Introduction au
déploiement Ansible
chez Omnitouch

Vue d'ensemble

Omnitouch Network Services utilise Ansible comme plateforme
d'automatisation de l'infrastructure pour déployer des solutions compléetes de
réseau cellulaire (4G/5G) de maniere cohérente, répétable et automatisée. Ce
document fournit un apercu de la maniere dont nous exploitons Ansible pour
orchestrer des déploiements télécom complexes.

Qu'est-ce qu'Ansible ?

Ansible est un outil d'automatisation open-source qui vous permet de :

Configurer des systemes

Déployer des logiciels

Orchestrer des flux de travail complexes

Gérer l'infrastructure en tant que code

Ansible utilise une approche déclarative - vous décrivez I'état souhaité de vos
systemes, et Ansible s'assure qu'ils atteignent cet état.



Comment Omnitouch utilise
Ansible

Ansible Control Node

SSH_— SSH- S5H —-55H T 55H

L ] ¥ ¥ ¥ -
MME Servers HS5 Servers IM5 Servers Support Services Monitoring

Concepts clés

1. Inventaire (Fichiers d'hotes)

Définit quels systemes gérer. Chaque déploiement client a un fichier d'hotes
qui décrit :

Toutes les machines virtuelles dans le réseau

Leurs adresses IP

La configuration réseau

Les parametres spécifiques aux services

Les fichiers d'hdtes sont ce avec quoi vous allez travailler pour définir votre
réseau.

\oir :
2. Roles

Définit comment configurer chaque composant. Les réles sont des unités
réutilisables qui contiennent :

* Taches (étapes a exécuter)
* Modeles (modeles de fichiers de configuration)
» Gestionnaires (actions déclenchées par des changements)

e Variables (valeurs de configuration par défaut)



Exemples de réles pour les composants OmniCore : omnihss, omnisgwc,
omnipgwc, omnidra, etc.

Ceux-ci sont définis par I'équipe ONS, bien que vous puissiez les modifier, il
existe généralement des moyens plus propres d'apporter les ajustements
nécessaires depuis votre fichier d'hotes.

3. Playbooks

Orchestre quand et ou les roles sont appliqués :

- name: Deploy EPC Core
hosts: mme
roles:
- common
- omnimme

Nous les utilisons essentiellement comme groupes pour les réles.

4. Variables de groupe

Fournit une configuration spécifique au client qui remplace les valeurs par
défaut des réles. C'est ici que la personnalisation du client se produit sans
modifier les réles de base.

\oir :

Architecture de déploiement

Hosts File \

Group Vars Ansible Playbook SSH to Hosts Configure Systems Running Network

oles /



Le processus de déploiement

1. Définir l'infrastructure
Créez un fichier d'hdtes décrivant votre topologie réseau :

Remarque de planification : Avant de définir I'infrastructure, consultez la
pour des conseils sur la segmentation du réseau,

I'allocation des adresses IP et I'organisation des sous-réseaux.

Utilisateurs de Proxmox : Si vous déployez sur Proxmox, consultez
pour I'approvisionnement automatisé de

VM/conteneurs.

Voir : et

mme:
hosts:
customer-mmeOl:
ansible host: 10.10.1.15
mme code: 1

2. Personnaliser la configuration

Définissez des variables spécifiques au client dans group vars :

plmn_id:
mcc: '001'
mnc: '01'

customer_name_short: customer

#ToDo - Ajouter un lien ici vers la référence de configuration pour la liste
complete

3. Exécuter des playbooks

Déployez le réseau :



ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

4. Déploiement automatisé
Ansible va :

e Créer/provisionner des VM (si vous utilisez I'intégration Proxmox/VMware)
e Configurer le réseau

 Installer des paquets logiciels a partir du cache APT

e Déployer le code de I'application

e Configurer les services avec les parametres du client

e Démarrer les services

» Valider le déploiement

Composants clés que nous
déployons

OmniCore (Plateforme de coeur de paquet
4G/5G)

e OmniHSS - Serveur d'abonnés a domicile

e OmniSGW - Passerelle de service (plan de controle)
e OmniPGW - Passerelle de paquet (plan de contrble)
e OmniUPF - Fonction de plan utilisateur

e OmniDRA - Agent de routage Diameter

e OMniTWAG - Passerelle d'accés WLAN de confiance

\oir :


https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Plateforme de voix et de
messagerie)

e« OmniCall CSCF - Fonction de contrble de session d'appel (P-CSCF, I-CSCF,
S-CSCF)

e OmniTAS - Serveur d'application IMS (services VoLTE/VoNR)

¢ OmniMessage - Centre SMS (SMS-C)

e OmniMessage SMPP - Support du protocole SMPP

e OmniSS7 - Composants de signalisation SS7 (STP, HLR, CAMEL)

* VisualVoicemail - Fonctionnalité de messagerie vocale

\oir :

OmniCharge/OmniCRM

* Plateforme CRM - Gestion de la relation client, auto-inscription,
facturation

\oir :

Services de support

e DNS - Résolution DNS réseau
e Serveur de licences - Gestion des licences

¢ Surveillance - Prometheus, Grafana

\Voir :

Gestion des paquets

Nous utilisons un modele de distribution de paquets hybride :

Paquets APT précompilés

Tous les logiciels Omnitouch sont distribués sous forme de paquets Debian
(.deb files) :


https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

e Construits a partir de la source dans notre pipeline CI/CD
» \ersionnés et testés

e Hébergés sur des dépots de paquets

Systeme de cache APT
Les clients peuvent choisir entre :

1. Cache APT local - Miroir des paquets requis sur site pour un déploiement
hors lignhe

2. Dépot public - Acces direct au dép6t de paquets hébergé par Omnitouch

\oir :

Gestion des licences

Tous les composants logiciels Omnitouch nécessitent des licences valides
gérées via un serveur de licences central :

* Les composants vérifient la validité de la licence au démarrage
» Les fonctionnalités sont activées/désactivées en fonction de la licence

e Le serveur de licences peut étre local ou hébergé dans le cloud

\oir :

Avantages de cette approche

Répétabilité

Les mémes playbooks Ansible peuvent déployer :
» Laboratoires de développement
e Environnements de test

e Réseaux de production

¢ Sijtes clients



Cohérence

Chaque déploiement utilise les mémes configurations testées, réduisant ainsi
les erreurs humaines.

Controle de version
L'infrastructure est définie comme du code dans Git :

e Suivre tous les changements
e Réviser avant le déploiement

e Revenir en arriére si nécessaire

Personnalisation sans complexité

Les clients peuvent personnaliser leur déploiement via group vars sans
modifier les réles de base.

Déploiement rapide

Déployez un réseau cellulaire complet en quelques heures au lieu de jours ou
de semaines.

Pour commencer

Prérequis

Avant d'exécuter des playbooks Ansible, vous devez configurer un
environnement virtuel Python et installer les dépendances requises.

1. Créer un environnement virtuel Python

Créez un environnement Python isolé pour le déploiement Ansible :

python3 -m venv .venv



2. Activer I'environnement virtuel

Activez I'environnement virtuel :
source .venv/bin/activate
Sous Windows, utilisez :

.venv\Scripts\activate

3. Installer les paquets requis

Installez toutes les dépendances a partir du fichier requirements.txt :
pip install -r requirements.txt

Cela installera Ansible et tous les paquets Python nécessaires pour
I'automatisation du déploiement Omnitouch.

Remarque : Gardez I'environnement virtuel activé chaque fois que vous
exécutez des commandes Ansible. Vous pouvez le désactiver lorsque vous avez
terminé en exécutant deactivate.

Etapes de déploiement

1. Consultez la pour comprendre comment
définir votre réseau

2. Apprenez a connaitre les pour la personnalisation

3. Comprenez le pour la gestion des paquets

4. Consultez I' pour voir comment tout
s'assemble

5. Déployez !



Prochaines étapes

o - Planifiez votre architecture réseau et votre
allocation IP

. - Apprenez a définir votre topologie réseau
. - Comprenez la distribution des paquets

. - Découvrez la gestion des licences

. - Voir I'ensemble du tableau

. - Personnalisez votre déploiement

. - Outils opérationnels pour les vérifications de santé,

les sauvegardes et la maintenance



Dépot APT &
Distribution de Paquets

Vue d'ensemble

Le systeme APT d'Omnitouch fournit une distribution de paquets pour tous les
déploiements. Deux types de contenu sont servis :

1. Paquets APT — Paquets Debian installés via apt install

2. Versions Binaires — Binaires pré-construits téléchargés directement
(exportateurs Prometheus, agents, etc.)

Deux modeles de déploiement sont supportés :

1. Acces Direct — Les VM récuperent les paquets directement depuis
apt.omnitouch.com.au

2. Miroir de Cache Local — Un serveur local se synchronise avec Omnitouch
et sert des paquets aux VM (pour des déploiements hors ligne/isolés)

Architecture

Internet {Infrastructure
Ont .
apt.omnitouch.com_aw

Port BO

Synchroniser Tout le

Pagquets + Versions Paguets + Versions Paguets + Versions
Contenu

|
. | . !
Déplciag’uert en Deploiement d'Accés |
L] MMt v

Cache APT Local VM1 VM 2 VM 3

Port 8080

Paguets + Versions Paguets + Versions Paquets + Versions
1
L r ]

VM 4 VM3 VM 6



Contenu Servi

Le serveur APT héberge tout le contenu requis pour les déploiements :

Type de .
yp Description Chemin
Contenu
Paquets .deb construits sur
Paquets ) , , ,
, mesure (omnihss, omnimme, /dists/<distro>/
Omnitouch
etc.)
Paquets Paquets Ubuntu mis en cache , -
i /<distro>/pool/main/
Ubuntu avec toutes les dépendances
, Binaires pré-construits
Versions
, (Prometheus, Grafana, /releases/<org>/<repo>/
GitHub
Homer, etc.)
_ Archives source pour les
Archives o
applications web (CGrateS _Ul,  /repos/
Source
speedtest)
_ Galera, FRR, InfluxDB, KeyDB,
Paquets Tiers /releases/<vendor>/

etc.

Variables de Configuration

Deux ensembles de variables distincts contrélent la distribution des paquets.
Comprendre leurs objectifs est essentiel pour une configuration correcte.



Objectifs des Variables

Ensemble de
Variables

apt_repo

remote apt *

Objectif

Configure les
sources de
paquets APT

Configure les
URL de
téléchargement
binaire

Utilisé Pour

/etc/apt/sources.list et
/etc/apt/sources.list.d/*.list

Téléchargement de fichiers depuis le
chemin /releases/ (Node Exporter,
Zabbix, Nagios, etc.)



Quand Chaque Ensemble de Variables Est
Utilisé

; . Sources APT Téléchargements
Scenario L.
(apt_repo) Binaires ( remote apt_ *)
use apt cache: Utilise Utilise
true apt _repo.apt server apt repo.apt server
use apt cache: Utilise apt repo.* avec Utilise remote apt * avec
false des identifiants des identifiants

Lorsque use_apt_cache: false, les deux ensembles de variables sont
requis.

Option 1 : Acces Direct

Pour les déploiements avec connectivité Internet, les VM récuperent les
paquets directement depuis le serveur APT d'Omnitouch.

Exigences Réseau

Liste Blanche des IP Sources : Votre adresse IP publique doit étre ajoutée a
la liste blanche sur le serveur APT d'Omnitouch. Lors de la configuration,
fournissez vos sous-réseaux sources a Omnitouch. En retour, vous recevrez :

e Nom d'utilisateur et mot de passe pour |'authentification HTTP Basic
e FQDN pour le serveur APT

Exigences de Pare-feu : L'acces sortant aux plages IP suivantes d'Omnitouch
doit étre autorisé :



Réseau Plage

IPv4 144.79.167.0/24
IPv4 160.22.43.0/24
IPv6 2001:df3:dec0O::/48
ASN AS152894

Services nécessitant un acces a l'infrastructure Omnitouch :

Service

Serveur APT

Serveur APT

Serveur de
Licence

Serveur de
Licence

Port

80

53

123

53

Protocole

TCP

TCP/UDP

UDP

TCP/UDP

Objectif

Téléchargements de paquets

Résolution DNS pour
apt.omnitouch.com.au

Synchronisation horaire NTP pour
validation de licence

Résolution DNS pour validation de
licence

Assurez-vous que le trafic HTTP (TCP/80), NTP (UDP/123) et DNS (TCP+UDP/53)
est autorisé vers les plages IP d'Omnitouch.



