
Introduction au

déploiement Ansible

chez Omnitouch

Vue d'ensemble

Omnitouch Network Services utilise Ansible comme plateforme

d'automatisation de l'infrastructure pour déployer des solutions complètes de

réseau cellulaire (4G/5G) de manière cohérente, répétable et automatisée. Ce

document fournit un aperçu de la manière dont nous exploitons Ansible pour

orchestrer des déploiements télécom complexes.

Qu'est-ce qu'Ansible ?

Ansible est un outil d'automatisation open-source qui vous permet de :

Configurer des systèmes

Déployer des logiciels

Orchestrer des flux de travail complexes

Gérer l'infrastructure en tant que code

Ansible utilise une approche déclarative - vous décrivez l'état souhaité de vos

systèmes, et Ansible s'assure qu'ils atteignent cet état.

Comment Omnitouch utilise

Ansible

Concepts clés

1. Inventaire (Fichiers d'hôtes)

Définit quels systèmes gérer. Chaque déploiement client a un fichier d'hôtes

qui décrit :

Toutes les machines virtuelles dans le réseau

Leurs adresses IP

La configuration réseau

Les paramètres spécifiques aux services

Les fichiers d'hôtes sont ce avec quoi vous allez travailler pour définir votre

réseau.

Voir : Configuration du fichier d'hôtes

2. Rôles

Définit comment configurer chaque composant. Les rôles sont des unités

réutilisables qui contiennent :

Tâches (étapes à exécuter)

Modèles (modèles de fichiers de configuration)

Gestionnaires (actions déclenchées par des changements)

Variables (valeurs de configuration par défaut)

Exemples de rôles pour les composants OmniCore : omnihss , omnisgwc ,

omnipgwc , omnidra , etc.

Ceux-ci sont définis par l'équipe ONS, bien que vous puissiez les modifier, il

existe généralement des moyens plus propres d'apporter les ajustements

nécessaires depuis votre fichier d'hôtes.

3. Playbooks

Orchestre quand et où les rôles sont appliqués :

Nous les utilisons essentiellement comme groupes pour les rôles.

4. Variables de groupe

Fournit une configuration spécifique au client qui remplace les valeurs par

défaut des rôles. C'est ici que la personnalisation du client se produit sans

modifier les rôles de base.

Voir : Variables de groupe et configuration

Architecture de déploiement

Hosts File

Ansible PlaybookGroup Vars

Roles

SSH to Hosts Configure Systems Running Network

- name: Deploy EPC Core

 hosts: mme

 roles:

 - common

 - omnimme

Le processus de déploiement

1. Définir l'infrastructure

Créez un fichier d'hôtes décrivant votre topologie réseau :

Remarque de planification : Avant de définir l'infrastructure, consultez la

Norme de planification IP pour des conseils sur la segmentation du réseau,

l'allocation des adresses IP et l'organisation des sous-réseaux.

Utilisateurs de Proxmox : Si vous déployez sur Proxmox, consultez

Déploiement de VM/LXC Proxmox pour l'approvisionnement automatisé de

VM/conteneurs.

Voir : Configuration du fichier d'hôtes et Référence de configuration

2. Personnaliser la configuration

Définissez des variables spécifiques au client dans group_vars :

#ToDo - Ajouter un lien ici vers la référence de configuration pour la liste

complète

3. Exécuter des playbooks

Déployez le réseau :

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 mme_code: 1

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: customer

4. Déploiement automatisé

Ansible va :

Créer/provisionner des VM (si vous utilisez l'intégration Proxmox/VMware)

Configurer le réseau

Installer des paquets logiciels à partir du cache APT

Déployer le code de l'application

Configurer les services avec les paramètres du client

Démarrer les services

Valider le déploiement

Composants clés que nous

déployons

OmniCore (Plateforme de cœur de paquet

4G/5G)

OmniHSS - Serveur d'abonnés à domicile

OmniSGW - Passerelle de service (plan de contrôle)

OmniPGW - Passerelle de paquet (plan de contrôle)

OmniUPF - Fonction de plan utilisateur

OmniDRA - Agent de routage Diameter

OmniTWAG - Passerelle d'accès WLAN de confiance

Voir : https://docs.omnitouch.com.au/docs/repos/OmniCore

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Plateforme de voix et de

messagerie)

OmniCall CSCF - Fonction de contrôle de session d'appel (P-CSCF, I-CSCF,

S-CSCF)

OmniTAS - Serveur d'application IMS (services VoLTE/VoNR)

OmniMessage - Centre SMS (SMS-C)

OmniMessage SMPP - Support du protocole SMPP

OmniSS7 - Composants de signalisation SS7 (STP, HLR, CAMEL)

VisualVoicemail - Fonctionnalité de messagerie vocale

Voir : https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM

Plateforme CRM - Gestion de la relation client, auto-inscription,

facturation

Voir : https://docs.omnitouch.com.au/docs/repos/OmniCharge

Services de support

DNS - Résolution DNS réseau

Serveur de licences - Gestion des licences

Surveillance - Prometheus, Grafana

Voir : Aperçu de l'architecture de déploiement

Gestion des paquets

Nous utilisons un modèle de distribution de paquets hybride :

Paquets APT précompilés

Tous les logiciels Omnitouch sont distribués sous forme de paquets Debian

(.deb files) :

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Construits à partir de la source dans notre pipeline CI/CD

Versionnés et testés

Hébergés sur des dépôts de paquets

Système de cache APT

Les clients peuvent choisir entre :

1. Cache APT local - Miroir des paquets requis sur site pour un déploiement

hors ligne

2. Dépôt public - Accès direct au dépôt de paquets hébergé par Omnitouch

Voir : Système de cache APT

Gestion des licences

Tous les composants logiciels Omnitouch nécessitent des licences valides

gérées via un serveur de licences central :

Les composants vérifient la validité de la licence au démarrage

Les fonctionnalités sont activées/désactivées en fonction de la licence

Le serveur de licences peut être local ou hébergé dans le cloud

Voir : Serveur de licences

Avantages de cette approche

Répétabilité

Les mêmes playbooks Ansible peuvent déployer :

Laboratoires de développement

Environnements de test

Réseaux de production

Sites clients

Cohérence

Chaque déploiement utilise les mêmes configurations testées, réduisant ainsi

les erreurs humaines.

Contrôle de version

L'infrastructure est définie comme du code dans Git :

Suivre tous les changements

Réviser avant le déploiement

Revenir en arrière si nécessaire

Personnalisation sans complexité

Les clients peuvent personnaliser leur déploiement via group_vars sans

modifier les rôles de base.

Déploiement rapide

Déployez un réseau cellulaire complet en quelques heures au lieu de jours ou

de semaines.

Pour commencer

Prérequis

Avant d'exécuter des playbooks Ansible, vous devez configurer un

environnement virtuel Python et installer les dépendances requises.

1. Créer un environnement virtuel Python

Créez un environnement Python isolé pour le déploiement Ansible :

python3 -m venv .venv

2. Activer l'environnement virtuel

Activez l'environnement virtuel :

Sous Windows, utilisez :

3. Installer les paquets requis

Installez toutes les dépendances à partir du fichier requirements.txt :

Cela installera Ansible et tous les paquets Python nécessaires pour

l'automatisation du déploiement Omnitouch.

Remarque : Gardez l'environnement virtuel activé chaque fois que vous

exécutez des commandes Ansible. Vous pouvez le désactiver lorsque vous avez

terminé en exécutant deactivate .

Étapes de déploiement

1. Consultez la Configuration du fichier d'hôtes pour comprendre comment

définir votre réseau

2. Apprenez à connaître les Variables de groupe pour la personnalisation

3. Comprenez le Système de cache APT pour la gestion des paquets

4. Consultez l'Architecture de déploiement pour voir comment tout

s'assemble

5. Déployez !

source .venv/bin/activate

.venv\Scripts\activate

pip install -r requirements.txt

Prochaines étapes

Norme de planification IP - Planifiez votre architecture réseau et votre

allocation IP

Configuration du fichier d'hôtes - Apprenez à définir votre topologie réseau

Système de cache APT - Comprenez la distribution des paquets

Serveur de licences - Découvrez la gestion des licences

Aperçu de l'architecture de déploiement - Voir l'ensemble du tableau

Configuration des variables de groupe - Personnalisez votre déploiement

Playbooks utilitaires - Outils opérationnels pour les vérifications de santé,

les sauvegardes et la maintenance

Dépôt APT &

Distribution de Paquets

Vue d'ensemble

Le système APT d'Omnitouch fournit une distribution de paquets pour tous les

déploiements. Deux types de contenu sont servis :

1. Paquets APT — Paquets Debian installés via apt install

2. Versions Binaires — Binaires pré-construits téléchargés directement

(exportateurs Prometheus, agents, etc.)

Deux modèles de déploiement sont supportés :

1. Accès Direct — Les VM récupèrent les paquets directement depuis

apt.omnitouch.com.au

2. Miroir de Cache Local — Un serveur local se synchronise avec Omnitouch

et sert des paquets aux VM (pour des déploiements hors ligne/isolés)

Architecture

Contenu Servi

Le serveur APT héberge tout le contenu requis pour les déploiements :

Type de

Contenu
Description Chemin

Paquets

Omnitouch

Paquets .deb construits sur

mesure (omnihss, omnimme,

etc.)

/dists/<distro>/

Paquets

Ubuntu

Paquets Ubuntu mis en cache

avec toutes les dépendances
/<distro>/pool/main/

Versions

GitHub

Binaires pré-construits

(Prometheus, Grafana,

Homer, etc.)

/releases/<org>/<repo>/

Archives

Source

Archives source pour les

applications web (CGrateS_UI,

speedtest)

/repos/

Paquets Tiers
Galera, FRR, InfluxDB, KeyDB,

etc.
/releases/<vendor>/

Variables de Configuration

Deux ensembles de variables distincts contrôlent la distribution des paquets.

Comprendre leurs objectifs est essentiel pour une configuration correcte.

Ce Qu'ils Configurent

Variables de

Configuration

apt_repo

(Sources de paquets

APT)

remote_apt_*

(Téléchargements

binaires)

/etc/apt/sources.list

Téléchargements

binaires

/releases/*

Objectifs des Variables

Ensemble de

Variables
Objectif Utilisé Pour

apt_repo

Configure les

sources de

paquets APT

/etc/apt/sources.list et

/etc/apt/sources.list.d/*.list

remote_apt_*

Configure les

URL de

téléchargement

binaire

Téléchargement de fichiers depuis le

chemin /releases/ (Node Exporter,

Zabbix, Nagios, etc.)

Quand Chaque Ensemble de Variables Est

Utilisé

Scénario
Sources APT

(apt_repo)

Téléchargements

Binaires (remote_apt_*)

use_apt_cache:

true

Utilise

apt_repo.apt_server

Utilise

apt_repo.apt_server

use_apt_cache:

false

Utilise apt_repo.* avec

des identifiants

Utilise remote_apt_* avec

des identifiants

Lorsque use_apt_cache: false , les deux ensembles de variables sont

requis.

Option 1 : Accès Direct

Pour les déploiements avec connectivité Internet, les VM récupèrent les

paquets directement depuis le serveur APT d'Omnitouch.

Exigences Réseau

Liste Blanche des IP Sources : Votre adresse IP publique doit être ajoutée à

la liste blanche sur le serveur APT d'Omnitouch. Lors de la configuration,

fournissez vos sous-réseaux sources à Omnitouch. En retour, vous recevrez :

Nom d'utilisateur et mot de passe pour l'authentification HTTP Basic

FQDN pour le serveur APT

Exigences de Pare-feu : L'accès sortant aux plages IP suivantes d'Omnitouch

doit être autorisé :

Réseau Plage

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:dec0::/48

ASN AS152894

Services nécessitant un accès à l'infrastructure Omnitouch :

Service Port Protocole Objectif

Serveur APT 80 TCP Téléchargements de paquets

Serveur APT 53 TCP/UDP
Résolution DNS pour

apt.omnitouch.com.au

Serveur de

Licence
123 UDP

Synchronisation horaire NTP pour

validation de licence

Serveur de

Licence
53 TCP/UDP

Résolution DNS pour validation de

licence

Assurez-vous que le trafic HTTP (TCP/80), NTP (UDP/123) et DNS (TCP+UDP/53)

est autorisé vers les plages IP d'Omnitouch.

