Introduction to Ansible
Deployment at
Omnitouch

Overview

Omnitouch Network Services uses Ansible as its infrastructure automation
platform to deploy complete cellular network solutions (4G/5G) in a consistent,
repeatable, and automated manner. This document provides an overview of
how we leverage Ansible to orchestrate complex telecom deployments.

What is Ansible?

Ansible is an open-source automation tool that allows you to:

Configure systems

Deploy software

Orchestrate complex workflows

Manage infrastructure as code

Ansible uses a declarative approach - you describe the desired state of your
systems, and Ansible ensures they reach that state.

How Omnitouch Uses Ansible

Ansible Control Node
SSH_— SSH- 55H ~~55H T _S5H
¥ L “' “' v

MME Servers HS5 Servers IM5 Servers Support Services Monitoring

Key Concepts

1. Inventory (Hosts Files)

Defines what systems to manage. Each customer deployment has a hosts file
that describes:

All virtual machines in the network

Their IP addresses

Network configuration

Service-specific parameters
Host files are what you will be working with to define your network.
See:

2. Roles

Defines how to configure each component. Roles are reusable units that
contain:

Tasks (steps to execute)

Templates (configuration file templates)

Handlers (actions triggered by changes)

Variables (default configuration values)

Example roles for OmniCore components: omnihss, omnisgwc, omnipgwc,
omnidra, etc

These are defined by the ONS team, while you can edit them, there's generally
cleaner ways to make any tweaks you might need from within your hosts file.

3. Playbooks

Orchestrates when and where roles are applied:

- name: Deploy EPC Core
hosts: mme
roles:
- common
- omnimme

We use these essentially as groups for the roles.

4. Group Variables

Provides customer-specific configuration that overrides role defaults. This is
where customer customization happens without modifying the base roles.

See:

Deployment Architecture

Hosts File \

Group Vars Ansible Playbook SSH to Hosts Configure Systems

- /

The Deployment Process

1. Define Infrastructure
Create a hosts file describing your network topology:

Planning Note: Before defining infrastructure, review the

Running Network

for guidance on network segmentation, IP address allocation, and subnet

organization.

Proxmox Users: If deploying on Proxmox, see
for automated VM/container provisioning.

See: and

mme :
hosts:
customer-mme01l:
ansible host: 10.10.1.15
mme code: 1

2. Customize Configuration

Set customer-specific variables in group vars:

plmn_id:
mcc: '001'
mnc: '01'

customer _name short: customer
#ToDo - Add link here to conifg reference for complete list

3. Run Playbooks

Deploy the network:

ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

4. Automated Deployment
Ansible will:

e Create/provision VMs (if using Proxmox/VMware integration)
e Configure networking

e Install software packages from APT cache

e Deploy application code

e Configure services with customer settings

e Start services

e Validate deployment

Key Components We Deploy

OmniCore (4G/5G Packet Core Platform)

¢ OmniHSS - Home Subscriber Server

OmniSGW - Serving Gateway (Control plane)

OmniPGW - Packet Gateway (Control plane)

OmniUPF - User Plane Function

OmniDRA - Diameter Routing Agent
OmniTWAG - Trusted WLAN Access Gateway

See:

OmnicCall (Voice & Messaging Platform)

* OmniCall CSCF - Call Session Control Function (P-CSCF, I-CSCF, S-CSCF)
e OmniTAS - IMS Application Server (VoLTE/VoNR services)

e OmniMessage - SMS Center (SMS-C)

e OmniMessage SMPP - SMPP protocol support

e OmniSS7 - SS7 signaling components (STP, HLR, CAMEL)

e VisualVoicemail - Voicemail functionality

See:

OmniCharge/OmniCRM

¢ CRM Platform - Customer relationship management, self-signup, billing

See:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Support Services

e DNS - Network DNS resolution
e License Server - License management

e Monitoring - Prometheus, Grafana

See:

Package Management

We use a hybrid package distribution model:

Pre-compiled APT Packages
All Omnitouch software is distributed as Debian packages (.deb files):

e Built from source in our CI/CD pipeline
e \ersioned and tested

e Hosted on package repositories

APT Cache System

Customers can choose between:

1. Local APT Cache - Mirror of required packages on-site for offline
deployment

2. Public Repository - Direct access to Omnitouch's hosted package
repository

See:

License Management

All Omnitouch software components require valid licenses managed through a
central license server:

e Components check license validity on startup
e Features are enabled/disabled based on license

e License server can be local or cloud-hosted

See:

Benefits of This Approach

Repeatability

The same Ansible playbooks can deploy:

Development labs

Testing environments

Production networks

Customer sites

Consistency

Every deployment uses the same tested configurations, reducing human error.

Version Control
Infrastructure is defined as code in Git:

e Track all changes
e Review before deployment
e Roll back if needed

Customization Without Complexity

Customers can customize their deployment through group vars without
modifying core roles.

Rapid Deployment

Deploy a complete cellular network in hours instead of days or weeks.

Getting Started

Prerequisites

Before running Ansible playbooks, you need to set up a Python virtual
environment and install the required dependencies.

1. Create a Python Virtual Environment

Create an isolated Python environment for the Ansible deployment:

python3 -m venv .venv

2. Activate the Virtual Environment

Activate the virtual environment:
source .venv/bin/activate

On Windows, use:
.venv\Scripts\activate

3. Install Required Packages

Install all dependencies from the requirements.txt file:
pip install -r requirements.txt

This will install Ansible and all necessary Python packages for Omnitouch
deployment automation.

Note: Keep the virtual environment activated whenever running Ansible
commands. You can deactivate it when finished by running deactivate.

Deployment Steps

1. Review the to understand how to define your
network

2. Learn about for customization

3. Understand the for package management

4. Review the to see how everything fits together

5. Deploy!

Next Steps

. - Plan your network architecture and IP
allocation

. - Learn how to define your network topology

. - Understand package distribution

. - Learn about license management

. - See the complete picture

. - Customize your deployment

. - Operational tools for health checks, backups, and

maintenance

APT Repository &
Package Distribution

Overview

The Omnitouch APT system provides package distribution for all deployments.

Two types of content are served:

1. APT Packages — Debian packages installed via apt install
2. Binary Releases — Pre-built binaries downloaded directly (Prometheus

exporters, agents, etc.)
Two deployment models are supported:

1. Direct Access — VMs pull packages directly from apt.omnitouch.com.au
2. Local Cache Mirror — A local server syncs from Omnitouch and serves
packages to VMs (for offline/airgapped deployments)

Architecture

Internet (Omnitouch

Infraj)
apt.omnitouch.com.au

Port B0

Sync All Content Packages + Releases Packages + Releases

Cached,';_"::l;'lire Direct Access
L Chorl o ®erm o L]
Local APT Cache ,
VM 1 VM 2 WM 3
Port 8080

Packages + Releases Packages + Releases Packages + Releases
r L3 v

VM 4 VM 5 VM &

Packages + Releases

Content Served

The APT server hosts all content required for deployments:

Content
Description Path
Type
Omnitouch Custom-built .deb packages . .
. . /dists/<distro>/
Packages (omnihss, omnimme, etc.)
Ubuntu Cached Ubuntu packages . _
. . /<distro>/pool/main/
Packages with all dependencies
, Pre-built binaries

GitHub

(Prometheus, Grafana, /releases/<org>/<repo>/
Releases

Homer, etc.)

Source archives for web
>ource (CGrateS_UlI /repos/

apps ;
Tarballs PP - >

speedtest)
Third-Party Galera, FRR, InfluxDB,

/releases/<vendor>/

Packages KeyDB, etc.

Configuration Variables

Two separate variable sets control package distribution. Understanding their
purposes is essential for correct configuration.

Variable Purposes

Variable Set

apt repo

remote apt *

Purpose

Configures

Used For

/etc/apt/sources.list and
/etc/apt/sources.list.d/*.list

APT package

sources
Configures

binary Downloading files from /releases/ path
download (Node Exporter, Zabbix, Nagios, etc.)
URLs

When Each Variable Set Is Used

Scenario

use apt cache:

true

use apt cache:

false

APT Sources
(apt_repo)

Uses
apt repo.apt _server

Uses apt repo.* with
credentials

Binary Downloads
(remote_apt_*)

Uses
apt _repo.apt _server

Uses remote apt * with
credentials

When use_apt_cache: false, both variable sets are required.

Option 1: Direct Access

For deployments with internet connectivity, VMs pull packages directly from the
Omnitouch APT server.

