2 MB)

P
-

Used: 2 MB
{below threshold)

Session Report (Usage: 6 MB)

P
|

Used: 6 MB
(below threshold)

Session Report (Usage: 8 MB)

L

Used: 8 MB
*#*THRESHOLD REACHED!**

CCR-Update
(Used: 8 MB, Request: 10 MB)

>

Session Report (Usage: 9 MB)

-
|

Still below granted 10 MB,
allow traffic

CCA-Update
({Granted: 10 MB morg)

4l
-

New total: 20 MB
MNew threshold: 18 MB

PGW-U PGW-C 0Ccs

Multiple Services Credit Control

MSCC (Multiple-Services-Credit-Control) AVP

Purpose: Group charging information for a specific service/rating group

Structure:

Multiple-Services-Credit-Control (Grouped, AVP 456)
— Service-Identifier (Unsigned32, AVP 439)
— Rating-Group (Unsigned32, AVP 432)
— Requested-Service-Unit (Grouped, AVP 437)
| |— CC-Time (Unsigned32, AVP 420)
| |— CC-Total-Octets (Unsigned64, AVP 421)
| |— CC-Input-Octets (Unsigned64, AVP 412)
| L— CC-Output-Octets (Unsigned64, AVP 414)
— Used-Service-Unit (Grouped, AVP 446)
| L— [Same structure as Requested-Service-Unit]
— Granted-Service-Unit (Grouped, AVP 431)
| L— [Same structure as Requested-Service-Unit]
— validity-Time (Unsigned32, AVP 448)
— Result-Code (Unsigned32, AVP 268)
L— Final-Unit-Indication (Grouped, AVP 430)
L— Final-Unit-Action (Enumerated, AVP 449)

Service-ldentifier vs. Rating-Group

Attribute Service-ldentifier Rating-Group
Purpose Identifies service type Identifies charging category
Example 1=Data, 2=Voice, 3=SMS 100=Regular, 200=Premium
Granularity Broad classification Specific tariff
Required Optional Required for charging
Mapping May map to multiple RGs Single tariff in OCS

Example:

Service-Identifier: 1 (Data Service)
— Rating-Group: 100 (Standard Data - $0.01/MB)
L— Rating-Group: 200 (Premium Data - $0.05/MB)

Service-Identifier: 2 (Voice)
L— Rating-Group: 300 (Voice Calls - $0.10/min)

Configuration

Basic Gy Configuration

Edit config/runtime.exs:

config :pgw c,
online charging: %{
Enable or disable online charging globally
enabled: true,

0CS connection timeout (milliseconds)
timeout ms: 5000,

Default quota request (bytes) if not specified by PCRF
default requested quota: 10 000 000, # 10 MB

Threshold percentage for re-authorization
(0.8 = trigger CCR-Update at 80% quota consumed)
quota threshold percentage: 0.8,

Action when 0CS timeout occurs
Options: :block, :allow
timeout action: :block,

Action when OCS returns no credit
Options: :terminate, :redirect
no credit action: :terminate,

Redirect URL for top-up (used if no credit action:
:redirect)
topup redirect url: "http://topup.example.com"
¥,
diameter: %{
listen ip: "0.0.0.0",
host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",

0CS peer configuration
peer list: [
PCRF for policy control (Gx)
%{
host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "10.0.0.30",
initiate connection: true

}
0CS for online charging (Gy)
{

o®

host: "ocs.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "10.0.0.40",

initiate connection: true

Configuration Parameters Explained
enabled

e true: Online charging active, CCR messages sent to OCS

e false: Online charging disabled, no Gy messages
timeout_ms

e Time to wait for CCA response from OCS
¢ Recommended: 3000-5000 ms

default_requested quota

e Default quota to request if PCRF doesn't specify
e Typical values: 1-100 MB

quota_threshold percentage

Trigger CCR-Update when this % of quota consumed
Recommended: 0.75-0.85 (75%-85%)

Higher = fewer messages, but risk of quota exhaustion

Lower = more messages, but safer
timeout_action

e :block - Block traffic if OCS doesn't respond (safer, prevents revenue loss)

e :allow - Allow traffic if OCS doesn't respond (better UX, revenue risk)

no_credit_action

e :terminate - Delete bearer when credit exhausted

e :redirect - Redirect to top-up portal

Environment-Specific Configuration

Production (prepaid subscribers):

config :pgw c,
online charging: %{
enabled: true,
timeout action: :block,
no credit action: :terminate,
quota threshold percentage: 0.8
}

Test/Development:

config :pgw c,
online charging: %{
enabled: false # Disable for testing

}
Hybrid (some prepaid, some postpaid):

config :pgw c,
online charging: %{
enabled: true, # Controlled per-subscriber by PCRF
timeout action: :allow, # Don't block postpaid on OCS failure
no credit action: :terminate

}

Message Flows

Successful Session with Online Charging

SGW-C PGW-C PCRF (Gx) OCS (Gy) PGW-U

Create Session Request

1. Allocate UE IP
2. Generate Session-IDs

CCR-Initial (Gx)

CCA-Initial (Gx)

PCC Rule includes:
Rating-Group: 100
Online: 1

PCRF said online charging
required for RG 100

CCR-Initial (Gy)

MSCC:
- Rating-Group: 100
- Requested: 10 MB

CCA-Initial (Gy)

MSCC:
- Granted: 10 MB
- Threshold: 8 MB

Session Establishment (PFCP)

Install URR (Usage Reporting Rule)
Threshold: 8 MB

Session Establishment Response

Create Session Response

‘Session Active - Traffic Flowing‘

SGW-C PGW-C PCRF (Gx) OCS (Gy) PGW-U

Quota Re-authorization (CCR-Update)

Bearer Setup Request

|

PGW-C sends CCR-l to
PCRF

|

PCRF returns PCC Rules

OmniCharge OmniRAN i i i
Downloads ¥ English + Omnitouch Websit

Yes No
Extract Rating-Group No online charging
from PCC Rule for this bearer
Allow Traffic
No Charging

0Cs

Response?

Quota Granted No Credit

PGW-C monitors
quota consumption

Credit Exhaustion (Final Unit)

PGW-U PGW-C 0OCs SGW-C

Session Report
(Usage: 8.1 MB)

CCR-Update (Gy)

Request more quota

CCA-Update (Gy)

MSCC:
- Granted: 1 MB (final)
- Final-Unit-Indication:
TERMINATE

Only 1 MB quota left
This is the final grant

Session Report
(Usage: 10 MB - quota exhausted)

All quota consumed
Must terminate session

Session Deletion (PFCP)

Session Deletion Response

CCR-Termination (Gy)

MSCC:
- Used: 10 MB (final)

CCA-Termination (Gy)

Delete Bearer Request

Delete Bearer Response

Session terminated
due to credit exhaustion

PGW-U PGW-C 0Cs SGW-C

OCS Timeout Handling

SGW-C PGW-C PCRF (Gx) OCS (Down)

Create Session Request

CCR-Initial (Gx)

CCA-Initial (Gx)

Online charging required

CCR-Initial (Gy)

Wait for response...
Timeout: 5 seconds

No response
(OCS down or overloaded)

Timeout!
Check config:
timeout_action: :block

Create Session Response
(Cause: Remote Peer Not Responding)

Session rejected
No UE IP allocated

SGW-C PGW-C PCRF (Gx) OCS (Down)

Error Handling

Result Codes

Success Codes:

Code Name Action

2001 DIAMETER_SUCCESS Continue with granted quota

Transient Failures (4xxx):

Code Name PGW-C Action

4010 DIAMETER_TOO_BUSY Retry with backoff

4011 DIAMETER_UNABLE_TO_COMPLY Log error, may retry

4012 DIAMETER_CREDIT_LIMIT_REACHED Terminate or redirect

Permanent Failures (5xxx):

Code Name PGW-C Action

5003 DIAMETER_AUTHORIZATION_REJECTED Reject session

Reject session (invalid
5031 DIAMETER_USER_UNKNOWN _
B B subscriber)

Per-Service Result Codes

Important: Result-Code can appear at two levels:

1. Message level - Overall result

2. MSCC level - Per-service result

Example:

CCA-Initial
— Result-Code: DIAMETER SUCCESS (2001)
L— Multiple-Services-Credit-Control
— [Rating-Group: 100]
| L— Result-Code: DIAMETER SUCCESS (2001) « RG 100: OK
L— [Rating-Group: 200]

L— Result-Code: DIAMETER CREDIT LIMIT REACHED (4012)
RG 200: No credit

« Message level: OK

«—

PGW-C Behavior:

e Allow traffic for Rating-Group 100
e Block traffic for Rating-Group 200

Integration with Gx

The Gx interface (PCRF policy control) determines whether online charging is
required and provides the Rating-Group that drives Gy charging. See
for complete policy control documentation.

Gx and Gy Relationship

SGW-C PGW-C PCRF (Gx) 0CS (Gy) PGW-U

Create Session Request

=

1. Allocate UE IP
2. Generate Session-1Ds

CCR-Initial (Gx)

»

CCA-Imitial [Gx)

PCC Rule includes:
Rating-Group: 100

Online: 1
PCRF said online charging

required for RG 100

CCR-Initial {(Gy)

= ¥
MSCC:

- Rating-Group: 100
- Requested: 10 MB

CCA-Initial {Gy]

M5SCC:

- Granted: 10 MB
- Threshold: 8 MB

Session Establishment (PFCP)

L 3

Install URR {Usage Reporting Rule)
Threshold: 8 MB

Sessiom Establishment Response

[

Create Session Response

Session Active - Traffic Flowing

SGW-C PGW-C PCRF (Gx) 0CS (Gy) PGW-U

Integration Flow

1. Bearer Setup:

PGW-C receives Create Session Request
i
Send CCR-I to PCRF (Gx)
!
Receive CCA-I with PCC Rules
i
Parse PCC Rules:
- Does rule have Rating-Group?
- Is Online = 17
i
If YES:
Send CCR-I to 0CS (Gy) with Rating-Group
i
Receive CCA-I with quota
!
If quota granted: Proceed
If no credit: Reject bearer
If NO:
Proceed without online charging

2. Dynamic Policy Update (RAR from PCRF):

PCRF sends RAR (Re-Auth-Request) on Gx
!
New PCC Rule added with Online=1, Rating-Group=200
i
PGW-C sends CCR-U to 0CS (Gy)
- Add MSCC for Rating-Group 200
i
0CS grants quota for new service
!
Install dedicated bearer with online charging

Troubleshooting

Common Issues
1. CCR-Initial to OCS Timeouts
Symptoms:

e Sessions fail with "OCS timeout"
e Log: "CCR-Initial (Gy) timeout"

Possible Causes:

OCS not reachable

Incorrect OCS IP in configuration

Firewall blocking Diameter port (3868)
OCS overloaded

Resolution:

Test network connectivity
ping <ocs ip>

Test Diameter port (TCP 3868)
telnet <ocs ip> 3868

Check configuration
Ensure OCS peer is configured in peer list

2. Sessions Rejected by OCS
Symptoms:

e CCA-l with Result-Code '= 2001

e Create Session Response fails

Common Result Codes:

Result Code Likely Cause

Resolution
4012 Credit limit reached Subscriber needs to top-up
5003 Authorization rejected Check subscriber permissions
5031

User unknown Provision subscriber in OCS

Debug Steps:

1. Check OCS logs for rejection reason

2. Verify subscriber balance in OCS
3. Check IMSI/MSISDN in CCR-lI matches subscriber record

3. Quota Exhaustion Not Detected
Symptoms:

e User continues using data after balance exhausted
* No CCR-Update sent

Possible Causes:

* URR (Usage Reporting Rule) not installed in PGW-U
e Threshold not configured correctly

e PFCP Session Reports not received

Debug Steps:

1. Verify URR in PFCP Session Establishment:

Create URR

— URR-ID: 1

— Measurement-Method: VOLUME

— Volume-Threshold: 8000000 (8 MB)

L— Reporting-Triggers: VOLUME THRESHOLD

2. Check PGW-U logs for usage reports

3. Verify quota threshold percentage in config
4. Incorrect Rating-Group
Symptoms:

¢ OCS rejects with "Unknown Rating-Group"

e Sessions fail
Cause:

e Rating-Group in CCR-l doesn't match OCS configuration
e PCRF provisioned invalid Rating-Group

Resolution:

1. Verify Rating-Group in PCC Rule from PCRF
2. Check OCS configuration for valid Rating-Groups
3. Ensure mapping between PCC Rules and OCS tariffs

Monitoring

Key Metrics

Gy message rates
rate(gy inbound messages total{message type="cca"}[5m])
rate(gy outbound messages total{message type="ccr"}[5m])

Gy error rates
rate(gy inbound errors total[5m])

Quota exhaustion events
rate(gy quota exhausted total[5m])

OCS timeout rate
rate(gy timeout total[5m])

Gy message handling duration
histogram quantile(0.95,
rate(gy inbound handling duration bucket[5m]))

Alerts

Alert on high Gy error rate
- alert: GyErrorRateHigh
expr: rate(gy inbound errors total[5m]) > 0.1
for: 5m
annotations:
summary: "High Gy error rate detected"

Alert on 0CS timeout
- alert: OcsTimeout
expr: rate(gy timeout total[5m]) > 0.05
for: 2m
annotations:
summary: "OCS timeouts occurring"

Alert on credit exhaustion spike
- alert: CreditExhaustionSpike
expr: rate(gy quota exhausted total[5m]) > 10
for: 5m
annotations:
summary: "High rate of credit exhaustion"

Web Ul - Gy Credit Control
Simulator

OmniPGW includes a built-in Gy/Ro simulator for testing online charging
functionality without requiring an external OCS.

Access: http://<omnipgw-ip>:<web-port>/gy simulator

Purpose: Test and simulate online charging scenarios for prepaid subscribers
Features:
1. Request Parameters

e IMSI - Subscriber identity (e.qg., "310170123456789")

e MSISDN - Phone number (e.g., "14155551234")

* Requested Units - Amount of quota to request (in bytes)
e Service ID - Service type identifier

e Rating Group - Charging category
2. CCR-l Simulation

¢ Send CCR-Initial (Credit-Control-Request Initial)
e Simulates initial quota request during session establishment

e Tests OCS integration without live traffic
3. Use Cases

 Development Testing - Test Gy interface during development
¢ OCS Integration - Verify OCS connectivity and responses

¢ Quota Testing - Test different quota scenarios

e Troubleshooting - Debug charging issues

e Demo - Demonstrate online charging to stakeholders

How to Use:

. Enter subscriber details (IMSI, MSISDN)

. Set requested units (e.g., 1000000 for 1 MB)
. Configure Service ID and Rating Group

Click "Send CCR-I"

View 0CS response and granted quota

U B~ W N =

Benefits:

No need for external OCS during testing

Quick validation of charging logic

Safe testing environment

Useful for training and demos

Related Documentation

Charging and Policy

. - PCRF policy control, PCC rules that trigger online
charging

. - Offline charging records for postpaid billing

. - Complete online charging configuration
parameters

Session Management

. - PDN session lifecycle, bearer management
. - Usage reporting from PGW-U via URRs

. - GTP-C bearer setup and teardown

Operations

. - Gy metrics, quota tracking, OCS timeout alerts

. - IP pool configuration for charged sessions

OmniPGW Monitoring &
Metrics Guide

Prometheus Integration and Operational Monitoring

by Omnitouch Network Services

Table of Contents

© N o vk wWwN e

Overview

OmniPGW provides two complementary monitoring approaches:

1. Real-Time Web Ul (covered briefly here, detailed in respective interface
docs)

e Live session viewer
e PFCP peer status
e Diameter peer connectivity

e Individual session inspection

2. Prometheus Metrics (main focus of this document)

Historical trends and analysis

Alerting and notifications

Performance metrics

Capacity planning

This document focuses on Prometheus metrics. For Web Ul details, see:

Prometheus Metrics Overview

OmniPGW exposes Prometheus-compatible metrics for comprehensive
monitoring of system health, performance, and capacity. This enables
operations teams to:

* Monitor System Health - Track active sessions, allocations, and errors

Capacity Planning - Understand resource utilization trends

Performance Analysis - Measure message handling latency

Alerting - Proactive notification of issues

Debugging - Identify root causes of problems

Monitoring Architecture

.-QUEW _

Blerts——+ Alert Manager | Motify—s| Ops Team

Email'Slack/PagerDuty

Metrics Endpoint

Configuration

Enable metrics in config/runtime.exs:

config :pgw c,
metrics: %{
enabled: true,
ip address: "0.0.0.0", # Bind to all interfaces
port: 9090, # HTTP port
registry poll period ms: 5 000 # Poll interval

Accessing Metrics

HTTP Endpoint:

http://<omnipgw ip>:<port>/metrics
Example:

curl http://10.0.0.20:9090/metrics

Output Format

Metrics are exposed in Prometheus text format:

HELP teid registry count The number of TEID registered to
sessions

TYPE teid registry count gauge

teid registry count 150

HELP address registry count The number of addresses registered
to sessions

TYPE address registry count gauge

address registry count 150

HELP s5s8 inbound messages total The total number of messages
received from S5/S8 peers
TYPE s5s8 inbound messages total counter

s5s8 inbound messages total{message type="create session request"}
1523

s5s8 inbound messages total{message type="delete session request"}
1487

Available Metrics

OmniPGW exposes the following metric categories:

Session Metrics

Active Session Counts:

Metric Name Type Description

Active S5/S8 sessions

teid registry count Gauge
e 9 (TEID count)
r ot " G Active PFCP sessions
seid registry coun auge
_re9 & g (SEID count)
Active Gx sessions
session id registry count Gauge (Diameter Session-ID
count)
: : Active sessions (IMSI,
session registry count Gauge .
EBI pairs)
: Allocated UE IP
address registry count Gauge

addresses

Active charging IDs
charging id registry count Gauge (see
for CDR billing records)

Pending PFCP
sxb sequence number registry count Gauge responses (awaiting
response)

Pending S5/S8
s5s8 sequence number registry count Gauge responses (awaiting
response)

. Number of registered
sxb peer registry count Gauge
PFCP peer processes

Usage:

Current active sessions
teid registry count

Session creation rate (per second)
rate(teid registry count[5m])

Peak sessions in last hour
max_over time(teid registry count[1lh])

Message Counters
S5/S8 (GTP-C) Messages:

Metric Name Type Labels

s5s8 inbound messages total Counter message type

s5s8 outbound messages total Counter message type

s5s8 inbound errors total Counter message type

Message Types:

e create session request
* create session response
* delete session request
e delete session response

* create bearer request

Description

Total
inbound
S5/58
messages

Total
outbound
S5/58
messages

S5/S8
processing
errors

* delete bearer request

Sxb (PFCP) Messages:

Metric Name

sxb inbound messages total

sxb outbound messages total

sxb _inbound errors total

sxb outbound errors total

Message Types:

* association setup request

* association setup response

* heartbeat request

e heartbeat response

Type

Counter

Counter

Counter

Counter

* session establishment request

* session establishment response

e session modification request

* session deletion request

Gx (Diameter) Messages:

Labels

message type

message type

message type

message type

Description

Total inbound
PFCP
messages

Total
outbound
PFCP
messages

PFCP inbound
processing
errors

PFCP
outbound
processing
errors

Metric Name

gx_inbound messages total

gx _outbound messages total

gx _inbound errors total

gx _outbound errors total

gx_outbound responses total

Message Types:

* gx_CCA (Credit-Control-Answer)

Type

Counter

Counter

Counter

Counter

Counter

e gx CCR (Credit-Control-Request)

* gx RAA (Re-Auth-Answer)
* gx RAR (Re-Auth-Request)

Labels

message type

message type

message type

message type

message type,
result code class,
diameter host

Descript

Total
inbound
Diameter
message.

Total

outbounc
Diameter
message:

Diameter
inbound
processir
errors

Diameter
outbounc
processir
errors

Diameter
response
sent,

categoriz
by result
code clas
and peer
host

Result Code Classes (for gx outbound responses total):

e 2XxXX - Success responses (e.g., 2001 DIAMETER _SUCCESS)
e 3xxx - Protocol errors (e.g., 3001 DIAMETER_COMMAND_ UNSUPPORTED)

e 4xxx - Transient failures (e.g., 4001
DIAMETER_AUTHENTICATION_REJECTED)

* 5xxx - Permanent failures (e.g., 5012 DIAMETER_UNABLE_TO_COMPLY)

Usage Examples:

Monitor Gx response success rate
sum(rate(gx outbound responses total{result code class="2xxx"}[5m]))
sum(rate(gx outbound responses total[5m])) * 100

Track failures by PCRF host
rate(gx _outbound responses total{result code class!="2xxx"}[5m]) by ¢

Count total successful Re-Auth-Answer messages
gx_outbound responses total{message type="gx RAA",result code class='

Alert on high failure rate to specific PCRF
rate(gx outbound responses total{result code class=~"4xxx|5xxx",diame
[5m]) > 0.1

Error Handling:

Metric Name Type Labels Description

module, Total rescue blocks hit
rescues total Counter)])
- function (exception handling)

Latency Metrics

Inbound Message Processing Duration:

Metric Name

s5s8 inbound handling duration

sxb inbound handling duration

gx_inbound handling duration

Outbound Transaction Duration:

Type

Histogram

Histogram

Histogram

Labels

request message type

request message type

request message type

A ~ ~ — =

n

Metric Name Type Labels

s5s8 outbound transaction duration Histogram request message type

sxb outbound transaction duration Histogram request message type

gx_outbound transaction duration Histogram request message type

Buckets (seconds):

e Values: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0
e (100ps, 500us, 1Ims, 5ms, 10ms, 50ms, 100ms, 500ms, 1s, 5s)

Usage:

95th percentile S5/S8 latency
histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket[5m])
)

Average PFCP latency
rate(sxb_inbound handling duration sum[5m]) /
rate(sxb_inbound handling duration count[5m])

UPF Health Monitoring

UPF Peer Metrics:

Metric Name

upf peers total

upf peers healthy

upf peers unhealthy

upf peers associated

upf peers unassociated

upf peer healthy

upf peer missed heartbeats

Usage:

Type

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Labels

peer ip

peer ip

Description

Total number of
registered UPF peers

Number of healthy
UPF peers (associated
+ heartbeats OK)

Number of unhealthy
UPF peers

Number of UPF peers
with active PFCP
association

Number of UPF peers
without PFCP
association

Health status of
specific UPF
(1l=healthy,
O=unhealthy)

Consecutive missed
heartbeats for
specific UPF

Monitor UPF pool health
upf peers healthy / upf peers total

Alert on unhealthy UPFs
upf peers unhealthy > 0

Track specific UPF health
upf peer healthy{peer ip="10.98.0.20"}

Identify UPFs with heartbeat issues
upf peer missed heartbeats > 2

Alerting Examples:

Alert when UPF goes down
- alert: UPF_Peer Down
expr: upf peer healthy ==
for: 1m
labels:
severity: critical
annotations:
summary: "UPF {{ $labels.peer ip }} is down"
description: "UPF peer not responding to PFCP heartbeats"

Alert when multiple UPFs are down
- alert: UPF _Pool Degraded
expr: (upf peers healthy / upf peers total) < 0.5
for: 2m
labels:
severity: critical
annotations:
summary: "UPF pool degraded"
description: "Only {{ $value | humanizePercentage }} of UPFs
are healthy"

Warning on missed heartbeats
- alert: UPF Heartbeat Issues
expr: upf peer missed heartbeats > 2
for: 30s
labels:
severity: warning
annotations:
summary: "UPF {{ $labels.peer ip }} heartbeat issues"
description: "{{ $value }} consecutive missed heartbeats"

P-CSCF Health Monitoring

P-CSCF Server Metrics:

Metric Name

pcscf fgdns total

pcscf fgdns resolved

pcscf fqdns failed

pcscf _servers total

pcscf servers healthy

pcscf servers unhealthy

See:

License Metrics

License Status:

Metric Name Type

license status Gauge

Usage:

Type

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Labels

fqdn

fqdn

Description

Total P-CSCF FQDNSs being
monitored

P-CSCF FQDNs
successfully resolved via
DNS

P-CSCF FQDNs that failed
DNS resolution

Total P-CSCF servers
discovered

Healthy P-CSCF servers
per FQDN

Unhealthy P-CSCF servers
per FQDN

for detailed IMS health tracking.

Description

Current license status (1 = valid, 0 = invalid)

Check if license is valid
license status ==

Alert on invalid license
license status ==

Alerting Example:

- alert: PGW C License Invalid
expr: license status ==
for: 1m
labels:
severity: critical
annotations:
summary: "PGW-C license invalid or expired"
description: "License status is invalid - create session
requests are being blocked"

Impact of Invalid License:

When the license is invalid or the license server is unreachable, Create
Session Requests will be rejected with GTP-C cause code "No resources
available" (73). This is visible in packet captures as shown below:

Wireshark capture showing Create Session Response with "No resources
available" cause when license is invalid

Notes:

e Product name registered with license server: omnipgwc

e License server URL is configured in config/runtime.exs under
:license client

* When license is invalid (license status == 0), create session requests are
blocked with GTP-C cause code 73 (No resources available)

e Ul and monitoring remain accessible regardless of license status
e Diameter, GTP-C, and PFCP peers continue to maintain connections

e Existing sessions are not affected - only new session creation is blocked

System Metrics

Erlang VM Metrics:

Metric Name Type Description
vm_memory total Gauge Total VM memory (bytes)
VIL_memory processes Gauge Memory used by processes
vm_memory system Gauge Memory used by system

vm system process count Gauge Total Erlang processes

vm_system port count Gauge Total open ports

Prometheus Configuration

Scrape Configuration

Add OmniPGW to Prometheus prometheus.yml:

prometheus.yml

global:
scrape_interval: 15s
evaluation interval: 15s

scrape configs:
- job name: 'omnipgw'
static configs:
- targets: ['10.0.0.20:9090']
labels:
instance: 'omnipgw-01'
environment: 'production'
site: 'datacenter-1'

Multiple OmniPGW Instances

scrape configs:
- job name: 'omnipgw'
static configs:

- targets:
- '10.0.0.20:9090'
- '10.0.0.21:9090'
- '10.0.0.22:9090'

labels:

environment: 'production’

Service Discovery

Kubernetes:

scrape _configs:
- job name: 'omnipgw'
kubernetes sd configs:
- role: pod
relabel configs:
- source labels: [meta kubernetes pod label appl
action: keep
regex: omnipgw
- source labels: [meta kubernetes pod ip]
target label: address
replacement: '${1}:9090'

Verification

Test scrape:

Check Prometheus targets
curl http://prometheus:9090/api/vl/targets

Query a metric
curl 'http://prometheus:9090/api/v1l/query?
query=teid registry count'

Grafana Dashboards

Dashboard Setup

1. Add Prometheus Data Source:

Configuration - Data Sources - Add data source - Prometheus
URL: http://prometheus:9090

2. Import Dashboard:

Create a new dashboard or import from JSON.

