
OmniUPF API

Documentation

Overview

The OmniUPF API provides a comprehensive RESTful interface for managing

and monitoring the eBPF-based User Plane Function. The API enables real-time

control and observability of all UPF components.

API Capabilities

Session Management:

PFCP Sessions: Query active sessions, view session details, filter by UE IP

or TEID

PFCP Associations: Monitor control plane node associations and status

Traffic Rules:

Packet Detection Rules (PDR): Inspect uplink and downlink traffic

classifiers (IPv4/IPv6)

Forwarding Action Rules (FAR): View forwarding, buffering, and drop

policies

QoS Enforcement Rules (QER): Monitor rate limiting and QoS policies

Usage Reporting Rules (URR): Track data volume counters per session

Packet Buffering:

Buffer Status: View buffered packets per FAR (GET /buffer , GET

/buffer/:far_id)

Buffer Operations: Flush or clear buffered packets (POST

/buffer/:far_id/flush , DELETE /buffer/:far_id , DELETE /buffer)

Buffering Control: Manual notification triggering (POST

/buffer/:far_id/notify)

Notification Status: View DLDR notification state (GET

/buffer/notifications)

Monitoring and Statistics:

Packet Statistics: Real-time packet counters by protocol (GTP, IP, TCP,

UDP, ICMP, ARP)

XDP Statistics: Datapath performance metrics (pass, drop, redirect, abort)

N3/N6 Interface Stats: RAN and Data Network traffic distribution

Route Statistics: FIB lookup performance (cache hits, lookups, errors)

Route Management:

UE Routes: Query UE IP to gNB routing table (GET /routes)

FRR Integration: Synchronize routes with Free Range Routing daemon

(POST /routes/sync)

Routing Sessions: View routing protocol sessions (GET

/routing/sessions)

OSPF Database: Query OSPF external route database (GET

/ospf/database/external)

Configuration:

UPF Config: Retrieve and edit configuration (GET /config , POST /config)

Dataplane Config: Query dataplane-specific configuration (GET

/dataplane_config)

XDP Capabilities: Query XDP mode support and interface capabilities

(GET /xdp_capabilities)

eBPF Map Capacity: Monitor resource utilization and capacity (GET

/map_info)

Web UI Integration

The OmniUPF Web UI is built on this API and provides an interactive dashboard

for all API functionality. See the Web UI Guide for screenshots and usage

examples.

Swagger API Documentation

The API is fully documented using OpenAPI 3.0 (Swagger) specification. The

interactive Swagger UI provides:

Complete endpoint documentation with request/response schemas

Try-it-out functionality for testing API calls directly from the browser

Schema definitions for all data models

HTTP status codes and error responses

Interactive Swagger UI showing the OmniUPF API endpoints with detailed

documentation.

Accessing Swagger UI

The Swagger documentation is available at:

For example: http://10.98.0.20:8080/swagger/index.html

http://<upf-host>:8080/swagger/index.html

API Base Path

All API endpoints are prefixed with:

Response Format:

/api/v1

API Features

Pagination

OmniUPF API supports pagination for endpoints that return large

datasets. Pagination prevents timeouts and reduces memory usage

when querying thousands of sessions, PDRs, or URRs.

Supported Pagination Styles:

1. **Page-based pagination** (recommended):

 - `page`: Page number (starting from 1)

 - `page_size`: Items per page (default: 100, max: 1000)

2. **Offset-based pagination**:

 - `offset`: Number of items to skip

 - `limit`: Number of items to return (max: 1000)