Network Requirements

Source IP Whitelisting: Your public IP address must be whitelisted on the
Omnitouch APT server. During setup, provide your source subnets to
Omnitouch. In return, you will receive:

e Username and password for HTTP Basic Auth
« FQDN for the APT server

Firewall Requirements: Outbound access to the following Omnitouch IP
ranges must be allowed:

Network Range

IPv4 144.79.167.0/24
IPv4 160.22.43.0/24
IPv6 2001:df3:decO::/48
ASN AS152894

Services requiring access to Omnitouch infrastructure:

Service Port Protocol Purpose

APT Server 80 TCP Package downloads

DNS resolution for
APT Server 53 TCP/UDP _
apt.omnitouch.com.au

License NTP time synchronization for license
123 UDP I

Server validation

License

53 TCP/UDP DNS resolution for license validation
Server

Ensure HTTP (TCP/80), NTP (UDP/123), and DNS (TCP+UDP/53) traffic is allowed
to the Omnitouch IP ranges.

Configuration

all:
vars:
use apt cache: false

APT package sources configuration
Configures /etc/apt/sources.list for apt install commands
apt repo:

apt server: "apt.omnitouch.com.au"

apt repo username: "your-username"

apt repo password: "your-password"

Binary downloads configuration

Used for downloading files from /releases/ path
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80

remote apt protocol: "http"

remote apt user: "your-username"
remote apt password: "your-password"

Parameters

APT Package Sources (apt_repo)

Parameter Type

apt repo.apt server String

apt repo.apt repo_username String

apt repo.apt repo password String

Binary Downloads (remote_apt_*)

Required

Yes

Yes

Yes

Default

Descriptio

APT server
hostname ¢
IP address

HTTP Basic
Auth
username
for APT
sources

HTTP Basic
Auth

password fc
APT source:

Parameter

remote apt server

remote apt port

remote apt protocol

remote apt user

remote apt password

General

Parameter Type

use apt cache Boolean

URL Patterns (Direct Access)

Type Required Default
String Yes -
Integer No 80
String No http
String Yes -

String Yes -
Required Default

Yes

Description

Server
hostname or IP
for binary
downloads

Server port for
binary
downloads

Protocol (http
or https)

HTTP Basic Auth
username for
downloads

HTTP Basic Auth

password for
downloads

Description

Must be false for
direct access

APT Package Sources (configured in /etc/apt/sources.list):

deb [trusted=yes] http://{apt repo username}:
{apt repo password}@{apt server}/ noble main

Binary Downloads (used by Ansible get url tasks):

http://{remote apt user}:
{remote apt password}@{remote apt server}:

{remote apt port}/releases/prometheus/node exporter/node exporter-
1.8.1.linux-amd64.tar.gz

How It Works

Configuration Variables
9 What They Configure

apt repo
(APT package sources)

L

/etc/apt/sources.list

remote apt * ‘ h‘ Binary downloads
(Binary downloads) ‘ " /releases/*

VMs authenticate with HTTP Basic Auth for both APT packages and binary
downloads. Ubuntu system packages are also served from the Omnitouch
server (pre-cached), so VMs do not need access to Ubuntu mirrors.

Option 2: Local Cache Mirror

For offline, airgapped, or bandwidth-constrained deployments, deploy a local
APT cache that syncs all content from Omnitouch.

Architecture

Initial Sync
(requires internet)

Configuration

Define the cache server in your hosts file with its repository configuration:

apt cache servers:
hosts:
customer-apt-cache:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:

remote apt server: "apt.omnitouch.com.au"
remote apt port:

remote apt protocol: "http"
remote apt user: "your-username"
remote apt password: "your-password"

all:
vars:

How it works:

e Cache server (192.168.1.100): Uses remote apt * credentials to sync
packages from apt.omnitouch.com.au:80

e All other hosts: Automatically derive apt repo.apt server:
“192.168.1.100" and pull from cache at port 8080 without credentials

Parameters

APT Package Sources (apt_repo)

Parameter Type Required Default Descrif

Local cache

IP. Automat
Auto- derived frot
derived apt _cache_

host if not

apt repo.apt server String Yes

specified.

Not require
apt repo.apt repo username String No - using cache
auth neede

Not require
apt repo.apt repo password String No - using cache
auth neede

Cache Server Sync (remote_apt_*)

These variables configure how the cache server syncs content from Omnitouch:

Description

Omnitouch APT
server to sync
from

Omnitouch APT
server port

Protocol for
sync connection

Credentials for
syncing from
Omnitouch

Credentials for

syncing from
Omnitouch

Description

Automatically set to

true when

apt cache servers

group exists

Port the local cache

Parameter Type Required Default
remote apt server String Yes -
remote apt port Integer No 80
remote apt protocol String No http
remote apt user String Yes -
remote apt password String Yes -

General
Parameter Type Required Default
use apt cache Boolean No true
apt cache port Integer No 8080

URL Patterns (Cache Mode)

server listens on

APT Package Sources (configured in /etc/apt/sources.list):

deb [trusted=yes] http://192.168.1.100:8080/noble noble main
Binary Downloads (used by Ansible get url tasks):

http://192.168.1.100:8080/releases/prometheus/node exporter/node expc
1.8.1.linux-amd64.tar.gz

No credentials required for cache access—it uses [trusted=yes] APT
configuration.

Deploying the Cache
1. Provision the cache server (VM or LXC container with 50+ GB disk)

2. Run the cache setup playbook:

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

3. Verify the cache by browsing to http://192.168.1.100:8080/

What Gets Synced

The cache mirror syncs all content from the Omnitouch APT server using
recursive wget download:

Content directories synced:

Path Content
/dists/<distro>/ APT repository metadata (Packages, Release files)
/pool/main/ Omnitouch custom .deb packages
/<distro>/pool/main/ Ubuntu packages and all dependencies

GitHub releases (Prometheus, Grafana, Zabbix,

/releases/
etc.)

/repos/ Source tarballs (Erlang, Elixir, CGrateS_Ul, etc.)

After initial sync, the cache can serve all packages without internet
connectivity.

How It Works

Customer Network

Serve Packages

- VM
(offline capable)
Omnitouch
L b s e e
ant.omnitouch.com.au Imitial Sync J APT Cache Mirror Serve Packages VM
pL- ' ’ {requires internet) (apt_cache_servers) (offline capable)
Serve Packages M

(offline capable)

The cache mirror uses wget --recursive with HTTP Basic Auth to download all
content from the Omnitouch APT server. Subsequent syncs only download
new/changed files (timestamping).

Automatic Configuration

When an apt cache servers group exists in your inventory, the system
automatically:

1. Sets use _apt cache: true for all hosts (unless explicitly overridden)

2. Derives apt repo.apt server from the first cache server's ansible host
IP

Minimal Configuration Example

apt _cache servers:
hosts:
apt-cache-01:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:

Cache server syncs content from Omnitouch repository
remote apt server: "apt.omnitouch.com.au"
remote apt user: "your-username"

remote apt password: "your-password"

What happens automatically:

» All hosts (except cache server) get use apt cache: true

e All hosts (except cache server) get apt repo.apt server:
"192.168.1.100"

e All hosts pull from http://192.168.1.100:8080/ without credentials

* Cache server syncs packages from http://your-username:your-
password@apt.omnitouch.com.au/

Override Automatic Behavior

To force direct access even with cache servers defined:

all:
vars:
use apt cache: false # Force direct access even with cache
servers defined

apt repo:
apt server: "apt.omnitouch.com.au"
apt _repo _username: "user"
apt repo password: "pass"

remote apt server: "apt.omnitouch.com.au"
remote apt user: "user"
remote apt password: "pass"

Configuration Summary

Scenario 1: Direct Access to APT Server (No
Cache)

All hosts pull packages directly from the APT repository server.

all:
vars:
use apt cache: false

APT package sources - used by all hosts
apt _repo:

apt server: "apt.omnitouch.com.au"

apt _repo_username: "user"

apt repo password: "pass"

Binary downloads - used by all hosts
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80

remote apt protocol: "http"
remote apt user: "user"
remote apt password: "pass"

Result: All hosts generate deb [trusted=yes]
http://user:pass@apt.omnitouch.com.au/ noble main

Scenario 2: APT Cache Server Defined in Hosts
File (Automatic)

Cache server is in your inventory and will be deployed/synced by Ansible.

apt cache servers:
hosts:
cache-server:
ansible host: 192.168.1.100
gateway: 192.168.1.1
vars:
Cache server syncs packages from authenticated repository
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "user"
remote apt password: "pass"

No configuration needed in all: vars:
Everything auto-derived from apt cache servers group

Result:

e Cache server: Syncs from http://user:pass@apt.omnitouch.com.au:80/

e All other hosts: Generate deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (no credentials)

Scenario 3: Remote APT Cache NOT in Hosts
File (Manual)

Cache server exists elsewhere and is already set up (not managed by your
Ansible).

all:
vars:
use apt cache: true

Point all hosts to the external cache server

apt repo:
apt _server: "192.168.1.100" # IP of external cache server
apt _repo port: 8080 # Cache typically runs on port
8080