Configuration

Paramètres

Sources de Paquets APT (apt_repo)

all:

 vars:

 use_apt_cache: false

 # Configuration des sources de paquets APT

 # Configure /etc/apt/sources.list pour les commandes apt

install

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "your-username"

 apt_repo_password: "your-password"

 # Configuration des téléchargements binaires

 # Utilisé pour télécharger des fichiers depuis le chemin

/releases/

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

Paramètre Type Requis
Par

Défaut
Description

apt_repo.apt_server Chaîne Oui -

Nom d'hôte ou

adresse IP du

serveur APT

apt_repo.apt_repo_username Chaîne Oui -

Nom

d'utilisateur

pour

l'authentificat

HTTP Basic po

les sources AP

apt_repo.apt_repo_password Chaîne Oui -

Mot de passe

pour

l'authentificat

HTTP Basic po

les sources AP

Téléchargements Binaires (remote_apt_*)

Paramètre Type Requis
Par

Défaut
Description

remote_apt_server Chaîne Oui -

Nom d'hôte ou IP

du serveur pour les

téléchargements

binaires

remote_apt_port Entier Non 80

Port du serveur

pour les

téléchargements

binaires

remote_apt_protocol Chaîne Non http
Protocole (http ou

https)

remote_apt_user Chaîne Oui -

Nom d'utilisateur

pour

l'authentification

HTTP Basic pour les

téléchargements

remote_apt_password Chaîne Oui -

Mot de passe pour

l'authentification

HTTP Basic pour les

téléchargements

Général

Paramètre Type Requis
Par

Défaut
Description

use_apt_cache Booléen Oui -
Doit être false pour

un accès direct

Modèles d'URL (Accès Direct)

Sources de Paquets APT (configurées dans /etc/apt/sources.list) :

Téléchargements Binaires (utilisés par les tâches get_url d'Ansible) :

Comment Cela Fonctionne

Les VM s'authentifient avec l'authentification HTTP Basic pour les paquets APT

et les téléchargements binaires. Les paquets système Ubuntu sont également

servis depuis le serveur Omnitouch (pré-mis en cache), donc les VM n'ont pas

besoin d'accéder aux miroirs Ubuntu.

deb [trusted=yes] http://{apt_repo_username}:

{apt_repo_password}@{apt_server}/ noble main

http://{remote_apt_user}:

{remote_apt_password}@{remote_apt_server}:

{remote_apt_port}/releases/prometheus/node_exporter/node_exporter-

1.8.1.linux-amd64.tar.gz

Option 2 : Miroir de Cache Local

Pour les déploiements hors ligne, isolés ou limités en bande passante, déployez

un cache APT local qui synchronise tout le contenu d'Omnitouch.

Architecture

Réseau Client

Infrastructure

Omnitouch
Synchronisation Initiale

(nécessite Internet)

Servir des Paquets

(capable hors ligne)

Servir des Paquets

(capable hors ligne)

Servir des Paquets

(capable hors ligne)

apt.omnitouch.com.au
Miroir de Cache APT

(apt_cache_servers)

VM

VM

VM

Configuration

Définissez le serveur de cache dans votre fichier hosts avec sa configuration de

dépôt :

Comment cela fonctionne :

Serveur de cache (192.168.1.100) : Utilise les identifiants remote_apt_*

pour synchroniser les paquets depuis apt.omnitouch.com.au:80

Tous les autres hôtes : Dérivent automatiquement

apt_repo.apt_server: "192.168.1.100" et récupèrent depuis le cache au

port 8080 sans identifiants

Paramètres

Sources de Paquets APT (apt_repo)

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Le serveur de cache synchronise les paquets depuis le dépôt

authentifié

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

all:

 vars:

 # use_apt_cache: true # Défini automatiquement lorsque le

groupe apt_cache_servers existe

 # apt_repo.apt_server: auto-dérivé à 192.168.1.100 (premier

serveur de cache)

Paramètre Type Requis
Par

Défaut
Descripti

apt_repo.apt_server Chaîne Oui
Auto-

dérivé

IP du serveur

cache local. D

automatiquem

du premier hô

apt_cache_se

si non spécifié

apt_repo.apt_repo_username Chaîne Non -

Non requis lor

l'utilisation du

cache (aucune

authentificatio

nécessaire)

apt_repo.apt_repo_password Chaîne Non -

Non requis lor

l'utilisation du

cache (aucune

authentificatio

nécessaire)

Synchronisation du Serveur de Cache (remote_apt_*)

Ces variables configurent comment le serveur de cache synchronise le contenu

d'Omnitouch :

Paramètre Type Requis
Par

Défaut
Description

remote_apt_server Chaîne Oui -

Serveur APT

Omnitouch à

synchroniser

remote_apt_port Entier Non 80
Port du serveur

APT Omnitouch

remote_apt_protocol Chaîne Non http

Protocole pour la

connexion de

synchronisation

remote_apt_user Chaîne Oui -

Identifiants pour la

synchronisation

depuis Omnitouch

remote_apt_password Chaîne Oui -

Identifiants pour la

synchronisation

depuis Omnitouch

Général

Paramètre Type Requis
Par

Défaut
Description

use_apt_cache Booléen Non true

Défini

automatiquement sur

true lorsque le groupe

apt_cache_servers

existe

apt_cache_port Entier Non 8080

Port sur lequel le

serveur de cache local

écoute

Modèles d'URL (Mode Cache)

Sources de Paquets APT (configurées dans /etc/apt/sources.list) :

Téléchargements Binaires (utilisés par les tâches get_url d'Ansible) :

Aucun identifiant requis pour l'accès au cache - il utilise la configuration APT

[trusted=yes] .

Déploiement du Cache

1. Provisionnez le serveur de cache (VM ou conteneur LXC avec 50+ Go

de disque)

2. Exécutez le playbook de configuration du cache :

3. Vérifiez le cache en naviguant vers http://192.168.1.100:8080/

Ce Qui Est Synchronisé

Le miroir de cache synchronise tout le contenu depuis le serveur APT

d'Omnitouch en utilisant un téléchargement wget récursif :

deb [trusted=yes] http://192.168.1.100:8080/noble noble main

http://192.168.1.100:8080/releases/prometheus/node_exporter/node_expo

1.8.1.linux-amd64.tar.gz

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Miroir de Cache Local

apt.omnitouch.com.au

Paquets .deb Omnitouch

/pool/main/

Paquets Ubuntu + Déps

/noble/pool/main/

Versions GitHub

/releases/

Tarballs Source

/repos/

Métadonnées APT

/dists/

Paquets .deb Omnitouch Paquets Ubuntu + Déps Versions GitHub Tarballs Source Métadonnées APT

Répertoires de contenu synchronisés :

Chemin Contenu

/dists/<distro>/
Métadonnées du dépôt APT (Fichiers Packages,

Release)

/pool/main/ Paquets .deb personnalisés d'Omnitouch

/<distro>/pool/main/ Paquets Ubuntu et toutes les dépendances

/releases/
Versions GitHub (Prometheus, Grafana, Zabbix,

etc.)

/repos/ Tarballs source (Erlang, Elixir, CGrateS_UI, etc.)

Après la synchronisation initiale, le cache peut servir tous les paquets sans

connectivité Internet.

Comment Cela Fonctionne

Le miroir de cache utilise wget --recursive avec authentification HTTP Basic

pour télécharger tout le contenu depuis le serveur APT d'Omnitouch. Les

synchronisations suivantes ne téléchargent que les fichiers nouveaux/modifiés

(timestamping).

Configuration Automatique

Lorsqu'un groupe apt_cache_servers existe dans votre inventaire, le système :

1. Définit use_apt_cache: true pour tous les hôtes (à moins d'être

explicitement remplacé)

2. Dérive apt_repo.apt_server de l'IP ansible_host du premier serveur de

cache

Exemple de Configuration Minimale

Ce qui se passe automatiquement :

Tous les hôtes (sauf le serveur de cache) obtiennent use_apt_cache: true

Tous les hôtes (sauf le serveur de cache) obtiennent apt_repo.apt_server:

"192.168.1.100"

Tous les hôtes récupèrent depuis http://192.168.1.100:8080/ sans

identifiants

Le serveur de cache synchronise les paquets depuis http://your-

username:your-password@apt.omnitouch.com.au/

apt_cache_servers:

 hosts:

 apt-cache-01:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Le serveur de cache synchronise le contenu depuis le dépôt

Omnitouch

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

Remplacer le Comportement Automatique

Pour forcer l'accès direct même avec des serveurs de cache définis :

Résumé de la Configuration

Scénario 1 : Accès Direct au Serveur APT (Pas

de Cache)

Tous les hôtes récupèrent les paquets directement depuis le serveur de dépôt

APT.

all:

 vars:

 use_apt_cache: false # Forcer l'accès direct même avec des

serveurs de cache définis

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "user"

 remote_apt_password: "pass"

Résultat : Tous les hôtes génèrent deb [trusted=yes]

http://user:pass@apt.omnitouch.com.au/ noble main

Scénario 2 : Serveur de Cache APT Défini dans

le Fichier Hosts (Automatique)

Le serveur de cache est dans votre inventaire et sera déployé/synchronisé par

Ansible.

all:

 vars:

 use_apt_cache: false

 # Sources de paquets APT - utilisées par tous les hôtes

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 # Téléchargements binaires - utilisés par tous les hôtes

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

Résultat :

Serveur de cache : Synchronise depuis

http://user:pass@apt.omnitouch.com.au:80/

Tous les autres hôtes : Génèrent deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sans identifiants)

Scénario 3 : Cache APT DISTANT NON dans le

Fichier Hosts (Manuel)

Le serveur de cache existe ailleurs et est déjà configuré (non géré par votre

Ansible).

apt_cache_servers:

 hosts:

 cache-server:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Le serveur de cache synchronise les paquets depuis le dépôt

authentifié

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

Aucune configuration nécessaire dans all: vars:

Tout est auto-dérivé du groupe apt_cache_servers

Résultat : Tous les hôtes génèrent deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (sans identifiants)

Exemple Complet

Voici un exemple complet montrant la configuration du serveur de cache avec

plusieurs hôtes d'application :

all:

 vars:

 use_apt_cache: true

 # Pointer tous les hôtes vers le serveur de cache externe

 apt_repo:

 apt_server: "192.168.1.100" # IP du serveur de cache

externe

 apt_repo_port: 8080 # Le cache fonctionne

généralement sur le port 8080

Aucun groupe apt_cache_servers nécessaire

Aucun remote_apt_* nécessaire (le cache est déjà configuré

externement)

Groupe de Serveur de Cache APT

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 10.179.1.114

 gateway: 10.179.1.1

 host_vm_network: "vmbr0"

 num_cpus: 4

 memory_mb: 16384

 proxmoxLxcDiskSizeGb: 120

 vars:

 # Le serveur de cache synchronise les paquets depuis le dépôt

authentifié

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "customer-username"

 remote_apt_password: "customer-secure-token"

Serveurs d'Application

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.179.2.177

 gateway: 10.179.2.1

Configuration Globale

all:

 vars:

 # Auto-configuration (aucune configuration manuelle

nécessaire) :

Ce qui se passe lors du déploiement :

1. Serveur de cache (10.179.1.114) :

Utilise remote_apt_* de sa section vars:

Télécharge tous les paquets depuis http://customer-

username:customer-secure-token@apt.omnitouch.com.au:80/

Sert des paquets sur le port 8080 via nginx

2. Hôtes d'application (customer-hss01 , customer-mme01 , customer-

dns01) :

Détectent automatiquement que le groupe apt_cache_servers existe

Définissent automatiquement use_apt_cache: true

Dérivent automatiquement apt_repo.apt_server: "10.179.1.114"

Génèrent : deb [trusted=yes] http://10.179.1.114:8080/noble

noble main

Récupèrent tous les paquets depuis le serveur de cache (aucuns

identifiants requis)

Mise à Jour du Cache

Pour synchroniser de nouveaux paquets ou mises à jour :

Cela synchronise de manière incrémentielle tout le contenu depuis le serveur

APT d'Omnitouch :

Nouvelles versions de paquets Omnitouch

 # - use_apt_cache: true (auto-activé lorsque apt_cache_servers

existe)

 # - apt_repo.apt_server: "10.179.1.114" (auto-dérivé du

serveur de cache)

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Nouveaux paquets Ubuntu et dépendances

Nouvelles versions GitHub

Tarballs source mis à jour

La synchronisation utilise wget --timestamping , donc les fichiers existants non

modifiés sont ignorés, rendant la re-synchronisation rapide.