Configuration

all:
vars:
use apt cache: false

# Configuration des sources de paquets APT
# Configure /etc/apt/sources.list pour les commandes apt
install
apt repo:
apt server: "apt.omnitouch.com.au"
apt _repo _username: "your-username"
apt repo password: "your-password"

# Configuration des téléchargements binaires

# Utilisé pour télécharger des fichiers depuis le chemin
/releases/

remote apt server: "apt.omnitouch.com.au"

remote apt port: 80

remote apt protocol: "http"

remote apt user: "your-username"

remote apt password: "your-password"

Parametres

Sources de Paquets APT (apt_repo)



Parametre Type

apt repo.apt server Chaine

apt repo.apt repo_username Chaine

apt repo.apt repo password Chaine

Requis

Oui

Oui

Oui

Téléchargements Binaires ( remote_apt_*)

Par
Défaut

Descriptio

Nom d'hoéte o!
adresse IP du
serveur APT

Nom
d'utilisateur
pour
['authentificat
HTTP Basic pc
les sources Al

Mot de passe
pour

['authentificat
HTTP Basic pc
les sources Al



Parametre

remote apt server

remote apt port

remote apt protocol

remote apt user

remote apt password

Général

Parametre Type

use apt cache Booléen

Par

Type Requis
yp 9 Défaut

Chaine  Oui -
Entier Non 80
Chaine  Non http
Chaine  Oui -
Chaine  Oui -

. Par

Requis )
Défaut

Oui

Description

Nom d'héte ou IP
du serveur pour les
téléchargements
binaires

Port du serveur
pour les
téléchargements
binaires

Protocole (http ou
https)

Nom d'utilisateur
pour
[‘authentification
HTTP Basic pour les
téléchargements

Mot de passe pour
['authentification
HTTP Basic pour les
téléchargements

Description

Doit étre false pour
un acces direct



Modeles d'URL (Acces Direct)

Sources de Paquets APT (configurées dans /etc/apt/sources.list):

deb [trusted=yes] http://{apt repo username}:
{apt repo password}@{apt server}/ noble main

Téléchargements Binaires (utilisés par les taches get url d'Ansible) :

http://{remote apt user}:

{remote apt password}@{remote apt server}:

{remote apt port}/releases/prometheus/node exporter/node exporter-
1.8.1.linux-amd64.tar.qgz

Comment Cela Fonctionne

Variables de

- Ce Qu'ils Configurent
apt repo

(Sources de paquets » [etc/apt/sources.list
APT)
remote apt * Teléchargements
(Teléchargements > binaires

binaires) [releases/*

Les VM s'authentifient avec I'authentification HTTP Basic pour les paquets APT
et les téléchargements binaires. Les paquets systeme Ubuntu sont également
servis depuis le serveur Omnitouch (pré-mis en cache), donc les VM n'ont pas
besoin d'accéder aux miroirs Ubuntu.



Option 2 : Miroir de Cache Local

Pour les déploiements hors ligne, isolés ou limités en bande passante, déployez
un cache APT local qui synchronise tout le contenu d'Omnitouch.

Architecture

Synchronisation Initiale
(nécessite Internet)

Configuration

Définissez le serveur de cache dans votre fichier hosts avec sa configuration de

dépot :



apt cache servers:
hosts:
customer-apt-cache:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
# Le serveur de cache synchronise les paquets depuis le dépot
authentifié
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "your-username"
remote apt password: "your-password"

all:
vars:
# use apt cache: true # Défini automatiquement lorsque le
groupe apt cache servers existe
# apt repo.apt server: auto-dérivé a 192.168.1.100 (premier
serveur de cache)

Comment cela fonctionne :

* Serveur de cache (192.168.1.100) : Utilise les identifiants remote apt *
pour synchroniser les paquets depuis apt.omnitouch.com.au:80

* Tous les autres hotes : Dérivent automatiquement
apt repo.apt server: "192.168.1.100" et récuperent depuis le cache au
port 8080 sans identifiants

Parametres

Sources de Paquets APT (apt_repo)



Parametre

apt repo.apt server

apt repo.apt repo_username

apt repo.apt repo password

Type

Chaine

Chaine

Chaine

Par

Requis ;
Défaut
, Auto-
Oui L,
dérivé
Non -
Non -

Synchronisation du Serveur de Cache ( remote_apt_*)

Descripti

IP du serveur
cache local. C
automatiquen
du premier h¢
apt cache_ se
si non spécifie

Non requis lor
['utilisation du
cache (aucun
authentificati
nécessaire)

Non requis lor
['utilisation du
cache (aucun
authentificatit
nécessaire)

Ces variables configurent comment le serveur de cache synchronise le contenu

d'Omnitouch :



Par

Parametre Type Requis 3 Description
Défaut
Serveur APT
remote apt server Chaine  Oui - Omnitouch a
synchroniser
) Port du serveur
remote apt port Entier Non 80 ,
APT Omnitouch
Protocole pour la
remote apt protocol Chaine Non http connexion de
synchronisation
Identifiants pour la
remote apt user Chaine  Oui - synchronisation
depuis Omnitouch
Identifiants pour la
remote apt password Chaine  Oui - synchronisation
depuis Omnitouch
Général
. . Par ..
Parametre Type Requis ) Description
Défaut
Défini
automatiquement sur
use apt cache Booléen Non true true lorsque le groupe
apt cache servers
existe
Port sur lequel le
apt_cache port  Entier Non 8080 serveur de cache local

écoute



Modeles d'URL (Mode Cache)

Sources de Paquets APT (configurées dans /etc/apt/sources.list):
deb [trusted=yes] http://192.168.1.100:8080/noble noble main
Téléchargements Binaires (utilisés par les taches get _url d'Ansible) :

http://192.168.1.100:8080/releases/prometheus/node exporter/node expc
1.8.1.linux-amd64.tar.gz

Aucun identifiant requis pour I'accés au cache - il utilise la configuration APT
[trusted=yes].

Déploiement du Cache

1. Provisionnez le serveur de cache (VM ou conteneur LXC avec 50+ Go
de disque)

2. Exécutez le playbook de configuration du cache :

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

3. Vérifiez le cache en naviguant vers http://192.168.1.100:8080/

Ce Qui Est Synchronisé

Le miroir de cache synchronise tout le contenu depuis le serveur APT
d'Omnitouch en utilisant un téléchargement wget récursif :



Répertoires de contenu synchronisés :

Chemin

/dists/<distro>/

/pool/main/

/<distro>/pool/main/

/releases/

/repos/

Contenu

Métadonnées du dépbt APT (Fichiers Packages,
Release)

Paquets .deb personnalisés d'Omnitouch

Paquets Ubuntu et toutes les dépendances

Versions GitHub (Prometheus, Grafana, Zabbix,
etc.)

Tarballs source (Erlang, Elixir, CGrateS_UI, etc.)

Aprées la synchronisation initiale, le cache peut servir tous les paquets sans

connectivité Internet.

Comment Cela Fonctionne

Réseau Client

Servir des Paguets

—& VM
(capable hors ligne)
Infrastructure
P
. Synchronisation Initiale Miroir de Cache APT Lervir des Paguets
apt.omnitouch.com.au o . ] . ) o VM
{nécessite Intemet) {apt_cache_servers) (capable hors ligne)

Servir des Paguets
" VM
(capable hors ligne)

Le miroir de cache utilise wget --recursive avec authentification HTTP Basic

pour télécharger tout le contenu depuis le serveur APT d'Omnitouch. Les



synchronisations suivantes ne téléchargent que les fichiers nouveaux/modifiés
(timestamping).

Configuration Automatique

Lorsqu'un groupe apt cache servers existe dans votre inventaire, le systeme :

1. Définit use apt cache: true pour tous les hotes (a moins d'étre
explicitement remplacé)

2. Dérive apt repo.apt server de l'lP ansible host du premier serveur de
cache

Exemple de Configuration Minimale

apt cache servers:
hosts:
apt-cache-01:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
# Le serveur de cache synchronise le contenu depuis le dépdot
Omnitouch
remote apt server: "apt.omnitouch.com.au"
remote apt user: "“your-username"
remote apt password: "your-password"

Ce qui se passe automatiquement :

e Tous les hotes (sauf le serveur de cache) obtiennent use apt cache: true

» Tous les hotes (sauf le serveur de cache) obtiennent apt repo.apt server:
"192.168.1.100"

e Tous les hotes récuperent depuis http://192.168.1.100:8080/ sans
identifiants

e Le serveur de cache synchronise les paquets depuis http://your-
username:your-password@apt.omnitouch.com.au/



Remplacer le Comportement Automatique

Pour forcer I'acces direct méme avec des serveurs de cache définis :

all:

vars:
use apt cache: false # Forcer l'acces direct méme avec des

serveurs de cache définis

apt repo:
apt server: "apt.omnitouch.com.au"
apt _repo _username: "user"
apt repo password: "pass"

remote apt server: "apt.omnitouch.com.au"
remote apt user: "user"
remote apt password: "pass"

Résumé de la Configuration

Scénario 1 : Acces Direct au Serveur APT (Pas
de Cache)

Tous les hotes récuperent les paquets directement depuis le serveur de dépdt
APT.



all:
vars:
use apt cache: false

# Sources de paquets APT - utilisées par tous les hétes
apt repo:

apt server: "apt.omnitouch.com.au"

apt _repo _username: "user"

apt repo password: "pass"

# Téléchargements binaires - utilisés par tous les hltes
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80

remote apt protocol: "http"

remote apt user: "user"

remote apt password: "pass"

Résultat : Tous les hétes génerent deb [trusted=yes]
http://user:pass@apt.omnitouch.com.au/ noble main

Scénario 2 : Serveur de Cache APT Défini dans
le Fichier Hosts (Automatique)

Le serveur de cache est dans votre inventaire et sera déployé/synchronisé par
Ansible.



apt cache servers:
hosts:
cache-server:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
# Le serveur de cache synchronise les paquets depuis le dépot
authentifié
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "user"
remote apt password: "pass"

# Aucune configuration nécessaire dans all: vars:
# Tout est auto-dérivé du groupe apt cache servers

Résultat :

e Serveur de cache : Synchronise depuis
http://user:pass@apt.omnitouch.com.au:80/

e Tous les autres hotes : Génerent deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (sans identifiants)

Scénario 3 : Cache APT DISTANT NON dans le
Fichier Hosts (Manuel)

Le serveur de cache existe ailleurs et est déja configuré (non géré par votre
Ansible).



all:
vars:
use apt cache: true

# Pointer tous les hétes vers le serveur de cache externe
apt repo:
apt_server: "192.168.1.100" # IP du serveur de cache
externe
apt_repo port: 8080 # Le cache fonctionne
généralement sur le port 8080

# Aucun groupe apt cache servers nécessaire

# Aucun remote apt * nécessaire (le cache est déja configuré
externement)

Résultat : Tous les hétes génerent deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (sans identifiants)

Exemple Complet

Voici un exemple complet montrant la configuration du serveur de cache avec
plusieurs hotes d'application :



# Groupe de Serveur de Cache APT
apt cache servers:
hosts:
customer-apt-cache:
ansible host: 10.179.1.114
gateway: 10.179.1.1
host vm network: "vmbr@"
num cpus: 4
memory mb: 16384
proxmoxLxcDiskSizeGb: 120
vars:
# Le serveur de cache synchronise les paquets depuis le dépot
authentifié
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "customer-username"
remote apt password: "customer-secure-token"

# Serveurs d'Application

hss:
hosts:
customer-hss01l:
ansible host: 10.179.2.140
gateway: 10.179.2.1
mme :
hosts:
customer-mme0Q1:
ansible host: 10.179.1.15
gateway: 10.179.1.1
dns:
hosts:

customer-dns01:
ansible host: 10.179.2.177
gateway: 10.179.2.1

# Configuration Globale
all:
vars:
# Auto-configuration (aucune configuration manuelle
nécessaire)



Ce qui se passe lors du déploiement :
1. Serveur de cache (10.179.1.114) :

o Utilise remote apt * de sa section vars:

o Télécharge tous les paquets depuis http://customer-
username:customer-secure-token@apt.omnitouch.com.au:80/

o Sert des paquets sur le port 8080 via nginx

2. Hotes d'application ( customer-hss01, customer-mme0l, customer-
dns01) :

o Détectent automatiquement que le groupe apt cache servers existe
o Définissent automatiquement use apt cache: true

o Dérivent automatiquement apt repo.apt server: "10.179.1.114"

o Génerent: deb [trusted=yes] http://10.179.1.114:8080/noble

noble main

o Récuperent tous les paquets depuis le serveur de cache (aucuns
identifiants requis)

Mise a Jour du Cache

Pour synchroniser de nouveaux paquets ou mises a jour :

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

Cela synchronise de maniere incrémentielle tout le contenu depuis le serveur
APT d'Omnitouch :

¢ Nouvelles versions de paquets Omnitouch



* Nouveaux paquets Ubuntu et dépendances
e Nouvelles versions GitHub

e Tarballs source mis a jour

La synchronisation utilise wget --timestamping, donc les fichiers existants non
modifiés sont ignorés, rendant la re-synchronisation rapide.