No apt cache servers group needed
No remote apt * needed (cache is already set up externally)

Result: All hosts generate deb [trusted=yes]
http://192.168.1.100:8080/noble noble main (no credentials)

Complete Example

Here's a complete working example showing cache server configuration with
multiple application hosts:

APT Cache Server Group
apt cache servers:
hosts:
customer-apt-cache:
ansible host: 10.179.1.114
gateway: 10.179.1.1
host vm network: "vmbr@"
num cpus: 4
memory mb: 16384
proxmoxLxcDiskSizeGb: 120
vars:
Cache server syncs packages from authenticated repository
remote apt server: "apt.omnitouch.com.au"
remote apt port: 80
remote apt protocol: "http"
remote apt user: "customer-username"
remote apt password: "customer-secure-token"

Application Servers

hss:
hosts:
customer-hss01l:
ansible host: 10.179.2.140
gateway: 10.179.2.1
mme :
hosts:
customer-mme0Q1:
ansible host: 10.179.1.15
gateway: 10.179.1.1
dns:
hosts:

customer-dns01l:
ansible host: 10.179.2.177
gateway: 10.179.2.1

Global Configuration
all:
vars:
Auto-configuration (no manual config needed) :
- use apt cache: true (auto-enabled when apt cache servers
exists)

What happens during deployment:
1. Cache server (10.179.1.114):

o Uses remote apt * from its vars: section

o Downloads all packages from http://customer-username:customer -
secure-token@apt.omnitouch.com.au:80/

o Serves packages on port 8080 via nginx

2. Application hosts (customer-hss01, customer-mme0l, customer-dns01l):

o Auto-detect apt cache servers group exists
o Auto-set use apt cache: true
o Auto-derive apt repo.apt server: "10.179.1.114"

o Generate: deb [trusted=yes] http://10.179.1.114:8080/noble
noble main

o Pull all packages from cache server (no credentials required)

Updating the Cache

To sync new packages or updates:

ansible-playbook -i hosts/customer/production.yml
services/apt cache.yml

This incrementally syncs all content from the Omnitouch APT server:

New Omnitouch package versions

New Ubuntu packages and dependencies

New GitHub releases

Updated source tarballs

The sync uses wget --timestamping, so existing unchanged files are skipped,
making re-sync fast.

Note: The Omnitouch APT server (apt.omnitouch.com.au) is the single source
of truth for all packages. Run services/apt.yml on the apt server first to
build/update packages, then run services/apt cache.yml on cache mirrors to
sync.

Troubleshooting

APT Update Fails with 401 Unauthorized

Symptoms:

Failed to fetch
http://10.179.1.115:80/noble/dists/noble/main/binary-
amd64/Packages 401 Unauthorized

Possible causes:

e apt repo configuration defined in all: vars: instead of
apt_cache servers: vars:
e Hosts trying to access authenticated repository directly instead of cache
* Incorrect apt repo username or apt repo password
e Source IP not whitelisted on Omnitouch APT server

e Using cache credentials for direct access or vice versa

Resolution:

1. Check configuration scope: Ensure apt repo with credentials is defined
in apt_cache servers: vars:, NOT in all: vars:

2. Verify cache mode: When using cache, hosts should connect to cache
server (port 8080), not repository (port 80)

3. Check generated sources: On failing host, check
/etc/apt/sources.list.d/omnitouch.list

o Correct (cache mode): deb [trusted=yes]
http://10.179.1.114:8080/noble noble main

o Incorrect (has credentials in wrong place): deb [trusted=yes]
http://user:pass@l0.179.1.115:80/noble noble main

4. Verify credentials are correct for your deployment mode

5. Confirm your public IP is whitelisted with Omnitouch (if using direct access)
Binary Downloads Fail (Node Exporter, Zabbix,
etc.)

Symptoms: Ansible playbook fails downloading files from /releases/ path
Possible causes:

* remote apt * variables not configured
e Incorrect remote apt user or remote apt password

e Missing remote apt server when use apt cache: false
Resolution:

1. Ensure all remote apt * variables are defined
2. Verify credentials match those provided by Omnitouch

3. Check that remote apt server points to correct host

Cache Server Cannot Sync
Symptoms: Cache server playbook fails to download packages
Possible causes:

e Cache server has no internet access
* remote apt * credentials incorrect

e Firewall blocking outbound connections to Omnitouch
Resolution:

1. Verify cache server can reach apt.omnitouch.com.au on port 80

2. Check remote apt * credentials

3. Review firewall rules for outbound access

Related Documentation

. — Inventory and variable configuration
. — Complete parameter reference
. — Overall system architecture

. — Deploying cache server as LXC container

Configuration
Reference

Overview

This document provides a comprehensive reference for configuring OmniCore
deployments through hosts files. Configuration is primarily defined in host
inventory files with minimal group_vars overrides needed for modern
deployments.

For product-specific documentation, see:

¢ OmniCore:
¢« OmnicCall:

e OmniCharge:

Configuration Approach

Modern OmniCore deployments use a simplified configuration model:

) . Component)
Hosts File * Ansible Roles ")) 4 Deployed Services
Configuration

Key Principle: Most configuration is defined directly in the hosts file. Role
defaults handle the majority of settings, with group vars used only for specific
customizations.

Network Planning

Before configuring hosts, review the for guidance on:

¢ Network segmentation strategies

e |P address allocation

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

e Subnet organization
e Public IP handling

Common Host Parameters

#ToDo - Just say to check hosts-file-configuration.md for this

Service-Specific Flags

cdrs enabled: True # Enable CDR generation

in pool: False # Exclude from load balancing
pool

online charging enabled: False # Enable 0CS integration
recording: True # Enable call recording (AS)
populate crm: False # Populate CRM with initial data

Global Variables (all:vars)

The all:vars section contains deployment-wide settings. Modern deployments
use minimal global variables with most configuration in role defaults.

Essential Global Variables

Authentication & Access

ansible connection: ssh

ansible user: root

ansible password: password
ansible become password: password

Alternative: Use SSH keys instead of passwords:

ansible ssh private key file: '/path/to/key.pem’

Customer Identity

customer name short: omnitouch
customer_legal name: "YKTN Lab"
site name: YKTN

region: AU

TZ: Australia/Melbourne

PLMN Configuration

plmn_id:
mcc: '001' # Mobile Country Code (3 digits)
mnc: '0O1°

Mobile Network Code (2-3 digits)

mnc_longform: '001' # Zero-padded MNC (always 3 digits)

diameter realm: epc.mnc{{ plmn id.mnc longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

Purpose: Uniquely identifies your mobile network. Used for Diameter realm
construction.

Network Names

network name short: Omni
network name long: Omnitouch

tac list: [10100,100]

Default TAC list (can override
per-MME)

Displayed: Network names shown on UE devices in Settings > Mobile Network.

DNS Configuration

netplan DNS: False

Use systemd-resolved instead of
netplan DNS

APT Repository Configuration

Automatic Defaults: When an apt _cache servers group is defined with
hosts:

* use apt cache automatically defaults to True (unless explicitly set to
False)

e apt repo.apt server automatically defaults to the first cache server's IP

Manual configuration (optional if apt cache servers group
exists)

use apt cache: True # Use local APT cache vs direct
repo access

apt_repo:
apt server: "10.10.1.114" # APT cache server or repo server
Credentials only needed when use apt cache: False
apt repo username: "omni"
apt repo password: "omni"

Binary downloads and cache sync configuration

Used for: (1) downloading binaries from /releases/ when
use apt cache: false

(2) cache server syncing from Omnitouch when
use apt cache: true

remote apt server: "apt.omnitouch.com.au"
remote apt user: "omni"

remote apt password: "omni"

See: APT Cache System

License Server

license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

See: License Server

MME Settings

mme_dns: False

SAEGW Settings

mtu: 1400

IMS Settings

ims dra support: False
enable homer: False

RAN Monitor Configuration

Enable MME DNS resolution

Maximum Transmission Unit

Route IMS through DRA
Enable Homer SIP capture

use nokia monitor: True
use casa monitor: True
install influxdb: True

influxdb user: monitor

influxdb password: "secure-password"
influxdb organisation name: omnitouch
influxdb nokia bucket name: nokia-monitor
influxdb casa bucket name: casa-monitor
influxdb operator token: "generated-token"
influxdb url: http://127.0.0.1:8086

enable pm collection: False
enable alarm collection: False

enable location collection: False

enable ran status collection: True
enable nokia rectifier collection: False
collection interval in seconds: 120

ran_monitor:
sql:

user: ran_monitor

password: "secure-password"

database host: 127.0.0.1
database name: ran monitor
influxdb:

address: 10.10.2.135

port: 8086

nokia:

airscales:

- address: 10.7.15.66
name: site-Lab-Airscale
port: 8080
web password: nemuuser
web username: Nemuadmin

Firewall Configuration

firewall:
allowed ssh subnets:
'10.0.1.0/24'
- '10.0.0.0/24'
allowed ue voice subnets:
- '10.0.1.0/24'
allowed carrier voice subnets:
- '10.0.1.0/24"
allowed signaling subnets:
- '10.0.1.0/24'

Roaming DNS Servers

roaming _dns_servers:
wildcard: ['10.0.99.1']
Carrier-specific DNS (PLMN-based)

123456: # Example Carrier 1
- '10.10.2.197'

654321: # Example Carrier 2
- '10.10.0.4"'

Local Users (SSH Keys)

local users:
usera:
name: Example User A
public key: "ssh-rsa AAAAB3Nza..."
userb:
name: Example User B
public key: "ssh-ed25519 AAAAC3..."