Remarque : Le serveur APT d'Omnitouch (apt.omnitouch.com.au) est la seule

source de vérité pour tous les paquets. Exécutez services/apt.yml sur le

serveur APT en premier pour construire/mettre à jour les paquets, puis

exécutez services/apt_cache.yml sur les miroirs de cache pour synchroniser.

Dépannage

La Mise à Jour APT Échoue avec 401 Non

Autorisé

Symptômes :

Causes possibles :

Configuration apt_repo définie dans all: vars: au lieu de

apt_cache_servers: vars:

Hôtes essayant d'accéder directement au dépôt authentifié au lieu du

cache

Identifiant apt_repo_username ou apt_repo_password incorrect

IP source non ajoutée à la liste blanche sur le serveur APT d'Omnitouch

Utilisation des identifiants de cache pour un accès direct ou vice versa

Résolution :

Échec de la récupération

http://10.179.1.115:80/noble/dists/noble/main/binary-

amd64/Packages 401 Non Autorisé

1. Vérifiez la portée de la configuration : Assurez-vous que apt_repo

avec des identifiants est défini dans apt_cache_servers: vars: , PAS dans

all: vars:

2. Vérifiez le mode cache : Lors de l'utilisation du cache, les hôtes doivent

se connecter au serveur de cache (port 8080), pas au dépôt (port 80)

3. Vérifiez les sources générées : Sur l'hôte en échec, vérifiez

/etc/apt/sources.list.d/omnitouch.list

Correct (mode cache) : deb [trusted=yes]

http://10.179.1.114:8080/noble noble main

Incorrect (a des identifiants au mauvais endroit) : deb

[trusted=yes] http://user:pass@10.179.1.115:80/noble noble main

4. Vérifiez que les identifiants sont corrects pour votre mode de déploiement

5. Confirmez que votre IP publique est ajoutée à la liste blanche avec

Omnitouch (si vous utilisez l'accès direct)

Les Téléchargements Binaires Échouent (Node

Exporter, Zabbix, etc.)

Symptômes : Le playbook Ansible échoue à télécharger des fichiers depuis le

chemin /releases/

Causes possibles :

Variables remote_apt_* non configurées

Identifiant remote_apt_user ou remote_apt_password incorrect

remote_apt_server manquant lorsque use_apt_cache: false

Résolution :

1. Assurez-vous que toutes les variables remote_apt_* sont définies

2. Vérifiez que les identifiants correspondent à ceux fournis par Omnitouch

3. Vérifiez que remote_apt_server pointe vers l'hôte correct

Le Serveur de Cache Ne Peut Pas Synchroniser

Symptômes : Le playbook du serveur de cache échoue à télécharger des

paquets

Causes possibles :

Le serveur de cache n'a pas accès à Internet

Identifiants remote_apt_* incorrects

Pare-feu bloquant les connexions sortantes vers Omnitouch

Résolution :

1. Vérifiez que le serveur de cache peut atteindre apt.omnitouch.com.au sur

le port 80

2. Vérifiez les identifiants remote_apt_*

3. Examinez les règles de pare-feu pour l'accès sortant

Documentation Connexe

Configuration du Fichier Hosts — Configuration de l'inventaire et des

variables

Référence de Configuration — Référence complète des paramètres

Architecture de Déploiement — Architecture globale du système

Déploiement Proxmox — Déploiement du serveur de cache en tant que

conteneur LXC

Référence de

Configuration

Vue d'ensemble

Ce document fournit une référence complète pour la configuration des

déploiements OmniCore via des fichiers d'hôtes. La configuration est

principalement définie dans des fichiers d'inventaire d'hôtes avec des

remplacements group_vars minimaux nécessaires pour les déploiements

modernes.

Pour la documentation spécifique au produit, voir :

OmniCore : https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall : https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge : https://docs.omnitouch.com.au/docs/repos/OmniCharge

Approche de Configuration

Les déploiements modernes d'OmniCore utilisent un modèle de configuration

simplifié :

Principe Clé : La plupart de la configuration est définie directement dans le

fichier d'hôtes. Les valeurs par défaut des rôles gèrent la majorité des

paramètres, avec group_vars utilisées uniquement pour des personnalisations

spécifiques.

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Planification Réseau

Avant de configurer les hôtes, consultez la Norme de Planification IP pour

des conseils sur :

Stratégies de segmentation réseau

Allocation d'adresses IP

Organisation des sous-réseaux

Gestion des IP publiques

Paramètres Communs des Hôtes

#ToDo - Just say to check hosts-file-configuration.md for this

Drapeaux Spécifiques au Service

Variables Globales (all:vars)

La section all:vars contient des paramètres à l'échelle du déploiement. Les

déploiements modernes utilisent des variables globales minimales avec la

plupart de la configuration dans les valeurs par défaut des rôles.

Variables Globales Essentielles

Authentification & Accès

cdrs_enabled: True # Activer la génération de CDR

in_pool: False # Exclure du pool d'équilibrage

de charge

online_charging_enabled: False # Activer l'intégration OCS

recording: True # Activer l'enregistrement des

appels (AS)

populate_crm: False # Peupler le CRM avec des données

initiales

Alternative : Utilisez des clés SSH au lieu de mots de passe :

Identité du Client

Configuration PLMN

But : Identifie de manière unique votre réseau mobile. Utilisé pour la

construction du domaine Diameter.

Noms de Réseau

ansible_connection: ssh

ansible_user: root

ansible_password: password

ansible_become_password: password

ansible_ssh_private_key_file: '/path/to/key.pem'

customer_name_short: omnitouch

customer_legal_name: "YKTN Lab"

site_name: YKTN

region: AU

TZ: Australia/Melbourne

plmn_id:

 mcc: '001' # Code Pays Mobile (3 chiffres)

 mnc: '01' # Code Réseau Mobile (2-3 chiffres)

 mnc_longform: '001' # MNC avec zéros en tête (toujours 3

chiffres)

diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

Affiché : Noms de réseau affichés sur les appareils UE dans Paramètres >

Réseau Mobile.

Configuration DNS

Configuration du Dépôt APT

Valeurs par Défaut Automatiques : Lorsqu'un groupe apt_cache_servers

est défini avec des hôtes :

use_apt_cache par défaut à True (sauf s'il est explicitement défini sur

False)

apt_repo.apt_server par défaut à l'IP du premier serveur de cache

network_name_short: Omni

network_name_long: Omnitouch

tac_list: [10100,100] # Liste TAC par défaut (peut être

remplacée par MME)

netplan_DNS: False # Utiliser systemd-resolved au

lieu de DNS netplan

Voir : Système de Cache APT

Serveur de Licences

Voir : Serveur de Licences

Paramètres MME

Paramètres SAEGW

Configuration manuelle (optionnelle si le groupe

apt_cache_servers existe)

use_apt_cache: True # Utiliser le cache APT local vs

accès direct au dépôt

apt_repo:

 apt_server: "10.10.1.114" # Serveur de cache APT ou serveur

de dépôt

 # Les identifiants ne sont nécessaires que lorsque

use_apt_cache: False

 # apt_repo_username: "omni"

 # apt_repo_password: "omni"

Configuration des téléchargements binaires et de la

synchronisation du cache

Utilisé pour : (1) télécharger des binaires depuis /releases/

lorsque use_apt_cache: false

(2) synchronisation du serveur de cache depuis

Omnitouch lorsque use_apt_cache: true

remote_apt_server: "apt.omnitouch.com.au"

remote_apt_user: "omni"

remote_apt_password: "omni"

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

mme_dns: False # Activer la résolution DNS MME

Paramètres IMS

Configuration du Moniteur RAN

mtu: 1400 # Unité de Transmission Maximum

ims_dra_support: False # Router IMS via DRA

enable_homer: False # Activer la capture SIP Homer

Configuration du Pare-feu

use_nokia_monitor: True

use_casa_monitor: True

install_influxdb: True

influxdb_user: monitor

influxdb_password: "secure-password"

influxdb_organisation_name: omnitouch

influxdb_nokia_bucket_name: nokia-monitor

influxdb_casa_bucket_name: casa-monitor

influxdb_operator_token: "generated-token"

influxdb_url: http://127.0.0.1:8086

enable_pm_collection: False

enable_alarm_collection: False

enable_location_collection: False

enable_ran_status_collection: True

enable_nokia_rectifier_collection: False

collection_interval_in_seconds: 120

ran_monitor:

 sql:

 user: ran_monitor

 password: "secure-password"

 database_host: 127.0.0.1

 database_name: ran_monitor

 influxdb:

 address: 10.10.2.135

 port: 8086

 nokia:

 airscales:

 - address: 10.7.15.66

 name: site-Lab-Airscale

 port: 8080

 web_password: nemuuser

 web_username: Nemuadmin

Serveurs DNS de Roaming

Utilisateurs Locaux (Clés SSH)

firewall:

 allowed_ssh_subnets:

 - '10.0.1.0/24'

 - '10.0.0.0/24'

 allowed_ue_voice_subnets:

 - '10.0.1.0/24'

 allowed_carrier_voice_subnets:

 - '10.0.1.0/24'

 allowed_signaling_subnets:

 - '10.0.1.0/24'

roaming_dns_servers:

 wildcard: ['10.0.99.1']

 # DNS spécifique à l'opérateur (basé sur PLMN)

 123456: # Exemple Opérateur 1

 - '10.10.2.197'

 654321: # Exemple Opérateur 2

 - '10.10.0.4'

local_users:

 usera:

 name: Exemple Utilisateur A

 public_key: "ssh-rsa AAAAB3Nza..."

 userb:

 name: Exemple Utilisateur B

 public_key: "ssh-ed25519 AAAAC3..."

Configuration de l'Hyperviseur

Proxmox

proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: password

 proxmoxApiTokenName: AnsibleToken

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve01

Paramètres par défaut de Proxmox

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve01'

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard_24.04-

2_amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD_RAID0

proxmoxLxcBridgeName: vmbr0

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"

proxmoxStorage: SSD_RAID0

vLabNetmask: 24

PROXMOX_API_TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask_cidr: 24

VMware vCenter

Documentation Connexe

Norme de Planification IP - Architecture réseau et directives d'allocation IP

Configuration du Fichier d'Hôtes - Comment structurer les fichiers d'hôtes

Configuration des Variables de Groupe - Quand et comment utiliser

group_vars

Configuration de Netplan - IP secondaires et configuration multi-NIC

Architecture de Déploiement - Comment les composants interagissent

Système de Cache APT - Gestion des paquets

Serveur de Licences - Configuration des licences

Documentation Produit

Pour des guides opérationnels détaillés et une configuration avancée :

Composants OmniCore :

https://docs.omnitouch.com.au/docs/repos/OmniCore

vcenter_ip: "vcenter.example.com"

vcenter_username: "administrator@vsphere.local"

vcenter_password: "password"

vcenter_datacenter: "DC1"

vcenter_vm_template: ubuntu-24.04-model

vcenter_vm_disk_size: 50

vcenter_folder: "Omnicore"

host_vm_network: "Management"

vhosts:

 "10.0.0.23":

 vcenter_cluster_ip: 10.0.0.23

 vcenter_datastore: "datastore1 (3)"

netmask: 255.255.255.0

https://docs.omnitouch.com.au/docs/repos/OmniCore

Composants OmniCall :

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM :

https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Vue d'ensemble de

l'architecture de

déploiement

Vue d'ensemble

Ce document fournit une vue complète de la manière dont le logiciel de réseau

cellulaire d'Omnitouch Network Services est déployé à l'aide d'Ansible,

montrant comment tous les composants s'assemblent pour créer un réseau

4G/5G fonctionnel.

Voir la Norme de planification IP pour des directives détaillées sur le placement

des composants, l'attribution des adresses IP et la gestion des IP publiques.

Exemple complet de déploiement

0. Provisionnement de l'infrastructure

(optionnel)

Pour les déploiements Proxmox, provisionnez les VMs/LXCs avant la

configuration :

Voir : Déploiement de VM/LXC Proxmox

Déployer des VMs sur Proxmox

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Ou déployer des conteneurs LXC (laboratoire/test uniquement)

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

1. Définition de l'infrastructure (fichier hosts)

Voir : Configuration du fichier hosts

2. Personnalisation (group_vars)

Le dossier group_vars est l'endroit où nous pouvons stocker toutes les

substitutions de configuration nécessaires au niveau d'un hôte, d'un site ou

d'un réseau.