Key Panels

Panel 1: Active Sessions

Query
teid registry count

Panel Type: Gauge
Thresholds:

Green: < 5000

Yellow: 5000-8000
Red: > 8000

Panel 2: Session Rate

Query
rate(s5s8 inbound messages total{message type="create session request

[5m])

Panel Type: Graph
Unit: requests/sec

Panel 3: IP Pool Utilization

Query (for /24 subnet with 254 IPs)
(address registry count / 254) * 100

Panel Type: Gauge

Unit: percent (0-100)
Thresholds:

Green: < 70%

Yellow: 70-85%

Red: > 85%

Panel 4: Message Latency (95th Percentile)

Query
histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket{request message type="cres
[5m])
)

Panel Type: Graph
Unit: milliseconds

Panel 5: Error Rate

Query
rate(s5s8 inbound errors total[5m])

Panel Type: Graph
Unit: errors/sec
Alert Threshold: > 0.1

Panel 6: Gx Response Success Rate

Query: Calculate percentage of successful Gx responses
sum(rate(gx outbound responses total{result code class="2xxx"}

[5m])) /
sum(rate(gx outbound responses total[5m])) * 100

Panel Type: Gauge

Unit: percent (0-100)
Thresholds:

Green: > 95%

Yellow: 90-95%

Red: < 90%

Alternative - Breakdown by Result Code Class:

Query: Show response counts by result code class
sum(rate(gx outbound responses total[5m])) by (result code class)

Panel Type: Pie Chart or Bar Chart
Legend: {{ result code class }}

Alternative - Per-PCRF Response Status:

Query: Show responses by PCRF host
sum(rate(gx outbound responses total[5m])) by (diameter host,
result code class)

Panel Type: Stacked Bar Chart
Legend: {{ diameter host }} - {{ result code class }}

Panel 7: UPF Health Status

Query: Overall pool health percentage
(upf _peers healthy / upf peers total) * 100

Panel Type: Gauge

Unit: percent (0-100)
Thresholds:

Green: 100%

Yellow: 50-99%

Red: < 50%

Alternative - Per-UPF Status:

Query: Individual UPF health
upf peer healthy

Panel Type: Stat
Mappings:

1 = "UP" (Green)
0 = "DOWN" (Red)

Complete Dashboard Example

"dashboard": {
“title": "OmniPGW - Operations Dashboard",

“panels": [
{
"title": "Active Sessions",
“targets": [
{
"expr": "teid registry count",
"legendFormat": "Active Sessions"
}
1,
Iltypell: Ilgraphll
},
{
“title": "Session Creation Rate",
“targets": [
{
"expr":

“rate(s5s8 inbound messages total{message type=\"create session reque
[5m])*",

"legendFormat": "Sessions/sec"
}
I,
“type": "graph"
},
{
"title": "IP Pool Utilization",
“targets": [
{
"expr": "(address registry count / 254) * 100",
“legendFormat"”: "Pool Usage %"
}
15
“type": "gauge"
},
{
"title": "Message Latency (p95)",
"targets": [
{

"expr": "histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket[5m]))",
"legendFormat": "S5/S8 p95"
},
{

"expr": "histogram quantile(0.95,
rate(sxb _inbound handling duration bucket[5m]))",
“legendFormat": "PFCP p95"

}
1
“type": "graph"
}
]

Alerting

Alert Rules

Create omnipgw alerts.yml:

groups:
- name: omnipgw
interval: 30s
rules:
Session Count Alerts
- alert: OmniPGW HighSessionCount
expr: teid registry count > 8000
for: 5m
labels:
severity: warning
annotations:
summary: "OmniPGW high session count”
description: "{{ $value }} active sessions (threshold:

8000) "
- alert: OmniPGW SessionCountCritical
expr: teid registry count > 9500
for: 2m
labels:
severity: critical
annotations:
summary: "OmniPGW session count critical"
description: "{{ $value }} active sessions approaching
capacity"

IP Pool Alerts
- alert: OmniPGW IPPoolUtilizationHigh
expr: (address registry count / 254) * 100 > 80
for: 10m
labels:
severity: warning
annotations:
summary: "OmniPGW IP pool utilization high"
description: "IP pool {{ $value }}% utilized"

- alert: OmniPGW IPPoolExhausted

expr: address registry count >= 254

for: 1m

labels:
severity: critical

annotations:
summary: "OmniPGW IP pool exhausted"
description: "No IPs available for allocation”

Error Rate Alerts
- alert: OmniPGW HighErrorRate
expr: rate(s5s8 inbound errors total[5m]) > 0.1
for: 5m
labels:
severity: warning
annotations:
summary: "OmniPGW high error rate"
description: "{{ $value }} errors/sec on S5/S8
interface"

- alert: OmniPGW GxErrorRate
expr: rate(gx inbound errors total[5m]) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "OmniPGW Gx errors"
description: "{{ $value }} Diameter errors/sec"

Gx Response Alerts
- alert: OmniPGW GxResponseFailureRate
expr: |

sum(rate(gx _outbound responses total{result code class!'="2xxx"}
[5m])) /
sum(rate(gx outbound responses total[5m])) > 0.1
for: 5m
labels:
severity: warning
annotations:
summary: "OmniPGW high Gx response failure rate"
description: "{{ $value | humanizePercentage }} of Gx
responses are failures (non-2xxx result codes)"

- alert: OmniPGW_GxPCRFFailures

expr:
rate(gx outbound responses total{result code class=~"4xxx|5xxx"}
[5m]) by (diameter host) > 0.05

for: 3m

labels:

severity: warning
annotations:

summary: "PCRF {{ $labels.diameter host }} receiving
failure responses"

description: "{{ $value }} failure responses/sec to PCRF
{{ $labels.diameter host }}"

UPF Health Alerts
- alert: OmniPGW_UPF_PeerDown
expr: upf peer healthy ==
for: 1m
labels:
severity: critical
annotations:
summary: "UPF peer {{ $labels.peer ip }} down"
description: "UPF not responding to PFCP heartbeats”

- alert: OmniPGW UPF PoolDegraded
expr: (upf peers healthy / upf peers total) < 0.5
for: 2m
labels:
severity: critical
annotations:
summary: "UPF pool degraded"
description: "{{ $value | humanizePercentage }} of UPFs
are healthy (< 50%)"

- alert: OmniPGW UPF HeartbeatFailures

expr: upf peer missed heartbeats > 2

for: 30s

labels:
severity: warning

annotations:
summary: "UPF {{ $labels.peer ip }} heartbeat failures"
description: "{{ $value }} consecutive missed

heartbeats"

- alert: OmniPGW UPF Al1lDown
expr: upf peers healthy == 0 and upf peers total > 0
for: 30s
labels:
severity: critical
annotations:
summary: "ALll UPF peers down"
description: "No healthy UPFs available for session
creation"

Latency Alerts
- alert: OmniPGW HighLatency
expr: |
histogram quantile(0.95,
rate(s5s8 inbound handling duration bucket[5m])
) > 100000
for: 5m
labels:
severity: warning
annotations:
summary: "OmniPGW high message latency"
description: "p95 latency {{ $value }}us (> 100ms)"

System Alerts
- alert: OmniPGW HighMemoryUsage
expr: vm_memory total > 2000000000
for: 10m
labels:
severity: warning
annotations:
summary: "OmniPGW high memory usage"
description: "VM using {{ $value | humanize }}B memory"

- alert: OmniPGW HighProcessCount
expr: vm_system process count > 100000
for: 10m
labels:
severity: warning
annotations:
summary: "OmniPGW high process count”
description: "{{ $value }} Erlang processes (potential
leak)"

AlertManager Configuration

alertmanager.yml
global:
resolve timeout: 5m

route:
receiver: 'ops-team'
group by: ['alertname', 'instance']
group wait: 10s
group _interval: 10s
repeat interval: 12h

routes:
- match:
severity: critical
receiver: 'pagerduty'

- match:
severity: warning
receiver: 'slack'

receivers:
- name: 'ops-team'’
email configs:
- to: 'ops@example.com'

- name: 'slack'
slack configs:
- api url:
"https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK'
channel: '#omnipgw-alerts'
title: 'OmniPGW Alert: {{ .GroupLabels.alertname }}'

text: '{{ range .Alerts }}{{ .Annotations.description }}{{
end }}'

- name: 'pagerduty’
pagerduty configs:
- service key: 'YOUR PAGERDUTY KEY'

Performance Monitoring

Key Performance Indicators (KPIs)

BE mam e B
7 N\ 7~ N 7 N\
e S R R B D e

Throughput Queries

Session Setup Rate:

rate(s5s8 inbound messages total{message type="create session request
[5m])

Session Teardown Rate:

rate(s5s8 inbound messages total{message type="delete session request
[5m])

Net Session Growth:

rate(s5s8 inbound messages total{message type="create session request
[5m]) -

rate(s5s8 inbound messages total{message type="delete session request
[5m])

Latency Analysis

Message Processing Latency (Percentiles):

p50 (Median)
histogram quantile(0.50,

rate(s5s8 inbound handling duration bucket[5m])
)

p95
histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket[5m])

)

p99
histogram quantile(0.99,
rate(s5s8 inbound handling duration bucket[5m])

)
Latency Breakdown by Message Type:

histogram quantile(0.95,
rate(s5s8 inbound handling duration bucket[5m])
) by (request message type)

Capacity Trending
Session Growth Trend (24h):

teid registry count -
teid registry count offset 24h

Capacity Remaining:

For max capacity of 10,000 sessions
10000 - teid registry count

Time to Capacity Exhaustion:

Days until capacity exhausted (based on 1lh growth rate)
(10000 - teid registry count) /
(rate(teid registry count[1lh]) * 86400)

Troubleshooting Metrics

Identifying Issues

Issue: High Session Rejection Rate

Query:
rate(s5s8 inbound errors total[5m]) by (message type)

Action:

e Check error logs
e Verify PCRF connectivity (Gx errors)

e Check IP pool exhaustion

Issue: Slow Session Setup

Query:

histogram quantile(0.95,
rate(s5s8 inbound handling duration bucket{request message type="crec

[5m])
)

Action:

e Check Gx latency (PCRF response time)
e Check PFCP latency (PGW-U response time)

» Review system resource usage

Issue: PCRF Policy Failures

Queries:

Overall Gx response failure rate
sum(rate(gx outbound responses total{result code class!="2xxx"}

[5m])) /
sum(rate(gx outbound responses total[5m])) * 100

Breakdown by PCRF host
sum(rate(gx outbound responses total[5m])) by (diameter host,
result code class)

Specific result code classes
rate(gx outbound responses total{result code class="5xxx"}[5m]) by
(diameter host)

Action:

e Check PCRF connectivity and health

e Review subscriber profiles in PCRF (5xxx errors often indicate policy issues)
e Verify Diameter peer configuration

e Check PCRF logs for corresponding errors

e For 5012 (DIAMETER_UNABLE_TO_COMPLY), review Re-Auth-Request
handling

Issue: Memory Leak Suspected

Queries:

Total memory trend
rate(vm memory total[lh])

Process memory trend
rate(vm memory processes[1lh])

Process count trend
rate(vm system process count[1lh])

Action:

e Check for stale sessions
e Review registry counts

e Restart if leak confirmed

Debugging Queries

Find Peak Session Time:
max_over time(teid registry count[24h])
Compare Current vs. Historical:

teid registry count /
avg over time(teid registry count[7d])

Identify Anomalies:

abs (

teid registry count -

avg over time(teid registry count[1lh])
) > 100

Best Practices

Metric Collection

1. Scrape Interval: 15-30 seconds (balance granularity vs. load)
2. Retention: 15+ days for historical analysis
3. Labels: Use consistent labeling (instance, environment, site)

Dashboard Design

1. Overview Dashboard - High-level KPIs for NOC
2. Detailed Dashboards - Per-interface deep dive

3. Troubleshooting Dashboard - Error metrics and logs

Alert Design

1. Avoid Alert Fatigue - Only alert on actionable issues
2. Escalation - Warning — Critical with escalating severity

3. Context - Include runbook links in alert descriptions

Related Documentation

Configuration and Setup

. - Prometheus metrics configuration, Web Ul setup

. - Using metrics for debugging

Interface Metrics

. - PFCP session metrics, UPF health monitoring
. - Gx policy metrics, PCRF interaction tracking
. - Gy charging metrics, quota tracking, OCS

timeouts

. - GTP-C message metrics, SGW-C communication

Specialized Monitoring

. - P-CSCF discovery metrics, IMS health
. - Active sessions, session lifecycle metrics
. - IP pool utilization metrics

OmniPGW Monitoring Guide - by Omnitouch Network Services

Protocol Configuration
Options (PCO)

Network Parameters Delivered to UE

OmniPGW by Omnitouch Network Services

Overview

PCO (Protocol Configuration Options) are network parameters sent to the
UE (mobile device) during PDN connection establishment. These parameters
enable the UE to access network services like DNS, IMS, and configure network

settings.

LA WV I D SR LIIgnon v WAL U WS IS L
-
.
Creste Session Request
APN, IMSI, 'LULI
1
Ld
Mstchid LIPF
Sesection Rule?
™,
/ \
Tos “No
v 1
»
Use Aule POO Override
+ Global PCO Fallback Lie Gilohel PCO Config
|
il Fi . T —
- w % i
'/ -I'
[|
P-CSCF NENS
Descowery? Confgured?
. .,
- ™ & s
- ", ! K
¥es, DINS Mo, S2abic e Na
\ f \
L
Mo MENS

Cr=ate Sesxion
Response
T

Fa S
.\E Receives PCO |

PCO Information Elements:

IE Name

DNS Server IPv4
Address

DNS Server IPV4
Address

P-CSCF IPv4
Address

IPv4 Link MTU

NBNS Server IPv4
Address

Container
ID

0x000D

0x000D

0x000C

0x0010

0x0011

Description

Primary DNS

Secondary DNS

P-CSCF for IMS

Maximum
transmission unit

NetBIOS name
server

Required

Yes

Optional

Optional (IMS)

Recommended

Optional

Configuration

Basic Configuration

config/runtime.exs
config :pgw c,
pco: %{
DNS servers (required)
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",

NBNS servers (optional, for Windows devices)
primary nbns server address: nil,
secondary nbns server address: nil,

P-CSCF addresses for IMS/VoLTE (optional)
p cscf ipv4 address list: [],

P-CSCF Dynamic Discovery (optional)
p cscf discovery enabled: false,
p _cscf discovery dns server: nil,

p_cscf discovery timeout ms: 5000,

IPv4 MTU size (bytes)
ipv4 link mtu size: 1400

PCO Parameters

DNS Server Addresses

Primary and Secondary DNS:

pco: %{
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4"

}

Common DNS Providers:

Provider Primary Secondary
Google 8.8.8.8 8.8.4.4
Cloudflare 1.1.1.1 1.0.0.1
Quad9 9.9.9.9 149.112.112.112

OpenDNS 208.67.222.222 208.67.220.220

Private DNS:

pco: %{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11"

}

P-CSCF Addresses (IMS)

For IMS/VoOLTE Services:

pco: %{
p cscf ipv4 address list: [
"10.0.0.50", # Primary P-CSCF
"10.0.0.51" # Secondary P-CSCF

P-CSCF (Proxy Call Session Control Function):

e Entry point for IMS signaling
e Required for VoLTE, VoWiFi, RCS

e UE uses SIP over this server

P-CSCF Dynamic Discovery
DNS-Based P-CSCF Discovery:

OmniPGW supports dynamic P-CSCF discovery via DNS queries as defined in
3GPP TS 23.003 and TS 24.229. When enabled, PGW-C can query DNS for P-
CSCF addresses instead of using static configuration.

pco: %{
Enable dynamic P-CSCF discovery
p cscf discovery enabled: true,

DNS server for P-CSCF queries (as tuple)
p _cscf discovery dns server: {10, 179, 2, 177},

Timeout for DNS queries (milliseconds)
p _cscf discovery timeout ms: 5000,

Static P-CSCF list (used as fallback if DNS fails)
p cscf ipv4 address list: ["10.0.0.50"]

How It Works:

1. When p cscf discovery enabled: true, PGW-C performs DNS queries for
P-CSCF addresses

2. DNS query is sent to the configured p cscf discovery dns server

3. If DNS query succeeds, discovered P-CSCF addresses are sent to UE via
PCO

4. If DNS query fails or times out, falls back to static
p cscf ipv4 address list

5. See for detailed monitoring and metrics

P-CSCF Discovery Flow

Discovery Priority:

1. Per-Rule FQDN Discovery (Highest Priority) - p cscf discovery fqdn in
UPF selection rule

2. Global DNS Discovery - p cscf discovery enabled: true in global PCO
config

3. Rule PCO Static List - p cscf ipv4 address list in rule PCO override

4. Global PCO Static List (Fallback) - p cscf ipv4 address list in global

PCO config

Monitoring:

All P-CSCF discovery attempts are logged and tracked with metrics:

Discovery latency

Fallback usage statistics

DNS query success/failure rates

Per-rule and global discovery metrics

See for complete monitoring details.

Configuration Options:

Parameter

p_cscf discovery enabled

p cscf discovery dns server

p_cscf discovery timeout ms

Use Cases:

Type

Boolean

Tuple
(1P)

Integer

Default

false

nil

5000

Description

Enable dynamic
DNS-based P-CSCF
discovery

DNS server IP
address as 4-tuple
(e.g., {10, 179,
2, 177%})

Timeout for DNS
queries in
milliseconds

e Dynamic IMS deployments - P-CSCF addresses change based on DNS

configuration

e Geographic load balancing - DNS returns closest P-CSCF servers

* High availability - DNS automatically returns available P-CSCF servers

e Multi-tenant environments - Different subscribers get different P-CSCF
servers

Example: Production IMS with DNS Discovery

pco: %{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11",

Enable dynamic P-CSCF discovery
p cscf discovery enabled: true,

p _cscf discovery dns server: {10, 179, 2, 177}, # IMS DNS
server

p cscf discovery timeout ms: 3000,

Fallback P-CSCF addresses (if DNS fails)
p _cscf ipv4 address list: [
"10.0.0.50", # Primary fallback
"10.0.0.51" # Secondary fallback
1,

ipv4 link mtu size: 1400

Per-Rule P-CSCF Discovery:

P-CSCF discovery can also be configured per UPF selection rule. This allows
different APNs to use different DNS servers for P-CSCF discovery:

In upf selection configuration
rules: [

%{
name: "IMS Traffic",
priority: 20,
match field: :apn,
match regex: "7ims",
upf pool: [...1],

Per-rule P-CSCF discovery
p cscf discovery fqdn: "pcscf.mnc380.mcc313.3gppnetwork.org"

See for details on per-rule P-CSCF discovery.

See also: for monitoring P-CSCF discovery and health

NBNS Servers (NetBIOS)

For Windows Device Compatibility:

pco: %{
primary nbns server address: "10.0.0.20",
secondary nbns server address: "10.0.0.21"

}

When to Use:

e Enterprise networks with Windows devices
e Legacy application support

e NetBIOS name resolution required

Link MTU Size

Maximum Transmission Unit:

pco: %{
ipv4 link mtu size: 1400 # bytes
}

Common MTU Values:

MTU Use Case

1500 Standard Ethernet (no tunneling)
1400 GTP tunneling overhead accounted
1420 Reduced overhead

1280 IPv6 minimum MTU

1360 VPN/tunnel environments

Recommendation: Use 1400 for LTE to account for GTP-U overhead.

Configuration Examples

Internet APN

pco: %{
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4",
ipv4 link mtu size: 1400

}

IMS APN

pco: %{
primary dns server address: "10.0.0.10",
secondary dns server address: "10.0.0.11",
p cscf ipv4 address list: [
"10.0.0.50",
"10.0.0.51"
1,
ipv4 link mtu size: 1400
¥

See: for monitoring IMS registration success rates and P-
CSCF health

Enterprise APN

pco: %{
primary dns server address: "10.100.0.10",
secondary dns server address: "10.100.0.11",
primary nbns server address: "10.100.0.20",
secondary nbns server address: "10.100.0.21",
ipv4 link mtu size: 1400

PCO in GTP-C Messages

Create Session Response

OmniPGW includes PCO in the Create Session Response message:

Create Session Response

|— Cause: Request accepted

— UE IP Address: 100.64.1.42

— PCO (Protocol Configuration Options)
| |— DNS Server IPv4 Address: 8.8.8.8
| |— DNS Server IPv4 Address: 8.8.4.4
| — P-CSCF IPv4 Address: 10.0.0.50

| |— P-CSCF IPv4 Address: 10.0.0.51

| L— IPv4 Link MTU: 1400

UE Processing

The UE receives PCO and:

1. Configures DNS resolver with provided servers
2. Registers with P-CSCF for IMS services

3. Sets interface MTU to specified value

Troubleshooting

Issue: UE Cannot Resolve DNS
Symptoms:

e UE has IP address but cannot access internet
e DNS lookups fail

Possible Causes:

1. Incorrect DNS server addresses in PCO config
2. DNS servers not reachable from UE IP pool
3. Firewall blocking DNS traffic

Resolution:

Test DNS server reachability
ping 8.8.8.8

Test DNS resolution from UE network
nslookup google.com 8.8.8.8

Verify PCO configuration

grep "primary dns server address" config/runtime.exs

Issue: IMS Registration Fails
Symptoms:

e \/OLTE calls fail

e UE shows "No IMS registration"
Possible Causes:

1. Missing P-CSCF configuration
2. Incorrect P-CSCF IP addresses
3. P-CSCF not reachable

Resolution:

Verify P-CSCF configuration
pco: %{

p cscf ipv4 address list: ["10.0.0.50"]
}

Issue: MTU Problems
Symptoms:

¢ Some websites load, others don't
e Large file transfers fail

* Fragmentation issues

Ensure not empty

Possible Causes:

e MTU too large for tunneling overhead

e MTU too small causing excessive fragmentation

Resolution:

Recommended: 1400 for GTP tunneling

pco: %{
ipv4 link mtu size: 1400
}
If still having issues, try lower
pco: %{
ipv4 link mtu size: 1360
}

Best Practices

DNS Configuration
1. Use Reliable DNS Servers

o Public: Google (8.8.8.8), Cloudflare (1.1.1.1)

o Private: Internal DNS for enterprise

2. Always Configure Secondary

o Provides redundancy

o Improves reliability

3. Consider DNS Security

o DNSSEC-capable resolvers
o DNS filtering for security

IMS Configuration
1. Provide Multiple P-CSCF

o At least 2 for redundancy

o Geographic distribution if possible
2. Ensure Reachability

o P-CSCF must be reachable from UE IP pool

o Test SIP connectivity

MTU Optimization

1. Account for Overhead

o GTP-U: 36 bytes (IPv4)
o |Psec: Variable (50-100 bytes)

2. Standard LTE MTU

o Recommended: 1400 bytes

o Balances throughput and compatibility

3. Test End-to-End

o Path MTU discovery

o Test with large packets

Related Documentation

Configuration Guides

. - Complete runtime.exs reference, UPF selection
with PCO overrides

. - IP pool management, APN-based allocation

. - P-CSCF discovery monitoring, health tracking,
metrics

Session and Interface Management

. - PDN session lifecycle, bearer establishment
. - GTP-C protocol, PCO encoding and delivery
. - User plane session establishment

IMS and VolLTE

. - Policy control for IMS bearers

o - PCO-related metrics and dashboards

OmniPGW PCO Configuration - by Omnitouch Network Services

P-CSCF Discovery and
Monitoring

Dynamic P-CSCF Server Discovery with Real-Time Monitoring

OmniPGW by Omnitouch Network Services

Overview

P-CSCF (Proxy Call Session Control Function) Discovery and Monitoring
provides dynamic discovery of IMS P-CSCF servers using DNS SRV queries with
real-time SIP OPTIONS health checking. This feature enables:

e Per-Rule P-CSCF Discovery: Different P-CSCF servers for different traffic
types
e Automatic Monitoring: Background process continuously monitors DNS
resolution (every 60 seconds)
e SIP OPTIONS Health Checks: Verifies P-CSCF servers are alive via SIP
OPTIONS pings
o TCP First: Attempts SIP OPTIONS via TCP (preferred for reliability)
o UDP Fallback: Falls back to UDP if TCP fails
o Status Tracking: Marks each server as :up or :down based on
response
* Real-Time Health Tracking: Web Ul displays resolution status, discovered
IPs, and health status

¢ Graceful Fallback: Three-tier fallback strategy for maximum reliability

e Prometheus Metrics: Full observability via Prometheus metrics

Session Creation [Configuration

Rule Matching UPF Selection Rules DNS Server Config
Register FQDNs
s
AN P-CSCF Monitor—
Fetch IPs
I - T b e
— | Periodic Query ,_.-#"/ “'.I \"“\
T ~ SRV Records ™
e r
I
Send to UE

‘ User Equipment ‘

Table of Contents

1. Quick Start

. Configuration

. How It Works

. Web Ul Monitoring

. Metrics and Observability
. Fallback Strategy

. DNS Configuration

. Troubleshooting

© 0 N O U b~ W N

. Best Practices

Quick Start

Basic Configuration

config/runtime.exs

Global PCO configuration (DNS server for P-CSCF discovery)
config :pgw c,
pco: %{
p cscf discovery dns server: "10.179.2.177",
p cscf discovery enabled: true,
p _cscf discovery timeout ms: 5000

¥,
upf selection: %{
rules: [
IMS Traffic - Dynamic P-CSCF discovery
%{

name: "IMS Traffic",
priority: 20,
match field: :apn,
match regex: "~ims",
upf pool: [
%s{remote ip address: "10.100.2.21", remote port: 8805,
weight: 80}
1,
P-CSCF Discovery FQDN (see Configuration Guide for more
UPF selection rules)
p_cscf discovery fqdn:
"pcscf.mnc380.mcc313.3gppnetwork.org",
Static fallback (see PCO Configuration Guide)
pco: %{
p _cscf ipv4 address list: ["10.101.2.100",
"10.101.2.101"]
}
}

See for complete UPF selection rule configuration and
for static P-CSCF fallback options.