Example Requests:

```bash

# Page-based: Get second page with 50 items per page

GET /api/v1/pfcp_sessions?page=2&page_size=50

# Offset-based: Skip first 100 items, return next 50

GET /api/v1/pfcp_sessions?offset=100&limit=50

# Default behavior (no pagination params): First 100 items

GET /api/v1/pfcp_sessions



Paginated Endpoints:

/api/v1/pfcp_sessions  - PFCP sessions list

/api/v1/pfcp_associations  - PFCP associations list

/api/v1/routes  - UE IP routes

/api/v1/uplink_pdr_map  - Uplink PDRs (basic info)

/api/v1/uplink_pdr_map/full  - Uplink PDRs with full SDF filter details

/api/v1/downlink_pdr_map  - Downlink PDRs IPv4 (basic info)

/api/v1/downlink_pdr_map/full  - Downlink PDRs IPv4 with full SDF filter

details

/api/v1/downlink_pdr_map_ip6  - Downlink PDRs IPv6 (basic info)

/api/v1/downlink_pdr_map_ip6/full  - Downlink PDRs IPv6 with full SDF

filter details

/api/v1/far_map  - Forwarding Action Rules

/api/v1/qer_map  - QoS Enforcement Rules

/api/v1/urr_map  - Usage Reporting Rules

Buffer Management Endpoints:

GET /api/v1/buffer  - List all FAR buffers with statistics

GET /api/v1/buffer/:far_id  - Get buffer status for specific FAR

GET /api/v1/buffer/notifications  - List DLDR notification status

DELETE /api/v1/buffer  - Clear all buffered packets

&#123;

  "data": [

    &#123; /* session object */ &#125;,

    &#123; /* session object */ &#125;,

    ...

  ],

  "pagination": &#123;

    "total": 5432,

    "page": 2,

    "page_size": 50,

    "total_pages": 109

  &#125;

&#125;



DELETE /api/v1/buffer/:far_id  - Clear buffer for specific FAR

POST /api/v1/buffer/:far_id/flush  - Flush (replay) buffered packets

POST /api/v1/buffer/:far_id/notify  - Manually send DLDR notification

Configuration Endpoints:

GET /api/v1/config  - Get current UPF configuration

POST /api/v1/config  - Update UPF configuration (runtime editable fields)

GET /api/v1/dataplane_config  - Get dataplane-specific configuration

Routing Integration Endpoints:

GET /api/v1/routes  - List UE routes

POST /api/v1/routes/sync  - Trigger route synchronization with FRR

GET /api/v1/routing/sessions  - Get routing protocol sessions

GET /api/v1/ospf/database/external  - Get OSPF external LSA database

Best Practices:

Use page_size=100  for Web UI display

Use page_size=1000  for bulk exports (max limit)

Query pagination.total_pages  to determine iteration count

Increase page_size  for better API performance (fewer requests)

CORS Support

Cross-Origin Resource Sharing (CORS) is enabled by default for all API

endpoints, allowing Web UI and third-party applications to consume the API

from different origins.

Prometheus Metrics

In addition to the REST API, OmniUPF exposes Prometheus metrics on the

/metrics  endpoint (default port :9090 ).

Metrics provide:



PFCP message counters and latency per peer

Packet statistics by protocol type

XDP action verdicts

Buffer statistics

eBPF map capacity utilization

URR volume tracking

See the Metrics Reference for complete documentation.

Related Documentation

Web UI Guide - Interactive dashboard built on this API

Metrics Reference - Prometheus metrics documentation

PFCP Cause Codes - PFCP error codes and troubleshooting

Rules Management Guide - PDR, FAR, QER, URR configuration

Route Management Guide - FRR integration and UE routing

Monitoring Guide - Statistics monitoring and capacity planning

Configuration Guide - UPF configuration options

Swagger UI - Interactive API documentation (replace localhost  with your

UPF host)

http://localhost:8080/swagger/index.html


OmniUPF Architecture

Guide

Table of Contents

1. Overview

2. eBPF Technology Foundation

3. XDP Datapath

4. Packet Processing Pipeline

5. eBPF Map Architecture

6. Buffering Mechanism

7. QoS Enforcement

8. Performance Characteristics

9. Scalability and Tuning

Overview

OmniUPF leverages eBPF (extended Berkeley Packet Filter) and XDP (eXpress

Data Path) to achieve carrier-grade performance for 5G/LTE packet processing.

By running packet processing logic directly in the Linux kernel, OmniUPF

eliminates the overhead of userspace processing and achieves multi-gigabit

throughput with microsecond latency.



Architecture Layers

Key Design Principles

Zero-Copy Processing:

Packets processed entirely in kernel space

No data copying between kernel and userspace

Direct packet manipulation using XDP

Lock-Free Data Structures:

eBPF maps use per-CPU hash tables



Atomic operations for concurrent access

No mutex/spinlock overhead

Hardware Offload Ready:

XDP offload mode supports SmartNIC execution

Compatible with network cards supporting XDP

Fallback to driver-native or generic modes

eBPF Technology Foundation

What is eBPF?

eBPF (extended Berkeley Packet Filter) is a revolutionary Linux kernel

technology that allows safe, sandboxed programs to run in kernel space

without changing kernel source code or loading kernel modules.

Key Features:

Safety: eBPF verifier ensures programs cannot crash the kernel

Performance: Runs at native kernel speed (no interpretation overhead)

Flexibility: Can be updated at runtime without kernel restart

Observability: Built-in tracing and statistics



eBPF Program Lifecycle

Kernel (eBPF Runtime)JIT CompilereBPF VerifierUserspace

Kernel (eBPF Runtime)JIT CompilereBPF VerifierUserspace

alt [Verification Success]

[Verification Failure]

Program runs for every packet

Maps updated atomically

Load eBPF Program (ELF)

Verify Safety:

- No infinite loops

- Bounded memory access

- Valid map operations

Compile to Native Code

Install Program

Return Program FD

Return Error

Attach to XDP Hook

Update eBPF Maps (PDR/FAR/QER/URR)

eBPF Maps

eBPF maps are kernel data structures shared between eBPF programs and

userspace.

Map Types Used in OmniUPF:



Map Type Description Use Case

BPF_MAP_TYPE_HASH
Hash table with key-

value pairs

PDR lookup by TEID

or UE IP

BPF_MAP_TYPE_ARRAY
Array indexed by

integer

QER, FAR, URR

lookup by ID

BPF_MAP_TYPE_PERCPU_HASH
Per-CPU hash table

(lock-free)

High-performance

PDR lookups

BPF_MAP_TYPE_LRU_HASH
LRU (Least Recently

Used) hash

Automatic eviction of

old entries

Map Operations:

Lookup: O(1) hash lookup (sub-microsecond)

Update: Atomic updates from userspace

Delete: Immediate removal of entries

Iterate: Batch operations for map dumps

XDP Datapath

XDP Overview

XDP (eXpress Data Path) is a Linux kernel hook that allows eBPF programs to

process packets at the earliest possible point—right after the network driver

receives them, before the kernel networking stack.

XDP Attach Modes

OmniUPF supports three XDP attach modes, each with different performance

and compatibility characteristics.



1. XDP Offload Mode

Hardware Execution (Best Performance):

eBPF program runs directly on SmartNIC hardware

Packet processing in NIC without touching CPU

Achieves 100 Gbps+ throughput

Requires compatible SmartNIC (Netronome, Mellanox ConnectX-6)

Configuration:

Limitations:

Requires expensive SmartNIC hardware

xdp_attach_mode: offload



Limited eBPF program complexity

Not all eBPF features supported in hardware

2. XDP Native Mode (Default for Production)

Driver-Level Execution (High Performance):

eBPF program runs in network driver context

Packets processed before SKB (socket buffer) allocation

Achieves 10-40 Gbps per core

Requires driver with XDP support (most modern drivers)

Configuration:

Advantages:

Very high performance (multi-million pps)

Wide hardware compatibility

Full eBPF feature set

Supported Drivers:

Intel: i40e, ice, ixgbe, igb

Mellanox: mlx4, mlx5

Broadcom: bnxt

Amazon: ena

Most 10G+ network cards

3. XDP Generic Mode

Software Emulation (Compatibility):

eBPF program runs after kernel allocates SKB

xdp_attach_mode: native



Software emulation of XDP behavior

Works on any network interface

Useful for testing and development

Configuration:

Use Cases:

Development and testing

Virtualized environments (VMs without SR-IOV)

Older network hardware

Loopback interface testing

Performance: 1-5 Gbps (significantly slower than native/offload)

XDP Return Codes

eBPF programs return XDP action codes to tell the kernel what to do with

packets:

xdp_attach_mode: generic



Return Code Meaning Use in OmniUPF

XDP_PASS
Send packet to kernel

network stack

Buffering (local delivery),

ICMP, unknown traffic

XDP_DROP Drop packet immediately
Invalid packets, rate limiting,

policy drops

XDP_TX
Transmit packet back out

same interface
Not currently used

XDP_REDIRECT
Send packet to different

interface

Main forwarding path (N3 ↔

N6)

XDP_ABORTED
Processing error, drop

packet and log
eBPF program errors

Packet Processing Pipeline

Program Structure

OmniUPF uses eBPF tail calls to create a modular packet processing pipeline.

tail_call tail_call tail_call tail_call XDP_REDIRECT
upf_entrypoint

Packet Classification

pdr_lookup

Match PDR

qer_enforce

Apply QoS

far_execute

Forwarding

urr_account

Volume Tracking
Output Interface

Tail Calls:

Allow eBPF programs to call other eBPF programs

Reuses same stack frame (bounded stack depth)

Enables modular pipeline design

Maximum 33 tail call depth



Uplink Packet Processing

N6 InterfaceURR AccountingFAR ProcessingQER EnforcementPDR LookupXDP HookN3 Interface

N6 InterfaceURR AccountingFAR ProcessingQER EnforcementPDR LookupXDP HookN3 Interface

alt [Action: FORWARD]

[Action: BUFFER]

[Action: DROP]

alt [Rate OK]

[Rate Exceeded]

alt [PDR Found]

[PDR Not Found]

GTP-U Packet (TEID 5678)

Extract TEID, Lookup uplink_pdr_map

Get FAR ID, QER ID, URR IDs

Apply Rate Limiting (MBR)

Check FAR Action

Remove GTP-U Header

Decrement TTL, Recalculate Checksum

Increment Volume Counters

XDP_REDIRECT to N6 Interface

Encapsulate in GTP-U (TEID=FAR_ID)

XDP_PASS to Buffer Socket

XDP_DROP

XDP_DROP (Rate Limited)

XDP_DROP (Unknown TEID)

Downlink Packet Processing

eBPF Map Architecture

Map Memory Layout

Userspace

Kernel Memory

Rule Maps PDR Maps

bpf_map_update_elem bpf_map_update_elem bpf_map_update_elembpf_map_update_elem bpf_map_update_elem bpf_map_update_elem bpf_map_lookup_elem bpf_map_lookup_elembpf_map_lookup_elem bpf_map_lookup_elem bpf_map_lookup_elem

uplink_pdr_map

Hash: TEID → PDR Info

Size: 131,070 entries

downlink_pdr_map

Hash: UE IPv4 → PDR 

Info

Size: 131,070 entries

downlink_pdr_map_ip6

Hash: UE IPv6 → PDR 

Info

Size: 131,070 entries

far_map

Array: FAR ID → FAR Info

Size: 131,070 entries

qer_map

Array: QER ID → QER 

Info

Size: 65,535 entries

urr_map

Array: URR ID → URR 

Info

Size: 131,070 entries

PFCP HandlerREST API



Map Sizing

OmniUPF automatically calculates map sizes based on max_sessions

configuration:

Example (max_sessions = 65,535):

PDR maps: 131,070 entries each

FAR map: 131,070 entries

QER map: 65,535 entries

URR map: 131,070 entries

Total Memory:

Buffering Mechanism

Buffering Overview

OmniUPF implements packet buffering for handover scenarios by encapsulating

packets in GTP-U and sending them to a userspace process via UDP socket.

PDR Maps = 2 × max_sessions  (uplink + downlink)

FAR Maps = 2 × max_sessions  (uplink + downlink)

QER Maps = 1 × max_sessions  (shared per session)

URR Maps = 3 × max_sessions  (multiple URRs per session)

PDR maps: 3 × 131,070 × 212 B = ~83 MB

FAR map:  131,070 × 20 B = ~2.6 MB

QER map:  65,535 × 36 B = ~2.3 MB

URR map:  131,070 × 20 B = ~2.6 MB

Total: ~91 MB kernel memory



Buffering Architecture

Parse error on line 4: .../>2. Add UDP Header (port 22152)<br/>3. ---------------

--------^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'PS'

Try again

Buffer Encapsulation Details

When buffering is enabled (FAR action bit 2 set), the eBPF program:

1. Calculates Original Packet Size:

2. Expands Packet Header:

3. Builds Outer IP Header:

4. Builds UDP Header:

orig_packet_len = ntohs(ip->tot_len);  // From IP header

// Add space for: Outer IP + UDP + GTP-U

gtp_encap_size = sizeof(struct iphdr) + sizeof(struct udphdr) + 

sizeof(struct gtpuhdr);

bpf_xdp_adjust_head(ctx, -gtp_encap_size);

ip->saddr = original_sender_ip;  // Preserve source to avoid 

martian filtering

ip->daddr = local_upf_ip;        // Local IP where userspace 

listener binds

ip->protocol = IPPROTO_UDP;

ip->ttl = 64;



5. Builds GTP-U Header:

6. Returns XDP_PASS:

Kernel delivers packet to local UDP socket on port 22152

Userspace buffer manager receives and stores packet

Buffer Flush Operation

When handover completes, SMF updates FAR to clear BUFFER flag. Buffered

packets are replayed:

udp->source = htons(22152);  // BUFFER_UDP_PORT

udp->dest = htons(22152);

udp->len = htons(sizeof(udphdr) + sizeof(gtpuhdr) + 

orig_packet_len);

gtp->version = 1;

gtp->message_type = GTPU_G_PDU;

gtp->teid = htonl(far_id | (direction << 24));  // Encode FAR 

ID and direction

gtp->message_length = htons(orig_packet_len);



Buffer Management Parameters

Parameter Default Description

Max Per FAR
10,000

packets

Maximum packets buffered per

FAR

Max Total
100,000

packets
Maximum total buffered packets

Packet TTL 30 seconds
Time before buffered packets

expire

Buffer Port 22152 UDP port for buffer delivery

Buffer Cleanup

Interval
60 seconds

How often to check for expired

packets



QoS Enforcement

Rate Limiting Algorithm

OmniUPF implements a sliding window rate limiter for QoS enforcement.

Parse error on line 5: ...= packet_size × 8 × (NSEC_PER_SEC / rate ---------------

--------^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'PS'

Try again

Sliding Window Implementation

Algorithm (from qer.h ):



Key Parameters:

Window Size: 5ms (5,000,000 nanoseconds)

Per-Direction: Separate windows for uplink and downlink

Atomic Updates: Uses volatile pointers for concurrent access

MBR = 0: Treated as unlimited bandwidth

static __always_inline enum xdp_action limit_rate_sliding_window(

    const __u64 packet_size,

    volatile __u64 *window_start,

    const __u64 rate)

{

    static const __u64 NSEC_PER_SEC = 1000000000ULL;

    static const __u64 window_size = 5000000ULL;  // 5ms window

    // Rate = 0 means unlimited

    if (rate == 0)

        return XDP_PASS;

    // Calculate transmission time for this packet

    __u64 tx_time = packet_size * 8 * (NSEC_PER_SEC / rate);

    __u64 now = bpf_ktime_get_ns();

    // Check if we're ahead of window (packet would transmit in 

the future)

    __u64 start = *window_start;

    if (start + tx_time > now)

        return XDP_DROP;  // Rate limit exceeded

    // If window has passed, reset it

    if (start + window_size < now) {

        *window_start = now - window_size + tx_time;

        return XDP_PASS;

    }

    // Update window to account for this packet

    *window_start = start + tx_time;

    return XDP_PASS;

}



QoS Example Calculation

Scenario: MBR = 100 Mbps, Packet Size = 1500 bytes

1. Transmission Time:

2. Rate Check:

If last packet transmitted at t=0 , next packet can transmit at t=120μs

If packet arrives at t=100μs , it's dropped (too early)

If packet arrives at t=150μs , it's forwarded (window advanced)

3. Maximum Packet Rate:

tx_time = 1500 bytes × 8 bits/byte × (1,000,000,000 ns/sec ÷ 

100,000,000 bps)

tx_time = 1500 × 8 × 10 = 120,000 ns = 120 μs

Max PPS = (100 Mbps ÷ 8) ÷ 1500 bytes = 8,333 packets/second

Inter-packet gap = 120 μs



Performance Characteristics

Throughput

Configuration Throughput Packets/Second Latency

XDP Offload (SmartNIC) 100 Gbps 148 Mpps < 1 μs

XDP Native (10G NIC,

single core)
10 Gbps 8 Mpps 2-5 μs

XDP Native (10G NIC, 4

cores)
40 Gbps 32 Mpps 2-5 μs

XDP Generic 1-5 Gbps 0.8-4 Mpps
50-100

μs

Latency Breakdown

Total Packet Processing Latency (XDP Native):



Stage Latency Cumulative

NIC RX 0.5 μs 0.5 μs

XDP Hook Invocation 0.1 μs 0.6 μs

PDR Lookup (Hash) 0.3 μs 0.9 μs

QER Rate Check 0.1 μs 1.0 μs

FAR Processing 0.5 μs 1.5 μs

URR Update 0.2 μs 1.7 μs

GTP-U Encap/Decap 0.8 μs 2.5 μs

XDP_REDIRECT 0.5 μs 3.0 μs

NIC TX 0.5 μs 3.5 μs

Total: ~3.5 μs per packet (XDP Native, 10G NIC)

CPU Utilization

Per-Core Processing Capacity:

Single core: 8-10 Mpps (XDP Native)

With hyper-threading: 12-15 Mpps

Multi-core scaling: Near-linear up to 8 cores

CPU Usage by Packet Rate:

Example: 2 Mpps traffic uses ~20% of one core

CPU % ≈ (Packet Rate / 10,000,000) × 100% per core



Memory Bandwidth

eBPF Map Access:

Hash lookup: ~100 ns (cache hit)

Hash lookup: ~300 ns (cache miss)

Array lookup: ~50 ns (always cache hit)

Memory Bandwidth Required:

Example: 10 Mpps × (1500 B + 3 lookups × 64 B) ≈ 160 Gbps memory

bandwidth

Scalability and Tuning

Horizontal Scaling

Multiple UPF Instances:

Setting SMF as parent of SMF would create a cycle

Try again

Session Distribution:

SMF distributes sessions across UPF instances

Each UPF handles subset of UE sessions

No inter-UPF communication needed (stateless)

Vertical Scaling

CPU Tuning:

1. Enable CPU affinity for XDP processing

Bandwidth = Packet Rate × (Avg Packet Size + Map Lookups × 64 

bytes)



2. Use RSS (Receive Side Scaling) to distribute RX queues

3. Pin eBPF programs to specific cores

NIC Tuning:

1. Increase RX ring buffer size

2. Enable multi-queue NICs (RSS)

3. Use flow director for traffic steering

Kernel Tuning:

Capacity Planning

Formula:

Example (1 million sessions, 20 Gbps peak):

CPU: (20 Gbps ÷ 10 Gbps per core) × 1.5 = 3-4 cores

Memory: (1M × 212 B × 3) + 100 MB ≈ 750 MB

# Increase locked memory limit for eBPF maps

ulimit -l unlimited

# Disable IRQ balance for XDP cores

systemctl stop irqbalance

# Set CPU governor to performance

cpupower frequency-set -g performance

# Increase network buffer sizes

sysctl -w net.core.rmem_max=134217728

sysctl -w net.core.wmem_max=134217728

Required CPU Cores = (Expected PPS ÷ 10,000,000) × 1.5  (50% 

headroom)

Required Memory = (Max Sessions × 212 B × 3) + 100 MB (eBPF maps + 

overhead)

Required Network = (Peak Throughput × 2) + 10 Gbps (headroom)



Network: (20 Gbps × 2) + 10 Gbps = 50 Gbps interfaces

Related Documentation

UPF Operations Guide - General UPF operations and deployment

Rules Management Guide - PDR, FAR, QER, URR details

Monitoring Guide - Performance monitoring and metrics

Web UI Operations Guide - Control panel usage

Troubleshooting Guide - Common issues and diagnostics



OmniUPF Configuration

Guide

Table of Contents

1. Overview

2. Operating Modes

3. XDP Attachment Modes

4. Configuration Parameters

5. Configuration Methods

6. Hypervisor Compatibility

7. NIC Compatibility

8. Configuration Examples

9. Map Sizing and Capacity Planning

Overview

OmniUPF is a versatile user plane function that can operate in multiple modes

to support both 4G (EPC) and 5G core networks. Configuration is managed

through YAML configuration files.

Operating Modes

OmniUPF is a unified platform that can simultaneously operate as:



Mode Configuration

The operating mode is determined by the control plane (SMF, PGW-C, or

SGW-C) that establishes PFCP associations with OmniUPF. No specific OmniUPF

configuration is required to switch between modes.

Simultaneous Operation:

OmniUPF can accept PFCP associations from multiple control planes

concurrently

A single OmniUPF instance can act as UPF, PGW-U, and SGW-U at the

same time

Sessions from different control planes are isolated and managed

independently

XDP Attachment Modes

OmniUPF uses XDP (eXpress Data Path) for high-performance packet

processing. Three attachment modes are supported.

For detailed XDP setup instructions, especially for Proxmox and other

hypervisors, see the XDP Modes Guide.



Mode Comparison

Mode
Attach

Point
Performance Use Case

NIC

Requirements

Generic

Network

stack

(kernel)

~1-2 Mpps

Testing,

development,

compatibility

Any NIC

Native

Network

driver

(kernel)

~5-10 Mpps

Production

(bare metal,

VM with SR-

IOV)

XDP-capable

driver

Offload

NIC

hardware

(SmartNIC)

~10-40 Mpps

High-

throughput

production

SmartNIC with

XDP offload



Packet Path

offload mode

native mode

generic mode

Network Interface Card

Network Driver

Network Stack

Application

XDP Program

Hardware

XDP Program

Driver

XDP Program

Stack

Generic Mode (Default)

Description: XDP program runs in the kernel network stack

Advantages:

Works with any network interface

No special driver or hardware requirements

Ideal for testing and development

Compatible with all hypervisors and virtualization platforms

Disadvantages:

Lower performance (~1-2 Mpps per core)



Packets already passed through driver before XDP processing

Configuration:

Best for:

Virtual machines without SR-IOV

Testing and validation environments

NICs without XDP driver support

Hypervisors like Proxmox, VMware, VirtualBox

Native Mode (Recommended)

Description: XDP program runs at the network driver level

Advantages:

High performance (~5-10 Mpps per core)

Packets processed before entering network stack

Significantly lower latency than generic mode

Works on bare metal and SR-IOV VMs

Disadvantages:

Requires network driver with XDP support

Not all NICs/drivers support native XDP

Configuration:

Best for:

Production deployments on bare metal

xdp_attach_mode: generic

xdp_attach_mode: native



VMs with SR-IOV passthrough

NICs with XDP-capable drivers (Intel, Mellanox, etc.)

Requirements:

XDP-capable network driver (see NIC Compatibility)

Linux kernel 5.15+ with XDP support enabled

Offload Mode (Maximum Performance)

Description: XDP program runs directly on SmartNIC hardware

Advantages:

Maximum performance (~10-40 Mpps)

Zero CPU overhead for packet processing

Sub-microsecond latency

Frees CPU for control plane processing

Disadvantages:

Requires expensive SmartNIC hardware

Limited SmartNIC availability

Complex setup and configuration

Configuration:

Best for:

Ultra-high-throughput production deployments

Edge computing with strict latency requirements

Environments where CPU resources are limited

Requirements:

xdp_attach_mode: offload



SmartNIC with XDP offload support (Netronome Agilio CX, Mellanox

BlueField)

Specialized firmware and drivers

Configuration Parameters

Network Interfaces

Parameter Description Type Default

interface_name

Network interfaces for

N3/N6/N9 traffic (XDP

attachment points)

List [lo]

n3_address
IPv4 address for N3 interface

(GTP-U from RAN)
IP 127.0.0.1

n9_address
IPv4 address for N9 interface

(UPF-to-UPF for ULCL)
IP

Same as

n3_address

Example:

interface_name: [eth0, eth1]

n3_address: 10.100.50.233

n9_address: 10.100.50.234



PFCP Configuration

Parameter Description Type Default

pfcp_address

Local address for

PFCP server

(N4/Sxb/Sxc

interface)

Host:Port :8805

pfcp_node_id
Local Node ID for

PFCP protocol
IP 127.0.0.1

pfcp_remote_node

Remote PFCP

peers (SMF/PGW-

C/SGW-C) to

connect

List []

association_setup_timeout

Timeout between

Association Setup

Requests

(seconds)

Integer 5

heartbeat_retries

Number of

heartbeat retries

before declaring

peer dead

Integer 3

heartbeat_interval
PFCP heartbeat

interval (seconds)
Integer 5

heartbeat_timeout
PFCP heartbeat

timeout (seconds)
Integer 5

Example:



API and Monitoring

Parameter Description Type Default

api_address
Local address for REST API

server
Host:Port :8080

metrics_address

Local address for Prometheus

metrics endpoint (see Metrics

Reference)

Host:Port :9090

logging_level
Logging level (trace , debug ,

info , warn , error )
String info

Example:

pfcp_address: :8805

pfcp_node_id: 10.100.50.241

pfcp_remote_node:

  - 10.100.50.10  # OmniSMF

  - 10.100.60.20  # OmniPGW-C

heartbeat_interval: 10

heartbeat_retries: 5

api_address: :8080

metrics_address: :9090

logging_level: debug



GTP Path Management

Parameter Description Type Default

gtp_peer
List of GTP peers for Echo

Request keepalives
List []

gtp_echo_interval
Interval between GTP Echo

Requests (seconds)
Integer 10

Example:

gtp_peer:

  - 10.100.50.50:2152  # gNB

  - 10.100.50.60:2152  # Another UPF for N9

gtp_echo_interval: 15



eBPF Map Capacity

Parameter Description Type Default
Auto-

calculated

max_sessions

Maximum

number of

concurrent

sessions

Integer 65535

Used to

calculate map

sizes

pdr_map_size
Size of PDR eBPF

map
Integer 0

max_sessions ×

2

far_map_size
Size of FAR eBPF

map
Integer 0

max_sessions ×

2

qer_map_size
Size of QER eBPF

map
Integer 0 max_sessions

urr_map_size
Size of URR eBPF

map
Integer 0

max_sessions ×

2

Note: Setting map sizes to 0  (default) enables auto-calculation based on

max_sessions . Override with specific values if custom sizing is needed.

Example:

Custom sizing example:

max_sessions: 100000

# Maps will be auto-sized:

# PDR: 200,000 entries

# FAR: 200,000 entries

# QER: 100,000 entries

# URR: 200,000 entries



Buffer Configuration

Parameter Description Type Default

buffer_port
UDP port for buffered

packets from eBPF
Integer 22152

buffer_max_packets
Maximum packets to

buffer per FAR
Integer 10000

buffer_max_total
Maximum total buffered

packets (0=unlimited)
Integer 100000

buffer_packet_ttl

TTL for buffered packets

in seconds (0=no

expiration)

Integer 30

buffer_cleanup_interval

Buffer cleanup interval

in seconds (0=no

cleanup)

Integer 60

Example:

max_sessions: 50000

pdr_map_size: 131070  # Custom size

far_map_size: 131070

qer_map_size: 65535

urr_map_size: 131070

buffer_port: 22152

buffer_max_packets: 20000

buffer_max_total: 200000

buffer_packet_ttl: 60

buffer_cleanup_interval: 30



Feature Flags

Parameter Description Type Default

feature_ueip
Enable UE IP allocation by

OmniUPF
Boolean false

ueip_pool
IP pool for UE IP allocation

(requires feature_ueip )
CIDR 10.60.0.0/24

feature_ftup
Enable F-TEID allocation by

OmniUPF
Boolean false

teid_pool

TEID pool size for F-TEID

allocation (requires

feature_ftup )

Integer 65535

Example (UE IP allocation):

Example (F-TEID allocation):

Route Manager Configuration

For UE route synchronization with FRR (Free Range Routing) daemon. See Route

Management Guide for details.

feature_ueip: true

ueip_pool: 10.45.0.0/16  # Allocate UE IPs from this pool

feature_ftup: true

teid_pool: 1000000  # Allow up to 1M TEID allocations



Parameter Description Type Default

route_manager_enabled

Enable

automatic UE

route

synchronization

Boolean false

route_manager_type

Routing

daemon type

(frr

supported)

String frr

route_manager_vtysh_path
Path to vtysh

command
String /usr/bin/vtysh

route_manager_nexthop
Next-hop IP for

UE routes

IP

Address
`` (empty)

Example:

When to Enable:

Multi-UPF deployments requiring route advertisement

Integration with OSPF or BGP routing protocols

Requires FRRouting daemon installed and configured

route_manager_enabled: true

route_manager_type: frr

route_manager_vtysh_path: /usr/bin/vtysh

route_manager_nexthop: 10.0.1.1  # Next hop for UE routes



Configuration Methods

YAML Configuration File (Recommended)

File: config.yml

# Network Configuration

interface_name: [eth0]

n3_address: 10.100.50.233

n9_address: 10.100.50.233

xdp_attach_mode: native

# PFCP Configuration

pfcp_address: :8805

pfcp_node_id: 10.100.50.241

pfcp_remote_node:

  - 10.100.50.10

# API and Monitoring

api_address: :8080

metrics_address: :9090

logging_level: info

# Capacity

max_sessions: 100000

# GTP Peers

gtp_peer:

  - 10.100.50.50:2152

gtp_echo_interval: 10

# Features

feature_ueip: true

ueip_pool: 10.45.0.0/16

feature_ftup: false

# Buffering

buffer_max_packets: 15000

buffer_packet_ttl: 45



Hypervisor Compatibility

Overview

OmniUPF is compatible with all major hypervisors and virtualization platforms.

The XDP attach mode and network configuration depend on the hypervisor's

networking capabilities.

For step-by-step instructions on enabling native XDP on Proxmox and

other hypervisors, see the XDP Modes Guide.



Proxmox VE

Supported Configurations:

1. Bridge Mode (Generic XDP)

Use case: Standard VM networking

Configuration:

Network Device: VirtIO or E1000

XDP Mode: generic

Performance: ~1-2 Mpps

Proxmox VM Settings:

OmniUPF Config:

2. SR-IOV Passthrough (Native XDP)

Use case: High-performance production

Configuration:

Network Device: SR-IOV Virtual Function

XDP Mode: native

Performance: ~5-10 Mpps

Requirements:

Network Device: net0

Model: VirtIO (paravirtualized)

Bridge: vmbr0

interface_name: [eth0]

xdp_attach_mode: generic



Physical NIC with SR-IOV support (Intel X710, Mellanox ConnectX-5)

SR-IOV enabled in BIOS

IOMMU enabled (intel_iommu=on  or amd_iommu=on  in GRUB)

Enable SR-IOV on Proxmox:

Proxmox VM Settings:

OmniUPF Config:

# Edit GRUB configuration

nano /etc/default/grub

# Add to GRUB_CMDLINE_LINUX_DEFAULT:

intel_iommu=on iommu=pt

# Update GRUB and reboot

update-grub

reboot

# Enable VFs on NIC (example: 4 virtual functions on eth0)

echo 4 > /sys/class/net/eth0/device/sriov_numvfs

# Make persistent

echo "echo 4 > /sys/class/net/eth0/device/sriov_numvfs" >> 

/etc/rc.local

chmod +x /etc/rc.local

Hardware → Add → PCI Device

Select: SR-IOV Virtual Function

All Functions: No

Primary GPU: No

PCI-Express: Yes (optional)

interface_name: [ens1f0]  # SR-IOV VF name

xdp_attach_mode: native



3. PCI Passthrough (Native XDP)

Use case: Dedicated NIC for single VM

Configuration:

Entire physical NIC passed to VM

XDP Mode: native  or offload  (if SmartNIC)

Performance: ~5-40 Mpps (depends on NIC)

Proxmox VM Settings:

OmniUPF Config:

KVM/QEMU

Bridge Mode:

SR-IOV Passthrough:

Hardware → Add → PCI Device

Select: Physical NIC (e.g., 0000:01:00.0)

All Functions: Yes

Primary GPU: No

PCI-Express: Yes

interface_name: [ens1f0]

xdp_attach_mode: native  # or 'offload' for SmartNIC

virt-install \

  --name omniupf \

  --network bridge=br0,model=virtio \

  --disk path=/var/lib/libvirt/images/omniupf.qcow2 \

  ...



VMware ESXi

Standard vSwitch (Generic XDP):

Network Adapter: VMXNET3

XDP Mode: generic

SR-IOV (Native XDP):

Enable SR-IOV in ESXi host settings

Add SR-IOV network adapter to VM

XDP Mode: native

Microsoft Hyper-V

Virtual Switch (Generic XDP):

Network Adapter: Synthetic

XDP Mode: generic

SR-IOV (Native XDP):

Enable SR-IOV in Hyper-V Manager

Configure SR-IOV on virtual network adapter

XDP Mode: native

<interface type='hostdev' managed='yes'>

  <source>

    <address type='pci' domain='0x0000' bus='0x01' slot='0x10' 

function='0x1'/>

  </source>

</interface>



VirtualBox

NAT/Bridged Mode (Generic XDP only):

Network Adapter: VirtIO-Net or Intel PRO/1000

XDP Mode: generic

Note: VirtualBox does not support SR-IOV

NIC Compatibility

Understanding Mpps vs Throughput

Packets per second (Mpps) and throughput (Gbps) are not directly

equivalent - the relationship depends entirely on packet size. Mobile network

traffic varies dramatically in packet size, from tiny VoIP packets to large video

streaming frames.

Packet Size Impact on Throughput

In mobile networks, the UPF processes GTP-U encapsulated packets on the N3

interface and native IP packets on the N6 interface.

GTP-U Encapsulation Overhead (N3 Interface):

Outer IPv4 header: 20 bytes

Outer UDP header: 8 bytes

GTP-U header: 8 bytes

Total GTP-U overhead: 36 bytes

Minimum GTP-U Packet (N3):

Inner IP header: 20 bytes (IPv4)

Inner UDP header: 8 bytes

Minimum payload: 1 byte

Inner packet total: 29 bytes

Plus GTP-U overhead: 36 bytes



Total packet size: 65 bytes

Throughput at 1 Mpps with minimum GTP-U packets:

Maximum GTP-U Packet (N3 with 1500 MTU):

Inner IP MTU: 1500 bytes (full inner IP packet)

Plus GTP-U overhead: 36 bytes

Total packet size: 1536 bytes

Throughput at 1 Mpps with maximum GTP-U packets:

Native IP Packets (N6 Interface):

On N6 (towards Internet), packets are native IP without GTP-U:

Minimum N6 packet:

IP header: 20 bytes

UDP header: 8 bytes

Minimum payload: 1 byte

Total: 29 bytes

Throughput at 1 Mpps with minimum N6 packets:

Maximum N6 packet (1500 MTU):

IP MTU: 1500 bytes

Total: 1500 bytes

Throughput at 1 Mpps with maximum N6 packets:

65 bytes × 1,000,000 pps × 8 bits/byte = 520 Mbps

1536 bytes × 1,000,000 pps × 8 bits/byte = 12,288 Mbps ≈ 12.3 Gbps

29 bytes × 1,000,000 pps × 8 bits/byte = 232 Mbps



Real-World Performance Examples

Intel X710 NIC (10 Mpps capacity on N3 interface with GTP-U):

Traffic

Pattern

Inner

Packet

Size

GTP-U

Total

Throughput at

10 Mpps

Typical Use

Case

VoIP calls

(N3)

65-150

bytes

101-186

bytes
0.8-1.5 Gbps

AMR-WB voice,

G.711

Light web

(N3)

400-600

bytes

436-636

bytes
3.5-5.1 Gbps

HTTP/HTTPS,

messaging

Modern

mobile

(N3)

1200

bytes

1236

bytes
9.9 Gbps

Typical 2024

traffic mix

Video

streaming

(N3)

1400-

1450

bytes

1436-

1486

bytes

11.5-11.9

Gbps

HD/4K video

chunks

Maximum

MTU (N3)

1500

bytes

1536

bytes
12.3 Gbps

Large TCP

downloads

On N6 interface (native IP, no GTP-U):

1500 bytes × 1,000,000 pps × 8 bits/byte = 12,000 Mbps = 12 Gbps



Traffic

Pattern
Packet Size

Throughput at 10

Mpps

Typical Use

Case

VoIP packets 65-150 bytes 0.5-1.2 Gbps
Voice RTP

streams

Light web
400-600

bytes
3.2-4.8 Gbps HTTP requests

Modern

mobile
1200 bytes 9.6 Gbps

Typical 2024

traffic

Video

streaming

1400-1450

bytes
11.2-11.6 Gbps Video downloads

Maximum

MTU
1500 bytes 12.0 Gbps

Large file

transfers

At 10 Mpps with modern mobile traffic (1200-byte average), expect ~10

Gbps throughput on both N3 and N6 interfaces.

Why This Matters for Mobile Networks:

Mobile traffic is highly variable in packet size and the GTP-U overhead (36

bytes) significantly impacts small packet performance:

Inner packet size (actual user data):

VoIP (AMR-WB codec): 65-80 bytes → With GTP-U: 101-116 bytes

IoT sensor data: 50-200 bytes → With GTP-U: 86-236 bytes

Web browsing (HTTP/3): 400-800 bytes → With GTP-U: 436-836 bytes

Video streaming: 1200-1450 bytes → With GTP-U: 1236-1486 bytes

Large downloads: 1500 bytes → With GTP-U: 1536 bytes

Impact of GTP-U overhead:

Small packets (< 200 bytes): ~35-70% overhead - Mpps is limiting factor

Medium packets (200-800 bytes): ~5-20% overhead - Mixed limitation



Large packets (> 1200 bytes): ~3% overhead - Link speed is limiting

factor

Performance Planning:

A NIC rated at 10 Mpps will achieve on N3 interface:

VoIP-heavy traffic (100-byte inner packets): ~1.0 Gbps (GTP-U overhead

dominates)

Modern mobile mix (1200-byte average inner packets): ~9.9 Gbps

Video-heavy traffic (1400-byte inner packets): ~11.5 Gbps

Maximum throughput (1500-byte inner packets): ~12.3 Gbps

On N6 interface (no GTP-U overhead):

Modern mobile mix (1200-byte packets): ~9.6 Gbps at 10 Mpps

Maximum throughput (1500-byte packets): ~12.0 Gbps at 10 Mpps

Rule of Thumb for Mobile UPF:

Small packet traffic (VoIP, IoT, signaling): Mpps is limiting - plan for 1-2

Gbps per 10 Mpps

Modern mobile traffic (1200-byte average): Plan for ~9-10 Gbps per 10

Mpps capacity

Video-heavy traffic (streaming, downloads): Plan for ~10-12 Gbps per 10

Mpps capacity

Always consider both N3 and N6 - N3 has GTP-U overhead, N6 does not

Practical Capacity Planning:

With 1200-byte average packet size (typical for modern mobile networks with

video streaming):



NIC Mpps

Capacity

N3 Throughput

(GTP-U)

N6 Throughput

(Native IP)

Realistic

Deployment

1 Mpps ~1.0 Gbps ~1.0 Gbps
Small cell site, IoT

gateway

5 Mpps ~4.9 Gbps ~4.8 Gbps
Medium cell site,

enterprise

10 Mpps ~9.9 Gbps ~9.6 Gbps
Large cell site,

small city

20 Mpps ~19.7 Gbps ~19.2 Gbps
Metro area,

medium city

40 Mpps ~39.4 Gbps ~38.4 Gbps
Large metro,

regional hub

Note: These estimates assume 1200-byte average payload size, which is

representative of modern mobile traffic dominated by video streaming, social

media, and cloud applications. Actual throughput will vary based on traffic mix.

XDP-Capable Network Drivers

OmniUPF requires network drivers with XDP support for native and offload

modes. Generic mode works with any NIC.