Par exemple, vous auriez un dossier avec votre configuration SMSc

OmniMessage, les trunks SIP auxquels votre TAS se connecte seraient ici, toute

votre logique de routage Diameter, etc., etc.

Voir : Configuration des variables de groupe

3. Distribution des paquets (cache APT)

Définir quoi déployer et où

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

... tous les autres composants

Configurer où obtenir les paquets

apt_repo:

 apt_server: "10.254.10.223" # IP du serveur de cache ou serveur

de repo direct

use_apt_cache: false # true = utiliser le cache local, false =

accès direct au repo

Voir : Système de cache APT

4. Configuration de la licence

Voir : Serveur de licence

5. Exécuter le déploiement

Des composants individuels peuvent être déployés en exécutant

services/twag.yml par exemple, mais le services/all.yml gérera tout, et

vous pouvez utiliser --limit=myhost ou --limit=mmee,sgw , etc., pour limiter

les hôtes sur lesquels nous travaillons.

Documentation connexe

Introduction au déploiement Ansible - Premiers pas

Configuration du fichier hosts - Définir l'infrastructure

Norme de planification IP - Architecture réseau et allocation IP

Configuration des variables de groupe - Personnalisation

Système de cache APT - Gestion des paquets

Serveur de licence - Gestion des licences

Pointer les composants vers le serveur de licence

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

Déployer le réseau complet

ansible-playbook -i hosts/customer/host_files/production.yml

services/all.yml

Ou déployer des composants spécifiques

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/ims.yml

Documentation produit

Pour des informations détaillées sur la configuration de chaque composant :

OmniCore (Noyau de paquets 4G/5G) :

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS, OmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voix et messagerie) :

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Facturation) :

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentation principale : https://docs.omnitouch.com.au/

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Configuration des

Variables de Groupe

Vue d'ensemble

Le répertoire group_vars est l'endroit où vous stockez des fichiers de

configuration personnalisés qui remplacent les modèles par défaut.

C'est ici que résident vos configurations spécifiques au client - trunks SIP,

règles de routage Diameter, logique de routage SMS, plans d'appel, et toute

autre personnalisation où vous ne souhaitez pas la configuration par défaut -

Cela se trouve dans group_vars .

Emplacement : hosts/{Customer}/group_vars/

Comment ça fonctionne

Les rôles Ansible ont des modèles de configuration par défaut. Pour

personnaliser pour un déploiement spécifique, placez vos fichiers personnalisés

dans group_vars et référencez-les dans votre fichier hosts.

Exemple 1 : Modèle de

Configuration Personnalisé

(OmniMessage)

Certains composants acceptent des modèles de configuration Jinja2

personnalisés.

Modèle par défaut du rôle → Remplacement group_vars (si spécifié)

→ Configuration déployée

Structure des Fichiers

Référence dans le Fichier Hosts

Ce qui se passe :

1. Ansible trouve smsc_template_config: smsc_controller.exs

2. Cherche dans hosts/Customer/group_vars/smsc_controller.exs

3. Le modèle avec Jinja2 (peut utiliser {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Déploie dans /etc/omnimessage/runtime.exs

5. Redémarre le service

Sans smsc_template_config , le modèle par défaut du rôle est utilisé.

Détails de configuration : Voir

https://docs.omnitouch.com.au/docs/repos/OmniCall

Exemple 2 : Collections de Fichiers

de Configuration (Passerelles &

hosts/Customer/

└── group_vars/

 └── smsc_controller.exs # Votre modèle de config

personnalisé

omnimessage:

 hosts:

 customer-smsc-controller01:

 ansible_host: 10.10.3.219

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 smsc_template_config: smsc_controller.exs # Référencez le

nom de votre modèle dans group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCall

Plans d'Appel OmniTAS)

Certains composants utilisent des répertoires de fichiers de configuration.

Structure des Fichiers

Référence dans le Fichier Hosts

Ce qui se passe :

1. Ansible trouve gateways_folder: "gateways_prod"

2. Copie tous les fichiers de hosts/Customer/group_vars/gateways_prod/

vers /etc/freeswitch/sip_profiles/

hosts/Customer/

└── group_vars/

 ├── gateways_prod/ # Configurations des

passerelles SIP

 │ ├── gateway_carrier1.xml

 │ ├── gateway_carrier2.xml

 │ └── gateway_emergency.xml

 ├── gateways_lab/ # Passerelles de laboratoire

 │ └── gateway_test.xml

 └── dialplan/ # Règles de routage d'appels

 ├── mo_dialplan.xml # Mobile Originate (sortant)

 ├── mt_dialplan.xml # Mobile Terminate (entrant)

 └── emergency.xml

applicationserver:

 hosts:

 customer-tas01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 gateways_folder: "gateways_prod" # Référencez votre

dossier de passerelles à utiliser sur cet hôte

3. Copie tous les fichiers de hosts/Customer/group_vars/dialplan/ vers le

répertoire des modèles OmniTAS

4. Les services chargent les configurations

Différents environnements : Utilisez différents dossiers par environnement :

gateways_folder: "gateways_lab"

gateways_folder: "gateways_prod"

gateways_folder: "gateways_customer_specific"

Détails de configuration : Voir

https://docs.omnitouch.com.au/docs/repos/OmniCall

Exemple 3 : Modèle de

Configuration Personnalisé

(OmniHSS)

Le Home Subscriber Server accepte des modèles de configuration d'exécution

personnalisés.

Structure des Fichiers

hosts/Customer/

└── group_vars/

 └── hss_runtime.exs.j2 # Votre modèle de config HSS

personnalisé

https://docs.omnitouch.com.au/docs/repos/OmniCall

Référence dans le Fichier Hosts

Ce qui se passe :

1. Ansible trouve hss_template_config: hss_runtime.exs.j2

2. Cherche dans hosts/Customer/group_vars/hss_runtime.exs.j2

3. Le modèle avec Jinja2 (peut utiliser {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Déploie dans /etc/omnihss/runtime.exs

5. Redémarre le service

Sans hss_template_config , le modèle par défaut du rôle est utilisé.

Détails de configuration : Voir

https://docs.omnitouch.com.au/docs/repos/OmniCore

Exemple 4 : Modèle de

Configuration Personnalisé

(OmniMME)

L'Entity de Gestion de Mobilité accepte des modèles de configuration

d'exécution personnalisés.

omnihss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.3.50

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 hss_template_config: hss_runtime.exs.j2 # Référencez le

nom de votre modèle dans group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Structure des Fichiers

Référence dans le Fichier Hosts

Ce qui se passe :

1. Ansible trouve mme_template_config: mme_runtime.exs.j2

2. Cherche dans hosts/Customer/group_vars/mme_runtime.exs.j2

3. Le modèle avec Jinja2 (peut utiliser {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Déploie dans /etc/omnimme/runtime.exs

5. Redémarre le service

Sans mme_template_config , le modèle par défaut du rôle est utilisé.

Détails de configuration : Voir

https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── mme_runtime.exs.j2 # Votre modèle de config MME

personnalisé

omnimme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.3.51

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 mme_template_config: mme_runtime.exs.j2 # Référencez le

nom de votre modèle dans group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Exemple de Structure de

Répertoire dans le Monde Réel

hosts/Customer/

├── host_files/

│ └── production.yml # Le fichier hosts référence les

fichiers group_vars

└── group_vars/

 ├── smsc_controller.exs # Modèle personnalisé OmniMessage

 ├── smsc_smpp.exs # Modèle personnalisé SMPP

OmniMessage

 ├── tas_runtime.exs.j2 # Modèle personnalisé TAS

 ├── hss_runtime.exs.j2 # Modèle personnalisé HSS

 ├── mme_runtime.exs.j2 # Modèle personnalisé MME

 ├── dra_runtime.exs.j2 # Modèle personnalisé DRA

 ├── pgwc_runtime.exs.j2 # Modèle personnalisé PGW

 ├── dea_runtime.exs.j2 # Modèle personnalisé DEA

 ├── upf_config.yaml # Configuration UPF

 ├── crm_config.yaml # Configuration CRM

 ├── stp.j2 # Modèle SS7 STP

 ├── hlr.j2 # Modèle SS7 HLR

 ├── camel.j2 # Modèle SS7 CAMEL

 ├── ipsmgw.j2 # Modèle IP-SM-GW

 ├── omnicore_smsc_ims.yaml.j2 # Configuration SMSC IMS

 ├── pytap.yaml # Configuration TAP3

 ├── sip_profiles/ # Passerelles SIP (dossier)

 │ └── gateway_otw.xml

 └── dialplan/ # Règles de routage d'appels

(dossier)

 ├── mo_dialplan.xml # Mobile Originate

 ├── mt_dialplan.xml # Mobile Terminate

 └── mo_emergency.xml # Routage d'urgence

Paramètres Communs Qui

Référencent group_vars

Paramètre Composant Références

smsc_template_config omnimessage

Fichier de modèle

Jinja2 (par exemple,

smsc_controller.exs)

smsc_smpp_template_config omnimessage_smpp

Fichier de modèle

Jinja2 (par exemple,

smsc_smpp.exs)

gateways_folder applicationserver

Nom du dossier (par

exemple,

sip_profiles)

Plans d'Appel (automatique) applicationserver
Dossier dialplan/

des XML de routage

tas_template_config applicationserver

Fichier de modèle

Jinja2 (par exemple,

tas_runtime.exs.j2)

hss_template_config omnihss

Fichier de modèle

Jinja2 (par exemple,

hss_runtime.exs.j2)

mme_template_config omnimme

Fichier de modèle

Jinja2 (par exemple,

mme_runtime.exs.j2)

dra_template_config dra

Fichier de modèle

Jinja2 (par exemple,

dra_runtime.exs.j2)

pgwc_template_config pgwc Fichier de modèle

Jinja2 (par exemple,

Paramètre Composant Références

pgwc_runtime.exs.j2)

frr_template_config omniupf

Fichier de modèle

Jinja2 (par exemple,

frr.conf.j2)

Modèles SS7
ss7 (différents

rôles)

Fichiers de modèle

Jinja2 (par exemple,

stp.j2 , hlr.j2 ,

camel.j2)

Configurations YAML Divers composants

Fichiers de config

directs (par exemple,

upf_config.yaml ,

crm_config.yaml)

Points Clés

1. group_vars contient des personnalisations - Remplacements pour les

configurations par défaut

2. Référence par nom - Utilisez des paramètres comme

smsc_template_config ou gateways_folder

3. Les modèles supportent Jinja2 - Accédez à n'importe quelle variable

Ansible avec {{ variable_name }}

4. Les dossiers déploient tout - Tous les fichiers dans les dossiers

référencés sont copiés

5. Contrôlez tout par version - Commitez tous les group_vars dans Git

Quand Utiliser group_vars

� Utilisez group_vars pour :

Modèles de configuration de composants personnalisés

Définitions de passerelles SIP

Plans d'appel de routage

Règles de routage Diameter

Paramètres spécifiques au client qui remplacent les valeurs par défaut

❌ N'utilisez pas group_vars pour :

Configuration de base des hôtes (IPs, noms d'hôtes) - Utilisez le fichier

hosts

Tests ponctuels - Utilisez des variables spécifiques aux hôtes dans le fichier

hosts

Changements temporaires - Éditez sur la cible, commitez dans group_vars

si permanent

Documentation Connexe

Référence de Configuration - Tous les paramètres d'hôte et ce qu'ils font

Configuration du Fichier Hosts - Comment structurer les fichiers hosts

Configuration OmniCall :

https://docs.omnitouch.com.au/docs/repos/OmniCall - Ce qui va dans les

fichiers de configuration

Configuration OmniCore :

https://docs.omnitouch.com.au/docs/repos/OmniCore - Détails de

configuration des composants

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Playbooks Utilitaires

Vue d'ensemble

Ce dépôt comprend plusieurs playbooks utilitaires pour la maintenance, la

surveillance et les tâches opérationnelles. Ceux-ci complètent les playbooks de

déploiement principaux avec des capacités de gestion au quotidien.

Utilitaire de Vérification de Santé

L'utilitaire de Vérification de Santé génère un rapport HTML montrant la santé

du système, l'état des services, le temps de disponibilité et les informations de

version sur tous les composants d'OmniCore.