Remarque : Le serveur APT d'Omnitouch (apt.omnitouch.com.au) est la seule
source de vérité pour tous les paquets. Exécutez services/apt.yml sur le
serveur APT en premier pour construire/mettre a jour les paquets, puis
exécutez services/apt cache.yml sur les miroirs de cache pour synchroniser.

Dépannage

La Mise a Jour APT Echoue avec 401 Non
Autorisé

Symptomes :

Echec de la récupération
http://10.179.1.115:80/noble/dists/noble/main/binary-
amd64/Packages 401 Non Autorisé

Causes possibles :

e Configuration apt repo définie dans all: vars: au lieu de
apt_cache servers: vars:

» Hotes essayant d'accéder directement au dép6t authentifié au lieu du
cache

e |dentifiant apt repo username ou apt repo password incorrect
» |P source non ajoutée a la liste blanche sur le serveur APT d'Omnitouch

» Utilisation des identifiants de cache pour un acces direct ou vice versa

Résolution :



1. Vérifiez la portée de la configuration : Assurez-vous que apt repo
avec des identifiants est défini dans apt cache servers: vars:, PAS dans
all: vars:

2. Vérifiez le mode cache : Lors de |'utilisation du cache, les hotes doivent
se connecter au serveur de cache (port 8080), pas au dépdt (port 80)

3. Vérifiez les sources générées : Sur |'h6te en échec, vérifiez

/etc/apt/sources.list.d/omnitouch.list
o Correct (mode cache) : deb [trusted=yes]
http://10.179.1.114:8080/noble noble main

o Incorrect (a des identifiants au mauvais endroit) : deb
[trusted=yes] http://user:pass@l0.179.1.115:80/noble noble main

4. Vérifiez que les identifiants sont corrects pour votre mode de déploiement

5. Confirmez que votre IP publique est ajoutée a la liste blanche avec
Omnitouch (si vous utilisez I'acces direct)

Les Téléchargements Binaires Echouent (Node
Exporter, Zabbix, etc.)

Symptomes : Le playbook Ansible échoue a télécharger des fichiers depuis le
chemin /releases/

Causes possibles :

e Variables remote apt * non configurées
* |dentifiant remote apt user ou remote apt password incorrect

* remote apt server manquant lorsque use apt cache: false
Résolution :

1. Assurez-vous que toutes les variables remote apt * sont définies
2. Vérifiez que les identifiants correspondent a ceux fournis par Omnitouch

3. Vérifiez que remote apt server pointe vers I'héte correct

Le Serveur de Cache Ne Peut Pas Synchroniser

Symptomes : Le playbook du serveur de cache échoue a télécharger des
paquets



Causes possibles :

» Le serveur de cache n'a pas acces a Internet
 Identifiants remote apt * incorrects

e Pare-feu bloquant les connexions sortantes vers Omnitouch

Résolution :

1. Vérifiez que le serveur de cache peut atteindre apt.omnitouch.com.au sur
le port 80

2. Vérifiez les identifiants remote apt *

3. Examinez les regles de pare-feu pour I'acces sortant

Documentation Connexe

. — Configuration de l'inventaire et des
variables

. — Référence compléte des parametres

. — Architecture globale du systeme

. — Déploiement du serveur de cache en tant que

conteneur LXC



Référence de
Configuration

Vue d'ensemble

Ce document fournit une référence compléete pour la configuration des
déploiements OmniCore via des fichiers d'h6tes. La configuration est
principalement définie dans des fichiers d'inventaire d'hotes avec des
remplacements group_vars minimaux nécessaires pour les déploiements
modernes.

Pour la documentation spécifique au produit, voir :

¢ OmniCore :
¢ OmnicCall:

e OmniCharge :

Approche de Configuration

Les déploiements modernes d'OmniCore utilisent un modele de configuration
simplifié :
) _ Component )
Hosts File * Ansible Roles * ) ) * Deployed Services
Configuration

Principe Clé : La plupart de la configuration est définie directement dans le
fichier d'hotes. Les valeurs par défaut des réles gerent la majorité des
parametres, avec group_vars utilisées uniquement pour des personnalisations
spécifiques.


https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Planification Réseau

Avant de configurer les hotes, consultez la pour
des conseils sur:

Stratégies de segmentation réseau

Allocation d'adresses IP

Organisation des sous-réseaux

Gestion des IP publiques

Parametres Communs des Hotes

#ToDo - Just say to check hosts-file-configuration.md for this
Drapeaux Spécifiques au Service

cdrs _enabled: True
in pool: False

online charging enabled: False
recording: True

populate crm: False

Variables Globales (all:vars)

La section all:vars contient des parametres a I'échelle du déploiement. Les
déploiements modernes utilisent des variables globales minimales avec la
plupart de la configuration dans les valeurs par défaut des réles.

Variables Globales Essentielles

Authentification & Acces



ansible connection: ssh

ansible user: root

ansible password: password
ansible become password: password

Alternative : Utilisez des clés SSH au lieu de mots de passe :

ansible ssh private key file: '/path/to/key.pem'

Identité du Client

customer name short: omnitouch
customer_legal name: "YKTN Lab"
site name: YKTN

region: AU

TZ: Australia/Melbourne

Configuration PLMN

plmn_id:
mcc: '001' # Code Pays Mobile (3 chiffres)
mnc: 'O1' # Code Réseau Mobile (2-3 chiffres)
mnc_longform: '0G01' # MNC avec zéros en téte (toujours 3
chiffres)

diameter realm: epc.mnc{{ plmn id.mnc longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

But : Identifie de maniere unique votre réseau mobile. Utilisé pour la
construction du domaine Diameter.

Noms de Réseau



network name short: Omni

network name long: Omnitouch

tac list: [10100,100] # Liste TAC par défaut (peut étre
remplacée par MME)

Affiché : Noms de réseau affichés sur les appareils UE dans Parametres >
Réseau Mobile.

Configuration DNS

netplan DNS: False # Utiliser systemd-resolved au
lieu de DNS netplan

Configuration du Dépot APT

Valeurs par Défaut Automatiques : Lorsqu'un groupe apt cache servers
est défini avec des hotes :

e use apt cache par défaut a True (sauf s'il est explicitement défini sur
False)

* apt repo.apt server par défaut a I'IP du premier serveur de cache



# Configuration manuelle (optionnelle si le groupe
apt cache servers existe)

use apt cache: True # Utiliser le cache APT local vs
acces direct au dépot

apt repo:

apt server: "10.10.1.114" # Serveur de cache APT ou serveur
de dépot

# Les identifiants ne sont nécessaires que lorsque
use apt cache: False

# apt repo username: "omni"

# apt _repo password: "omni"

# Configuration des téléchargements binaires et de la
synchronisation du cache

# Utilisé pour : (1) télécharger des binaires depuis /releases/
lorsque use apt cache: false

# (2) synchronisation du serveur de cache depuis
Omnitouch lorsque use apt cache: true

remote apt server: "apt.omnitouch.com.au"

remote apt user: "omni"

remote apt password: "omni"

Voir : Systeme de Cache APT

Serveur de Licences

license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

Voir : Serveur de Licences

Parametres MME

mme _dns: False # Activer la résolution DNS MME

Parametres SAEGW



mtu: 1400 # Unité de Transmission Maximum

Parametres IMS

ims dra support: False # Router IMS via DRA
enable homer: False # Activer la capture SIP Homer

Configuration du Moniteur RAN



use nokia monitor: True
use casa monitor: True
install influxdb: True

influxdb user: monitor

influxdb password: "secure-password"
influxdb organisation name: omnitouch
influxdb nokia bucket name: nokia-monitor
influxdb casa bucket name: casa-monitor
influxdb operator token: "generated-token"
influxdb url: http://127.0.0.1:8086

enable pm collection: False
enable alarm collection: False

enable location collection: False

enable ran status collection: True
enable nokia rectifier collection: False
collection interval in seconds: 120

ran_monitor:
sql:

user: ran_monitor

password: "secure-password"

database host: 127.0.0.1
database name: ran monitor
influxdb:

address: 10.10.2.135

port: 8086

nokia:

airscales:

- address: 10.7.15.66
name: site-Lab-Airscale
port: 8080
web password: nemuuser
web username: Nemuadmin

Configuration du Pare-feu



firewall:
allowed ssh subnets:
'10.0.1.0/24'
- '10.0.0.0/24'
allowed ue voice subnets:
- '10.0.1.0/24'
allowed carrier voice subnets:
- '10.0.1.0/24"
allowed signaling subnets:
- '10.0.1.0/24'

Serveurs DNS de Roaming

roaming _dns_servers:
wildcard: ['10.0.99.1']
# DNS spécifique a l'opérateur (basé sur PLMN)

123456: # Exemple Opérateur 1
- '10.10.2.197'

654321: # Exemple Opérateur 2
- '10.10.0.4"

Utilisateurs Locaux (Clés SSH)

local users:
usera:
name: Exemple Utilisateur A
public key: "ssh-rsa AAAAB3Nza..."
userb:
name: Exemple Utilisateur B
public key: "ssh-ed25519 AAAAC3..."



Configuration de I'Hyperviseur

Proxmox

proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100
proxmoxServerPort: 8006
proxmoxRootPassword: password
proxmoxApiTokenName: AnsibleToken
proxmoxApiTokenSecret: "token-secret"
proxmoxTemplateName: ubuntu-24.04-cloud-init-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve0l

# Parametres par défaut de Proxmox
proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve0@l’

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard 24.04-
2 amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD RAIDO
proxmoxLxcBridgeName: vmbroO

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"
proxmoxStorage: SSD RAIDO

vLabNetmask: 24

PROXMOX API TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask cidr: 24



VMware vCenter

vcenter ip: "vcenter.example.com"

vcenter username: "administrator@vsphere.local"
vcenter password: "password"

vcenter datacenter: "DC1"

vcenter vm_ template: ubuntu-24.04-model
vcenter vm disk size: 50

vcenter folder: "Omnicore"

host vm network: "Management"

vhosts:
"10.0.0.23":
vcenter cluster ip: 10.0.0.23

vcenter datastore: "datastorel (3)"

netmask: 255.255.255.0

Documentation Connexe

. - Architecture réseau et directives d'allocation IP

. - Comment structurer les fichiers d'hotes

. - Quand et comment utiliser
group_vars

. - IP secondaires et configuration multi-NIC

. - Comment les composants interagissent

. - Gestion des paquets

. - Configuration des licences

Documentation Produit

Pour des guides opérationnels détaillés et une configuration avancée :

e Composants OmniCore :


https://docs.omnitouch.com.au/docs/repos/OmniCore

e Composants OmniCall :

e OmniCharge/OmniCRM :


https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Vue d'ensemble de
I'architecture de
déploiement

Vue d'ensemble

Ce document fournit une vue compléete de la maniere dont le logiciel de réseau
cellulaire d'Omnitouch Network Services est déployé a l'aide d'Ansible,
montrant comment tous les composants s'assemblent pour créer un réseau
4G/5G fonctionnel.

Voir la pour des directives détaillées sur le placement
des composants, I'attribution des adresses IP et la gestion des IP publiques.

Exemple complet de déploiement

0. Provisionnement de l'infrastructure
(optionnel)

Pour les déploiements Proxmox, provisionnez les VMs/LXCs avant la
configuration :

# Déployer des VMs sur Proxmox
ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

# Ou déployer des conteneurs LXC (laboratoire/test uniquement)

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox_lxc.yml

\oir :



1. Définition de l'infrastructure (fichier hosts)

# Définir quoi déployer et ou

mme :
hosts:
customer-mme01:
ansible host: 10.10.1.15
hss:
hosts:
customer-hssOl:
ansible host: 10.10.2.140
# ... tous les autres composants
Voir :

2. Personnalisation (group vars)

Le dossier group vars est I'endroit ou nous pouvons stocker toutes les
substitutions de configuration nécessaires au niveau d'un hote, d'un site ou
d'un réseau.

Par exemple, vous auriez un dossier avec votre configuration SMSc
OmniMessage, les trunks SIP auxquels votre TAS se connecte seraient ici, toute
votre logique de routage Diameter, etc., etc.