Intel NICs



Model Driver XDP Support Mode Performance

Intel X710 i40e Yes Native ~10 Mpps

Intel XL710 i40e Yes Native ~10 Mpps

Intel E810 ice Yes Native ~15 Mpps

Intel 82599ES ixgbe Yes Native ~8 Mpps

Intel I350 igb Limited Generic ~1 Mpps

Intel E1000 e1000 No Generic only ~1 Mpps

Mellanox/NVIDIA NICs

Model Driver
XDP

Support
Mode Performance

Mellanox

ConnectX-5
mlx5 Yes Native ~12 Mpps

Mellanox

ConnectX-6
mlx5 Yes Native ~20 Mpps

Mellanox

BlueField
mlx5 Yes

Native +

Offload
~40 Mpps

Mellanox

ConnectX-4
mlx4 Limited Generic ~2 Mpps

Broadcom NICs



Model Driver
XDP

Support
Mode Performance

Broadcom

BCM57xxx
bnxt_en Yes Native ~8 Mpps

Broadcom

NetXtreme II
bnx2x No

Generic

only
~1 Mpps

Other Vendors

Model Driver
XDP

Support
Mode Performance

Netronome Agilio

CX
nfp Yes Offload ~30 Mpps

Amazon ENA ena Yes Native ~5 Mpps

Solarflare

SFC9xxx
sfc Yes Native ~8 Mpps

VirtIO virtio_net Limited Generic ~2 Mpps

Checking NIC XDP Support

Check if driver supports XDP:



Verify XDP program attachment:

Recommended NICs by Use Case

With 1200-byte average packet size (modern mobile traffic):

# Find NIC driver

ethtool -i eth0 | grep driver

# Check XDP support in driver

modinfo <driver_name> | grep -i xdp

# Example for Intel i40e

modinfo i40e | grep -i xdp

# Check if XDP program is attached

ip link show eth0 | grep -i xdp

# Example output (XDP attached):

# 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 xdp qdisc mq



Use Case
Recommended

NIC
Mode

Mpps

Capacity

Through

(N3

Testing/Development
Any NIC (VirtIO,

E1000)
Generic 1-2 Mpps 1-2 Gbps

Small Cell Site
Intel X710,

Mellanox CX-5
Native

5-10

Mpps
5-10 Gbp

Medium Cell/Metro
Intel E810,

Mellanox CX-6
Native

10-20

Mpps
10-20 Gb

Large Metro

Mellanox CX-6,

Intel E810

(dual)

Native
20-40

Mpps
20-40 Gb

Regional Hub

Mellanox

BlueField,

Netronome

Agilio

Offload
40+

Mpps
40+ Gbp

Proxmox VM

(Bridge)
VirtIO Generic 1-2 Mpps 1-2 Gbps

Proxmox VM (SR-

IOV)

Intel X710/E810

VF, Mellanox

CX-5 VF

Native
5-10

Mpps
5-10 Gbp

Throughput Estimates:

Based on 1200-byte average packet size with GTP-U encapsulation (1236

bytes on N3)

N6 throughput slightly lower (~9.6 Gbps per 10 Mpps) due to no GTP-U

overhead

Actual performance varies with traffic mix - VoIP-heavy networks will see

lower throughput



Additional Resources

Official XDP Documentation:

XDP Project

Kernel XDP Documentation

NIC Compatibility Lists:

Cilium XDP Hardware Support

IO Visor XDP Drivers

Configuration Examples

Example 1: Development Environment (Generic

Mode)

Scenario: Testing OmniUPF on laptop or VM without SR-IOV

Example 2: Production Bare Metal (Native

Mode)

Scenario: Production UPF on bare metal server with Intel X710 NIC

# Development config

interface_name: [eth0]

xdp_attach_mode: generic

api_address: :8080

pfcp_address: :8805

pfcp_node_id: 127.0.0.1

n3_address: 127.0.0.1

metrics_address: :9090

logging_level: debug

max_sessions: 1000

https://www.iovisor.org/technology/xdp
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://docs.cilium.io/en/stable/operations/performance/tuning/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp


Example 3: Proxmox VM with SR-IOV (Native

Mode)

Scenario: Production UPF on Proxmox VM with SR-IOV passthrough

# Production bare metal config

interface_name: [ens1f0, ens1f1]  # N3 on ens1f0, N6 on ens1f1

xdp_attach_mode: native

api_address: :8080

pfcp_address: 10.100.50.241:8805

pfcp_node_id: 10.100.50.241

n3_address: 10.100.50.233

n9_address: 10.100.50.234

metrics_address: :9090

logging_level: info

max_sessions: 500000

gtp_peer:

  - 10.100.50.10:2152  # gNB 1

  - 10.100.50.11:2152  # gNB 2

gtp_echo_interval: 30

pfcp_remote_node:

  - 10.100.50.50  # OmniSMF

heartbeat_interval: 10

feature_ueip: true

ueip_pool: 10.45.0.0/16

buffer_max_packets: 50000

buffer_packet_ttl: 60



Example 4: PGW-U Mode (4G EPC)

Scenario: OmniUPF acting as PGW-U in 4G EPC network

# Proxmox SR-IOV config

interface_name: [ens1f0]  # SR-IOV VF

xdp_attach_mode: native

api_address: :8080

pfcp_address: 192.168.100.10:8805

pfcp_node_id: 192.168.100.10

n3_address: 192.168.100.10

metrics_address: :9090

logging_level: info

max_sessions: 100000

gtp_peer:

  - 192.168.100.50:2152

gtp_echo_interval: 15

pfcp_remote_node:

  - 192.168.100.20  # SMF

# PGW-U configuration

interface_name: [eth0]

xdp_attach_mode: native

api_address: :8080

pfcp_address: 10.200.1.10:8805

pfcp_node_id: 10.200.1.10

n3_address: 10.200.1.10  # S5/S8 interface (GTP-U)

metrics_address: :9090

logging_level: info

max_sessions: 200000

gtp_peer:

  - 10.200.1.50:2152  # SGW-U

gtp_echo_interval: 20

pfcp_remote_node:

  - 10.200.2.10  # OmniPGW-C (Sxb interface)

heartbeat_interval: 5



Example 5: Multi-Mode (UPF + PGW-U

Simultaneously)

Scenario: OmniUPF serving both 5G and 4G networks concurrently

Example 6: SmartNIC Offload Mode

Scenario: Ultra-high-throughput deployment with Netronome Agilio CX

SmartNIC

# Multi-mode configuration

interface_name: [eth0, eth1]

xdp_attach_mode: native

api_address: :8080

pfcp_address: :8805

pfcp_node_id: 10.50.1.100

n3_address: 10.50.1.100

n9_address: 10.50.1.101

metrics_address: :9090

logging_level: info

max_sessions: 300000

gtp_peer:

  - 10.50.2.10:2152  # 5G gNB

  - 10.50.2.20:2152  # 4G eNodeB (via SGW-U)

gtp_echo_interval: 15

pfcp_remote_node:

  - 10.50.3.10  # OmniSMF (5G)

  - 10.50.3.20  # OmniPGW-C (4G)

heartbeat_interval: 10

feature_ueip: true

ueip_pool: 10.60.0.0/16



Map Sizing and Capacity Planning

Auto-Sizing (Recommended)

Set max_sessions  and let OmniUPF calculate map sizes automatically:

# SmartNIC offload configuration

interface_name: [enp1s0np0]  # SmartNIC interface

xdp_attach_mode: offload

api_address: :8080

pfcp_address: 10.10.1.50:8805

pfcp_node_id: 10.10.1.50

n3_address: 10.10.1.50

metrics_address: :9090

logging_level: warn  # Reduce overhead

max_sessions: 1000000

pdr_map_size: 2000000

far_map_size: 2000000

qer_map_size: 1000000

gtp_peer:

  - 10.10.2.10:2152

  - 10.10.2.20:2152

  - 10.10.2.30:2152

gtp_echo_interval: 30

pfcp_remote_node:

  - 10.10.3.10

heartbeat_interval: 15

buffer_max_packets: 100000

buffer_max_total: 1000000

max_sessions: 100000

# Auto-calculated sizes:

# PDR: 200,000 entries (2 × max_sessions)

# FAR: 200,000 entries (2 × max_sessions)

# QER: 100,000 entries (1 × max_sessions)

# URR: 200,000 entries (2 × max_sessions)



Memory usage: ~91 MB for 100K sessions

Manual Sizing

Override auto-calculation for custom requirements:

Capacity Estimation

Calculate maximum sessions:

Example:

PDR map: 200,000

FAR map: 200,000

QER map: 100,000

Max Sessions = min(100,000, 100,000, 100,000) = 100,000

Memory Requirements

Per session memory usage:

max_sessions: 100000

pdr_map_size: 300000  # Support more PDRs per session

far_map_size: 200000

qer_map_size: 150000  # More QERs than default

urr_map_size: 200000

Max Sessions = min(

  pdr_map_size / 2,

  far_map_size / 2,

  qer_map_size

)



PDR: 2 × 212 B = 424 B

FAR: 2 × 20 B = 40 B

QER: 1 × 36 B = 36 B

URR: 2 × 20 B = 40 B

Total: ~540 B per session

For 100K sessions: ~52 MB kernel memory

Recommendation: Ensure locked memory limit allows 2× estimated usage:

Related Documentation

Architecture Guide - eBPF/XDP technical details and performance

optimization

Rules Management Guide - PDR, FAR, QER, URR configuration

Monitoring Guide - Statistics, capacity monitoring, and alerting

Metrics Reference - Complete Prometheus metrics reference

Web UI Guide - Control panel operations

Operations Guide - UPF architecture and deployment overview

# Check current limit

ulimit -l

# Set unlimited (required for eBPF)

ulimit -l unlimited



Metrics Reference

This document describes all Prometheus metrics exposed by OmniUPF on the

/metrics  endpoint.

Metric Categories

1. PFCP message metrics - Control plane protocol message counters and

latency per peer

2. XDP Action metrics - Dataplane packet verdicts (drop, pass, redirect,

etc.)

3. Packet metrics - Received packet counters by protocol type

4. PFCP Session and Association metrics - Session and association counts

per peer

5. URR metrics - Traffic volume counters aggregated per PFCP peer

6. Packet Buffering metrics - Packet buffer state, capacity, and throughput

7. Downlink Data Report (Notification) metrics - PFCP Session Report

Request notifications and FAR index tracking

8. eBPF Map Capacity metrics - eBPF map utilization and capacity

Metrics Reference

PFCP message metrics

Metrics for tracking PFCP protocol messages between the UPF and control plane

nodes.



Metric Name Type Labels Description

upf_pfcp_rx Counter
message_name ,

peer_address

Total number of

received PFCP

messages per

message type and

peer

upf_pfcp_tx Counter
message_name ,

peer_address

Total number of

transmitted PFCP

messages per

message type and

peer

upf_pfcp_rx_errors Counter

message_name ,

cause_code ,

peer_address

Total number of

PFCP messages

rejected with error

cause per message

type and peer

upf_pfcp_rx_latency Summary
message_type ,

peer_address

PFCP message

processing duration

in microseconds

(p50, p90, p99

quantiles) per

message type and

peer

Note: All counters track messages per PFCP peer for granular visibility into

control plane node behavior.

XDP Action metrics

Packet counters by XDP program action/verdict. These metrics track the

dataplane decision for each packet.



Metric Name Type Labels Description

upf_xdp_aborted Counter none
Total number of packets aborted

(XDP_ABORTED)

upf_xdp_drop Counter none
Total number of packets dropped

(XDP_DROP)

upf_xdp_pass Counter none
Total number of packets passed to

kernel (XDP_PASS)

upf_xdp_tx Counter none
Total number of packets

transmitted (XDP_TX)

upf_xdp_redirect Counter none
Total number of packets redirected

(XDP_REDIRECT)

Packet metrics

Counters for received packets by protocol type. All metrics use packet_type

label.

Metric

Name
Type Labels Description

upf_rx Counter packet_type
Total number of received packets

by type

upf_route Counter packet_type
Total number of packets routed

by lookup result

upf_rx packet_type values:

arp  - ARP packets

icmp  - ICMP packets

icmp6  - ICMPv6 packets



ip4  - IPv4 packets

ip6  - IPv6 packets

tcp  - TCP packets

udp  - UDP packets

other  - Other packet types

gtp-echo  - GTP echo request/response

gtp-pdu  - GTP-U PDU (encapsulated user data)

gtp-other  - Other GTP message types

gtp-unexp  - Unexpected/malformed GTP packets

upf_route packet_type values:

ip4-cache  - IPv4 route cache hits

ip4-ok  - IPv4 FIB lookup success

ip4-error-drop  - IPv4 FIB lookup failed, packet dropped

ip4-error-pass  - IPv4 FIB lookup failed, packet passed to kernel

ip6-cache  - IPv6 route cache hits

ip6-ok  - IPv6 FIB lookup success

ip6-error-drop  - IPv6 FIB lookup failed, packet dropped

ip6-error-pass  - IPv6 FIB lookup failed, packet passed to kernel

PFCP Session and Association metrics

Metrics for tracking PFCP sessions and associations between the UPF and

control plane nodes.



Metric Name Type Labels Description

upf_pfcp_sessions Gauge none

Total number of

currently established

PFCP sessions (all

peers)

upf_pfcp_associations Gauge none

Total number of

currently established

PFCP associations (all

peers)

upf_pfcp_association_status Gauge
node_id ,

address

PFCP association

status per peer

(1=up, 0=down)

upf_pfcp_sessions_per_node Gauge
node_id ,

address

Number of active

PFCP sessions per

control plane node

URR (Usage Reporting Rule) metrics

Traffic volume metrics aggregated per PFCP peer. Each peer's volume

represents the sum of all URR counters across all sessions from that control

plane node.



Metric Name Type Labels Description

upf_urr_uplink_volume_bytes Gauge peer_address

Total uplink

traffic volume

in bytes for all

sessions from

this peer

upf_urr_downlink_volume_bytes Gauge peer_address

Total downlink

traffic volume

in bytes for all

sessions from

this peer

upf_urr_total_volume_bytes Gauge peer_address

Total traffic

volume in

bytes (uplink

+ downlink)

for all sessions

from this peer

Note: Volumes are aggregated per PFCP peer to avoid high cardinality issues.

Individual URR statistics are available via the REST API at /api/v1/urr_map .

Packet Buffering metrics

Metrics for tracking packet buffer state and performance. The UPF can buffer

downlink packets when a UE is in idle state, holding them until the UE is paged

and transitions to connected state.



Metric Name Type Labels D

upf_buffer_packets_total Counter none

T

n

p

a

b

t

upf_buffer_packets_dropped Counter reason

T

n

p

d

f

upf_buffer_packets_flushed Counter none

T

n

p

fl

b

upf_buffer_packets_current Gauge none

C

n

p

b

upf_buffer_bytes_total Counter none

T

a

b

t

upf_buffer_bytes_current Gauge none

C

b

b

upf_buffer_fars_active Gauge none C

n



Metric Name Type Labels D

F

b

p

upf_buffer_listener_packets_received_total Counter none

T

p

r

b

li

e

d

upf_buffer_listener_packets_buffered_total Counter none

T

p

s

b

li

upf_buffer_listener_errors_total Counter type

E

b

li

p

p

upf_buffer_listener_error_indications_sent_total Counter remote_peer

T

E

In

m

s

u

T

r

upf_buffer_flush_success_total Counter none T

s



Metric Name Type Labels D

b

o

upf_buffer_flush_errors_total Counter reason

T

b

o

upf_buffer_flush_packets_sent_total Counter none

T

p

d

o

upf_buffer_packets_dropped reason values:

expired  - Packets dropped due to TTL expiration

global_limit  - Dropped due to total buffer limit reached

far_limit  - Dropped due to per-FAR buffer limit reached

cleared  - Packets manually cleared from buffer

upf_buffer_listener_errors_total type values:

read_error  - Error reading from buffer socket

too_small  - Packet too small for GTP header

invalid_gtp_type  - Non-G-PDU GTP message type

unknown_teid  - No PDR/FAR found for TEID

not_buffering_far  - FAR does not have BUFF action

truncated_ext  - Truncated GTP extension headers

no_payload  - GTP packet has no payload

buffer_full  - Buffer capacity exceeded

upf_buffer_flush_errors_total reason values:

far_lookup_failed  - Failed to lookup FAR info from eBPF map

no_forw_action  - FAR does not have FORW action set

connection_failed  - Failed to create UDP connection for flushing



Downlink Data Report (Notification) metrics

Metrics for PFCP Session Report Request notifications sent to control plane

when packets are buffered. These notifications trigger the control plane to page

the UE.



Metric Name Type Labels De

upf_dldr_sent_total Counter none

Tota

of D

Data

(DLD

noti

sent

upf_dldr_send_errors Counter none

Tota

of e

send

Dow

Rep

noti

upf_dldr_active_notifications Gauge none

Curr

num

FAR

activ

noti

(not

clea

upf_far_index_size Gauge none

Curr

num

FAR

regi

FarI

DLD

noti

upf_far_index_registrations_total Counter none

Tota

of FA

regi

FarI



Metric Name Type Labels De

upf_far_index_unregistrations_total Counter none

Tota

of FA

unre

from

upf_buffer_notify_to_flush_duration_seconds Histogram pfcp_peer

Tim

send

noti

and

buff

pac

upf_buffer_notify_to_flush_duration_seconds:

Histogram buckets: 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 30.0, 60.0

seconds

Label pfcp_peer : SMF/PGW-C address (e.g., 10.100.50.241 )

Measures the latency between UPF sending notification to SMF and SMF

responding with session modification to flush packets

Useful for monitoring control plane responsiveness during idle-to-connected

transitions

GTP-U Error Indication metrics

Metrics for tracking GTP-U Error Indication messages sent and received. Error

Indications are sent when a peer receives packets for unknown TEIDs,

indicating tunnel state mismatches (often due to peer restarts).



Metric Name Type La

upf_buffer_listener_error_indications_sent_total Counter
node_

peer_

upf_buffer_listener_error_indications_received_total Counter
node_

peer_

upf_buffer_listener_error_indication_sessions_deleted_total Counter
node_

peer_

Label Definitions:

node_id : PFCP Node ID from the association (e.g., "pgw-u-1" , "smf-1" ).

Set to "unknown"  if no PFCP association exists for that peer.

peer_address : IP address of the remote peer (e.g., "192.168.50.10" )

When Error Indications Are Sent:

UPF receives GTP-U packet for a TEID that doesn't exist (e.g., after UPF

restart, session already deleted)

Sender (eNodeB, gNodeB, upstream UPF) is forwarding to stale/deleted

tunnel

UPF sends Error Indication to inform sender to stop sending



When Error Indications Are Received:

UPF forwards GTP-U packet to downstream peer (PGW-U, SGW-U, UPF) for

unknown TEID

Remote peer doesn't recognize the destination TEID (e.g., peer restarted

and lost tunnel state)

UPF automatically deletes affected sessions to stop forwarding to dead

tunnels

Use Cases:

Detect peer restarts (high Error Indication rate indicates state loss)

Identify configuration mismatches (TEID allocation issues)

Monitor tunnel synchronization health between network elements

Alert on unexpected session deletions

Example PromQL Queries:

eBPF Map Capacity metrics

Metrics for tracking eBPF map utilization. These metrics help monitor resource

usage and detect potential capacity issues.

# Rate of Error Indications received per peer (per second)

rate(upf_buffer_listener_error_indications_received_total[5m])

# Total sessions deleted due to Error Indications from specific peer

upf_buffer_listener_error_indication_sessions_deleted_total{peer_addr

# Peers sending unknown TEIDs to this UPF

sum by (node_id, peer_address) (upf_buffer_listener_error_indications



Metric Name Type Labels Description

upf_ebpf_map_capacity Gauge map_name
Maximum capacity of eBPF

map

upf_ebpf_map_used Gauge map_name
Current number of entries

in eBPF map

Common map_name values:

pdr_map  - Packet Detection Rule map

far_map  - Forwarding Action Rule map

qer_map  - QoS Enforcement Rule map

session_map  - Session lookup map

teid_map  - TEID to session mapping

ue_ip_map  - UE IP address to session mapping

Using Prometheus Metrics

Accessing Metrics

Metrics are exposed on the /metrics  endpoint at the address specified by

metrics_address  in the configuration file (default :9090 ):

# View raw metrics

curl http://localhost:9090/metrics

# Example output

upf_pfcp_sessions 42

upf_pfcp_associations 2

upf_urr_total_volume_bytes{peer_address="10.100.50.241"} 

1048576000



Prometheus Configuration

Add the OmniUPF target to your prometheus.yml :

Grafana Dashboards

Import metrics into Grafana for visualization:

Session counts and trends

Traffic volume per PFCP peer

Packet processing rates

Buffer utilization

eBPF map capacity monitoring

Related Documentation

Monitoring Guide - Statistics monitoring, capacity planning, and alerting

Configuration Guide - Configure metrics_address  and other UPF options

Web UI Guide - View metrics in the Statistics page

Architecture Guide - eBPF datapath and performance optimization

Rules Management Guide - Understanding PDR, FAR, QER, URR metrics

Troubleshooting Guide - Using metrics for diagnostics

scrape_configs:

  - job_name: 'omniupf'

    static_configs:

      - targets: ['localhost:9090']



Monitoring Guide

Table of Contents

1. Overview

2. Statistics Monitoring

3. Capacity Monitoring

4. Performance Metrics

5. Alerting and Thresholds

6. Capacity Planning

7. Troubleshooting Performance Issues

Overview

Effective monitoring of OmniUPF is critical for maintaining service quality,

preventing capacity exhaustion, and troubleshooting performance issues.

OmniUPF provides comprehensive real-time metrics through its Web UI and

REST API.



Monitoring Categories

Category Purpose
Update

Frequency
Key Metrics

Packet

Statistics

Track packet

processing rates

and errors

Real-time

RX/TX packets,

drops, protocol

breakdown

Interface

Statistics

Monitor N3/N6

traffic distribution
Real-time N3 RX/TX, N6 RX/TX

XDP

Statistics

Track kernel

datapath

performance

Real-time

XDP processed,

passed, dropped,

aborted

Route

Statistics

Monitor packet

routing decisions
Real-time

FIB lookups, cache

hits/misses

eBPF Map

Capacity

Prevent resource

exhaustion
Every 10s

Map usage

percentages, used

vs. capacity

Buffer

Statistics

Track packet

buffering during

mobility

Every 5s

Buffered packets,

buffer age, FAR

count

Statistics Monitoring

N3/N6 Interface Statistics

N3/N6 interface statistics provide visibility into traffic distribution between the

RAN (N3) and Data Network (N6).



Metrics:

RX N3: Packets received from RAN (uplink GTP-U traffic)

TX N3: Packets transmitted to RAN (downlink GTP-U traffic)

RX N6: Packets received from Data Network (downlink native IP)

TX N6: Packets transmitted to Data Network (uplink native IP)

Total: Aggregate packet count across all interfaces

Expected Behavior:

RX N3 ≈ TX N6: Uplink packets flow from RAN to Data Network

RX N6 ≈ TX N3: Downlink packets flow from Data Network to RAN

Significant imbalance may indicate:

Asymmetric traffic (downloads >> uploads)

Packet drops or forwarding errors

Routing misconfigurations



XDP Statistics

XDP (eXpress Data Path) statistics show kernel-level packet processing

performance.

Incoming Packet

XDP Hook

eBPF Program

XDP_PASS

Send to Stack

XDP_DROP

Discard

XDP_REDIRECT

Forward Direct

XDP_ABORTED

Processing Error

Metrics:

Aborted: XDP program encountered an error (should always be 0)



Drop: Packets intentionally dropped by XDP program

Pass: Packets passed to network stack for further processing

Redirect: Packets directly redirected to output interface

TX: Packets transmitted via XDP

Interpretation:

Aborted > 0: Critical issue with eBPF program or kernel compatibility

Drop > 0: Policy-based drops or invalid packets

Pass high: Most packets processed in network stack (normal)

Redirect high: Packets forwarded directly (optimal performance)

Packet Statistics

Detailed packet protocol breakdown and processing counters.

Protocol Counters:

RX ARP: Address Resolution Protocol packets

RX GTP ECHO: GTP-U Echo Request/Response (keepalive)

RX GTP OTHER: Other GTP control messages

RX GTP PDU: GTP-U encapsulated user data (main traffic)

RX GTP UNEXP: Unexpected GTP packet types

RX ICMP: Internet Control Message Protocol (ping, errors)

RX ICMP6: ICMPv6 packets

RX IP4: IPv4 packets

RX IP6: IPv6 packets

RX OTHER: Other protocols

RX TCP: Transmission Control Protocol packets

RX UDP: User Datagram Protocol packets

Use Cases:

Monitor GTP-U PDU count: Primary user traffic indicator

Check ICMP for connectivity: Network reachability testing



Track TCP vs UDP ratio: Application traffic patterns

Detect unexpected protocols: Security or misconfiguration issues

Route Statistics

FIB (Forwarding Information Base) lookup statistics for routing decisions.

IPv4 FIB Lookup:

Cache: Cached route lookups (fast path)

OK: Successful route lookups

IPv6 FIB Lookup:

Cache: Cached IPv6 route lookups

OK: Successful IPv6 route lookups

Performance Indicators:

High Cache Hit Rate: Indicates good routing cache performance

High OK Count: Confirms routing tables are correctly configured

Low or Zero Lookups: May indicate traffic not flowing or routing bypass

Capacity Monitoring

eBPF Map Capacity

eBPF map capacity monitoring prevents session establishment failures due to

resource exhaustion.



Critical eBPF Maps

far_map (Forwarding Action Rules):

Capacity: 131,070 entries

Key Size: 4 B (FAR ID)

Value Size: 16 B (forwarding parameters)

Memory Usage: ~2.6 MB

Criticality: High - Used for all packet forwarding decisions

pdr_map_downlin (Downlink PDRs - IPv4):

Capacity: 131,070 entries

Key Size: 4 B (UE IPv4 address)

Value Size: 208 B (PDR info)

Memory Usage: ~27 MB

Criticality: Critical - Session establishment fails if full

pdr_map_downlin_ip6 (Downlink PDRs - IPv6):

Capacity: 131,070 entries

Key Size: 16 B (UE IPv6 address)

Value Size: 208 B (PDR info)

Memory Usage: ~29 MB

Criticality: Critical - IPv6 session establishment fails if full



pdr_map_teid_ip (Uplink PDRs):

Capacity: 131,070 entries

Key Size: 4 B (TEID)

Value Size: 208 B (PDR info)

Memory Usage: ~27 MB

Criticality: Critical - Uplink traffic fails if full

qer_map (QoS Enforcement Rules):

Capacity: 65,535 entries

Key Size: 4 B (QER ID)

Value Size: 32 B (QoS parameters)

Memory Usage: ~2.3 MB

Criticality: Medium - QoS enforcement only

urr_map (Usage Reporting Rules):

Capacity: 131,070 entries

Key Size: 4 B (URR ID)

Value Size: 16 B (volume counters)

Memory Usage: ~2.6 MB

Criticality: Low - Affects charging only



Capacity Thresholds

Threshold Action Required

0-50% (Green) Normal operation - No action required

50-70%

(Yellow)
Caution - Monitor growth trends, plan capacity increase

70-90%

(Amber)
Warning - Schedule capacity increase within 1 week

90-100% (Red)
Critical - Immediate action required, new sessions will

fail



Capacity Increase Procedure

Before increasing capacity:

1. Review current usage trends

2. Estimate future growth rate

3. Calculate required capacity

Steps to increase map capacity:

1. Stop OmniUPF service

2. Update UPF configuration file with new map sizes

3. Restart OmniUPF service

4. Verify new capacity in Capacity view

5. Monitor for successful session establishment

Note: Changing eBPF map capacity requires UPF restart and clears all existing

sessions.

Performance Metrics

For detailed information about all Prometheus metrics exposed by OmniUPF,

see the Metrics Reference.

Packet Processing Rate

Calculation:

Example:

Initial RX packets: 7,000

After 10 seconds: 17,000

Packet Rate = (17,000 - 7,000) / 10 = 1,000 pps

Packet Rate (pps) = (Packet Count Delta) / (Time Delta in seconds)



Performance Targets:

Small UPF: 10,000 - 100,000 pps

Medium UPF: 100,000 - 1,000,000 pps

Large UPF: 1,000,000 - 10,000,000 pps

Bottleneck Indicators:

XDP aborted count increasing

High CPU utilization

Packet drops increasing

Latency increasing

Throughput Calculation

Calculation:

Example:

Initial RX bytes: 500 MB

After 60 seconds: 800 MB

Throughput = (300 MB × 8) / (60 × 1,000,000) = 40 Mbps

Capacity Planning:

Monitor peak throughput times (e.g., evening hours)

Compare to link capacity (N3/N6 interface speeds)

Plan for 2x peak throughput for headroom

Drop Rate

Calculation:

Throughput (Mbps) = (Byte Count Delta × 8) / (Time Delta in 

seconds × 1,000,000)



Acceptable Thresholds:

< 0.1%: Excellent (normal packet loss due to errors)

0.1% - 1%: Good (minor issues or rate limiting)

1% - 5%: Poor (investigate QoS or capacity issues)

> 5%: Critical (major forwarding or capacity problem)

Common Drop Causes:

QER rate limiting (MBR exceeded)

eBPF map lookup failures

Invalid TEIDs or UE IPs

Routing errors

Alerting and Thresholds

Recommended Alerts

Critical Alerts (Immediate response required):

eBPF map capacity > 90%

XDP aborted count > 0

Drop rate > 5%

UPF health check failed

Warning Alerts (Response within 1 hour):

eBPF map capacity > 70%

Drop rate > 1%

Packet rate approaching link capacity

Buffer TTL exceeded (packets older than 30s)

Drop Rate (%) = (Dropped Packets / Total RX Packets) × 100



Informational Alerts (Monitor trends):

eBPF map capacity > 50%

Buffered packet count increasing

New PFCP associations established/released

URR volume thresholds exceeded

Alert Configuration

Alerts can be configured via:

1. Prometheus Metrics: Export metrics for external monitoring (see Metrics

Reference for complete list)

2. Log Monitoring: Parse OmniUPF logs for error patterns

3. REST API Polling: Periodically query /map_info , /packet_stats

endpoints

4. Web UI Monitoring: Manual monitoring via Statistics and Capacity pages

Capacity Planning

Session Capacity Estimation

Calculate maximum sessions:

Example:

PDR Map Capacity: 131,070

FAR Map Capacity: 131,070

Max Sessions = min(

  PDR Map Capacity / 2,  # Downlink + Uplink PDRs per session

  FAR Map Capacity / 2,  # Downlink + Uplink FARs per session

  QER Map Capacity       # Optional, one QER per session

)



QER Map Capacity: 65,535

Max Sessions = min(131,070 / 2, 131,070 / 2, 65,535) = 65,535 sessions

Memory Capacity

Calculate total eBPF map memory:

Example Configuration:

PDR maps: 3 × 131,070 × 212 B = 83.3 MB

FAR map: 131,070 × 20 B = 2.6 MB

QER map: 65,535 × 36 B = 2.3 MB

URR map: 131,070 × 20 B = 2.6 MB

Total: ~91 MB of kernel memory

Kernel Memory Considerations:

Ensure sufficient locked memory limit (ulimit -l )

Reserve 2x estimated usage for safety margin

Monitor kernel memory availability

Traffic Capacity

Calculate required throughput capacity:

1. Estimate average session throughput:

Video streaming: ~5 Mbps

Web browsing: ~1 Mbps

VoIP: ~0.1 Mbps

2. Calculate aggregate throughput:

Memory = Σ (Map Capacity × (Key Size + Value Size))



3. Add headroom:

Example:

10,000 concurrent sessions

Average 2 Mbps per session

Total: 20 Gbps

Required capacity: 40 Gbps (N3 + N6 interfaces)

Growth Planning

Trend Analysis:

1. Record daily peak session count

2. Calculate weekly growth rate

3. Extrapolate to capacity limit

Growth Rate Formula:

Example:

Current sessions: 30,000

Capacity: 65,535 sessions

Weekly growth: 2,000 sessions

Weeks to capacity: (65,535 - 30,000) / 2,000 = 17.8 weeks

Action: Plan capacity upgrade in 12 weeks (leaving 5 weeks buffer).

Total Throughput = Sessions × Average Session Throughput

Required Capacity = Total Throughput × 2  # 100% headroom

Weeks to Capacity = (Capacity - Current Usage) / (Weekly Growth)



Troubleshooting Performance

Issues

High Packet Drop Rate

Symptoms: Drop rate > 1%, user complaints of poor connectivity

Diagnosis:

1. Check Statistics → Packet Statistics

2. Identify if drops are protocol-specific

3. Review XDP Statistics for XDP drops vs. aborts

Common Causes:

QER Rate Limiting: Check QER MBR values vs. actual traffic

Invalid TEIDs: Verify uplink PDR TEID matches gNB assignment

Unknown UE IPs: Verify downlink PDR exists for UE IP

Buffer Overflow: Check buffer statistics

Resolution:

Increase QER MBR if rate limiting

Verify SMF has created correct PDRs

Clear buffers if overflow detected

XDP Processing Errors

Symptoms: XDP aborted > 0

Diagnosis:

1. Navigate to Statistics → XDP Statistics

2. Check aborted counter

3. Review OmniUPF logs for eBPF errors



Common Causes:

eBPF program verification failure

Kernel version incompatibility

eBPF map access errors

Memory corruption

Resolution:

Restart OmniUPF service

Check kernel version meets minimum requirements (Linux 5.4+)

Review eBPF program logs

Contact support if issue persists

Capacity Exhaustion

Symptoms: Session establishment failures, map capacity at 100%

Diagnosis:

1. Navigate to Capacity page

2. Identify which map is at 100%

3. Check if sessions are stuck (not being deleted)

Immediate Mitigation:

1. Identify stale sessions (check Sessions page)

2. Request SMF to delete old sessions

3. Clear buffers to free FAR entries

Long-term Resolution:

1. Increase eBPF map capacity

2. Schedule UPF restart with larger maps

3. Implement session cleanup policies



Performance Degradation

Symptoms: High latency, low throughput, CPU saturation

Diagnosis:

1. Check packet rate vs. historical baseline

2. Review XDP statistics for processing delays

3. Monitor CPU utilization on UPF host

4. Check N3/N6 interface utilization

Common Causes:

Traffic exceeding UPF capacity

Insufficient CPU cores for packet processing

Network interface bottleneck

eBPF map hash collisions

Resolution:

Scale UPF horizontally (add more instances)

Upgrade CPU or enable RSS (Receive Side Scaling)

Upgrade network interfaces to higher speed

Tune eBPF map hash function

Related Documentation

Metrics Reference - Complete Prometheus metrics reference

UPF Operations Guide - General UPF architecture and operations

Rules Management Guide - PDR, FAR, QER, URR configuration

Web UI Operations Guide - Control panel monitoring features

Troubleshooting Guide - Common issues and diagnostics

Architecture Guide - eBPF datapath and performance optimization



N9 Loopback: Running

SGWU and PGWU on

Same Instance

Overview

OmniUPF supports running both SGWU (Serving Gateway User Plane) and

PGWU (PDN Gateway User Plane) functions on the same instance with

zero-latency N9 loopback. This deployment mode is ideal for:

Simplified 4G EPC deployments - Single UPF instance instead of two

Cost optimization - Reduced infrastructure and operational complexity

Edge computing - Minimize latency for local breakout scenarios

Lab/testing environments - Full EPC user plane on single server

When configured with the same IP address for both N3 and N9 interfaces,

OmniUPF automatically detects traffic flowing between the SGWU and PGWU

roles and processes it entirely in eBPF without ever sending packets to the

network interface.

How It Works

Traditional Deployment (Two Instances)

Packet Flow:

1. eNodeB → SGWU: GTP packet (TEID=100) arrives on S1-U

2. SGWU: Matches uplink PDR, encapsulates in new GTP tunnel (TEID=200)



3. Packet sent over physical N9 network to PGWU instance

4. PGWU: Receives GTP (TEID=200), decapsulates, forwards to Internet

5. Total: 2 XDP passes + 1 network hop

N9 Loopback Deployment (Single Instance)

S1-U GTP

TEID=100

N9 Loopback

TEID=200

In-Memory

SGi Plain IP

eNodeB

LTE Base Station

OmniUPF Single 

Instance

SGWU + PGWU 

Combined

Internet

PDN

Packet Flow with N9 Loopback:

1. eNodeB → SGWU role: GTP packet (TEID=100) arrives on S1-U

2. SGWU role: Matches uplink PDR

3. Loopback detection: Destination IP = local IP (10.0.1.10)

4. In-place processing: Update GTP TEID to 200 (PGWU session)

5. PGWU role: Decapsulates, forwards to Internet

6. Total: 1 XDP pass, zero network hops

Performance benefit: Sub-microsecond internal forwarding vs milliseconds

for network round-trip

Packet Processing Details

Uplink Flow: eNodeB → SGWU → PGWU →

Internet



Code Path: cmd/ebpf/xdp/n3n6_entrypoint.c  lines 349-403

Key Steps:

1. Receive: GTP packet from eNodeB with TEID=100

2. PDR Match: Lookup uplink PDR for SGWU session (TEID=100)

3. FAR Action: Encapsulate in GTP with TEID=200, forward to 10.0.1.10

4. Loopback Check: is_local_ip(10.0.1.10)  returns TRUE

5. Update TEID: Change ctx->gtp->teid  from 100 to 200 (in kernel

memory)

6. Re-Process: Lookup PDR for TEID=200 (PGWU session)

7. FAR Action: Remove GTP header, forward to Internet

8. Route: Send plain IP packet to N6 interface

Downlink Flow: Internet → PGWU → SGWU →

eNodeB

eNodeB
SGWU PDR/FAR

(TEID=200)

PGWU PDR/FAR

(UE IP)
eBPF/XDPInternet

eNodeB
SGWU PDR/FAR

(TEID=200)

PGWU PDR/FAR

(UE IP)
eBPF/XDPInternet

� Loopback Detection

is_local_ip(10.0.1.10) = TRUE

Single XDP Pass

Zero Network Hops

Plain IP (8.8.8.8→UE 10.60.0.1)

Lookup downlink PDR by UE IP

FAR says: Encap GTP TEID=200, dst=10.0.1.10

Add GTP header TEID=200

Re-lookup PDR by TEID=200

FAR says: Update GTP TEID=100, forward to eNodeB

Update GTP tunnel (TEID=200 → 100)

Forward GTP(TEID=100, inner: 8.8.8.8→UE)

Code Path: cmd/ebpf/xdp/n3n6_entrypoint.c  lines 137-194 (IPv4), 265-322

(IPv6)

Key Steps:



1. Receive: Plain IP packet from Internet destined to UE (10.60.0.1)

2. PDR Match: Lookup downlink PDR by UE IP (PGWU session)

3. FAR Action: Encapsulate in GTP with TEID=200, forward to 10.0.1.10

4. Loopback Check: is_local_ip(10.0.1.10)  returns TRUE

5. Add GTP: Encapsulate packet with TEID=200

6. Re-Process: Lookup PDR for TEID=200 (SGWU session)

7. FAR Action: Update GTP tunnel to eNodeB TEID=100

8. Route: Send GTP packet to S1-U interface (eNodeB)

Configuration

Requirements

Control Plane:

SGWU-C: Must connect to OmniUPF PFCP interface (e.g.,

192.168.1.10:8805 )