Access Monitoring

1. Start OmniPGW

2. Navigate to Web Ul » P-CSCF Monitor
(https://localhost:8086/pcscf monitor)

3. View real-time resolution status and discovered IPs

Configuration

Global P-CSCF Discovery Settings

Configure the DNS server used for P-CSCF discovery in the PCO section:

pco: %{

DNS server for P-CSCF discovery (separate from DNS given to
UE)

p _cscf discovery dns server: "10.179.2.177",

Enable P-CSCF DNS discovery feature
p cscf discovery enabled: true,

Timeout for DNS SRV queries (milliseconds)
p cscf discovery timeout ms: 5000,

Static P-CSCF addresses (global fallback)
p cscf ipv4 address list: ["10.101.2.146"]

Per-Rule P-CSCF FQDNs

Each UPF selection rule can specify its own P-CSCF discovery FQDN:

upf selection: %{
rules: [
IMS Traffic - IMS-specific P-CSCF
%{
name: "IMS Traffic",
match field: :apn,
match regex: "7~ims",
upf pool: [...1],
p _cscf discovery fqdn:
"pcscf.ims.mnc380.mcc313.3gppnetwork.org",
pco: %{
p _cscf ipv4 address list: ["10.101.2.100"] # Fallback
}
},

Enterprise - Enterprise-specific P-CSCF
%{
name: "Enterprise Traffic",
match field: :apn,
match regex: "“enterprise",
upf pool: [...],
p_cscf discovery fqdn: "pcscf.enterprise.example.com”,
pco: %{
p cscf ipv4 address list: ["192.168.1.50"] # Fallback
}
},

Internet - No P-CSCF discovery (uses global config)
%{

name: "Internet Traffic",

match field: :apn,

match regex: "“internet",

upf pool: [...]

No p cscf discovery fqdn - uses global PCO config

How It Works

Startup Process
1. Application Starts

o P-CSCF Monitor GenServer initializes

o Config parser extracts all unique P-CSCF FQDNs from UPF selection
rules

2. FQDN Registration

(o]

Each unique FQDN is registered with the monitor

(o]

Monitor performs initial DNS SRV query for each FQDN

SIP OPTIONS Health Check (in parallel for all discovered servers):
= Try TCP first (SIP/2.0/TCP on port 5060)

» |f TCP fails, fall back to UDP (SIP/2.0/UDP on port 5060)

[o]

= Mark each server as :up (responds) or :down (no
response/timeout)

(o]

Results (IPs, health status, or errors) are cached with timestamps

3. Periodic Monitoring (Every 60 seconds)

o Monitor refreshes all FQDNs
o DNS queries run in background without blocking

o For each discovered server:
= Send SIP OPTIONS via TCP (timeout: 5 seconds)

» |f TCP fails, try UDP (timeout: 5 seconds)
= Update health status based on response

o Cache is updated with latest DNS results and health status

Session Creation Flow

User Equipment OmniPGW

Create Session Request (APN=ims)

Rule Engine P-CSCF Monitor

DNS Server

!

Match Rule
IMS Traffic Rule (FQDN=pcscf.ims.example.com)
Get IPs for FQDN
[10.101.2.100, 10.101.2.101]

Create Session Response (PCO with P-CSCF IPs)

Background: Monitor refreshes every 60s

SRV Query (_sip._tcp.pcscf.ims.example.com)
SRV Records
A/AAAA Query
[10.101.2.100, 10.101.2.101]

Update Cache

DNS Server

P-CSCF Monitor

Rule Engine

User Equipment OmniPGW

DNS Query Process
The monitor uses DNS SRV records for direct P-CSCF discovery:

1. SRV Query: Query SRV records at _sip. tcp.{fqdn}
2. Priority Sorting: Sort by priority and weight
3. Target Extraction: Extract target hostnames from SRV records

4. Hostname Resolution: Resolve target hostnames to IP addresses
(A/AAAA records)
5. Caching: Cache resolved IPs with status and timestamp

P-CSCF Address Selection Precedence

When both FQDN and static PCO are configured on a rule, FQDN takes
precedence:

%1

name:

p cscf ipv4 address list:

pco: %{
« Fallback
}
}

Selection Logic:

Condition

FQDN
resolves
successfully

FQDN fails
to resolve

FQDN
returns
empty list

Monitor
unavailable

No FQDN
configured

"IMS Traffic",
p cscf discovery fqdn:
« Tried FIRST

P-CSCF
Source

DNS
Discovery
(Monitor)

Rule PCO
Override

Rule PCO
Override

Rule PCO
Override

Rule PCO
Override
or Global

“pcscf.mnc380.mcc313.3gppnetwork.org", #

["10.101.2.100",

IPs Used

Discovered IPs from DNS

Static IPs from

pco.p cscf ipv4 address list

Static IPs from

pco.p cscf ipv4 address list

Static IPs from
pco.p cscf ipv4 address list

Static IPs from rule or global
config

“10.101.2.101"] #

Log Mess

“Using P-CS
addresses fi
FQDN

pcscf.exampl

"Failed to «
CSCF IPs frc
FQDN..., fal

back to stat
config"”

Fallback trigg

Error triggers
fallback

Uses static cc¢
directly

Example Flow:

Session Creation for IMS Traffic Rule:

|
| 1. Check if FQDN configured? |
| v Yes: "pcscf.mnc380.mcc313..." |
|

v

2. Query Monitor for cached IPs |
Monitor.get ips(fqdn) |

v v
| 1T |
SUCCESS		FAILED/EMPTY
{:0k, ips}		{:error, reason}

v \4

Use DNS IPs
[from DNS]

|
Use Static PCO |
[from config] |

|

v

|
| Send to UE in
| PCO message
|

Real-World Scenarios:

Scenario 1: DNS Discovery Works []

Config:
p cscf discovery fqdn: "pcscf.ims.example.com"
pco.p cscf ipv4 address list: ["10.101.2.100"]

DNS Result: [10.101.2.150, 10.101.2.151]
UE Receives: [10.101.2.150, 10.101.2.151] « From DNS
Note: Static PCO is ignored when DNS succeeds

Scenario 2: DNS Fails, Graceful Fallback A

Config:
p _cscf discovery fqdn: "pcscf.ims.example.com"
pco.p cscf ipv4 address list: ["10.101.2.100"]

DNS Result: ERROR :no naptr records
UE Receives: [10.101.2.100] « From static PCO
Note: Session succeeds despite DNS failure

Scenario 3: No FQDN Configured

Config:
No p cscf discovery fqdn
pco.p cscf ipv4 address list: ["192.168.1.50"]

UE Receives: [192.168.1.50] « From static PCO
Note: DNS discovery not attempted

Why This Design?

1. Prefer Dynamic: DNS provides flexibility, load balancing, and location-
aware routing

2. Ensure Reliability: Static fallback ensures sessions never fail due to DNS
issues

3. Zero Manual Intervention: Automatic failover without operator
involvement

4. Production Safe: Best of both worlds - agility with stability

Recommendation: Always configure both FQDN and static PCO for production
deployments:

v RECOMMENDED: Dynamic with fallback

%{
p _cscf discovery fqdn: "pcscf.ims.example.com", # Preferred
pco: %{
p cscf ipv4 address list: ["10.101.2.100"] # Safety net
}

}

A RISKY: Dynamic only (falls back to global PCO)
{

p cscf discovery fqdn: "pcscf.ims.example.com"
No rule-specific fallback!

o°

}
» VALID: Static only (no DNS overhead)
%{
pco: %{
p cscf ipv4 address list: ["192.168.1.50"]
}
}

Web Ul Monitoring

P-CSCF Monitor Page

Access the monitoring interface at: https://localhost:8086/pcscf monitor

Features:
¢ Overview Statistics

o Total FQDNs monitored
o Successfully resolved FQDNs
o Failed resolutions

o Total discovered P-CSCF IPs

« FQDN Table

o FQDN being monitored

o Resolution status (v Resolved / X Failed / [] Pending)

o Number of discovered IPs

o List of resolved IP addresses (with expandable server details)
o Last update timestamp

o Manual refresh button per FQDN

o Health Status: Each discovered server shows:
= |P address and port

= Hostname (from DNS SRV target)
= Real-time health indicator (v Up / X Down)

e Refresh Controls

o Refresh All button: Trigger immediate re-query of all FQDNs
o Per-FQDN Refresh: Refresh individual FQDNs on demand

o Auto-refresh: Page updates every 5 seconds

* Monitoring Metrics Dashboard

o Total FQDNs: Number of uniqgue FQDNSs registered for monitoring
o Successfully Resolved: FQDNs that successfully resolved via DNS
o Failed DNS Resolutions: FQDNs that failed to resolve

o Total P-CSCF Servers: Total number of servers discovered across all
FQDNs

o v Healthy (SIP OPTIONS UP): Servers responding to SIP OPTIONS
health checks

o X Unhealthy (SIP OPTIONS DOWN): Servers not responding to SIP
OPTIONS

o DNS Success Rate: Percentage of successful DNS resolutions

o Health Check Interval: Frequency of SIP OPTIONS health checks (60s,
5s timeout)

The metrics dashboard provides real-time visibility into both DNS resolution
health and P-CSCF server availability via SIP OPTIONS.

UPF Selection Page Integration

The UPF Selection page (/upf selection) displays P-CSCF discovery status for
each rule:

[IMS Traffic (Priority 20)
Match: APN matching ~ims
Pool: UPF-IMS-Primary (10.100.2.21:8805)

[] P-CSCF Discovery
FQDN: pcscf.mnc380.mcc313.3gppnetwork.org

Status: v Resolved (2 IPs)
Resolved IPs: 10.101.2.100, 10.101.2.101

& PCO Overrides
Primary DNS: 10.103.2.195
P-CSCF (static fallback): 10.101.2.100, 10.101.2.101

Metrics and Observability

Prometheus Metrics

The P-CSCF monitoring system exposes metrics via Prometheus (port 42069 by
default):

Gauge Metrics

FQDN-level metrics

pcscf fgdns total # Total number of monitored
FQDNs

pcscf fqdns resolved # Successfully resolved
FQDNs (DNS succeeded)

pcscf fgdns failed # Failed FQDN resolutions

(DNS failed)

Server-level metrics (aggregate)

pcscf servers total # Total P-CSCF servers
discovered via DNS SRV

pcscf servers healthy # Servers responding to SIP
OPTIONS (aggregate)

pcscf servers unhealthy # Servers not responding to

SIP OPTIONS (aggregate)

Server-level metrics (per-FQDN with label)

pcscf servers healthy{fqdn="..."} # Healthy servers for
specific FQDN
pcscf servers unhealthy{fqdn="..."} # Unhealthy servers for

specific FQDN

Health Check Details:

e healthy: Server responded to SIP OPTIONS ping (TCP or UDP)

e unhealthy: Server failed to respond to SIP OPTIONS (5s timeout per
transport)

Metric Examples

DNS Resolution Metrics:

Query successfully resolved FQDNs
pcscf fgdns resolved

Calculate DNS success rate
(pcscf fqdns resolved / pcscf fqdns total) * 100

Total discovered servers
pcscf servers total

SIP OPTIONS Health Metrics:

Total healthy servers across all FQDNs
pcscf servers healthy

Total unhealthy servers
pcscf servers unhealthy

Calculate health check success rate
(pcscf _servers healthy / pcscf servers total) * 100

Healthy servers for a specific FQDN
pcscf servers healthy{fgdn="pcscf.mnc380.mcc313.3gppnetwork.org"}

Alert on all servers down
pcscf servers healthy == 0 AND pcscf servers total > 0

Example Prometheus Alerts:

Alert when all P-CSCF servers are down
- alert: ALLPCSCFServersDown

expr: pcscf servers healthy == 0 AND pcscf servers total > 0
for: 5m

labels:
severity: critical
annotations:
summary: "All P-CSCF servers are unhealthy"

description: "{{ $value }} healthy servers (0) - all failed
SIP OPTIONS checks"

Alert when more than 50% servers are down
- alert: MajorityPCSCFServersDown

expr: (pcscf servers healthy / pcscf servers total) < 0.5
for: 5m

labels:
severity: warning
annotations:
summary: "Majority of P-CSCF servers are unhealthy"

description: "Only {{ $value }}% of servers are responding to
SIP OPTIONS"

Alert on DNS resolution failures
- alert: PCSCFDNSResolutionFailed
expr: pcscf fgdns failed > 0
for: 5m
labels:
severity: warning
annotations:
summary: "P-CSCF DNS resolution failures"
description: "{{ $value }} FQDN(s) failing to resolve"

Logging

The monitor logs key events:

[info] P-CSCF Monitor started

[info] Registering 2 unique P-CSCF FQDNs for monitoring:
["pcscf.ims.example.com", "pcscf.enterprise.example.com"]
[info] P-CSCF Monitor: Registering FQDN pcscf.ims.example.com
[debug] P-CSCF Monitor: Successfully resolved
pcscf.ims.example.com to 2 IPs

[warning] P-CSCF Monitor: Failed to resolve
pcscf.enterprise.example.com: :nxdomain

[debug] Using P-CSCF addresses from FQDN pcscf.ims.example.com:
[{10, 101, 2, 100}, {16, 101, 2, 101}]

Fallback Strategy

The system uses a three-tier fallback strategy for maximum reliability:

Tier 1: DNS Discovery (Preferred)
p _cscf discovery fqdn: "pcscf.ims.example.com"

e Monitor queries DNS and caches resolved IPs
e Session uses cached IPs if available

e Advantage: Dynamic, load-balanced, location-aware
Tier 2: Rule-Specific Static PCO (Fallback)

pco: %{
p cscf ipv4 address list: ["10.101.2.100", "10.101.2.101"]

}

e Used if DNS discovery fails or returns no IPs
e Rule-specific static configuration

 Advantage: Rule-specific fallback, predictable

Tier 3: Global PCO Configuration (Last Resort)

Global pco config
pco: S%{
p cscf ipv4 address list: ["10.101.2.146"]

}

e Used if no rule-specific config and DNS fails
e Global default P-CSCF addresses

e Advantage: Always available, prevents session failure

Fallback Logic Example

Session matches "IMS Traffic" rule:
1. Try DNS discovery for "pcscf.ims.example.com"”
- Success - Use [10.101.2.100, 10.101.2.101] v
L Failed - Try next tier
2. Try rule's PCO override
- Configured - Use [10.101.2.1600, 10.101.2.101] v

L Not configured - Try next tier

3. Use global PCO config
L- Use [10.101.2.146] v (Always succeeds)

DNS Configuration

DNS Server Setup

Configure DNS server with SRV and A/AAAA records for P-CSCF discovery:

; SRV records for P-CSCF (sip. tcp prefix is queried

automatically)
_sip. tcp.pcscf.mnc380.mcc313.3gppnetwork.org. IN SRV 10 50 5060

pcscfl.example.com.
_sip. tcp.pcscf.mnc380.mcc313.3gppnetwork.org. IN SRV 20 50 5060

pcscf2.example. com.
; A records

pcscfl.example.com. IN A 10.101.2.100
pcscf2.example.com. IN A 10.101.2.101

Important: OmniPGW automatically prepends sip. tcp. to the configured
FQDN. If you configure p cscf discovery fqdn:
"pcscf.mnc380.mcc313.3gppnetwork.org", the system will query

~sip. tcp.pcscf.mnc380.mcc313.3gppnetwork.org.

SRV Record Format

SRV records follow this format:

_service. proto.domain. IN SRV priority weight port target.

Priority: Lower values have higher priority (10 before 20)

Weight: For load balancing among same priority (higher = more traffic)
Port: SIP port (typically 5060 for TCP, 5060 for UDP)

Target: Hostname to resolve to IP address

Testing DNS Configuration

Query SRV records (note the sip. tcp prefix)
dig SRV sip. tcp.pcscf.mnc380.mcc313.3gppnetwork.org
@l10.179.2.177

Expected output:
sip. tcp.pcscf.mnc380.mcc313.3gppnetwork.org. 300 IN SRV 10 50
5060 pcscfl.example.com.

Resolve P-CSCF hostname to IP
dig A pcscfl.example.com @10.179.2.177

Expected output:
pcscfl.example.com. 300 IN A 10.101.2.100

Troubleshooting

Issue: FQDN Shows "Failed" Status

Symptoms:

* Web Ul shows X Failed status

e Error: :nxdomain, :timeout, or :no naptr records
Possible Causes:

1. DNS server not reachable
2. FQDN does not exist in DNS
3. No NAPTR records configured

4. DNS server timeout

Resolution:

1. Test DNS server connectivity
ping 10.179.2.177

2. Test NAPTR query manually
dig NAPTR pcscf.mnc380.mcc313.3gppnetwork.org @10.179.2.177

3. Check OmniPGW logs
grep "P-CSCF" /var/log/pgw c.log

4. Verify configuration
grep "p _cscf discovery dns server" config/runtime.exs

5. Manual refresh in web UI
Click "Refresh" button next to failed FQDN

Issue: No IPs Returned
Symptoms:

¢ Web Ul shows "0 IPs"

e Status may be v Resolved or X Failed
Possible Causes:

1. NAPTR records exist but replacement FQDNs don't resolve
2. Service field doesn't match IMS/SIP pattern
3. A/AAAA records missing

Resolution:

Check NAPTR record service field
dig NAPTR pcscf.example.com @10.179.2.177

Ensure service contains "SIP" or "IMS":
CORRECT: "SIP+D2U", "x-3gpp-ims:sip"
WRONG: "HTTP", "FTP"

Check A/AAAA records exist
dig pcscfl.example.com A @10.179.2.177

Issue: Sessions Use Wrong P-CSCF
Symptoms:

e UE receives unexpected P-CSCF addresses

e Static fallback used instead of discovered IPs
Possible Causes:

1. DNS discovery failed but fallback is working
2. Rule matching incorrect
3. FQDN not registered

Resolution:

1. Check P-CSCF Monitor page
Verify FQDN is registered and resolved

2. Check session logs
grep "Using P-CSCF addresses from FQDN" /var/log/pgw c.log

3. Check UPF Selection page
Verify rule shows correct FQDN and status

4. Test rule matching
Create session with specific APN and verify which rule matches

Issue: High DNS Query Latency
Symptoms:

¢ Slow session creation

* Metrics show high pcscf discovery query duration seconds
Possible Causes:

1. DNS server performance issues
2. Network latency to DNS server

3. Timeout too high

Resolution:

Reduce query timeout
pco: %{
p _cscf discovery timeout ms: 2000 # Reduce from 5000ms

}

Consider using closer DNS server
pco: %{

p _cscf discovery dns server: "10.0.0.10" # Local DNS
}

Best Practices

1. DNS Server Selection

Use Dedicated DNS Server

pco: %{
Dedicated DNS for P-CSCF discovery (not the same as UE DNS)
p _cscf discovery dns server: "10.179.2.177",

UE DNS servers (given to mobile devices)
primary dns server address: "8.8.8.8",
secondary dns server address: "8.8.4.4"

Why?

e Separate concerns: UE DNS vs. internal IMS DNS
e Different access policies and security

e Independent scaling and reliability

2. Always Configure Static Fallback

%{
p_cscf discovery fqdn: "pcscf.ims.example.com", # Preferred
pco: %{
p cscf ipv4 address list: ["10.101.2.100"] # Required
fallback
}
}

Why?

e Ensures sessions succeed even if DNS fails
e Graceful degradation

e Meets SLA requirements
3. Use Specific FQDNs per Traffic Type

rules: [
IMS
%q{
name: "IMS",
match regex: "7ims",
p _cscf discovery fqdn:
"pcscf.ims.mnc380.mcc313.3gppnetwork.org"”

}

Enterprise

{

name: "Enterprise",

match regex: "“enterprise",

p _cscf discovery fqdn: "pcscf.enterprise.example.com"

}

o®

Why?

e Different P-CSCF pools per service

e Better load distribution

e Service-specific routing
4. Monitor DNS Query Performance

Alert on high P-CSCF query latency
alert: HighPCSCFQueryLatency
expr: histogram quantile(0.95,

pcscf discovery query duration seconds bucket) > 2
for: 5m

labels:
severity: warning
annotations:
summary: "P-CSCF DNS queries are slow (p95 > 2s)"

5. Regular DNS Health Checks

e Web Ul: Check P-CSCF Monitor page daily
* Metrics: Monitor pcscf monitor fqdns failed metric
e Logs: Watch for DNS errors

e Testing: Periodically verify DNS records exist
6. Configure Appropriate Timeout

Production: Balance reliability vs. latency
pco: %{
p cscf discovery timeout ms: 5000 # 5 seconds

¥
High-performance: Favor speed, rely on fallback
pco: %{

p cscf discovery timeout ms: 2000 # 2 seconds

}

7. Use DNS Redundancy

Configure primary and secondary DNS:

Primary P-CSCF DNS
pcscf.mnc380.mcc313.3gppnetwork.org. IN NAPTR 10 50 "s" "SIP+D2U"
“" sip. udp.pcscfl.example.com.

Secondary P-CSCF DNS

pcscf.mnc380.mcc313.3gppnetwork.org. IN NAPTR 20 50 "s" "SIP+D2U"
“" sip. udp.pcscf2.example.com.

Related Documentation

. - Protocol Configuration Options, DNS and P-CSCF
settings

. - Complete OmniPGW configuration reference

. - Metrics, logging, and observability

. - Session lifecycle and PCO delivery

. - User Plane Function communication

OmniPGW P-CSCF Monitoring - by Omnitouch Network Services

PFCP/Sxb Interface
Documentation

Packet Forwarding Control Protocol - PGW-C to PGW-U Communication

Table of Contents

© Ko No kAW N+

I
= O

Overview

The Sxb interface uses the PFCP (Packet Forwarding Control Protocol)
for communication between the PGW-C (control plane) and PGW-U (user plane).
This separation allows:

e Control Plane (PGW-C) - Handles signaling, session management, policy
decisions
e User Plane (PGW-U) - Handles actual packet forwarding at high speed

PFCP Architecture

Control Plane

\

) ¥
PFCP Node Manager Session Processes
./.__..-' /.._d_.--" "'*-\.\
Association Session Mgmt Association Session Mgmt
Heartbeats Ftl..!les Heartbeats Rules
| i) i
Iiier Plane 2 # ~— User Plane 1.7
L i L] L i L i L]
PDRs FARs QERs PDRs FARs QERs

Protocol Basics

PFCP Version

PGW-C implements PFCP Version 1 (3GPP TS 29.244).

Transport

e Protocol: UDP

e Default Port: 8805
e Message Format: Binary encoded using PFCP specification

Node ID Types

PFCP peers are identified by Node ID, which can be:

e IPv4 Address - Most common
e IPv6 Address
e FQDN (Fully Qualified Domain Name)

PFCP Association Management

Before session management can occur, a PFCP association must be
established between PGW-C and PGW-U.

Association Setup Flow

PGW-C PGW-U

Initial Association Setup

Association Setup Request

Includes:

- Node ID
- Recovery Time Stamp
- CP Function Features

Association Setup Response

Includes:
- Node ID
- Recovery Time Stamp
- UP Function Features
- User Plane IP Resources

Association Established

- [Heartbeat Loop (every 5s by
default)]

Heartbeat Request

Heartbeat Response

If 3 consecutive
heartbeats missed,
mark association down

PGW-C PGW-U

Peer State Management

Each PFCP peer maintains state:

Field Description
is associated Boolean indicating association status
remote node id Peer's Node ID (IP or FQDN)
remote ip address IP address for communication
remote port UDP port (default 8805)
heartbeat period ms Heartbeat interval in milliseconds

missed heartbeats consecutive Count of missed heartbeats
up_function features Supported user plane features

up_recovery time stamp Peer's recovery timestamp

Heartbeat Mechanism

Purpose: Detect peer failures and maintain association liveness

Configuration:

In config/runtime.exs
sxb: %{
local ip address: "10.0.0.20"
},
upf selection: %{
fallback pool: [

%{remote ip address: "10.0.0.21", remote port: 8805, weight:
100}

]
}

ALl UPFs are automatically registered with 5-second heartbeats

Failure Detection:

e Each missed heartbeat increments missed heartbeats consecutive
e Typically configured to fail after 3 consecutive misses

e Failed association prevents new sessions to that peer

PFCP Session Management

PFCP sessions are created for each UE PDN connection to program forwarding
rules in the user plane.