Voir :
3. Distribution des paquets (cache APT)

# Configurer ou obtenir les paquets
apt_repo:

apt _server: "10.254.10.223" # IP du serveur de cache ou serveur
de repo direct
use apt cache: false # true = utiliser le cache local, false =
acces direct au repo



Voir :
4. Configuration de la licence

# Pointer les composants vers le serveur de licence
license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

\oir :

5. Exécuter le déploiement

Des composants individuels peuvent étre déployés en exécutant
services/twag.yml par exemple, mais le services/all.yml gérera tout, et
vous pouvez utiliser --limit=myhost ou --limit=mmee,sgw, etc., pour limiter
les hbtes sur lesquels nous travaillons.

# Déployer le réseau complet
ansible-playbook -i hosts/customer/host files/production.yml
services/all.yml

# Ou déployer des composants spécifiques

ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

ansible-playbook -i hosts/customer/host files/production.yml
services/ims.yml

Documentation connexe

. - Premiers pas

. - Définir l'infrastructure

. - Architecture réseau et allocation IP
. - Personnalisation

. - Gestion des paquets

. - Gestion des licences



Documentation produit

Pour des informations détaillées sur la configuration de chaque composant :

OmniCore (Noyau de paquets 4G/5QG) :

o OmniHSS, OMmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voix et messagerie) :

o OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Facturation) :

Documentation principale :


https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Configuration des
Variables de Groupe

Vue d'ensemble

Le répertoire group vars est I'endroit ou vous stockez des fichiers de
configuration personnalisés qui remplacent les modeles par défaut.

C'est ici que résident vos configurations spécifiques au client - trunks SIP,
regles de routage Diameter, logique de routage SMS, plans d'appel, et toute
autre personnalisation ou vous ne souhaitez pas la configuration par défaut -
Cela se trouve dans group vars.

Emplacement : hosts/{Customer}/group vars/

Comment ca fonctionne

Les roles Ansible ont des modeles de configuration par défaut. Pour
personnaliser pour un déploiement spécifique, placez vos fichiers personnalisés
dans group vars et référencez-les dans votre fichier hosts.

Modele par défaut du r6le - Remplacement group vars (si spécifié)
- Configuration déployée

Exemple 1 : Modele de
Configuration Personnalisé
(OmniMessage)

Certains composants acceptent des modeles de configuration Jinja2
personnalisés.



Structure des Fichiers

hosts/Customer/
L— group vars/

L— smsc_controller.exs # Votre modele de config
personnalisé

Référence dans le Fichier Hosts

omnimessage:
hosts:
customer-smsc-controller0l:
ansible host: 10.10.3.219
gateway: 10.10.3.1
host vm network: "vmbr3"
smsc_template config: smsc_controller.exs

Ce qui se passe :

1. Ansible trouve smsc template config: smsc controller.exs
2. Cherche dans hosts/Customer/group_vars/smsc_controller.exs

3. Le modele avec Jinja2 (peut utiliser {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Déploie dans /etc/omnimessage/runtime.exs

5. Redémarre le service
Sans smsc_template config, le modele par défaut du role est utilisé.

Détails de configuration : Voir

Exemple 2 : Collections de Fichiers
de Configuration (Passerelles &


https://docs.omnitouch.com.au/docs/repos/OmniCall

Plans d'Appel OmniTAS)

Certains composants utilisent des répertoires de fichiers de configuration.

Structure des Fichiers

hosts/Customer/
L— group vars/

— gateways prod/ # Configurations des
passerelles SIP

| — gateway carrierl.xml

| | gateway carrier2.xml

| L— gateway emergency.xml

— gateways lab/ # Passerelles de laboratoire

| L— gateway test.xml

L— dialplan/ # Regles de routage d'appels
— mo_dialplan.xml # Mobile Originate (sortant)
F—— mt dialplan.xml # Mobile Terminate (entrant)

L— emergency.xml

Référence dans le Fichier Hosts

applicationserver:
hosts:
customer-tas01l:
ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"
gateways folder: "gateways prod" # Référencez votre
dossier de passerelles a utiliser sur cet héte

Ce qui se passe :

1. Ansible trouve gateways folder: "gateways prod"

2. Copie tous les fichiers de hosts/Customer/group vars/gateways prod/
vers /etc/freeswitch/sip profiles/



3. Copie tous les fichiers de hosts/Customer/group vars/dialplan/ vers le
répertoire des modeles OmniTAS

4. Les services chargent les configurations

Différents environnements : Utilisez différents dossiers par environnement :

¢ gateways folder: "gateways lab"
e gateways folder: "gateways prod"

* gateways folder: "gateways customer specific"

Détails de configuration : Voir

Exemple 3 : Modele de
Configuration Personnaliseé
(OMmniHSS)

Le Home Subscriber Server accepte des modeles de configuration d'exécution
personnalisés.

Structure des Fichiers

hosts/Customer/
L— group vars/

L— hss runtime.exs.j2 # Votre modéle de config HSS
personnalisé


https://docs.omnitouch.com.au/docs/repos/OmniCall

Référence dans le Fichier Hosts

omnihss:
hosts:
customer-hss01:
ansible host: 10.10.3.50
gateway: 10.10.3.1
host vm network: "vmbr3"
hss template config: hss_runtime.exs.j2

Ce qui se passe :

1. Ansible trouve hss template config: hss runtime.exs.j2
2. Cherche dans hosts/Customer/group vars/hss runtime.exs.j2

3. Le modele avec Jinja2 (peut utiliser {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Déploie dans /etc/omnihss/runtime.exs

5. Redémarre le service
Sans hss template config, le modele par défaut du réle est utilisé.

Détails de configuration : Voir

Exemple 4 : Modele de
Configuration Personnalisé
(OMmniMME)

L'Entity de Gestion de Mobilité accepte des modeles de configuration
d'exécution personnalisés.


https://docs.omnitouch.com.au/docs/repos/OmniCore

Structure des Fichiers

hosts/Customer/
L— group vars/

L— mme runtime.exs.j2 # Votre modele de config MME
personnalisé

Référence dans le Fichier Hosts

omnimme:
hosts:
customer-mmeQ1l:
ansible host: 10.10.3.51
gateway: 10.10.3.1
host vm network: "vmbr3"

mme template config: mme runtime.exs.j2 # Référencez le
nom de votre modele dans group vars

Ce qui se passe :

1. Ansible trouve mme _template config: mme runtime.exs.j2
2. Cherche dans hosts/Customer/group vars/mme runtime.exs.j2

3. Le modele avec Jinja2 (peut utiliser {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Déploie dans /etc/omnimme/runtime.exs

5. Redémarre le service
Sans mme template config, le modele par défaut du réle est utilisé.

Détails de configuration : Voir


https://docs.omnitouch.com.au/docs/repos/OmniCore

Exemple de Structure de
Répertoire dans le Monde Réel

hosts/Customer/

— host files/

| L— production.yml # Le fichier hosts référence les
fichiers group vars

L— group vars/

— smsc_controller.exs # Modele personnalisé OmniMessage

— smsc smpp.exs # Modele personnalisé SMPP
OmniMessage

— tas_runtime.exs.j2 # Modele personnalisé TAS

— hss_runtime.exs.j2 # Modele personnalisé HSS

— mme runtime.exs.j2 # Modele personnalisé MME

— dra runtime.exs.j2 # Modele personnalisé DRA

— pgwc runtime.exs.j2 # Modele personnalisé PGW

— dea runtime.exs.j2 # Modele personnalisé DEA

— upf config.yaml # Configuration UPF

F— crm config.yaml # Configuration CRM

— stp.j2 # Modele SS7 STP

F— hlr.j2 # Modéle SS7 HLR

F— camel.j2 # Modéle SS7 CAMEL

— ipsmgw.j2 # Modéle IP-SM-GW

— omnicore smsc _ims.yaml.j2 # Configuration SMSC IMS

— pytap.yaml # Configuration TAP3

— sip profiles/ # Passerelles SIP (dossier)

| L— gateway otw.xml

L— dialplan/ # Regles de routage d'appels
(dossier)
— mo dialplan.xml # Mobile Originate
— mt_dialplan.xml # Mobile Terminate

L— mo_emergency.xml # Routage d'urgence



Parametres Communs Qui



Référencent group vars

Parametre Composant Références

Fichier de modele
smsc_template config omnimessage Jinja2 (par exemple,
smsc_controller.exs

Fichier de modele
smsc_smpp_template config omnimessage smpp Jinja2 (par exemple,
SMSC_Smpp.exs)

Nom du dossier (par
gateways folder applicationserver exemple,
sip profiles)

Dossier dialplan/

Plans d'Appel (automatique applicationserver
ppel | que) S des XML de routage

Fichier de modele
tas template config applicationserver Jinja2 (par exemple,
tas runtime.exs.j2)

Fichier de modele
hss template config omnihss Jinja2 (par exemple,
hss runtime.exs.j2)

Fichier de modele
mme_template config omnimme Jinja2 (par exemple,
mme runtime.exs.j2)

Fichier de modele
dra template config dra Jinja2 (par exemple,
dra runtime.exs.j2)

pgwc template config pgwc Fichier de modele
Jinja2 (par exemple,



Parametre

frr template config

Modeles SS7

Configurations YAML

Points Clés

Composant

omniupf

ss7 (différents
roles)

Divers composants

Références

pgwc runtime.exs.j2;

Fichier de modele
Jinja2 (par exemple,
frr.conf.j2)

Fichiers de modele
Jinja2 (par exemple,
stp.j2, hlr.j2,
camel.j2)

Fichiers de config
directs (par exemple,
upf config.yaml,
crm _config.yaml)

1. group_vars contient des personnalisations - Remplacements pour les

configurations par défaut

2. Référence par nom - Utilisez des parametres comme

smsc template config ou gateways folder

3. Les modeles supportent Jinja2 - Accédez a n'importe quelle variable
Ansible avec {{ variable name }}

4. Les dossiers déploient tout - Tous les fichiers dans les dossiers

référencés sont copiés

5. Controlez tout par version - Commitez tous les group_vars dans Git

Quand Utiliser group _vars

[ Utilisez group_vars pour :



* Modeles de configuration de composants personnalisés
» Définitions de passerelles SIP

e Plans d'appel de routage

* Regles de routage Diameter

» Parametres spécifiques au client qui remplacent les valeurs par défaut
[0 N'utilisez pas group_vars pour :

» Configuration de base des hoétes (IPs, noms d'hétes) - Utilisez le fichier
hosts

» Tests ponctuels - Utilisez des variables spécifiques aux hétes dans le fichier
hosts

« Changements temporaires - Editez sur la cible, commitez dans group_vars
si permanent

Documentation Connexe

. - Tous les parametres d'hote et ce qu'ils font

o - Comment structurer les fichiers hosts

Configuration OmniCall :
- Ce qui va dans les
fichiers de configuration

Configuration OmniCore :
- Détails de
configuration des composants


https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Playbooks Utilitaires

Vue d'ensemble

Ce dépo6t comprend plusieurs playbooks utilitaires pour la maintenance, la
surveillance et les taches opérationnelles. Ceux-ci compléetent les playbooks de
déploiement principaux avec des capacités de gestion au quotidien.

Utilitaire de Veérification de Sante

L'utilitaire de Vérification de Santé génere un rapport HTML montrant la santé
du systeme, |'état des services, le temps de disponibilité et les informations de
version sur tous les composants d'OmniCore.

S'exécute automatiquement dans le playbook services/all.yml.

Utilisation

Exécution Manuelle

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Sortie
Le rapport est généré a /tmp/health check YYYY-MM-DD HH:MM:SS.html

Ouvrez-le dans n'importe quel navigateur web pour le visualiser.