PGWU-C: Must connect to same OmniUPF PFCP interface

Network:

Single IP address for both N3 and N9 interfaces

Different IP addresses for SGWU-C and PGWU-C (if running on same

host, use different ports)

OmniUPF Configuration

config.yml:



Key Configuration:

� n3_address  and n9_address  MUST be identical to enable loopback

� Single PFCP listening address for both control planes

� Sufficient max_sessions  for combined SGWU + PGWU load

Control Plane Configuration

SGWU-C Configuration

# Network interfaces

interface_name: [eth0]              # Single interface for S1-U 

and N9

xdp_attach_mode: native             # Use native for best 

performance

# PFCP Interface

pfcp_address: ":8805"               # Listen on all interfaces, 

port 8805

pfcp_node_id: "192.168.1.10"        # OmniUPF's PFCP Node ID

# User Plane Interfaces

n3_address: "10.0.1.10"             # S1-U/N3 interface IP

n9_address: "10.0.1.10"             # N9 interface IP (SAME as N3)

# APIs

api_address: ":8080"                # REST API

metrics_address: ":9090"            # Prometheus metrics (see 

Metrics Reference doc)

# Resource Pools

ueip_pool: "10.60.0.0/16"           # UE IP address pool

teid_pool: 65535                    # TEID allocation pool

# Capacity

max_sessions: 100000                # Maximum concurrent UE 

sessions



PGWU-C Configuration

Important:

Both control planes connect to same PFCP endpoint (:8805 )

OmniUPF creates separate PFCP associations for SGWU-C and PGWU-C

Sessions are isolated per control plane (tracked by Node ID)

Session Flow Example

UE Attach and PDU Session Establishment

Scenario: UE attaches to network, establishes data session

# Point to OmniUPF PFCP interface

upf_pfcp_address: "192.168.1.10:8805"

# S1-U interface (same as OmniUPF n3_address)

sgwu_s1u_address: "10.0.1.10"

# N9 interface for forwarding to PGWU (same as OmniUPF)

sgwu_n9_address: "10.0.1.10"

# Point to SAME OmniUPF PFCP interface

upf_pfcp_address: "192.168.1.10:8805"

# N9 interface (receives from SGWU)

pgwu_n9_address: "10.0.1.10"

# SGi interface for Internet connectivity

pgwu_sgi_address: "192.168.100.1"



OmniUPF

(SGWU+PGWU)
OmniPGW-COmniSGW-CMMEeNodeBUE

OmniUPF

(SGWU+PGWU)
OmniPGW-COmniSGW-CMMEeNodeBUE

Create uplink PDR (TEID=100)

Create FAR (encap, TEID=200, dst=10.0.1.10)

Create uplink PDR (TEID=200)

Create FAR (decap, forward to N6)

Create downlink PDR (UE IP 10.60.0.1)

Create FAR (encap, TEID=200, dst=10.0.1.10)

Create downlink PDR (TEID=200)

Create FAR (update tunnel, TEID=100, eNodeB)

User data flows through OmniUPF

SGWU→PGWU loopback inline

Attach Request

Initial UE Message

Create Session Request

PFCP Session Establishment (SGWU)

Session Establishment Response (F-TEID: 10.0.1.10)

Create Session Request

PFCP Session Establishment (PGWU)

Session Establishment Response (F-TEID: 10.0.1.10, UE IP)

Create Session Response (UE IP 10.60.0.1)

PFCP Session Modification (SGWU)

Create Session Response

Attach Accept (S1-U F-TEID: 10.0.1.10)

Attach Accept

PFCP Sessions Created:

SGWU Session (from OmniSGW-C):

Uplink PDR: Match TEID=100 (from eNodeB) → FAR: Encapsulate

TEID=200, dst=10.0.1.10

Downlink PDR: Match TEID=200 (from PGWU) → FAR: Update tunnel

TEID=100, forward to eNodeB

PGWU Session (from OmniPGW-C):

Uplink PDR: Match TEID=200 (from SGWU) → FAR: Decapsulate, forward

to Internet

Downlink PDR: Match UE IP=10.60.0.1 → FAR: Encapsulate TEID=200,

dst=10.0.1.10

Monitoring and Verification

Verify N9 Loopback is Active

Check XDP Logs:



Expected output:

Monitor Sessions via REST API

List PFCP Associations:

Expected output:

# View real-time eBPF debug output

sudo cat /sys/kernel/debug/tracing/trace_pipe | grep loopback

upf: [n3] session for teid:100 -> 200 remote:10.0.1.10

upf: [n9-loopback] self-forwarding detected, processing inline 

TEID:200

upf: [n9-loopback] decapsulated, routing to N6

upf: [n6] use mapping 10.60.0.1 -> teid:200

upf: [n6-loopback] downlink self-forwarding detected, processing 

inline TEID:200

upf: [n6-loopback] SGWU updating GTP tunnel to eNodeB TEID:100

upf: [n6-loopback] forwarding to eNodeB

curl http://localhost:8080/api/v1/upf_pipeline | jq



Verify two separate associations (one for SGWU-C, one for PGWU-C)

List Active Sessions:

Expected output:

Each UE has TWO sessions:

{

  "associations": [

    {

      "node_id": "sgwc.example.com",

      "address": "192.168.1.20:8805",

      "sessions": 1000

    },

    {

      "node_id": "pgwc.example.com",

      "address": "192.168.1.21:8805",

      "sessions": 1000

    }

  ],

  "total_sessions": 2000

}

curl http://localhost:8080/api/v1/sessions | jq '.sessions[] | 

{local_seid, ue_ip, uplink_teid}'

{

  "local_seid": 12345,

  "ue_ip": "10.60.0.1",

  "uplink_teid": 100

}

{

  "local_seid": 67890,

  "ue_ip": "10.60.0.1",

  "uplink_teid": 200

}



Session from SGWU-C (TEID=100, S1-U interface)

Session from PGWU-C (TEID=200, N9 interface)

Performance Metrics

Check Packet Statistics:

Key metrics:

xdp_processed : Total packets processed in eBPF

xdp_pass : Packets passed to network stack (should be zero for loopback

traffic)

xdp_redirect : Packets forwarded via XDP redirect

xdp_tx : Packets transmitted (loopback traffic uses this)

For N9 loopback traffic:

xdp_pass  should be minimal (only non-loopback traffic)

xdp_tx  or xdp_redirect  counts loopback forwarding

Troubleshooting

N9 Traffic Going to Network Instead of

Loopback

Symptom: Packets sent to network interface, high latency

Root Cause: n3_address  ≠ n9_address

Solution:

curl http://localhost:8080/api/v1/xdp_stats | jq



Verification:

Should show:

PDR Not Found After Loopback

Symptom: Logs show [n9-loopback] no PDR for destination TEID

Root Cause: PGWU session not created or TEID mismatch

Diagnosis:

1. Check PFCP Sessions:

2. Verify FAR Configuration:

# WRONG:

n3_address: "10.0.1.10"

n9_address: "10.0.1.20"   # Different IP, no loopback!

# CORRECT:

n3_address: "10.0.1.10"

n9_address: "10.0.1.10"   # Same IP, enables loopback

curl http://localhost:8080/api/v1/dataplane_config | jq

{

  "n3_ipv4_address": "10.0.1.10",

  "n9_ipv4_address": "10.0.1.10"

}

curl http://localhost:8080/api/v1/sessions | jq '.sessions[] | 

select(.uplink_teid == 200)'



Solution: Ensure PGWU-C creates session with matching TEID that SGWU-C

uses for N9 forwarding

High CPU Usage

Symptom: CPU usage higher than expected

Root Cause: eBPF program processing packets multiple times or excessive

map lookups

Diagnosis:

Solution:

Increase max_sessions  if map is full (causes lookup failures)

Verify QER rate limiting is not causing drops and retransmits

Check for excessive packet buffering

Packet Loss During Handover

Symptom: Packets dropped during eNodeB handover

Root Cause: Buffering not configured or insufficient buffer limits

Configuration:

curl http://localhost:8080/api/v1/far_map | jq '.[] | 

select(.teid == 200)'

# Check eBPF map access patterns

sudo bpftool map dump name pdr_map_teid_ip4 | wc -l

sudo bpftool map dump name far_map | wc -l



Verification:

Benefits of N9 Loopback

Performance

Metric Two Instances
Single Instance

(N9 Loopback)
Improvement

Latency 1-5 ms < 1 μs 1000x faster

Throughput
Limited by

network

Limited by

CPU/memory
2-3x higher

CPU Usage
2× XDP passes +

network stack
1× XDP pass

40-50%

reduction

Packet

Loss

Risk during

network

congestion

Zero (in-memory) Eliminated

Operational

Simplified Deployment: Single OmniUPF instance instead of two

Reduced Infrastructure: Half the servers, network ports, IP addresses

buffer_port: 22152

buffer_max_packets: 20000      # Increase for high-mobility 

networks

buffer_max_total: 100000

buffer_packet_ttl: 30          # Adjust based on handover time

curl http://localhost:8080/api/v1/upf_buffer_info | jq



Lower Complexity: Single configuration, single monitoring endpoint

Cost Savings: Reduced hardware, power, cooling, maintenance

Easier Troubleshooting: Single packet trace, single eBPF debug output

Use Cases

Ideal For:

� Edge Computing: Minimize latency for local breakout

� Small/Medium Deployments: < 100K subscribers

� Lab/Testing: Full EPC user plane on single VM

� Cost-Constrained: Limited hardware budget

Not Recommended For:

❌ Geographic Redundancy: SGWU and PGWU in different data centers

❌ Massive Scale: > 1M subscribers (consider horizontal scaling)

❌ Regulatory Requirements: Mandated separation of SGW and PGW



Comparison with Other

Deployment Modes

Single Instance (N9 Loopback) vs. Separated

Instances

Summary

N9 Loopback enables carrier-grade 4G EPC user plane on a single

OmniUPF instance by processing SGWU→PGWU traffic entirely in eBPF

without network hops. This provides:

� Sub-microsecond latency for inter-gateway forwarding

� 40-50% CPU reduction compared to separated instances

� Simplified operations - single instance, config, monitoring

� Lower cost - half the infrastructure

� Full 3GPP compliance - standard PFCP, GTP-U protocols



Configuration is automatic when n3_address == n9_address  - no special

flags or settings required. OmniUPF's eBPF datapath detects loopback

conditions and processes packets inline.

For more information:

Configuration: CONFIGURATION.md

Architecture: ARCHITECTURE.md

Metrics Reference: METRICS.md

Monitoring: MONITORING.md

Operations: OPERATIONS.md

Troubleshooting: TROUBLESHOOTING.md



PFCP Cause Codes

Reference

Overview

PFCP (Packet Forwarding Control Protocol) uses cause codes in response

messages to indicate the outcome of requests. This document describes the

cause codes implemented in OmniUPF and when they occur during PFCP

message processing.

All cause codes conform to 3GPP TS 129.244 specifications and are returned

in PFCP response messages to indicate success, failure, or specific error

conditions.

Monitoring Cause Codes

OmniUPF tracks PFCP message outcomes using Prometheus metrics. Each PFCP

response includes a cause code that's recorded in:

This enables monitoring of:

Success rates per message type and control plane node

Error patterns indicating misconfigurations or protocol issues

Association health based on rejection rates

See Metrics Reference for complete PFCP metrics documentation.

upf_pfcp_rx_errors{message_name="...", cause_code="...", 

peer_address="..."}



Cause Code Categories

Success Codes

Code Name When It Occurs

1 RequestAccepted

Request successfully processed. All

mandatory IEs present and valid. Rules

created/modified/deleted successfully.



Client Error Codes

Code Name When It Occurs

64 RequestRejected

General rejection for

unspecified errors. Used

when no specific cause code

applies.

65 SessionContextNotFound

Session Modification or

Deletion requested for

unknown SEID. The

specified session does not

exist on this UPF.

66 MandatoryIEMissing

Required Information

Element absent. Examples:

NodeID missing in

Association Setup, F-SEID

missing in Session

Establishment,

RecoveryTimeStamp

missing.

67 ConditionalIEMissing

Conditionally required IE

missing based on other IEs

present. Used when IEs

depend on each other's

presence.

69 MandatoryIEIncorrect

Required IE present but

contains invalid data.

Examples: Unparseable

NodeID format, invalid

RecoveryTimeStamp value,

malformed F-SEID.



Code Name When It Occurs

72 NoEstablishedPFCPAssociation

Session operation

attempted without active

association. Must establish

PFCP association before

creating sessions.

73 RuleCreationModificationFailure

Error applying PDR, FAR,

QER, or URR rules to eBPF

datapath. Possible causes:

eBPF map capacity

exhausted, invalid rule

parameters, resource

allocation failure.

Server/Resource Error Codes

Code Name When It Occurs

74 PFCPEntityInCongestion

UPF experiencing high load or

resource exhaustion. Temporarily

unable to process requests.

75 NoResourcesAvailable

Insufficient resources to fulfill

request. Examples: eBPF map

capacity exhausted, memory

allocation failure, TEID pool depleted.

77 SystemFailure

Critical internal error preventing

request processing. Examples: eBPF

program failure, kernel interface

error, database corruption.



Unsupported Feature Codes

Code Name When It Occurs

68 InvalidLength

IE length field doesn't match

actual data length. Currently

unused in OmniUPF.

70 InvalidForwardingPolicy

Forwarding policy not

supported by UPF. Currently

unused in OmniUPF.

71 InvalidFTEIDAllocationOption

F-TEID allocation option not

supported. Currently unused in

OmniUPF.

76 ServiceNotSupported

Requested service or feature

not implemented. Currently

unused in OmniUPF.

78 RedirectionRequested

UPF requests redirection to

another UPF instance. Currently

unused in OmniUPF.

Common Scenarios and Causes

Association Setup Failures

Scenario: Missing NodeID

Resolution: Ensure SMF includes NodeID IE in all Association Setup Requests.

SMF → UPF: Association Setup Request (no NodeID)

UPF → SMF: Association Setup Response (Cause: MandatoryIEMissing)



Scenario: Invalid NodeID Format

Resolution: NodeID must be valid FQDN or IPv4/IPv6 address.

Scenario: Missing Recovery Timestamp

Resolution: Include RecoveryTimeStamp in Association Setup Request.

Session Establishment Failures

Scenario: No Association Established

Resolution: Establish PFCP association before creating sessions.

Scenario: Rule Creation Failure

Resolution:

Check eBPF map capacity (see Capacity Monitoring)

SMF → UPF: Association Setup Request (NodeID="invalid")

UPF → SMF: Association Setup Response (Cause: 

MandatoryIEIncorrect)

SMF → UPF: Association Setup Request (no RecoveryTimeStamp)

UPF → SMF: Association Setup Response (Cause: MandatoryIEMissing)

SMF → UPF: Session Establishment Request

UPF → SMF: Session Establishment Response (Cause: 

NoEstablishedPFCPAssociation)

SMF → UPF: Session Establishment Request

UPF processes FARs, QERs, URRs successfully

UPF fails to create PDR (eBPF map full)

UPF → SMF: Session Establishment Response (Cause: 

RuleCreationModificationFailure)



Increase map sizes in UPF configuration

Reduce active session count

Scenario: Missing F-SEID

Resolution: Include CP F-SEID in Session Establishment Request.

Session Modification Failures

Scenario: Unknown SEID

Resolution:

Verify SEID matches value from Session Establishment Response

Check if session was already deleted

Ensure using correct UPF instance (N9 loopback scenarios)

Session Deletion Failures

Scenario: Unknown SEID

Resolution: SEID may have already been deleted or never existed.

SMF → UPF: Session Establishment Request (no CP F-SEID)

UPF → SMF: Session Establishment Response (Cause: 

MandatoryIEMissing)

SMF → UPF: Session Modification Request (SEID=12345)

UPF has no session with SEID 12345

UPF → SMF: Session Modification Response (Cause: 

SessionContextNotFound)

SMF → UPF: Session Deletion Request (SEID=67890)

UPF has no session with SEID 67890

UPF → SMF: Session Deletion Response (Cause: 

SessionContextNotFound)



Troubleshooting with Cause Codes

Using Prometheus Metrics

Query Prometheus to identify error patterns:

Using Web UI

Navigate to Sessions page to view:

Active session count per control plane node

Session establishment success/failure rates

Recent session errors

Navigate to Capacity page to diagnose:

eBPF map utilization (RuleCreationModificationFailure root cause)

Resource exhaustion indicators

See Web UI Guide for detailed monitoring instructions.

Common Debugging Steps

High MandatoryIEMissing Rate:

# Error rate by cause code

rate(upf_pfcp_rx_errors{cause_code!="RequestAccepted"}[5m])

# Top rejection causes

topk(5, sum by (cause_code) (upf_pfcp_rx_errors))

# Errors by SMF peer

sum by (peer_address, cause_code) 

(upf_pfcp_rx_errors{cause_code!="RequestAccepted"})

# Session establishment failures

upf_pfcp_rx_errors{message_name="SessionEstablishmentRequest", 

cause_code!="RequestAccepted"}



1. Check SMF configuration for required IEs

2. Verify PFCP library version compatibility

3. Review SMF logs for IE construction errors

Frequent RuleCreationModificationFailure:

1. Check eBPF map capacity: GET /api/v1/map_info

2. Monitor map usage: upf_ebpf_map_used / upf_ebpf_map_capacity

3. Increase map sizes in configuration if > 70% utilized

4. See Capacity Planning

NoEstablishedPFCPAssociation Errors:

1. Verify association exists: GET /api/v1/pfcp_associations

2. Check heartbeat timeout configuration

3. Review association setup logs

4. Ensure SMF and UPF can reach each other

SessionContextNotFound on Modification:

1. Verify SEID from session establishment response

2. Check if session was deleted

3. For N9 loopback: Ensure using correct UPF endpoint

4. Query active sessions: GET /api/v1/pfcp_sessions



Cause Code Impact on Operations

Session Lifecycle





Metrics and Alerting

Recommended Alerts:

3GPP Standards Compliance

OmniUPF implements cause codes according to:

3GPP TS 129.244 v16.4.0 - PFCP specification

Section 8.2.1 - Cause IE definition

Section 8.19 - Cause values table

# Critical: High rejection rate

- alert: PfcpHighRejectionRate

  expr: |

    rate(upf_pfcp_rx_errors{cause_code!="RequestAccepted"}[5m]) > 0.1

  annotations:

    summary: "High PFCP rejection rate: {{ $value }}/s"

# Warning: Capacity issues

- alert: PfcpRuleCreationFailures

  expr: |

    

rate(upf_pfcp_rx_errors{cause_code="RuleCreationModificationFailure"}

[5m]) > 0

  annotations:

    summary: "PFCP rule creation failures detected"

# Warning: Association issues

- alert: PfcpNoAssociation

  expr: |

    

rate(upf_pfcp_rx_errors{cause_code="NoEstablishedPFCPAssociation"}

[5m]) > 0

  annotations:

    summary: "PFCP sessions attempted without association"



Related Documentation

PFCP Protocol Integration - PFCP architecture and message handling

Metrics Reference - upf_pfcp_rx_errors metric documentation

Monitoring Guide - Capacity monitoring and alerting

Troubleshooting Guide - PFCP association and session issues

Web UI Guide - Sessions and associations monitoring



UE Route Management

Related Documentation:

API Documentation - Complete API reference including route

management endpoints

Operations Guide - Web UI operations and monitoring

Overview

The UPF (User Plane Function) integrates with FRR (Free Range Routing) to

dynamically manage User Equipment (UE) IP routes. This integration ensures

that as UE sessions are established or terminated, the routing infrastructure

automatically adapts to reflect the current network topology.

What is FRR?

FRR (Free Range Routing) is a robust, open-source routing protocol suite for

Linux and Unix platforms. It implements various routing protocols including

BGP, OSPF, RIP, and others. In our deployment, FRR acts as the routing daemon

that maintains the kernel routing table and can redistribute routes to other

network elements.

Architecture

https://docs.frrouting.org/


How Route Synchronization Works

Route Lifecycle

FRR DaemonRoute Sync EngineUser Plane Function5G Core SMF

FRR DaemonRoute Sync EngineUser Plane Function5G Core SMF

UE Session Active

PFCP Session Establishment

Create PDR/FAR Rules

Assign UE IP Address

Track UE Route

Add Route to Table

Update Kernel Routes

PFCP Session Termination

Remove PDR/FAR Rules

Remove UE Route

Delete Route from Table

Update Kernel Routes

Automatic Synchronization

The UPF maintains an internal registry of all active UE IP addresses. When

enabled, the route synchronization system:

1. Monitors UE Sessions: Tracks all active PFCP sessions and their

associated UE IP addresses

2. Maintains Route List: Keeps an up-to-date list of routes that need to be

in the routing table



3. Syncs to FRR: Automatically pushes route updates to the FRR daemon via

its API

4. Handles Failures: Tracks sync status (synced/failed) for each route and

retries as needed

FRR Setup

Configuration

FRR is deployed and configured using Ansible templates to establish the base

routing parameters. You define the FRR configuration once as a Jinja2

template in your Ansible playbook, and Ansible automatically propagates it to

all your UPF instances during deployment.

A typical FRR Jinja2 configuration template includes:



Deployment Model:

1. Define Once: Create the FRR Jinja2 template in your Ansible role (e.g.,

roles/frr/templates/frr.conf.j2 )

2. Configure Parameters: Set variables in your Ansible inventory for each

UPF host

3. Deploy Everywhere: Run the Ansible playbook to deploy FRR

configuration to all UPF nodes

4. Automatic Customization: Ansible uses host-specific variables (IP

addresses, router IDs, etc.) to customize each UPF's FRR configuration

Customizable Parameters in the Jinja2 template:

OSPF parameters: Router ID, area configuration, authentication methods,

network advertisements

frr version 7.2.1

frr defaults traditional

hostname pgw02

log syslog informational

service integrated-vtysh-config

!

ip route {{ hostvars[inventory_hostname]['ansible_default_ipv4']

['gateway'] }}/32 {{ ansible_default_ipv4['interface'] }}

!

interface {{ ansible_default_ipv4['interface'] }}

 ip address ospf router-id {{hostvars[inventory_hostname]

['ansible_host']}}

 ip ospf authentication null

!

router ospf

 ospf router-id {{hostvars[inventory_hostname]['ansible_host']}}

 redistribute kernel

 network {{ hostvars[inventory_hostname]['ansible_default_ipv4']

['network'] }}/{{ mask_cidr }} area 0

 area 0 authentication message-digest

!

line vty

!

end



BGP configuration: ASN, neighbor relationships, route policies,

communities

Route redistribution: Which kernel routes to redistribute (e.g.,

redistribute kernel )

Route filtering: Route maps, prefix lists, access lists

Interface settings: OSPF/BGP interface parameters

UPF Integration: Once the base FRR configuration is deployed to each UPF

instance, the UPF dynamically adds UE IP addresses as /32 host routes to the

kernel routing table based on active PFCP sessions. These routes are then:

1. Installed in the kernel routing table by the UPF route sync engine

2. Picked up by FRR via the redistribute kernel  directive

3. Advertised to routing protocols (OSPF, BGP) according to your FRR

configuration

4. Propagated to the network so that UE traffic can be routed to this UPF

instance

Key Points:

Set Once, Deploy Everywhere: Define the FRR Jinja2 template once in

Ansible, and it's automatically deployed to all UPF instances

Ansible handles static config: The Jinja2 template sets up all routing

protocol parameters (OSPF areas, BGP neighbors, authentication, route

policies, etc.)

UPF handles dynamic routes: Each UPF instance dynamically manages

only the UE IP /32 routes based on its active PFCP sessions

Automatic route advertisement: FRR on each UPF automatically

redistributes the local UE routes according to your configured policies

Centralized management: Update the Ansible template and re-run the

playbook to change routing configuration across all UPFs simultaneously



Route Advertisement

Monitoring and Management

Web UI Integration

The UPF Control Panel provides a Routes page that displays:

Route Status: Whether route synchronization is enabled or disabled

Total Routes: Number of UE IP addresses being tracked

Sync Statistics: Count of successfully synced routes and any failures

Active Routes: Real-time list of all UE IP addresses currently in the routing

table



OSPF Neighbors: Live status of OSPF adjacencies with neighbor details

BGP Peers: BGP session status and prefix statistics (when configured)

OSPF Redistributed Routes: Complete view of external LSAs showing

how UE routes are advertised

The Routes page provides comprehensive visibility into UE route

synchronization, routing protocol neighbors, and redistributed route

advertisements.

Manual Sync Operation

Administrators can trigger a manual route synchronization through the web UI

using the Sync Routes button. This operation:

1. Re-reads the current list of active UE sessions from the UPF

2. Compares with FRR's routing table

3. Adds any missing routes

4. Removes any stale routes



5. Returns updated sync statistics



Route Flow



Yes No

UE Connects

PFCP Session Created

PDR/FAR Rules Installed

UE IP Tracked in Route 

List

Route Sync Enabled?

Push Route to FRR Route Tracked Only

Route Active in Network

UE Traffic Flows



Yes

No

Session Ends?

Remove Route from FRR

Route Removed

Benefits

Zero Touch Provisioning: Routes are automatically managed without

manual intervention

Dynamic Adaptation: Network routing adapts in real-time to UE mobility

and session changes

Scalability: Supports thousands of concurrent UE routes

Resilience: Failed sync operations are tracked and can be retried

Visibility: Full visibility into route status through the web UI

Technical Details

API Endpoints

The UPF exposes the following route management endpoints:



GET /api/v1/routes  - List all tracked UE routes without syncing

POST /api/v1/routes/sync  - Sync routes to FRR and return updated list

GET /api/v1/route_stats  - Get detailed routing statistics

GET /api/v1/routing/sessions  - Get routing protocol sessions (OSPF

neighbors, BGP peers)

GET /api/v1/ospf/database/external  - Get OSPF AS-External LSA

database (redistributed routes)

See Also: API Documentation - Route Management for complete endpoint

details and examples

Route Format

Routes are stored and managed as simple IP addresses (e.g., 100.64.18.5 ).

The routing daemon handles the full route entry details including:

Destination prefix/mask

Gateway/next-hop

Interface binding

Metric and administrative distance

FRR Verification

OSPF External LSA Database

You can verify that UE routes are being properly redistributed into OSPF by

examining the FRR OSPF Link State Database. External LSAs (Type 5) show

routes that have been injected into OSPF from external sources.



FRR OSPF database showing external LSAs including UE route 100.64.18.5/32

being advertised as an E2 (External Type 2) route.

In the example above, you can see:

Network LSA (10.98.0.20): The UPF's own network advertisement

Router LSA (192.168.1.1): OSPF router advertisement

External LSAs: Including the UE route 100.64.18.5  redistributed into

OSPF with metric type E2 (External Type 2)

This verification confirms that:

1. The UPF is successfully tracking the UE IP address

2. The route sync engine has pushed the route to FRR

3. FRR has redistributed the route into OSPF

4. OSPF neighbors are receiving the route advertisements



Rules Management

Guide

Table of Contents

1. Overview

2. Packet Detection Rules (PDR)

3. Forwarding Action Rules (FAR)

4. QoS Enforcement Rules (QER)

5. Usage Reporting Rules (URR)

6. Rule Relationships

7. Common Operations

8. Troubleshooting

Overview

OmniUPF uses a set of interconnected rules to classify, forward, shape, and

track user plane traffic. These rules are installed by the SMF via PFCP and

stored in eBPF maps for high-performance packet processing. Understanding

these rules and their relationships is critical for operating and troubleshooting

the UPF.



Rule Types

Rule Type Purpose
Key

Field
Installed By

PDR (Packet

Detection

Rule)

Classify

packets into

flows

TEID

or UE

IP

SMF via PFCP Session

Establishment/Modification

FAR

(Forwarding

Action Rule)

Determine

forwarding

action

FAR ID
SMF via PFCP Session

Establishment/Modification

QER (QoS

Enforcement

Rule)

Apply

bandwidth

limits and

marking

QER

ID

SMF via PFCP Session

Establishment/Modification

URR (Usage

Reporting

Rule)

Track data

volumes for

charging

URR

ID

SMF via PFCP Session

Establishment/Modification

Rule Processing Flow

Packet Detection Rules (PDR)

Purpose

PDRs classify incoming packets into traffic flows. They are the entry point for all

packet processing in the UPF.



PDR Structure

Downlink PDR

Key: UE IP Address

IPv4 or IPv6

FAR ID

QER ID

URR IDs

SDF Mode

SDF Filters

Uplink PDR

Key: TEID

32-bit integer

FAR ID

QER ID

URR IDs

Outer Header Removal

Uplink PDRs

Uplink PDRs match packets arriving on the N3 interface from the RAN.



Key Field: TEID (Tunnel Endpoint Identifier)

32-bit unsigned integer

Assigned by SMF and signaled to gNB

Unique per UE traffic flow

Value Fields:

FAR ID: Reference to forwarding action rule

QER ID: Reference to QoS enforcement rule (optional)

URR IDs: List of usage reporting rules (optional)

Outer Header Removal: Flag to remove GTP-U encapsulation

Lookup Process:

1. Extract TEID from GTP-U header

2. Hash lookup in uplink_pdr_map  eBPF map

3. If match found, retrieve FAR ID, QER ID, and URR IDs

4. If no match, drop packet

Example:

TEID: 5678

FAR ID: 2

QER ID: 1

Outer Header Removal: False

SDF Mode: No SDF



Downlink PDRs

Downlink PDRs match packets arriving on the N6 interface from the data

network.

Key Field: UE IP Address

IPv4 address (32-bit) or IPv6 address (128-bit)

Assigned by SMF during PDU session establishment

Unique per UE

Value Fields:

FAR ID: Reference to forwarding action rule

QER ID: Reference to QoS enforcement rule (optional)

URR IDs: List of usage reporting rules (optional)

SDF Mode: Service Data Flow filter mode

No SDF : No filtering, all traffic matches



SDF Only : Only SDF-matched traffic is forwarded

SDF + Default : SDF-matched traffic uses specific rules, other traffic

uses default FAR

SDF Filters: Application-specific filters (ports, protocols, IP ranges)

Lookup Process:

1. Extract destination IP from packet header

2. Hash lookup in downlink_pdr_map  (IPv4) or downlink_pdr_map_ip6  (IPv6)

3. If match found, check SDF filters (if configured)

4. Retrieve FAR ID, QER ID, and URR IDs

5. If no match, drop packet

Example:

UE IP: 10.45.0.1

FAR ID: 1

QER ID: 1

Outer Header Removal: False

SDF Mode: No SDF



SDF Filters (Service Data Flow)

SDF filters provide application-specific traffic classification within a PDR.

Use Cases:

Differentiate YouTube traffic from web browsing

Apply different QoS to VoIP vs. best-effort data

Route specific applications through different network paths

Filter Criteria:

Protocol: TCP, UDP, ICMP

Port Range: Destination ports (e.g., 443 for HTTPS, 5060 for SIP)

IP Address Range: Specific destination networks

Flow Description: 3GPP-defined flow templates

Example SDF Configuration:



Forwarding Action Rules (FAR)

Purpose

FARs determine what to do with packets that match a PDR. They define

forwarding actions, GTP-U encapsulation parameters, and destination

endpoints.

PDR ID: 10

UE IP: 10.45.0.1

SDF Mode: SDF Only

SDF Filters:

  - Protocol: UDP, Ports: 5060-5061 → FAR ID 5 (VoIP FAR)

  - Protocol: TCP, Port: 443 → FAR ID 1 (Default FAR)



FAR Structure

Action Flags

FAR actions are bitwise flags that can be combined:



Flag Bit Value Description

FORWARD 1 2 Forward packet to destination

BUFFER 2 4 Store packet in buffer

DROP 0 1 Discard packet

NOTIFY 3 8 Send notification to control plane

DUPLICATE 4 16 Duplicate packet to multiple destinations

Common Action Combinations:

Action: 2 (FORWARD)  - Normal forwarding (most common)

Action: 6 (FORWARD + BUFFER)  - Forward and buffer during handover

Action: 4 (BUFFER)  - Buffer only (during path switch)

Action: 1 (DROP)  - Drop packet (rare, usually for policy enforcement)

Buffering Control

The BUFFER flag (bit 2) controls packet buffering during mobility events.

Buffering is a critical UPF feature that prevents packet loss during UE state

transitions.

When Buffering is Used

Idle-to-Connected Transition: When downlink packets arrive for a UE in IDLE

state (not connected to gNB), the UPF:

1. Buffers the packets

2. Sends a Downlink Data Notification (DLDR) to the SMF

3. SMF pages the UE to wake up and connect

4. Once connected, SMF updates the FAR with FORWARD action

5. UPF flushes buffered packets to the UE



Handover (Connected-to-Connected): During gNB-to-gNB handover, the

UPF temporarily buffers packets to prevent loss:

1. Old gNB connection is dropped

2. SMF sets FAR action to BUFFER

3. Packets queue during path switch

4. UE connects to new gNB

5. SMF updates FAR with new TEID and FORWARD action

6. UPF flushes packets to new gNB

Data NetworkSMFOmniUPFgNBUE (IDLE)

Data NetworkSMFOmniUPFgNBUE (IDLE)

UE is in IDLE state

UE transitions to CONNECTED

Downlink packet arrives

No active FAR with FORWARD

FAR has BUFF + NOCP flags

Buffer packet

PFCP Session Report Request (DLDR)

Page UE

Paging message

RRC Connection Setup

PFCP Session Modification

FAR Action = FORWARD, Update TEID

Flush buffered packets

Replay packets with new TEID

Deliver packets

Buffer Capacity and Limits

Global Buffer Limits:

Max Total Packets: 100,000 (configurable)

Max Total Bytes: Based on available memory

TTL (Time-to-Live): 60 seconds (configurable)

Packets exceeding TTL: Automatically dropped

Per-FAR Limits:



Max Packets per FAR: 10,000 (configurable)

Purpose: Prevent a single FAR from exhausting buffer capacity

Buffer Overflow Behavior:

When global or per-FAR limit reached, new packets are dropped

Metrics track drops with reason="global_limit"  or reason="far_limit"

Oldest packets are NOT automatically evicted (explicit drop only on TTL

expiration)

Downlink Data Notification (DLDR)

When the UPF buffers a packet for an IDLE UE, it sends a PFCP Session Report

Request to the SMF:

DLDR Contents:

Report Type: Downlink Data Report (DLDR)

FAR ID: The FAR that triggered buffering

Downlink Data Service Information: Optional QFI, Paging Policy

Indicator

SMF Actions on DLDR:

1. Page the UE via AMF → gNB

2. Wait for UE to establish RRC connection

3. Send PFCP Session Modification Request to update FAR

4. FAR action changes from BUFF+NOCP  to FORW

5. UPF flushes buffered packets

Metrics for DLDR:

upf_dldr_sent_total : Total DLDRs sent

upf_dldr_send_errors : Failed DLDRs

upf_buffer_notify_to_flush_duration_seconds : Latency from DLDR to

flush

See Metrics Reference for complete list.



Buffering Operations

Enable Buffering (Set BUFF flag):

FAR Action |= 0x04  (set bit 2)

Example: Action: 2 (FORW)  → Action: 6 (FORW+BUFF)

Used during handover preparation

Buffer-Only Mode (BUFF without FORW):

FAR Action = 0x04  (BUFF only)

Packets are buffered but NOT forwarded

Used for IDLE UE state (pending paging)

Disable Buffering (Clear BUFF flag):

FAR Action &= ~0x04  (clear bit 2)

Example: Action: 6 (FORW+BUFF)  → Action: 2 (FORW)

Buffered packets remain until flushed or cleared

Flush Buffer:

Replay all buffered packets using current FAR rules

Packets are forwarded with updated TEID/destination

Buffer is emptied after successful flush

FAR must have FORW action set

Clear Buffer:

Discard all buffered packets without forwarding

Use when handover fails or session is deleted

Metrics track with reason="cleared"

Monitoring Buffered Packets

Buffers Page (Web UI): Navigate to Buffers to view:

Total buffered packets

Total buffered bytes



Number of FARs with buffered packets

Per-FAR packet counts

Oldest packet timestamp

Enable/Disable buffering per FAR

Flush or clear operations

Key Indicators:

Packets > 10 seconds old: Potential paging delay

Packets > 30 seconds old: Likely paging failure, clear buffer

High packet count: Check for stuck sessions or paging failures

Prometheus Metrics:

upf_buffer_packets_current : Current buffered packets

upf_buffer_bytes_current : Current buffered bytes

upf_buffer_fars_active : FARs with buffered packets

upf_buffer_packets_dropped{reason} : Dropped packet counts

See Metrics Reference for complete buffer metrics.

Common Buffering Scenarios

Scenario 1: IDLE UE Downlink Data

Initial State:

- UE in IDLE mode (no gNB connection)

- FAR Action: 0x04 (BUFF only)

Data Arrival:

1. DN sends downlink packet

2. UPF matches PDR, applies FAR

3. FAR has BUFF flag → packet buffered

4. UPF sends DLDR to SMF