S'exécute automatiquement dans le playbook services/all.yml .

Utilisation

Exécution Manuelle

Sortie

Le rapport est généré à /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Ouvrez-le dans n'importe quel navigateur web pour le visualiser.

Contenu du Rapport

Le rapport HTML affiche :

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Informations sur l'Hôte

Nom de l'hôte et adresse IP

Réseau/Sous-réseau (à partir de la variable host_vm_network , ou N/A si

non défini)

CPU (nombre de vCPU)

RAM (mémoire totale et libre)

Disque (espace total et libre de la partition racine avec pourcentage)

OS (distribution et version)

État des Services

État du service (actif/inactif avec indicateurs de couleur)

Temps de disponibilité

Informations sur la version/la publication

Pairs Diameter HSS

État de la connexion à la base de données (connecté/déconnecté)

Connexions de pairs Diameter (IP, hôte d'origine, état)

Récupéré à partir du point de terminaison des métriques HSS (port 9568)

Autres Utilitaires Communs

Configuration de Base du Système

Rôle Commun (services/common.yml)

Applique la configuration de base du système à tous les hôtes

Configure les dépôts, les clés SSH, le fuseau horaire, NTP

Configure le réseau et le renforcement du système

Exécutez ceci avant de déployer des services

Configuration des Utilisateurs (services/setup_users.yml)

Crée et configure des comptes utilisateurs sur tous les hôtes

Gère les clés SSH et les privilèges sudo

Assure une configuration utilisateur cohérente

Redémarrage (services/reboot.yml)

Redémarre gracieusement tous les hôtes ciblés

Attend que les systèmes reviennent en ligne (délai de 5 minutes)

Utile après des mises à jour de noyau ou des modifications de configuration

Utilitaires Opérationnels

Générateur de Plan IP (util_playbooks/ip_plan_generator.yml)

Génère un rapport HTML des attributions d'adresses IP

Montre la topologie complète du réseau à partir du fichier des hôtes

Utile pour la documentation et le dépannage

Sauvegarde HSS (util_playbooks/hss_backup.yml)

Sauvegarde les tables de la base de données HSS

ansible-playbook -i hosts/customer/host_files/production.yml

services/common.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/setup_users.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/reboot.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Copie le dump MySQL sur la machine Ansible locale

Invite interactive pour le chemin de sauvegarde

Obtenir la Capture Locale (util_playbooks/getLocalCapture.yml)

Récupère les deux fichiers de capture de paquets les plus récents de tous

les hôtes

Récupère les fichiers pcap à partir de /etc/localcapture/

Utile pour le débogage des problèmes de connectivité

Mettre à Jour MTU (util_playbooks/updateMtu.yml)

Met à jour les paramètres MTU de l'interface réseau

Applique les modifications via netplan

Utile pour la configuration des trames jumbo

Documentation Associée

README Principal - Vue d'ensemble et démarrage

Introduction au Déploiement Ansible - Exécution des playbooks

Configuration du Fichier des Hôtes - Configurez votre inventaire

Architecture de Déploiement - Vue d'ensemble complète du système

Système de Cache APT - Gestion des paquets

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/hss_backup.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

Configuration du fichier

Hosts

Vue d'ensemble

Le fichier hosts (également appelé fichier d'inventaire) est le document de

configuration central qui définit l'ensemble de votre déploiement de réseau

cellulaire. Il spécifie :

Quelles fonctions réseau déployer

Où elles s'exécutent (adresses IP, segments de réseau)

Comment elles sont configurées (paramètres spécifiques au service)

Paramètres spécifiques au client (PLMN, identifiants, fonctionnalités)

Emplacement du fichier

Les fichiers hosts sont organisés par client et environnement :

Exemple de structure de fichier

Hosts

Voici un exemple simplifié montrant les sections clés :

services/hosts/

└── Customer_Name/

 └── host_files/

 ├── production.yml

 ├── staging.yml

 └── lab.yml

Composants EPC

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 network_name_short: Customer

 tac_list: [600, 601, 602]

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 ip_pools:

 - '100.64.16.0/24'

Composants IMS

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

Services de support

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

Variables globales

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

Paramètres d'hôte communs

Configuration réseau

Chaque hôte comprend généralement :

Remarque : Pour des conseils sur la planification des adresses IP et les

stratégies de segmentation réseau, consultez la Norme de planification IP qui

décrit l'architecture recommandée à quatre sous-réseaux pour les

déploiements OmniCore.

Utilisateurs de Proxmox : Le paramètre host_vm_network spécifie quel pont

utiliser. Consultez Déploiement Proxmox VM/LXC pour l'approvisionnement

automatisé.

Allocation des ressources VM

Pour les services nécessitant des ressources spécifiques :

 customer_name_short: customer

 plmn_id:

 mcc: '001'

 mnc: '01'

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.1.15 # Adresse IP pour l'accès SSH

 gateway: 10.10.1.1 # Passerelle par défaut

 host_vm_network: "vmbr1" # nom de la NIC à utiliser

sur l'hyperviseur

num_cpus: 4 # Cœurs de CPU

memory_mb: 8192 # RAM en mégaoctets

proxmoxLxcDiskSizeGb: 50 # Taille du disque en Go

Paramètres spécifiques au service

Chaque fonction réseau a ses propres paramètres. Exemples :

MME :

PGW :

Pour une explication détaillée de ce que chaque variable contrôle, consultez :

Référence de configuration

Serveur d'application :

Section des variables globales

La section all:vars contient des paramètres qui s'appliquent à l'ensemble du

déploiement :

mme_code: 1 # Identifiant MME (1-255)

mme_gid: 1 # ID de groupe MME

network_name_short: Customer # Nom du réseau (affiché sur les

téléphones)

network_name_long: Customer Network

tac_list: [600, 601, 602] # Codes de zone de suivi

ip_pools: # Pools IP pour les abonnés

 - '100.64.16.0/24'

 - '100.64.17.0/24'

combined_CP_UP: false # Plan de contrôle/plan utilisateur

séparé

online_charging_enabled: true # Activer l'intégration OCS

tas_branch: "main" # Branche logicielle à déployer

gateways_folder: "gateways_prod" # Configuration du passerelle

SIP

Comprendre les groupes d'hôtes

Ansible organise les hôtes en groupes qui correspondent à des rôles :

all:

 vars:

 # Authentification

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 # Identité du client

 customer_name_short: customer

 customer_legal_name: "Customer Inc."

 site_name: "Chicago DC1"

 region: US

 # Identifiant PLMN (réseau mobile)

 plmn_id:

 mcc: '001' # Code de pays mobile

 mnc: '01' # Code de réseau mobile

 mnc_longform: '001' # MNC avec zéros en tête

 # Noms de réseau

 network_name_short: Customer

 network_name_long: Customer Network

 # Dépôt APT

 # Remarque : Si le groupe apt_cache_servers est défini avec

des hôtes,

 # use_apt_cache par défaut est vrai et apt_repo.apt_server

 # par défaut est l'adresse IP du premier serveur de cache

automatiquement

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Fuseau horaire

 TZ: America/Chicago

Lorsque vous exécutez un playbook ciblant mme , il s'applique à tous les hôtes

de la section mme:hosts: .

Configuration avec des modèles

Jinja2

Ansible utilise le modèle Jinja2 pour générer des fichiers de configuration à

partir des variables définies dans votre fichier hosts et group_vars.

Comment fonctionne Jinja2

Hosts File Variables

Jinja2 TemplateGroup Variables

Role Defaults

Generated Config File

Exemple d'utilisation de modèle

Le fichier hosts définit :

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: acme

Modèle Jinja2 (dans le rôle) :

Fichier de configuration généré :

Modèles Jinja2 courants

Accéder aux variables imbriquées :

Logique conditionnelle :

Boucles :

mme_config.yml.j2

network:

 plmn:

 mcc: {{ plmn_id.mcc }}

 mnc: {{ plmn_id.mnc }}

 operator: {{ customer_name_short }}

 realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org

network:

 plmn:

 mcc: 001

 mnc: 01

 operator: acme

 realm: epc.mnc001.mcc001.3gppnetwork.org

{{ plmn_id.mcc }}

{{ apt_repo.apt_server }}

{% if online_charging_enabled %}

 charging:

 enabled: true

 ocs_ip: {{ ocs_ip }}

{% endif %}

Formatage :

Surcharge des variables avec

group_vars

Alors que le fichier hosts définit les infrastructures et les paramètres

spécifiques aux hôtes, group_vars peut remplacer les valeurs par défaut pour

des groupes d'hôtes.

Voir : Configuration des variables de groupe

Exemple complet de fichier Hosts

Voici un exemple plus complet (avec des données sensibles obscurcies) :

tracking_areas:

{% for tac in tac_list %}

 - {{ tac }}

{% endfor %}

Zéro-remplir à 3 chiffres

mnc{{ '%03d' | format(plmn_id.mnc|int) }}

EPC Core

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 mme_gid: 1

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601, 602, 603]

 omnimme:

 sgw_selection_method: "random_peer"

 pgw_selection_method: "random_peer"

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 ip_pools:

 - '100.64.16.0/24'

 combined_CP_UP: false

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

IMS Core

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

 gateway: 10.10.4.1

 host_vm_network: "vmbr4"

icscf:

 hosts:

 customer-icscf01:

 ansible_host: 10.10.3.55

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

scscf:

 hosts:

 customer-scscf01:

 ansible_host: 10.10.3.45

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

applicationserver:

 hosts:

 customer-as01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 online_charging_enabled: false

 gateways_folder: "gateways_prod"

Services de support

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

monitoring:

 hosts:

 customer-oam01:

 ansible_host: 10.10.2.135

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

 num_cpus: 4

 memory_mb: 8192

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.10.2.177

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

Variables globales

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 customer_name_short: customer

 customer_legal_name: "Customer Network Inc."

 site_name: "Primary DC"

 region: US

 TZ: America/Chicago

 # Configuration PLMN

 plmn_id:

 mcc: '001'

 mnc: '01'

 mnc_longform: '001'

 diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

 # Noms de réseau

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601]

 # Configuration APT

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Configuration de facturation

 charging:

Voir Déploiement Proxmox VM/LXC pour des détails complets sur la

configuration et la mise en place de Proxmox.

Références de documentation

produit

Pour une configuration détaillée de chaque composant, consultez la

documentation produit officielle :

Composants OmniCore :

 data:

 online_charging:

 enabled: false

 voice:

 online_charging:

 enabled: true

 domain: "mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org"

 # Règles de pare-feu

 firewall:

 allowed_ssh_subnets:

 - '10.0.0.0/8'

 - '192.168.0.0/16'

 allowed_ue_voice_subnets:

 - '10.0.0.0/8'

 allowed_signaling_subnets:

 - '10.0.0.0/8'

 # Configuration de l'hyperviseur (exemple Proxmox)

 proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxApiTokenName: Customer

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxNodeName: pve01

Documentation OmniCore :

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS - Serveur d'abonnés domicile

OmniSGW - Passerelle de service (plan de contrôle)

OmniPGW - Passerelle de paquets (plan de contrôle)

OmniUPF - Fonction de plan utilisateur

OmniDRA - Agent de routage Diameter

OmniTWAG - Passerelle d'accès WLAN de confiance

Composants OmniCall :

Documentation OmniCall :

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS - Serveur d'application IMS (VoLTE/VoNR)

OmniCall CSCF - Fonctions de contrôle de session d'appel

OmniMessage - Centre SMS

OmniMessage SMPP - Support du protocole SMPP

OmniSS7 - Pile de signalisation SS7

VisualVoicemail - Messagerie vocale

OmniCharge/OmniCRM :

Documentation OmniCharge :

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Documentation connexe

Introduction au déploiement Ansible - Processus de déploiement global

Référence de configuration - Guide complet de toutes les variables de

configuration

Configuration des variables de groupe - Remplacement des configurations

par défaut

Norme de planification IP - Architecture réseau et directives

d'allocation IP

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Configuration Netplan - IP secondaires et configuration réseau

avancée

Système de cache APT - Distribution de paquets

Serveur de licences - Gestion des licences

Vue d'ensemble de l'architecture de déploiement - Vue complète du

système

Prochaines étapes

1. Créez votre fichier hosts basé sur ce modèle

2. Définissez votre PLMN et votre identité réseau

3. Configurez l'accès au dépôt APT

4. Configurez le serveur de licences

5. Personnalisez avec group_vars si nécessaire

6. Déployez avec des playbooks Ansible

Norme de Planification

IP d'OmniCore

Aperçu

Ce document décrit l'approche standard de planification IP pour les

déploiements d'OmniCore. L'architecture nécessite quatre sous-réseaux

internes pour segmenter correctement les fonctions réseau pour la sécurité, la

performance et la clarté opérationnelle.