Hypervisor Configuration

Proxmox

proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100
proxmoxServerPort: 8006
proxmoxRootPassword: password
proxmoxApiTokenName: AnsibleToken
proxmoxApiTokenSecret: "token-secret"
proxmoxTemplateName: ubuntu-24.04-cloud-init-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve0l

Default Proxmox settings

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve0@l’

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard 24.04-
2 amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD RAIDO
proxmoxLxcBridgeName: vmbroO

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"
proxmoxStorage: SSD RAIDO

vLabNetmask: 24

PROXMOX API TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask cidr: 24

VMware vCenter

vcenter ip: "vcenter.example.com"

vcenter username: "administrator@vsphere.local"
vcenter password: "password"

vcenter datacenter: "DC1"

vcenter vm_ template: ubuntu-24.04-model
vcenter vm disk size: 50

vcenter folder: "Omnicore"

host vm network: "Management"

vhosts:
"10.0.0.23":
vcenter cluster ip: 10.0.0.23

vcenter datastore: "datastorel (3)"

netmask: 255.255.255.0

Related Documentation

. - Network architecture and IP allocation guidelines
. - How to structure hosts files

. - When and how to use group_vars

. - Secondary IPs and multi-NIC setup

. - How components interact

. - Package management

. - License configuration

Product Documentation

For detailed operational guides and advanced configuration:

e OmniCore Components:

https://docs.omnitouch.com.au/docs/repos/OmniCore

e OmniCall Components:

e OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Deployment
Architecture Overview

Overview

This document provides a complete view of how Omnitouch Network Services'
cellular network software is deployed using Ansible, showing how all
components fit together to create a working 4G/5G network.

See the for detailed component placement, IP address
assighment guidelines, and public IP handling.

Complete Deployment Example

0. Infrastructure Provisioning (Optional)

For Proxmox deployments, provision VMs/LXCs before configuration:

Deploy VMs on Proxmox
ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Or deploy LXC containers (lab/test only)

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox 1lxc.yml

See:

1. Infrastructure Definition (Hosts File)

Define what to deploy and where

mme :
hosts:
customer-mme01:
ansible host: 10.10.1.15
hss:
hosts:
customer-hssOl:
ansible host: 10.10.2.140
... all other components
See:

2. Customization (group vars)

The group vars folder is where we can store any config overrides needed at a
host, site or network level.

For example you'd have a folder with your OmniMessage SMSc config, the SIP
trunks your TAS connects to would live here, all your Diameter Routing logic,
etc, etc.

See:

3. Package Distribution (APT Cache)

Configure where to get packages
apt_repo:

apt _server: "10.254.10.223" # Cache server IP or direct repo
server
use apt cache: false # true = use local cache, false = direct
repo access

See:

4. License Configuration

Point components to license server
license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

See:

5. Execute Deployment

Individual components can be deployed by running services/twag.yml for
example, but the services/all.yml will handle everything, and you can use -
-limit=myhost or --limit=mmee, sgw, etc, to limit the hosts we're working on.

Deploy complete network
ansible-playbook -i hosts/customer/host files/production.yml
services/all.yml

Or deploy specific components

ansible-playbook -i hosts/customer/host files/production.yml
services/epc.yml

ansible-playbook -i hosts/customer/host files/production.yml
services/ims.yml

Related Documentation

. - Getting started

. - Defining infrastructure

. - Network architecture and IP allocation
. - Customization

. - Package management

. - License management

Product Documentation

For detailed information on configuring each component:

OmniCore (4G/5G Packet Core):

o OmniHSS, OMmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voice & Messaging):

o OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Billing):

Main Documentation:

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Group Variables
Configuration

Overview

The group vars directory is where you store custom configuration files that
override default templates.

This is where your customer-specific configurations live - SIP trunks, Diameter
routing rules, SMS routing logic, dialplans, and any other customizations where
you don't want the default config - It lives in group vars.

Location: hosts/{Customer}/group vars/

How It Works

Ansible roles have default configuration templates. To customize for a specific
deployment, place your custom files in group vars and reference them in your
hosts file.

Role Default Template - group vars Override (if specified) -
Deployed Config

Example 1: Custom Configuration
Template (OmniMessage)

Some components accept custom Jinja2 configuration templates.

File Structure

hosts/Customer/
L— group vars/
L— smsc_controller.exs

Reference in Hosts File

omnimessage:
hosts:
customer-smsc-controller0l:
ansible host: 10.10.3.219
gateway: 10.10.3.1
host vm network: "vmbr3"

Your custom config template

smsc_template config: smsc_controller.exs # Reference your

template filename in group vars

What happens:

1. Ansible finds smsc template config: smsc controller.exs

2. Looks in hosts/Customer/group vars/smsc controller.exs

3. Templates it with Jinja2 (can use {{ inventory hostname }}, {{

plmn id.mcc }}, etc.)

4. Deploys to /etc/omnimessage/runtime.exs

5. Restarts the service

Without smsc_template config, the default template from the role is used.

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCall

Example 2: Configuration File
Collections (OmniTAS Gateways &

Dialplans)

Some components use directories of configuration files.

File Structure

hosts/Customer/
L— group vars/
— gateways prod/
| }— gateway carrierl.xml
| — gateway carrier2.xml
| L— gateway emergency.xml
— gateways lab/
| L— gateway test.xml
L— dialplan/
— mo_dialplan.xml
— mt_dialplan.xml
L— emergency.xml

Reference in Hosts File

applicationserver:
hosts:
customer-tasOl:
ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"

SIP gateway configs

Lab gateways

Call routing rules
Mobile Originated (outgoing)
Mobile Terminated (incoming)

gateways folder: "gateways prod" # Reference your gateway

folder to use on this host

What happens:

1. Ansible finds gateways folder: "gateways prod"

2. Copies all files from hosts/Customer/group vars/gateways prod/ to
/etc/freeswitch/sip profiles/

3. Copies all files from hosts/Customer/group vars/dialplan/ to OmniTAS
templates directory

4. Services load the configurations

Different environments: Use different folders per environment:

e gateways folder: "gateways lab"
* gateways folder: "gateways prod"

* gateways folder: "gateways customer specific"

Configuration details: See

Example 3: Custom Configuration
Template (OmniHSS)

The Home Subscriber Server accepts custom runtime configuration templates.

File Structure

hosts/Customer/
L— group vars/
L— hss runtime.exs.j2 # Your custom HSS config

template

https://docs.omnitouch.com.au/docs/repos/OmniCall

Reference in Hosts File

omnihss:
hosts:
customer-hss01:
ansible host: 10.10.3.50
gateway: 10.10.3.1
host vm network: "vmbr3"
hss template config: hss_runtime.exs.j2

What happens:

1. Ansible finds hss template config: hss runtime.exs.j2

2. Looks in hosts/Customer/group vars/hss runtime.exs.j2

3. Templates it with Jinja2 (can use {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Deploys to /etc/omnihss/runtime.exs

5. Restarts the service

Without hss template config, the default template from the role is used.