5. SMF pages UE

6. UE connects to gNB

7. SMF modifies FAR: Action = 0x02 (FORW)

8. UPF flushes buffered packets with new TEID



Scenario 2: Handover Preparation

Scenario 3: Path Switch

Initial State:

- UE connected to gNB-1 (TEID 1234)

- FAR Action: 0x02 (FORW)

Handover Process:

1. SMF modifies FAR: Action = 0x06 (FORW+BUFF)

2. Packets forwarded to gNB-1 AND buffered

3. UE switches to gNB-2

4. SMF modifies FAR: TEID = 5678, Action = 0x02 (FORW)

5. UPF flushes buffered packets to gNB-2 with new TEID

6. No packet loss during handover

Initial State:

- UE connected, active data flow

Path Switch:

1. SMF modifies FAR: Action = 0x04 (BUFF only)

2. All incoming packets buffered (not forwarded)

3. Network reconfigures path

4. SMF modifies FAR: Action = 0x02 (FORW), new destination

5. UPF flushes all buffered packets to new path



Outer Header Creation

Determines whether GTP-U encapsulation should be added.

Uplink FAR (N3 → N6):

Outer Header Creation: False

Action: Remove GTP-U, forward native IP packet

Downlink FAR (N6 → N3):

Outer Header Creation: True

Remote IP: gNB IP address (e.g., 200.198.5.10)

TEID: Tunnel ID for UE traffic

Action: Add GTP-U header, forward to gNB

FAR Lookup in Web UI

The Rules Management page provides FAR lookup by ID:



Steps:

1. Navigate to Rules → FARs tab

2. Enter FAR ID in search field

3. Click "Lookup" to view FAR details

Displayed Information:

FAR ID

Action (numeric + decoded flags)

Buffering status (ON/OFF)

Outer Header Creation

Remote IP address (with integer representation)

TEID

Transport Level Marking

QoS Enforcement Rules (QER)

Purpose

QERs apply Quality of Service parameters to traffic flows, including bandwidth

limits and packet marking.



QER Structure



QER Parameters

QER ID

Unique Identifier

QFI

QoS Flow Identifier

Gate Status UL

Open/Closed

Gate Status DL

Open/Closed

MBR Uplink

Max Bit Rate

MBR Downlink

Max Bit Rate

GBR Uplink

Guaranteed Bit Rate

GBR Downlink

Guaranteed Bit Rate



QoS Parameters

QFI (QoS Flow Identifier):

6-bit identifier for 5G QoS flows

Values 1-9 are standardized (e.g., QFI 9 = default bearer)

Used for packet marking in 5GC

Gate Status:

Open (0): Traffic allowed

Closed (non-zero): Traffic blocked

Maximum Bit Rate (MBR):

Maximum allowed bandwidth for traffic flow

Specified in kbps

MBR = 0: No rate limit (unlimited)

Traffic exceeding MBR is dropped

Guaranteed Bit Rate (GBR):

Minimum bandwidth guaranteed for traffic flow

Specified in kbps

GBR = 0: Best-effort (no guarantee)

GBR > 0: Prioritized flow with guaranteed bandwidth

QoS Flow Types

Best-Effort Flows (GBR = 0):

QER ID: 1

QFI: 9

MBR Uplink: 100000 kbps (100 Mbps)

MBR Downlink: 100000 kbps (100 Mbps)

GBR Uplink: 0 kbps

GBR Downlink: 0 kbps



Guaranteed Flows (GBR > 0):

QER ID: 2

QFI: 1

MBR Uplink: 10000 kbps (10 Mbps)

MBR Downlink: 10000 kbps (10 Mbps)

GBR Uplink: 5000 kbps (5 Mbps)

GBR Downlink: 5000 kbps (5 Mbps)



QoS Enforcement Algorithm

MBR Enforcement Mechanism

OmniUPF enforces MBR (Maximum Bit Rate) limits using a sliding window

rate limiter implemented in the eBPF datapath. This algorithm operates at

nanosecond precision directly in the XDP layer, ensuring line-rate performance

without kernel context switches.

How It Works

Algorithm: Sliding Window Rate Limiting

For each packet, the UPF performs the following checks:

1. Gate Status Check: If gate status is CLOSED  (non-zero), drop packet

immediately

2. MBR Check: If MBR = 0, bypass rate limiting (unlimited bandwidth)

3. Transmission Time Calculation:



4. Window Check: If current time is within the 5ms sliding window, drop

packet

5. Window Advance: If packet is allowed, advance window by tx_time

Example Calculation:

Assume:

MBR = 100,000 kbps (100 Mbps)

Packet size = 1500 bytes

Window size = 5,000,000 ns (5 ms)

Sliding Window Behavior

5ms Window Size:

The algorithm uses a 5 millisecond sliding window

Window automatically resets if idle for more than 5ms

Prevents burst starvation while enforcing average rate

tx_time = (packet_size_bytes × 8) × (1,000,000,000 ns/sec) / 

MBR_kbps

Step 1: Calculate transmission time at 100 Mbps

tx_time = (1500 bytes × 8 bits/byte) × (1,000,000,000 ns/sec) / 

100,000,000 bps

        = 12,000,000,000 / 100,000,000

        = 120 ns

Step 2: Check if packet fits in window

current_time = 1000000000 ns

window_start = 999990000 ns

if (window_start + tx_time > current_time):

    DROP packet (would exceed rate limit)

Step 3: If allowed, advance window

window_start = window_start + 120 ns

PASS packet



Burst Handling:

Small bursts are allowed within the 5ms window

Sustained traffic above MBR is rate-limited

More accurate than simple token bucket algorithms

Per-Direction Rate Limiting:

Uplink MBR uses qer->ul_start  timestamp

Downlink MBR uses qer->dl_start  timestamp

Each direction is rate-limited independently

Rate Limit Enforcement Points

Uplink (N3 → N6):

1. Packet arrives on N3 interface (from gNB)

2. PDR lookup by TEID

3. QER lookup by QER ID

4. Check ul_gate_status  → drop if closed

5. Apply limit_rate_sliding_window()  with ul_maximum_bitrate

6. If passed, forward to N6 and update URR counters

Downlink (N6 → N3):

1. Packet arrives on N6 interface (from Data Network)

2. PDR lookup by UE IP address

3. QER lookup by QER ID

4. Check dl_gate_status  → drop if closed

5. Apply limit_rate_sliding_window()  with dl_maximum_bitrate

6. If passed, add GTP-U header and forward to N3

N9 Loopback (SGWU ↔ PGWU):

Both uplink and downlink QERs may apply in N9 loopback scenarios

Each QER is checked independently at SGWU and PGWU boundaries

MBR vs. Observed Throughput



Why observed throughput may differ from MBR:

Protocol Overhead: GTP-U, UDP, IP headers add ~50-60 bytes per packet

Packet Size Variance: Smaller packets = more overhead, lower efficiency

Rate Limit Precision: Enforcement happens per-packet, not per-byte

Window Reset Behavior: 5ms idle periods allow brief bursts above MBR

Example:

How to Verify Rate Limiting:

1. Check URR volume counters over time: upf_urr_*_volume_bytes

2. Calculate throughput: (volume_delta_bytes × 8) / time_delta_seconds

/ 1000  = kbps

3. Compare against configured MBR in QER

GBR (Guaranteed Bit Rate)

Important: OmniUPF does not currently enforce GBR minimums. GBR is stored

in the QER but not used for traffic prioritization or admission control.

GBR Behavior:

GBR values are accepted from SMF via PFCP

GBR is stored in QER map and visible via API

No bandwidth reservation or traffic prioritization based on GBR

GBR serves as metadata for tracking flow type (best-effort vs. guaranteed)

Future Enhancement:

GBR enforcement requires traffic scheduling or weighted queuing

May be implemented using eBPF QoS capabilities in future releases

Configured MBR: 100 Mbps

Observed Throughput: ~95-98 Mbps (due to GTP-U/UDP/IP overhead)



Usage Reporting Rules (URR)

Purpose

URRs track data volumes for charging, analytics, and policy enforcement. They

maintain packet and byte counters that are reported to the SMF for charging

records.

URR Structure

URR Counters

URR ID

Unique Identifier

Uplink Volume

Bytes from UE

Downlink Volume

Bytes to UE

Total Volume

Uplink + Downlink

Uplink Packets

Packet count

Downlink Packets

Packet count



Volume Tracking

Uplink Volume:

Bytes transmitted from UE to Data Network

Measured after GTP-U decapsulation

Includes IP header and payload

Downlink Volume:

Bytes transmitted from Data Network to UE

Measured before GTP-U encapsulation

Includes IP header and payload

Total Volume:

Sum of uplink and downlink volumes

Used for total usage reporting

Usage Reporting Triggers

URRs can trigger reports based on:

Volume Threshold:

Report when volume exceeds configured limit

Example: Report every 1 GB of usage

Time Threshold:

Report at periodic intervals

Example: Report every 5 minutes

Event-Based:

Report on session termination

Report on QoS change

Report on handover



Volume Display Formatting

The Web UI automatically formats volume in human-readable units:

Bytes Display

0 - 1023 B (Bytes)

1024 - 1048575 KB (Kilobytes)

1048576 - 1073741823 MB (Megabytes)

1073741824 - 1099511627775 GB (Gigabytes)

1099511627776+ TB (Terabytes)

Example:

URR ID: 0

Uplink Volume: 12.3 KB

Downlink Volume: 9.0 KB

Total Volume: 21.3 KB





URR Reporting Flow





Rule Relationships

PDR → FAR → QER → URR Chain

Each PDR references a FAR, which may reference a QER and one or more URRs.

FAR ID: 2

QER ID: 1

URR ID: 0

PDR

TEID: 5678

FAR ID: 2

Action: FORWARD

QER ID: 1

MBR: 100 Mbps

URR ID: 0

Volume: 21.3 KB

Example Session Configuration

Uplink PDR:

Downlink PDR:

TEID: 5678

FAR ID: 2

QER ID: 1

URR IDs: [0]

Outer Header Removal: False



FAR ID 1 (Downlink):

FAR ID 2 (Uplink):

QER ID 1:

URR ID 0:

UE IP: 10.45.0.1

FAR ID: 1

QER ID: 1

URR IDs: [0]

SDF Mode: No SDF

Action: 2 (FORWARD)

Outer Header Creation: True

Remote IP: 200.198.5.10

TEID: 5678

Action: 2 (FORWARD)

Outer Header Creation: False

QFI: 9

MBR Uplink: 100000 kbps

MBR Downlink: 100000 kbps

GBR Uplink: 0 kbps

GBR Downlink: 0 kbps

Uplink Volume: 12.3 KB

Downlink Volume: 9.0 KB

Total Volume: 21.3 KB



Common Operations

View Rules for a Session

Via Sessions Page:

1. Navigate to Sessions

2. Find UE by IP or TEID

3. Click "Expand" to view all rules (PDR, FAR, QER, URR)

Via Rules Page:

1. Navigate to Rules

2. Use lookup by TEID (uplink) or UE IP (downlink) in PDR tab

3. Note the FAR ID, QER ID, URR IDs

4. Switch to FAR/QER/URR tabs to view referenced rules

Enable/Disable Buffering

Scenario: During handover, buffer packets to prevent loss

Steps:

1. Navigate to Rules → FARs

2. Enter FAR ID in search field

3. Click "Lookup"

4. If buffering is OFF, click "Enable Buffering"

5. Verify FAR action bit 2 is set (Action value increases by 4)

Alternative via Buffers Page:

1. Navigate to Buffers

2. View FARs with buffering enabled

3. Click "Disable Buffer" when handover completes



Monitor QoS Compliance

Check if traffic is being rate-limited:

1. Navigate to Rules → QERs

2. Find QER ID associated with UE session

3. Note MBR Uplink and MBR Downlink values

4. Compare with URR volume growth rate

Calculate Average Throughput:

If throughput approaches MBR, traffic is being rate-limited.

Track Data Usage

Monitor URR volumes:

1. Navigate to Rules → URRs

2. View uplink, downlink, and total volumes

3. Sort by Total Volume to find highest users

4. Refresh periodically to observe volume growth

Use Cases:

Verify charging integration

Detect abnormal data usage

Plan capacity based on traffic patterns

Troubleshooting

No Traffic Flowing

Check PDR:

Throughput (kbps) = (Volume Delta in bytes × 8) / (Time Delta in 

seconds × 1000)



1. Verify PDR exists for TEID (uplink) or UE IP (downlink)

2. Confirm FAR ID is valid

3. Check SDF filters aren't blocking traffic

Check FAR:

1. Verify FAR action is FORWARD (not DROP or BUFFER only)

2. Confirm outer header creation matches direction

3. Verify Remote IP and TEID are correct for downlink

Check QER:

1. Verify Gate Status is Open (0)

2. Check MBR is not too restrictive

Packets Being Dropped

Check QER Rate Limiting:

1. Navigate to Rules → QERs

2. Verify MBR is adequate for traffic load

3. Check URR volume growth matches expected throughput

Check FAR Action:

1. Navigate to Rules → FARs

2. Verify action is FORWARD, not DROP

3. Check buffering isn't stuck in BUFFER-only mode

Buffering Issues

Packets stuck in buffer:

1. Navigate to Buffers page

2. Check oldest packet timestamp

3. If > 30 seconds, handover may have failed

4. Manually flush or clear buffer



5. Disable buffering on FAR

Buffer overflow:

1. Check total packets vs. Max Total (default 100,000)

2. Check per-FAR packets vs. Max Per FAR (default 10,000)

3. Clear buffers if full

4. Investigate why buffering wasn't disabled

URR Not Tracking

Volume counters at zero:

1. Verify PDR references URR ID

2. Check that packets are matching PDR

3. Verify FAR is forwarding (not dropping) packets

4. Confirm URR ID exists in URR map

Volume not reporting to SMF:

1. Check PFCP Session Report configuration

2. Verify URR reporting triggers (volume/time thresholds)

3. Review logs for PFCP Session Report messages

Related Documentation

UPF Operations Guide - Overview of OmniUPF architecture and

components

Web UI Operations Guide - Control panel usage for rule viewing

Monitoring Guide - Statistics and capacity monitoring

Troubleshooting Guide - Common issues and diagnostics



OmniUPF

Troubleshooting Guide

Table of Contents

1. Overview

2. Diagnostic Tools

3. Installation Issues

4. Configuration Problems

5. PFCP Association Issues

6. Packet Processing Problems

7. XDP and eBPF Issues

8. Performance Issues

9. Hypervisor-Specific Issues

10. NIC and Driver Issues

11. Session Establishment Failures

12. Buffering Issues

Overview

This guide provides systematic troubleshooting procedures for common

OmniUPF issues. Each section includes symptoms, diagnosis steps, root causes,

and resolution procedures.

Quick Diagnostic Checklist

Before deep troubleshooting, verify:



Diagnostic Tools

OmniUPF REST API

Check UPF status:

Check PFCP associations:

Check session count:

Check eBPF map capacity:

# 1. Check OmniUPF is running

systemctl status omniupf 

# 2. Check PFCP association

curl http://localhost:8080/api/v1/upf_pipeline

# 3. Check eBPF maps are loaded

ls /sys/fs/bpf/

# 4. Check XDP program is attached

ip link show | grep -i xdp

# 5. Check kernel logs for errors

dmesg | tail -50

journalctl -u omniupf -n 50

curl http://localhost:8080/api/v1/upf_status

curl http://localhost:8080/api/v1/upf_pipeline

curl http://localhost:8080/api/v1/sessions | jq 'length'



Check packet statistics:

Check XDP statistics:

eBPF Map Inspection

List all eBPF maps:

Show map details:

Count entries in map:

XDP Program Inspection

Check if XDP program is attached:

curl http://localhost:8080/api/v1/map_info

curl http://localhost:8080/api/v1/packet_stats

curl http://localhost:8080/api/v1/xdp_stats

ls -lh /sys/fs/bpf/

bpftool map list

bpftool map show

bpftool map dump name pdr_map_downlin

bpftool map dump name far_map | grep -c "key:"



List all XDP programs:

Show XDP program details:

Dump XDP statistics:

Network Debugging

Capture PFCP traffic on N4 (control plane):

Capture GTP-U traffic on N3 (requires out-of-band capture):

ip link show eth0 | grep xdp

bpftool net list

bpftool prog show

bpftool prog dump xlated name xdp_upf_func

# PFCP is not processed by XDP, tcpdump works normally

tcpdump -i eth0 -n udp port 8805 -w /tmp/pfcp_traffic.pcap



Monitor packet counters:

Check routing table:

Check ARP table:

# WARNING: Standard tcpdump on UPF host CANNOT capture XDP-

processed packets!

# XDP processes GTP-U before the kernel network stack sees 

packets.

# Use out-of-band capture instead:

# 1. Network TAP between gNB and UPF

# 2. Switch port mirroring/SPAN to copy N3 traffic

# 3. Virtual switch port mirroring to analyzer VM

# On analyzer/monitoring host (NOT on UPF):

# tcpdump -i <mirror_interface> -n udp port 2152 -w 

/tmp/n3_capture.pcap

# Or use statistics API for packet counts:

curl http://localhost:8080/api/v1/packet_stats

curl http://localhost:8080/api/v1/n3n6_stats

watch -n 1 'ip -s link show eth0'

ip route show

ip route get 10.45.0.100  # Check route for UE IP

ip neigh show



Installation Issues

Issue: "eBPF filesystem not mounted"

Symptoms:

Cause: eBPF filesystem not mounted

Resolution:

Issue: Kernel version too old

Symptoms:

Cause: Linux kernel version below minimum requirement

Resolution:

ERRO[0000] failed to load eBPF objects: mount bpf filesystem at 

/sys/fs/bpf

# Mount eBPF filesystem

sudo mount bpffs /sys/fs/bpf -t bpf

# Make persistent (add to /etc/fstab)

echo "bpffs /sys/fs/bpf bpf defaults 0 0" | sudo tee -a /etc/fstab

# Verify mount

mount | grep bpf

ERRO[0000] kernel version 5.4.0 is too old, minimum required is 

5.15.0



Issue: Missing libbpf dependency

Symptoms:

Cause: libbpf library not installed

Resolution:

Configuration Problems

Issue: Invalid configuration file

Symptoms:

# Check kernel version

uname -r

# Upgrade kernel (Ubuntu/Debian)

sudo apt update

sudo apt install linux-generic-hwe-22.04

sudo reboot

# Verify new kernel

uname -r  # Should be >= 5.15.0

error while loading shared libraries: libbpf.so.0: cannot open 

shared object file

# Install libbpf (Ubuntu/Debian)

sudo apt update

sudo apt install libbpf-dev

# Verify installation

ldconfig -p | grep libbpf



Cause: YAML syntax error in config file

Resolution:

Issue: Interface name not found

Symptoms:

Cause: Configured interface does not exist

Resolution:

ERRO[0000] unable to read config file: unmarshal errors

# Validate YAML syntax

cat config.yml | python3 -c "import yaml, sys; 

yaml.safe_load(sys.stdin)"

# Common issues:

# - Incorrect indentation (use spaces, not tabs)

# - Missing colons after keys

# - Unquoted strings with special characters

# - List items without hyphens

# Example of correct YAML:

cat > config.yml <<EOF

interface_name: [eth0]

xdp_attach_mode: generic

api_address: :8080

pfcp_address: :8805

EOF

ERRO[0000] interface eth0 not found



Issue: Port already in use

Symptoms:

Cause: Port 8080, 8805, or 9090 already bound by another process

Resolution:

# List all network interfaces

ip link show

# Check interface status

ip addr show eth0

# If interface has different name, update config.yml:

interface_name: [ens1f0]  # Use actual interface name

# For VMs, check interface naming scheme

ls /sys/class/net/

ERRO[0000] failed to start API server: address already in use

# Find process using port

sudo lsof -i :8080

sudo netstat -tulpn | grep :8080

# Kill conflicting process

sudo kill <PID>

# Or change OmniUPF port in config

api_address: :8081

pfcp_address: :8806

metrics_address: :9091



Issue: Invalid PFCP Node ID

Symptoms:

Cause: PFCP Node ID is not a valid IPv4 address

Resolution:

PFCP Association Issues

Issue: No PFCP associations established

Symptoms:

Web UI shows "No associations"

SMF logs show "PFCP Association Setup failure"

Diagnosis:

ERRO[0000] invalid pfcp_node_id: must be valid IPv4 address

# Correct: Use IP address (not hostname)

pfcp_node_id: 10.100.50.241

# Incorrect:

# pfcp_node_id: localhost

# pfcp_node_id: upf.example.com



Common Causes & Resolutions:

Firewall blocking PFCP

Resolution:

Wrong PFCP Node ID

Resolution:

Network unreachable to SMF

Resolution:

# 1. Check if PFCP server is listening

sudo netstat -ulpn | grep 8805

# 2. Check firewall rules

sudo iptables -L -n | grep 8805

sudo ufw status

# 3. Capture PFCP traffic

tcpdump -i any -n udp port 8805 -vv

# 4. Check PFCP associations via API

curl http://localhost:8080/api/v1/upf_pipeline

# Allow PFCP traffic (UDP 8805)

sudo ufw allow 8805/udp

sudo iptables -A INPUT -p udp --dport 8805 -j ACCEPT

# Set PFCP Node ID to correct N4 interface IP

pfcp_node_id: 10.100.50.241  # Must match IP on N4 network



SMF configured with wrong UPF IP

Resolution:

Check SMF configuration for UPF address

Ensure SMF has UPF's pfcp_node_id  IP configured

Verify SMF can route to UPF's N4 network

Issue: PFCP heartbeat failures

Symptoms:

Diagnosis:

Causes & Resolutions:

Network packet loss

# Test connectivity to SMF

ping <SMF_IP>

# Check routing to SMF

ip route get <SMF_IP>

# Add route if missing

sudo ip route add <SMF_NETWORK>/24 via <GATEWAY>

WARN[0030] PFCP heartbeat timeout for association 10.100.50.10

# Check PFCP statistics

curl http://localhost:8080/api/v1/upf_pipeline | jq 

'.associations[] | {remote_id, uplink_teid_count}'

# Monitor heartbeat logs

journalctl -u omniupf -f | grep heartbeat



Resolution:

Heartbeat interval too aggressive

Resolution:

Packet Processing Problems

Issue: No packets flowing (RX/TX counters at

0)

Symptoms:

Statistics page shows 0 RX/TX packets

UE cannot establish data session

Diagnosis:

# Check packet loss to SMF

ping -c 100 <SMF_IP> | grep loss

# If high loss, investigate network:

# - Check link status

# - Check switch/router health

# - Check for congestion

# Increase heartbeat interval

heartbeat_interval: 30  # Increase from 5 to 30 seconds

heartbeat_retries: 5    # Increase retries

heartbeat_timeout: 10   # Increase timeout



Resolutions:

XDP program not attached

Resolution:

Interface down or no link

Resolution:

Wrong interface configured

Resolution:

# 1. Check if XDP program is attached

ip link show eth0 | grep xdp

# 2. Check interface is UP

ip link show eth0

# 3. Check packet statistics (XDP-aware)

# Note: tcpdump cannot see XDP-processed GTP-U packets

curl http://localhost:8080/api/v1/packet_stats

# Restart OmniUPF to re-attach XDP

sudo systemctl restart omniupf

# Verify attachment

ip link show eth0 | grep xdp

bpftool net list

# Bring interface up

sudo ip link set eth0 up

# Check link status

ethtool eth0 | grep "Link detected"

# If link down, check physical connection or VM network config



Issue: Packets received but not forwarded

(high drop rate)

Symptoms:

RX counters increasing but TX counters not

Drop rate > 1%

Diagnosis:

Common Causes:

No PDR match (unknown TEID or UE IP)

Resolution:

# Update config.yml with correct interface

interface_name: [ens1f0]  # Use actual interface name from 'ip 

link show'

# Check drop statistics

curl http://localhost:8080/api/v1/xdp_stats | jq '.drop'

# Check route statistics

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'

# Monitor packet drops

watch -n 1 'curl -s http://localhost:8080/api/v1/packet_stats | jq 

".total_rx, .total_tx, .total_drop"'



Routing failures

Resolution:

QER rate limiting

Symptoms:

Throughput lower than expected

Traffic capped at a specific rate

URR volume counters show plateau behavior

XDP drop counters increasing during traffic bursts

Diagnosis:

1. Check configured MBR for the session:

# Check if sessions exist

curl http://localhost:8080/api/v1/sessions

# If no sessions, verify:

# - PFCP association is established

# - SMF has created sessions

# - Session establishment was successful

# Check PDR map entries

bpftool map dump name pdr_map_teid_ip | grep -c key

bpftool map dump name pdr_map_downlin | grep -c key

# Check FIB lookup failures

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'

# Test routing for UE IP

ip route get 10.45.0.100

# Add missing route

sudo ip route add 10.45.0.0/16 dev eth1  # Route UE pool to N6



2. Verify gate status:

3. Calculate actual throughput from URR:

4. Compare MBR vs. actual throughput:

Expected throughput ≈ 95-98% of MBR (due to protocol overhead)

If throughput is significantly below MBR, check for other bottlenecks

If throughput matches MBR exactly, rate limiting is working as

expected

Resolution:

If MBR is too low: Request SMF to update QER with higher MBR via PFCP

Session Modification

If gate is closed: Investigate why SMF closed the gate (policy, quota, or

error)

# Find the session's QER ID

curl http://localhost:8080/api/v1/pfcp_sessions | jq '.data[] | 

select(.ue_ip == "10.45.0.1")'

# Look up the QER configuration

curl http://localhost:8080/api/v1/qer_map | jq '.data[] | 

select(.qer_id == 1)'

# Gate status should be 0 (OPEN) for both uplink and downlink

curl http://localhost:8080/api/v1/qer_map | jq '.data[] | 

{qer_id, ul_gate: .ul_gate_status, dl_gate: .dl_gate_status}'

# Query URR volume counters at two points in time

curl http://localhost:8080/api/v1/urr_map | jq '.data[] | 

select(.urr_id == 0)'

# Calculate throughput (manual):

# throughput_kbps = (volume_delta_bytes × 8) / 

time_delta_seconds / 1000



If rate limiting is unexpected: Verify SMF policy configuration and QoS

profile

Understanding MBR Enforcement:

OmniUPF uses a sliding window algorithm to enforce MBR limits at nanosecond

precision in the eBPF datapath. See Rules Management Guide - MBR

Enforcement Mechanism for detailed explanation of:

How packet size and rate determine drop decisions

Why observed throughput differs from configured MBR

Per-direction (uplink/downlink) rate limiting

5ms sliding window behavior

Common Scenarios:

VoIP calls dropping: Check if MBR is sufficient for codec bitrate (G.711 =

~80 kbps)

Video streaming buffering: Ensure MBR > video bitrate + overhead

(1080p = ~5-10 Mbps)

Burst traffic: Small bursts allowed within 5ms window, sustained traffic

rate-limited

Issue: One-way traffic (uplink works, downlink

doesn't)

Symptoms:

RX N3 packets but no TX N3 packets (downlink problem)

RX N6 packets but no TX N6 packets (uplink problem)

Diagnosis:



Uplink Failure (RX N3, no TX N6):

Cause: No FAR action or routing issue to N6

Resolution:

Downlink Failure (RX N6, no TX N3):

Cause: No downlink PDR or missing GTP encapsulation

Resolution:

# Check N3/N6 interface statistics (XDP-aware method)

curl http://localhost:8080/api/v1/n3n6_stats

curl http://localhost:8080/api/v1/packet_stats

# Note: Standard tcpdump cannot capture XDP-processed GTP-U 

traffic

# Use statistics API or xdpdump for traffic analysis

# See "Packet Capture with XDP" section for details

# Check FAR has FORWARD action

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

select(.applied_action == 2)'

# Check N6 route exists

ip route get 8.8.8.8  # Test route to internet

# Add default route if missing

sudo ip route add default via <N6_GATEWAY> dev eth1



XDP and eBPF Issues

For detailed XDP configuration, mode selection, and troubleshooting,

see the XDP Modes Guide.

Issue: XDP program failed to load

Symptoms:

Diagnosis:

Causes & Resolutions:

# Check downlink PDR exists for UE IP

curl http://localhost:8080/api/v1/sessions | jq '.[].pdrs[] | 

select(.pdi.ue_ip_address)'

# Verify FAR has OUTER_HEADER_CREATION

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

.outer_header_creation'

# Check gNB reachability

ping <GNB_N3_IP>

ERRO[0000] failed to load XDP program: invalid argument

# Check kernel XDP support

grep XDP /boot/config-$(uname -r)

# Should show:

# CONFIG_XDP_SOCKETS=y

# CONFIG_BPF=y

# CONFIG_BPF_SYSCALL=y

# Check dmesg for detailed error

dmesg | grep -i bpf



Kernel lacks XDP support

Resolution:

XDP program verification failure

Resolution:

Issue: XDP aborted count increasing

Symptoms:

XDP stats show aborted > 0

Packet drops increasing

Diagnosis:

# Rebuild kernel with XDP support or upgrade to newer kernel

# Ubuntu 22.04+ has XDP enabled by default

sudo apt install linux-generic-hwe-22.04

sudo reboot

# Check OmniUPF logs for verifier errors

journalctl -u omniupf | grep verifier

# Common issues:

# - eBPF complexity exceeds limits (increase kernel limits)

# - Invalid memory access (bug in eBPF code)

# Increase eBPF verifier log level for debugging

sudo sysctl kernel.bpf_stats_enabled=1

# Check XDP aborted count

curl http://localhost:8080/api/v1/xdp_stats | jq '.aborted'

# Monitor XDP stats

watch -n 1 'curl -s http://localhost:8080/api/v1/xdp_stats'



Cause: eBPF program encountered runtime error

Resolution:

Issue: eBPF map full (capacity exhausted)

Symptoms:

Session establishment fails

Map capacity at 100%

Diagnosis:

Immediate Mitigation:

# Check kernel logs for eBPF errors

dmesg | grep -i bpf

# Restart OmniUPF to reload eBPF program

sudo systemctl restart omniupf

# If issue persists, enable eBPF logging (requires rebuild):

# Build OmniUPF with BPF_ENABLE_LOG=1

# Check map capacity

curl http://localhost:8080/api/v1/map_info | jq '.[] | {map_name, 

capacity, used, usage_percent}'

# Identify full maps

curl http://localhost:8080/api/v1/map_info | jq '.[] | 

select(.usage_percent > 90)'



Long-term Resolution:

Important: Changing map sizes requires OmniUPF restart and clears all

existing sessions.

Performance Issues

Issue: Low throughput (below expected)

Symptoms:

Throughput < 1 Gbps despite capable NIC

High CPU utilization

Diagnosis:

# 1. Identify stale sessions

curl http://localhost:8080/api/v1/sessions | jq '.[] | {seid, 

uplink_teid, created_at}'

# 2. Request SMF to delete old sessions

# (via SMF admin interface or API)

# 3. Monitor map usage decrease

watch -n 5 'curl -s http://localhost:8080/api/v1/map_info | jq ".

[] | select(.map_name==\"pdr_map_downlin\") | .usage_percent"'

# Increase map capacity in config.yml

max_sessions: 200000  # Increase from 100000

# Or set individual map sizes

pdr_map_size: 400000

far_map_size: 400000

qer_map_size: 200000



Resolutions:

Using generic XDP mode

Resolution:

Single-core bottleneck

Resolution:

Buffer bloat

Resolution:

# Check packet rate

curl http://localhost:8080/api/v1/packet_stats | jq '.total_rx, 

.total_tx'

# Check NIC statistics

ethtool -S eth0 | grep -i drop

# Check XDP mode

ip link show eth0 | grep xdp

# Switch to native mode for better performance

xdp_attach_mode: native  # Requires XDP-capable NIC/driver

# Enable RSS (Receive Side Scaling) on NIC

ethtool -L eth0 combined 4  # Use 4 RX/TX queues

# Verify RSS enabled

ethtool -l eth0

# Pin interrupts to specific CPUs

# See /proc/interrupts and use irqbalance or manual affinity



Issue: High latency

Symptoms:

Ping latency > 50ms

User experience degradation

Diagnosis:

Resolutions:

Packets being buffered excessively

Resolution:

# Reduce buffer limits to decrease latency

buffer_max_packets: 5000

buffer_packet_ttl: 15

# Test latency to UE

ping -c 100 <UE_IP> | grep avg

# Check buffered packets

curl http://localhost:8080/api/v1/upf_buffer_info | jq 

'.total_packets_buffered'

# Check route cache performance

curl http://localhost:8080/api/v1/packet_stats | jq '.route_stats'

# Check why packets are buffered

curl http://localhost:8080/api/v1/upf_buffer_info | jq '.buffers[] 

| {far_id, packet_count, direction}'

# Clear buffers if stuck

# (restart OmniUPF or trigger PFCP session modification to apply 

FAR)



FIB lookup latency

Resolution:

Issue: Packet drops under load

Symptoms:

Drop rate increases with traffic

RX errors on NIC

Diagnosis:

Resolution:

# Ensure route cache is enabled (build-time option)

# Build with BPF_ENABLE_ROUTE_CACHE=1

# Optimize routing table

# Use fewer, more specific routes instead of many small routes

# Check NIC errors

ethtool -S eth0 | grep -E "drop|error|miss"

# Check ring buffer size

ethtool -g eth0

# Monitor drops in real-time

watch -n 1 'ethtool -S eth0 | grep -E "drop|miss"'



Hypervisor-Specific Issues

For step-by-step hypervisor configuration instructions, see the XDP

Modes Guide.

Proxmox: XDP not working in VM

Symptoms:

Cannot attach XDP program in native mode

Only generic mode works

Cause: VM using bridged networking without SR-IOV

Resolution:

Option 1: Use generic mode (simplest)

Option 2: Configure SR-IOV passthrough

# Increase RX ring buffer size

ethtool -G eth0 rx 4096

# Increase TX ring buffer size

ethtool -G eth0 tx 4096

# Verify new settings

ethtool -g eth0

xdp_attach_mode: generic



VMware: Promiscuous mode required

Symptoms:

Packets not received by OmniUPF

Cause: vSwitch blocking non-matching MAC addresses

Resolution:

VirtualBox: Performance very low

Symptoms:

# On Proxmox host:

# 1. Enable IOMMU

nano /etc/default/grub

# Add: intel_iommu=on iommu=pt

update-grub

reboot

# 2. Create VFs

echo 4 > /sys/class/net/eth0/device/sriov_numvfs

# 3. Assign VF to VM in Proxmox UI

# Hardware → Add → PCI Device → Select VF

# In VM:

interface_name: [ens1f0]  # SR-IOV VF

xdp_attach_mode: native

# Enable promiscuous mode on vSwitch (in vSphere Client):

# 1. Select vSwitch → Edit Settings

# 2. Security → Promiscuous Mode: Accept

# 3. Security → MAC Address Changes: Accept

# 4. Security → Forged Transmits: Accept



Throughput < 100 Mbps

Cause: VirtualBox does not support SR-IOV or native XDP

Resolution:

NIC and Driver Issues

Issue: NIC driver does not support XDP

Symptoms:

Diagnosis:

# Use generic mode (only option)

xdp_attach_mode: generic

# Optimize VirtualBox settings:

# - Use VirtIO-Net adapter (if available)

# - Enable "Allow All" promiscuous mode

# - Allocate more CPU cores to VM

# - Use bridged networking instead of NAT

# Consider migrating to KVM/Proxmox for better performance

ERRO[0000] failed to attach XDP program: operation not supported

# Check NIC driver

ethtool -i eth0 | grep driver

# Check if driver supports XDP

modinfo <driver_name> | grep -i xdp

# List XDP-capable interfaces

ip link show | grep -B 1 "xdpgeneric\|xdpdrv\|xdpoffload"



Resolution:

Option 1: Use generic mode

Option 2: Update NIC driver

Option 3: Replace NIC

Issue: Driver crashes or kernel panics

Symptoms:

Kernel panic after attaching XDP

NIC stops responding

Diagnosis:

xdp_attach_mode: generic

# Check for driver updates (Ubuntu)

sudo apt update

sudo apt install linux-modules-extra-$(uname -r)

# Or install vendor-specific driver

# Example for Intel:

# Download from https://downloadcenter.intel.com/

# Use XDP-capable NIC:

# - Intel X710, E810

# - Mellanox ConnectX-5, ConnectX-6

# - Broadcom BCM57xxx (bnxt_en driver)



Resolution:

Session Establishment Failures

Issue: Session establishment fails

Symptoms:

SMF reports session establishment failure

UE cannot establish PDU session

See PFCP Cause Codes Reference for common failure scenarios and resolutions.

Diagnosis:

# Check kernel logs

dmesg | tail -100

# Check for driver bugs

journalctl -k | grep -E "BUG:|panic:"

# 1. Update kernel and drivers

sudo apt update

sudo apt upgrade

sudo reboot

# 2. Disable XDP offload (use native only)

xdp_attach_mode: native

# 3. Use generic mode as workaround

xdp_attach_mode: generic

# 4. Report bug to NIC vendor or Linux kernel team



Common Causes:

Map capacity full

Resolution:

Invalid PDR/FAR parameters

Resolution:

Feature not supported (UEIP/FTUP)

Resolution:

# Check OmniUPF logs for session errors

journalctl -u omniupf | grep -i "session establishment"

# Check PFCP session count

curl http://localhost:8080/api/v1/sessions | jq 'length'

# Capture PFCP traffic during session establishment

tcpdump -i any -n udp port 8805 -w /tmp/pfcp_session.pcap

# Check map usage

curl http://localhost:8080/api/v1/map_info | jq '.[] | 

select(.usage_percent > 90)'

# Increase capacity (see eBPF map full section above)

# Check OmniUPF logs for validation errors

journalctl -u omniupf | grep -E "invalid|error" | tail -20

# Common issues:

# - Invalid UE IP address (0.0.0.0 or duplicate)

# - Invalid TEID (0 or duplicate)

# - Missing FAR for PDR

# - Invalid FAR action

# Verify SMF configuration and session parameters



Buffering Issues

Issue: Packets stuck in buffer

Symptoms:

Buffered packet count increasing

Packets not delivered after handover

Diagnosis:

Causes & Resolutions:

FAR never updated to FORWARD

Cause: SMF never sent PFCP Session Modification to apply FAR

Resolution:

# Enable required features if needed

feature_ueip: true  # UE IP allocation by UPF

ueip_pool: 10.60.0.0/16

feature_ftup: true  # F-TEID allocation by UPF

teid_pool: 100000

# Check buffer statistics

curl http://localhost:8080/api/v1/upf_buffer_info

# Check individual FAR buffers

curl http://localhost:8080/api/v1/upf_buffer_info | jq '.buffers[] 

| {far_id, packet_count, oldest_packet_ms}'

# Monitor buffer size

watch -n 5 'curl -s http://localhost:8080/api/v1/upf_buffer_info | 

jq ".total_packets_buffered"'



Buffer TTL expired

Cause: Packets expired before FAR update

Resolution:

Buffer overflow

Cause: Too many packets buffered per FAR

Resolution:

# Check FAR status

curl http://localhost:8080/api/v1/sessions | jq '.[].fars[] | 

{far_id, applied_action}'

# Action BUFF = 1 (buffering)

# Action FORW = 2 (forwarding)

# If stuck in BUFF state, request SMF to:

# - Send PFCP Session Modification Request

# - Update FAR with FORW action

# Increase buffer TTL

buffer_packet_ttl: 60  # Increase from 30 to 60 seconds