Exigences d'Allocation IP

Allocation Standard : Quatre Sous-Réseaux /24

Chaque déploiement d'OmniCore nécessite quatre sous-réseaux distincts pour

le réseau interne :

1. Réseau de Noyau de Paquet - Premier /24

2. Réseau de Signalisation - Deuxième /24

3. Réseau Interne IMS - Troisième /24

4. Réseau Public UE - Quatrième /24

Important : Ce sont des Recommandations, Pas

des Exigences

L'allocation de sous-réseaux décrite dans ce document est une meilleure

pratique recommandée pour organiser les déploiements d'OmniCore.

Cependant, l'architecture est complètement flexible :

Tous les hôtes dans un sous-réseau : Vous pouvez placer tous les

composants dans un seul sous-réseau si cela convient à vos besoins de

déploiement

Chaque type d'hôte dans son propre sous-réseau : Vous pouvez créer

des sous-réseaux séparés pour chaque type de composant (un pour les

MMEs, un pour les HSS, etc.)

Groupements personnalisés : Vous pouvez organiser les hôtes dans

n'importe quelle structure de sous-réseau qui a du sens pour vos exigences

spécifiques

Mélanger les IP internes et publiques : Certains hôtes peuvent utiliser

des adresses internes (RFC 1918) tandis que d'autres utilisent des IP

publiques, le tout dans le même déploiement

L'approche recommandée des quatre sous-réseaux offre une isolation de

sécurité, une gestion du trafic et une clarté opérationnelle optimales,

c'est pourquoi nous la suggérons pour les déploiements en production.

Cependant, vous devez adapter le plan IP pour correspondre à votre topologie

réseau spécifique, à l'espace d'adresses disponible et à vos exigences

opérationnelles.

Répartition des Segments Réseau

1. Réseau de Noyau de Paquet (Premier /24)

Objectif : Éléments du plan de données utilisateur et du plan de contrôle

central

Composants :

OmniMME (Entité de Gestion de Mobilité)

OmniSGW (Passerelle de Service)

OmniPGW-C (Plan de Contrôle de Passerelle PDN)

OmniUPF/PGW-U (Fonction de Plan Utilisateur / Passerelle PDN Plan

Utilisateur)

Exemple : 10.179.1.0/24

2. Réseau de Signalisation (Deuxième /24)

Objectif : Signalisation Diameter, politique, facturation et fonctions de gestion

Composants :

OmniHSS (Serveur d'Abonnés Local)

OmniCharge OCS (Système de Facturation en Ligne)

OminiHSS PCRF (Fonction de Règles de Politique et de Facturation)

OmniDRA DRA (Agent de Routage Diameter)

Serveurs DNS

Serveurs TAP3/CDR

Surveillance/OAM

Capture SIP

Serveur de Licences

Moniteur RAN

Omnitouch Alerte Lien CBC (Centre de Diffusion de Cellule) - si déployé

Serveurs de Cache APT - si déployé

Exemple : 10.179.2.0/24

mme:

 hosts:

 omni-site-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

hss:

 hosts:

 omni-site-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

3. Réseau Interne IMS (Troisième /24)

Objectif : Signalisation et services de cœur IMS (signalisation SIP interne)

Composants :

OmniCSCF S-CSCF (Fonction de Contrôle de Session d'Appel de Service)

OmniCSCF I-CSCF (Fonction de Contrôle de Session d'Appel Interrogative)

OmniTAS (Serveur d'Application de Téléphonie / Serveur d'Application)

OmniMessage (Contrôleur SMS, SMPP, IMS)

OmniSS7 STP (Point de Transfert de Signalisation SS7)

OmniSS7 HLR (Registre de Localisation Local) - pour 2G/3G

OmniSS7 IP-SM-GW (MAP SMSc)

OmniSS7 Passerelle CAMEL

Exemple : 10.179.3.0/24

4. Réseau Public UE (Quatrième /24)

Objectif : Services orientés utilisateur tels que IMS et DNS

Composants :

OmniCSCF P-CSCF (Fonction de Contrôle de Session d'Appel Proxy)

Serveurs XCAP

Serveurs de Messagerie Vocale Visuelle

DNS Client

scscf:

 hosts:

 omni-site-scscf01:

 ansible_host: 10.179.3.45

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

Exemple : 10.179.4.0/24

Méthodes de Mise en Œuvre

OmniCore prend en charge deux méthodes principales pour mettre en œuvre

cette segmentation réseau :

Méthode 1 : Interfaces Réseau

Physiques/Virtualisées (Recommandé pour la

Production)

Utilisez des NIC séparés ou des ponts virtuels pour chaque segment réseau.

Cela offre la plus forte isolation et est l'approche recommandée pour les

déploiements en production.

Exemple :

pcscf:

 hosts:

 omni-site-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Méthode 2 : Segmentation Basée sur VLAN

Utilisez une seule interface physique avec un balisage VLAN pour séparer les

réseaux. Cela convient aux déploiements plus petits ou lorsque les NIC

physiques sont limitées.

Exemple :

Noyau de Paquet - vmbr1

mme:

 hosts:

 omni-lab07-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

Signalisation - vmbr2

hss:

 hosts:

 omni-lab07-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

IMS Interne - vmbr3

icscf:

 hosts:

 omni-lab07-icscf01:

 ansible_host: 10.179.3.55

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

UE Public - vmbr4

pcscf:

 hosts:

 omni-lab07-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Configuration Réseau :

Configurez les VLAN sur le commutateur physique

Taguer le trafic de manière appropriée au niveau de l'hyperviseur

Router entre les VLAN au niveau de la passerelle/firewall

Exemple de Mappage VLAN :

Tous les composants utilisent vmbr12 avec différents VLAN

applicationserver:

 hosts:

 ons-lab08sbc01:

 ansible_host: 10.178.2.213

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dra:

 hosts:

 ons-lab08dra01:

 ansible_host: 10.178.2.211

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dns:

 hosts:

 ons-lab08dns01:

 ansible_host: 10.178.2.178

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

VLAN 10 : 10.x.1.0/24 (Noyau de Paquet)

VLAN 20 : 10.x.2.0/24 (Signalisation)

VLAN 30 : 10.x.3.0/24 (IMS Interne)

VLAN 40 : 10.x.4.0/24 (UE Public)

Travailler avec des Adresses IP

Publiques

Aperçu

De nombreux déploiements d'OmniCore nécessitent que certains composants

aient des adresses IP publiques pour la connectivité externe, telles que :

DRA - Pour la signalisation diameter en itinérance avec des opérateurs

externes

SGW/PGW en itinérance - Pour le trafic GTP des partenaires d'itinérance

ePDG - Pour les appels WiFi (tunnels IPsec des UE)

Passerelle SMSC - Pour les connexions SMPP aux agrégateurs SMS

externes

P-CSCF (dans certains déploiements) - Pour l'enregistrement SIP direct des

UE

Comment Assigner des IP Publiques

Les IP publiques sont gérées exactement de la même manière que les IP

internes dans vos fichiers d'inventaire d'hôtes. Il suffit de spécifier l'adresse IP

publique dans le champ ansible_host avec la passerelle et le masque de sous-

réseau appropriés.

Exemple : SGW/PGW en itinérance avec des IP Publiques

Exemple : DRA avec IP Publique

Exemple : ePDG avec IP Publique

sgw:

 hosts:

 # SGWs internes sur réseau privé

 opt-site-sgw01:

 ansible_host: 10.4.1.25

 gateway: 10.4.1.1

 host_vm_network: "v400-omni-packet-core"

 # SGWs en itinérance avec des IP publiques

 opt-site-roaming-sgw01:

 ansible_host: 203.0.113.10

 gateway: 203.0.113.9

 netmask: 255.255.255.248 # sous-réseau /29

 host_vm_network: "498-public-servers"

 in_pool: False

 cdrs_enabled: True

smf: # PGWs

 hosts:

 # PGW en itinérance avec IP publique

 opt-site-roaming-pgw01:

 ansible_host: 203.0.113.20

 gateway: 203.0.113.17

 netmask: 255.255.255.240 # sous-réseau /28

 host_vm_network: "497-public-services-LTE"

 in_pool: False

 ip_pools:

 - '100.64.24.0/22'

dra:

 hosts:

 opt-site-dra01:

 ansible_host: 198.51.100.50

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # sous-réseau /28

 host_vm_network: "497-public-services-LTE"

Mélanger des IP Internes et Publiques

Il est courant d'avoir un mélange d'IP internes et publiques au sein du même

groupe de composants. Par exemple :

SGWs internes pour des sites locaux utilisant GTP

SGWs publiques spécifiquement pour le trafic d'itinérance des opérateurs

externes

Le même PGW-C peut gérer à la fois des SGWs internes et externes

L'architecture d'OmniCore gère cela sans problème - il suffit de configurer

chaque hôte avec son adressage IP approprié.

epdg:

 hosts:

 opt-site-epdg01:

 ansible_host: 198.51.100.51

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # sous-réseau /28

 host_vm_network: "497-public-services-LTE"

Serveur de Licence

Vue d'ensemble

Le Serveur de Licence gère l'activation des fonctionnalités pour tous les

composants Omnitouch. Chaque composant valide sa licence au démarrage et

périodiquement pendant son fonctionnement.

Configuration

1. Définir dans le Fichier Hosts

2. Fournir le Fichier de Licence

Placez license.json (fourni par Omnitouch) dans

hosts/Customer/group_vars/

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

all:

 vars:

 customer_legal_name: "Nom du Client"

 license_server_api_urls: ["https://10.10.2.150:8443/api"]

 license_enforced: true

3. Déployer

Vous pouvez vérifier l'état de toutes les licences en accédant à

https://license_server .

Exigences Réseau

Configuration du Pare-feu

Les pare-feu du site client doivent être configurés pour autoriser le trafic HTTPS

(port 443) vers les serveurs de validation de licence Omnitouch suivants :

Nom d'hôte Adresse IP Objectif

time.omnitouch.com.au 160.22.43.18
Serveur de validation de licence

1

time.omnitouch.com.au 160.22.43.66
Serveur de validation de licence

2

time.omnitouch.com.au 160.22.43.114
Serveur de validation de licence

3

Règles sortantes requises :

Protocole : HTTPS (TCP/443)

Destination : 160.22.43.18, 160.22.43.66, 160.22.43.114

Direction : Sortante

ansible-playbook -i hosts/customer/host_files/production.yml

services/license_server.yml

Exigences DNS

Le serveur de licence nécessite une résolution DNS fonctionnelle pour

communiquer avec l'infrastructure de validation de licence Omnitouch.

Configuration DNS requise :

Le serveur de licence doit avoir accès à des serveurs DNS publics

Configurez DNS pour utiliser l'un des suivants :

1.1.1.1 (Cloudflare - prend en charge DNS sécurisé)

8.8.8.8 (Google Public DNS)

Ne pas utiliser de serveurs DNS internes/corporatifs pour le serveur de

licence

Remarque : Les serveurs de licence Omnitouch utilisent DNS sécurisé

(DoH/DoT). L'utilisation de serveurs DNS publics garantit une validation

DNSSEC appropriée et empêche les problèmes d'interception DNS par des

appareils de sécurité.

Documentation Connexe

Référence de Configuration

Configuration du Fichier Hosts

Configuration de

Netplan

Vue d'ensemble

OmniCore peut configurer automatiquement les interfaces réseau sur les VMs

déployées en utilisant netplan. Cela est utile pour :

Configurer l'interface de gestion principale (eth0)

Ajouter des interfaces secondaires pour des IP publiques, des connexions

de peering ou du trafic dédié

Configurer des routes statiques pour des destinations spécifiques

Activation de la Configuration

Netplan

Pour activer la configuration automatique de netplan pour un hôte, ajoutez la

variable netplan_config pointant vers un modèle Jinja2 dans votre dossier

group_vars :

Le modèle sera récupéré depuis

hosts/<customer>/group_vars/netplan.yaml.j2 .