Configuration details: See

Example 4: Custom Configuration
Template (OmniMME)

The Mobility Management Entity accepts custom runtime configuration
templates.

https://docs.omnitouch.com.au/docs/repos/OmniCore

File Structure

hosts/Customer/
L— group vars/

L— mme runtime.exs.j2 # Your custom MME config
template

Reference in Hosts File

omnimme:
hosts:
customer-mmeQ1l:
ansible host: 10.10.3.51
gateway: 10.10.3.1
host vm network: "vmbr3"

mme_ template config: mme_runtime.exs.j2 # Reference your
template filename in group vars

What happens:

1. Ansible finds mme_template config: mme runtime.exs.j2
2. Looks in hosts/Customer/group vars/mme runtime.exs.j2

3. Templates it with Jinja2 (can use {{ inventory hostname }}, {{
plmn id.mcc }}, etc.)

4. Deploys to /etc/omnimme/runtime.exs

5. Restarts the service
Without mme template config, the default template from the role is used.

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCore

Real-World Directory Structure

Example

hosts/Customer/
— host files/
| L— production.yml #
files
L— group vars/
— smsc_controller.exs
— smsc smpp.exs
— tas runtime.exs
F— hss_runtime.exs
— mme runtime.exs.j2
— dra runtime.exs.j2
— pgwc runtime.exs.j2
— dea runtime.exs.j2
— upf_config.yaml
F— crm config.yaml
— stp.j2
— hir.j2
— camel.j2
— ipsmgw.j2
— omnicore smsc ims.yaml.j
— pytap.yaml
— sip profiles/
| L— gateway otw.xml
L— dialplan/
— mo_dialplan.xml
— mt_dialplan.xml
L— mo_emergency.xml

.j2
.j2

HOHEN H OH OH OHHEHE R R OH WK W W W R

H oW B

Hosts file references group vars

OmniMessage custom template
OmniMessage SMPP custom template
TAS custom template

HSS custom template

MME custom template

DRA custom template

PGW custom template

DEA custom template

UPF configuration

CRM configuration

SS7 STP template

SS7 HLR template

SS7 CAMEL template

IP-SM-GW template

SMSC IMS config

TAP3 configuration

SIP gateways (folder)

Call routing rules (folder)
Mobile Originated
Mobile Terminated
Emergency routing

Common Parameters That

Reference group vars

Parameter Component References

Jinja2 template file
smsc_template config omnimessage (e.q.,

smsc_controller.exs

. _ Jinja2 template file
smsc_smpp_template config omnimessage_smpp
- - - (e.g., smsc_smpp.exs)

Folder name (e.qg.,

gateways folder applicationserver : ,
sip profiles)

dialplan/ folder of

Dialplans (automatic) applicationserver ,
routing XMLs

Jinja2 template file
tas template config applicationserver (e.qg.,
tas runtime.exs.j2)

Jinja2 template file
hss template config omnihss (e.q.,
hss runtime.exs.j2)

Jinja2 template file
mme_template config omnimme (e.g.,

mme_runtime.exs.j2)

Jinja2 template file
dra template config dra (e.qg.,
dra runtime.exs.j2)

Jinja2 template file
pgwc_template config pgwc (e.q.,
pgwc runtime.exs.j2)

Parameter Component References

Jinja2 template file

frr template confi omniupf
e - s > (e.g., frr.conf.j2)
Jinja2 template files
SS7 templates ss7 (various roles) (e.g., stp.j2, hlr.j2,
camel.j2)
Direct config files
, _ (e.qg.,
Config YAMLs Various components

upf config.yaml,
crm _config.yaml)

Key Points

1. group_vars holds customizations - Overrides for default configurations

2. Reference by name - Use parameters like smsc template config or
gateways folder

3. Templates support Jinja2 - Access any Ansible variable with {{
variable name }}

4. Folders deploy everything - All files in referenced folders are copied

5. Version control everything - Commit all group_vars to Git

When to Use group vars

[0 Use group_vars for:

e Custom component configuration templates
e SIP gateway definitions

e Call routing dialplans

e Diameter routing rules

e Customer-specific settings that override defaults

[0 Don't use group_vars for:

e Basic host configuration (IPs, hostnames) - Use hosts file
¢ One-off testing - Use host-specific vars in hosts file

e Temporary changes - Edit on target, commit to group_vars if permanent

Related Documentation

. - All host parameters and what they do

. - How to structure hosts files

OmniCall Configuration:
- What goes in the
config files

OmniCore Configuration:
- Component
configuration details

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Utility Playbooks

Overview

This repository includes several utility playbooks for maintenance, monitoring,
and operational tasks. These complement the main deployment playbooks with
day-to-day management capabilities.

Health Check Utility

The Health Check utility generates an HTML report showing system health,
service status, uptime, and version information across all OmniCore
components.

Runs automatically as part of services/all.yml playbook.

Usage
Manual Run

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Output
Report is generated at /tmp/health check YYYY-MM-DD HH:MM:SS.html

Open in any web browser to view.

Report Contents

The HTML report displays:

Host Information

* Host name and IP address

e Network/Subnet (from host vm network variable, or N/A if not set)
 CPU (vCPU count)

e RAM (total and free memory)

e Disk (root partition total and free space with percentage)

e OS (distribution and version)

Service Status

e Service status (active/inactive with color indicators)
e Uptime

e Version/release information

HSS Diameter Peers

 Database connection status (connected/disconnected)
e Diameter peer connections (IP, origin host, status)
e Fetched from HSS metrics endpoint (port 9568)

Other Common Utilities

Base System Configuration

Common Role (services/common.yml)

Applies base system configuration to all hosts

Sets up repositories, SSH keys, timezone, NTP

Configures networking and system hardening

Run this before deploying services

ansible-playbook -1i hosts/customer/host files/production.yml
services/common.yml

Setup Users (services/setup users.yml)

e Creates and configures user accounts across all hosts
¢ Manages SSH keys and sudo privileges

e Ensures consistent user setup

ansible-playbook -i hosts/customer/host files/production.yml
services/setup users.yml

Reboot (services/reboot.yml)

e Gracefully reboots all targeted hosts

e Waits for systems to come back online (5 minute timeout)

e Useful after kernel updates or configuration changes

ansible-playbook -1i hosts/customer/host files/production.yml
services/reboot.yml

Operational Utilities

IP Plan Generator (util playbooks/ip plan generator.yml)

e Generates HTML report of IP address assignments
e Shows complete network topology from hosts file

e Useful for documentation and troubleshooting

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml

HSS Backup (util playbooks/hss backup.yml)

e Backs up HSS database tables
e Copies MySQL dump to local Ansible machine

e Interactive prompts for backup path

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/hss backup.yml

Get Local Capture (util playbooks/getLocalCapture.yml)

e Fetches the two most recent packet capture files from all hosts
e Retrieves pcap files from /etc/localcapture/

e Useful for debugging connectivity issues

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Update MTU (util playbooks/updateMtu.yml)

e Updates network interface MTU settings
e Applies changes via netplan

e Useful for jumbo frame configuration

ansible-playbook -1i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Related Documentation

. - Overview and getting started

. - Running playbooks
. - Configure your inventory

. - Complete system overview

. - Package management

Hosts File
Configuration

Overview

The hosts file (also called inventory file) is the central configuration document
that defines your entire cellular network deployment. It specifies:

What network functions to deploy

Where they run (IP addresses, network segments)

How they're configured (service-specific parameters)

Customer-specific settings (PLMN, credentials, features)

File Location

Hosts files are organized by customer and environment:

services/hosts/
L— Customer Name/
L— host files/
— production.yml
— staging.yml
L— lab.yml

Example Hosts File Structure

Here's a simplified example showing the key sections:

EPC Components

mme :
hosts:
customer-mme0@1:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme code: 1
network name short: Customer
tac list: [600, 601, 602]
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
cdrs _enabled: true
pgwc:
hosts:

customer-pgw01l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
ip pools:
- '100.64.16.0/24"

IMS Components
pcscft:
hosts:
customer-pcscf0l:
ansible host: 10.10.4.165

Support Services
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150

Global Variables
all:
vars:
ansible connection: ssh
ansible password: password

customer name short: customer

plmn_id:
mcc: '001'
mnc: '01'

Common Host Parameters

Network Configuration

Every host typically includes:

pcscft:
hosts:
customer-pcscfOl:
ansible host: 10.10.1.15 # IP address for SSH access
gateway: 10.10.1.1 # Default gateway
host vm network: "vmbrl" # name of NIC to use on
Hypervisor

Note: For guidance on IP address planning and network segmentation
strategies, see the which outlines the recommended four-
subnet architecture for OmniCore deployments.

Proxmox Users: The host vm network parameter specifies which bridge to
use. See for automated provisioning.