Contenu du Rapport

Le rapport HTML affiche :



Informations sur I'Hote

* Nom de I'hote et adresse IP

 Réseau/Sous-réseau (a partir de la variable host vm network, ou N/A si
non défini)

e CPU (nombre de vCPU)

* RAM (mémoire totale et libre)

* Disque (espace total et libre de la partition racine avec pourcentage)

e OS (distribution et version)

Etat des Services

« Etat du service (actif/inactif avec indicateurs de couleur)
 Temps de disponibilité

¢ Informations sur la version/la publication

Pairs Diameter HSS

» Etat de la connexion a la base de données (connecté/déconnecté)
» Connexions de pairs Diameter (IP, héte d'origine, état)

» Récupéré a partir du point de terminaison des métriques HSS (port 9568)

Autres Utilitaires Commmuns

Configuration de Base du Systeme

Role Commun (services/common.yml)

Applique la configuration de base du systeme a tous les hotes

Configure les dépots, les clés SSH, le fuseau horaire, NTP

Configure le réseau et le renforcement du systeme

Exécutez ceci avant de déployer des services



ansible-playbook -i hosts/customer/host files/production.yml
services/common.yml

Configuration des Utilisateurs (services/setup users.yml)

» Crée et configure des comptes utilisateurs sur tous les hotes
e Gere les clés SSH et les privileges sudo

» Assure une configuration utilisateur cohérente

ansible-playbook -i hosts/customer/host files/production.yml
services/setup users.yml

Redémarrage (services/reboot.yml)

* Redémarre gracieusement tous les hotes ciblés
» Attend que les systemes reviennent en ligne (délai de 5 minutes)

» Utile apreés des mises a jour de noyau ou des modifications de configuration

ansible-playbook -1i hosts/customer/host files/production.yml
services/reboot.yml

Utilitaires Opérationnels

Générateur de Plan IP (util playbooks/ip plan generator.yml)

* Géneéere un rapport HTML des attributions d'adresses IP
* Montre la topologie complete du réseau a partir du fichier des hétes

e Utile pour la documentation et le dépannage

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml

Sauvegarde HSS (util playbooks/hss backup.yml)

» Sauvegarde les tables de la base de données HSS



e Copie le dump MySQL sur la machine Ansible locale

e Invite interactive pour le chemin de sauvegarde

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/hss backup.yml

Obtenir la Capture Locale (util playbooks/getLocalCapture.yml)

» Récupere les deux fichiers de capture de paquets les plus récents de tous
les hotes

» Récupere les fichiers pcap a partir de /etc/localcapture/

» Utile pour le débogage des problemes de connectivité

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Mettre a Jour MTU (util playbooks/updateMtu.yml)

* Met a jour les parametres MTU de l'interface réseau
e Applique les modifications via netplan

e Utile pour la configuration des trames jumbo

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Documentation Associée

. - Vue d'ensemble et démarrage

. - Exécution des playbooks

. - Configurez votre inventaire

. - Vue d'ensemble complete du systeme

. - Gestion des paquets



Configuration du fichier
Hosts

Vue d'ensemble

Le fichier hosts (également appelé fichier d'inventaire) est le document de
configuration central qui définit I'ensemble de votre déploiement de réseau
cellulaire. Il spécifie :

Quelles fonctions réseau déployer

Ou elles s'exécutent (adresses IP, segments de réseau)

Comment elles sont configurées (parametres spécifiques au service)

Parameétres spécifiques au client (PLMN, identifiants, fonctionnalités)

Emplacement du fichier

Les fichiers hosts sont organisés par client et environnement :

services/hosts/
L— Customer Name/
L— host files/
— production.yml
— staging.yml
L— lab.yml

Exemple de structure de fichier
Hosts

Voici un exemple simplifié montrant les sections clés :



# Composants EPC

mme :
hosts:
customer-mme0@1:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme code: 1
network name short: Customer
tac list: [600, 601, 602]
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
cdrs _enabled: true
pgwc:
hosts:

customer-pgw01l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
ip pools:
- '100.64.16.0/24"

# Composants IMS
pcscft:
hosts:
customer-pcscf0l:
ansible host: 10.10.4.165

# Services de support
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150

# Variables globales
all:
vars:
ansible connection: ssh
ansible password: password



customer name short: customer

plmn_id:
mcc: '001'
mnc: '01'

Parametres d'hote communs

Configuration réseau

Chaque héte comprend généralement :

pcscft:
hosts:
customer-pcscfOl:
ansible host: 10.10.1.15 # Adresse IP pour l'accés SSH
gateway: 10.10.1.1 # Passerelle par défaut
host vm network: "vmbrl" # nom de la NIC a utiliser

sur l'hyperviseur

Remarque : Pour des conseils sur la planification des adresses IP et les
stratégies de segmentation réseau, consultez la qui
décrit I'architecture recommandée a quatre sous-réseaux pour les
déploiements OmniCore.

Utilisateurs de Proxmox : Le parametre host vm network spécifie quel pont
utiliser. Consultez pour l'approvisionnement
automatisé.

Allocation des ressources VM

Pour les services nécessitant des ressources spécifiques :

num_cpus: 4 # Ceurs de CPU
memory mb: 8192 # RAM en mégaoctets
proxmoxLxcDiskSizeGb: 50 # Taille du disque en Go



Parametres spécifiques au service

Chaque fonction réseau a ses propres parametres. Exemples :

MME :
mme code: 1 # Identifiant MME (1-255)
mme gid: 1 # ID de groupe MME
network name_short: Customer # Nom du réseau (affiché sur les
téléphones)
network name long: Customer Network
tac list: [600, 601, 602] # Codes de zone de suivi
PGW :
ip pools: # Pools IP pour les abonnés

- '100.64.16.0/24"

- '100.64.17.0/24"
combined CP UP: false # Plan de contréle/plan utilisateur
séparé

Pour une explication détaillée de ce que chaque variable contréle, consultez :

Serveur d'application :

online charging enabled: true # Activer l'intégration 0CS

tas branch: "main" # Branche logicielle a déployer
gateways folder: "gateways prod" # Configuration du passerelle
SIP

Section des variables globales

La section all:vars contient des parameétres qui s'appliquent a I'ensemble du
déploiement :



all:
vars:
# Authentification
ansible connection: ssh
ansible password: password
ansible become password: password

# Identité du client
customer name short: customer
customer legal name: "Customer Inc."
site name: "Chicago DC1l"

region: US

# Identifiant PLMN (réseau mobile)

plmn_id:
mcc: '001' # Code de pays mobile
mnc: '0O1° # Code de réseau mobile
mnc_longform: '001' # MNC avec zéros en téte

# Noms de réseau
network name short: Customer
network name long: Customer Network

# Dépot APT
# Remarque : Si le groupe apt cache servers est défini avec
des hoétes,
# use apt cache par défaut est vrai et apt repo.apt server
# par défaut est l'adresse IP du premier serveur de cache
automatiquement
apt repo:
apt server: "10.254.10.223"
apt _repo username: "customer"
apt repo password: "secure-password"
use apt cache: false

# Fuseau horaire
TZ: America/Chicago

Comprendre les groupes d'hotes

Ansible organise les hbétes en groupes qui correspondent a des réles :



Hosts Fle

I. -..-._\. —
L] . T . ¥

MMme group SQW group hss group pcscf group
) L] ) : L : l : l
customer-mmell customer-mmel2 customer-sgwil customer-hss0l customer-pcscfill

Lorsque vous exécutez un playbook ciblant mme, il s'applique a tous les hbtes
de la section mme:hosts: .

Configuration avec des modeles
Jinja2

Ansible utilise le modele Jinja2 pour générer des fichiers de configuration a
partir des variables définies dans votre fichier hosts et group vars.

Comment fonctionne Jinja2

S I
-/

Exemple d'utilisation de modele

Le fichier hosts définit :

plmn_id:
mcc: '001'
mnc: '01'

customer name short: acme



Modele Jinja2 (dans le role) :

# mme config.yml.j2
network:
plmn:
mcc: {{ plmn_id.mcc }}
mnc: {{ plmn_id.mnc }}
operator: {{ customer name short }}
realm: epc.mnc{{ plmn_id.mnc longform }}.mcc{{ plmn_id.mcc
}}.3gppnetwork.org

Fichier de configuration généré :

network:

plmn:
mcc: 001
mnc: 01

operator: acme
realm: epc.mnc00l.mccOOl1.3gppnetwork.org

Modeles Jinja2 courants

Accéder aux variables imbriquées :

{{ plmn_id.mcc }}
{{ apt _repo.apt server }}

Logique conditionnelle :

% if online charging enabled %}
charging:
enabled: true
ocs ip: {{ ocs ip }}
% endif %}

Boucles :



tracking areas:
{% for tac in tac list %}

- {{ tac }}

{% endfor %}
Formatage :

# Zéro-remplir a 3 chiffres
mnc{{ '%03d' | format(plmn_id.mnc|int) }}

Surcharge des variables avec
group _vars

Alors que le fichier hosts définit les infrastructures et les parametres
spécifiques aux hotes, group vars peut remplacer les valeurs par défaut pour
des groupes d'hotes.

\oir :

Exemple complet de fichier Hosts

Voici un exemple plus complet (avec des données sensibles obscurcies) :



# EPC Core

mme :
hosts:
customer-mme01:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme_code: 1
mme gid: 1
network name short: Customer
network name long: Customer Network
tac_list: [600, 601, 602, 603]
omnimme:
sgw selection method: "random peer"
pgw selection method: "random peer"
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
host vm network: "vmbrl"
cdrs enabled: true
pgwc:
hosts:
customer-pgw0l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
host vm network: "vmbrl"
ip pools:
- '100.64.16.0/24'
combined CP_UP: false
hss:
hosts:
customer-hss01:
ansible host: 10.10.2.140
gateway: 10.10.2.1
host vm network: "vmbr2"
# IMS Core

pcscft:



hosts:
customer-pcscfOl:
ansible host: 10.10.4.165
gateway: 10.10.4.1
host vm network: "vmbr4"

icscf:
hosts:
customer-icscf0l:
ansible host: 10.10.3.55
gateway: 10.10.3.1
host vm network: "vmbr3"

scscf:
hosts:
customer-scscfOl:
ansible host: 10.10.3.45
gateway: 10.10.3.1
host vm network: "vmbr3"

applicationserver:
hosts:
customer-as01l:

ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"
online charging enabled: false
gateways folder: "gateways prod"

# Services de support
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

monitoring:
hosts:
customer-oam0l:
ansible host: 10.10.2.135
gateway: 10.10.2.1
host vm network: "vmbr2"
num cpus: 4



memory mb: 8192

dns:
hosts:
customer-dns01l:
ansible host: 10.10.2.177
gateway: 10.10.2.1
host vm network: "vmbr2"

# Variables globales
all:
vars:
ansible connection: ssh
ansible password: password
ansible become password: password

customer name short: customer

customer legal name: "Customer Network Inc."
site name: "Primary DC"

region: US

TZ: America/Chicago

# Configuration PLMN

plmn id:
mcc: '001'
mnc: '01'

mnc_longform: '001'
diameter realm: epc.mnc{{ plmn _id.mnc longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

# Noms de réseau
network name short: Customer
network name long: Customer Network
tac list: [600, 601]

# Configuration APT
apt _repo:

apt _server: "10.254.10.223"

apt repo username: "customer"

apt _repo password: "secure-password"
use apt cache: false

# Configuration de facturation
charging:



data:
online charging:
enabled: false
voice:
online charging:
enabled: true
domain: "mnc{{ plmn_id.mnc longform }}.mcc{{ plmn_id.mcc
}}.3gppnetwork.org"

# Regles de pare-feu
firewall:
allowed ssh subnets:
- '10.0.0.0/8'
- '192.168.0.0/16"
allowed ue voice subnets:
- '10.0.0.0/8'
allowed signaling subnets:
- '10.0.0.0/8'

# Configuration de l'hyperviseur (exemple Proxmox)
proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxApiTokenName: Customer

proxmoxApiTokenSecret: "token-secret"

proxmoxTemplateName: ubuntu-24.04-cloud-init-template

proxmoxNodeName: pve0l

Voir pour des détails complets sur la
configuration et la mise en place de Proxmox.

Références de documentation
produit

Pour une configuration détaillée de chague composant, consultez la
documentation produit officielle :

Composants OmniCore :



Documentation OmniCore :

OmniHSS - Serveur d'abonnés domicile

OmniSGW - Passerelle de service (plan de controle)

OmniPGW - Passerelle de paquets (plan de contréle)
OmniUPF - Fonction de plan utilisateur

OmniDRA - Agent de routage Diameter

OmniTWAG - Passerelle d'acces WLAN de confiance

Composants OmniCall :

Documentation OmnicCall :

OmniTAS - Serveur d'application IMS (VoLTE/VoNR)
OmniCall CSCF - Fonctions de contrble de session d'appel
OmniMessage - Centre SMS

OmniMessage SMPP - Support du protocole SMPP
OmniSS7 - Pile de signalisation SS7

VisualVoicemail - Messagerie vocale

OmniCharge/OmniCRM :

Documentation OmniCharge :

Documentation connexe

- Processus de déploiement global

- Guide complet de toutes les variables de
configuration
- Remplacement des configurations
par défaut

- Architecture réseau et directives
d'allocation IP


https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

- IP secondaires et configuration réseau
avanceée

- Distribution de paquets
- Gestion des licences

- Vue complete du
systeme

Prochaines étapes

I R

. Créez votre fichier hosts basé sur ce modele
. Définissez votre PLMN et votre identité réseau

. Configurez I'acces au dépdbt APT

Configurez le serveur de licences
Personnalisez avec Si nécessaire

Déployez avec des playbooks Ansible



Norme de Planification
IP d'OmniCore

Apercu

Ce document décrit I'approche standard de planification IP pour les
déploiements d'OmniCore. L'architecture nécessite quatre sous-réseaux
internes pour segmenter correctement les fonctions réseau pour la sécurité, la
performance et la clarté opérationnelle.