Session Lifecycle

OmniCharge OmniRAN)))
Downloads ¥ English+ Omnitouch Websit

- -
Initial Association Setup
Association Setup Request
>
Includes:
- Node ID
- Recovery Time Stamp
- CP Function Features
Association Setup Response
-
Includes:
- Node ID

- Recovery Time Stamp
- UP Function Features
- User Plane IP Resources

Association Established

loop [Heartbeat Loop (every 5s by
default)]

Heartbeat Request

Heartbeat Response
-

If 3 consecutive
heartbeats missed,
mark association down

PGW-C PGW-U

Session Establishment

When: UE attaches and creates a PDN connection
PGW-C sends to PGW-U:

Session Establishment Request containing:

e SEID (Session Endpoint ID) - Unique session identifier

* Node ID - PGW-C's Node ID

e F-SEID - Fully Qualified SEID (includes IP + SEID)

* PDRs - Packet Detection Rules (typically 2: uplink + downlink)
e FARs - Forwarding Action Rules (typically 2: uplink + downlink)
¢ QERSs - QoS Enforcement Rules (bitrate limits)

e BAR - Buffering Action Rule (for downlink buffering)

PGW-U responds:

Session Establishment Response containing:

Cause - Success or failure reason

F-SEID - PGW-U's session endpoint

Created PDRs - Acknowledgment of created rules
F-TEID - Fully Qualified TEID for S5/S8 interface

Session Modification
When: QoS changes, policy updates, or bearer modifications occur
Modification can include:

e Adding new PDRs, FARs, QERs
¢ Removing existing rules

e Updating rule parameters

Session Deletion
When: UE detaches or PDN connection is terminated
Process:

1. PGW-C sends Session Deletion Request with SEID
2. PGW-U removes all rules and releases resources

3. PGW-U responds with Session Deletion Response

F-TEID Allocation

F-TEID (Fully Qualified Tunnel Endpoint Identifier) identifies GTP-U tunnel
endpoints for user plane traffic. When establishing a PFCP session, someone
must allocate the F-TEID that identifies where the UPF should send uplink
traffic. There are two approaches:

Understanding F-TEID Allocation
What's Being Allocated: The F-TEID consists of:

e TEID (Tunnel Endpoint Identifier) - 32-bit number identifying the tunnel
e IP Address - Where to send GTP-U packets (the UPF's IP address)

The Question: Who allocates the TEID value?
Option 1: UPF Allocates (Recommended Default)

e PGW-C says "please allocate a TEID for me" (CHOOSE flag)

e UPF picks a TEID from its local pool and responds with the value
Option 2: PGW-C Allocates (Compatibility Mode)

e PGW-C picks a TEID and tells UPF "use this specific TEID"
e UPF uses the provided TEID without allocation

UPF Allocation (Default - Recommended)

Configuration:

sxb: %{
allocate uplink f teid: false # Default

}

How It Works:

1. PGW-C builds PFCP Session Establishment Request with F-TEID CHOOSE flag
2. UPF receives request, allocates TEID from its internal pool
3. UPF responds with allocated F-TEID (TEID + IP address)

4. PGW-C stores allocated F-TEID for session lifetime

Why This is Better (Usually):
[J Separation of Concerns

e UPF owns user plane = UPF manages user plane identifiers
* No need for PGW-C to track what TEIDs UPF has available

e Each component manages its own resource pool
00 Multi-PGW-C Scalability

e Multiple PGW-C instances can talk to same UPF without coordination
* No risk of TEID collisions between different PGW-C instances

e UPF ensures uniqueness across all control plane peers
[] Standard 3GPP Behavior

e CHOOSE flag is defined in 3GPP TS 29.244 for this purpose
e Modern UPF implementations support it

* Follows "let the owner allocate" principle
[] Simpler Failover

e If PGW-C restarts, UPF still owns TEID namespace
¢ No need to synchronize TEID allocation state

e UPF can continue using existing TEIDs

When to Use:

[] Production deployments with modern UPFs (default)

0 Multi-PGW-C deployments sharing UPF pools

0 Cloud-native architectures with stateless control planes
[] You want standard 3GPP PFCP behavior

Potential Issues:

« A Some legacy or proprietary UPF implementations don't support CHOOSE
flag

e A If session establishment fails with "mandatory IE missing" or similar, UPF
may not support CHOOSE

PGW-C Allocation (Legacy Compatibility)
Configuration:
sxb: %{

allocate uplink f teid: true

}

How It Works:

1. PGW-C allocates TEID from local pool during session creation

2. PGW-C builds PFCP Session Establishment Request with explicit TEID value
3. UPF receives request, uses provided TEID without allocation

4. Both PGW-C and UPF track the same TEID value

Why You Might Need This:
[0 UPF Doesn't Support CHOOSE

e Some UPF implementations (especially legacy/proprietary) don't support
dynamic allocation

e UPF expects explicit TEID in PFCP Session Establishment Request

e Only workaround for compatibility

[Centralized TEID Management

e If you need PGW-C to have full visibility into all allocated TEIDs
e Useful for debugging user plane issues (PGW-C knows exact TEID values)

e Can correlate TEID in packet captures with session state
[] Deterministic Allocation

e If you need predictable TEID allocation patterns

e Some test environments may require specific TEID ranges
Trade-offs:
A Coordination Required for Multi-PGW-C

e Multiple PGW-C instances sharing a UPF must avoid TEID collisions

e Requires either:
o Partitioned TEID ranges per PGW-C (complex configuration)

o Shared TEID allocation service (additional infrastructure)

o Accept collision risk with random allocation (low probability)
A State Synchronization

e PGW-C must track allocated TEIDs to avoid reuse
e TEID pool state lost on PGW-C restart (must rebuild from sessions)

e More complex failover scenarios
A Non-Standard Behavior

¢ Not the intended PFCP design pattern
e May not work with all UPF implementations expecting CHOOSE

When to Use:

A Only when UPF doesn't support CHOOSE flag

A Legacy UPF implementations (e.g., some proprietary hardware)

A Specific compatibility requirements

A Debugging scenarios requiring PGW-C TEID visibility

TEID Collision Handling: PGW-C uses random allocation with collision
detection:

TEID range: 1 to OXFFFFFFFF (4.2 billion values)

Collision probability: ~0.023% at 1 million sessions

Automatic retry on collision (transparent to caller)

TEIDs automatically released when session terminates

How to Choose

Use UPF Allocation

allocate_uplink_f_teid:

false

Don't Know

Troubleshooting
Symptom: Session establishment fails immediately
Check PFCP logs:

Look for CHOOSE-related errors

grep -i "choose\|mandatory.*missing" /var/log/pgw c.log

Check PFCP Session Establishment Response cause codes
grep "Session Establishment Response" /var/log/pgw c.log

If UPF rejects CHOOSE flag:

e Error may say "Mandatory IE missing" or "Invalid IE"
e UPF expects explicit F-TEID but received CHOOSE

* Solution: Set allocate uplink f teid: true
If PGW-C allocation causes issues:

e Very rare - TEID space is huge (4 billion values)

e Check for TEID exhaustion (unlikely below millions of sessions):

Check registry count
grep "registered teid count" /var/log/pgw c.log

Switching Between Modes:

Edit config/runtime.exs
sxb: %{
local ip address: "10.0.0.20",

allocate uplink f teid: false # Change to true if UPF doesn't
support CHOOSE

}

Then restart PGW-C:
systemctl restart pgw c
Verifying Which Mode is Active: Check PFCP packet captures:

Capture PFCP traffic
tcpdump -i any -n port 8805 -w pfcp.pcap

Open in Wireshark and look at Session Establishment Request
If F-TEID shows "CHOOSE" flags: UPF allocation mode
If F-TEID shows explicit TEID value: PGW-C allocation mode

Packet Processing Rules

PFCP uses a set of rules to define how the user plane processes packets.

Rule Architecture

PDR Match?

PDR (Packet Detection Rule)

—

Purpose: Identify which packets this rule applies to
Typical PGW-C Configuration:

PDR #1 - Downlink:

PDR ID: 1

Precedence: 100

PDI (Packet Detection Information):
- Source Interface: CORE (Internet side)
- UE IP Address: 100.64.1.42/32

FAR ID: 1 (associated forwarding rule)

PDR #2 - Uplink:

PDR ID: 2
Precedence: 100
PDI (Packet Detection Information):
- Source Interface: ACCESS (SGW side)
- F-TEID: <S5/S8 tunnel endpoint>
FAR ID: 2 (associated forwarding rule)
QER ID: 1 (QoS enforcement)

Key PDR Fields:

e PDR ID - Unique rule identifier (per session)

¢ Precedence - Rule matching priority (higher = more specific)
e PDI - Matching criteria (interface, IP, TEID, etc.)

e Outer Header Removal - Strip GTP-U header on ingress

* FAR ID - Associated forwarding action

* QER ID - Associated QoS enforcement (optional)

FAR (Forwarding Action Rule)

Purpose: Define what to do with matched packets

FAR #1 - Downlink (Internet -» UE):

FAR ID: 1
Apply Action: FORWARD
Forwarding Parameters:
- Destination Interface: ACCESS (to SGW)
- OQuter Header Creation: GTP-U/UDP/IPv4
- Remote F-TEID: <SGW S5/S8 tunnel endpoint>

FAR #2 - Uplink (UE - Internet):

FAR ID: 2

Apply Action: FORWARD

Forwarding Parameters:
- Destination Interface: CORE (to Internet)
- (No outer header - plain IP forwarding)

Key FAR Fields:

* FAR ID - Unique rule identifier
e Apply Action - FORWARD, DROP, BUFFER, NOTIFY

 Forwarding Parameters:
o Destination interface (ACCESS/CORE)

o Quter Header Creation (add GTP-U tunnel)
o Network Instance (VRF/routing table)

QER (QoS Enforcement Rule)

Purpose: Enforce bitrate limits and QoS parameters. QERs can also track
usage for online charging quota management (see for
credit control).

Example QER:

QER ID: 1
Gate Status: OPEN
Maximum Bitrate:
- Uplink: 100 Mbps
- Downlink: 50 Mbps
Guaranteed Bitrate: (optional, for GBR bearers)
- Uplink: 10 Mbps
- Downlink: 10 Mbps

Key QER Fields:

QER ID - Uniqgue rule identifier

Gate Status - OPEN (allow) or CLOSED (block)
MBR - Maximum Bitrate (uplink/downlink)

GBR - Guaranteed Bitrate (for dedicated bearers)
QCI - QoS Class Identifier (affects scheduling)

BAR (Buffering Action Rule)

Purpose: Control downlink packet buffering when UE is idle

Example BAR:

BAR ID: 1
Downlink Data Notification Delay: 100ms
Suggested Buffering Packets Count: 10

Used for: Idle mode DRX (Discontinuous Reception) optimization

Configuration

Basic Sxb Configuration

Edit config/runtime.exs:

config :pgw c,
sxb: %{
Local IP address for PFCP communication
local ip address: "10.0.0.20",

Optional: Override default port (8805)
local port: 8805,

Optional: Control F-TEID allocation for user plane

When false (default): UPF allocates F-TEID (CHOOSE flag)

When true: PGW-C pre-allocates F-TEID and provides explicit
value

Note: Some UPFs may not support CHOOSE flag and require
explicit allocation

allocate uplink f teid: false

}I

UPF Selection - All UPFs defined here are automatically
registered
upf selection: %{
fallback pool: [
%{
PGW-U IP address
remote ip address: "10.0.0.21",

PFCP port (default: 8805)
remote port: 8805,

Weight for load balancing (100 = normal, 0 = standby)
weight: 100

Multiple PGW-U Peers

For load balancing or redundancy:

config :pgw c,
sxb: %{
local ip address: "10.0.0.20"
H

upf selection: %{
fallback pool: [
%s{remote ip address: "10.0.1.21", remote port: 8805, weight:
50}, # 50% traffic
%{remote ip address: "10.0.2.21", remote port: 8805, weight:
50} # 50% traffic
]

}
Both UPFs automatically registered with 5-second heartbeats

UPF Selection Configuration

PGW-C uses a three-tier UPF selection system with priority-based rules:

1. Static Rules (Highest Priority) - Match based on session attributes

2. DNS-Based Selection (Medium Priority) - Location-aware routing via DNS
NAPTR queries

3. Fallback Pool (Lowest Priority) - Default UPF pool when no rules match

Does your UPF
support CHOOSE flag?

OmniCharge OmniRAN

- -

Downloads 3 English+ Omnitouch Website (@
|
Don't Know

b

Test with UPF Allocation

Session establishment
succeeds?

Mo

l

‘ Check error message ‘

Ermor mentions
CHOOSE or mandatory

Legacy UPF or

= compatibility issue?

Complete UPF Selection Example

config :pgw c,
PFCP Interface
sxb: %{
local ip address: "10.0.0.20"
s

UPF Selection: All UPFs defined here are automatically registerec
upf selection: %{
#

DNS-Based Selection (Location-Aware Routing)
#

Queries DNS using User Location Information (ULI)

Provides dynamic UPF selection based on cell location
dns enabled: false,

dns query priority: [:ecgi, :tai, :rai, :sai, :cgi],
dns suffix: "epc.3gppnetwork.org",

dns_timeout ms: 5000,

#

Static Selection Rules (Evaluated by Priority)
#

Rules are checked from highest to lowest priority
First matching rule determines the UPF pool

rules: [
Rule 1: IMS Traffic - Highest Priority
o

name: "IMS Traffic",
priority: 20,
match field: :apn,
match regex: "~ims",
upf pool: [
%s{remote ip address: "10.100.2.21", remote port: 8805,
weight: 80},
%s{remote ip address: "10.100.2.22", remote port: 8805,
weight: 20}
1,
Optional: PCO overrides for this rule
pco: %{
p cscf ipv4 address list: ["10.101.2.100", "10.101.2.101"]

}
}

Rule 2: Enterprise APN - High Priority

{

name: "Enterprise Traffic",

priority: 15,

match field: :apn,

match regex: "”~(enterprise|corporate)\.apn”,
upf pool: [

o°

%{remote ip address: "10.100.3.21", remote port:

weight: 100}

1,

pco: %{
primary dns server _address: "192.168.1.10",
secondary dns server address: "192.168.1.11",
ipv4 link mtu size: 1500

}

}

Rule 3: Roaming Subscribers - Medium Priority
%{
name: "Roaming Subscribers",
priority: 10,
match field: :serving network plmn id,
match regex: "~(310|311|312|313)", # US networks
upf pool: [

%s{remote ip address: "10.100.4.21", remote port:

weight: 100}
]

},
Rule 4: Internet Traffic - Lower Priority
%{

name: "Internet Traffic",

priority: 5,

match field: :apn,
match regex: "“internet",
upf pool: [

%s{remote ip address: "10.100.1.21", remote port:

weight: 33},

%{remote ip address: "10.100.1.22", remote port:

weight: 33},

%s{remote ip address: "10.100.1.23", remote port:

8805,

8805,

8805,

8805,

8805,

weight: 34}
]

}
]I

#

Fallback Pool (Last Resort)

#

Used when no rules match and DNS selection fails or is disablec

fallback pool: [

%{remote ip address: "127.0.0.21", remote port: 8805, weight:

100}
]

Supported Match Fields

Match Field

:imsi

:apn

:serving network plmn id

:Sgw_ip_ address

:uli tai plmn_id

:uli ecgi plmn_id

Description

International Mobile
Subscriber Identity

Access Point Name

Serving network
PLMN (MCC+MNC)

SGW IP address
(string format)

Tracking Area PLMN
ID

E-UTRAN Cell PLMN
ID

UPF Pool and Load Balancing

Example Value

"310260123456789"

ims

"internet",

"310260" (US
carrier)

“10.0.1.50"

"310260"

"310260"

Each rule can specify a UPF pool with weighted random selection:

upf pool: [
%s{remote ip address: "10.100.1.21", remote port: 8805, weight:
50},
%s{remote ip address: "10.100.1.22", remote port: 8805, weight:
30},
%s{remote ip address: "10.100.1.23", remote port: 8805, weight:
20}
]

How Weighted Selection Works:

1. Calculate total weight: 50 + 30 + 20 = 100
2. Generate random number: 0.0 to 100.0

3. Select UPF based on cumulative weight ranges:
o 0-50: UPF-1 (50% chance)

o 50-80: UPF-2 (30% chance)
o 80-100: UPF-3 (20% chance)

Use Cases:

e Equal distribution: All weights equal (33, 33, 34)
* Primary/backup: High weight primary (80), low weight backup (20)
e Capacity-based: Weight proportional to UPF capacity

PCO Overrides

Rules can override PCO (Protocol Configuration Options) values:

o°
-~

name: "IMS Traffic",

match field: :apn,

match regex: "~ims",

upf pool: [...],

pco: %{
Override only specific fields
p cscf ipv4 address list: ["10.101.2.100", "10.101.2.101"],
Other fields use defaults from main pco config

}
}

Available PCO Override Fields:

e primary dns server address

e secondary dns server address
* primary nbns server address

e secondary nbns server address
e p cscf ipv4 address list

e ipv4 link mtu size
DNS-Based Selection

When enabled, PGW-C performs DNS NAPTR queries based on User Location
Information:

upf selection: %{
dns enabled: true,
dns query priority: [:ecgi, :tai, :rai, :sai, :cgil],
dns suffix: "epc.3gppnetwork.org",
dns timeout ms: 5000

}

Query Priority:

1. ECGI (E-UTRAN Cell Global Identifier) - Most specific
2. TAIl (Tracking Area Identity) - Cell area
3. RAI (Routing Area ldentity) - 3G/2G area

4. SAI (Service Area ldentity) - 3G service area
5. CGI (Cell Global Identity) - 2G cell

Example DNS Query:

For ECGI query:
eci-la2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org

For TAI query:
tac-1b64.tac-hb00.tac.epc.mnc999.mcc999.epc.3gppnetwork.org

DNS Selection Process:

1. Try queries in priority order (ECGI first, then TAI, etc.)

2. If DNS returns candidates, use first result (dynamically registered if
needed)

3. Select returned UPF
4. If no DNS match or DNS disabled, fall through to fallback pool

See for detailed information.

DNS-based UPF Selection

Overview

DNS-based UPF selection provides location-aware routing by performing
DNS NAPTR queries using User Location Information (ULI) from the UE's current
cell.

3GPP Reference: TS 23.003 - DNS procedures for UPF discovery
Benefits:

e Automatic UPF selection based on geographic location
* No manual rule configuration per cell

e Dynamic adaptation to network topology changes

* Reduces backhaul by routing to nearest UPF

How It Works

Parse error on line 25: ... style PGWC fill:#4CAF50,stroke: #2E7 --------------------
--~ Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW:!,
'SOLID_ARROW!', 'BIDIRECTIONAL SOLID_ARROW!', 'DOTTED_ARROW!',
'BIDIRECTIONAL DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

Configuration

config :pgw c,
upf selection: %{
Enable DNS-based selection
dns enabled: true,

Query priority: try ECGI first, then TAI, then RAI, etc.
dns query priority: [:ecgi, :tai, :rai, :sai, :cgi],

DNS suffix for queries
dns suffix: "epc.3gppnetwork.org",

DNS query timeout
dns timeout ms: 5000,

Static rules still take precedence over DNS
rules: [...],

Fallback if DNS fails
fallback pool: [...]

DNS Query Formats

DNS queries are built using User Location Information (ULI) from the GTP-C
message:

1. ECGI (E-UTRAN Cell Global Identifier)

Most specific - LTE cell-level routing

Format:
eci-<HEX-ECI>.ecgi.epc.mnc<MNC>.mcc<MCC>.<dns suffix>
Example:

Cell ID: Ox1A2B3C (1,715,004 decimal)
PLMN: MCC=999, MNC=999
eci-la2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org

When Used: LTE (4G) networks

2. TAl (Tracking Area Identity)

Cell area - Multiple cells in same tracking area

Format:
tac- lb<LB>.tac-hb<HB>.tac.epc.mnc<MNC>.mcc<MCC>.<dns suffix>
Example:

TAC: 0x0064 (100 decimal)
Low byte: 0x64, High byte: 0x00
tac-1b64.tac-hb00.tac.epc.mnc999.mcc999.epc.3gppnetwork.org

When Used: LTE (4G) tracking areas

3. RAIl (Routing Area Identity)

3G/2G routing area

Format:

rac<RAC>.lac-1lb<LB>.lac-hb<HB>.lac.rai.mnc<MNC>.mcc<MCC>.
<dns_ suffix>

Example:

RAC: OXOA (10 decimal)
LAC: 0x1234 (4660 decimal)
racOa.lac-1b34.lac-hbl2.lac.rai.mnc999.mcc999.epc.3gppnetwork.org

When Used: 3G/2G UMTS/GPRS networks
4. SAI (Service Area Identity)
3G service area

Format:

sac<SAC>.lac-lb<LB>.lac-hb<HB>.lac.sai.mnc<MNC>.mcc<MCC>.
<dns suffix>

Example:

SAC: 0x0001

LAC: 0x1234

sac0001.lac-1b34.1lac-
hbl2.lac.sai.mnc999.mcc999.epc.3gppnetwork.org

When Used: 3G UMTS service areas

5. CGI (Cell Global Identity)

2G cell-level

Format:

ci<CI>.lac-1lb<LB>.lac-hb<HB>.lac.cgi.mnc<MNC>.mcc<MCC>.
<dns suffix>

Example:

CI: 0x5678
LAC: 0x1234
ci5678.lac-1b34.lac-hbl2.1lac.cgi.mnc999.mcc999.epc.3gppnetwork.org

When Used: 2G GSM cells

DNS Response Processing
NAPTR Record Format:

DNS returns NAPTR records pointing to UPF IP addresses:

eci-la2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org.
IN NAPTR 10 50 "a" "x-3gpp-upf:x-s5-gtp:x-s8-gtp" ""
upfl.epc.mnc999.mcc999.3gppnetwork.org.

upfl.epc.mnc999.mcc999.3gppnetwork.org.
IN A 10.100.1.21

PGW-C Processing:

1. Parse NAPTR records to extract UPF IP addresses
2. Select first candidate from DNS response

3. Dynamically register if not already configured (or implement load-based
selection)

Example:

DNS returns: [10.100.1.21, 10.100.5.99, 10.200.3.50]

Selected: 10.100.1.21 (first candidate)
Action: Register dynamically if not in upf selection

Selection Priority Example

Static Rule 3
APN=internet?

Ye

DNS Query:
eci-la2b3c.ecqi...

d

Use Cases

1. Geographic Load Balancing

Scenario: Operator has UPFs in multiple cities

DNS Configuration:

Chicago cell
eci-aaa.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org - UPF-Chicago
(10.1.1.21)

New York cell
eci-bbb.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org - UPF-NewYork
(10.2.1.21)

Los Angeles cell

eci-ccc.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org - UPF-
LosAngeles (10.3.1.21)

Benefit: Users automatically routed to nearest UPF, reducing latency and
backhaul

2. Edge Computing

Scenario: MEC (Multi-access Edge Computing) UPFs deployed at cell sites

DNS Configuration:

Each cell points to local edge UPF
eci-*.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org - Local Edge UPF

Benefit: Ultra-low latency for edge applications

3. Dynamic Network Topology

Scenario: UPF addresses change due to upgrades or maintenance

Benefit: Update DNS records without changing PGW-C configuration

Troubleshooting DNS Selection

DNS Query Failures
Symptoms:

e Log: "DNS UPF selection failed: :nxdomain"

* Sessions fall back to fallback pool
Possible Causes:

1. DNS server not configured correctly
2. DNS zone not populated for cell IDs
3. ULI not present in GTP-C message

Resolution:

Test DNS query manually
dig eci-la2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org NAPTR

Check PGW-C logs for DNS queries
grep "DNS UPF selection: querying" /var/log/pgw c.log

Verify ULI present in session
Check "uli" field in session state

DNS Returns Unknown UPF

Behavior:

DNS returns a candidate UPF not in upf _selection

System automatically attempts dynamic registration

If PFCP association succeeds, UPF is used for the session

If PFCP association fails, falls back to fallback pool

Example:

DNS returns: [10.99.1.50]
upf selection: [10.100.1.21, 10.100.1.22]

Action: Dynamically register 10.99.1.50
- Send PFCP Association Setup

- If success: Use for session
- If timeout: Fall back to fallback pool

Resolution Options:

1. Pre-configure in upf selection for immediate monitoring:

upf selection: %{
fallback pool: [
%s{remote ip address: "10.99.1.50", remote port: 8805, weight:
100}
]

2. Update DNS to return pre-configured UPF IPs

3. Allow dynamic registration (recommended for MEC/edge scenarios)
Query Timeout
Symptoms:

e Log: "DNS UPF selection: query timeout"

e Sessions take longer to establish

Resolution:

upf selection: %{
dns timeout ms: 10000 # Increase timeout to 10 seconds

}

Monitoring DNS Selection

Metrics:

DNS query success rate
rate(upf selection dns success total[5m]) /
rate(upf selection dns attempts total[5m])

DNS query latency
histogram quantile(0.95,
rate(upf selection dns duration seconds bucket[5m]))

Fallback usage (indicates DNS issues)
rate(upf selection fallback used total[5m])

Logs:

[debug] DNS UPF selection: querying eci-
la2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org
[debug] DNS UPF selection: got 2 candidates from DNS
[info] DNS UPF selection: selected 10.100.1.21

Message Flows

Complete Session Establishment Flow

K .
Mzich - Farmard/BufenOro » Oubpeing Packet
/ Yes—s Enforce QoS "
Incoming Faclst v

Mo Mstch—» Drop Packet

Session Modification Flow

‘ PCRF | ‘ PGW-C | ‘ PGW-U |

Policy Update (Gx)

New QoS limits:
UL: 50 Mbps
DL: 100 Mbps

Session Modification Request

Contains:
- SEID
- Update QER

Update QER:
- Apply new bitrates
- Update policer

Session Modification Response

Cause: SUCCESS

Acknowledgment (Gx)

Updated QoS Active

‘ PCRF | ‘ PGW-C | ‘ PGW-U |

Heartbeat Failure Recovery

PGW-C PGW-U (Failed)

- [Heartbeat Attempts]

Heartbeat Request

Timeout (no response)

missed_heartbeats = 1

Heartbeat Request

Timeout (no response)

missed_heartbeats = 2

Heartbeat Request

Timeout (no response)

missed_heartbeats = 3

Mark peer as DOWN
is_associated = false

New sessions will:
- Select different peer
- Or fail if no peers available

PGW-U recovers

Association Setup Request

Association Setup Response

Restore association
is_associated = true
missed_heartbeats = 0

Yy [Heartbeats Resume]

Heartbeat Request

Heartbeat Response

PGW-C PGW-U (Failed)

Troubleshooting

Common Issues
1. Association Setup Fails
Symptoms:

e Log message: "PFCP Association Setup failed"

¢ No response to Association Setup Request

Possible Causes:

PGW-U not reachable (network issue)

PGW-U not running
Firewall blocking UDP port 8805

Incorrect remote ip address in configuration

Resolution:

Test connectivity
ping <pgw u ip address>

Test UDP port
nC -u -v <pgw u ip address> 8805

Check firewall

iptables -L -n | grep 8805
2. Heartbeats Failing
Symptoms:

e Log: "Consecutive heartbeat failures: 3"

¢ Association marked as down
Possible Causes:

* Network latency or packet loss
e PGW-U overloaded

e Heartbeat interval too aggressive

Resolution:

The heartbeat period is fixed at 5 seconds with a failure threshold of 3
consecutive missed heartbeats.