VM Resource Allocation

For services needing specific resources:

num cpus: 4 # CPU cores
memory mb: 8192 # RAM in megabytes
proxmoxLxcDiskSizeGb: 50 # Disk size in GB

Service-Specific Parameters

Each network function has its own parameters. Examples:

MME:
mme code: 1 # MME identifier (1-255)
mme gid: 1 # MME Group ID

network name short: Customer # Network name (shown on phones)
network name long: Customer Network

tac list: [600, 601, 602] # Tracking Area Codes
PGW:
ip pools: # IP pools for subscribers

- '100.64.16.0/24"
- '100.64.17.0/24"
combined CP UP: false # Separate control/user plane

For detailed explanation of what each variable controls, see:

Application Server:

online charging enabled: true # Enable 0CS integration
tas branch: "main" # Software branch to deploy
gateways folder: "gateways prod" # SIP gateway configuration

Global Variables Section

The all:vars section contains settings that apply to the entire deployment:

all:
vars:
Authentication
ansible connection: ssh
ansible password: password
ansible become password: password

Customer Identity
customer name short: customer
customer legal name: "Customer Inc."
site name: "Chicago DC1l"

region: US

PLMN (Mobile Network) Identifier

plmn_id:
mcc: '001' # Mobile Country Code
mnc: '0O1' # Mobile Network Code
mnc_longform: '001' # Zero-padded MNC

Network Names
network name short: Customer
network name long: Customer Network

APT Repository
Note: If apt cache servers group is defined with hosts,
use apt cache defaults to true and apt repo.apt server
defaults to the first cache server's IP automatically
apt_repo:

apt _server: "10.254.10.223"

apt repo username: "customer"

apt repo password: "secure-password"
use apt cache: false

Timezone
TZ: America/Chicago

Understanding Host Groups

Ansible organizes hosts into groups that correspond to roles:

Hosts Fle

mimia group SgQW group hss group pcscf group
L L] L l l
customer-mmell customer-mmel2 customer-sgwil customer-hss0l customer-pcscfill

When you run a playbook targeting mme, it applies to all hosts in the
mme:hosts: section.

Configuration with Jinja2 Templates

Ansible uses Jinja2 templating to generate configuration files from the
variables defined in your hosts file and group_vars.

How Jinja2 Works

S I
-/

Example Template Usage

Hosts file defines:

plmn_id:
mcc: '001'
mnc: '01'

customer name short: acme

Jinja2 template (in role):

mme config.yml.j2
network:
plmn:
mcc: {{ plmn_id.mcc }}
mnc: {{ plmn_id.mnc }}
operator: {{ customer name short }}
realm: epc.mnc{{ plmn_id.mnc longform }}.mcc{{ plmn_id.mcc
}}.3gppnetwork.org

Generated configuration file:

network:

plmn:
mcc: 001
mnc: 01

operator: acme
realm: epc.mnc00l.mccOOl1.3gppnetwork.org

Common Jinja2 Patterns

Accessing nested variables:

{{ plmn_id.mcc }}
{{ apt _repo.apt server }}

Conditional logic:

% if online charging enabled %}
charging:
enabled: true
ocs ip: {{ ocs ip }}
% endif %}

Loops:

tracking areas:
{% for tac in tac list %}

- {{ tac }}

% endfor %}
Formatting:

Zero-pad to 3 digits
mnc{{ '%03d' | format(plmn id.mnc|int) }}

Overriding Variables with
group_vars

While the hosts file defines infrastructure and host-specific settings,
group vars can override defaults for groups of hosts.

See:

Complete Example Hosts File

Here's a more complete example (with sensitive data obscured):

EPC Core

mme :
hosts:
customer-mme01:
ansible host: 10.10.1.15
gateway: 10.10.1.1
host vm network: "vmbrl"
mme_code: 1
mme gid: 1
network name short: Customer
network name long: Customer Network
tac_list: [600, 601, 602, 603]
omnimme:
sgw selection method: "random peer"
pgw selection method: "random peer"
sgw:
hosts:
customer-sgw0l:
ansible host: 10.10.1.25
gateway: 10.10.1.1
host vm network: "vmbrl"
cdrs enabled: true
pgwc:
hosts:
customer-pgw0l:
ansible host: 10.10.1.21
gateway: 10.10.1.1
host vm network: "vmbrl"
ip pools:
- '100.64.16.0/24'
combined CP_UP: false
hss:
hosts:
customer-hss01:
ansible host: 10.10.2.140
gateway: 10.10.2.1
host vm network: "vmbr2"
IMS Core

pcscft:

hosts:
customer-pcscfOl:
ansible host: 10.10.4.165
gateway: 10.10.4.1
host vm network: "vmbr4"

icscf:
hosts:
customer-icscf0l:
ansible host: 10.10.3.55
gateway: 10.10.3.1
host vm network: "vmbr3"

scscf:
hosts:
customer-scscfOl:
ansible host: 10.10.3.45
gateway: 10.10.3.1
host vm network: "vmbr3"

applicationserver:
hosts:
customer-as01l:

ansible host: 10.10.3.60
gateway: 10.10.3.1
host vm network: "vmbr3"
online charging enabled: false
gateways folder: "gateways prod"

Support Services
license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

monitoring:
hosts:
customer-oam0l:
ansible host: 10.10.2.135
gateway: 10.10.2.1
host vm network: "vmbr2"
num cpus: 4

memory mb: 8192

dns:
hosts:
customer-dns01l:
ansible host: 10.10.2.177
gateway: 10.10.2.1
host vm network: "vmbr2"

Global Variables
all:
vars:
ansible connection: ssh
ansible password: password
ansible become password: password

customer name short: customer

customer legal name: "Customer Network Inc."
site name: "Primary DC"

region: US

TZ: America/Chicago

PLMN Configuration

plmn id:
mcc: '001'
mnc: '01'

mnc_longform: '001'
diameter realm: epc.mnc{{ plmn _id.mnc longform }}.mcc{{
plmn_id.mcc }}.3gppnetwork.org

Network Names

network name short: Customer
network name long: Customer Network
tac list: [600, 601]

APT Configuration
apt _repo:

apt _server: "10.254.10.223"

apt repo username: "customer"

apt _repo password: "secure-password"
use apt cache: false

Charging Configuration
charging:

data:
online charging:
enabled: false
voice:
online charging:
enabled: true
domain: "mnc{{ plmn_id.mnc longform }}.mcc{{ plmn_id.mcc
}}.3gppnetwork.org"

Firewall Rules
firewall:
allowed ssh subnets:
- '10.0.0.0/8"
- '192.168.0.0/16"
allowed ue voice subnets:
- '10.0.0.0/8"
allowed signaling subnets:
- '10.0.0.0/8'

Hypervisor Configuration (Proxmox example)
proxmoxServers:
customer-prxmx01:

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxApiTokenName: Customer

proxmoxApiTokenSecret: "token-secret"

proxmoxTemplateName: ubuntu-24.04-cloud-init-template

proxmoxNodeName: pve0l

See for complete Proxmox setup and
configuration details.

Product Documentation References

For detailed configuration of each component, refer to the official product
documentation:

OmniCore Components:

¢ OmniCore Documentation:

https://docs.omnitouch.com.au/docs/repos/OmniCore

e OmniHSS - Home Subscriber Server

e OmniSGW - Serving Gateway (Control plane)
e OmniPGW - Packet Gateway (Control plane)
e OmniUPF - User Plane Function

¢ OmniDRA - Diameter Routing Agent

e OMnIiTWAG - Trusted WLAN Access Gateway

OmniCall Components:

¢ OmniCall Documentation:

e OmniTAS - IMS Application Server (VoLTE/VoNR)
e OmniCall CSCF - Call Session Control Functions
e OmniMessage - SMS Center

¢ OmniMessage SMPP - SMPP Protocol Support
e OmniSS7 - SS7 Signaling Stack

¢ VisualVoicemail - Voicemail
OmniCharge/OmniCRM:

¢ OmniCharge Documentation:

Related Documentation

. - Overall deployment process

. - Complete guide to all configuration
variables

. - Overriding default configurations

. - Network architecture and IP allocation
guidelines

. - Secondary IPs and advanced network

configuration
. - Package distribution

. - License management

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

- Complete system view

Next Steps

T

. Create your hosts file based on this template
. Define your PLMN and network identity

. Configure APT repository access

Set up license server
Customize with as needed

Deploy with Ansible playbooks

OmniCore IP Planning
Standard

Overview

This document outlines the standard IP planning approach for OmniCore
deployments. The architecture requires four internal subnets to properly
segment network functions for security, performance, and operational clarity.

IP Allocation Requirements

Standard Allocation: Four /24 Subnets

Each OmniCore deployment requires four distinct subnets for internal
networking:

1. Packet Core Network - First /24
2. Signaling Network - Second /24
3. IMS Internal Network - Third /24
4. UE Public Network - Fourth /24

Important: These are Recommendations, Not
Requirements

The subnet allocation described in this document is a recommended best
practice for organizing OmniCore deployments. However, the architecture is
completely flexible:

e All hosts in one subnet: You can place all components in a single subnet
if that suits your deployment needs

e Each host type in its own subnet: You can create separate subnets for
each component type (one for MMEs, one for HSS, etc.)

e Custom groupings: You can organize hosts into any subnet structure that
makes sense for your specific requirements

¢ Mix internal and public IPs: Some hosts can use internal (RFC 1918)
addresses while others use public IPs, all within the same deployment

The recommended four-subnet approach provides optimal security isolation,
traffic management, and operational clarity, which is why we suggest it
for production deployments. However, you should adapt the IP plan to fit your
specific network topology, available address space, and operational
requirements.