Exigences d'Allocation IP

Allocation Standard : Quatre Sous-Réseaux /24

Chaque déploiement d'OmniCore nécessite quatre sous-réseaux distincts pour
le réseau interne :

1. Réseau de Noyau de Paquet - Premier /24
2. Réseau de Signalisation - Deuxiéme /24
3. Réseau Interne IMS - Troisieme /24

4. Réseau Public UE - Quatrieme /24

Important : Ce sont des Recommandations, Pas
des Exigences

L'allocation de sous-réseaux décrite dans ce document est une meilleure
pratique recommandée pour organiser les déploiements d'OmniCore.
Cependant, I'architecture est complétement flexible :

* Tous les hotes dans un sous-réseau : Vous pouvez placer tous les
composants dans un seul sous-réseau si cela convient a vos besoins de
déploiement



e« Chaque type d'hote dans son propre sous-réseau : Vous pouvez créer
des sous-réseaux séparés pour chague type de composant (un pour les
MMESs, un pour les HSS, etc.)

* Groupements personnalisés : Vous pouvez organiser les hotes dans
n'importe quelle structure de sous-réseau qui a du sens pour vos exigences
spécifiques

* Mélanger les IP internes et publiques : Certains hotes peuvent utiliser
des adresses internes (RFC 1918) tandis que d'autres utilisent des IP
publiques, le tout dans le méme déploiement

L'approche recommandée des quatre sous-réseaux offre une isolation de
sécurité, une gestion du trafic et une clarté opérationnelle optimales,
c'est pourquoi nous la suggérons pour les déploiements en production.
Cependant, vous devez adapter le plan IP pour correspondre a votre topologie
réseau spécifique, a I'espace d'adresses disponible et a vos exigences
opérationnelles.

Répartition des Segments Réseau

1. Réseau de Noyau de Paquet (Premier /24)

Objectif : Eléments du plan de données utilisateur et du plan de contréle
central

Composants :

¢ OmMniMME (Entité de Gestion de Mobilité)
¢ OmniSGW (Passerelle de Service)
¢ OmniPGW-C (Plan de Contrdle de Passerelle PDN)

¢ OmniUPF/PGW-U (Fonction de Plan Utilisateur / Passerelle PDN Plan
Utilisateur)

Exemple : 10.179.1.0/24



mme :
hosts:
omni-site-mmeO@1l:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

2. Réseau de Signalisation (Deuxieme /24)
Objectif : Signalisation Diameter, politique, facturation et fonctions de gestion
Composants :

e OmniHSS (Serveur d'Abonnés Local)

e OmniCharge OCS (Systéme de Facturation en Ligne)

* OminiHSS PCRF (Fonction de Regles de Politique et de Facturation)
¢ OmniDRA DRA (Agent de Routage Diameter)

e Serveurs DNS

e Serveurs TAP3/CDR

e Surveillance/OAM

e Capture SIP

e Serveur de Licences

e Moniteur RAN

e Omnitouch Alerte Lien CBC (Centre de Diffusion de Cellule) - si déployé

» Serveurs de Cache APT - si déployé

Exemple : 10.179.2.0/24

hss:
hosts:
omni-site-hss01:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"



3. Réseau Interne IMS (Troisieme /24)
Objectif : Signalisation et services de coeur IMS (signalisation SIP interne)
Composants :

e OmniCSCF S-CSCF (Fonction de Contréle de Session d'Appel de Service)

e OmniCSCF I-CSCF (Fonction de Contrdle de Session d'Appel Interrogative)
e OmnITAS (Serveur d'Application de Téléphonie / Serveur d'Application)

* OmniMessage (Controleur SMS, SMPP, IMS)

e OmniSS7 STP (Point de Transfert de Signalisation SS7)

e OmniSS7 HLR (Registre de Localisation Local) - pour 2G/3G

e OmniSS7 IP-SM-GW (MAP SMSc)

e OmniSS7 Passerelle CAMEL

Exemple : 10.179.3.0/24

scscf:
hosts:
omni-site-scscfOl:
ansible host: 10.179.3.45
gateway: 10.179.3.1
host vm network: "vmbr3"

4. Réseau Public UE (Quatrieme /24)

Objectif : Services orientés utilisateur tels que IMS et DNS
Composants :

* OmniCSCF P-CSCF (Fonction de Controle de Session d'Appel Proxy)
* Serveurs XCAP

e Serveurs de Messagerie Vocale Visuelle

e DNS Client



Exemple : 10.179.4.0/24

pcscft:
hosts:
omni-site-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Méthodes de Mise en CEuvre

OmniCore prend en charge deux méthodes principales pour mettre en ceuvre
cette segmentation réseau :

Méthode 1 : Interfaces Réseau
Physiques/Virtualisées (Recommandé pour la
Production)

Utilisez des NIC séparés ou des ponts virtuels pour chaque segment réseau.
Cela offre la plus forte isolation et est I'approche recommandée pour les
déploiements en production.

Exemple :



# Noyau de Paquet - vmbrl
mme :
hosts:
omni-1lab07-mmeO1l:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

# Signalisation - vmbr2
hss:
hosts:
omni-lab07-hss0O1l:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"

# IMS Interne - vmbr3
icscf:
hosts:
omni-lab07-icscfOl:
ansible host: 10.179.3.55
gateway: 10.179.3.1
host vm network: "vmbr3"

# UE Public - vmbr4
pcscft:
hosts:
omni-lab07-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Méthode 2 : Segmentation Basée sur VLAN

Utilisez une seule interface physigue avec un balisage VLAN pour séparer les
réseaux. Cela convient aux déploiements plus petits ou lorsque les NIC
physiques sont limitées.

Exemple :



# Tous les composants utilisent vmbrl2 avec différents VLAN
applicationserver:
hosts:
ons-1ab08sbcO1l:
ansible host: 10.178.2.213
gateway: 10.178.2.1
host vm network: "ovsbrl"

vlianid: "402"
dra:
hosts:
ons-1ab08dra0l:
ansible host: 10.178.2.211
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlianid: "402"
dns:
hosts:

ons-1lab08dns01:
ansible host: 10.178.2.178
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlanid: "402"

Configuration Réseau :

e Configurez les VLAN sur le commutateur physique
e Taguer le trafic de maniere appropriée au niveau de I'hyperviseur

e Router entre les VLAN au niveau de la passerelle/firewall

Exemple de Mappage VLAN :

VLAN 10 : 10.x.1.0/24 (Noyau de Paquet)
VLAN 20 : 10.x.2.0/24 (Signalisation)
VLAN 30 : 10.x.3.0/24 (IMS Interne)
VLAN 40 : 10.x.4.0/24 (UE Public)



Travailler avec des Adresses IP
Publiques

Apercu

De nombreux déploiements d'OmniCore nécessitent que certains composants
aient des adresses IP publiques pour la connectivité externe, telles que :

* DRA - Pour la signalisation diameter en itinérance avec des opérateurs
externes

» SGW/PGW en itinérance - Pour le trafic GTP des partenaires d'itinérance
e ePDG - Pour les appels WiFi (tunnels IPsec des UE)

» Passerelle SMSC - Pour les connexions SMPP aux agrégateurs SMS
externes

e P-CSCF (dans certains déploiements) - Pour |'enregistrement SIP direct des
UE

Comment Assigner des IP Publiques

Les IP publiques sont gérées exactement de la méme maniere que les IP
internes dans vos fichiers d'inventaire d'hétes. Il suffit de spécifier I'adresse IP
publique dans le champ ansible host avec la passerelle et le masque de sous-
réseau appropriés.

Exemple : SGW/PGW en itinérance avec des IP Publiques



sgw:
hosts:
# SGWs internes sur réseau privé
opt-site-sgw01l:
ansible host: 10.4.1.25
gateway: 10.4.1.1
host vm network: "v400-omni-packet-core"

# SGWs en itinérance avec des IP publiques
opt-site-roaming-sgwO1l:

ansible host: 203.0.113.10

gateway: 203.0.113.9

netmask: 255.255.255.248 # sous-réseau /29

host vm network: "498-public-servers"

in pool: False

cdrs _enabled: True

smf: # PGWs
hosts:

# PGW en itinérance avec IP publique

opt-site-roaming-pgw0O1l:
ansible host: 203.0.113.20
gateway: 203.0.113.17
netmask: 255.255.255.240 # sous-réseau /28
host vm network: "497-public-services-LTE"
in pool: False
ip pools:

- '100.64.24.0/22'

Exemple : DRA avec IP Publique

dra:
hosts:
opt-site-dra0l:
ansible host: 198.51.100.50
gateway: 198.51.100.49
netmask: 255.255.255.240 # sous-réseau /28
host vm network: "497-public-services-LTE"

Exemple : ePDG avec IP Publique



epdg:
hosts:
opt-site-epdg01l:
ansible host: 198.51.100.51
gateway: 198.51.100.49
netmask: 255.255.255.240 # sous-réseau /28
host vm network: "497-public-services-LTE"

Mélanger des IP Internes et Publiques

Il est courant d'avoir un mélange d'IP internes et publiques au sein du méme
groupe de composants. Par exemple :

e SGWs internes pour des sites locaux utilisant GTP

* SGWs publiques spécifiguement pour le trafic d'itinérance des opérateurs
externes

* Le méme PGW-C peut gérer a la fois des SGWSs internes et externes

L'architecture d'OmniCore gere cela sans probleme - il suffit de configurer
chaque hote avec son adressage IP approprié.



Serveur de Licence

Vue d'ensemble

Le Serveur de Licence gere |'activation des fonctionnalités pour tous les

composants Omnitouch. Chaque composant valide sa licence au démarrage et
périodiquement pendant son fonctionnement.

Configuration

1. Définir dans le Fichier Hosts

license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

all:
vars:
customer legal name: "Nom du Client"

license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

2. Fournir le Fichier de Licence

Placez license. json (fourni par Omnitouch) dans
hosts/Customer/group vars/



3. Déployer

ansible-playbook -i hosts/customer/host files/production.yml
services/license server.yml

Vous pouvez vérifier I'état de toutes les licences en accédant a
https://license_server .

Exigences Réseau

Configuration du Pare-feu

Les pare-feu du site client doivent étre configurés pour autoriser le trafic HTTPS
(port 443) vers les serveurs de validation de licence Omnitouch suivants :

Nom d'hote Adresse IP Objectif

] , Serveur de validation de licence
time.omnitouch.com.au 160.22.43.18

] , Serveur de validation de licence
time.omnitouch.com.au 160.22.43.66

] , Serveur de validation de licence
time.omnitouch.com.au 160.22.43.114

Regles sortantes requises :

e Protocole : HTTPS (TCP/443)
e Destination : 160.22.43.18, 160.22.43.66, 160.22.43.114

e Direction : Sortante



Exigences DNS

Le serveur de licence nécessite une résolution DNS fonctionnelle pour
communiquer avec l'infrastructure de validation de licence Omnitouch.

Configuration DNS requise :

» Le serveur de licence doit avoir acces a des serveurs DNS publics
e Configurez DNS pour utiliser I'un des suivants :
o 1.1.1.1 (Cloudflare - prend en charge DNS sécurisé)
o 8.8.8.8 (Google Public DNS)
e Ne pas utiliser de serveurs DNS internes/corporatifs pour le serveur de

licence

Remarque : Les serveurs de licence Omnitouch utilisent DNS sécurisé
(DoH/DoT). L'utilisation de serveurs DNS publics garantit une validation
DNSSEC appropriée et empéche les problemes d'interception DNS par des
appareils de sécurité.

Documentation Connexe



Configuration de
Netplan

Vue d'ensemble

OmniCore peut configurer automatiquement les interfaces réseau sur les VMs
déployées en utilisant netplan. Cela est utile pour :

e Configurer l'interface de gestion principale (eth0)

e Ajouter des interfaces secondaires pour des IP publiques, des connexions
de peering ou du trafic dédié

» Configurer des routes statiques pour des destinations spécifiques

Activation de la Configuration
Netplan

Pour activer la configuration automatique de netplan pour un hote, ajoutez la
variable netplan config pointant vers un modele Jinja2 dans votre dossier
group vars :

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
netplan config: netplan.yaml.j2

Le modele sera récupéré depuis
hosts/<customer>/group vars/netplan.yaml.j2.