# Increase buffer limits

buffer_max_packets: 20000  # Per FAR

buffer_max_total: 200000   # Global limit



Advanced Debugging

Enable Debug Logging

eBPF Program Tracing

Packet Capture with XDP

Understanding XDP Packet Capture Limitations:

XDP processes packets before the kernel network stack, so standard tcpdump

cannot see XDP-processed traffic. GTP-U packets (UDP port 2152) on N3 are

processed by XDP and will not appear in tcpdump on the UPF host.

Recommended Methods for Traffic Analysis:

logging_level: debug  # trace | debug | info | warn | error

# Restart OmniUPF with debug logging

sudo systemctl restart omniupf

# Monitor logs in real-time

journalctl -u omniupf -f --output cat

# Trace eBPF program execution (requires bpftrace)

sudo bpftrace -e 'tracepoint:xdp:* { @[probe] = count(); }'

# Trace map operations

sudo bpftrace -e 'tracepoint:bpf:bpf_map_lookup_elem { 

printf("%s\n", str(args->map_name)); }'



Out-of-Band Capture Setup Examples:

Physical Network:

Virtual Environment (VMware, KVM, etc.):

# Method 1: Use statistics API for monitoring (RECOMMENDED)

curl http://localhost:8080/api/v1/xdp_stats

curl http://localhost:8080/api/v1/packet_stats | jq

curl http://localhost:8080/api/v1/n3n6_stats

# Method 2: Capture PFCP traffic (not affected by XDP)

tcpdump -i any -n udp port 8805 -w /tmp/pfcp.pcap

# Method 3: Out-of-band packet capture (RECOMMENDED for GTP-U)

# Use network TAP or switch port mirroring to capture traffic

# Examples:

# - Physical TAP between gNB and UPF

# - Switch SPAN/mirror port copying N3 traffic to analyzer

# - Virtual switch port mirroring in hypervisor

#

# On capture host (NOT the UPF):

# tcpdump -i <mirror_interface> -n udp port 2152 -w 

/tmp/n3_mirror.pcap

# Use a network TAP or configure switch port mirroring

# Example: Cisco switch SPAN configuration

(config)# monitor session 1 source interface Gi1/0/1

(config)# monitor session 1 destination interface Gi1/0/24

# On monitoring host connected to Gi1/0/24:

tcpdump -i eth0 -n udp port 2152 -w /tmp/n3_capture.pcap



Why Out-of-Band is Required:

XDP bypasses the kernel network stack entirely

Packets are processed in the NIC driver or hardware

Host-based tcpdump sees packets AFTER XDP processing (too late)

Out-of-band capture sees raw wire traffic before UPF processing

What You CAN Capture on UPF Host:

� PFCP traffic (UDP 8805) - control plane, not processed by XDP

� API responses and metrics

❌ GTP-U traffic (UDP 2152) - dataplane, processed by XDP

Getting Help

If troubleshooting steps do not resolve your issue:

1. Collect diagnostic information:

# Configure virtual switch port mirroring to send UPF traffic to 

analyzer VM

# Example: Linux bridge with tcpdump on different VM

# On hypervisor, mirror UPF's N3 interface to analyzer interface

# On analyzer VM:

tcpdump -i eth1 -n udp port 2152 -w /tmp/n3_virtual.pcap



2. Report issue with:

OmniUPF version

Linux kernel version

Network topology diagram

Configuration file (redact sensitive info)

Relevant log excerpts

Steps to reproduce

Related Documentation

Configuration Guide - Configuration parameters and examples

Architecture Guide - eBPF/XDP internals and performance tuning

Monitoring Guide - Statistics, capacity, and alerting

Metrics Reference - Prometheus metrics for troubleshooting

PFCP Cause Codes - PFCP error codes and troubleshooting

Rules Management Guide - PDR, FAR, QER, URR concepts

Operations Guide - UPF architecture and overview

# System info

uname -a

cat /etc/os-release

# OmniUPF info

curl http://localhost:8080/api/v1/upf_status

curl http://localhost:8080/api/v1/map_info

curl http://localhost:8080/api/v1/packet_stats

# Logs

journalctl -u omniupf --since "1 hour ago" > /tmp/omniupf.log

dmesg > /tmp/dmesg.log

# Network info

ip addr > /tmp/network.txt

ip route >> /tmp/network.txt

ethtool eth0 >> /tmp/network.txt



Web UI Operations

Guide

Table of Contents

1. Overview

2. Accessing the Control Panel

3. Sessions View

4. Rules Management

5. Buffer Management

6. Statistics Dashboard

7. Capacity Monitoring

8. Configuration View

9. Routes View

10. XDP Capabilities View

11. Logs Viewer

Overview

The OmniUPF Web UI provides a comprehensive control panel for real-time

monitoring and management of the User Plane Function. The interface is built

on Phoenix LiveView and provides:

Real-time visibility into PFCP sessions and active PDU connections

Rules inspection for PDR, FAR, QER, and URR across all sessions

Buffer management for packet buffering during mobility events

Statistics monitoring for packet processing, routes, and interfaces

Capacity tracking for eBPF map usage and limits

Live log viewing for troubleshooting



Architecture

The control panel communicates with multiple OmniUPF instances via their

REST API to:

Query PFCP sessions and associations

Inspect packet detection and forwarding rules

Monitor packet buffers and their status

Access real-time statistics and performance metrics

Track eBPF map capacity and utilization

Accessing the Control Panel

Default Access

The control panel is accessible via HTTPS on the OmniUPF management server:

Default Port: 443 (HTTPS with self-signed certificate)

Configuration

The control panel requires OmniUPF host configuration in config/config.exs :

Multiple UPF instances can be configured for multi-instance deployments:

The upf_hosts  configuration defines which OmniUPF instances are available in

the host selector dropdown throughout the UI.

Navigation

The control panel provides navigation tabs for each operational area:

Sessions - /sessions  - PFCP sessions and associations

Rules - /rules  - PDR, FAR, QER, URR rule inspection

https://<upf-server>:443/



Buffers - /buffers  - Packet buffer monitoring and control

Statistics - /statistics  - Packet, route, XDP, and interface statistics

Capacity - /capacity  - eBPF map usage and capacity monitoring

Config - /upf_config  - UPF configuration and dataplane addresses

Routes - /routes  - UE routes and routing protocol sessions (OSPF, BGP)

XDP Capabilities - /xdp_capabilities  - XDP mode support and

performance capabilities

Logs - /logs  - Live log streaming

Sessions View

URL: /sessions

Features

The Sessions view displays all active PFCP sessions and associations from

selected OmniUPF instances.

PFCP Associations Summary

Displays all active PFCP associations (control connections from SMF/PGW-C):

Column Description

Node ID SMF or PGW-C node identifier (FQDN or IP)

Address SMF/PGW-C IP address for PFCP communication

Next Session ID Next available PFCP session ID for this association

Purpose:

Verify SMF connectivity to UPF

Monitor number of control plane connections

Track session ID allocation per association



Active Sessions Table

Displays all PFCP sessions representing active UE PDU sessions:

Column Description

Local SEID UPF-assigned session endpoint identifier

Remote SEID SMF-assigned session endpoint identifier

UE IP User equipment IPv4 or IPv6 address

TEID GTP-U Tunnel Endpoint Identifier for uplink traffic

PDRs Number of packet detection rules in session

FARs Number of forwarding action rules in session

QERs Number of QoS enforcement rules in session

URRs Number of usage reporting rules in session

Actions Expand button to view detailed rule information

Features:

Filter by IP: Find sessions for specific UE IP address

Filter by TEID: Find sessions by tunnel endpoint ID

Expand session: View complete PDR/FAR/QER/URR JSON details

Auto-refresh: Updates every 10 seconds

Expanded Session View:

When you click "Expand" on a session, the view shows:

Packet Detection Rules (PDRs): Complete JSON with TEID, UE IP, FAR ID,

QER ID, SDF filters



PDR IDs are clickable - Click to navigate to the Rules tab and view

full PDR details

Uplink PDRs (TEID ≠ 0) link to uplink PDR lookup

Downlink PDRs (IPv4) link to downlink PDR lookup

Downlink PDRs (IPv6) link to IPv6 downlink PDR lookup

Forwarding Action Rules (FARs): Action flags, outer header creation,

destination endpoints

QoS Enforcement Rules (QERs): MBR, GBR, QFI, and other QoS

parameters

Usage Reporting Rules (URRs): Volume counters (uplink, downlink, total

bytes)

Expanded session view showing detailed PDRs, FARs, and QERs for a specific

session.

Use Cases

Verify UE Connectivity:



1. Navigate to Sessions view

2. Enter UE IP address in filter

3. Confirm session exists with correct TEID

4. Expand to verify PDR/FAR configuration

Monitor Session Count:

Check total session count in header

Compare across multiple UPF instances

Track session growth over time

Troubleshoot Session Issues:

Search for specific UE IP or TEID

Expand session to inspect rule configuration

Verify FAR forwarding parameters

Check QER QoS settings

Real-time Updates

The Sessions view automatically refreshes every 10 seconds. A health check

indicator shows UPF connectivity status:

HEALTHY (green): UPF is reachable and responding

UNHEALTHY (red): UPF is not reachable or not responding

UNKNOWN (gray): Health status not yet determined

Rules Management

URL: /rules

The Rules view provides comprehensive inspection of all packet detection,

forwarding, QoS, and usage reporting rules across all sessions.



PDR Tab - Packet Detection Rules

View and inspect all PDRs in the UPF with lookup forms and clickable

navigation:

Uplink PDRs (N3 → N6):

Lookup Form: Search by TEID to view specific uplink PDR details

TEID: GTP-U tunnel endpoint ID from gNB (clickable - navigates to lookup)

FAR ID: Associated forwarding action rule (clickable - navigates to FAR tab)

QER ID: Associated QoS enforcement rule (clickable - navigates to QER

tab)

URR IDs: Associated usage reporting rules (clickable - navigates to URR

tab)

Outer Header Removal: GTP-U decapsulation flag

SDF Filters: Service data flow classification rules

Downlink PDRs (N6 → N3):

Lookup Form: Search by UE IPv4 address to view specific downlink PDR

details

UE IP: IPv4 address of user equipment (displayed in lookup results)

FAR ID: Associated forwarding action rule (clickable - navigates to FAR tab)

QER ID: Associated QoS enforcement rule (clickable - navigates to QER

tab)

URR IDs: Associated usage reporting rules (clickable - navigates to URR

tab)

SDF Mode: Service data flow filter mode (none, sdf only, sdf + default)

Pagination: Browse PDRs with page controls (default 100 per page, max

1000)

IPv6 Downlink PDRs:

API supports pagination for IPv6 downlink PDRs

Same structure as IPv4 but keyed by IPv6 addresses

Full UI tab can be added if needed



FAR Tab - Forwarding Action Rules

View all FARs with their forwarding actions and parameters:

Features:

Lookup Form: Search by FAR ID to view specific FAR details

Auto-lookup: Clicking FAR IDs from PDR details automatically populates

lookup

Real-time Updates: FAR status reflects current buffering state

Column Description

FAR ID Unique forwarding rule identifier

Action
Forwarding action flags (FORWARD, DROP, BUFFER,

DUPLICATE, NOTIFY)

Buffering Current buffering status (Enabled/Disabled)

Destination Outer header creation parameters (TEID, IP address)

FAR Action Flags:

FORWARD (1): Forward packet to destination

DROP (2): Discard packet

BUFFER (4): Store packet in buffer

NOTIFY (8): Send notification to control plane

DUPLICATE (16): Duplicate packet to multiple destinations

Buffering Toggle:

Click "Enable Buffer" or "Disable Buffer" to toggle buffering flag

Useful for troubleshooting handover scenarios

Changes FAR action immediately in eBPF map



QER Tab - QoS Enforcement Rules

View QoS rules applied to traffic flows:

Features:

Clickable Navigation: Click QER IDs from PDR details to navigate and

highlight specific QER

Auto-highlight: QER row is highlighted when navigated from PDR

Pagination: Browse QERs with page controls (default 100 per page, max

1000)

Column Description

QER ID
Unique QoS rule identifier (clickable when referenced

from PDRs)

MBR (Uplink) Maximum bit rate for uplink traffic (kbps)

MBR

(Downlink)
Maximum bit rate for downlink traffic (kbps)

GBR (Uplink) Guaranteed bit rate for uplink traffic (kbps)

GBR

(Downlink)
Guaranteed bit rate for downlink traffic (kbps)

QFI QoS Flow Identifier (5G marking)

QoS Interpretation:

MBR = 0: No rate limit

GBR = 0: Best-effort (no guaranteed bandwidth)

GBR > 0: Guaranteed bit rate flow (prioritized)



URR Tab - Usage Reporting Rules

View usage tracking rules and volume counters:

Features:

Lookup Form: Search by URR ID to find and highlight specific URR

Clickable Navigation: Click URR IDs from PDR details to navigate and

highlight specific URR

Auto-highlight: URR row is highlighted in blue when navigated from PDR

or searched via lookup

Pagination: Browse URRs with page controls (default 100 per page, max

1000)

Column Description

URR ID
Unique usage reporting rule identifier (clickable when

referenced from PDRs)

Uplink Volume Bytes sent from UE to data network

Downlink

Volume
Bytes sent from data network to UE

Total Volume Total bytes in both directions

Actions Delete button to reset counters for this URR

Volume Display:

Automatically formatted (B, KB, MB, GB, TB)

Real-time counters updated every refresh

Used for charging and analytics

Filtering:

Only shows URRs with non-zero volume



Inactive URRs (all counters at 0) are filtered out for performance

Use Cases

Inspect Traffic Classification:

1. Navigate to Rules → PDR tab

2. Search for specific TEID or UE IP

3. Verify PDR associates with correct FAR and QER

Troubleshoot Forwarding Issues:

1. Navigate to Rules → FAR tab

2. Locate FAR ID from session PDR

3. Verify action is FORWARD (not DROP or BUFFER)

4. Check outer header creation parameters

Monitor QoS Enforcement:

1. Navigate to Rules → QER tab

2. Verify MBR and GBR values match policy

3. Check QFI marking for 5G flows

Track Data Usage:

1. Navigate to Rules → URR tab

2. Sort by total volume to find highest users

3. Monitor volume growth over time

4. Verify charging integration

Buffer Management

URL: /buffers



Features

The Buffers view displays packet buffers maintained by the UPF during mobility

events or path switches.

Total Statistics

Dashboard displays aggregate buffer statistics:

Total Packets: Number of buffered packets across all FARs

Total Bytes: Total buffered data size

Total FARs: Number of FARs with buffered packets

Max Per FAR: Maximum packets allowed per FAR

Max Total: Maximum total buffered packets

Packet TTL: Time-to-live for buffered packets (seconds)

Buffers by FAR

Table of all FARs with buffered packets:

Column Description

FAR ID Forwarding action rule identifier

Packet Count Number of packets buffered for this FAR

Byte Count Total bytes buffered for this FAR

Oldest Packet Timestamp of oldest buffered packet

Newest Packet Timestamp of newest buffered packet

Actions Buffer control buttons (pill-style)

Buffer Control Actions

For each FAR with buffered packets, the following pill-style buttons are

available:



Buffering Control:

Disable Buffer (red): Turn off buffering for this FAR (updates FAR action

flag)

Enable Buffer (purple): Turn on buffering for this FAR

Buffer Operations:

Flush (blue): Replay all buffered packets using current FAR rules

Clear (gray): Delete all buffered packets without forwarding

Clear All Buffers:

Red "Clear All" button in header

Clears buffers for all FARs

Requires confirmation

Use Cases

Monitor Handover Buffering:

1. During handover, verify packets are being buffered

2. Check FAR buffering status (should be enabled)

3. Monitor packet count and age

Complete Handover:

1. After path switch, click "Flush" to replay buffered packets

2. Verify packets are forwarded to new path

3. Click "Disable Buffer" to stop buffering

Clear Stuck Buffers:

1. Identify FARs with old buffered packets (check oldest timestamp)

2. Click "Clear" to discard stale packets

3. Or click "Disable Buffer" to prevent further buffering

Troubleshoot Buffer Overflow:



1. Check total packet count vs. max total

2. Identify FARs with excessive buffering

3. Verify SMF has sent session modification to disable buffering

4. Manually disable buffering if SMF command missed

Real-time Updates

The Buffers view automatically refreshes every 5 seconds to show current

buffer status.

Statistics Dashboard

URL: /statistics

Features

The Statistics view provides real-time performance metrics from the OmniUPF

datapath. For detailed information about Prometheus metrics, see the Metrics

Reference.

Packet Statistics

Aggregate packet processing counters:

RX Packets: Total packets received on all interfaces

TX Packets: Total packets transmitted on all interfaces

Dropped Packets: Packets discarded due to errors or policy

GTP-U Packets: Packets processed with GTP-U encapsulation

Use: Monitor overall UPF traffic load and packet drop rate

Route Statistics

Per-route forwarding metrics (if available):

Route hits: Packets matched by each routing rule

Forwarding success: Successfully forwarded packet count



Forwarding errors: Failed forwarding attempts

Use: Identify busy routes and forwarding errors

XDP Statistics

eXpress Data Path performance metrics:

XDP Processed: Total packets processed at XDP layer

XDP Passed: Packets sent to network stack

XDP Dropped: Packets dropped at XDP layer

XDP Aborted: Processing errors in XDP program

Use: Monitor XDP performance and detect processing errors

XDP Drop Causes:

Invalid packet format

eBPF map lookup failure

Policy-based drops

Resource exhaustion

N3/N6 Interface Statistics

Per-interface traffic counters:

N3 Interface (RAN connectivity):

RX N3: Packets received from gNB/eNodeB

TX N3: Packets transmitted to gNB/eNodeB

N6 Interface (Data Network connectivity):

RX N6: Packets received from data network (Internet/IMS)

TX N6: Packets transmitted to data network

Total: Aggregate packet count across interfaces

Use: Monitor traffic balance and interface-specific issues



Use Cases

Monitor Traffic Load:

1. Check packet RX/TX rates

2. Verify traffic is flowing in both directions

3. Compare N3 vs N6 traffic (should be roughly equal)

Detect Packet Drops:

1. Check dropped packet counter

2. Review XDP dropped counter

3. Investigate cause in logs if drops are high

Performance Analysis:

1. Monitor XDP processed vs. passed ratio

2. Check for XDP aborts (indicates errors)

3. Verify N3/N6 interface traffic distribution

Capacity Planning:

1. Track packet rate over time

2. Compare to UPF capacity limits

3. Plan for scaling if approaching limits

Real-time Updates

Statistics automatically refresh every 5 seconds.

Capacity Monitoring

URL: /capacity



Features

The Capacity view displays eBPF map usage and capacity limits for all maps in

the UPF datapath.

eBPF Map Usage Table

Table of all eBPF maps with usage information:

Column Description

Map Name eBPF map name (e.g., uplink_pdr_map , far_map )

Used Number of entries currently in map

Capacity Maximum entries allowed in map

Usage Visual progress bar with percentage

Key Size Size of map keys in bytes

Value Size Size of map values in bytes

Color-Coded Usage Indicators

The usage progress bar is color-coded based on utilization:

Green (<50%): Normal operation, ample capacity

Yellow (50-70%): Caution, monitor growth

Amber (70-90%): Warning, plan capacity increase

Red (>90%): Critical, immediate action required

Critical Maps to Monitor

uplink_pdr_map:

Stores uplink PDRs keyed by TEID

One entry per uplink traffic flow



Critical: Exhaustion prevents new session establishment

downlink_pdr_map / downlink_pdr_map_ip6:

Stores downlink PDRs keyed by UE IP address

One entry per UE IPv4/IPv6 address

Critical: Exhaustion prevents new session establishment

far_map:

Stores forwarding action rules keyed by FAR ID

Shared across multiple PDRs

High Priority: Affects forwarding decisions

qer_map:

Stores QoS enforcement rules keyed by QER ID

Medium Priority: Affects QoS but not basic connectivity

urr_map:

Stores usage reporting rules keyed by URR ID

Low Priority: Affects charging but not connectivity

Use Cases

Capacity Planning:

1. Monitor map usage trends over time

2. Identify which maps are growing fastest

3. Plan capacity increases before reaching limits

Prevent Session Establishment Failures:

1. Check PDR map usage before expected traffic surge

2. Increase map capacity if approaching limits

3. Monitor after capacity increase to verify

Troubleshoot Session Failures:



1. When session establishment fails, check Capacity view

2. If PDR maps are red (>90%), capacity is exhausted

3. Increase map capacity or clear stale sessions

Optimize Map Configuration:

1. Review key and value sizes

2. Calculate memory usage per map

3. Optimize map sizes based on actual usage patterns

Capacity Configuration

eBPF map capacities are configured at UPF startup in the UPF configuration file.

Typical values:

Small deployment: 10,000 - 100,000 entries per map

Medium deployment: 100,000 - 1,000,000 entries per map

Large deployment: 1,000,000+ entries per map

Memory Calculation:

For example, a PDR map with 1 million entries and 64-byte values uses

approximately 64 MB of kernel memory.

Real-time Updates

Capacity view automatically refreshes every 10 seconds.

Configuration View

URL: /upf_config

Map Memory = (Key Size + Value Size) × Capacity



Features

The Configuration view displays UPF operational parameters and dataplane

configuration.

UPF Configuration

Displays static UPF configuration:

PFCP Interface: IP address and port for SMF/PGW-C connectivity

N3 Interface: IP address for RAN (gNB/eNodeB) connectivity

N6 Interface: IP address for data network connectivity

N9 Interface: IP address for inter-UPF communication (optional)

API Port: REST API listening port

Version: OmniUPF software version

Dataplane (eBPF) Configuration

Displays active runtime dataplane parameters:

Active N3 Address: Runtime N3 interface binding

Active N9 Address: Runtime N9 interface binding (if enabled)

These values reflect the actual eBPF datapath configuration and may differ

from static configuration if interfaces have been changed.

Use Cases

Verify UPF Connectivity:

1. Check N3 interface IP matches gNB configuration

2. Verify N6 interface can route to data network

3. Confirm PFCP interface is reachable from SMF

Troubleshoot Interface Issues:

1. Compare static config with dataplane active addresses

2. Verify interfaces are bound correctly



3. Check for interface configuration changes

Documentation and Audit:

1. Record UPF configuration for documentation

2. Verify deployment matches design specifications

3. Audit interface assignments

Routes View

URL: /routes

Features

The Routes view provides comprehensive monitoring of User Equipment (UE) IP

routes and routing protocol sessions (OSPF and BGP).

Route Status Overview

Dashboard displays aggregate route statistics:

Status: Routing enabled or disabled

Total Routes: Total number of UE IP routes

Synced: Number of successfully synced routes

Failed: Number of routes that failed to sync

Active UE IP Routes

Table displaying all active User Equipment IP routes:

Column Description

Index Route index number

UE IP Address IPv4 or IPv6 address assigned to the UE

Purpose:



View all UE IP addresses that have routes configured

Verify route distribution to routing protocols

Monitor route synchronization status

OSPF Neighbors

Table of OSPF (Open Shortest Path First) protocol neighbors:

Column Description

Neighbor ID OSPF router identifier

Address IP address of the OSPF neighbor

Interface Interface used for OSPF adjacency

State OSPF adjacency state (Full, Init, etc.)

Priority OSPF priority value

Up Time Duration the neighbor has been up

Dead Time Time until neighbor is considered dead

OSPF States:

Full (green): Fully adjacent and exchanging routing information

Other states (yellow): Adjacency forming or incomplete

BGP Peers

Table of BGP (Border Gateway Protocol) peers:



Column Description

Neighbor IP IP address of the BGP peer

ASN Autonomous System Number of the peer

State BGP session state (Established, Idle, etc.)

Up/Down Duration of current state

Prefixes Received Number of route prefixes received from peer

Msg Sent Total BGP messages sent to peer

Msg Rcvd Total BGP messages received from peer

BGP States:

Established (green): Active BGP session, exchanging routes

Other states (red): Session down or establishing

The header also displays the local BGP Router ID and ASN when BGP is

configured.

OSPF Redistributed Routes

Table showing OSPF External LSAs (Link State Advertisements) for redistributed

UE routes:



Column Description

Link State ID LSA identifier (typically the network address)

Mask Network mask for the route

Advertising Router Router ID advertising this external route

Metric Type OSPF external metric type (E1 or E2)

Metric OSPF cost metric for the route

Age Time since LSA was originated (seconds)

Seq Number LSA sequence number for versioning

Purpose:

Verify UE routes are being redistributed into OSPF

Monitor which router is advertising external routes

Track LSA aging and updates

Route Control Actions

Sync Routes Button:

Manually triggers route synchronization to FRR (Free Range Routing)

Forces update of routing protocol with current UE routes

Useful after configuration changes or to recover from sync failures

Refresh Button:

Manually refresh all route information

Updates OSPF neighbors, BGP peers, and route tables



Use Cases

Monitor Routing Protocol Health:

1. Navigate to Routes view

2. Check OSPF neighbor states (should be "Full")

3. Verify BGP peers are "Established"

4. Confirm expected number of neighbors/peers

Verify UE Route Distribution:

1. Check Active UE IP Routes table for specific UE

2. Scroll to OSPF Redistributed Routes section

3. Verify UE route appears in external LSAs

4. Confirm advertising router matches expected UPF

Troubleshoot Route Sync Issues:

1. Check Synced vs. Failed counters in status overview

2. If routes are failing, click "Sync Routes" button

3. Monitor error messages in red banner if sync fails

4. Check OSPF/BGP error messages in respective sections

Verify Multi-UPF Deployment:

1. Select different UPF instances from dropdown

2. Compare route counts across instances

3. Verify OSPF neighbors see each other

4. Check BGP peering relationships

Monitor Route Scaling:

1. Track total route count as UE sessions increase

2. Verify routes are distributed to routing protocols

3. Monitor OSPF LSA count growth

4. Check BGP prefix count received by peers



Real-time Updates

The Routes view automatically refreshes every 10 seconds to show current

routing protocol status and UE routes.

Routing Integration

The Routes view integrates with FRR (Free Range Routing) running on the UPF:

OSPF: Routes are redistributed as External Type-2 LSAs

BGP: Routes are advertised to configured BGP peers

Sync mechanism: REST API calls trigger vtysh commands to update FRR

XDP Capabilities View

URL: /xdp_capabilities

Features

The XDP Capabilities view displays eXpress Data Path (XDP) mode support,

performance capabilities, and throughput calculations for the UPF dataplane.

Interface Configuration

Displays network interface and driver information:



Field Description

Interface Name Network interface used for XDP (e.g., eth0, ens1f0)

Driver Network driver name (e.g., i40e, ixgbe, virtio_net)

Driver Version Driver version string

Current Mode Active XDP mode (DRV, SKB, or NONE)

Multi-Queue Count Number of NIC queue pairs for parallel processing

XDP Modes

The view displays all XDP modes with their support status and performance

characteristics:

XDP_DRV (Driver Mode):

Performance: ~5-10 Mpps (millions of packets per second)

Description: Native XDP support in driver, highest performance

Requires: NIC driver with native XDP support (i40e, ixgbe, mlx5, etc.)

Status: Supported if driver has XDP hooks

Indicator: Green checkmark (✓) if supported, red X (✗) if not

XDP_SKB (Generic Mode):

Performance: ~1-2 Mpps

Description: Fallback mode using kernel network stack

Requires: Any network interface

Status: Always supported

Indicator: Green checkmark (✓)

Current Mode Indicator:

Blue dot next to the currently active XDP mode

Shows which mode is actually in use



Unsupported Mode Reasons:

If a mode is unsupported, the "Reason" field explains why

Common reasons: driver lacks XDP support, interface type incompatibility

XDP Capabilities view showing interface configuration, supported modes, and

the interactive Mpps throughput calculator

Recommendations

The view displays a colored recommendation banner based on current

configuration:

Green (Optimal):

"✓ Optimal: XDP_DRV mode enabled with native driver support"

Highest performance mode is active

Yellow (Warning):

"⚠ Consider upgrading to XDP_DRV mode for better performance"



Running in generic mode when driver mode is available

"⚠ Warning: XDP_DRV not supported by this driver"

Hardware limitations prevent optimal performance

Blue (Informational):

General information about XDP configuration

Mpps Performance Calculator

Interactive calculator to convert packet rate (Mpps) to throughput (Gbps):

Input Parameters

Packet Rate (Mpps):

Range: 0.1 - 100 Mpps

Default: Maximum Mpps for current XDP mode

Represents millions of packets processed per second

Average Packet Size (bytes):

Range: 64 - 9000 bytes

Default: 1200 bytes (typical GTP packet)

Includes full packet with GTP encapsulation

Quick Preset Buttons:

64B (min): Minimum Ethernet frame size

128B: Small packets

256B: Control plane or signaling

512B: Medium-sized packets

1024B: Large packets

1518B (max): Maximum Ethernet frame size without jumbo frames

Calculation Results

Total Throughput (Gbps):



Wire-rate throughput including all headers

Formula: Gbps = Mpps × Packet_Size × 8 / 1000

Includes GTP, UDP, IP, and Ethernet headers

User Data Rate (Gbps):

Actual user payload throughput

Excludes ~50 bytes GTP encapsulation overhead

Formula: Gbps = Mpps × (Packet_Size - 50) / 1000

Packet Rate:

Displays Mpps and packets/sec with thousands separator

Example: 10 Mpps = 10,000,000 packets/sec

Formula Display:

Shows calculation breakdown step-by-step

Example: 10 Mpps × 1200 bytes × 8 bits/byte ÷ 1000 = 96 Gbps

Understanding Mpps

The view includes an explanation section covering:

What is Mpps:

Millions of Packets Per Second

Key metric for packet processing performance

Independent of packet size

Relationship to Throughput:

Same Mpps with larger packets = higher Gbps

Same Mpps with smaller packets = lower Gbps

Throughput depends on both rate and packet size

GTP Encapsulation Overhead:



Ethernet header: 14 bytes

IP header: 20 bytes (IPv4) or 40 bytes (IPv6)

UDP header: 8 bytes

GTP header: 8 bytes (minimum)

Total typical overhead: ~50 bytes per packet

Use Cases

Evaluate XDP Performance:

1. Navigate to XDP Capabilities view

2. Check current XDP mode (should be DRV for best performance)

3. Note the Mpps performance range

4. Review recommendation banner

Calculate Expected Throughput:

1. Enter expected packet rate in Mpps

2. Enter average packet size for your traffic profile

3. Review calculated throughput in Gbps

4. Compare to link capacity or performance requirements

Optimize XDP Configuration:

1. Check if XDP_DRV mode is supported but not active

2. Review driver version and compatibility

3. Follow recommendation to upgrade to driver mode if available

4. Verify multi-queue count matches CPU cores

Capacity Planning:

1. Use calculator to determine required Mpps for target throughput

2. Compare to current XDP mode capabilities

3. Determine if hardware upgrade needed

4. Plan interface and driver selection for new deployments

Troubleshoot Performance Issues:



1. Verify XDP mode is DRV, not SKB

2. Check driver version for known performance issues

3. Verify multi-queue count is sufficient

4. Calculate if current mode supports required throughput

Performance Optimization Tips

Driver Mode (XDP_DRV):

Use NICs with native XDP support (Intel i40e/ixgbe, Mellanox mlx5)

Update NIC drivers to latest version

Enable multi-queue (RSS) for parallel processing

Tune NIC ring buffer sizes

Generic Mode (XDP_SKB):

Acceptable for development and testing

Not recommended for production high-throughput

Consider hardware upgrade for production deployments

Multi-Queue Configuration:

Number of queues should match or exceed CPU core count

Enables parallel packet processing across cores

Distributes load via RSS (Receive Side Scaling)

Real-time Updates

XDP Capabilities view refreshes every 30 seconds to update interface status

and mode information.

Logs Viewer

URL: /logs



Features

View OmniUPF application logs in real-time from the control panel.

Features:

Live log streaming via Phoenix LiveView

Real-time updates as logs are generated

Scrollable log history

Useful for troubleshooting during active sessions

Log Levels

OmniUPF logs use standard Elixir Logger levels:

DEBUG: Detailed diagnostic information

INFO: General informational messages (default)

WARNING: Warning messages for non-critical issues

ERROR: Error messages for failures

Use Cases

Troubleshoot Session Establishment:

1. Open Logs view

2. Initiate session establishment from SMF

3. Watch for PFCP message logs and any errors

Monitor PFCP Communication:

1. View PFCP association setup messages

2. Track session creation/modification/deletion

3. Verify heartbeat messages

Debug Forwarding Issues:

1. Look for packet processing errors

2. Check eBPF map operation logs



3. Identify FAR/PDR configuration issues

Best Practices

Operational Guidelines

Monitoring:

Regularly check Capacity view to prevent map exhaustion

Monitor Statistics for unusual traffic patterns or drops

Track session count growth over time

Watch for XDP processing errors

Buffer Management:

Monitor buffers during handover scenarios

Clear stuck buffers if packets age beyond TTL

Verify buffering is disabled after handover completes

Use "Flush" instead of "Clear" to avoid packet loss

Session Management:

Use filters to quickly locate specific UE sessions

Expand sessions to verify rule configuration

Compare sessions across multiple UPF instances

Check health indicator before troubleshooting

Troubleshooting:

Use Logs for real-time debugging

Check Sessions view to verify UE connectivity

Verify Rules configuration for traffic flows

Monitor Statistics for packet drops or forwarding errors



Performance

Control panel auto-refresh is 5-10 seconds depending on view

Large session lists may take time to load

Rules view filters by active entries (non-zero volumes for URRs)

Buffer operations execute immediately on selected UPF

Related Documentation

Rules Management Guide - PDR, FAR, QER, URR configuration

Monitoring Guide - Statistics, metrics, and capacity planning

Metrics Reference - Complete Prometheus metrics reference

PFCP Cause Codes - PFCP error codes and session diagnostics

API Documentation - REST API reference and pagination

Routes Guide - UE routing and FRR integration details

XDP Modes Guide - Detailed XDP mode documentation and eBPF

information

Troubleshooting Guide - Common issues and diagnostics

UPF Operations Guide - General UPF operations and architecture



XDP Attachment Modes

for OmniUPF

Table of Contents

1. Overview

2. XDP Mode Comparison

3. Generic Mode (Default)

4. Native Mode (Recommended for Production)

5. Offload Mode (SmartNIC)

6. Enabling Native XDP on Proxmox VE

7. Enabling Native XDP on Other Hypervisors

8. Verifying XDP Mode

9. Troubleshooting XDP Issues

Overview

OmniUPF uses XDP (eXpress Data Path) for high-performance packet