Network Segment Breakdown

1. Packet Core Network (First /24)

Purpose: User plane and core control plane elements
Components:

e OmniMME (Mobility Management Entity)

e OmniSGW (Serving Gateway)

e OmniPGW-C (PDN Gateway Control Plane)

e OmniUPF/PGW-U (User Plane Function / PDN Gateway User Plane)

Example: 10.179.1.0/24

mme:
hosts:
omni-site-mme0@1:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

2. Signaling Network (Second /24)

Purpose: Diameter signaling, policy, charging, and management functions
Components:

e OmniHSS (Home Subscriber Server)

e OmniCharge OCS (Online Charging System)

¢ OminiHSS PCRF (Policy and Charging Rules Function)
e OmniDRA DRA (Diameter Routing Agent)

e DNS Servers

e TAP3/CDR Servers

e Monitoring/OAM

e SIP capture

e License Server

e RAN Monitor

e Omnitouch Warning Link CBC (Cell Broadcast Center) - if deployed
e APT Cache Servers - if deployed

Example: 10.179.2.0/24

hss:
hosts:
omni-site-hss01:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"

3. IMS Internal Network (Third /24)

Purpose: IMS core signaling and services (internal SIP signaling)
Components:

e OmniCSCF S-CSCF (Serving Call Session Control Function)

e OmniCSCF I-CSCF (Interrogating Call Session Control Function)
e OmniTAS (Telephony Application Server / Application Server)

¢ OmniMessage (SMS Controller, SMPP, IMS)

e OmniSS7 STP (SS7 Signaling Transfer Point)

e OmniSS7 HLR (Home Location Register) - for 2G/3G

e OmniSS7 IP-SM-GW (MAP SMSc)

e OmniSS7 CAMEL Gateway

Example: 10.179.3.0/24

scscft:
hosts:
omni-site-scscfOl:
ansible host: 10.179.3.45
gateway: 10.179.3.1
host vm network: "vmbr3"

4. UE Public Network (Fourth /24)

Purpose: User-facing services such as IMS and DNS

Components:

OmniCSCF P-CSCF (Proxy Call Session Control Function)
XCAP Servers
Visual Voicemail Servers

Customer DNS

Example: 10.179.4.0/24

pcscf:
hosts:
omni-site-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Implementation Methods

OmniCore supports two primary methods for implementing this network

segmentation:

Method 1: Physical/Virtual Network Interfaces
(Recommended for Production)

Use separate NICs or virtual bridges for each network segment. This provides
the strongest isolation and is the recommended approach for production
deployments.

Example:

Packet Core - vmbrl
mme :
hosts:
omni-1lab07-mmeO1l:
ansible host: 10.179.1.15
gateway: 10.179.1.1
host vm network: "vmbrl"

Signaling - vmbr2
hss:
hosts:
omni-lab07-hss0O1l:
ansible host: 10.179.2.140
gateway: 10.179.2.1
host vm network: "vmbr2"

IMS Internal - vmbr3
icscf:
hosts:
omni-lab07-icscfOl:
ansible host: 10.179.3.55
gateway: 10.179.3.1
host vm network: "vmbr3"

UE Public - vmbr4
pcscft:
hosts:
omni-lab07-pcscfOl:
ansible host: 10.179.4.165
gateway: 10.179.4.1
host vm network: "vmbr4"

Method 2: VLAN-Based Segmentation

Use a single physical interface with VLAN tagging to separate networks. This is
suitable for smaller deployments or when physical NICs are limited.

Example:

ALl components use vmbrl2 with different VLANs
applicationserver:
hosts:
ons-1lab08sbcO1:
ansible host: 10.178.2.213
gateway: 10.178.2.1
host vm network: "ovsbrl"

vlianid: "402"
dra:
hosts:
ons-1ab08dra0l:
ansible host: 10.178.2.211
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlianid: "402"
dns:
hosts:

ons-1lab08dns01:
ansible host: 10.178.2.178
gateway: 10.178.2.1
host vm network: "ovsbrl"
vlanid: "402"

Network Configuration:

e Configure VLANs on the physical switch
e Tag traffic appropriately at the hypervisor level

e Route between VLANs at the gateway/firewall

Example VLAN Mapping:

VLAN 10: 10.x.1.0/24 (Packet Core)
VLAN 20: 10.x.2.0/24 (Signaling)
VLAN 30: 10.x.3.0/24 (IMS Internal)
VLAN 40: 10.x.4.0/24 (UE Public)

Working with Public IP Addresses

Overview

Many OmniCore deployments require some components to have public IP
addresses for external connectivity, such as:

e DRA - For roaming diameter signaling with external carriers

e Roaming SGW/PGW - For GTP traffic from roaming partners

ePDG - For WiFi calling (IPsec tunnels from UEs)

SMSC Gateway - For SMPP connections to external SMS aggregators

P-CSCF (in some deployments) - For direct UE SIP registration

How to Assign Public IPs

Public IPs are handled exactly the same way as internal IPs in your host
inventory files. Simply specify the public IP address in the ansible host field
along with the appropriate gateway and netmask.

Example: Roaming SGW/PGW with Public IPs

sgw:
hosts:
Internal SGWs on private network
opt-site-sgw01l:
ansible host: 10.4.1.25
gateway: 10.4.1.1
host vm network: "v400-omni-packet-core"

Roaming SGWs with public IPs
opt-site-roaming-sgwO1l:

ansible host: 203.0.113.10

gateway: 203.0.113.9

netmask: 255.255.255.248 # /29 subnet

host vm network: "498-public-servers"

in pool: False

cdrs _enabled: True

smf: # PGWs
hosts:

Roaming PGW with public IP

opt-site-roaming-pgw0O1l:
ansible host: 203.0.113.20
gateway: 203.0.113.17
netmask: 255.255.255.240 # /28 subnet
host vm network: "497-public-services-LTE"
in pool: False
ip pools:

- '100.64.24.0/22'

Example: DRA with Public IP

dra:
hosts:
opt-site-dra0l:
ansible host: 198.51.100.50
gateway: 198.51.100.49
netmask: 255.255.255.240 # /28 subnet
host vm network: "497-public-services-LTE"

Example: ePDG with Public IP

epdg:
hosts:
opt-site-epdg01l:
ansible host: 198.51.100.51
gateway: 198.51.100.49
netmask: 255.255.255.240 # /28 subnet
host vm network: "497-public-services-LTE"

Mixing Internal and Public IPs

It's common to have a mix of internal and public IPs within the same
component group. For example:

e Internal SGWs for local sites using GTP
e Public SGWs specifically for roaming traffic from external carriers

e The same PGW-C can manage both internal and external SGWs

OmniCore's architecture handles this seamlessly - just configure each host with
its appropriate IP addressing.

License Server

Overview

The License Server manages feature activation for all Omnitouch components.

Each component validates its license on startup and periodically during
operation.

Setup

1. Define in Hosts File

license server:
hosts:
customer-licenseserver:
ansible host: 10.10.2.150
gateway: 10.10.2.1
host vm network: "vmbr2"

all:
vars:
customer legal name: "Customer Name"

license server api urls: ["https://10.10.2.150:8443/api"]
license enforced: true

2. Provide License File

Place license.json (provided by Omnitouch) in hosts/Customer/group vars/
3. Deploy

ansible-playbook -i hosts/customer/host files/production.yml
services/license server.yml

You can check the status of all license by browsing to https://license_server.

Network Requirements

Firewall Configuration

Client site firewalls must be configured to allow HTTPS (port 443) traffic to the
following Omnitouch license validation servers:

Hostname IP Address Purpose
time.omnitouch.com.au 160.22.43.18 License validation server 1
time.omnitouch.com.au 160.22.43.66 License validation server 2

time.omnitouch.com.au 160.22.43.114 License validation server 3

Required outbound rules:

e Protocol: HTTPS (TCP/443)
¢ Destination: 160.22.43.18, 160.22.43.66, 160.22.43.114

¢ Direction: Outbound

DNS Requirements

The license server requires functional DNS resolution to communicate with the
Omnitouch license validation infrastructure.

Required DNS configuration:

e The license server must have access to public DNS servers

e Configure DNS to use one of the following:
o 1.1.1.1 (Cloudflare - supports secure DNS)

o 8.8.8.8 (Google Public DNS)

e Do not use internal/corporate DNS servers for the license server

Note: The Omnitouch license servers use secure DNS (DoH/DoT). Using public
DNS servers ensures proper DNSSEC validation and prevents issues with DNS
interception by security appliances.