Référence du Modele

Voici le modele complet netplan.yaml.j2 avec des commentaires expliquant
chaque section :



network:
version: 2
ethernets:
# Interface principale - utilise ansible host et gateway de
1'inventaire
ethO:
addresses:
"{{ ansible host }}/{{ mask cidr | default(24) }}"
nameservers:
addresses:
% if 'dns' in group names %}
# Si cet hote EST un serveur DNS, utilisez un DNS externe
pour éviter une dépendance circulaire
- 8.8.8.8
% else %}
# Sinon, utilisez les serveurs DNS du groupe 'dns' dans
1'inventaire
{% for dns_host in groups['dns'] | default([]) %}
- {{ hostvars[dns host]['ansible host'] }}
% endfor %}
% endif %}
search:
- slice
routes:
- to: "default"
via: "{{ gateway }}"

% 1f secondary ips 1is defined %}
# Interfaces secondaires - boucle a travers le dictionnaire
secondary ips de l'inventaire
# Nommage des interfaces : ensl9, ens20, ens2l... (18 +
loop.index)
{% for nic name, nic config in secondary ips.items() %}
ens{{ 18 + loop.index }}:
addresses:
"{{ nic config.ip address }}/{{ mask cidr | default(24)
I3
% if nic_config.routes is defined %}
# Routes statiques pour cette interface - chaque route
utilise la passerelle de cette interface
routes:
{% for route in nic _config.routes %}
- to: "{{ route }}"



via: "{{ nic config.gateway }}"
{% endfor %}
{% endif %}
{% endfor %}
{% endif %}

Points clés :

* ansible host et gateway proviennent de I'entrée d'inventaire de I'hdte
» Les serveurs DNS sont extraits dynamiguement des hétes dans le groupe
dns

» Les interfaces secondaires sont nommeées ens19, ens20, etc. pour
correspondre a la nomenclature des NIC Proxmox

e Chaque IP secondaire peut avoir sa propre passerelle et des routes
statiques

Configuration de l'Interface
Principale

L'interface principale (eth0) est configurée automatiguement en utilisant :

e ansible host - L'adresse IP
* gateway - La passerelle par défaut

e mask cidr - Masque réseau (par défaut 24)
Les serveurs DNS sont automatiquement définis sur :

e Hotes dans le groupe dns (utilise leurs IP ansible host)

e Revertita 8.8.8.8 sil'hOte est lui-méme un serveur DNS

Interfaces Secondaires

Pour les hotes nécessitant des interfaces réseau supplémentaires (IP publiques,
peering, etc.), utilisez la configuration secondary ips.



Schéma

secondary ips:
<logical name>:
ip address: <ip address>
gateway: <gateway ip>
host vm network: <proxmox bridge>
vlanid: <vlan id>
routes: # Optionnel - routes statiques via
cette interface
- '<destination cidr>'
- '<destination cidr>'

Nommage des Interfaces

Les interfaces secondaires sont automatiqguement nommées en utilisant le
schéma de nommage prévisible d'Ubuntu :

Premiére interface secondaire : ens19
* Deuxieéme interface secondaire : ens20

Troisieme interface secondaire : ens21

Et ainsi de suite...

Cela correspond aux noms d'interface attribués par Proxmox lors de I'ajout de
NIC supplémentaires a une VM.



Exemple de Configuration

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
host vm network: "ovsbrl"
vlanid: "100"
netplan config: netplan.yaml.j2
secondary_ ips:
public ip:
ip address: 192.0.2.50
gateway: 192.0.2.1
host vm network: "vmbrQ"
vlanid: "200"
routes:
- '198.51.100.0/24"
- '203.0.113.0/24"
peering ip:
ip address: 172.16.50.10
gateway: 172.16.50.1
host vm network: "ovsbr2"
vlanid: "300"
routes:
- '172.17.0.0/16"

Sortie Netplan Générée

La configuration ci-dessus génere :



network:
version: 2
ethernets:
ethO:
addresses:
"10.0.1.100/24"
nameservers:
addresses:
- 10.0.1.53
search:
- slice
routes:
- to: "default"
via: "10.0.1.1"
ensl9:
addresses:
"192.0.2.50/24"
routes:
- to: "198.51.100.0/24"
via: "192.0.2.1"
- to: "203.0.113.0/24"
via: "192.0.2.1"
ens20:
addresses:
"172.16.50.10/24"
routes:
- to: "172.17.0.0/16"
via: "172.16.50.1"

Intégration Proxmox

Lors de I'utilisation du playbook proxmox.yml, les NIC secondaires sont
automatiqguement créées sur la VM :

1. Nouvelles VMs : Les NIC secondaires sont ajoutées lors du
provisionnement initial

2. VMs Existantes : Les NIC secondaires sont ajoutées et la VM est
redémarrée pour appliquer les changements

La configuration Proxmox utilise :



* host vm network - Le pont auquel attacher la NIC

e vlanid - Tag VLAN pour l'interface

Comment Ca Marche

1. Les variables du fichier d'hotes sont passées au modele Jinja2

2. Le modele est rendu dans /etc/netplan/01-netcfg.yaml

3. Toute configuration netplan existante est supprimée pour éviter les conflits
4. netplan apply active la configuration

5. Les adresses IP sont vérifiées avec ip addr show

Cas d'utilisation Courants

Diameter Edge Agent (DEA) avec IP Publique

<hostname>:
ansible host: 10.0.1.100 # IP de gestion interne
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
diameter roaming:
ip address: 192.0.2.50 # IP publique pour les
partenaires de roaming
gateway: 192.0.2.1
host vm network: "vmbr@"

vlanid: "200"
routes:
- '198.51.100.0/24" # Réseau des partenaires de

roaming



PGW avec Interface S5/S8

<hostname>:
ansible host: 10.0.2.20 # IP interne
gateway: 10.0.2.1
netplan config: netplan.yaml.j2
secondary ips:
s5s8 interface:
ip address: 203.0.113.17 # IP publique S5/S8
gateway: 203.0.113.1
host vm network: "vmbr@"
vlanid: "50"

Serveur Multi-hébergé avec Réseaux de
Gestion et de Données Séparés

<hostname>:
ansible host: 10.0.1.100 # Réseau de gestion
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
data network:
ip address: 10.0.2.100 # Réseau de données
gateway: 10.0.2.1
host vm network: "ovsbr2"
vlanid: "200"
backup network:
ip address: 10.0.3.100 # Réseau de sauvegarde
gateway: 10.0.3.1
host vm network: "ovsbr3"
vlanid: "300"

Référencement des IPs
Secondaires dans les Modeles

Vous pouvez référencer les adresses IP secondaires dans d'autres modeles
Jinja2 et fichiers de configuration.



Sur le Méme Hote

Lors de la configuration d'un service sur le méme héte qui a des IP secondaires,
vous pouvez référencer directement ou utiliser inventory hostname :

# Référence directe (la plus simple)
{{ secondary ips.diameter public ip.ip address }}

# Ou explicitement via inventory hostname (méme résultat)
{{ hostvars[inventory hostname]['secondary ips"']
[ 'diameter public ip']['ip address'] }}

# Accéder a d'autres propriétés
{{ secondary ips.diameter public ip.gateway }}
{{ secondary ips.diameter public ip.vlanid }}

D'un Autre Hote

Lorsque vous devez référencer une IP secondaire d'un autre héte (par exemple,
configurer une connexion de pair), utilisez hostvars avec le nom d'héte cible :

# Référence du premier hote dans le groupe dra
{{ hostvars[groups['dra'][0]]['secondary ips"']
[ 'diameter public ip']['ip address'] }}

# Boucle a travers tous les hotes DRA et obtenez leurs IP
publiques
{% for host in groups['dra'] %}
% if hostvars[host]['secondary ips'] is defined %}
- {{ hostvars[host]['secondary ips']['diameter public ip"']
['ip address'] }}
% endif %}
% endfor %}

Exemple : Configuration de Pair DRA

Configurer un pair de diametre pour se lier a sa propre IP publique :



# Dans dra config.yaml.j2 - utilisez inventory hostname pour
1'héte actuel
peers:
- name: external peer

# Lier a 1'IP publique de diametre de cet hote

local ip: {{ hostvars[inventory hostname]['secondary ips"']
[ 'diameter public ip']['ip address'] }}

remote ip: 198.51.100.50

port: 3868

Veérification de I'Existence des IPs Secondaires

Vérifiez toujours si la variable existe avant de I'utiliser :

% if secondary ips is defined and

secondary ips.diameter public ip is defined %}

public ip: {{ secondary ips.diameter public ip.ip address }}
% else %}

public ip: {{ ansible host }}

{% endif %}

Dépannage

Vérifier les Noms des Interfaces

SSH sur la VM et vérifiez les noms des interfaces :
ip link show
Sortie attendue pour une VM avec deux interfaces secondaires :

: lo: <LOOPBACK,UP,LOWER UP> ...

: ethO: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ens19: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ens20: <BROADCAST,MULTICAST,UP,LOWER UP> ...

A W NP



Vérifier la Configuration de Netplan

cat /etc/netplan/01l-netcfg.yaml

Appliquer Netplan Manuellement

netplan apply

Déboguer Netplan

netplan --debug apply

Vérifier les Routes

ip route show

Documentation Connexe

. - Configuration de l'inventaire des hotes
o - Provisionnement de VM

. - Toutes les variables de configuration



Déploiement de
VM/LXC Proxmox

La majorité de nos clients exécutent la pile OmniCore sur Proxmox, ce guide
expligue en détail comment utiliser les playbooks proxmox pour configurer leur
environnement en utilisant Proxmox.

Nous continuons a prendre en charge VMware, HyperV et le cloud
(actuellement Vultr / AWS / GCP) pour les déploiements.

Voir aussi :
. - Définir les VMs a déployer
. - Directives d'attribution d'adresses IP
. - IP secondaires et configuration multi-NIC
. - Flux de travail complet de déploiement

LXC vs VM

Conteneurs LXC :

» Léger, partage le noyau de I'héte

 Démarrage rapide, faible surcharge

* Isolation limitée

* Ne peut pas exécuter de noyaux ou de modules de noyau personnalisés
* Pas adapté aux déploiements en production

* Ne peut pas exécuter UPF (nécessite des modules de noyau / dispositifs
TUN)

VMs (KVM) :

e Virtualisation compléte avec noyau dédié
* |solation complete

» Peut exécuter des modules de noyau et un réseau personnalisé



e Surcharge de ressources plus élevée
» Recommandé pour la production

* Nécessaire pour les déploiements UPF
Cas d'utilisation :

» VMs : Sites de production, UPF, toutes les fonctions réseau

* LXC : Environnements de laboratoire/test, services |égers (apt-cache,
surveillance)

Configuration de Proxmox

1. Créer un jeton API

# Dans 1'UI Proxmox : Datacenter - Permissions - Jetons API
# Créer un jeton : root@pam!<TokenName>
# Copier le secret du jeton (affiché une seule fois)

2. Créer un modele de VM Cloud-Init (pour les
VMs uniquement)

Exécutez ce script sur I'n6te Proxmox. Il télécharge I'image cloud d'Ubuntu et
crée un modele avec les informations d'identification utilisateur cloud-init.