processing. XDP is a Linux kernel technology that allows packet processing

programs (eBPF) to run at the earliest possible point in the network stack,

providing microsecond-level latency and millions of packets per second

throughput.

The XDP attachment mode determines where in the packet path the eBPF

program executes:



Choosing the right XDP mode significantly impacts OmniUPF performance and

determines whether you can achieve production-grade packet processing.



XDP Mode Comparison

Aspect Generic Mode Native Mode Offload Mode

Attach Point
Linux network

stack
Network driver NIC hardware

Performance ~1-2 Mpps ~5-10 Mpps ~10-40 Mpps

Latency ~100 μs ~10 μs ~1 μs

CPU Usage High Medium Low

NIC

Requirements
Any NIC

XDP-capable

driver

SmartNIC with

XDP support

Hypervisor

Support
All hypervisors

Most (requires

multi-queue)

Rare (PCI

passthrough)

Use Case
Testing,

development

Production

(recommended)

High-throughput

edge sites

Configuration
xdp_attach_mode:

generic

xdp_attach_mode:

native

xdp_attach_mod

offload

Recommendation: Use native mode for production deployments. Generic

mode is only suitable for testing.

Generic Mode (Default)

Description

Generic XDP runs the eBPF program in the Linux network stack after the driver

has processed the packet. This is the slowest XDP mode but works with any



network interface.

Performance Characteristics

Throughput: ~1-2 million packets per second (Mpps)

Latency: ~100 microseconds per packet

CPU Overhead: High (packet copied to kernel stack before XDP)

When to Use

Development and testing only

Lab environments where performance doesn't matter

Initial deployment to verify functionality before optimizing

Configuration

Warning: Generic mode is not suitable for production. It will bottleneck at

high packet rates and waste CPU resources.

Native Mode (Recommended for

Production)

Description

Native XDP runs the eBPF program inside the network driver, before packets

reach the Linux network stack. This provides near-hardware performance while

maintaining kernel-level flexibility.

# config.yaml

interface_name: [eth0]

xdp_attach_mode: generic  # Default mode



Performance Characteristics

Throughput: ~5-10 million packets per second (Mpps) per core

Latency: ~10 microseconds per packet

CPU Overhead: Low (packet processed at driver level)

Scaling: Linear scaling with CPU cores and NIC queues

When to Use

Production deployments (recommended)

Carrier-grade networks requiring high throughput

Edge computing scenarios with performance requirements

Any deployment where performance matters

NIC Driver Requirements

Native XDP requires a network driver with XDP support. Most modern NICs

support native XDP:

Physical NICs (bare metal):

Intel: ixgbe  (10G), i40e  (40G), ice  (100G)

Broadcom: bnxt_en

Mellanox: mlx4_en , mlx5_core

Netronome: nfp  (with offload support)

Marvell: mvneta , mvpp2

Virtual NICs (hypervisors):

VirtIO: virtio_net  (KVM, Proxmox, OpenStack) ✓

VMware: vmxnet3  ✓

Microsoft: hv_netvsc  (Hyper-V) ✓

Amazon: ena  (AWS) ✓

SR-IOV: ixgbevf , i40evf  (PCI passthrough) ✓

Note: VirtualBox does not support native XDP (use generic mode only).



Configuration

Multi-Queue Requirement: For optimal performance, enable multi-queue on

virtual NICs (see Proxmox section below).

Offload Mode (SmartNIC)

Description

Offload XDP runs the eBPF program directly on the NIC hardware

(SmartNIC), completely bypassing the CPU for packet processing. This provides

the highest performance but requires specialized hardware.

Performance Characteristics

Throughput: ~10-40 million packets per second (Mpps)

Latency: ~1 microsecond per packet

CPU Overhead: Near-zero (processing on NIC)

When to Use

Ultra-high-throughput deployments (10G+ per UPF instance)

Edge sites with hardware acceleration

Cost-sensitive deployments (reduce CPU requirements)

Hardware Requirements

Only Netronome Agilio SmartNICs currently support XDP offload:

Netronome Agilio CX 10G/25G/40G/100G

# config.yaml

interface_name: [eth0]

xdp_attach_mode: native



Note: Offload mode requires bare metal or PCI passthrough - not available

in standard VM configurations.

Configuration

Enabling Native XDP on Proxmox

VE

Proxmox VE uses VirtIO network devices for VMs, which support native XDP via

the virtio_net  driver. However, you must enable multi-queue for optimal

performance.

Step 1: Understanding the Requirement

Why Multi-Queue Matters:

Single queue (default): All network traffic processed by one CPU core →

bottleneck

Multi-queue: Traffic distributed across multiple CPU cores → linear scaling

# config.yaml

interface_name: [eth0]

xdp_attach_mode: offload



Multi-Queue (Optimal)

NIC

Queue 1 Queue 2 Queue 3 Queue 4

CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4

Single Queue (Default)

NIC

Queue 1

CPU Core 1

Bottleneck

Step 2: Enable Multi-Queue in Proxmox

Option A: Via Proxmox Web UI

1. Shutdown the VM completely (not just reboot)

Select your VM in the Proxmox web interface

Click Shutdown

2. Edit Network Device



Go to Hardware tab

Click on your network device (e.g., net0 )

Click Edit

3. Set Multiqueue

Find the "Multiqueue" field

Set to 8 (or match your vCPU count, max 16)

Click OK

4. Start the VM

Click Start

Option B: Via Proxmox Command Line

Queue Count Recommendations:

4 queues: Minimum for production (good for 2-4 vCPU VMs)

8 queues: Recommended for most deployments (4-8 vCPU VMs)

16 queues: Maximum for high-performance (8+ vCPU VMs)

# SSH to your Proxmox host

# Find your VM ID

qm list

# Set multi-queue (replace XXX with your VM ID)

qm set XXX -net0 virtio=XX:XX:XX:XX:XX:XX,bridge=vmbr0,queues=8

# Example for VM 191 with MAC BC:24:11:1D:BA:00

qm set 191 -net0 virtio=BC:24:11:1D:BA:00,bridge=vmbr0,queues=8

# Shutdown the VM

qm shutdown XXX

# Wait for shutdown, then start

qm start XXX



Step 3: Verify Multi-Queue Inside VM

After VM restart, SSH into the VM and verify:

Step 4: Enable Native XDP in OmniUPF

Edit the OmniUPF configuration:

Change XDP mode:

Restart OmniUPF:

# Check queue configuration

ethtool -l eth0

# Expected output:

# Channel parameters for eth0:

# Combined: 8        <-- Should match your configured value

# Count actual queues

ls -1d /sys/class/net/eth0/queues/rx-* | wc -l

ls -1d /sys/class/net/eth0/queues/tx-* | wc -l

# Both should show 8 (or your configured value)

# Edit config file

sudo nano /config.yaml

# Before

xdp_attach_mode: generic

# After

xdp_attach_mode: native

sudo systemctl restart omniupf



Step 5: Verify Native XDP is Active

Check logs:

Check via API:

Common Proxmox Issues

Issue: "Failed to attach XDP program"

Solution:

Verify multi-queue is enabled (ethtool -l eth0 )

Check kernel version: uname -r  (must be ≥ 5.15)

Ensure VirtIO driver loaded: lsmod | grep virtio_net

Issue: Only 1 queue despite configuration

Solution:

VM must be fully shutdown (not rebooted) for queue changes

Use qm shutdown XXX && sleep 5 && qm start XXX

Verify in Proxmox config: grep net0 /etc/pve/qemu-server/XXX.conf

# View startup logs

journalctl -u omniupf --since "1 minute ago" | grep -i 

"xdp\|attach"

# Expected output:

# xdp_attach_mode:native

# XDPAttachMode:native

# Attached XDP program to iface "eth0" (index 2)

# Query configuration

curl -s http://localhost:8080/api/v1/config | grep xdp_attach_mode

# Expected output:

# "xdp_attach_mode": "native",



Issue: Performance not improving with native mode

Solution:

Check CPU pinning (avoid oversubscription)

Monitor top  - CPU usage should spread across cores

Verify XDP stats: curl http://localhost:8080/api/v1/xdp_stats

Enabling Native XDP on Other

Hypervisors

VMware ESXi / vSphere

VMware uses vmxnet3  driver which supports native XDP.

Requirements:

ESXi 6.7 or later

vmxnet3 driver version 1.4.16+ in VM

VM hardware version 14 or later

Enable Multi-Queue:

1. Power off the VM

2. Edit VM settings:

Right-click VM → Edit Settings

Network Adapter → Advanced

Set Receive Side Scaling to Enabled

3. Edit .vmx file (optional, for more queues):

ethernet0.pnicFeatures = "4"

ethernet0.multiqueue = "8"



4. Start VM and verify:

Configure OmniUPF:

KVM / libvirt (Raw)

Enable Multi-Queue via virsh:

Add to network interface section:

Restart VM and verify:

Microsoft Hyper-V

Hyper-V uses hv_netvsc  driver which supports native XDP.

Requirements:

Windows Server 2016 or later

ethtool -l ens192  # Check queue count

interface_name: [ens192]  # VMware typically uses ens192

xdp_attach_mode: native

# Edit VM configuration

virsh edit your-vm-name

<interface type='network'>

  <source network='default'/>

  <model type='virtio'/>

  <driver name='vhost' queues='8'/>

</interface>

ethtool -l eth0



Linux Integration Services 4.3+ in VM

Generation 2 VM

Enable Multi-Queue:

PowerShell on Hyper-V host:

Configure OmniUPF:

VirtualBox

Warning: VirtualBox does NOT support native XDP.

Reason: VirtualBox network drivers (e1000, virtio-net) do not implement XDP

hooks.

Workaround: Use generic mode only:

Verifying XDP Mode

After configuring native XDP, verify it's working correctly:

# Set VMQ (Virtual Machine Queue) - Hyper-V's multi-queue

Set-VMNetworkAdapter -VMName "YourVM" -VrssEnabled $true -

VmmqEnabled $true

interface_name: [eth0]

xdp_attach_mode: native

xdp_attach_mode: generic  # Only option for VirtualBox



1. Check OmniUPF Logs

2. Check via API

3. Check XDP Statistics

# View recent logs

journalctl -u omniupf --since "5 minutes ago" | grep -i xdp

# Look for:

# ✓ "xdp_attach_mode:native"

# ✓ "Attached XDP program to iface"

# ✗ "Failed to attach" or "falling back to generic"

# Query configuration endpoint

curl -s http://localhost:8080/api/v1/config | jq .xdp_attach_mode

# Expected output:

# "native"

# View XDP processing stats

curl -s http://localhost:8080/api/v1/xdp_stats | jq

# Example output:

{

  "xdp_aborted": 0,      # Should be 0 (errors)

  "xdp_drop": 1234,      # Dropped packets

  "xdp_pass": 5678,      # Passed to stack

  "xdp_redirect": 9012,  # Redirected packets

  "xdp_tx": 3456         # Transmitted packets

}



4. Verify Driver Support

5. Performance Test

Compare packet processing before and after:

Troubleshooting XDP Issues

Issue: "Failed to attach XDP program" on

Startup

Symptoms:

Diagnosis:

1. Check driver support:

# Check if driver supports XDP

ethtool -i eth0 | grep driver

# For Proxmox/KVM: Should show "virtio_net"

# For VMware: Should show "vmxnet3"

# For Hyper-V: Should show "hv_netvsc"

# Monitor packet rate

watch -n 1 'curl -s http://localhost:8080/api/v1/packet_stats | jq 

.rx_packets'

# Generic mode: ~1-2 Mpps

# Native mode: ~5-10 Mpps (5-10x improvement)

Error: failed to attach XDP program to interface eth0



2. Check kernel version:

3. Check for existing XDP programs:

Solution:

Update kernel to 5.15+ if older

Ensure virtio_net driver is loaded: modprobe virtio_net

Fall back to generic mode if driver doesn't support native XDP

Issue: Native Mode Falls Back to Generic

Symptoms:

Diagnosis:

Check dmesg  for driver errors:

ethtool -i eth0 | grep driver

# If driver is not virtio_net/vmxnet3/hv_netvsc, native XDP 

won't work

uname -r

# Must be >= 5.15 for reliable XDP support

ip link show eth0 | grep xdp

# If another XDP program is attached, unload it first

ip link set dev eth0 xdp off

Warning: falling back to generic XDP mode



Common causes:

1. Driver doesn't support native XDP:

VirtualBox drivers (no native XDP support)

Older NIC drivers

2. Multi-queue not enabled:

Check: ethtool -l eth0

Should show > 1 combined queue

3. Kernel XDP support disabled:

Solution:

Enable multi-queue (see Proxmox section)

Update to supported driver

Rebuild kernel with XDP support if necessary

Issue: Performance Not Improving with Native

Mode

Symptoms: Native mode enabled but packet rate same as generic mode

Diagnosis:

1. Verify multi-queue distribution:

dmesg | grep -i xdp | tail -20

# Check if XDP is enabled in kernel

grep XDP /boot/config-$(uname -r)

# Should show:

# CONFIG_XDP_SOCKETS=y

# CONFIG_BPF=y



2. Check CPU utilization:

3. Verify XDP is actually running in native mode:

Solution:

Increase queue count (8-16 queues)

Enable CPU pinning to prevent core migration

Check for CPU oversubscription on hypervisor

Issue: XDP Program Aborted (xdp_aborted > 0)

Symptoms:

Diagnosis:

# Check per-queue statistics

ethtool -S eth0 | grep rx_queue

# Traffic should be distributed across multiple queues

# Monitor CPU usage per core

mpstat -P ALL 1

# Should see load spread across multiple CPUs

# Check bpftool (if available)

sudo bpftool net list

# Should show XDP attached to interface

curl http://localhost:8080/api/v1/xdp_stats

{

  "xdp_aborted": 1234,  # Non-zero indicates errors

  ...

}



XDP aborted means the eBPF program hit an error during execution.

1. Check eBPF verifier logs:

2. Check for map size limits:

Solution:

Increase eBPF map sizes in configuration

Check for corrupted packets causing eBPF errors

Verify Linux kernel eBPF support is complete

Issue: Multi-Queue Not Working on Proxmox

Symptoms: ethtool -l eth0  shows only 1 queue despite configuration

Diagnosis:

1. Check Proxmox VM config:

2. Verify VM was fully shutdown:

dmesg | grep -i bpf | tail -20

# eBPF maps may be full

curl http://localhost:8080/api/v1/map_info

# Look for maps at 100% capacity

# On Proxmox host

grep net0 /etc/pve/qemu-server/YOUR_VM_ID.conf

# Should show: queues=8



Solution:

Important: Changes to queue count require a full VM shutdown, not just a

reboot from inside the VM.

Issue: Permission Denied When Attaching XDP

Symptoms:

Diagnosis:

XDP operations require CAP_NET_ADMIN  and CAP_SYS_ADMIN  capabilities.

Solution:

1. Run OmniUPF as root (or with capabilities):

2. If using systemd, verify service file has capabilities:

# On Proxmox host

qm status YOUR_VM_ID

# Must show "status: stopped" before starting

# On Proxmox host

# Force shutdown and restart

qm shutdown YOUR_VM_ID

sleep 10

qm start YOUR_VM_ID

# Then check inside VM

ethtool -l eth0

Error: permission denied when attaching XDP program

sudo systemctl restart omniupf



3. If using Docker, run with --privileged :

Performance Impact Summary

Real-world performance comparison for OmniUPF packet processing:

Scenario
Generic

Mode
Native Mode Improvement

Packet Rate 1.5 Mpps 8.2 Mpps 5.5x faster

Latency 95 μs 12 μs 8x lower

CPU Usage (1

Gbps)
85% (1 core)

15%

(distributed)

5x more

efficient

Max Throughput ~1.2 Gbps ~10 Gbps 8x higher

Recommendation: Always use native mode with multi-queue enabled for

production deployments.

# /lib/systemd/system/omniupf.service

[Service]

CapabilityBoundingSet=CAP_NET_ADMIN CAP_SYS_ADMIN CAP_NET_RAW

AmbientCapabilities=CAP_NET_ADMIN CAP_SYS_ADMIN CAP_NET_RAW

docker run --privileged -v /sys/fs/bpf:/sys/fs/bpf ...



Hardware Recommendations for

XDP

⚠️ IMPORTANT: Before purchasing any hardware, consult with

Omnitouch support to confirm it's 100% compatible with your specific

configuration and deployment requirements.

Known Good NICs for Native XDP

These NICs are verified to support native XDP mode with OmniUPF:

Intel NICs (Recommended for Bare Metal)

Model Speed Driver
XDP

Support
Notes

Intel

X520
10GbE ixgbe Native ✓

Proven, widely available,

good price/performance

Intel

X710
10/40GbE i40e Native ✓

Excellent multi-queue

support

Intel

E810
100GbE ice Native ✓

Latest generation, best

performance

Intel

i350
1GbE igb

Native ✓

(kernel

5.10+)

Good for lower bandwidth

needs

Mellanox/NVIDIA NICs (High Performance)



Model Speed Driver
XDP

Support
Notes

ConnectX-

4
25/50/100GbE mlx5 Native ✓

High throughput,

good for edge

computing

ConnectX-

5
25/50/100GbE mlx5 Native ✓

Excellent

performance,

hardware

acceleration

ConnectX-

6
50/100/200GbE mlx5 Native ✓

Latest generation,

best for ultra-high

throughput

BlueField-

2
100/200GbE mlx5 Native ✓

SmartNIC with DPU

capabilities

Broadcom NICs

Model Speed Driver
XDP

Support
Notes

BCM57xxx

series
10/25/50GbE bnxt_en Native ✓

Common in

Dell/HP servers

Virtual NICs (VM Deployments)



Platform
NIC

Type
Driver

XDP

Support
Multi-Queue N

Proxmox/KVM VirtIO virtio_net Native ✓
Yes

(configurable)
Best

VMware ESXi vmxnet3 vmxnet3 Native ✓ Yes
Requ

6.7+

Hyper-V
Synthetic

NIC
hv_netvsc Native ✓ Yes

Wind

Serve

AWS ENA ena Native ✓ Yes
EC2 m

insta

VirtualBox Any various
Generic

only ❌
No

Not

recom

for pr

NICs with Hardware Offload Support

True XDP hardware offload (eBPF runs on NIC):

Vendor Model Speed Notes

Netronome Agilio CX 10G 10GbE
Only confirmed XDP offload

support

Netronome Agilio CX 25G 25GbE Requires special firmware

Netronome Agilio CX 40G 40GbE Very expensive (~$2,500-5,000)

Netronome
Agilio CX

100G
100GbE Enterprise-grade only



Note: Hardware offload NICs are rare, expensive, and require bare metal

deployment. Most deployments should use native XDP instead.

Tested Configurations

These configurations have been verified with OmniUPF in production:

Budget Option (1-10 Gbps)

NIC: Intel X520 (10GbE dual-port)

Mode: Native XDP

Throughput: ~8-10 Gbps per UPF instance

Cost: ~$100-200 (used/refurbished)

Mid-Range (10-50 Gbps)

NIC: Intel X710 (40GbE) or Mellanox ConnectX-4 (25GbE)

Mode: Native XDP

Throughput: ~25-40 Gbps per UPF instance

Cost: ~$300-800

High-End (50-100+ Gbps)

NIC: Mellanox ConnectX-5/6 (100GbE)

Mode: Native XDP

Throughput: ~80-100 Gbps per UPF instance

Cost: ~$1,000-2,500

VM Deployments (Proxmox/KVM)

NIC: VirtIO with 8-16 queues

Mode: Native XDP

Throughput: ~5-10 Gbps per UPF instance

Cost: No additional hardware cost



What NOT to Buy

Avoid these for production OmniUPF deployments:

NIC/Platform Reason Alternative

Realtek NICs
No XDP support, poor

Linux drivers
Intel i350 or better

VirtualBox No native XDP support
Migrate to

Proxmox/KVM

Consumer-grade

NICs

Limited queue support,

unreliable

Server-grade

Intel/Mellanox

Very old NICs

(<2014)
No XDP driver support Intel X520 or newer

Pre-Purchase Checklist

Before buying hardware, verify:

1. � Driver Support: Check if Linux driver supports XDP

2. � Kernel Version: Ensure kernel ≥ 5.15 for reliable XDP

3. � Multi-Queue: Verify NIC supports multiple queues (RSS/VMDq)

4. � PCI Bandwidth: Ensure PCIe slot has sufficient lanes

10GbE: PCIe 2.0 x4 minimum

# On similar system

modinfo <driver_name> | grep -i xdp

uname -r



40GbE: PCIe 3.0 x8 minimum

100GbE: PCIe 3.0 x16 or PCIe 4.0 x8

5. � Deployment Type:

Bare metal: Physical NIC required

VM: VirtIO or SR-IOV support needed

Container: Host NIC configuration inherited

⚠️ Don't buy hardware based solely on this guide - always confirm with

Omnitouch support first!

Additional Resources

Configuration Guide: CONFIGURATION.md - Complete configuration

reference

Troubleshooting Guide: TROUBLESHOOTING.md - Comprehensive

problem diagnosis

Architecture Guide: ARCHITECTURE.md - eBPF and XDP architecture

details

Monitoring Guide: MONITORING.md - Performance monitoring and

statistics



Quick Reference

Proxmox Native XDP Setup (TL;DR)

Verify XDP Mode is Active

# On Proxmox host:

qm set <VM_ID> -net0 virtio=<MAC>,bridge=vmbr0,queues=8

qm shutdown <VM_ID> && sleep 10 && qm start <VM_ID>

# Inside VM:

ethtool -l eth0  # Verify 8 queues

sudo nano /etc/omniupf/config.yaml  # Set: xdp_attach_mode: native

sudo systemctl restart omniupf

journalctl -u omniupf --since "1 min ago" | grep xdp  # Verify 

native mode

# Check configuration

curl -s http://localhost:8080/api/v1/config | grep xdp_attach_mode

# Check statistics

curl -s http://localhost:8080/api/v1/xdp_stats | jq

# Check queues

ethtool -l eth0



OmniUPF Operations

Guide

Table of Contents

1. Overview

2. Understanding 5G User Plane Architecture

3. UPF Components

4. PFCP Protocol and SMF Integration

5. Common Operations

6. Troubleshooting

7. Additional Documentation

8. Glossary

Overview

OmniUPF (eBPF-based User Plane Function) is a high-performance 5G/LTE User

Plane Function that provides carrier-grade packet forwarding, QoS enforcement,

and traffic management for mobile networks. Built on Linux eBPF (extended

Berkeley Packet Filter) technology and enhanced with comprehensive

management capabilities, OmniUPF delivers the core packet processing

infrastructure required for 5G SA, 5G NSA, and LTE networks.

What is a User Plane Function?

The User Plane Function (UPF) is the 3GPP-standardized network element

responsible for packet processing and forwarding in 5G and LTE networks. It

provides:

High-speed packet forwarding between mobile devices and data

networks

Quality of Service (QoS) enforcement for different traffic types



Traffic detection and routing based on packet filters and rules

Usage reporting for charging and analytics

Packet buffering for mobility and session management scenarios

Lawful intercept support for regulatory compliance

OmniUPF implements the full UPF functionality defined in 3GPP TS 23.501 (5G)

and TS 23.401 (LTE), providing a complete, production-ready user plane

solution using Linux kernel eBPF technology for maximum performance.

OmniUPF Key Capabilities

Packet Processing:

Full 3GPP-compliant user plane packet processing

eBPF-based datapath for kernel-level performance

GTP-U (GPRS Tunneling Protocol) encapsulation and decapsulation

IPv4 and IPv6 support for both access and data networks

XDP (eXpress Data Path) for ultra-low latency processing

Multi-threaded packet processing

QoS and Traffic Management:

QoS Enforcement Rules (QER) for bandwidth management

Packet Detection Rules (PDR) for traffic classification

Forwarding Action Rules (FAR) for routing decisions

Service Data Flow (SDF) filtering for application-specific routing

Usage Reporting Rules (URR) for volume tracking and charging

Control and Management:

PFCP (Packet Forwarding Control Protocol) interface to SMF/PGW-C

RESTful API for monitoring and diagnostics

Real-time statistics and metrics

eBPF map capacity monitoring

Web-based control panel



Performance Features:

Zero-copy packet processing via eBPF

Kernel-level packet forwarding (no userspace overhead)

Multi-core scalability

Offload-capable for hardware acceleration

Optimized for cloud-native deployments

For detailed control panel usage, see Web UI Operations.

Understanding User Plane

Architecture

OmniUPF is a unified user plane solution providing carrier-grade packet

forwarding for 5G Standalone (SA), 5G NSA, and 4G LTE/EPC networks.

OmniUPF is a single product that can simultaneously function as:

UPF (User Plane Function) - 5G/NSA user plane (controlled by OmniSMF

via N4/PFCP)

PGW-U (PDN Gateway User Plane) - 4G EPC gateway to external

networks (controlled by OmniPGW-C via Sxc/PFCP)

SGW-U (Serving Gateway User Plane) - 4G EPC serving gateway

(controlled by OmniSGW-C via Sxb/PFCP)

OmniUPF can operate in any combination of these modes:

UPF-only: Pure 5G deployment

PGW-U + SGW-U: Combined 4G gateway (typical EPC deployment)

UPF + PGW-U + SGW-U: Simultaneous 4G and 5G support (migration

scenario)

All modes use the same eBPF-based packet processing engine and PFCP

protocol, providing consistent high performance whether operating as UPF,

PGW-U, SGW-U, or all three simultaneously.



5G Network Architecture (SA Mode)

The OmniUPF solution sits at the data plane of 5G networks, providing the high-

speed packet forwarding layer that connects mobile devices to data networks

and services.

4G LTE/EPC Network Architecture

OmniUPF also supports 4G LTE and EPC (Evolved Packet Core) deployments,

functioning as either OmniPGW-U or OmniSGW-U depending on the network

architecture.



Combined PGW-U/SGW-U Mode (Typical 4G Deployment)

In this mode, OmniUPF acts as both SGW-U and PGW-U, controlled by separate

control plane functions.

Data Networks

Control Plane Gateways

EPC - User Plane

EPC - Control PlaneRadio Access Network

User Data

GTP-U

S1-U Interface

GTP-U Tunnel

SGi Interface

Native IP

S11

Sxb PFCP

Session Control

Sxc PFCP

Session Control

S11 Gx

Gy

S6a

UE

Mobile Device

eNodeB

LTE Base Station

MME

Mobility Management

OmniPCF

Policy & Charging Rules

HSS

Subscriber Database

OCS

Online Charging

OmniUPF

Functions as PGW-U + 

SGW-U

OmniPGW-C

PDN Gateway Control

OmniSGW-C

Serving Gateway Control

PDN

Internet/IMS/Enterprise

Separated SGW-U and PGW-U Mode (Roaming/Multi-Site)

In roaming or multi-site deployments, two separate OmniUPF instances can be

deployed - one as SGW-U and one as PGW-U.



N9 Loopback Mode (Single Instance SGWU+PGWU)

For simplified deployments, OmniUPF can run both SGWU and PGWU roles

on a single instance with N9 loopback processing entirely in eBPF.

Data Networks

Control Plane Gateways

EPC - User Plane

EPC - Control PlaneRadio Access Network

User Data

GTP-U

S1-U Interface

GTP-U Tunnel

N9 Loopback

In-Memory

Zero Network Hops

SGi Interface

Native IP

S11 S11

Sxb PFCP Sxc PFCP

Gx

UE

Mobile Device

eNodeB

LTE Base Station

MME

Mobility Management

OmniPCF

Policy & Charging Rules

OmniUPF Single 

Instance

Functions as PGW-U + 

SGW-U

N9 Loopback Enabled

OmniSGW-C

Serving Gateway Control

OmniPGW-C

PDN Gateway Control

PDN

Internet/IMS/Enterprise

Key Features:

� Sub-microsecond N9 latency - Processed entirely in eBPF, never

touches network

� 40-50% CPU reduction - Single XDP pass vs. two separate instances

� Simplified deployment - One instance, one configuration file

� Automatic detection - When n3_address  = n9_address , loopback is

enabled

� Full 3GPP compliance - Standard PFCP and GTP-U protocols

Configuration:



When to use:

Edge computing deployments (minimize latency)

Cost-constrained environments (single server)

Lab/testing (simplified setup)

Small to medium deployments (< 100K subscribers)

When NOT to use:

Geographic redundancy required (SGWU and PGWU in different locations)

Regulatory mandates for separated gateways

Massive scale (> 1M subscribers)

For complete details, configuration examples, troubleshooting, and

performance metrics, see N9 Loopback Operations Guide.

How User Plane Functions Work in the Network

The user plane function (OmniUPF, OmniPGW-U, or OmniSGW-U) operates as

the forwarding plane controlled by the respective control plane:

1. Session Establishment

5G: OmniSMF establishes PFCP association via N4 interface with

OmniUPF

4G: OmniPGW-C or OmniSGW-C establishes PFCP association via

Sxb/Sxc with OmniPGW-U/OmniSGW-U

Control plane creates PFCP sessions for each UE PDU session (5G) or

PDP context (4G)

# OmniUPF config.yml

interface_name: [eth0]

n3_address: "10.0.1.10"      # S1-U interface IP

n9_address: "10.0.1.10"      # Same IP enables N9 loopback

pfcp_address: ":8805"         # Both SGWU-C and PGWU-C connect 

here



User plane receives PDR, FAR, QER, and URR rules via PFCP

eBPF maps are populated with forwarding rules

2. Uplink Packet Processing (UE → Data Network)

5G: Packets arrive on N3 interface from gNB with GTP-U encapsulation

4G: Packets arrive on S1-U interface (SGW-U) or S5/S8 interface (PGW-

U) from eNodeB with GTP-U encapsulation

User plane matches packets against uplink PDRs based on TEID

eBPF program applies QER (rate limiting, marking)

FAR determines forwarding action (forward, drop, buffer, duplicate)

GTP-U tunnel removed, packets forwarded to N6 (5G) or SGi (4G)

interface

URR tracks packet and byte counts for charging

3. Downlink Packet Processing (Data Network → UE)

5G: Packets arrive on N6 interface as native IP

4G: Packets arrive on SGi interface as native IP

User plane matches packets against downlink PDRs based on UE IP

address

SDF filters may further classify traffic by port, protocol, or application

FAR determines GTP-U tunnel and forwarding parameters

GTP-U encapsulation added with appropriate TEID

5G: Packets forwarded to N3 interface toward gNB

4G: Packets forwarded to S1-U (SGW-U) or S5/S8 (PGW-U) toward

eNodeB

4. Mobility and Handover

5G: OmniSMF updates PDR/FAR rules during handover scenarios

4G: OmniSGW-C/OmniPGW-C updates rules during inter-eNodeB

handover or TAU (Tracking Area Update)

User plane may buffer packets during path switch

Seamless transition between base stations without packet loss



Integration with Control Plane (4G and 5G)

OmniUPF integrates with both 5G and 4G control plane functions via standard

3GPP interfaces:

5G Interfaces

Interface From → To Purpose
3GPP

Spec

N4
OmniSMF ↔

OmniUPF

PFCP session establishment,

modification, deletion

TS

29.244

N3 gNB → OmniUPF
User plane traffic from RAN

(GTP-U)

TS

29.281

N6
OmniUPF →

Data Network

User plane traffic to DN (native

IP)

TS

23.501

N9
OmniUPF ↔

OmniUPF

Inter-UPF communication for

roaming/edge

TS

23.501

4G/EPC Interfaces



Interface From → To Purpose
3GPP

Spec

Sxb

OmniSGW-C ↔

OmniUPF (SGW-U

mode)

PFCP session control for

serving gateway

TS

29.244

Sxc

OmniPGW-C ↔

OmniUPF (PGW-U

mode)

PFCP session control for

PDN gateway

TS

29.244

S1-U
eNodeB → OmniUPF

(SGW-U mode)

User plane traffic from

RAN (GTP-U)

TS

29.281

S5/S8
OmniUPF (SGW-U) ↔

OmniUPF (PGW-U)

Inter-gateway user

plane (GTP-U)

TS

29.281

SGi
OmniUPF (PGW-U

mode) → PDN

User plane traffic to

data network (native IP)

TS

23.401

Note: All PFCP interfaces (N4, Sxb, Sxc) use the same PFCP protocol defined in

TS 29.244. The interface names differ but the protocol and message formats

are identical.

UPF Components

eBPF Datapath

The eBPF datapath is the core packet processing engine that runs in the

Linux kernel for maximum performance.

Core Functions:

GTP-U Processing: Encapsulation and decapsulation of GTP-U tunnels

Packet Classification: Matching packets against PDR rules using TEID, UE

IP, or SDF filters



QoS Enforcement: Apply rate limiting and packet marking per QER rules

Forwarding Decisions: Execute FAR actions (forward, drop, buffer,

duplicate, notify)

Usage Tracking: Increment URR counters for volume-based charging

eBPF Maps: The datapath uses eBPF maps (hash tables in kernel memory) for

rule storage:

Map Name Purpose Key Value

uplink_pdr_map Uplink PDRs
TEID (32-

bit)

PDR info (FAR ID,

QER ID, URR IDs)

downlink_pdr_map
Downlink

PDRs (IPv4)

UE IP

address
PDR info

downlink_pdr_map_ip6
Downlink

PDRs (IPv6)

UE IPv6

address
PDR info

far_map
Forwarding

rules
FAR ID

Forwarding

parameters (action,

tunnel info)

qer_map QoS rules QER ID

QoS parameters

(MBR, GBR,

marking)

urr_map
Usage

tracking
URR ID

Volume counters

(uplink, downlink,

total)

sdf_filter_map SDF filters PDR ID
Application filters

(ports, protocols)

Performance Characteristics:

Zero-copy: Packets processed entirely in kernel space



XDP support: Attach at network driver level for sub-microsecond latency

Multi-core: Scales across CPU cores with per-CPU map support

Capacity: Millions of PDRs/FARs in eBPF maps (limited by kernel memory)

For capacity monitoring, see Capacity Management.

PFCP Interface Handler

The PFCP interface implements 3GPP TS 29.244 for communication with SMF

or PGW-C.

Core Functions:

Association Management: PFCP heartbeat and association setup/release

Session Lifecycle: Create, modify, and delete PFCP sessions

Rule Installation: Translate PFCP IEs into eBPF map entries

Event Reporting: Notify SMF of usage thresholds, errors, or session

events

PFCP Message Support:



Message Type Direction Purpose

Association Setup SMF → UPF Establish PFCP control association

Association

Release
SMF → UPF Tear down PFCP association

Heartbeat Bidirectional Keep association alive

Session

Establishment
SMF → UPF

Create new PDU session with

PDR/FAR/QER/URR

Session

Modification
SMF → UPF

Update rules for mobility, QoS

changes

Session Deletion SMF → UPF
Remove session and all associated

rules

Session Report UPF → SMF Report usage, errors, or events

Information Elements (IE) Supported:

Create PDR, FAR, QER, URR

Update PDR, FAR, QER, URR

Remove PDR, FAR, QER, URR

Packet Detection Information (UE IP, F-TEID, SDF filter)

Forwarding Parameters (network instance, outer header creation)

QoS Parameters (MBR, GBR, QFI)

Usage Report Triggers (volume threshold, time threshold)

REST API Server

The REST API provides programmatic access to UPF state and operations.

Core Functions:



Session Monitoring: Query active PFCP sessions and associations

Rule Inspection: View PDR, FAR, QER, URR configurations

Statistics: Retrieve packet counters, route stats, XDP stats

Buffer Management: View and control packet buffers

Map Information: Monitor eBPF map usage and capacity

API Endpoints: (34 total endpoints)



Category Endpoints Description

Health /health
Health check and

status

Config /config UPF configuration

Sessions
/pfcp_sessions ,

/pfcp_associations

PFCP

session/association

data

PDRs

/uplink_pdr_map ,

/downlink_pdr_map ,

/downlink_pdr_map_ip6 ,

/uplink_pdr_map_ip6

Packet detection

rules

FARs /far_map
Forwarding action

rules

QERs /qer_map
QoS enforcement

rules

URRs /urr_map Usage reporting rules

Buffers /buffer
Packet buffer status

and control

Statistics
/packet_stats , /route_stats ,

/xdp_stats , /n3n6_stats
Performance metrics

Capacity /map_info
eBPF map capacity

and usage

Dataplane /dataplane_config
N3/N9 interface

addresses

For API details and usage, see Monitoring Guide.



Web Control Panel

The Web Control Panel provides a real-time dashboard for UPF monitoring

and management.

Features:

Sessions View: Browse active PFCP sessions with UE IP, TEID, and rule

counts

Rules Management: View and manage PDRs, FARs, QERs, and URRs

across all sessions

Buffer Monitoring: Track buffered packets and control buffering per FAR

Statistics Dashboard: Real-time packet, route, XDP, and N3/N6 interface

statistics

Capacity Monitoring: eBPF map usage with color-coded capacity

indicators

Configuration View: Display UPF configuration and dataplane addresses

Logs Viewer: Live log streaming for troubleshooting

For detailed UI operations, see Web UI Operations Guide.

PFCP Protocol and SMF Integration

PFCP Association

Before sessions can be created, the SMF must establish a PFCP association with

the UPF.

Association Lifecycle:



OmniUPFSMF/PGW-C

OmniUPFSMF/PGW-C

loop [Heartbeat (every 60s)]

Association remains active

PFCP Association Setup Request

Validate node capabilities

PFCP Association Setup Response (Node ID, features)

PFCP Heartbeat Request

PFCP Heartbeat Response

PFCP Association Release Request

Clean up all sessions

PFCP Association Release Response

Key Points:

Each SMF establishes one association with the UPF

UPF tracks association by Node ID (FQDN or IP address)

Heartbeat messages maintain association liveness

All sessions under an association are deleted if association is released

For viewing associations, see Sessions View.



SMF Restart Detection and Orphaned Session

Cleanup

OmniUPF automatically detects when an SMF restarts and cleans up orphaned

sessions per 3GPP TS 29.244 specifications.

How It Works:

When an SMF establishes a PFCP association, it provides a Recovery

Timestamp indicating when it started. OmniUPF stores this timestamp for

each association. If the SMF restarts:

1. SMF loses all session state in memory

2. SMF re-establishes PFCP association with UPF

3. SMF sends new Recovery Timestamp (different from before)

4. UPF detects the timestamp change = SMF restarted

5. UPF automatically deletes all orphaned sessions from the old SMF

instance

6. SMF creates fresh sessions for active subscribers

Restart Detection Flow:



Log Example:

When an SMF restarts, you'll see:

Important Notes:

WARN: Association with NodeID: smf-1 and address: 192.168.1.10 

already exists

WARN: SMF Recovery Timestamp changed (old: 2025-01-15T10:00:00Z, 

new: 2025-01-15T10:30:15Z) - SMF restarted, deleting 245 orphaned 