3. Session Establishment Fails
Symptoms:

* Create Session Response with error cause
e Log: "PFCP Session Establishment failed"

Possible Causes:

e No PGW-U peers available
¢ PGW-U resource exhaustion

e Invalid rule configuration

Check:

1. Verify at least one peer has is associated = true
2. Check PGW-U logs for errors
3. Verify SEID uniqueness

4. Duplicate SEID Errors
Symptoms:

e Session Establishment Response: Cause "Session context not found"
Cause:

e SEID collision (very rare)
e PGW-U restart without PGW-C awareness

Resolution:

e Restart PFCP association (triggers new recovery timestamp)

e PGW-C will detect PGW-U restart and clean up old sessions

Monitoring PFCP Health

Metrics to Monitor:

PFCP peer association status
pfcp peer associated{peer="PGW-U Primary"} 1

Active PFCP sessions
seid registry count 150

PFCP message rates
rate(sxb_inbound messages total[5m])

PFCP errors
rate(sxb inbound errors total[5m])

Heartbeat failures
pfcp consecutive heartbeat failures{peer="PGW-U Primary"} 0

Alert Examples:

Alert on association down

- alert: PFCPAssociationDown
expr: pfcp peer associated ==
for: 1m
annotations:

summary: "PFCP peer {{ $labels.peer }} is down"

Alert on high session establishment failures
- alert: PFCPSessionEstablishmentFailureHigh
expr:
rate(sxb_inbound errors total{message type="session establishment res
[5m]) > 0.1
for: 5m
annotations:

summary: "High PFCP session establishment failure rate"

Web Ul - PFCP Monitoring

OmniPGW provides two Web Ul pages for monitoring PFCP/Sxb operations in
real-time.

UPF/PFCP Peer Status Page

Access: http://<omnipgw-ip>:<web-port>/upf status

Purpose: Monitor PFCP association status with all configured PGW-U peers
Features:
1. Peer Status Overview

* Associated Count - Number of peers with active PFCP association
* Not Associated Count - Number of peers down or not connected

e Auto-refreshes every 2 seconds
2. Per-Peer Information For each configured PGW-U peer:

e Peer Name - Friendly name from configuration

e IP Address - Remote PGW-U IP

e Association Status - Associated (green) or Not Associated (red)
* Node ID - PFCP Node identifier

e Recovery Timestamp - Last restart time of peer

e Heartbeat Period - Configured heartbeat interval

¢ Consecutive Missed Heartbeats - Current failure count

 UP Function Features - Capabilities advertised by PGW-U
3. Expandable Details Click any peer to see:

e Full peer configuration
e UP function features bitmap
e Association timestamps

e Complete peer state

PFCP Sessions Page

Access: http://<omnipgw-ip>:<web-port>/pfcp sessions

Purpose: View active PFCP sessions between OmniPGW and PGW-U
Features:
1. Active Session Count

e Total number of active PFCP sessions

e Updates in real-time

2. Session Information For each PFCP session:

Session Key - Internal registry key

Process ID - Session process identifier

IMSI - Associated subscriber (if available)

Status - Session state
3. Full Session State Expandable view showing:

e Complete PFCP session context
e PDRs, FARs, QERs, BARs (forwarding rules)
e F-SEIDs (session endpoint identifiers)

e PGW-U peer association

Operational Use Cases

Monitor PFCP Association Health:

. Open UPF Status page
. Verify all peers show "Associated"
. Check missed heartbeat count = 0
. If peer shows "Not Associated":
- Check peer IP reachability
- Verify peer is running
- Check firewall (UDP 8805)

A W N R

Troubleshoot Session Establishment Failures:

. User session fails to establish
. Check PGW Sessions page - session exists?
. Check PFCP Sessions page - PFCP session created?
. If no PFCP session:
- Check UPF Status - is any peer associated?
- Check logs for PFCP errors
5. If PFCP session exists:
- Inspect PDRs/FARs to verify rules programmed
- Issue is likely downstream (PGW-U or network)

A~ W N

Verify Peer Load Distribution:

. With multiple PGW-U peers configured

. Check PFCP Sessions page

. Verify sessions distributed across peers

. Identify if one peer has disproportionate load

A~ W N B

Detect Peer Failures:

Quick glance at UPF Status page

Red "Not Associated" badge immediately visible

Missed heartbeat counter shows degradation before total failure

Set up monitoring alerts based on Web Ul data

Advantages:

Real-time monitoring - No need to query metrics or SSH

Visual status - Color-coded associated/not associated

Peer health trends - Missed heartbeat count shows early warning

Session-level inspection - See exact PDRs/FARS/QERs programmed

No tools required - Just a web browser

Related Documentation

Configuration

. - UPF selection, health monitoring, PFCP
configuration

. - PDN session lifecycle, bearer establishment

Charging and Monitoring

o - PCC rules that drive PFCP QoS enforcement

. - Online charging quota management via URRs

. - CDR generation from PFCP usage reports

. - PFCP metrics, session tracking, UPF health alerts

Network Interfaces

. - Control plane bearer management

. - UE address assignment via PFCP

QoS & Bearer
Management

Overview

The PGW-C implements a policy-driven bearer and QoS management system
that coordinates three key interfaces:

* Gx (Diameter) - Receives policy decisions and QoS parameters from PCRF
e S5/S8 (GTP-C) - Manages bearer contexts with SGW-C
e Sxb (PFCP) - Programs QoS enforcement rules into PGW-U

Architecture Flow

SGW-C PGW-C PCRF PGW-U

Create Session Request

CCR-Initial (request policy)

CCA-Initial {Qo5 parameters)

i
-

PFCP Session Establishment (QERs)

Create Session Response

"
%

SGW-C PGW-C PCRF PGW-U

Key Concepts

e Session: Contains UE information, bearer map, PDR/FAR/QER/BAR maps,
and AMBR

e Bearer Context: Links EBI (EPS Bearer ID) to specific PDRs, FARs, and
QERs

* QER (QoS Enforcement Rule): Enforces MBR/GBR limits and gate status
in the user plane

* Default Bearer: Always created with PDN session, provides basic
connectivity

e Dedicated Bearer: Created dynamically based on PCRF policy, provides
specific QoS guarantees

Configuration

Important: Dynamic QoS Policy

All QoS parameters are dynamically received from the PCRF via Diameter Gx
interface and defined in the PCRF (See OmniHSS for more info).

Operators configure the PCRF connection in config/runtime.exs:

config :pgw c,
diameter: %{
listen ip: "0.0.0.0",
host: "omni-pgw c.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
peer list: [
%{
host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "192.168.1.100",
initiate connection: true

}

QoS policies, charging rules, and bandwidth limits are configured on
the PCRF, not in PGW-C configuration files.

Bearer Lifecycle

Default Bearer Creation

The default bearer is created during PDN session establishment:

Create Session Request

AllocatelP

UE IP assigned

[RequestPoIich

CCR-Initial sent to PCRF

[CreateBearer]

CCA-Initial received
with QoS

[ProgramUPF]

PFCP Session
Establishment

Delete Session Request

®
Workflow:

SGW-C sends Create Session Request
PGW-C allocates UE IP address from configured pool
PGW-C sends CCR-Initial to PCRF with IMSI, APN, IP address

> W

. PCRF responds with CCA-Initial containing QoS parameters:
o Default-EPS-Bearer-QoS (QCI, ARP)

o QoS-Information (AMBR adjustments)

5. PGW-C creates bearer context with:
o Fixed IDs: Downlink PDR=1, Uplink PDR=2, Downlink FAR=1, Uplink
FAR=2, QER=1, BAR=1
o QER programmed with MBR from bearer QoS
6. PGW-C sends PFCP Session Establishment Request to PGW-U

7. PGW-C sends Create Session Response to SGW-C

Default bearer characteristics:

e Always exists for the lifetime of the PDN session
e Typically uses QCI 5 or QCI 9 (non-GBR)
e EBI tracked in session state

e Cannot be deleted independently (deleting it terminates the session)

Dedicated Bearer Creation

Dedicated bearers are created dynamically based on PCRF policy:
Trigger: Re-Auth Request (RAR) from PCRF with Charging-Rule-Install
Workflow:

1. PCRF sends RAR with Charging-Rule-Definition containing:
o Charging-Rule-Name (policy rule identifier)

o Flow-Information (packet filters)
o QoS-Information (QCI, MBR, GBR, ARP)
o Precedence (rule matching priority)

2. PGW-C translates dynamic rule to PFCP entities:
o Each Flow-Information entry - new PDR with SDF Filter

o QoS-Information -» new QER with MBR/GBR enforcement

o Flow-Description - IP 5-tuple matching rules
3. PGW-C sends PFCP Session Modification Request to add PDRs/FARs/QERs
4. PGW-C initiates Create Bearer Request to SGW-C

5. SGW-C responds with Create Bearer Response confirming establishment

Example Charging-Rule-Definition:

Charging-Rule-Name: "video streaming"
Flow-Information:
- Flow-Description: "permit in ip from any to 10.0.0.1 5000-
6000"
Flow-Direction: 1 (downlink)
QoS-Information:
QoS-Class-Identifier: 7
Max-Requested-Bandwidth-UL: 5000000 (5 Mbps)
Max-Requested-Bandwidth-DL: 10000000 (10 Mbps)
Guaranteed-Bitrate-UL: 1000000 (1 Mbps)
Guaranteed-Bitrate-DL: 2000000 (2 Mbps)
Precedence: 100
Flow-Status: 2 (ENABLED)

Bearer Modification
Bearer QoS can be modified via:

¢ Gx RAR with updated Charging-Rule-Definition

* PFCP Session Modification to update existing QERs (change bitrates),
FARs (change forwarding), or PDRs (change packet filters)

Bearer Deletion
Triggers:

e Delete Session Request (SGW-initiated) - Deletes default bearer and
terminates session

e Re-Auth Request with Charging-Rule-Remove (PCRF-initiated) -
Deletes dedicated bearer

Workflow:

1. Remove bearer from session state
2. Remove associated PDRs/FARsS/QERs
3. Send Delete Bearer Request to SGW-C (if PCRF-initiated)

4. Send PFCP Session Modification (remove rules) or Session Deletion (if
default bearer)

QoS Parameters

QCI (QoS Class Identifier)
Source: PCRF via Gx QoS-Class-Identifier AVP

Standard Values:

e QCI 1: Conversational Voice (GBR, 100ms delay budget)

e QCI 2: Conversational Video (GBR, 150ms delay budget)

¢ QCI 3: Real Time Gaming (GBR, 50ms delay budget)

* QCI 4: Non-Conversational Video (GBR, 300ms delay budget)

e QCI 5: IMS Signaling (non-GBR, 100ms delay budget) - Default for
default bearer

e QCI 6: Video (TCP-based), Live Streaming (non-GBR, 300ms delay budget)
e QCI 7: Voice, Interactive Gaming (non-GBR, 100ms delay budget)

e QCI 8: Video (TCP-based), e.g., YouTube (non-GBR, 300ms delay budget)

e QCI 9: Default Internet (non-GBR, 300ms delay budget)

Operator Note:

e QCl is received from PCRF and signaled to SGW-C in Bearer-Level-QoS IE

e PGW-C does not directly enforce QCI behavior - actual enforcement is via
MBR/GBR in QERs

e Lower QCI values typically indicate higher priority

¢ QCI determines packet forwarding treatment and scheduling priority

ARP (Allocation and Retention Priority)
Source: PCRF via Allocation-Retention-Priority grouped AVP
Components:

e Priority-Level: 1 (highest priority) to 15 (lowest priority)

* Pre-emption-Capability: Can this bearer pre-empt lower-priority bearers?
o 0 = ENABLED (can pre-empt others)

o 1 = DISABLED (cannot pre-empt)

* Pre-emption-Vulnerability: Can this bearer be pre-empted by higher-
priority bearers?
o 0 = ENABLED (can be pre-empted)

o 1 = DISABLED (cannot be pre-empted)
Default Values:

e Priority-Level: 1
¢ Pre-emption-Capability: ENABLED (0)
e Pre-emption-Vulnerability: DISABLED (1)

Operator Note:

e ARP is signaled to SGW-C and ultimately to eNodeB

* Not enforced by PGW-C - enforcement is typically at eNodeB during radio
admission control

e Used during network congestion to determine which bearers to admit or
drop

e Critical for emergency services (priority-level 1) and high-value services

MBR (Maximum Bit Rate)

Source: PCRF via Max-Requested-Bandwidth-UL and Max-Requested-
Bandwidth-DL AVPs

Format: Bytes per second (converted to kbps internally: bytes / 1000)

Applied to: All bearers (default and dedicated)

How it works:

e PGW-C creates QER with mbr: %Bitrate{ul: kbps ul, dl: kbps dl}
e QER sent to PGW-U via PFCP
e PGW-U enforces rate limiting (traffic policing)

e Excess traffic above MBR is dropped

Example:

Max-Requested-Bandwidth-UL: 5000000 (5 Mbps)
Max-Requested-Bandwidth-DL: 10000000 (10 Mbps)

- QER created with mbr: {ul: 5000, dl: 10000} kbps

- PGW-U drops uplink packets exceeding 5 Mbps
- PGW-U drops downlink packets exceeding 10 Mbps

GBR (Guaranteed Bit Rate)

Source: PCRF via Guaranteed-Bitrate-UL and Guaranteed-Bitrate-DL AVPs
Format: Bytes per second (converted to kbps)

Applied to: Dedicated bearers only (GBR bearers)

How it works:

e If GBR is specified in Charging-Rule-Definition, bearer is GBR type
e PGW-U enforces minimum bitrate guarantee via QER
e Requires proper scheduling at eNodeB to reserve radio resources

¢ GBR bearers have admission control - can be rejected if resources
unavailable

Example:

Guaranteed-Bitrate-UL: 1000000 (1 Mbps)
Guaranteed-Bitrate-DL: 2000000 (2 Mbps)

- QER created with gbr: {ul: 1000, dl: 2000} kbps

- Network guarantees at least 1 Mbps uplink and 2 Mbps downlink
- Used for VoIP, video calls, live streaming

Operator Note:

e GBR requires sufficient network capacity planning
e Oversubscribing GBR resources leads to admission failures

e Monitor GBR usage via session counts and bearer metrics

AMBR (Aggregate Maximum Bit Rate)

Source: PCRF via APN-Aggregate-Max-Bitrate-UL and APN-Aggregate-Max-
Bitrate-DL AVPs

Scope: Applies to all non-GBR bearers for the APN (not per-bearer)

How it works:

e« AMBR is an aggregate limit across all non-GBR bearers in a session
e Sent to SGW-C in Create Session Response

e Enforcement typically at eNodeB/SGW

e PGW-C stores AMBR in session state and signals it to SGW-C

Example:

APN-Aggregate-Max-Bitrate-UL: 50000000 (50 Mbps)
APN-Aggregate-Max-Bitrate-DL: 100000000 (100 Mbps)

- ALl non-GBR bearers combined cannot exceed 50 Mbps uplink / 100
Mbps downlink

- Individual bearers limited by their own MBR

- AMBR provides additional overall cap per UE/APN

Operator Note:

e Set via subscriber profile in HSS/PCRF
e Used to enforce subscription tiers (e.g., 10 Mbps plan vs 100 Mbps plan)

e Does not affect GBR bearers

Flow Status and Gating

Flow Status (Gx) to Gate Status (PFCP)
Mapping

The PCRF controls whether traffic is allowed via the Flow-Status AVP in
Charging-Rule-Definition:

Gate-Status (PFCP .
Flow-Status (Gx) QER) Meaning

Only uplink traffic
0 = ENABLED-UPLINK ul: OPEN, dI: CLOSED

allowed

1 = ENABLED- Only downlink traffic
ul: CLOSED, dl: OPEN

DOWNLINK allowed

2 = ENABLED ul: OPEN, dI: OPEN Both directions allowed
ul: CLOSED, dI:)

3 = DISABLED No traffic allowed
CLOSED
ul: CLOSED, dl: _

4 = REMOVED Bearer being deleted
CLOSED

Use cases:

e DISABLED: Used for parked services or credit exhaustion (packets dropped
but bearer retained)

e ENABLED-UPLINK: Unusual, but could be used for upload-only services
e ENABLED-DOWNLINK: Download-only services or credit-limited scenarios

e ENABLED: Normal operation

Monitoring & Observability

Prometheus Metrics

Session-level metrics:

session registry count # Active bearers (IMSI, EBI pairs)
address registry count # Allocated UE IPs
charging id registry count # Active charging sessions

Gx interface metrics:

gx_inbound messages total{message type="gx RAR"} # Policy
updates from PCRF

gx_outbound messages total{message type="gx CCR"} # Policy
requests to PCRF

gx_outbound transaction duration bucket # Latency to
PCRF

PFCP interface metrics:

sxb outbound messages total{message type="pfcp session establishment_
sxb outbound messages total{message type="pfcp session modification r
sxb _outbound transaction duration_ bucket

Bearer creation metrics:

s5s8 inbound messages total{message type="create session request"}
Default bearers

s5s8 outbound messages total{message type="create bearer request"}
Dedicated bearers

Web Ul Monitoring

PGW Sessions Page (/pgw sessions):

Search by IMSI, IP address, MSISDN, or APN
View active bearers per session
Inspect bearer QoS parameters (QCI, MBR, GBR, AMBR)

Real-time auto-refresh (2 seconds)

Diameter Page (/diameter):

e PCRF peer connectivity status
e Gx session count

¢ Peer state (connected/disconnected)
Logs Page (/1logs):

e Real-time log streaming
e Filter by "Credit Control" for CCR/CCA exchanges
e Filter by "Re-Auth" for RAR events (policy changes)

e Filter by "PFCP" for user plane programming events

Key Log Messages

[debug] Sending Credit Control Request:
[debug] Handling Credit Control Answer:

PCRF (contains QoS)

[debug] Handling Re-Auth Request

PCRF (policy change)

[debug] Sending Session Establishment Request
PGW-U (program QERs)

[debug] Sending Session Modification Request
PGW-U (update QERs)

CCR to PCRF
CCA from

RAR from

PFCP to

PFCP to

Operational Tasks

Verify QoS Applied to Session

1. Access Web Ul - PGW Sessions page
2. Search for IMSI (e.g., 999000123456789)
3. Expand session details

4. Check qer_map section:

ger id: 1

gate status: {ul: OPEN, dl: OPEN}

mbr: {ul: 50000, dl: 100000} # Kkbps

gbr: {ul: 10000, dl: 20000} # kbps (or nil for non-GBR)

5. Verify values match expected PCRF policy

Troubleshoot Missing QoS
Symptom: Session created but QoS not applied
Steps:

1. Check PCRF connectivity:

o Access Web Ul - Diameter page
o Verify PCRF peer status = "connected"

o If disconnected, check network connectivity and Diameter configuration

2. Verify CCR/CCA exchange:

o Access Web Ul -» Logs page

o Search for "Credit Control Answer"

o Verify QoS-Information AVP present in CCA log

o Check for errors in CCA (Result-Code should be 2001 = SUCCESS)

3. Verify PFCP programming:

o Search logs for "PFCP Session Establishment Request"

o Verify QER included in message

o Check PGW-U logs for PFCP processing errors
4. Check PCRF policy configuration:

o Verify subscriber profile in PCRF
o Confirm APN-specific policy rules exist

o Check PCRF logs for policy evaluation errors

Monitor Bearer Creation Rate

Prometheus queries:

Default bearer creation rate (sessions/second)
rate(s5s8 inbound messages total{message type="create session request

[5m])

Dedicated bearer creation rate
rate(s5s8 outbound messages total{message type="create bearer request

[5m])

Policy update rate from PCRF
rate(gx inbound messages total{message type="gx RAR"}[5m])

Capacity Planning

Key metrics to monitor:

UE IP address utilization (percentage)
(address registry count / <configured pool size>) * 100

Active bearer count
session registry count

PCRF query latency (P95)
histogram quantile(0.95, gx outbound transaction duration bucket)

Capacity limits:

* Address pool size: configured in config/runtime.exs under ue.subnet map
e TEID space: 32-bit (4 billion unique identifiers, auto-managed)

e Concurrent sessions: typically limited by address pool size
Planning guidelines:

e Monitor IP address utilization - scale pool before exceeding 80%
e Monitor PCRF latency - high latency impacts session setup time

e Monitor dedicated bearer creation rate - indicates policy complexity

Related Documentation

. - PDN session lifecycle

. - PCRF policy protocol details
. - User plane programming

. - System configuration

. - Metrics and observability

S5/S8 Interface
Documentation

GTP-C Communication with SGW-C

OmniPGW by Omnitouch Network Services

Overview

The S5/S8 interface connects OmniPGW to the SGW-C (Serving Gateway
Control plane) using the GTP-C v2 (GPRS Tunnelling Protocol - Control plane)
protocol. This interface handles session management signaling between the

gateways.
55/5B
GTP-C w2 —_

S5/58 -

GTP-C vz PGW-U | —User Data—s Internet

UDP 2123

. o

- 5558

User Data:-—-» SGW-U — CTP.U

Protocol Details

GTP-C Version 2

Protocol: GTP-C v2 (3GPP TS 29.274)
Transport: UDP
Port: 2123 (standard)

Interface Type: Control Plane

TEID (Tunnel Endpoint Identifier)

Each session has a unique TEID for routing messages:

e Local TEID - Allocated by OmniPGW for incoming messages
e Remote TEID - Allocated by SGW-C for outgoing messages

Message Flow:
SGW-C - OmniPGW: Destination TEID
OmniPGW - SGW-C: Destination TEID

OmniPGW's Local TEID
SGW-C's Remote TEID

Configuration

Basic Configuration

config/runtime.exs
config :pgw c,
s5s58: %{
Local IPv4 address for S5/S8 interface
local ipv4 address: "10.0.0.20",

Optional: Local IPv6 address
local ipv6 address: nil,

Optional: Override default port
local port: 2123,

GTP-C request timeout in milliseconds (default: 500ms)

Timeout per attempt when waiting for GTP-C responses (Create
Bearer, Delete Bearer, etc.)

request timeout ms: 500,

Number of retry attempts for GTP-C requests (default: 3)
Total maximum wait time = request timeout ms *

request attempts
Example: 500ms * 3 attempts = 1500ms (1.5 seconds) total
request attempts: 3

}

Timeout Configuration

The S5/S8 interface uses configurable timeouts for GTP-C request/response
transactions.