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

Référence du Modèle

Voici le modèle complet netplan.yaml.j2 avec des commentaires expliquant

chaque section :

network:

 version: 2

 ethernets:

 # Interface principale - utilise ansible_host et gateway de

l'inventaire

 eth0:

 addresses:

 - "{{ ansible_host }}/{{ mask_cidr | default(24) }}"

 nameservers:

 addresses:

{% if 'dns' in group_names %}

 # Si cet hôte EST un serveur DNS, utilisez un DNS externe

pour éviter une dépendance circulaire

 - 8.8.8.8

{% else %}

 # Sinon, utilisez les serveurs DNS du groupe 'dns' dans

l'inventaire

{% for dns_host in groups['dns'] | default([]) %}

 - {{ hostvars[dns_host]['ansible_host'] }}

{% endfor %}

{% endif %}

 search:

 - slice

 routes:

 - to: "default"

 via: "{{ gateway }}"

{% if secondary_ips is defined %}

 # Interfaces secondaires - boucle à travers le dictionnaire

secondary_ips de l'inventaire

 # Nommage des interfaces : ens19, ens20, ens21... (18 +

loop.index)

{% for nic_name, nic_config in secondary_ips.items() %}

 ens{{ 18 + loop.index }}:

 addresses:

 - "{{ nic_config.ip_address }}/{{ mask_cidr | default(24)

}}"

{% if nic_config.routes is defined %}

 # Routes statiques pour cette interface - chaque route

utilise la passerelle de cette interface

 routes:

{% for route in nic_config.routes %}

 - to: "{{ route }}"

Points clés :

ansible_host et gateway proviennent de l'entrée d'inventaire de l'hôte

Les serveurs DNS sont extraits dynamiquement des hôtes dans le groupe

dns

Les interfaces secondaires sont nommées ens19 , ens20 , etc. pour

correspondre à la nomenclature des NIC Proxmox

Chaque IP secondaire peut avoir sa propre passerelle et des routes

statiques

Configuration de l'Interface

Principale

L'interface principale (eth0) est configurée automatiquement en utilisant :

ansible_host - L'adresse IP

gateway - La passerelle par défaut

mask_cidr - Masque réseau (par défaut 24)

Les serveurs DNS sont automatiquement définis sur :

Hôtes dans le groupe dns (utilise leurs IP ansible_host)

Revertit à 8.8.8.8 si l'hôte est lui-même un serveur DNS

Interfaces Secondaires

Pour les hôtes nécessitant des interfaces réseau supplémentaires (IP publiques,

peering, etc.), utilisez la configuration secondary_ips .

 via: "{{ nic_config.gateway }}"

{% endfor %}

{% endif %}

{% endfor %}

{% endif %}

Schéma

Nommage des Interfaces

Les interfaces secondaires sont automatiquement nommées en utilisant le

schéma de nommage prévisible d'Ubuntu :

Première interface secondaire : ens19

Deuxième interface secondaire : ens20

Troisième interface secondaire : ens21

Et ainsi de suite...

Cela correspond aux noms d'interface attribués par Proxmox lors de l'ajout de

NIC supplémentaires à une VM.

secondary_ips:

 <logical_name>:

 ip_address: <ip_address>

 gateway: <gateway_ip>

 host_vm_network: <proxmox_bridge>

 vlanid: <vlan_id>

 routes: # Optionnel - routes statiques via

cette interface

 - '<destination_cidr>'

 - '<destination_cidr>'

Exemple de Configuration

Sortie Netplan Générée

La configuration ci-dessus génère :

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 host_vm_network: "ovsbr1"

 vlanid: "100"

 netplan_config: netplan.yaml.j2

 secondary_ips:

 public_ip:

 ip_address: 192.0.2.50

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24'

 - '203.0.113.0/24'

 peering_ip:

 ip_address: 172.16.50.10

 gateway: 172.16.50.1

 host_vm_network: "ovsbr2"

 vlanid: "300"

 routes:

 - '172.17.0.0/16'

Intégration Proxmox

Lors de l'utilisation du playbook proxmox.yml , les NIC secondaires sont

automatiquement créées sur la VM :

1. Nouvelles VMs : Les NIC secondaires sont ajoutées lors du

provisionnement initial

2. VMs Existantes : Les NIC secondaires sont ajoutées et la VM est

redémarrée pour appliquer les changements

La configuration Proxmox utilise :

network:

 version: 2

 ethernets:

 eth0:

 addresses:

 - "10.0.1.100/24"

 nameservers:

 addresses:

 - 10.0.1.53

 search:

 - slice

 routes:

 - to: "default"

 via: "10.0.1.1"

 ens19:

 addresses:

 - "192.0.2.50/24"

 routes:

 - to: "198.51.100.0/24"

 via: "192.0.2.1"

 - to: "203.0.113.0/24"

 via: "192.0.2.1"

 ens20:

 addresses:

 - "172.16.50.10/24"

 routes:

 - to: "172.17.0.0/16"

 via: "172.16.50.1"

host_vm_network - Le pont auquel attacher la NIC

vlanid - Tag VLAN pour l'interface

Comment Ça Marche

1. Les variables du fichier d'hôtes sont passées au modèle Jinja2

2. Le modèle est rendu dans /etc/netplan/01-netcfg.yaml

3. Toute configuration netplan existante est supprimée pour éviter les conflits

4. netplan apply active la configuration

5. Les adresses IP sont vérifiées avec ip addr show

Cas d'utilisation Courants

Diameter Edge Agent (DEA) avec IP Publique

<hostname>:

 ansible_host: 10.0.1.100 # IP de gestion interne

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 diameter_roaming:

 ip_address: 192.0.2.50 # IP publique pour les

partenaires de roaming

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24' # Réseau des partenaires de

roaming

PGW avec Interface S5/S8

Serveur Multi-hébergé avec Réseaux de

Gestion et de Données Séparés

Référencement des IPs

Secondaires dans les Modèles

Vous pouvez référencer les adresses IP secondaires dans d'autres modèles

Jinja2 et fichiers de configuration.

<hostname>:

 ansible_host: 10.0.2.20 # IP interne

 gateway: 10.0.2.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 s5s8_interface:

 ip_address: 203.0.113.17 # IP publique S5/S8

 gateway: 203.0.113.1

 host_vm_network: "vmbr0"

 vlanid: "50"

<hostname>:

 ansible_host: 10.0.1.100 # Réseau de gestion

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 data_network:

 ip_address: 10.0.2.100 # Réseau de données

 gateway: 10.0.2.1

 host_vm_network: "ovsbr2"

 vlanid: "200"

 backup_network:

 ip_address: 10.0.3.100 # Réseau de sauvegarde

 gateway: 10.0.3.1

 host_vm_network: "ovsbr3"

 vlanid: "300"

Sur le Même Hôte

Lors de la configuration d'un service sur le même hôte qui a des IP secondaires,

vous pouvez référencer directement ou utiliser inventory_hostname :

D'un Autre Hôte

Lorsque vous devez référencer une IP secondaire d'un autre hôte (par exemple,

configurer une connexion de pair), utilisez hostvars avec le nom d'hôte cible :

Exemple : Configuration de Pair DRA

Configurer un pair de diamètre pour se lier à sa propre IP publique :

Référence directe (la plus simple)

{{ secondary_ips.diameter_public_ip.ip_address }}

Ou explicitement via inventory_hostname (même résultat)

{{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Accéder à d'autres propriétés

{{ secondary_ips.diameter_public_ip.gateway }}

{{ secondary_ips.diameter_public_ip.vlanid }}

Référence du premier hôte dans le groupe dra

{{ hostvars[groups['dra'][0]]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Boucle à travers tous les hôtes DRA et obtenez leurs IP

publiques

{% for host in groups['dra'] %}

{% if hostvars[host]['secondary_ips'] is defined %}

 - {{ hostvars[host]['secondary_ips']['diameter_public_ip']

['ip_address'] }}

{% endif %}

{% endfor %}

Vérification de l'Existence des IPs Secondaires

Vérifiez toujours si la variable existe avant de l'utiliser :

Dépannage

Vérifier les Noms des Interfaces

SSH sur la VM et vérifiez les noms des interfaces :

Sortie attendue pour une VM avec deux interfaces secondaires :

Dans dra_config.yaml.j2 - utilisez inventory_hostname pour

l'hôte actuel

peers:

 - name: external_peer

 # Lier à l'IP publique de diamètre de cet hôte

 local_ip: {{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

 remote_ip: 198.51.100.50

 port: 3868

{% if secondary_ips is defined and

secondary_ips.diameter_public_ip is defined %}

public_ip: {{ secondary_ips.diameter_public_ip.ip_address }}

{% else %}

public_ip: {{ ansible_host }}

{% endif %}

ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

3: ens19: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

4: ens20: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

Vérifier la Configuration de Netplan

Appliquer Netplan Manuellement

Déboguer Netplan

Vérifier les Routes

Documentation Connexe

Configuration du Fichier Hosts - Configuration de l'inventaire des hôtes

Déploiement Proxmox VM/LXC - Provisionnement de VM

Référence de Configuration - Toutes les variables de configuration

cat /etc/netplan/01-netcfg.yaml

netplan apply

netplan --debug apply

ip route show

Déploiement de

VM/LXC Proxmox

La majorité de nos clients exécutent la pile OmniCore sur Proxmox, ce guide

explique en détail comment utiliser les playbooks proxmox pour configurer leur

environnement en utilisant Proxmox.

Nous continuons à prendre en charge VMware, HyperV et le cloud

(actuellement Vultr / AWS / GCP) pour les déploiements.

Voir aussi :

Configuration du fichier Hosts - Définir les VMs à déployer

Norme de planification IP - Directives d'attribution d'adresses IP

Configuration de Netplan - IP secondaires et configuration multi-NIC

Architecture de déploiement - Flux de travail complet de déploiement

LXC vs VM

Conteneurs LXC :

Léger, partage le noyau de l'hôte

Démarrage rapide, faible surcharge

Isolation limitée

Ne peut pas exécuter de noyaux ou de modules de noyau personnalisés

Pas adapté aux déploiements en production

Ne peut pas exécuter UPF (nécessite des modules de noyau / dispositifs

TUN)

VMs (KVM) :

Virtualisation complète avec noyau dédié

Isolation complète

Peut exécuter des modules de noyau et un réseau personnalisé

Surcharge de ressources plus élevée

Recommandé pour la production

Nécessaire pour les déploiements UPF

Cas d'utilisation :

VMs : Sites de production, UPF, toutes les fonctions réseau

LXC : Environnements de laboratoire/test, services légers (apt-cache,

surveillance)

Configuration de Proxmox

1. Créer un jeton API

2. Créer un modèle de VM Cloud-Init (pour les

VMs uniquement)

Exécutez ce script sur l'hôte Proxmox. Il télécharge l'image cloud d'Ubuntu et

crée un modèle avec les informations d'identification utilisateur cloud-init.