#!/bin/bash
set -e

TEMPLATE ID=9000

IMAGE URL="https://cloud-images.ubuntu.com/noble/current/noble-
server-cloudimg-amd64.img"
IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Téléchargement de 1'image cloud d'Ubuntu ==="
cd /var/lib/vz/template/iso

wget -N "$IMAGE URL"

echo "=== Nettoyage de l'ancien modele ==="

gm destroy $TEMPLATE ID --purge 2>/dev/null || true
echo "=== Activation du stockage des extraits ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== (Création des données utilisateur cloud-init ==="
mkdir -p /var/lib/vz/snippets
cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'
#cloud-config
ssh _pwauth: true
users:
- name: omnitouch

plain_text passwd: password

lock passwd: false

shell: /bin/bash

sudo: ALL=(ALL) NOPASSWD:ALL

groups: sudo
USERDATA

echo "=== Création du modele de VM ==="

gm create $TEMPLATE ID --name ubuntu-2404-template --memory 2048 -
-cores 2 --net0O virtio,bridge=vmbro

gm importdisk $TEMPLATE ID $IMAGE local-lvm

gm set $TEMPLATE ID --scsihw virtio-scsi-pci --scsi® local-
lvm:vm-${TEMPLATE ID}-disk-0

gm set $TEMPLATE ID --ide2 local-lvm:cloudinit

gm set $TEMPLATE ID --boot c --bootdisk scsi0

gm set $TEMPLATE ID --vga std

gm set $TEMPLATE ID --agent enabled=1

gm set $TEMPLATE ID --cicustom user=local:snippets/user-data.yml



gm template $TEMPLATE ID

echo "=== Modele $TEMPLATE ID créé avec succes ==="

Remarques :

* Le modele fournit un acces de secours : omnitouch / password (pour
I'acces console si cloud-init échoue)

e Lors du clonage via Ansible, les informations d'identification sont
remplacées par local users dans votre fichier hosts :
o Nom d'utilisateur : Clé du premier utilisateur de local users

o Mot de passe : Champ password du premier utilisateur (par défaut
'password' si non défini)

o Clé SSH : Champ public_key du premier utilisateur
* --vga std garantit que la console web Proxmox fonctionne

e Le drapeau -N sur wget ne télécharge gue si le fichier est plus récent que
la copie locale

Alternative : Modele manuel a partir d'un ISO

Si les images cloud ne sont pas disponibles ou si vous avez besoin d'une
installation personnalisée :

Etape 1 : Créer une VM via I'Ul Web

e Créer une nouvelle VM - ID VM 9000, Nom : ubuntu-2404-template
e OS : Télécharger I'ISO d'Ubuntu Server ou utiliser un ISO existant

e Systéme : Par défaut (Contréleur SCSI : VirtlO SCSI)

e Disques : 32 Go, Bus : SCSI

e CPU: 2 coeurs

e Mémoire : 2048 Mo

e Réseau : VirtlO, pont vmbr0

e Démarrer la VM et installer Ubuntu Server

Etape 2 : A l'intérieur de la VM - Nettoyer et préparer



# Installer cloud-init
sudo apt update
sudo apt install cloud-init gemu-guest-agent -y

# Nettoyer les données spécifiques a la machine
sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id
sudo rm -f /etc/ssh/ssh host *

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

# Effacer 1'historique bash et éteindre
history -c
sudo poweroff

Etape 3 : Ajouter Cloud-Init et convertir en modéle

e Sélectionner VM — Matériel - Ajouter - Disque CloudInit (sélectionner le
stockage par exemple, local-lvm)

e Cloud-Init = Utilisateur : omnitouch, Mot de passe : password
» Matériel -» Options - Agent invité QEMU — Activer

¢ Clic droit sur la VM = Convertir en modele

3. Télécharger le modele LXC (pour LXC
uniquement)

# Dans le shell du necud Proxmox :
pveam update
pveam download local ubuntu-24.04-standard 24.04-2 amd64.tar.zst



Configuration du fichier Hosts

Pour le déploiement de VM (proxmox.yml)

all:
vars:
proxmoxServers:

pve-node-01:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxRootPassword: YourPassword
proxmoxApiTokenName: ansible
proxmoxApiTokenSecret: "your-token-secret-uuid"
proxmoxTemplateName: ubuntu-2404-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve-node-01
storage: local-lvm # optionnel

pve-node-02:
# ... configuration du deuxieme neceud

# Informations d'identification utilisateur - le premier
utilisateur est utilisé pour cloud-init de la VM
local users:
admin user:
name: Admin User
public key: "ssh-rsa AAAA..."

password: "optional-password" # par défaut 'password' si

non défini

mme:
hosts:
site-mmeOl:
ansible host: 192.168.1.10
gateway: 192.168.1.1
vlanid: "100" # optionnel



Pour le déploiement de LXC (proxmox_Ixc.yml)

all:
vars:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # unique ou
liste

proxmoxApiTokenName: ansible

PROXMOX API TOKEN: "your-token-secret-uuid"

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-
standard 24.04-2 amd64.tar.zst'

proxmoxLxcCores: 2

proxmoxLxcMemoryMb: 4096

proxmoxLxcDiskSizeGb: 30

proxmoxLxcRootFsStorageName: local-lvm

mask cidr: 24

host vm network: vmbrO

# Informations d'identification utilisateur - le premier
utilisateur est utilisé pour l'acces initial a la VM/LXC
local users:
admin user:
name: Admin User
public key: "ssh-rsa AAAA..."
password: "optional-password" # par défaut 'password' si
non défini

apt cache servers:
hosts:
site-cache:
ansible host: 192.168.1.20
gateway: 192.168.1.1
vlanid: "100" # optionnel
proxmoxLxcDiskSizeGb: 120 # remplacement par hbéte



Utilisation

Déployer des VMs

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Déployer des conteneurs LXC

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox 1lxc.yml

Supprimer des VMs/LXCs

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox_delete.yml

Comportement

proxmox.yml

» \érifie si une VM avec le méme nom existe déja dans Proxmox
e Distribue les VMs sur les nceuds en utilisant un round-robin

e Clone a partir du modele

e Configure I'lP statique, les balises et cloud-init

o Définit les informations d'identification de l'utilisateur cloud-init a
partir de la premiere entrée local users

e Prend en charge le balisage VLAN

proxmox_Ixc.yml

» \érifie que le conteneur n'existe pas par nom ou IP



e Distribue les LXCs sur les nceuds en utilisant un round-robin
» Crée un conteneur avec une IP statique

e Crée automatiquement le premier compte local _users avec acces
sudo et clé SSH

» Configure netplan pour le réseau
e Démarre automatiguement les conteneurs

e Exclut les hotes UPF

proxmox_delete.yml

» Arréte et supprime la VM/LXC correspondant au nom d'héte de l'inventaire
» Recherche sur tous les nceuds configurés

e Force l'arrét apres 20 secondes

Distribution et balisage des
VM/LXC

Distribution Round-Robin

Les VMs et LXCs sont automatiquement distribués sur les nceuds Proxmox en
utilisant une logique de round-robin (modulo) :

Exemple avec 3 hyperviseurs et 5 MMEs :

mme@l - pve-node-01 (index 0 % 3 = 0)
mme02 - pve-node-02 (index 1 % 3 = 1)
mmeO3 - pve-node-03 (index 2 % 3 = 2)
mme04 - pve-node-01 (index 3 % 3 = 0)
mmeO5 - pve-node-02 (index 4 % 3 = 1)

Comment cela fonctionne :

1. Le playbook identifie le groupe de role de I'hbéte (par exemple, mme, sgw,
hss)

2. Calcule I'index de I'hote au sein de ce groupe (basé sur 0)



3. Utilise I'opération modulo : host index % number of nodes

4. Sélectionne I'hyperviseur en fonction du résultat

Configuration :

# Pour les VMs (proxmox.yml) - définir plusieurs serveurs

proxmoxServers:
pve-node-01: { ... }
pve-node-02: { ... }
pve-node-03: { ... }

# Pour les LXCs (proxmox lxc.yml) - lister plusieurs nceuds
proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

Balisage Automatique
Les VMs et LXCs sont automatiquement balisés avec :

* Noms de role/groupe : Tous les groupes Ansible auxquels appartient
I'hbte

* Nom du site : La variable site name

Exemple :

site name: "melbourne-prod"
mme :

hosts:
melbourne-mme@1: { ... }

Résultat : VM/LXC balisé avec : mme, melbourne-prod

Les balises sont visibles dans I'Ul Proxmox et utiles pour le
filtrage/l'organisation.



Remplacements par Hote

Remplacer les valeurs par défaut sur des hoétes spécifiques :

hosts:
high-spec-host:
ansible host: 192.168.1.50
gateway: 192.168.1.1
proxmoxLxcCores: 8 # remplacement des ceurs
proxmoxLxcMemoryMb: 16384 # remplacement de la mémoire
proxmoxLxcDiskSizeGb: 100 # remplacement du disque



Playbooks Utilitaires

Les playbooks utilitaires fournissent des outils opérationnels pour gérer

I'infrastructure OmniCore déployée. Ces playbooks se trouvent dans le
répertoire util playbooks/ et peuvent étre exécutés indépendamment pour

effectuer des taches courantes de maintenance et de dépannage.

Référence Rapide

Playbook

health check.yml

restore hss.yml

ip plan generator.yml

get ports.yml

getLocalCapture.yml

delete local user.yml

updateMtu.yml

systemctl status.yml

Objectif

Générer un rapport de santé complet pour tous
les services

Restaurer la base de données HSS et/ou la
configuration a partir d'une sauvegarde

Générer une documentation réseau avec des
diagrammes Mermaid

Auditer les ports ouverts et les services a
I'écoute sur tous les hétes

Récupérer les fichiers de capture de paguets des
hotes

Supprimer un compte utilisateur local de tous
les hotes

Définir le MTU a 9000 (trames jumbo) sur les
interfaces réseau

Vérifier |'état des services sur les composants
EPC



Vérification de la Santé

Fichier : util playbooks/health check.yml

Génere un rapport de santé HTML complet couvrant tous les services OmniCore
et OmniCall déployés.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Sortie : /tmp/health check YYYY-MM-DD HH:MM:SS.html

Informations Collectées

Composant Données Collectées
Tous les . _ . .
, Etat du service, version, temps de fonctionnement
services
, Etat de la base de données, connexions de pairs
OmniHSS )
Diameter
OmniDRA Connexions de pairs Diameter et état
, Appels actifs, sessions, enregistrements, utilisation du
OmniTAS
CPU
OCS Etat de la réplication KeyDB

Restauration HSS

Fichier : util playbooks/restore hss.yml

Restaure OmniHSS a partir de fichiers de sauvegarde. Prend en charge la
restauration uniqguement de la base de données, uniquement de la



configuration, ou les deux.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/restore hss.yml

Formats de Fichiers de Sauvegarde

Type Modele de Nom de Fichier Contenu

Dump MySQL

Base de : de la base de

, hss dump <hostname> <timestamp>.sql ,

données données
omnihss
Archive du

Configuration  hss_<hostname> <timestamp>.tar.gz répertoire
/etc/omnihss

Générateur de Plan IP

Fichier : util playbooks/ip plan generator.yml
Génere une documentation réseau a partir de l'inventaire, y compris :

e Attributions IP des hotes (NICs primaires et secondaires)
* Vue d'ensemble des segments réseau

» Diagrammes de connectivité des interfaces (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml



Fichiers de Sortie
Fichier

/tmp/ip plan <customer> <site>.md

/tmp/ip plan <customer> <site>.html

Audit des Ports

Fichier : util playbooks/get ports.yml

Format

Markdown

HTML

Description

Documentation
basée sur du texte

Diagramme
interactif avec des
couches filtrables

Audite tous les ports a I'écoute sur le déploiement et génere de la

documentation.

ansible-playbook -i hosts/customer/host files/production.yml

util playbooks/get ports.yml

Fichiers de Sortie

Fichier

Description

/tmp/all ports.csv  CSV avec nom d'héte, IP, protocole, port, service

Table reStructuredText pour la documentation

Jopen orts.rst
/open_p Sphinx



Données Collectées

Champ Description
Nom d'héte  Nom d'héte de l'inventaire
IP Adresse IP ansible host de I'h6te
Version IP IPv4 ou IPv6
Transport TCP ou UDP
Port Numeéro de port a I'écoute

Service Nom du processus

Récupération de Capture Locale

Fichier : util playbooks/getLocalCapture.yml

Récupere les deux fichiers de capture de paquets les plus récents du répertoire
/etc/localcapture de chaque hoéte.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Sortie : ./localCapturePcaps/<hostname>/*.pcap

Gestion des Utilisateurs

Fichier : util playbooks/delete local user.yml

Supprime un compte utilisateur local de tous les hotes de l'inventaire.



ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/delete local user.yml

Invite : Entrez le nom d'utilisateur a supprimer lorsqu'il est demandé.

Configuration MTU

Fichier : util playbooks/updateMtu.yml

Définit le MTU a 9000 (trames jumbo) sur l'interface ens160 de tous les hotes.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Remarque : Ce playbook est codé en dur pour l'interface ens160. Modifiez le
playbook si votre environnement utilise des noms d'interface différents.

Exécution des Playbooks Utilitaires

Syntaxe de Base

ansible-playbook -1i <inventory file> util playbooks/<playbook>.yml



Options Courantes

Option Description
-1 <inventory> Spécifier le fichier d'inventaire

--1limit <hosts> Limiter a des hbtes ou groupes spécifiques

-v /[ -vv /[ -vvv Augmenter la verbosité

- -check Exécution a blanc (afficher ce qui changerait)

--diff Afficher les différences de fichiers
Exemples

# Exécuter la vérification de santé en production
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/health check.yml

# Restaurer HSS sur un hote spécifique
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/restore hss.yml --limit hssO1

# Générer un plan IP avec une sortie verbeuse
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/ip plan generator.yml -v