Parameters:

* request_timeout_ms - Timeout in milliseconds per retry attempt (default:
500ms)

* request_attempts - Number of retry attempts before giving up (default: 3)

Total Wait Time: request timeout ms x request attempts

Default behavior: 500ms x 3 attempts = 1.5 seconds total maximum
wait

Tuning Guidelines:

Recommended o
Network Latency i Total Wait Time
request_timeout_ms

L -
ow latency 200-300ms 600-900ms (3
(<50ms) attempts)
Normal (50-150ms) 500ms (default) 1.5s (3 attempts)
High latency

1000-2000ms 3-6s (3 attempts)
(>150ms)
Unstable/satellite 2000-3000ms 6-9s (3 attempts)

Example - High Latency Network:

s5s58: %{
local ipv4 address: "10.0.0.20",
request timeout ms: 1500, # 1.5 seconds per attempt
request attempts: 3 # Total: 4.5 seconds max

}

When timeout occurs:

e OmniPGW logs error: "Create Bearer Request timed out"
e Returns error to PCRF (Diameter Result-Code: 5012 UNABLE TO_COMPLY)

e Bearer remains in early storage for cleanup via Charging-Rule-Remove

Network Requirements

Firewall Rules:

Allow GTP-C from SGW-C network

iptables -A INPUT -p udp --dport 2123 -s <sgw network>/24 -j
ACCEPT

Allow outbound GTP-C to SGW-C

iptables -A OUTPUT -p udp --dport 2123 -d <sgw network>/24 -j
ACCEPT

Routing:

Ensure route to SGW-C network
ip route add <sgw network>/24 via <gateway ip> dev ethO

Message Types

The S5/S8 interface handles GTP-C signaling for PDN session management. For
detailed session lifecycle and state management, see

Session Management

Create Session Request

Direction: SGW-C -» OmniPGW
Purpose: Establish a new PDN connection

Key IEs (Information Elements):

IE Name

IMSI

MSISDN

APN

RAT Type

Bearer Context

UE Time Zone

ULI

Serving Network

Example:

Type

Identity

Identity

String

Enum

Grouped

Timestamp

Grouped

PLMN

Create Session Request
— IMSI: 310260123456789
— MSISDN: 14155551234

— APN: internet

— RAT Type: EUTRAN (6)
— Bearer Context

— EBI: 5

Description

International Mobile Subscriber Identity

Mobile phone number

Access Point Name (e.qg., "internet")

Radio Access Technology (EUTRAN)

Default bearer information

UE's timezone

User Location Information (TAIl, ECGI)

MCC/MNC of serving network

|
| |— Bearer QoS (QCI 9, ARP, bitrates)
| L— S5/S8 F-TEID (SGW-U tunnel endpoint)

L— ULI

— TAI: MCC 310, MNC 260, TAC 12345
L— ECGI: MCC 310, MNC 260, ECI 67890

Create Session Response

Direction: OmniPGW -» SGW-C

Purpose: Acknowledge session creation

Key IEs:

IE Name Type
Cause Result
Bearer Context Grouped

PDN Address

) P
Allocation
APN Restriction Enum
PCO Options

Success Response:

Create Session Response

Description

Success or error code

Bearer information

Allocated UE IP address (see
)

APN usage restrictions

Protocol Configuration Options (see

)

— Cause: Request accepted (16)

— PDN Address Allocation
| L— IPv4: 100.64.1.42
— Bearer Context

— EBI: 5

|

| |— Cause: Request accepted

| L— s5/S8 F-TEID (PGW-U tunnel endpoint from PFCP)
— APN Restriction: Public-1 (1)

L— PCO
— DNS Server: 8.8.8.8
— DNS Server: 8.8.4.4
L— Link MTU: 1400

Delete Session Request

Direction: SGW-C -» OmniPGW

Purpose: Terminate PDN connection

Key IEs:

IE Name Description

EBI EPS Bearer ID to delete

Linked EBI Related bearer (optional)

Delete Session Response

Direction: OmniPGW -» SGW-C

Purpose: Acknowledge session deletion

Key IEs:
IE Name Description
Cause Success or error code

Bearer Management

Create Bearer Request

Direction: OmniPGW - SGW-C

Purpose: Create dedicated bearer (initiated by PCRF policy)
Triggered by:

e PCRF sends new PCC rule requiring dedicated bearer
e OmniPGW requests SGW-C to establish bearer

Delete Bearer Request
Direction: OmniPGW - SGW-C or SGW-C -» OmniPGW

Purpose: Delete dedicated bearer

Scenarios:

e PGW-initiated: PCRF policy change removes dedicated bearer

¢ SGW-initiated: Radio resource release

Message Flows

Session Establishment

UE eNodeB MME SGW-C OmniPGW

Attach Request

Attach Request

Create Session Request

Create Session Request (S5/58)

Allocate UE IP
Contact PCRF
Setup PGW-U

Create Session Response
Create Session Response
Attach Accept

Attach Accept

‘ Session Active ‘

UE eNodeB MME SGW-C OmniPGW

Session Termination

E eNodeB

Attach Reguest

Attach Request

MME SGW-C OmniPGW

Attach Accept

Create Session Request

Create Session Request (S5/58)

Attach Accept

E eNodeB

Cause Codes

Success
Code Name
16 Request accepted

-
Allocate UE IP
Contact PCRF
Setup PGW-U
Create Session Response
Create Session Response
Session Active
MME SGW-C OmniPGW
Description

Successful operation

Errors (Permanent Failures)

Code Name When Used

65 User Unknown PCRF rejected (IMSI not found)
66 No resources available IP pool exhausted

93 Service not supported Invalid APN

94 Semantic error in TFT Invalid traffic flow template

Errors (Transient Failures)

Code Name When Used

72 Remote peer not responding PCRF/PGW-U timeout

73 Collision with network initiated request = Simultaneous operations

Monitoring

S5/S8 Metrics

Message counters
s5s8 inbound messages total{message type="create session request"}
s5s8 inbound messages total{message type="delete session request"}

Error counters
s5s8 inbound errors total

Message handling latency
s5s8 inbound handling duration bucket

Active TEIDs
teid registry count

Useful Queries
Session Creation Rate:

rate(s5s8 inbound messages total{message type="create session request
[5m])

Error Rate:
rate(s5s8 inbound errors total[5m])
Latency (p95):

histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket{request message type="crec
[5m])
)

Troubleshooting

Issue: No Response from OmniPGW
Symptoms:

¢ SGW-C sends Create Session Request
* No response received
e Timeout at SGW-C

Causes:

1. Network connectivity issue

2. OmniPGW not listening on configured IP
3. Firewall blocking UDP 2123

4. Wrong TEID in request

Debug:

Check OmniPGW is listening
netstat -ulnp | grep 2123

Check for incoming packets
tcpdump -i any -n port 2123

Verify configuration
grep "local ipv4 address" config/runtime.exs

Check firewall
iptables -L -n | grep 2123

Issue: Session Creation Fails
Symptoms:

e Create Session Response with error cause

e Session not established

Common Causes:

Cause 65 (User Unknown):
-» PCRF rejected subscriber
- Check IMSI in HSS/SPR

Cause 66 (No resources):

- IP pool exhausted

- Check: curl http://pgw:9090/metrics | grep
address registry count

- Expand IP pool

Cause 72 (Remote peer not responding):
- PCRF timeout or PGW-U down

- Check Gx connectivity
- Check PFCP association

Issue: TEID Collision
Symptoms:

e Message routed to wrong session

e Unexpected behavior

Cause:

e TEID reused before cleanup

e Bug in TEID allocation

Resolution:

e Ensure unique TEID allocation

e Check TEID registry for leaks

Best Practices

Network Design

1. Dedicated Network Interface

o Use separate VLAN for S5/58

o |solate from management traffic

2. MTU Optimization

o Ensure MTU supports GTP headers
o Minimum MTU: 1500 bytes (1464 payload + 36 GTP)

3. Redundancy

o Multiple OmniPGW instances
o DNS-based load balancing from SGW-C

Performance
1. UDP Buffer Sizes

o Increase socket buffers for high load

o Typical: 4-8 MB per socket

2. Connection Limits

o Plan for expected session count

o Monitor TEID registry count

Security
1. IP Filtering

o Only allow GTP-C from known SGW-C IPs

o Use iptables or network ACLs

2. Message Validation

o OmniPGW validates all incoming messages

o Rejects malformed GTP-C packets

Related Documentation

Core Functions

. - S5/S8 interface configuration, local IP setup
. - PDN session lifecycle, bearer establishment
. - IP address delivery via Create Session Response

. - PCO parameters in GTP-C messages

Related Interfaces

. - User plane coordination with S5/S8 control plane

. - Policy integration with bearer setup

. - Charging integration with bearer management
Operations

. - S5/S8 GTP-C metrics, message tracking

. - CDR generation from GTP-C sessions

OmniPGW S5/S8 Interface - by Omnitouch Network Services

Session Management

Guide

PDN Connection Lifecycle and Ope

rations

OmniPGW by Omnitouch Network Services

Overview

A PDN (Packet Data Network) Session represents a UE's data connection

through OmniPGW. Each session coord
to enable data connectivity.

inates multiple interfaces and resources

T

Create Session Request

B2
Creating
.,--"'"FFFFI ‘
_—
Session Established
{
— 1
Active
Modification Complete T~ _ , ,
(=0dify Request Delete Session Request Creation Failed
N / \
e F v .
Terminating ‘

‘ Modifying

Y
Session Deleted

NHH%/

Session Components

Session ldentifiers

Each session has multiple identifiers for different interfaces:

Identifier Interface Purpose

Tunnel Endpoint ID for SGW-C

TEID S5/58 (GTP-C) o
communication

Session Endpoint ID for PGW-U

SEID Sxb (PFCP) o
communication
. Gx) . .
Session-ID , Diameter session for PCRF communication
(Diameter)
Charging- , , - ,
ID Accounting Unique ID for billing/charging

Session Data

p N ~ ™~ 7 N\ 7\
i a5 DEm mEm mEN EEEm e

Session Creation

Call Flow

Steps
1. Receive Create Session Request (S5/S8)

Session creation is initiated via GTP-C signaling on the S5/S8 interface. See
for complete GTP-C protocol details and message formats.

Input:

e |IMSI, MSISDN, IMEI

APN (e.qg., "internet")

RAT Type (EUTRAN)

UE Location (TAI, ECGI)
Bearer Context (QoS, F-TEID)

2. Resource Allocation

- Allocate UE IP from APN pool
- Generate Charging ID

- Generate Gx Session-ID

- Allocate S5/S8 TEID

- Select PGW-U peer

3. Policy Request (Gx)
Request policy from PCRF:

¢ Send CCR-Initial

e Receive CCA-Initial with QoS and PCC rules
4. User Plane Setup (PFCP)
Program PGW-U with forwarding rules:

e Send Session Establishment Request
¢ Include PDRs, FARs, QERs, BAR
e Receive F-TEID for S5/S8 tunnel

5. Response to SGW-C

Send Create Session Response:

UE IP Address
S5/S8 F-TEID (from PGW-U)
PCO (DNS, P-CSCF, MTU)

Bearer Context

Session Modification

Triggers

Sessions can be modified due to:

QoS Changes - PCRF updates bitrates

Bearer Operations - Add/remove dedicated bearers

Handover - SGW change
Policy Updates - New PCC rules from PCRF

QoS Modification Flow

PCRF

Omn

iPGW

RAR (Re-Auth Request)

RAA (Re-Auth Answer)

CCR-Update

CCA-Update (New Qo0S)

PGW-U

Update internal state

Session Modification Request

Update QERs with

PCRF

new bitrates
Session Modification Response
New QoS Active
| |
OmniPGW PGW-U

Session Deletion

Call Flow

SGW-C OmniPGW PCRF PGW-U

UE Detach

Delete Session Request
Session Deletion Request (PFCP)
Session Deletion Response
CCR-Termination (Gx)
CCA-Termination

Delete Session Response

Cleanup:
- Release UE IP
- Deregister TEIDs
- Release Charging ID
- Generate final CDR

SGW-C OmniPGW PCRF PGW-U

Cleanup Process
Resources Released:

. UE IP address — back to pool
. TEID - removed from registry

. SEID - removed from registry

1
2
3
4. Session-ID -» removed from registry
5. Charging-ID - released

6

. Session process terminated

Billing Records Generated:

e Final CDR (Charging Data Record) written for offline billing - See

Session State

State Machine

PCRF OmniPGW PGW-U

RAR (Re-Auth Request)

L

RaA (Re-Auth Answer)

.‘ ...
CCR-Update
CCA-Update (New QoS)
... P.
Update internal state
Session Modification Request
-
Update QERs with
new bitrates
Session Modification Response
New QoS Active
PCRF OmniPGW PGW-U

Session Tracking

Registry Lookups:

By TEID (S5/S8):
TEID 0x12345678 - Session PID

By SEID (Sxb):
SEID OxABCDEF - Session PID

By Session-ID (Gx):
"pgw.example.com;123;456" - Session PID

By UE IP:
100.64.1.42 - Session PID

By IMSI + EBI:
"310260123456789" + EBI 5 - Session PID

Monitoring Sessions

Active Session Count

Total active sessions
teid registry count

PFCP sessions
seid registry count

Gx sessions
session id registry count

Session Metrics

Session creation rate
rate(s5s8 inbound messages total{message type="create session request

Session deletion rate
rate(s5s8 inbound messages total{message type="delete session request

Session creation latency (p95)
histogram quantile(0.95,

rate(s5s8 inbound handling duration bucket{request message type="crec
[5m])
)

Common Issues

Session Creation Fails
Causes:

1. IP Pool Exhausted - No IPs available
2. PCRF Unreachable - Gx timeout
3. PGW-U Down - No PFCP peer available

4. PCRF Rejection - User unknown, not authorized
Debug:
Check IP pool

curl http://pgw:9090/metrics | grep address registry count

Check PCRF connectivity
Check for Gx errors in logs

Check PGW-U association
Verify PFCP peer status

Session Stuck/Stale
Symptoms:

e Session not deleted properly
e Resources not released

e Registries show higher count than expected
Causes:

1. Delete Session Request not received
2. Session process crash without cleanup

3. Registry leak

Resolution:

Restart OmniPGW (releases all sessions)
Implement session timeout mechanism

UE Cannot Establish Session
Symptoms:

e UE attach fails

* Create Session Response with error cause

Common Causes & Responses:

Cause Value

User Unknown

No Resources Available

Remote Peer Not
Responding

Service Not Supported

Meaning

PCRF rejected (IMSI not in
database)

IP pool exhausted

PCRF/PGW-U timeout

Invalid APN

Best Practices

Session Limits

Configure appropriate capacity:

Expected concurrent users: 10,000
Session overhead per user: ~10KB RAM

Total RAM for sessions:

Erlang VM settings:

~100MB

- Max processes: 262,144 (default)
- Process heap size: Adjust based on load

Session Cleanup

Ensure proper cleanup:

1. Always respond to Delete Session Requests

2. Implement session timeout for stale sessions

3. Monitor registry counts for leaks

Action

Provision
subscriber

Expand IP pool

Check
connectivity

Configure APN
pool

High Availability
Session Redundancy:

* Use stateless design (sessions tied to instance)
e Implement session database for HA (future)

e DNS/load balancer for failover

Session Data Elements

What Information Does a Session Store?
Each active PDN session maintains the following information:
UE Identification:

e IMSI: "310260123456789" (subscriber identity)
e MSISDN: "14155551234" (phone number)
e MEI/IMEI: Device identifier

PDN Connection Details:

e APN: "internet" (network name)
e UE IP Address: 100.64.1.42 (allocated IP)
e PDN Type: IPv4, IPv6, or IPv4vo

Session ldentifiers:

e Charging ID: Unique billing identifier
e Default Bearer EBI: EPS Bearer Identifier (typically 5)

QoS Parameters:

 APN-AMBR: Aggregate Maximum Bit Rate
o Uplink: 100 Mbps
o Downlink: 50 Mbps

Forwarding Rules:

PDRs (Packet Detection Rules): Match packets

FARs (Forwarding Action Rules): Forward/drop actions

QERs (QoS Enforcement Rules): Rate limiting
BAR (Buffering Action Rule): Downlink buffering

Interface Context:

e S5/S8 State: Local/remote TEIDs, SGW-C address
e Sxb State: Local/remote SEIDs, PGW-U address

e Gx State: Diameter Session-ID, request counter

Web Ul - Live Session Monitoring

OmniPGW includes a real-time Web Ul for monitoring active sessions without
needing to query metrics or logs.

UE Search & Deep Dive

Access: http://<omnipgw-ip>:<web-port>/ue search

Purpose: Search for specific UE sessions and view detailed information
Features:
1. Search Functionality Search sessions by:

e IMSI (e.g., "310170123456789")
e MSISDN (phone number)
e IP Address (e.g., "100.64.1.42")

2. Search Options

e Dropdown selector to choose search type
e Real-time search with instant results

¢ Clear interface with search hints

3. Deep Dive Results Once found, displays comprehensive session
information:

a) Active Sessions

e All active sessions for this subscriber
e |MSI, MSISDN, UE IP Address

* APN, RAT Type
e PGW TEID, SGW TEID

b) Current Location Real-time location data from the session:

TAC (Tracking Area Code) - Tracking area where UE is located
Cell ID (ECI) - E-UTRAN Cell Identifier

ECGI - E-UTRAN Cell Global Identifier (PLMN + ECI)
MCC/MNC - Mobile Country Code / Mobile Network Code

Cell Tower Database Integration: If the OpenCelllD database is configured,
the interface displays:

e Cell tower geographic coordinates (latitude/longitude)
e Embedded Google Maps showing exact tower location

e Visual map of UE's last known cell site
See below for configuration instructions.
c) Bearer Information Detailed bearer listing with QoS parameters:
Default Bearer:

e EBI (EPS Bearer Identifier)

* QCI (QoS Class Identifier)

e Charging Rule Name

e APN-AMBR (uplink/downlink)

Dedicated Bearers (if active):

e EBI, QCI, Charging Rule Name
e MBR UL/DL (Maximum Bit Rate)
e GBR UL/DL (Guaranteed Bit Rate)

d) Charging Information (Gy Interface)

e Gy Session ID
e Granted Quota, Used Quota

e Charging Characteristics
e) Policy Information (Gx Interface)

e Gx Session ID
e PCRF Origin/Destination Host
e CC Request Number

e Installed Charging Rules (PCC rules from bearers)
f) Recent Events

e Event history for this subscriber

e Session create/update/delete events

Use Cases:

e Troubleshoot specific subscriber issues
e Verify session establishment
e Check assigned IP address

» Inspect session parameters

PGW Sessions Page

Access: http://<omnipgw-ip>:<web-port>/pgw sessions

Purpose: Real-time view of all active PDN sessions
Features:
1. Session Overview

e Live session count (updates every 2 seconds)
e Grid view of all active sessions

e No refresh needed - auto-updates
2. Quick Session Information Visible for each session:

e IMSI - Subscriber identity

UE IP - Allocated IP address

SGW TEID - S5/S8 tunnel ID from SGW
PGW TEID - S5/S8 tunnel ID from OmniPGW
APN - Access Point Name

3. Search Functionality Search sessions by:

IMSI (e.g., "310260")
UE IP address (e.g., "100.64")
MSISDN / phone number

APN name

4. Expandable Details Click any session row to see complete details:

¢ Full subscriber information (IMSI, MSISDN, IMEI)

e Network context (RAT type, serving network MCC/MNC)

* QoS parameters (AMBR uplink/downlink in human-readable format)
¢ Tunnel identifiers (both TEIDs in hex format)

e Process ID for debugging

e Complete session state (raw data structure)

Network Topology View

Access: http://<omnipgw-ip>:<web-port>/topology

Purpose: Visual representation of network connections and active sessions
Features:

1. Topology Visualization

Visual graph of network elements
Shows PGW-C (Control Plane) node

Connected HSS (Home Subscriber Server) peers

Active session count display

2. Interactive Elements

Zoom controls (+/-)

Center view button

Click nodes for details

Shows connection status (green = active, red = down)
3. Session Count

¢ Real-time active session counter
e Updates automatically

¢ Visual indication of load

Use Cases:

e Understand network architecture at a glance
e Verify peer connections

e Monitor topology changes

¢ Quick network health check

Session History & Audit Log

Access: http://<omnipgw-ip>:<web-port>/session history

Purpose: Track historical session events and audit trail
Features:

1. Event Filtering

* Filter by event type (All Events, Session Created, Session Deleted, etc.)
e Date range selection (From Date / To Date)
e Search by IMSI, MSISDN, IP address, or TEID

2. Export Functionality

e Export to CSV for analysis
e Includes all filtered results

e Useful for compliance and reporting

3. Event Types Tracked

Session creation events

Session deletion events

Modification events

Error events

Use Cases:

e Audit trail for compliance

Historical session analysis

Troubleshoot past issues

Generate usage reports

Track session patterns over time

Operational Use Cases

Session Verification:

. User reports connectivity issue

. Search Web UI by IMSI or phone number

. Verify session exists and UE has IP address
. Check QoS values match subscriber plan
Verify tunnel endpoints are established

U B~ W N =

Capacity Monitoring:

e Glance at active session count
e Compare against licensed capacity

e |dentify usage patterns by APN

Troubleshooting:

Find specific session by any identifier

Inspect full session state without SSH/IEx
Verify SGW and PGW TEIDs match between systems
Check AMBR values applied from PCRF

Advantages Over Metrics:

e See individual session details (metrics show aggregates)
e Search and filter capabilities

e Human-readable formatting (bandwidth in Mbps, not bps)
e Real-time state inspection

e No command-line access required

Cell Tower Database Setup

OmniPGW can integrate with the OpenCelllD database to display cell tower
locations in the UE Search interface. This feature enables geographic
visualization of where subscribers are located based on their serving cell site.

Overview

When configured, the UE Search interface will:

Display cell tower coordinates (latitude/longitude)

Show an embedded Google Maps view of the tower location

Provide visual confirmation of subscriber location

Help troubleshoot location-based routing issues

Setup

Access the Cell Towers page at http://<omnipgw-ip>:<web-port>/cell towers
and click the "Redownload Database" button. This triggers an automatic
background download and import process.

Features:

Downloads fresh data from OpenCelllD.org

Automatically extracts and imports into SQLite

Runs in the background (takes 10-15 minutes)

Shows progress notifications via web interface

Safe: only deletes old database after confirming new download succeeds

First-Time Setup: When you first access the Cell Towers page, it will show
setup instructions with the "Redownload Database" button. Simply click it to
initialize the database.

Database Information

Database Location:

e SQLite DB: priv/cell towers.db
e CSV Download (temporary): priv/data/cell towers.csv.gz
e Indexes: Automatically created on MCC, MNC, LAC, CelllD for fast lookups

Database Size:

e ~107 MB compressed download from OpenCelllD.org

e Import time: 10-15 minutes depending on hardware
Lookup Performance:

e Cell tower lookups are indexed and very fast (<1ms)
* No performance impact on session establishment

e Lookups happen only when viewing UE Search results

Features Enabled
After setup, the following features become available:
UE Search Page:

e Current Location section shows cell tower coordinates

e Embedded Google Maps displaying tower location

* Visual representation of subscriber's last known cell site
Cell Towers Web Ul:

¢ View database statistics (total records, database size, created date)

e Redownload Database button - One-click update to latest OpenCelllID
data

e Browse the cell tower database
e Search by MCC, MNC, LAC, Cell ID
e View geographic distribution of towers

e See setup instructions if database not yet configured
Operational Benefits:

e Quickly identify subscriber geographic location
* Verify roaming scenarios
e Troubleshoot location-based issues

e Support emergency services location requirements

Updating the Database
The OpencCelllD database is community-maintained and updated regularly.
To refresh your local database:

1. Navigate to http://<omnipgw-ip>:<web-port>/cell towers

2. Click the "Redownload Database" button

3. Confirm the action in the popup dialog

4. Wait 10-15 minutes for background download/import to complete

5. Refresh the page to see updated statistics

Recommended Update Frequency: Monthly or quarterly

Note: OpenCelllD may rate-limit downloads. If you've downloaded recently,
wait a few hours before trying again.

Troubleshooting
Redownload Fails:

e Check internet connectivity to OpenCelllD.org

e Verify firewall allows HTTPS downloads

e Check disk space (~200 MB free space required)

e Check application logs for specific error messages

e OpenCelllD may be rate-limiting - wait a few hours and try again

e Check that the web Ul shows the error message from the background task
Database Write Errors:

e Check database write permissions in priv/ directory
e Ensure sufficient disk space (~150 MB for database)

e Verify the application has permission to create/delete files in priv/
Cell Tower Not Found:

e Database may not have coverage for all cell sites
e OpenCelllD is community-contributed and may have gaps

e Cell tower data may be outdated for newly deployed sites
Map Not Displaying:

e Check browser JavaScript console for errors
e Verify Google Maps embed permissions

e Check if cell tower coordinates are valid

Related Documentation

Core Session Functions

. - User plane session establishment, PDRs, FARs, QERs,
URRs

. - IP address assignment, APN pool management
. - DNS, P-CSCF, MTU parameters delivered to UE

. - UPF selection, session establishment flows

Policy and Charging

. - PCRF policy control, PCC rules, QoS
management

. - OCS online charging, quota tracking

. - Offline charging records generation

Network Interfaces

. - GTP-C protocol, SGW-C communication

. - Bearer QoS enforcement
Operations

. - Session metrics, active session tracking, alerts

. - IMS session monitoring

OmniPGW Session Management - by Omnitouch Network Services

OmniPGW
Troubleshooting Guide

Troubleshooting Procedures and Common Issues

by Omnitouch Network Services

Table of Contents

W O Nk WN R

Overview

This guide provides step-by-step troubleshooting procedures for common
OmniPGW operational issues. Each issue includes:

e Symptom: What you'll observe

e Likely Causes: Common root causes
e Diagnosis: How to confirm the cause
* Resolution: Step-by-step fix

e Prevention: How to avoid recurrence

Related Documentation

. - Prometheus metrics, alerting, performance monitoring

. - System configuration reference

Troubleshooting Tools

Web Ul

Access: http://<omnipgw ip>:4000
Key Pages:

e /pgw_sessions - Real-time session viewer (search by IMSI, IP, MSISDN,
APN)

e /diameter - Diameter peer status (Gx PCRF, Gy OCS)
» /pfcp_peers - PFCP peer status (PGW-U connectivity)

e /logs - Real-time log streaming with filtering

Prometheus Metrics
Access: http://<omnipgw ip>:9090/metrics
Key Metrics:

e teid registry count - Active sessions

* address registry count - Allocated UE IPs

* sxb inbound errors total - PFCP errors

e gx _inbound errors total - Diameter Gx errors

* gy inbound errors total - Diameter Gy errors

See for complete metrics reference.