Dans l'UI Proxmox : Datacenter → Permissions → Jetons API

Créer un jeton : root@pam!<TokenName>

Copier le secret du jeton (affiché une seule fois)

#!/bin/bash

set -e

TEMPLATE_ID=9000

IMAGE_URL="https://cloud-images.ubuntu.com/noble/current/noble-

server-cloudimg-amd64.img"

IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Téléchargement de l'image cloud d'Ubuntu ==="

cd /var/lib/vz/template/iso

wget -N "$IMAGE_URL"

echo "=== Nettoyage de l'ancien modèle ==="

qm destroy $TEMPLATE_ID --purge 2>/dev/null || true

echo "=== Activation du stockage des extraits ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Création des données utilisateur cloud-init ==="

mkdir -p /var/lib/vz/snippets

cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'

#cloud-config

ssh_pwauth: true

users:

 - name: omnitouch

 plain_text_passwd: password

 lock_passwd: false

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

 groups: sudo

USERDATA

echo "=== Création du modèle de VM ==="

qm create $TEMPLATE_ID --name ubuntu-2404-template --memory 2048 -

-cores 2 --net0 virtio,bridge=vmbr0

qm importdisk $TEMPLATE_ID $IMAGE local-lvm

qm set $TEMPLATE_ID --scsihw virtio-scsi-pci --scsi0 local-

lvm:vm-${TEMPLATE_ID}-disk-0

qm set $TEMPLATE_ID --ide2 local-lvm:cloudinit

qm set $TEMPLATE_ID --boot c --bootdisk scsi0

qm set $TEMPLATE_ID --vga std

qm set $TEMPLATE_ID --agent enabled=1

qm set $TEMPLATE_ID --cicustom user=local:snippets/user-data.yml

Remarques :

Le modèle fournit un accès de secours : omnitouch / password (pour

l'accès console si cloud-init échoue)

Lors du clonage via Ansible, les informations d'identification sont

remplacées par local_users dans votre fichier hosts :

Nom d'utilisateur : Clé du premier utilisateur de local_users

Mot de passe : Champ password du premier utilisateur (par défaut

'password' si non défini)

Clé SSH : Champ public_key du premier utilisateur

--vga std garantit que la console web Proxmox fonctionne

Le drapeau -N sur wget ne télécharge que si le fichier est plus récent que

la copie locale

Alternative : Modèle manuel à partir d'un ISO

Si les images cloud ne sont pas disponibles ou si vous avez besoin d'une

installation personnalisée :

Étape 1 : Créer une VM via l'UI Web

Créer une nouvelle VM → ID VM 9000, Nom : ubuntu-2404-template

OS : Télécharger l'ISO d'Ubuntu Server ou utiliser un ISO existant

Système : Par défaut (Contrôleur SCSI : VirtIO SCSI)

Disques : 32 Go, Bus : SCSI

CPU : 2 cœurs

Mémoire : 2048 Mo

Réseau : VirtIO, pont vmbr0

Démarrer la VM et installer Ubuntu Server

Étape 2 : À l'intérieur de la VM - Nettoyer et préparer

qm template $TEMPLATE_ID

echo "=== Modèle $TEMPLATE_ID créé avec succès ==="

Étape 3 : Ajouter Cloud-Init et convertir en modèle

Sélectionner VM → Matériel → Ajouter → Disque CloudInit (sélectionner le

stockage par exemple, local-lvm)

Cloud-Init → Utilisateur : omnitouch , Mot de passe : password

Matériel → Options → Agent invité QEMU → Activer

Clic droit sur la VM → Convertir en modèle

3. Télécharger le modèle LXC (pour LXC

uniquement)

Installer cloud-init

sudo apt update

sudo apt install cloud-init qemu-guest-agent -y

Nettoyer les données spécifiques à la machine

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id

sudo rm -f /etc/ssh/ssh_host_*

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Effacer l'historique bash et éteindre

history -c

sudo poweroff

Dans le shell du nœud Proxmox :

pveam update

pveam download local ubuntu-24.04-standard_24.04-2_amd64.tar.zst

Configuration du fichier Hosts

Pour le déploiement de VM (proxmox.yml)

all:

 vars:

 proxmoxServers:

 pve-node-01:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: YourPassword

 proxmoxApiTokenName: ansible

 proxmoxApiTokenSecret: "your-token-secret-uuid"

 proxmoxTemplateName: ubuntu-2404-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve-node-01

 storage: local-lvm # optionnel

 pve-node-02:

 # ... configuration du deuxième nœud

 # Informations d'identification utilisateur - le premier

utilisateur est utilisé pour cloud-init de la VM

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # par défaut 'password' si

non défini

mme:

 hosts:

 site-mme01:

 ansible_host: 192.168.1.10

 gateway: 192.168.1.1

 vlanid: "100" # optionnel

Pour le déploiement de LXC (proxmox_lxc.yml)

all:

 vars:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # unique ou

liste

 proxmoxApiTokenName: ansible

 PROXMOX_API_TOKEN: "your-token-secret-uuid"

 proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-

standard_24.04-2_amd64.tar.zst'

 proxmoxLxcCores: 2

 proxmoxLxcMemoryMb: 4096

 proxmoxLxcDiskSizeGb: 30

 proxmoxLxcRootFsStorageName: local-lvm

 mask_cidr: 24

 host_vm_network: vmbr0

 # Informations d'identification utilisateur - le premier

utilisateur est utilisé pour l'accès initial à la VM/LXC

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # par défaut 'password' si

non défini

apt_cache_servers:

 hosts:

 site-cache:

 ansible_host: 192.168.1.20

 gateway: 192.168.1.1

 vlanid: "100" # optionnel

 proxmoxLxcDiskSizeGb: 120 # remplacement par hôte

Utilisation

Déployer des VMs

Déployer des conteneurs LXC

Supprimer des VMs/LXCs

Comportement

proxmox.yml

Vérifie si une VM avec le même nom existe déjà dans Proxmox

Distribue les VMs sur les nœuds en utilisant un round-robin

Clone à partir du modèle

Configure l'IP statique, les balises et cloud-init

Définit les informations d'identification de l'utilisateur cloud-init à

partir de la première entrée local_users

Prend en charge le balisage VLAN

proxmox_lxc.yml

Vérifie que le conteneur n'existe pas par nom ou IP

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_delete.yml

Distribue les LXCs sur les nœuds en utilisant un round-robin

Crée un conteneur avec une IP statique

Crée automatiquement le premier compte local_users avec accès

sudo et clé SSH

Configure netplan pour le réseau

Démarre automatiquement les conteneurs

Exclut les hôtes UPF

proxmox_delete.yml

Arrête et supprime la VM/LXC correspondant au nom d'hôte de l'inventaire

Recherche sur tous les nœuds configurés

Force l'arrêt après 20 secondes

Distribution et balisage des

VM/LXC

Distribution Round-Robin

Les VMs et LXCs sont automatiquement distribués sur les nœuds Proxmox en

utilisant une logique de round-robin (modulo) :

Exemple avec 3 hyperviseurs et 5 MMEs :

Comment cela fonctionne :

1. Le playbook identifie le groupe de rôle de l'hôte (par exemple, mme , sgw ,

hss)

2. Calcule l'index de l'hôte au sein de ce groupe (basé sur 0)

mme01 → pve-node-01 (index 0 % 3 = 0)

mme02 → pve-node-02 (index 1 % 3 = 1)

mme03 → pve-node-03 (index 2 % 3 = 2)

mme04 → pve-node-01 (index 3 % 3 = 0)

mme05 → pve-node-02 (index 4 % 3 = 1)

3. Utilise l'opération modulo : host_index % number_of_nodes

4. Sélectionne l'hyperviseur en fonction du résultat

Configuration :

Balisage Automatique

Les VMs et LXCs sont automatiquement balisés avec :

Noms de rôle/groupe : Tous les groupes Ansible auxquels appartient

l'hôte

Nom du site : La variable site_name

Exemple :

Résultat : VM/LXC balisé avec : mme , melbourne-prod

Les balises sont visibles dans l'UI Proxmox et utiles pour le

filtrage/l'organisation.

Pour les VMs (proxmox.yml) - définir plusieurs serveurs

proxmoxServers:

 pve-node-01: { ... }

 pve-node-02: { ... }

 pve-node-03: { ... }

Pour les LXCs (proxmox_lxc.yml) - lister plusieurs nœuds

proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

site_name: "melbourne-prod"

mme:

 hosts:

 melbourne-mme01: { ... }

Remplacements par Hôte

Remplacer les valeurs par défaut sur des hôtes spécifiques :

hosts:

 high-spec-host:

 ansible_host: 192.168.1.50

 gateway: 192.168.1.1

 proxmoxLxcCores: 8 # remplacement des cœurs

 proxmoxLxcMemoryMb: 16384 # remplacement de la mémoire

 proxmoxLxcDiskSizeGb: 100 # remplacement du disque

Playbooks Utilitaires

Les playbooks utilitaires fournissent des outils opérationnels pour gérer

l'infrastructure OmniCore déployée. Ces playbooks se trouvent dans le

répertoire util_playbooks/ et peuvent être exécutés indépendamment pour

effectuer des tâches courantes de maintenance et de dépannage.

Référence Rapide

Playbook Objectif

health_check.yml
Générer un rapport de santé complet pour tous

les services

restore_hss.yml
Restaurer la base de données HSS et/ou la

configuration à partir d'une sauvegarde

ip_plan_generator.yml
Générer une documentation réseau avec des

diagrammes Mermaid

get_ports.yml
Auditer les ports ouverts et les services à

l'écoute sur tous les hôtes

getLocalCapture.yml
Récupérer les fichiers de capture de paquets des

hôtes

delete_local_user.yml
Supprimer un compte utilisateur local de tous

les hôtes

updateMtu.yml
Définir le MTU à 9000 (trames jumbo) sur les

interfaces réseau

systemctl status.yml
Vérifier l'état des services sur les composants

EPC

Vérification de la Santé

Fichier : util_playbooks/health_check.yml

Génère un rapport de santé HTML complet couvrant tous les services OmniCore

et OmniCall déployés.

Sortie : /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Informations Collectées

Composant Données Collectées

Tous les

services
État du service, version, temps de fonctionnement

OmniHSS
État de la base de données, connexions de pairs

Diameter

OmniDRA Connexions de pairs Diameter et état

OmniTAS
Appels actifs, sessions, enregistrements, utilisation du

CPU

OCS État de la réplication KeyDB

Restauration HSS

Fichier : util_playbooks/restore_hss.yml

Restaure OmniHSS à partir de fichiers de sauvegarde. Prend en charge la

restauration uniquement de la base de données, uniquement de la

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

configuration, ou les deux.

Formats de Fichiers de Sauvegarde

Type Modèle de Nom de Fichier Contenu

Base de

données
hss_dump_<hostname>_<timestamp>.sql

Dump MySQL

de la base de

données

omnihss

Configuration hss_<hostname>_<timestamp>.tar.gz

Archive du

répertoire

/etc/omnihss

Générateur de Plan IP

Fichier : util_playbooks/ip_plan_generator.yml

Génère une documentation réseau à partir de l'inventaire, y compris :

Attributions IP des hôtes (NICs primaires et secondaires)

Vue d'ensemble des segments réseau

Diagrammes de connectivité des interfaces (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/restore_hss.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Fichiers de Sortie

Fichier Format Description

/tmp/ip_plan_<customer>_<site>.md Markdown
Documentation

basée sur du texte

/tmp/ip_plan_<customer>_<site>.html HTML

Diagramme

interactif avec des

couches filtrables

Audit des Ports

Fichier : util_playbooks/get_ports.yml

Audite tous les ports à l'écoute sur le déploiement et génère de la

documentation.

Fichiers de Sortie

Fichier Description

/tmp/all_ports.csv CSV avec nom d'hôte, IP, protocole, port, service

./open_ports.rst
Table reStructuredText pour la documentation

Sphinx

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/get_ports.yml

Données Collectées

Champ Description

Nom d'hôte Nom d'hôte de l'inventaire

IP Adresse IP ansible_host de l'hôte

Version IP IPv4 ou IPv6

Transport TCP ou UDP

Port Numéro de port à l'écoute

Service Nom du processus

Récupération de Capture Locale

Fichier : util_playbooks/getLocalCapture.yml

Récupère les deux fichiers de capture de paquets les plus récents du répertoire

/etc/localcapture de chaque hôte.

Sortie : ./localCapturePcaps/<hostname>/*.pcap

Gestion des Utilisateurs

Fichier : util_playbooks/delete_local_user.yml

Supprime un compte utilisateur local de tous les hôtes de l'inventaire.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

Invite : Entrez le nom d'utilisateur à supprimer lorsqu'il est demandé.

Configuration MTU

Fichier : util_playbooks/updateMtu.yml

Définit le MTU à 9000 (trames jumbo) sur l'interface ens160 de tous les hôtes.

Remarque : Ce playbook est codé en dur pour l'interface ens160 . Modifiez le

playbook si votre environnement utilise des noms d'interface différents.

Exécution des Playbooks Utilitaires

Syntaxe de Base

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/delete_local_user.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

ansible-playbook -i <inventory_file> util_playbooks/<playbook>.yml

Options Courantes

Option Description

-i <inventory> Spécifier le fichier d'inventaire

--limit <hosts> Limiter à des hôtes ou groupes spécifiques

-v / -vv / -vvv Augmenter la verbosité

--check Exécution à blanc (afficher ce qui changerait)

--diff Afficher les différences de fichiers

Exemples

Exécuter la vérification de santé en production

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/health_check.yml

Restaurer HSS sur un hôte spécifique

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/restore_hss.yml --limit hss01

Générer un plan IP avec une sortie verbeuse

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/ip_plan_generator.yml -v