sessions

INFO: Deleting orphaned session 2 (LocalSEID) due to SMF restart

INFO: Deleting orphaned session 3 (LocalSEID) due to SMF restart

...

INFO: Deleting orphaned session 246 (LocalSEID) due to SMF restart



1. Isolation: Only the restarted SMF's sessions are deleted. Other SMF

associations and their sessions are not affected.

2. Timestamp Comparison: If the Recovery Timestamp is identical,

sessions are retained (SMF reconnected without restarting).

3. 3GPP Compliance: This behavior is mandated by 3GPP TS 29.244 Section

5.22.2:

"If the Recovery Time Stamp of the CP function has changed since the

last Association Setup, the UP function shall consider that the CP

function has restarted and shall delete all the PFCP sessions associated

with that CP function."

For troubleshooting orphaned sessions, see Orphaned Session Detection.

GTP-U Error Indication Handling

OmniUPF handles GTP-U Error Indication messages from downstream peers

(PGW-U, SGW-U, eNodeB, gNodeB) per 3GPP TS 29.281 specifications.

What Are Error Indications:

When OmniUPF forwards a GTP-U packet to a remote peer (e.g., PGW-U in SGW-

U deployment), the peer may send back an Error Indication if it doesn't

recognize the TEID (Tunnel Endpoint Identifier). This indicates:

The remote peer has restarted and lost tunnel state

The tunnel was never created on the remote side (configuration mismatch)

The tunnel was already deleted on the remote side

How It Works:

1. UPF forwards packet → Sends GTP-U packet with TEID X to remote peer

(port 2152)

2. Remote peer doesn't recognize TEID X → Looks up TEID in its tunnel

table, not found



3. Remote peer sends Error Indication → GTP-U message type 26 with IE

containing erroneous TEID

4. UPF receives Error Indication → Parses message to extract TEID X

5. UPF finds affected sessions → Searches all sessions for FARs forwarding

to TEID X

6. UPF deletes sessions → Removes sessions from eBPF maps and PFCP

state

7. UPF updates metrics → Increments Prometheus counters for monitoring

Error Indication Flow:



PGW-U
OmniUPF

(SGW-U role)
UE

PGW-U
OmniUPF

(SGW-U role)
UE

PGW-U has active tunnel

TEID: 0x12345678

Forwards normally

⚠️ PGW-U RESTARTS

Loses all tunnel state!

Stopped forwarding to

dead tunnel TEID 0x12345678

Uplink data packet

GTP-U G-PDU

(TEID: 0x12345678)

Uplink data packet

GTP-U G-PDU

(TEID: 0x12345678)

Lookup TEID 0x12345678

❌ NOT FOUND

⚠️ GTP-U Error Indication

(Erroneous TEID: 0x12345678)

Parse Error Indication

Extract TEID: 0x12345678

Find sessions with FAR

forwarding to TEID 0x12345678

Delete affected sessions

- Remove from eBPF maps

- Clear PFCP state

Update metrics:

error_indications_received++

sessions_deleted++



Packet Format (3GPP TS 29.281 Section 7.3.1):

When This Matters:

Scenario 1: PGW-U Restart in S5/S8 GTP Architecture

SGW-U (OmniUPF) forwards S5/S8 traffic to PGW-U

PGW-U restarts and loses all S5/S8 tunnel state

SGW-U continues forwarding to old TEIDs

PGW-U sends Error Indications

SGW-U automatically stops using dead tunnels

Scenario 2: Peer UPF Restart in N9 Architecture

UPF-1 (OmniUPF) forwards N9 traffic to UPF-2

UPF-2 restarts

UPF-1 receives Error Indications

UPF-1 cleans up sessions

Log Example:

GTP-U Error Indication:

┌─────────────────────────────────────────┐

│ GTP-U Header (12 bytes)                 │

├─────────────────────────────────────────┤

│ Version, PT, Flags        │ 0x32        │

│ Message Type              │ 26 (0x1A)   │

│ Length                    │ 9 bytes     │

│ TEID                      │ 0 (always)  │

│ Sequence Number           │ varies      │

│ N-PDU Number              │ 0           │

│ Next Extension Header     │ 0           │

├─────────────────────────────────────────┤

│ IE: TEID Data I (5 bytes)               │

├─────────────────────────────────────────┤

│ Type                      │ 16 (0x10)   │

│ Erroneous TEID            │ 4 bytes     │

└─────────────────────────────────────────┘



When receiving an Error Indication:

Prometheus Metrics:

Monitor Error Indication activity with per-peer and per-node granularity:

Metric Labels:

node_id : PFCP Node ID from the association (or "unknown" if no

association exists)

peer_address : IP address of the remote peer

These metrics help identify problematic peers and track Error Indication

patterns per control plane node.

Important Notes:

1. Automatic Cleanup: No operator intervention needed - sessions are

deleted automatically

WARN: Received GTP-U Error Indication from 192.168.50.10:2152 for 

TEID 0x12345678 - remote peer doesn't recognize this TEID

WARN: Found session LocalSEID=42 with FAR GlobalId=1 forwarding to 

erroneous TEID 0x12345678 from peer 192.168.50.10

INFO: Deleting session LocalSEID=42 due to GTP-U Error Indication 

for TEID 0x12345678 from 192.168.50.10

WARN: Deleted 1 session(s) due to GTP-U Error Indication for TEID 

0x12345678 from peer 192.168.50.10

# Total Error Indications received from peers

upf_buffer_listener_error_indications_received_total{node_id="pgw-u-

1",peer_address="192.168.50.10"}

# Sessions deleted due to Error Indications

upf_buffer_listener_error_indication_sessions_deleted_total{node_id="

u-1",peer_address="192.168.50.10"}

# Error Indications sent (for unknown incoming TEIDs)

upf_buffer_listener_error_indications_sent_total{node_id="enodeb-

1",peer_address="10.60.0.1"}



2. TEID Matching: Only sessions with FARs forwarding to the exact erroneous

TEID are deleted

3. Per-Peer Isolation: Error Indications from one peer only affect sessions

forwarding to that peer

4. Multiple Sessions: If multiple sessions forward to the same dead TEID, all

are deleted

5. Complementary to Recovery Timestamp:

Recovery Timestamp detection = proactive (detects restart during

association setup)

Error Indication handling = reactive (detects dead tunnels when traffic

flows)

6. Malformed Packet Handling: Invalid Error Indications are logged and

ignored (no sessions deleted)

For troubleshooting Error Indications, see GTP-U Error Indication Debugging.

PFCP Session Creation

When a UE establishes a PDU session (5G) or PDP context (LTE), the SMF

creates a PFCP session at the UPF.

Session Establishment Flow:



Typical Session Contents:

Uplink PDR: Match on N3 TEID, forward via FAR to N6

Downlink PDR: Match on UE IP address, forward via FAR to N3 with GTP-U

encapsulation

FAR: Forwarding parameters (outer header creation, network instance)

QER: QoS limits (MBR, GBR) and packet marking (QFI)

URR: Volume reporting for charging (optional)



PFCP Session Modification

SMF can modify sessions for mobility events (handover), QoS changes, or

service updates.

Common Modification Scenarios:

1. Handover (N2-based)

Update uplink FAR with new gNB tunnel endpoint (F-TEID)

Optionally buffer packets during path switch

Flush buffer to new path when ready

2. QoS Change

Update QER with new MBR/GBR values

May add/remove SDF filters in PDR for application-specific QoS

3. Service Update

Add new PDRs for additional traffic flows

Modify FARs for routing changes

Session Modification Flow:

OmniUPFSMF/PGW-C

OmniUPFSMF/PGW-C

Packets immediately use updated rules

PFCP Session Modification Request (Update FAR)

Lookup session by remote SEID

Update eBPF maps with new FAR parameters

PFCP Session Modification Response



For rule management, see Rules Management Guide.

PFCP Session Deletion

When a PDU session is released, SMF deletes the PFCP session at UPF.

Session Deletion Flow:

OmniUPFSMF/PGW-CUE

OmniUPFSMF/PGW-CUE

All session resources freed

PDU Session Release Request

PFCP Session Deletion Request

Lookup session by remote SEID

Remove all PDRs from eBPF maps

Remove all FARs, QERs, URRs

Clear buffered packets (if any)

Finalize URR reports

PFCP Session Deletion Response (final usage report)

PDU Session released

Cleanup Performed:

All PDRs removed (uplink and downlink)

All FARs, QERs, URRs removed

Packet buffers cleared

Final usage report sent to SMF for charging



Common Operations

OmniUPF provides comprehensive operational capabilities through its web-

based control panel and REST API. This section covers common operational

tasks and their significance.

Session Monitoring

Understanding PFCP Sessions:

PFCP sessions represent active UE PDU sessions (5G) or PDP contexts (LTE).

Each session contains:

Local and remote SEIDs (Session Endpoint Identifiers)

PDRs for packet classification

FARs for forwarding decisions

QERs for QoS enforcement (optional)

URRs for usage tracking (optional)

Key Session Operations:

View all sessions with UE IP addresses, TEIDs, and rule counts

Filter sessions by IP address or TEID

Inspect session details including full PDR/FAR/QER/URR configurations

Monitor session counts per PFCP association

For detailed session procedures, see Sessions View.

Rule Management

Packet Detection Rules (PDR):

PDRs determine which packets match specific traffic flows. Operators can:

View uplink PDRs keyed by TEID from N3 interface

View downlink PDRs keyed by UE IP address (IPv4 and IPv6)



Inspect SDF filters for application-specific classification

Monitor PDR counts and capacity usage

Forwarding Action Rules (FAR):

FARs define what to do with matched packets. Operators can:

View FAR actions (FORWARD, DROP, BUFFER, DUPLICATE, NOTIFY)

Inspect forwarding parameters (outer header creation, destination)

Monitor buffering status per FAR

Toggle buffering for specific FARs during troubleshooting

QoS Enforcement Rules (QER):

QERs apply bandwidth limits and packet marking. Operators can:

View QoS parameters (MBR, GBR, packet delay budget)

Monitor active QERs per session

Inspect QFI markings for 5G QoS flows

Usage Reporting Rules (URR):

URRs track data volumes for charging. Operators can:

View volume counters (uplink, downlink, total bytes)

Monitor usage thresholds and reporting triggers

Inspect active URRs across all sessions

For rule operations, see Rules Management Guide.

Packet Buffering

Why Buffering is Critical for UPF

Packet buffering is one of the most important functions of a UPF

because it prevents packet loss during mobility events and session

reconfigurations. Without buffering, mobile users would experience dropped



connections, interrupted downloads, and failed real-time communications every

time they move between cell towers or when network conditions change.

The Problem: Packet Loss During Mobility

In mobile networks, users are constantly moving. When a device moves from

one cell tower to another (handover), or when the network needs to reconfigure

the data path, there's a critical window where packets are in flight but the new

path isn't ready yet:





Without buffering: Packets arriving during this critical window would be

dropped, causing:

TCP connections to stall or reset (web browsing, downloads interrupted)

Video calls to freeze or drop (Zoom, Teams, WhatsApp calls fail)

Gaming sessions to disconnect (online gaming, real-time apps fail)

VoIP calls to have gaps or drop entirely (phone calls interrupted)

Downloads to fail and need to restart

With buffering: OmniUPF temporarily holds packets until the new path is

established, then forwards them seamlessly. The user experiences zero

interruption.

When Buffering Happens

OmniUPF buffers packets in these critical scenarios:

1. N2-Based Handover (5G) / X2-Based Handover (4G)

When a UE moves between cell towers:

InternetOmniUPFSMF/MMENew gNBOld gNBUE

InternetOmniUPFSMF/MMENew gNBOld gNBUE

UE moving from Cell A to Cell B

Start buffering downlink packets

Flush buffer to new gNB

Path Switch Request

PFCP Session Modification

(Update FAR: BUFF=1, new F-TEID)

Packets for UE

Buffer packets (new path not ready)

Session Modification Response

Path Switch Ack

PFCP Session Modification

(Update FAR: BUFF=0, FORW=1)

Buffered packets via new tunnel

New packets via new tunnel

Seamless delivery

Timeline:



T+0ms: Old path still active

T+10ms: SMF tells UPF to buffer (old path closing, new path not ready)

T+10-50ms: Critical buffering window - packets arrive but can't be

forwarded

T+50ms: New path ready, SMF tells UPF to forward

T+50ms+: UPF flushes buffered packets to new path, then forwards new

packets normally

Without buffering: ~40ms of packets (potentially thousands) would be lost.

With buffering: Zero packet loss, seamless handover.

2. Session Modification (QoS Change, Path Update)

When the network needs to change session parameters:

QoS upgrade/downgrade: User moves from 4G to 5G coverage (NSA

mode)

Policy change: Enterprise user enters corporate campus (traffic steering

changes)

Network optimization: Core network reroutes traffic to closer UPF (ULCL

update)

During the modification, the control plane may need to update multiple rules

atomically. Buffering ensures packets aren't forwarded with partial/inconsistent

rule sets.

3. Downlink Data Notification (Idle Mode Recovery)

When a UE is in idle mode (screen off, battery saving) and downlink data

arrives:



UE (Idle)gNBAMFSMFOmniUPFInternet

UE (Idle)gNBAMFSMFOmniUPFInternet

No uplink tunnel (UE idle)

Session re-establishment

Downlink packet arrives

Buffer packet

Downlink Data Notification

Paging Request

Paging

Wake up!

Service Request

Initial UE message

Update FAR (BUFF=0, new tunnel)

Deliver buffered packets

Forward new packets

Without buffering: The initial packet that triggered the notification would be

lost, requiring the sender to retransmit (adds latency). With buffering: The

packet that woke up the UE is delivered immediately when the UE reconnects.

4. Inter-RAT Handover (4G ↔ 5G)

When a UE moves between 4G and 5G coverage:

Architecture changes (eNodeB ↔ gNB)

Tunnel endpoints change (different TEID allocation)

Buffering ensures smooth transition between RAT types

How Buffering Works in OmniUPF

Technical Mechanism:

OmniUPF uses a two-stage buffering architecture:

1. eBPF Stage (Kernel): Detects packets requiring buffering based on FAR

action flags

2. Userspace Stage: Stores and manages buffered packets in memory

Buffering Process:



Key Details:

Buffer Port: UDP port 22152 (packets sent from eBPF to userspace)

Encapsulation: Packets wrapped in GTP-U with FAR ID as TEID

Storage: In-memory per-FAR buffers with metadata (timestamp, direction,

packet size)

Limits:

Per-FAR limit: 10,000 packets (default)

Global limit: 100,000 packets across all FARs

TTL: 30 seconds (default) - packets older than TTL are discarded

Cleanup: Background process removes expired packets every 60 seconds

Buffer Lifecycle:

1. Buffering Enabled: SMF sets FAR action BUFF=1 (bit 2) via PFCP Session

Modification

2. Packets Buffered: eBPF detects BUFF flag, encapsulates packets, sends to

port 22152

3. Userspace Storage: Buffer manager stores packets with FAR ID,

timestamp, direction

4. Buffering Disabled: SMF sets FAR action FORW=1, BUFF=0 with new

forwarding parameters



5. Flush Buffer: Userspace replays buffered packets using new FAR rules

(new tunnel endpoint)

6. Resume Normal: New packets forwarded immediately via new path

Why This Matters for User Experience

Real-World Impact:

Scenario Without Buffering With Buffering

Video Call During

Handover

Call freezes for 1-2

seconds, may drop

Seamless, no

interruption

File Download at

Cell Edge

Download fails, must

restart

Download continues

uninterrupted

Online Gaming

While Moving

Connection drops,

kicked from game

Smooth gameplay, no

disconnects

VoIP Call in Car
Call drops every

handover
Crystal clear, no drops

Streaming Video

on Train

Video buffers, quality

drops
Smooth playback

Mobile Hotspot for

Laptop

SSH session drops,

video call fails

All connections

maintained

Network Operator Benefits:

Reduced Call Drop Rate (CDR): Critical KPI for network quality

Higher Customer Satisfaction: Users don't notice handovers

Lower Support Costs: Fewer complaints about dropped connections

Competitive Advantage: "Best network for coverage" marketing

Buffer Management Operations



Operators can monitor and control buffering via the Web UI and API:

Monitoring:

View buffered packets per FAR ID (count, bytes, age)

Track buffer usage against limits (per-FAR, global)

Alert on buffer overflow or excessive buffering duration

Identify stuck buffers (packets buffered > TTL threshold)

Control Operations:

Flush buffers: Manually trigger buffer replay (troubleshooting)

Clear buffers: Discard buffered packets (clean up stuck buffers)

Adjust TTL: Change packet expiration time

Modify limits: Increase per-FAR or global buffer capacity

Troubleshooting:

Buffer not flushing: Check if SMF sent FAR update to disable buffering

Buffer overflow: Increase limits or investigate why buffering duration is

excessive

Old packets in buffer: TTL may be too high, or FAR update delayed

Excessive buffering: May indicate mobility issues or SMF problems

For detailed buffer operations, see Buffer Management Guide.

Buffer Configuration

Configure buffering behavior in config.yml :



Recommendations:

High-mobility networks (highways, trains): Increase

buffer_max_packets  to 20,000+

Dense urban areas (frequent handovers): Decrease buffer_packet_ttl

to 15s

Low-latency applications: Set buffer_packet_ttl  to 10s to prevent

stale data

IoT networks: Decrease limits (IoT devices generate less traffic during

handover)

For complete configuration options, see Configuration Guide.

Statistics and Monitoring

Packet Statistics:

Real-time packet processing metrics including:

RX packets: Total received from all interfaces

TX packets: Total transmitted to all interfaces

Dropped packets: Packets discarded due to errors or policy

GTP-U packets: Tunneled packet counts

Route Statistics:

# Buffer settings

buffer_port: 22152                # UDP port for buffered packets 

(default)

buffer_max_packets: 10000         # Max packets per FAR (prevent 

memory exhaustion)

buffer_max_total: 100000          # Max total packets across all 

FARs

buffer_packet_ttl: 30             # TTL in seconds (discard old 

packets)

buffer_cleanup_interval: 60       # Cleanup interval in seconds



Per-route forwarding metrics:

Route hits: Packets matched by each route

Forwarding counts: Success/failure per destination

Error counters: Invalid TEIDs, unknown UE IPs

XDP Statistics:

eXpress Data Path performance metrics:

XDP processed: Packets handled at XDP layer

XDP passed: Packets sent to network stack

XDP dropped: Packets dropped at XDP layer

XDP aborted: Processing errors

N3/N6 Interface Statistics:

Per-interface traffic counters:

N3 RX/TX: Traffic to/from RAN (gNB/eNodeB)

N6 RX/TX: Traffic to/from data network

Total packet counts: Aggregate interface statistics

For monitoring details, see Monitoring Guide.

Capacity Management

eBPF Map Capacity Monitoring:

UPF performance depends on eBPF map capacity. Operators can:

Monitor map usage with real-time percentage indicators

View capacity limits for each eBPF map

Color-coded alerts:

Green (<50%): Normal

Yellow (50-70%): Caution

Amber (70-90%): Warning



Red (>90%): Critical

Critical Maps to Monitor:

uplink_pdr_map : Uplink traffic classification

downlink_pdr_map : Downlink IPv4 traffic classification

far_map : Forwarding rules

qer_map : QoS rules

urr_map : Usage tracking

Capacity Planning:

Each PDR consumes one map entry (key size + value size)

Map capacity is configured at UPF startup (kernel memory limit)

Exceeding capacity causes session establishment failures

For capacity monitoring, see Capacity Management.

Configuration Management

UPF Configuration:

View and verify UPF operational parameters:

N3 Interface: IP address for RAN connectivity (GTP-U)

N6 Interface: IP address for data network connectivity

N9 Interface: IP address for inter-UPF communication (optional)

PFCP Interface: IP address for SMF connectivity

API Port: REST API listening port

Metrics Endpoint: Prometheus metrics port

Dataplane Configuration:

Active eBPF datapath parameters:

Active N3 address: Runtime N3 interface binding

Active N9 address: Runtime N9 interface binding (if enabled)



For configuration viewing, see Configuration View.

Troubleshooting

This section covers common operational issues and their resolution strategies.

Session Establishment Failures

Symptoms: PFCP sessions fail to create, UE cannot establish data connectivity

Common Root Causes:

1. PFCP Association Not Established

Verify SMF can reach UPF PFCP interface (port 8805)

Check PFCP association status in Sessions view

Verify Node ID configuration matches between SMF and UPF

2. eBPF Map Capacity Exhausted

Check Capacity view for red (>90%) map usage

Increase eBPF map sizes in UPF configuration

Delete stale sessions if map is full

3. Invalid PDR/FAR Configuration

Verify UE IP address is unique and valid

Check TEID allocation doesn't conflict

Ensure FAR references valid network instances

4. Interface Configuration Issues

Verify N3 interface IP is reachable from gNB

Check routing tables for N6 connectivity to data network

Confirm GTP-U traffic is not blocked by firewall

For detailed troubleshooting, see Troubleshooting Guide.



Packet Loss or Forwarding Issues

Symptoms: UE has connectivity but experiences packet loss or no traffic flow

Common Root Causes:

1. PDR Misconfiguration

Verify uplink PDR TEID matches gNB-assigned TEID

Check downlink PDR UE IP matches assigned IP

Inspect SDF filters for overly restrictive rules

2. FAR Action Issues

Verify FAR action is FORWARD (not DROP or BUFFER)

Check outer header creation parameters for GTP-U

Ensure destination endpoint is correct

3. QoS Limits Exceeded

Check QER MBR (Maximum Bit Rate) settings

Verify GBR (Guaranteed Bit Rate) allocation

Monitor packet drops due to rate limiting

4. Interface MTU Issues

Verify GTP-U overhead (40-50 bytes) doesn't cause fragmentation

Check N3/N6 interface MTU configuration

Monitor for ICMP fragmentation needed messages

Buffer-Related Issues

Symptoms: Packets buffered indefinitely, buffer overflow

Common Root Causes:

1. Buffering Not Disabled After Handover



Check FAR buffering flag (bit 2)

Verify SMF sent Session Modification to disable buffering

Manually disable buffering via control panel if stuck

2. Buffer TTL Expiration

Check packet age in buffer view

Verify buffer TTL configuration (default may be too long)

Clear expired buffers manually

3. Buffer Capacity Exhausted

Monitor total buffer usage and per-FAR limits

Check for misconfigured rules causing excessive buffering

Adjust max_per_far and max_total buffer limits

For buffer troubleshooting, see Buffer Operations.

Statistics Anomalies

Symptoms: Unexpected packet counters, missing statistics

Common Root Causes:

1. Counter Overflow

eBPF maps use 64-bit counters (should not overflow)

Check for counter reset events in logs

Verify URR reporting is functioning

2. Route Statistics Not Updating

Verify eBPF program is attached to interfaces

Check kernel version supports required eBPF features

Review XDP statistics for processing errors

3. Interface Statistics Mismatch



Compare N3/N6 stats with kernel interface counters

Check for traffic bypassing eBPF (e.g., local routing)

Verify all traffic flows through XDP hooks

Performance Degradation

Symptoms: High latency, low throughput, CPU saturation

Diagnosis:

1. Monitor XDP Statistics: Check for XDP drops or aborts

2. Check eBPF Map Access Time: Hash lookups should be sub-microsecond

3. Review CPU Utilization: eBPF should distribute across cores

4. Analyze Network Interface: Verify NIC supports XDP offload

Scalability Considerations:

XDP Performance: 10M+ packets per second per core

PDR Capacity: Millions of PDRs limited only by kernel memory

Session Count: Thousands of concurrent sessions per UPF instance

Throughput: Multi-gigabit throughput with proper NIC offload

For performance tuning, see Architecture Guide.

Additional Documentation

Component-Specific Operations Guides

For detailed operations and troubleshooting for each UPF component:

Configuration Guide

Complete configuration reference including:

Configuration parameters (YAML, environment variables, CLI)

Operating modes (UPF/PGW-U/SGW-U)



XDP attachment modes overview

Hypervisor compatibility (Proxmox, VMware, KVM, Hyper-V, VirtualBox)

NIC compatibility and XDP driver support

Configuration examples for different scenarios

Map sizing and capacity planning

XDP Modes Guide

Detailed XDP configuration and optimization including:

XDP attachment modes explained (generic/native/offload)

Performance comparison and benchmarks

Step-by-step Proxmox VE native XDP setup

Multi-queue configuration for optimal performance

VMware ESXi, KVM, and Hyper-V XDP setup

XDP verification and troubleshooting

Hardware selection for XDP performance

Architecture Guide

Deep technical dive including:

eBPF technology foundation and program lifecycle

XDP packet processing pipeline with tail calls

PFCP protocol implementation

Buffering architecture (GTP-U encapsulation to port 22152)

QoS sliding window rate limiting (5ms window)

Performance characteristics (3.5μs latency, 10 Mpps/core)

Rules Management Guide

PFCP rules reference including:

Packet Detection Rules (PDR) - Traffic classification

Forwarding Action Rules (FAR) - Routing decisions with action flags

QoS Enforcement Rules (QER) - Bandwidth management (MBR/GBR)

Usage Reporting Rules (URR) - Volume tracking and reporting



Uplink and downlink packet flow diagrams

Rule processing logic and precedence

Monitoring Guide

Statistics and capacity management including:

N3/N6 interface statistics and traffic distribution

XDP processing statistics (pass/drop/redirect/abort)

eBPF map capacity monitoring with color-coded zones

Performance metrics (packet rate, throughput, drop rate)

Capacity planning formulas and session estimation

Alerting thresholds and best practices

Web UI Operations Guide

Control panel usage including:

Dashboard overview and navigation

Sessions monitoring (healthy/unhealthy states)

Rules inspection (PDR, FAR, QER, URR details)

Buffer monitoring and packet buffering state

Real-time statistics dashboard

eBPF map capacity visualization

Configuration viewing

API Documentation

Complete REST API reference including:

OpenAPI/Swagger interactive documentation

API pagination (page-based and offset-based)

PFCP sessions and associations endpoints

Packet Detection Rules (PDR) - IPv4 and IPv6

Forwarding Action Rules (FAR)

QoS Enforcement Rules (QER)

Usage Reporting Rules (URR)



Packet buffer management

Statistics and monitoring endpoints

Route management and FRR integration

eBPF map information

Configuration management

Authentication and security guidelines

Common API workflows and examples

Metrics Reference

Prometheus metrics documentation including:

PFCP message metrics (counters, latency, errors per peer)

XDP action metrics (dataplane verdicts)

Packet metrics (protocol-level counters with packet_type labels)

PFCP session and association metrics (per control plane node)

URR metrics (traffic volume per PFCP peer)

Packet buffering metrics (buffer state, capacity, throughput)

Downlink Data Report notification metrics (DLDR tracking)

eBPF map capacity metrics (resource utilization)

Prometheus configuration examples

Grafana dashboard recommendations

PFCP Cause Codes Reference

PFCP error code documentation including:

Cause code definitions and 3GPP compliance (TS 129.244)

When each cause code occurs (success, client errors, server errors)

Common failure scenarios with resolutions

Troubleshooting with Prometheus metrics

Association setup and session lifecycle failures

Debugging steps for high rejection rates

Alerting recommendations for cause codes

UE Route Management Guide



FRR routing integration including:

FRR (Free Range Routing) overview and architecture

UE route synchronization lifecycle

Automatic route sync to routing daemon

Route advertisement via OSPF and BGP

OSPF neighbor monitoring

OSPF External LSA database verification

BGP peer session management

Web UI route monitoring interface

Manual route sync operations

Mermaid diagrams for route flow and architecture

Troubleshooting Guide

Comprehensive problem diagnosis including:

Quick diagnostic checklist and tools

Installation and configuration issues

PFCP association failures

Packet processing problems

XDP and eBPF errors

Performance degradation

Hypervisor-specific issues (Proxmox, VMware, VirtualBox)

NIC and driver problems

Step-by-step resolution procedures

Documentation by Use Case

Installing and Configuring OmniUPF

1. Start with this guide for overview

2. Configuration Guide for setup parameters

3. Web UI Guide to access control panel



Deploying SGWU+PGWU on Single Instance (N9 Loopback)

1. N9 Loopback Operations Guide - Complete guide for combined

SGWU+PGWU deployment

2. N9 Loopback - Configuration - Network and PFCP setup

3. N9 Loopback - Monitoring - Verify loopback is active

4. N9 Loopback - Troubleshooting - Common issues and solutions

Deploying on Proxmox

1. XDP Modes Guide - Proxmox Native XDP Setup - Start here for

performance

2. Configuration Guide - Hypervisor Compatibility

3. Configuration Guide - Proxmox SR-IOV Setup

4. Troubleshooting - Proxmox Issues

Optimizing Performance

1. XDP Modes Guide - Enable native XDP for 5-10x performance boost

2. Architecture Guide - Performance Optimization

3. Configuration Guide - XDP Modes

4. Monitoring Guide - Performance Metrics

5. Troubleshooting - Performance Issues

Understanding Packet Processing

1. Architecture Guide - Packet Processing Pipeline

2. Rules Management Guide

3. Monitoring Guide - Statistics

Planning Capacity

1. Configuration Guide - Map Sizing

2. Monitoring Guide - Capacity Planning

3. Monitoring Guide - Session Capacity Estimation

Managing UE Routes and FRR Integration



1. UE Route Management Guide - Complete routing integration guide

2. API Documentation - Route Management - Route API endpoints

3. Web UI Guide - Routes page operations

4. UE Route Management - FRR Verification - OSPF LSA verification

Using the REST API

1. API Documentation - Complete API reference

2. API Documentation - Swagger UI - Interactive API explorer

3. API Documentation - Common Workflows - API usage examples

4. Web UI Guide - Web interface as API client example

Troubleshooting Issues

1. Troubleshooting Guide - Start here

2. Monitoring Guide - Check statistics and capacity

3. Web UI Guide - Use control panel diagnostics

Quick Reference

Common API Endpoints

OmniUPF provides a REST API for monitoring and management:



For complete API documentation, access the Swagger UI at http://<upf-

ip>:8080/swagger/index.html

Essential Configuration Parameters

Important Monitoring Thresholds

eBPF Map Capacity < 70%: Normal operation

# Status and health

GET http://localhost:8080/api/v1/upf_status

# PFCP associations

GET http://localhost:8080/api/v1/upf_pipeline

# Sessions

GET http://localhost:8080/api/v1/sessions

# Statistics

GET http://localhost:8080/api/v1/packet_stats

GET http://localhost:8080/api/v1/xdp_stats

# Capacity monitoring

GET http://localhost:8080/api/v1/map_info

# Buffer statistics

GET http://localhost:8080/api/v1/upf_buffer_info

# Network interfaces

interface_name: [eth0]           # Interfaces for N3/N6/N9 traffic

xdp_attach_mode: native          # generic|native|offload

n3_address: 10.100.50.233       # N3 interface IP

pfcp_address: :8805              # PFCP listen address

pfcp_node_id: 10.100.50.241     # PFCP Node ID

# Capacity

max_sessions: 100000             # Maximum concurrent sessions

# API and monitoring

api_address: :8080               # REST API port

metrics_address: :9090           # Prometheus metrics port



eBPF Map Capacity 70-90%: Plan capacity increase within 1 week

eBPF Map Capacity > 90%: Critical - immediate action required

Packet Drop Rate < 0.1%: Excellent

Packet Drop Rate 0.1-1%: Good - minor issues

Packet Drop Rate > 5%: Critical - investigate immediately

XDP Aborted > 0: Critical issue with eBPF program

3GPP Standards Reference

OmniUPF implements the following 3GPP specifications:

Specification Title Relevance

TS 23.501
System architecture for the 5G

System (5GS)

5G UPF architecture

and interfaces

TS 23.401

General Packet Radio Service

(GPRS) enhancements for E-UTRAN

access

LTE UPF (PGW-U)

architecture

TS 29.244

Interface between the Control

Plane and the User Plane nodes

(PFCP)

N4 PFCP protocol

TS 29.281

General Packet Radio System

(GPRS) Tunnelling Protocol User

Plane (GTPv1-U)

GTP-U encapsulation

TS 23.503

Policy and charging control

framework for the 5G System

(5GS)

QoS and charging

TS 29.212 Policy and Charging Control (PCC) QoS enforcement



Glossary

5G Architecture Terms

3GPP: 3rd Generation Partnership Project - Standards body for mobile

telecommunications

AMF: Access and Mobility Management Function - 5G core network element

for access control

CHF: Charging Function - 5G charging system

DN: Data Network - External network (Internet, IMS, enterprise)

eNodeB: Evolved Node B - LTE base station

F-TEID: Fully Qualified Tunnel Endpoint Identifier - GTP-U tunnel ID with IP

address

gNB: Next Generation Node B - 5G base station

GTP-U: GPRS Tunnelling Protocol User Plane - Tunneling protocol for user

data

MBR: Maximum Bit Rate - QoS parameter for maximum allowed bandwidth

GBR: Guaranteed Bit Rate - QoS parameter for guaranteed minimum

bandwidth

N3: Interface between RAN and UPF (user plane traffic)

N4: Interface between SMF and UPF (PFCP control)

N6: Interface between UPF and Data Network (user plane traffic)

N9: Interface between two UPFs (inter-UPF user plane traffic)

PCF: Policy Control Function - 5G policy server

PDU: Protocol Data Unit - Data session in 5G

PGW-C: PDN Gateway Control Plane - LTE control plane equivalent to SMF

PGW-U: PDN Gateway User Plane - LTE user plane (UPF equivalent)

QFI: QoS Flow Identifier - 5G QoS flow marking

QoS: Quality of Service - Traffic prioritization and bandwidth management

RAN: Radio Access Network - Base station network (gNB/eNodeB)

SEID: Session Endpoint Identifier - PFCP session ID

SMF: Session Management Function - 5G core network element for session

control



TEID: Tunnel Endpoint Identifier - GTP-U tunnel ID

UE: User Equipment - Mobile device

UPF: User Plane Function - 5G packet forwarding network element

PFCP Protocol Terms

Association: Control relationship between SMF and UPF

FAR: Forwarding Action Rule - Determines packet forwarding behavior

IE: Information Element - PFCP message component

Node ID: UPF or SMF identifier (FQDN or IP address)

PDR: Packet Detection Rule - Classifies packets into flows

PFCP: Packet Forwarding Control Protocol - N4 control protocol

QER: QoS Enforcement Rule - Applies bandwidth limits and marking

SDF: Service Data Flow - Application-specific traffic filter

Session: PFCP session representing UE PDU session or PDP context

URR: Usage Reporting Rule - Tracks data volumes for charging

eBPF and Linux Kernel Terms

BPF: Berkeley Packet Filter - Kernel packet filtering technology

eBPF: Extended BPF - Programmable kernel data path

Hash Map: eBPF key-value store for fast lookups

XDP: eXpress Data Path - Kernel packet processing at driver level

Verifier: Kernel component that validates eBPF programs for safety

Map: eBPF data structure shared between kernel and userspace

Zero-copy: Packet processing without copying to userspace

OmniUPF Product Terms

OmniUPF: eBPF-based User Plane Function (this product)

Datapath: Packet processing engine (eBPF programs)

Control Plane: PFCP handler and session management

REST API: HTTP API for monitoring and management

Web UI: Browser-based control panel