Log Analysis
Web Ul: Access /logs page and use search filters
Common Log Filters:

e "create session_request" - Session establishment
e "Credit Control" - Gx/Gy interactions

e "PFCP Session" - User plane programming

e "error" or "ERROR" - Error messages

e "timeout" - Timeout issues

Session Establishment Issues

Issue: Create Session Request Rejected with
"No Resources Available"

Symptom:

SGW-C receives Create Session Response with cause "No resources
available" (73)

All new session attempts fail

Existing sessions continue working

Logs: [PGW-C] Create Session Request blocked - invalid license

Wireshark capture showing Create Session Response with "No resources

available" cause

Likely Cause:

e Invalid or expired OmniPGW license

e License server unreachable
Diagnosis:

1. Check license metric:
license status

o Value of 0 indicates invalid license

2. Check logs for license warnings:

o Search for "license" or "License"
o Look for "Unable to contact license server" messages

3. Verify license server connectivity:

o Check configured URL in config/runtime.exs under :license client

o Default: https://localhost:10443/api

Resolution:

1. Verify license server is reachable:

curl -k https://<license server ip>:10443/api/status
2. Check license configuration in config/runtime.exs:

config :license client,
license server api urls:
["https://<license server ip>:10443/api"],
licensee: "Your Company Name"

3. Verify product is licensed:

o Product name: omnipgwc
o Contact Omnitouch to verify license status

4. Restart OmniPGW after configuration changes

Prevention:

* Monitor license status metric with critical alerts
e Ensure license server high availability

e Set up license expiry alerts before expiration

Issue: Create Session Request Rejected (Other
Causes)

Symptom:

e SGW-C receives Create Session Response with error cause
e Users cannot establish PDN connections

e Metric: s5s8 inbound errors total increasing

Likely Causes:

1. IP pool exhausted

2. PCRF (Gx) unreachable or rejecting policy
3. PGW-U (PFCP) unavailable

4. Invalid APN configuration

Diagnosis:

1. Check IP pool utilization:

address registry count

o |f equals configured pool size, pool is exhausted

2. Check PCRF connectivity:

o Web Ul - /diameter page
o Look for PCRF peer status = "disconnected"

o Logs: Search "Credit Control Answer" for errors

3. Check PFCP peer status:

o Web Ul -» /pfcp_peers page
o Look for "Association: DOWN"

o Metric: pfcp peer associated =0

4. Check APN configuration:

o Review config/runtime.exs under ue.apn map

o Verify requested APN exists in configuration

Resolution:
For IP Pool Exhaustion:

1. Identify stale sessions: Web Ul - /pgw_sessions, look for old sessions

2. Expand IP pool in config/runtime.exs:

config :pgw c,
ue: %{
subnet map: %{
“internet" =
(doubles capacity)
¥

> "10.0.0.0/23" # Changed from /24 to /23

}

3. Restart OmniPGW
4. Verify: curl http://<ip>:9090/metrics | grep address registry count

For PCRF Connectivity Issues:

1. Check network connectivity: ping <pcrf ip>

2. Verify PCRF Diameter service: telnet <pcrf ip> 3868
3. Check config/runtime.exs Diameter peer configuration
4. Restart OmniPGW if config changed

5. Verify via Web Ul - /diameter (peer should show "connected")

For PFCP Issues:
e See section
Prevention:

e Monitor IP pool utilization with alerts at 80%
e Monitor PCRF connectivity with Diameter peer alerts

* Implement session cleanup for idle sessions

Issue: Sessions Stuck in Intermediate State
Symptom:

e Session appears in Web Ul but incomplete
e Metrics show growing session count but no user traffic

e Delete Session Request fails or times out

Likely Causes:

1. PFCP Session Establishment failed but S5/S8 session created
2. PCRF CCR-Initial timed out
3. Create Bearer Request (dedicated bearer) failed

4. Network disruption during session setup
Diagnosis:
1. Search for session in Web Ul:

o /pgw_sessions — Search by IMSI
o Check if pfcp seid is present (if missing, PFCP failed)

o Check if gx session id is present (if missing, Gx failed)

2. Check logs for the IMSI:

o Filter logs by IMSI
o Look for "Session Establishment Request" (PFCP)
o Look for "Credit Control Request" (Gx)

o Look for timeout or error messages

3. Check metrics:

Sessions with TEID but no PFCP session
teid registry count - seid registry count

Sessions with TEID but no Gx session

teid registry count - session id registry count

Resolution:
1. For PFCP establishment failures:

o Check PGW-U health and logs
o Verify PFCP association: Web Ul - /pfcp_peers

o Send Delete Session Request from SGW-C to cleanup

2. For Gx timeout issues:

o Check PCRF latency: histogram quantile(0.95,
rate(gx_outbound transaction duration bucket[5m]))

o Increase Gx timeout in config/runtime.exs if needed

o Send Delete Session Request to cleanup

3. Manual cleanup (last resort):

o Currently requires OmniPGW restart to clear stuck sessions

o Monitor teid registry count before/after restart to confirm cleanup

Prevention:

e Monitor PFCP and Gx latency metrics
e Implement session timeout/cleanup for incomplete sessions

e Alert on registry count mismatches

PFCP / User Plane Issues

Issue: PFCP Association Down
Symptom:

e Web Ul - /pfcp_peers shows "Association: DOWN"
¢ All new session establishments fail
e Metric: pfcp peer associated =0

e Logs: "PFCP heartbeat timeout" or "Association Setup failed"
Likely Causes:

1. PGW-U unreachable (network issue)

2. PGW-U crashed or restarted

3. PFCP configuration mismatch (IP, port)
4. Firewall blocking UDP 8805

Diagnosis:

1. Check network connectivity:

ping <pgw u ip>
nc -u -v <pgw u ip> 8805

2. Check PFCP configuration:

o Review config/runtime.exs under upf.peer list

o Verify IP address and node ID match PGW-U configuration

3. Check PGW-U status:

o Access PGW-U logs

o Verify PGW-U is running: systemctl status omnipgw u (or equivalent)

4. Check metrics:

Heartbeat failures
pfcp consecutive heartbeat failures

PFCP error rate
rate(sxb inbound errors total[5m])

Resolution:
1. For network issues:

o Verify routing: traceroute <pgw u ip>
o Check firewall rules: Ensure UDP 8805 allowed

o Check security groups (if cloud deployment)

2. For PGW-U crashes:

o Restart PGW-U service
o Wait 30 seconds for association re-establishment

o Verify via Web Ul - /pfcp_peers (should show "Association: UP")

3. For configuration issues:

o Correct config/runtime.exs PFCP peer configuration
o Restart OmniPGW

o Verify association established

Prevention:

Monitor pfcp peer _associated metric with critical alerts

Monitor pfcp _consecutive heartbeat failures (alert at > 2)

Implement redundant PGW-U instances
Enable PFCP keepalive/heartbeat (should be default)

Issue: PFCP Session Modification Failures
Symptom:

e Dedicated bearer creation fails
* QoS policy updates (from PCRF RAR) fail
e Logs: "Session Modification Request failed"

e Metric:
sxb _inbound errors total{message type="session modification respon
se"} increasing

Likely Causes:

1. Invalid PFCP rules (PDR/FAR/QER references)
2. PGW-U resource exhaustion

3. Rule ID conflicts

4. PGW-U software bug

Diagnosis:
1. Check logs:

o Filter for "Session Modification" and SEID
o Look for error cause codes in PFCP response

o Common causes: "Rule ID already exists", "Out of resources”

2. Check PGW-U logs:

o Look for PFCP processing errors

o Check resource utilization (CPU, memory)

3. Check session state in Web Ul:

o /pgw_sessions - Find session by IMSI
o Review pdr map, far map, ger map for conflicts

o Look for duplicate IDs

Resolution:
1. For rule conflicts:

o Delete and recreate dedicated bearer

o |f persistent, Delete Session and have UE reconnect

2. For PGW-U resource issues:

o Check PGW-U capacity (sessions, PDRs, throughput)
o Scale PGW-U if needed

o Reduce session load on affected PGW-U instance

3. For software bugs:

o Capture full session state (Web Ul session details)
o Capture PFCP message logs

o Report to vendor with reproduction steps

Prevention:

e Monitor PGW-U resource utilization
e Test dedicated bearer creation in staging

* Monitor sxb_inbound errors total with alerts

Diameter (Gx/Gy) Issues

Issue: PCRF Peer Disconnected (Gx)
Symptom:

e Web Ul - /diameter shows PCRF peer "disconnected"
e Sessions created without QoS policies (default QCI=5 applied)

e Logs: "Diameter peer connection failed" or "CER/CEA timeout"
Likely Causes:

1. PCRF unreachable (network issue)

2. PCRF service down

3. Diameter configuration mismatch (Origin-Host, Realm)
4. Firewall blocking TCP 3868

Diagnosis:
1. Check network connectivity:

ping <pcrf ip>
telnet <pcrf ip> 3868

2. Check Diameter configuration:

o Review config/runtime.exs under diameter.peer list
o Verify host, realm, ip match PCRF configuration

o Check origin_host matches what PCRF expects

3. Check PCREF logs:

o Look for CER (Capabilities-Exchange-Request) from PGW-C

o Look for rejection reasons

4. Check metrics:

Diameter connection errors
diameter peer connected{peer="<pcrf host>"}

Resolution:
1. For network issues:

o Verify routing to PCRF
o Check firewall rules: Ensure TCP 3868 allowed

o Test connectivity: nc -v <pcrf ip> 3868

2. For PCRF service down:

o Restart PCRF service

o Wait for automatic reconnection (30s retry interval)

o Verify via Web Ul - /diameter

3. For configuration mismatch:

o Correct config/runtime.exs Diameter configuration:

config :pgw c,
diameter: %{
host: "pgw-c.epc.mnc999.mcc999.3gppnetwork.org", #
Must match PCRF config
realm: "epc.mnc999.mcc999.3gppnetwork.org",
peer list: [
%{
host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",
realm: "epc.mnc999.mcc999.3gppnetwork.org",
ip: "192.168.1.100",
initiate connection: true

o Restart OmniPGW

o Verify connection established

Prevention:

e Monitor Diameter peer connectivity with critical alerts
e Implement redundant PCRF instances (if supported)

e Document Diameter configuration in runbook

Issue: CCR/CCA Timeouts (Gx Policy Requests)

Symptom:

Session establishment slow (> 5 seconds)

Logs: "Credit Control Request timeout"

Metric: gx_outbound transaction duration very high (> 5s)

Sessions created with default QoS (fallback behavior)
Likely Causes:

1. PCRF overloaded
2. PCRF database slow
3. Network latency

4. PCRF software issue
Diagnosis:

1. Check Gx latency:

P95 latency
histogram quantile(0.95,
rate(gx _outbound transaction duration bucket[5m]))

P99 latency (outliers)
histogram quantile(0.99,
rate(gx _outbound transaction duration bucket[5m]))

2. Check PCRF health:

o Access PCRF monitoring dashboards
o Check CPU, memory, database connections

o Review PCRF logs for slow queries

3. Check network latency:

ping -c 100 <pcrf ip> | tail -1 # Check avg latency

4. Check logs:

o Count CCR/CCA exchanges: Filter "Credit Control"

o Measure time between "Sending CCR" and "Received CCA"

Resolution:
1. For PCRF overload:

o Scale PCRF (add instances)
o Reduce CCR message size if possible

o Tune PCRF thread pools/workers

2. For network latency:

o |nvestigate network path (routers, switches)
o Consider co-locating PGW-C and PCRF

3. Temporary workaround (increase timeout):

o Edit config/runtime.exs:

config :pgw c,
diameter: %{
transaction timeout ms: 10000 # Increase from default
5000

}
o Restart OmniPGW
o Note: This only masks the issue; fix root cause

Prevention:

e Monitor Gx latency with alerts (warning > 1s, critical > 55s)

e Capacity plan PCRF for expected session rate

e Test PCRF performance under load

Issue: OCS Peer Disconnected (Gy)
Symptom:

e Web Ul - /diameter shows OCS peer "disconnected"
e Sessions cannot be charged (online charging fails)

e Logs: "Gy peer connection failed"
Diagnosis and Resolution:
Similar to , but for Gy interface.
Key differences:

e Port: Typically TCP 3868 (same as Gx)

e Impact: Charging fails, sessions may be rejected or allowed without
charging (depends on config)

e Configuration: Check diameter.peer list for OCS entry

See: for Gy-specific troubleshooting

IP Allocation Issues

Issue: IP Pool Exhausted
Symptom:

e Create Session Request rejected with cause "No resources available"
e Metric: address registry count equals configured pool size
e Web Ul -» /pgw_sessions shows many active sessions

e Logs: "IP allocation failed: pool exhausted"

Likely Causes:

1. Pool too small for subscriber base

2. Sessions not releasing IPs (Delete Session failures)
3. Rapid session churn without cleanup

4. |IP address leak

Diagnosis:

1. Check pool utilization:

For /24 subnet (254 IPs)
(address registry count / 254) * 100

2. Check configured pool size:

o Review config/runtime.exs under ue.subnet map
o Example: "10.0.0.0/24" = 254 usable IPs

3. Compare session count to IP count:

Should be approximately equal
teid registry count
address registry count

4. Review active sessions:

o Web Ul - /pgw_sessions
o Sort by session start time

o Look for very old sessions (potential leaks)

Resolution:
Immediate (expand pool):

1. Edit config/runtime.exs:

config :pgw c,
ue: %{
subnet map: %{
“internet" => "10.0.0.0/22" # 1022 IPs (was /24 = 254
IPs)

}
}

2. Restart OmniPGW

3. Verify: Sessions can now establish

Long-term (cleanup):

1. Identify stale sessions in Web Ul
2. Coordinate with SGW-C to send Delete Session Requests
3. Implement session timeout policy on PCRF/SGW

4. Monitor address registry count to verify pool freed up after cleanup

Prevention:

Monitor IP pool utilization with alerts:
o Warning: > 70%
o Critical: > 85%

Trend analysis to predict exhaustion

Implement session idle timeout

Regular session audits

Issue: Duplicate IP Address Assigned
Symptom:

e UE reports IP address conflict
e Logs: "IP already allocated" warning

¢ Two sessions in Web Ul with same IP address

Likely Causes:

1. Software bug (rare)
2. Database inconsistency after crash

3. Manual intervention error
Diagnosis:
1. Search for IP in Web Ul:

o /pgw_sessions — Search by IP address

o Check if multiple IMSIs have same IP

2. Check logs:

o Search for IP address

o Look for "IP allocation" events

Resolution:
1. Identify affected sessions:
o Note both IMSIs with duplicate IP
2. Delete one session:

o Coordinate with SGW-C to send Delete Session Request for one IMSI

o Prefer deleting the newer session

3. UE reconnects:

o UE should automatically reconnect

o Will receive new unique IP

4. If persistent:

o Restart OmniPGW to rebuild IP registry

o All sessions will be lost (coordinate maintenance window)

Prevention:

e Monitor for duplicate allocations (no built-in metric currently)

e Regular database integrity checks (if applicable)

Quick Reference

Common Prometheus Queries

Active sessions
teid registry count

Session setup rate (per second)
rate(s5s8 inbound messages total{message type="create session request

IP pool utilization (for /24 subnet)
(address registry count / 254) * 100

P95 session setup latency
histogram quantile(0.95,
rate(s5s8 inbound handling duration bucket{request message type="crec

[5m]))

Error rate
rate(s5s8 inbound errors total[5m])

PCRF latency
histogram quantile(0.95, rate(gx outbound transaction duration bucket

PFCP association status
pfcp peer associated

Common Log Filters (Web Ul)

Filter

IMSI

"create_session"

"delete_session"

"Credit Control"

"PFCP Session"

"error"

"timeout"

"Association"

Purpose

Find all logs for specific subscriber

Session establishment flow

Session teardown flow

Gx PCRF interactions

User plane programming

All error messages

Timeout issues

PFCP association events

Health Check Commands

Check service status
systemctl status omnipgw c

Check web UI
curl http://<omnipgw ip>:4000

Check metrics endpoint
curl http://<omnipgw ip>:9090/metrics

Check active sessions
curl http://<omnipgw ip>:9090/metrics | grep teid registry count

Check PFCP association
curl http://<omnipgw ip>:9090/metrics | grep pfcp peer associated

Check IP pool usage

curl http://<omnipgw ip>:9090/metrics | grep
address registry count

Related Documentation

. - Prometheus metrics, Grafana dashboards, alerting
. - System configuration reference

. - Session lifecycle details

. - PFCP troubleshooting details

. - Gx policy troubleshooting

. - Gy charging troubleshooting

. - QoS-related issues

OmniPGW Troubleshooting Guide - by Omnitouch Network Services

UE IP Pool Allocation
Documentation

IP Address Management for Mobile Devices

Table of Contents

N o kA w N

Overview

The PGW-C allocates IP addresses to UE (User Equipment) devices when they
establish PDN (Packet Data Network) connections. This is a critical function that
enables mobile devices to communicate with external networks.

Why IP Allocation Matters

UE1
100.64.1.10

UE 2
100.64.1.11

UE 3
100.64.1.12

Each UE receives a unique IP address from the PGW-C that:

Identifies the device on the network

Routes traffic to/from the device

Enables charging and policy enforcement

Persists for the duration of the PDN connection

Supported IP Versions

IP Version Support Description
IPv4 [] Full Standard IPv4 addresses
IPv6 0 Full IPv6 addresses and prefixes

IPv4v6 [] Full Dual-stack (both IPv4 and IPv6)

IP Allocation Concepts

PDN Type

When a UE requests a PDN connection, it specifies a PDN Type:

PDN Type Description Allocated Addresses
IPv4 IPv4-only connection Single IPv4 address

IPv6 IPv6-only connection IPv6 prefix (e.qg., /64)

IPv4v6 Dual-stack connection Both IPv4 address and IPv6 prefix

Allocation Methods

PGW-C supports two IP allocation methods:

No

Dynamic Allocation

Ye

f

Static Allocation

g
_—

/

No

\
B e

1. Dynamic Allocation (Most Common):

e PGW-C selects IP from configured pool

e Random selection to avoid predictability

e Collision detection ensures uniqueness
2. Static Allocation:

e UE requests specific IP in GTP-C message
e PGW-C validates availability

e Useful for enterprise devices with fixed IPs

APN-Based Subnet Selection

Different APNs (Access Point Names) can use different IP pools:

HFE DMkl Cannactioon |

OmniCharge OmniRAN

- -

Downloads 2 English+ Omnitouch Website (2

UE Requests
Specific IP?

Select Subnet
Based on APN

l

Generate Random IP
from Subnet

Already
Allocated?

IP Available?

‘HH""__H\\\
Ye ‘MNo Yes Mo
] : Retry
Assign Requested IP Reject Request ‘ Max 100 times
Reqgister in “—
Address Registry
Benefits:

e Traffic Segregation - Different APNs route to different networks

e Policy Differentiation - Apply different policies per APN

e Capacity Planning - Size pools based on expected usage

e Billing - Track usage by service type

Address Registry

The Address Registry tracks allocated IPs:

Function Description
Registration Maps UE IP - Session Process PID
Lookup Find session by UE IP
Deregistration Release IP when session ends

Collision Detection Prevent duplicate allocations

Configuration

Basic Configuration

Edit config/runtime.exs:

config :pgw c,
%{
subnet map: %{

"internet" uses two subnets

ue:

APN

"internet" => [
"100.64.1.0/24", # 254 usable IPs
"100.64.2.0/24" # 254 usable IPs

]'

APN "i

ims" => |

uses one subnet

"100.64.10.0/24"

1,

Default pool for unknown APNs

default:

"42.42.42.0/24"

Subnet Notation

CIDR Notation: <network>/<prefix length>

CIDR Usable IPs

124

/23

/22

/20

/16

Notes:

254

510

1022

4094

65534

Example Range

100.64.1.1 - 100.64.1.254

100.64.0.1 - 100.64.1.254

100.64.0.1 - 100.64.3.254

100.64.0.1 - 100.64.15.254

100.64.0.1 - 100.64.255.254

e Network address (e.g., 100.64.1.0) is not allocated
e Broadcast address (e.g., 100.64.1.255) is not allocated

e PGW-C allocates from <network> + 1 to <broadcast> - 1

Multiple Subnets per APN

Load Balancing Across Subnets:

config :pgw c,
ue: %{
subnet map: %{
"internet" => [
"100.64.1.0/24",
"100.64.2.0/24",
"100.64.3.0/24",
"100.64.4.0/24"

Selection Method:

e PGW-C randomly selects one subnet from the list
e Provides basic load balancing

e Each session independently selects a subnet
Benefits:

e Distribute load across multiple subnets
e Easier capacity expansion (add new subnets)

* Flexibility for routing policies

Real-World Example

config :pgw c,
ue: %{
subnet map: %{
General internet access
"internet" => [
"100.64.0.0/20" # 4094 IPs for general use
1,

IMS (Voice over LTE)
Ilimsll => [

"100.64.16.0/22" # 1022 IPs for IMS
I,

Enterprise APN
"enterprise.corp" => [
"10.100.0.0/16" # 65534 IPs for enterprise

1,

IoT devices (low bitrate)
"iot.m2m" => [

"100.64.20.0/22" # 1022 IPs for IoT
I,

Default fallback
default: |
"42.42.42.0/24" # 254 IPs for unknown APNs

IPv6 Configuration

config :pgw c,
ue: %{
subnet map: %{

"internet" => [
IPv4 pools
"100.64.1.0/24"

1,

“internet.ipv6" => [
IPv6 pools (prefix delegation)
"2001:db8:1::/48"

1,

default: [
"42.42.42.0/24"

IPv6 Prefix Delegation:

e UE typically receives a /64 prefix
e Allows UE to assign multiple IPs (e.qg., for tethering)
e Example: UE receives 2001:db8:1:a::/64

Dual-Stack (IPv4v6) Configuration

config :pgw c,
ue: %{
subnet map: %{
"internet" => [

"100.64.1.0/24", # IPv4 pool
"2001:db8:1::/48" # IPv6 pool (will be used for IPv6
allocation)
]
¥
}

Dual-Stack Allocation:

* UE requests PDN Type: IPv4vo
* PGW-C allocates both IPv4 address and IPv6 prefix

e Both addresses active simultaneously

Allocation Process

IP allocation occurs during session creation when PGW-C receives a Create
Session Request via the S5/S8 interface. See for GTP-C

message details and for session lifecycle.

Step-by-Step: Dynamic IPv4 Allocation

UE SGW-C Address Registry

Attach Request

Create Session Request
(APN: internet, PDN Type: IPv4)

1. Parse APN: "internet"

Lookup subnet for APN "internet"

subnet_map["internet"]
- ["100.64.1.0/24", "100.64.2.0/24"]

Randomly select subnet

Selected: 100.64.1.0/24
Range: 100.64.1.1 - 100.64.1.254

[[Up to 100 attempts]

Generate random IP

Random IP: 100.64.1.42

Check if IP already allocated

Not allocated

Register IP -» Session PID

‘ 100.64.1.42 - <session_pid>

Allocated: 100.64.1.42 ‘

Create Session Response
(UE IP: 100.64.1.42)

Attach Accept
(IP: 100.64.1.42)

UE uses 100.64.1.42
for internet access

UE SGW-C Address Registry

How It Works

Dynamic Allocation Process:

1. Subnet Lookup: System retrieves configured subnets for the requested
APN

2. Random Selection: One subnet is randomly selected from the available
list

3. IP Generation: A random IP is generated within the subnet range

4. Uniqueness Check: System verifies the IP hasn't been allocated

5. Retry Logic: If collision detected, retry up to 100 times with new random
IP

6. Registration: Once unique IP found, it's registered to the session

Key Design Points:

e Max 100 attempts: Prevents infinite loops when pool is nearly exhausted
« Random selection: Avoids predictable IP assignment patterns for security

e Atomic operations: Process-based registry ensures no duplicate
allocations

* Fallback to default: If APN not found in config, uses default pool

Collision Handling

Scenario: Two sessions try to allocate same IP simultaneously

Address Registry

Session 1 Session 2 (Process-based)

Both randomly select
100.64.1.42

Register 100.64.1.42 - Session 1

Register 100.64.1.42 - Session 2

Registry processes
requests sequentially

Success - IP allocated

Session 1 gets IP

Error - Already allocated

Session 2 retries

Generate new random IP
100.64.1.43

Register 100.64.1.43 - Session 2

Success - IP allocated

Session 2 gets new IP

Address Registry

Session 1 Session 2 (Process-based)

How Collision Prevention Works:

e Registry processes requests one at a time (serialized)
* No race conditions possible

e First request to register an IP succeeds

e Subsequent requests for same IP are rejected

e Rejected sessions automatically retry with new random IP

Default Subnet Fallback

Scenario: UE requests unknown APN

Example Configuration:

Config

subnet map: %{
“internet" => ["100.64.1.0/24"],
default: ["42.42.42.0/24"]

Behavior:

e UE requests APN: "unknown.apn"

e System looks for "unknown.apn" in subnet_map
e Not found, so falls back to default pool

e Allocates IP from 42.42.42.0/24

Fallback Logic:

1. First, try to find APN-specific pool in configuration
2. If not found, use the default pool

3. If no default configured, allocation fails

Deallocation on Session Termination

UE SGW-C PGW-C Address Registry

Attach Request

Create Session Reguest
(APN: internet, PDN Type: IPvd)

]

1. Parse APN: "internat”

Lookup subnet for APN “intermnet”

—

subnet_mapl"internet"]
-+ ["100.64.1.0/24", "100.64.2.0/24"]

Randomly select subnet

.

Selected: 100.64.1.0/24
Ramge: 100.64.1.1 - 100.64.1.254

leop [Up to 100 attempts]

Generate random 1P

"y

[~

Fandom IP: 100.64.1.42

Check if IP already allocated

Mot allocated

Register IP -+ Session PID

100.64.1.42 - <session_pid=

Allocated: 100.64.1.42

Create Session Response
(UE IP: 100.64.1.42)

Attach Accept
(1P 1040.64.1.42)

i
-

UE uses 100.64.1.42
for internet access

UE SGW-C PGW-C Address Registry

Automatic Cleanup:

e When session process terminates, registry cleans up
e |IP immediately available for new allocations

¢ No manual intervention required

Advanced Topics

Pool Exhaustion

Scenario: All IPs in pool are allocated

Pool: 100.64.1.0/24 (254 usable IPs)
Allocated: 254 IPs
New request arrives - Exhaustion

What Happens:

1. PGW-C attempts 100 random allocations

2. All attempts find IP already allocated

3. Returns: {:error, :ue ip address allocation failed}
4. Session establishment fails

5. SGW-C receives error response

Prevention:

Monitor pool utilization
address registry count / total pool size > 0.8 # Alert at 80%

Expand pool before exhaustion
"internet" => [
"100.64.1.0/24",

"100.64.2.0/24", # Add additional subnet
"100.64.3.0/24"

Static IP Allocation

Use Case: Enterprise device needs fixed IP

GTP-C Message Format:

Create Session Request

— IMSI: 310260123456789

— APN: enterprise.corp

— PDN Address Allocation (IE)

| L— PDN Type: IPv4

| L— IPv4 Address: 10.100.0.50 « UE requests specific IP

OmniPGW Processing:

1. Extract Requested IP: Parse PDN Address Allocation IE from request
2. Validate IP: Check if requested IP is in configured pool for this APN
3. Check Availability: Verify IP is not already allocated to another session

4. Allocate or Reject:
o |f available: Allocate requested IP to this session

o If unavailable: Reject session with appropriate cause code

Possible Results:

e Success: UE receives exactly the IP address it requested
e Failure (IP in use): Session rejected - IP already allocated

e Failure (IP not in pool): Session rejected - IP not in configured range

IPv6 Prefix Delegation

UE requests IPv6:

Create Session Request
— PDN Type: IPv6

PGW-C allocates /64 prefix:

Allocated Prefix: 2001:db8:1:a::/64
UE can use:
- 2001:db8:1:a::1

- 2001:db8:1:a::2
- ... (18 quintillion addresses)

Benefits:

e UE can assign multiple IPs (e.g., tethering)
e Supports SLAAC (Stateless Address Autoconfiguration)

e Eliminates NAT requirement

Dual-Stack Allocation

UE requests IPv4v6:

Create Session Request
— PDN Type: IPv4v6

PGW-C allocates both:

IPv4: 100.64.1.42
IPv6: 2001:db8:1:a::/64

Traffic Handling:

e |Pv4 traffic uses IPv4 address
e |Pv6 traffic uses IPv6 prefix
e Both active simultaneously

e Separate GTP tunnels (or dual-stack tunnel)

Private vs. Public IP Addresses

Private IP Pools (RFC 1918):

Not routable on public internet
subnet map: %{
“internet" => [
"10.0.0.0/8",
"172.16.0.0/12",
"192.168.0.0/16"

Requires NAT at PGW-U to access internet

Public IP Pools:

Routable public IPs (example only)
subnet map: %{
“internet" => [
"203.0.113.0/24" # Public IP block

No NAT required - direct internet routing
Recommendation:

e Use private IPs (RFC 6598): 100.64.0.0/10 (Carrier-Grade NAT)

e Reserve public IPs for special services only

Monitoring

Web Ul - IP Pool Management

OmniPGW provides a real-time web interface for monitoring IP pool allocation
and utilization.

Access: http://<omnipgw-ip>:<web-port>/ip pools

Features:

1. Pool Overview

Total IPs across all pools

Currently allocated addresses

Available IPs remaining

Real-time utilization percentage
2. Per-APN Pool Status Each configured pool displays:

* Pool Name - APN identifier (e.qg., "default", "ims.something.else",
“Internet")

e APN Label - Configured APN name badge
e IP Range - CIDR notation showing subnet range
e Utilization - Visual indicator showing percentage used

e Allocation Stats:
o Total: Number of IPs in pool

o Allocated: Currently assigned IPs

o Available: Remaining IPs for allocation

3. Real-time Updates

e Auto-refresh every 2 seconds
e No page reload required

e Live utilization tracking

Use Cases:

Quick capacity check before maintenance

Identify pools approaching exhaustion

Verify pool configuration

Monitor allocation patterns by APN

Key Metrics

Address Registry Count:

Current allocated IPs
address registry count

Pool utilization (requires calculation)
address registry count / <total pool size> * 100

Example:

Pool: 100.64.1.0/24 (254 IPs)
Allocated: 150 IPs
Utilization: 150 / 254 = 59%

Alerts

Alert on high pool utilization
- alert: UEIPPoolUtilizationHigh

expr: address registry count > 200 # For /24 pool
for: 10m

annotations:
summary: "UE IP pool utilization above 80%"
description: "Current: {{ $value }} / 254 IPs allocated"

Alert on pool exhaustion
- alert: UEIPPoolExhausted

expr: address registry count >= 254 # For /24 pool
for: 1m

annotations:
summary: "UE IP pool exhausted - no IPs available"

Alert on allocation failures
- alert: UEIPAllocationFailures

expr: rate(ue ip allocation failures total[5m]) > 0O
for: 5m

annotations:
summary: "UE IP allocation failures occurring"

Grafana Dashboard
Panel 1: IP Pool Utilization

Gauge showing percentage
(address registry count / 254) * 100

Panel 2: Allocated IPs Over Time

Time series
address registry count

Panel 3: Allocation Rate

Rate of new allocations
rate(address registry count[5m])

Panel 4: Pool Exhaustion Risk

Days until exhaustion (based on current rate)
(254 - address registry count) / rate(address registry count[1lh])

Troubleshooting

Issue 1: Session Establishment Fails (No IP
Available)

Symptoms:

e Create Session Response: Cause "Request rejected"

e Log: "UE IP address allocation failed"
Possible Causes:

1. Pool Exhausted

Check current allocation
curl http://<pgw c ip>:42069/metrics | grep
address registry count

2. Configuration Error

Verify subnet configuration
config :pgw c,
ue: %{
subnet map: %{
"internet" => [
"100.64.1.0/24" # Ensure valid CIDR

3. APN Misconfiguration

If APN not found, falls back to default
Ensure default pool exists
subnet map: %{
default: ["42.42.42.0/24"]
}

Resolution:

e Expand pool: Add more subnets
e Cleanup stale sessions: Restart PGW-C to release leaked IPs
e Verify config: Check runtime.exs for typos

Issue 2: IP Address Collision

Symptoms:

e Two UEs receive same IP (very rare)

e Routing issues
Cause:
e Bug in Address Registry (should not happen)

Debug:

Check for duplicate IPs in logs
grep "already registered" /var/log/pgw c.log

Resolution:

¢ Should self-correct (second session retries)

e If persistent, report bug

Issue 3: Wrong IP Pool Used
Symptoms:

e UE receives IP from unexpected subnet

e APN "internet" gets IP from "ims" pool
Cause:
e Incorrect subnet_map configuration

Verify:

Check exact APN string matching
subnet map: %{

"internet" = [...], # Case-sensitive
"Internet" => [...] # Different APN!
}
Resolution:

e Ensure APN names match exactly (case-sensitive)

e Use default pool for catch-all

Issue 4: IPv6 Allocation Fails
Symptoms:

e UE requests IPv6, receives error

Possible Causes:

1. No IPv6 pool configured

Missing IPv6 subnets
subnet map: %{
"internet" => |
"100.64.1.0/24" # Only IPv4

2. Invalid IPv6 prefix

Too small prefix (should be /48 or larger)
"internet" => [
"2001:db8::/128" # Wrong - no room for allocation

Resolution:

Add IPv6 pool
subnet map: %{
"internet" => |
"100.64.1.0/24",
"2001:db8:1::/48" # IPv6 pool

Issue 5: High Pool Utilization
Symptoms:

e Nearing pool exhaustion

* address registry count approaching max
Proactive Measures:

1. Add Subnets:

"internet" => [

"100.64.1.0/24", # Existing
"100.64.2.0/24", # New subnet (adds 254 IPs)
"100.64.3.0/24" # New subnet (adds 254 IPs)

2. Use Larger Subnets:

Replace /24 with /22
"internet" => [
"100.64.0.0/22" # 1022 usable IPs

3. Session Cleanup:

o Monitor stale sessions

o Ensure proper Delete Session Request handling

Best Practices

Capacity Planning

Calculate required pool size:

Expected concurrent users: 10,000

Peak concurrency: 30% (3,000 simultaneous sessions)
Growth buffer: 50%

Required IPs: 3,000 * 1.5 = 4,500 IPs

Subnet: /20 (4,094 usable IPs) - Too small
Subnet: /19 (8,190 usable IPs) - Sufficient

Subnet Selection

Recommended:

e Use 100.64.0.0/10 (RFC 6598 - Carrier-Grade NAT)

e Provides 4 million IPs

e Reserved for service provider NAT

Avoid:

e Public IPs (expensive, limited)

e Common private ranges that conflict with enterprise VPNs

Configuration Layout

config :pgw c,
ue: %{
subnet map: %{
Primary internet APN - large pool
"internet" => [
"100.64.0.0/18" # 16,382 IPs
1,

IMS - smaller dedicated pool
"imS" = [

"100.64.64.0/22" # 1,022 IPs
1,

Enterprise - medium pool
“enterprise.corp" => [
"100.64.68.0/22" # 1,022 IPs

1,

IoT - large pool for many devices
"iot.m2m" => |

"100.64.72.0/20" # 4,094 IPs
I

Default - small fallback
default: [
"100.64.127.0/24" # 254 IPs

Related Documentation

Configuration
. - UE IP pool configuration, APN subnet mapping
. - DNS, P-CSCF, MTU delivered with IP address
. - Session lifecycle, IP allocation during PDN setup
. - UE address assignment via PFCP to UPF

Network Planning

. - IP address delivery via GTP-C

. - Policy control for IP allocation
Operations

. - IP pool utilization metrics, allocation tracking

. - UE IP addresses in CDRs for billing correlation

OmniPGW Operations
Guide

OmniPGW - Packet Gateway Control Plane (PGW-C)

by Omnitouch Network Services

Table of Contents

W O Nk WN R

R T
N P O

Overview

OmniPGW is a high-performance Packet Gateway Control Plane (PGW-C)
implementation for 3GPP LTE Evolved Packet Core (EPC) networks, developed
by Omnitouch Network Services. It manages the control plane functions for
data sessions, including:

Session Management - Creating, modifying, and terminating UE (User
Equipment) data sessions

IP Address Allocation - Assigning IP addresses to mobile devices from
configured pools

Policy & Charging Control - Interfacing with PCRF for policy enforcement
and charging

User Plane Coordination - Controlling the PGW-U (User Plane) for packet
forwarding

Mobile Network

| Mobile Device/UE |
OmniCharge OmniRAN

- -

Downloads ¥ English+ 1

T e 1l

'

eNodeB

User Data

'

SGW-C

A

S5/58 GTP-C

PGW-C System

FONEC User Data

Control Plane

Sxb PFCP

Gx Diameter FGUEY

User Plane

User Data

External Systems

¥

Internet/PDN

PCRF/PCF
Policy Control

What PGW-C Does

e Accepts session requests from SGW-C via S5/S8 interface (GTP-C)
* Allocates UE IP addresses from configured subnet pools

* Requests policy decisions from PCRF via Gx interface (Diameter)

* Programs forwarding rules in PGW-U via Sxb interface (PFCP)

e Manages QoS enforcement through bearer contexts and QoS rules

e Tracks charging information for billing systems

Architecture

Component Overview

Gx Broker S5/S8 Broker
Diameter GTP-C v2

Process Architecture
PGW-C is built on Elixir/OTP and uses a supervised process architecture:

e Application Supervisor - Top-level supervisor managing all components
* Protocol Brokers - Handle incoming/outgoing protocol messages

* Session Processes - One GenServer per active PDN connection

* Registries - Track allocated resources (IPs, TEIDs, SEIDs, etc.)

e PFCP Node Manager - Maintains PFCP associations with PGW-U peers

Each component is supervised and will automatically restart on failure,
ensuring system reliability.

Network Interfaces

PGW-C implements three primary 3GPP interfaces:

S5/S8 Interface (GTP-C v2)

Purpose: Control plane signaling between SGW-C and PGW-C
Protocol: GTP-C Version 2 over UDP

Key Messages:

Create Session Request/Response

Delete Session Request/Response

Create Bearer Request/Response

Delete Bearer Request/Response

Configuration: See

Sxb Interface (PFCP)

Purpose: Control plane signaling between PGW-C and PGW-U
Protocol: PFCP (Packet Forwarding Control Protocol) over UDP

Key Messages:

Association Setup Request/Response

Session Establishment Request/Response

Session Modification Request/Response

Session Deletion Request/Response

Heartbeat Request/Response

Configuration: See

Gx Interface (Diameter)

Purpose: Policy and Charging Rules Function (PCRF) interface
Protocol: Diameter (IETF RFC 6733)

Key Messages:

e Credit Control Initial Request/Answer (CCR-I/CCA-I)
e Credit Control Termination Request/Answer (CCR-T/CCA-T)

Configuration: See

PGW-C Application

Configuration

Manager
Configuration Configuration Configuration
Protocod Brokers
i.
Session ?ﬂar_.ageme nit PFCP|Mode
<y L
Seszion PFCP Peer
Supervisor Manager
1
! |
| |
L : i L]) ¥
Metrics . . .
Exportes Session 1) Session 2 Session N...
& ’ |
Telemetry Telemetry
K F'._E-éistres
. W i K T
IF Address TED SEID Charging ID

Registry Registry Registry Registry

Key Concepts

PDN Session

A PDN (Packet Data Network) Session represents a UE's data connection to an
external network (like the Internet). Each session has:

e UE IP Address - Allocated from a configured subnet pool

APN (Access Point Name) - Identifies the external network

Bearer Context - Contains QoS parameters and tunnel information

Charging ID - Unique identifier for billing
TEID (Tunnel Endpoint ID) - S5/S8 interface tunnel identifier

SEID (Session Endpoint ID) - Sxb interface session identifier

Bearer Context
A bearer represents a traffic flow with specific QoS characteristics:

o Default Bearer - Created with every PDN session
 Dedicated Bearers - Additional bearers for specific QoS needs
e EBI (EPS Bearer ID) - Unique identifier for each bearer

* QoS Parameters - QCI, ARP, bitrates (MBR, GBR)

PFCP Rules

The PGW-C programs the PGW-U with packet processing rules:

* PDR (Packet Detection Rule) - Matches packets (uplink/downlink)
* FAR (Forwarding Action Rule) - Specifies forwarding behavior
* QER (QoS Enforcement Rule) - Enforces bitrate limits

e BAR (Buffering Action Rule) - Controls packet buffering

See for details.

IP Address Allocation

UE IP addresses are allocated from configured subnet pools:

APN-based selection - Different APNs can use different subnets

Dynamic allocation - Random IP selection from available range

Static allocation - Support for UE-requested IP addresses

Collision detection - Ensures unique IP assignment

See for configuration.

Getting Started

Prerequisites

Elixir ~1.16

Erlang/OTP 26+

Network connectivity to SGW-C, PGW-U, and PCRF
Understanding of LTE EPC architecture

Starting OmniPGW

1. Configure runtime settings in config/runtime.exs

2. Compile the application:

mix deps.get
mix compile

3. Start the application:

mix run --no-halt

Verifying Operation

Check the logs for successful startup:

[info] Starting OmniPGW. ..

[info] Starting Metrics Exporter on 127.0.0.42:42069
[info] Starting S5/S8 Broker on 127.0.0.10

[info] Starting Sxb Broker on 127.0.0.20

[info] Starting Gx Broker

[info] Starting PFCP Node Manager

[info] OmniPGW successfully started

Access metrics at http://127.0.0.42:42069/metrics (configured address).

Configuration

All runtime configuration is defined in config/runtime.exs. The configuration
is structured into several sections:

Configuration Overview

Quick Configuration Reference

Section Purpose Documentation

metrics Prometheus metrics exporter

diameter Gx interface to PCRF

s5s8 GTP-C interface to SGW-C
sxb PFCP interface to PGW-U
ue UE IP address pools
pco Protocol Configuration Options
CDR Offline charging & usage reporting
See the for detailed information.

Web Ul - Real-Time Operations
Dashboard

OmniPGW includes a built-in Web Ul for real-time monitoring and operations,
providing instant visibility into system status without needing command-line
tools or metrics queries.

Accessing the Web Ul
http://<omnipgw-ip>:<web-port>/

Available Pages:

Page

UE Search

PGW
Sessions

Session
History

Network
Topology

IP Pools

PFCP
Sessions

UPF Status

UPF
Selection

Diameter
Peers

P-CSCF
Monitor

Gy
Simulator

URL

/ue_search

/pgw_sessions

/session history

/topology

/ip_pools

/pfcp sessions

/upf status

/upf selection

/diameter

/pcscf monitor

/9y _simulator

Purpose

Deep dive into specific
subscriber sessions

View all active PDN
sessions

Audit log of session
events

Visual network
topology view

UE IP address pool
utilization

View PFCP sessions
with PGW-U

Monitor PFCP peer
associations

View UPF selection
rules & P-CSCF status

Monitor PCRF
connectivity

P-CSCF DNS discovery
status

Test Gy/Ro online
charging

Refresh
Rate

On-
demand

2 seconds

5 seconds

5 seconds

2 seconds

2 seconds

2 seconds

Static

1 second

5 seconds

On-
demand

Page URL Purpose

Browse OpenCelllD

Cell Towers /cell towers
- database

Real-time log

Logs logs
9 /1tog streaming

Key Features
Real-Time Updates:

e All pages auto-refresh (no manual reload needed)
e Live data streaming from OmniPGW processes

e Color-coded status indicators (green/red)
Search & Filter:

e Search sessions by IMSI, IP, MSISDN, or APN

¢ Instant filtering without page reload
Expandable Details:

e Click any row to see complete details
¢ Inspect full session state

e View peer configuration and capabilities
No Authentication Required (Internal Use):

e Direct access from management network
* Designed for NOC/operations team use

e Bind to management IP only for security

Operational Workflows

Session Troubleshooting (Deep Dive):

Refresh
Rate

Static

Live

1. User reports connection issue
2. Open UE Search page (/ue search)
3. Search by IMSI, MSISDN, or IP address
4. Review comprehensive session details:
a) Active Sessions - Verify session exists with correct
parameters
b) Current Location - Check TAC, Cell ID, geographic location
c) Bearer Information - Verify default and dedicated bearers
- QCI, MBR/GBR, Charging Rule Names
- APN-AMBR limits
d) Charging Information - Gy session ID, quota status
e) Policy Information - Gx session, installed PCC rules
f) Recent Events - Session history and state changes
5. If session not found - Check Diameter page for PCRF
connectivity
6. If location issues - Verify cell tower data in Current Location
section

Quick Session Lookup:

B W DN R

5.

. User reports issue

. Open PGW Sessions page (/pgw_sessions)

. Search by IMSI or phone number

. Verify session exists with basic details:

- UE IP address allocated

- QoS parameters

- Tunnel endpoints established

For detailed analysis - Click session to expand or use UE

Search

System Health Check:

1.
2.
3.

Open UPF Status page - Verify all PGW-U peers "Associated"
Open Diameter page - Verify all PCRF peers "Connected"
Open PGW Sessions - Check active session count vs. capacity

Capacity Monitoring:

¢ Glance at PGW Sessions count

e Compare to licensed/expected capacity
e |dentify peak usage times

e Monitor distribution across APNs

Web Ul vs. Metrics
Use Web Ul for:

e Deep-dive subscriber troubleshooting (UE Search)

e Individual session details and state inspection

e Real-time peer status (PFCP, Diameter)

* Quick health checks across all interfaces

e Troubleshooting specific users by IMSI/MSISDN/IP

e Geographic location verification (Cell Tower integration)
e Bearer QoS analysis (MBR, GBR, QCI)

e Policy and charging rule inspection

e Session history and audit trails

e |P pool capacity monitoring

e Verifying configuration and rules

Use Prometheus Metrics for:

Historical trends

Alerting and notifications

Capacity planning graphs

Performance analysis

Long-term monitoring

Best Practice: Use both together - Web Ul for immediate operations,
Prometheus for trends and alerts.

Monitoring & Metrics

In addition to the Web Ul, OmniPGW exposes Prometheus-compatible metrics
for monitoring:

Available Metrics

e Session Metrics

(o]

teid registry count - Active S5/S8 sessions

o seid registry count - Active PFCP sessions

o session id registry count - Active Gx sessions

o address registry count - Allocated UE IP addresses

o charging id registry count - Active charging IDs
e Message Metrics

o s5s8 inbound messages total - GTP-C messages received
o sxb inbound messages total - PFCP messages received
o gx_inbound messages total - Diameter messages received

o Message handling duration distributions

e Error Metrics

o s5s8 inbound errors total - S5/S8 protocol errors
o sxb inbound errors total - PFCP protocol errors

o gx_inbound errors total - Diameter errors

Accessing Metrics

Metrics are exposed via HTTP at the configured endpoint:
curl http://127.0.0.42:42069/metrics

See for dashboard setup and alerting.

Detailed Documentation

This section provides a comprehensive overview of all OmniPGW
documentation. Documents are organized by topic and use case.

Documentation Structure

OmniPGW Documentation
— OPERATIONS.md (This Guide)
|
L— docs/
— Configuration & Setup
| — configuration.md
reference
| F— ue-ip-allocation.md
| L— pco-configuration.md
|
— Network Interfaces
| }— pfcp-interface.md
communication)
| — diameter-gx.md
— diameter-gy.md
L— s5s8-interface.md

|
|
|
L— Operations
— session-management.md

L— monitoring.md
alerting

Documentation by Topic

[Getting Started

Complete runtime.exs

IP pool configuration
DNS, P-CSCF, MTU settings
Sxb/PFCP (PGW-U

Gx (PCRF communication)

Gy/Ro (0CS communication)
S5/S8 (SGW-C communication)

PDN session lifecycle
Prometheus metrics &

Document Description Purpose

Main operations guide (this Overview and quick

document)

start

Configuration

Document Description

Complete runtime.exs configuration
reference

UE IP pool management and allocation

Protocol Configuration Options (DNS, P-
CSCF, MTU)

[] Network Interfaces

Document Description

PFCP/Sxb interface to PGW-U

Diameter Gx interface to PCRF (Policy
Control)

Diameter Gy/Ro interface to OCS (Online
Charging)

GTP-C S5/S8 interface to SGW-C

[] Operations & Monitoring

Lines

1,600+

943

344

Lines

1,355

941

1,100+

456

Document

[] Advanced Features

Document

Description

PDN session lifecycle and operations

Prometheus metrics, Grafana
dashboards, alerting

CDR file format, URR configuration,
offline charging

QoS & bearer management, policy
control

Troubleshooting procedures and
common issues

Description

P-CSCF discovery and health monitoring

Documentation Features

[0 Mermaid Diagrams

All documents include Mermaid charts for visual understanding:

Architecture diagrams

State machines

Network topology

[Practical Examples

Sequence diagrams (message flows)

Lines

435

807

847

448

687

Lines

894

Every document includes:

e Real-world configuration examples
e Copy-paste ready configs

e Common use cases

[0 Troubleshooting

Each interface document includes:

e Common issues and solutions
e Debug commands

e Metrics for diagnosis

[] Cross-References

Documents are extensively cross-linked for easy navigation.

Reading Paths

For Network Operators

1. - Overview (this document)

2. - Setup

3. - Monitoring

4. - Day-to-day operations

For Network Engineers

- Architecture overview (this document)
- User plane control
- Policy control
- Online charging

- Session management

o A W

- IP management

For Configuration & Deployment

- Complete reference
- IP pools

- Network parameters

> W

- Set up monitoring

Document Statistics

* Total Documents: 14

e Total Lines: ~10,900+

* Total Size: ~265 KB

e Mermaid Diagrams: 75+

e Code Examples: 150+

Key Concepts Covered

Architecture

e [] Control/User plane separation
e [] OTP/Elixir architecture
e [] Process supervision

¢ [] GenServer-based sessions

Protocols

e [] PFCP (Packet Forwarding Control Protocol)
e [] GTP-C v2 (GPRS Tunnelling Protocol)
e [] Diameter (RFC 6733)

3GPP Interfaces

00 Sxb (PGW-C « PGW-U)

0 Gx (PGW-C « PCRF)

0 Gy/Ro (PGW-C & OCS)

[0 S5/S8 (SGW-C & PGW-C)

Operations

[Session management
[IP allocation strategies
[] QoS enforcement

0 Charging integration

[0 Monitoring & alerting

Additional Resources

3GPP Specifications

Spec

TS 29.274

TS 29.244

TS 29.212

TS 32.299

TS 32.251

TS 23.401

Title

GTP-C v2 (S5/S8 interface)

PFCP (Sxb interface)

Diameter Gx interface (Policy Control)

Diameter Charging Applications (Gy/Ro)

Packet Switched domain charging

EPC architecture

Related Documentation

e Configuration file:

https://docs.omnitouch.com.au/assets/files/runtime-5a376f1bb18ba442c3a5fd4ed3a56b4d.exs/