Related Documentation

Netplan Configuration

Overview

OmniCore can automatically configure network interfaces on deployed VMs

using netplan. This is useful for:

e Setting up the primary management interface (eth0)
e Adding secondary interfaces for public IPs, peering connections, or
dedicated traffic

e Configuring static routes for specific destinations

Enabling Netplan Configuration

To enable automatic netplan configuration for a host, add the netplan config
variable pointing to a Jinja2 template in your group vars folder:

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
netplan config: netplan.yaml.j2

The template will be sourced from
hosts/<customer>/group vars/netplan.yaml.j2.

Template Reference

Here is the complete netplan.yaml. j2 template with comments explaining

each section:

network:
version: 2
ethernets:
Primary interface - uses ansible host and gateway from
inventory
ethO:
addresses:
- "{{ ansible host }}/{{ mask cidr | default(24) }}"
nameservers:
addresses:
% if 'dns' in group names %}
If this host IS a DNS server, use external DNS to avoid
circular dependency
- 8.8.8.8
{% else %}
Otherwise, use DNS servers from the 'dns' group in
inventory
{% for dns_host in groups['dns'] | default([]) %}
- {{ hostvars[dns host]['ansible host'] }}
% endfor %}
% endif %}
search:
- slice
routes:
- to: "default"
via: "{{ gateway }}"

% 1f secondary ips 1is defined %}
Secondary interfaces - loop through secondary ips dict from
inventory
Interface naming: ensl9, ens20, ens2l... (18 + loop.index)
{% for nic name, nic config in secondary ips.items() %}
ens{{ 18 + loop.index }}:
addresses:
- "{{ nic config.ip address }}/{{ mask cidr | default(24)
P
% if nic config.routes is defined %}
Static routes for this interface - each route uses this
interface's gateway
routes:
{% for route in nic config.routes %}
- to: "{{ route }}"
via: "{{ nic config.gateway }}"

{% endfor %}
{% endif %}
{% endfor %}
{% endif %}

Key points:

e ansible host and gateway come from the host's inventory entry
e DNS servers are dynamically pulled from hosts in the dns group

e Secondary interfaces are named ens19, ens20, etc. to match Proxmox NIC
naming
e Each secondary IP can have its own gateway and static routes

Primary Interface Configuration

The primary interface (eth0) is configured automatically using:

e ansible host - The IP address
e gateway - The default gateway

* mask cidr - Network mask (defaults to 24)
DNS servers are automatically set to:

e Hosts in the dns group (uses their ansible host IPs)
e Falls back to 8.8.8.8 if the host is itself a DNS server

Secondary Interfaces

For hosts requiring additional network interfaces (public IPs, peering, etc.), use
the secondary ips configuration.

Schema

secondary ips:
<logical name>:
ip address: <ip address>
gateway: <gateway ip>
host vm network: <proxmox bridge>
vlanid: <vlan id>
routes: # Optional - static routes via this
interface
- '<destination cidr>'
- '<destination cidr>'

Interface Naming

Secondary interfaces are automatically named using Ubuntu's predictable
naming scheme:

First secondary interface: ens19

Second secondary interface: ens20

Third secondary interface: ens21

And so on...

This matches the interface names assigned by Proxmox when adding additional
NICs to a VM.

Example Configuration

dra:
hosts:
<hostname>:
ansible host: 10.0.1.100
gateway: 10.0.1.1
host vm network: "ovsbrl"
vlanid: "100"
netplan config: netplan.yaml.j2
secondary_ ips:
public ip:
ip address: 192.0.2.50
gateway: 192.0.2.1
host vm network: "vmbrQ"
vlanid: "200"
routes:
- '198.51.100.0/24"
- '203.0.113.0/24"
peering ip:
ip address: 172.16.50.10
gateway: 172.16.50.1
host vm network: "ovsbr2"
vlanid: "300"
routes:
- '172.17.0.0/16"

Generated Netplan Output

The above configuration generates:

network:
version: 2
ethernets:
ethO:
addresses:
- "10.0.1.100/24"
nameservers:
addresses:
- 10.0.1.53
search:
- slice
routes:
- to: "default"
via: "10.0.1.1"
ensl9:
addresses:
- "192.0.2.50/24"

routes:
- to: "198.51.100.0/24"

via: "192.0.2.1"
- to: "203.0.113.0/24"
via: "192.0.2.1"

ens20:
addresses:
- "172.16.50.10/24"

routes:
- to: "172.17.0.0/16"

via: "172.16.50.1"

Proxmox Integration

When using the proxmox.yml playbook, secondary NICs are automatically

created on the VM:

1. New VMs: Secondary NICs are added during initial provisioning
2. Existing VMs: Secondary NICs are added and the VM is rebooted to apply

changes

The Proxmox configuration uses:

* host vm network - The bridge to attach the NIC to
e vlanid - VLAN tag for the interface

How It Works
== I e -

1. Variables from hosts file are passed to the Jinja2 template

2. Template renders to /etc/netplan/01-netcfg.yaml

3. Any existing netplan configs are removed to prevent conflicts
4. netplan apply activates the configuration

5. IP addresses are verified with ip addr show

Common Use Cases

Diameter Edge Agent (DEA) with Public IP

<hostname>:
ansible host: 10.0.1.100 # Internal management IP
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
diameter roaming:
ip address: 192.0.2.50 # Public IP for roaming
partners
gateway: 192.0.2.1
host vm network: "vmbro"
vlianid: "200"
routes:
- '198.51.100.0/24"' # Roaming partner network

PGW with S5/S8 Interface

<hostname>:
ansible host: 10.0.2.20 # Internal IP
gateway: 10.0.2.1
netplan config: netplan.yaml.j2
secondary ips:
s5s8 interface:
ip address: 203.0.113.17 # Public S5/58 IP
gateway: 203.0.113.1
host vm network: "vmbr@"
vlanid: "50"

Multi-homed Server with Separate
Management and Data Networks

<hostname>:
ansible host: 10.0.1.100 # Management network
gateway: 10.0.1.1
netplan config: netplan.yaml.j2
secondary ips:
data network:
ip address: 10.0.2.100 # Data network
gateway: 10.0.2.1
host vm network: "ovsbr2"
vlanid: "200"
backup network:
ip address: 10.0.3.100 # Backup network
gateway: 10.0.3.1
host vm network: "ovsbr3"
vlanid: "300"

Referencing Secondary IPs in
Templates

You can reference secondary IP addresses in other Jinja2 templates and
configuration files.

On the Same Host

When configuring a service on the same host that has secondary IPs, you can
reference directly or use inventory hostname:

Reference directly (simplest)
{{ secondary ips.diameter public ip.ip address }}

Or explicitly via inventory hostname (same result)
{{ hostvars[inventory hostname]['secondary ips"']
['diameter public ip']['ip address'] }}

Access other properties
{{ secondary ips.diameter public ip.gateway }}
{{ secondary ips.diameter public ip.vlanid }}

From Another Host

When you need to reference a different host's secondary IP (e.g., configuring a
peer connection), use hostvars with the target hostname:

Reference first host in dra group
{{ hostvars[groups['dra'][0]]['secondary ips"']
['diameter public ip']['ip address'] }}

Loop through all DRA hosts and get their public IPs
{% for host in groups['dra'] %}
% if hostvars[host]['secondary ips'] is defined %}
- {{ hostvars[host]['secondary ips']['diameter public ip"']
['ip address'] }}
% endif %}
% endfor %}

Example: DRA Peer Configuration

Configure a diameter peer to bind to its own public IP:

In dra config.yaml.j2 - use inventory hostname for the current
host
peers:
- name: external peer

Bind to this host's public diameter IP

local ip: {{ hostvars[inventory hostname]['secondary ips"']
['diameter public ip']['ip address'] }}

remote ip: 198.51.100.50

port: 3868

Checking if Secondary IPs Exist

Always check if the variable exists before using it:

% if secondary ips is defined and

secondary ips.diameter public ip is defined %}

public ip: {{ secondary ips.diameter public ip.ip address }}
% else %}

public ip: {{ ansible host }}

% endif %}

Troubleshooting

Verify Interface Names

SSH to the VM and check interface names:
ip link show
Expected output for a VM with two secondary interfaces:

: lo: <LOOPBACK,UP,LOWER UP> ...

: ethO: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ens19: <BROADCAST,MULTICAST,UP,LOWER UP> ...
: ens20: <BROADCAST,MULTICAST,UP,LOWER UP> ...

A W NP

Check Netplan Configuration

cat /etc/netplan/01l-netcfg.yaml

Apply Netplan Manually

netplan apply

Debug Netplan

netplan --debug apply

Verify Routes

ip route show

Related Documentation

. - Host inventory setup
. - VM provisioning

. - All configuration variables

Proxmox VM/LXC
Deployment

The majority of our customers run the OmniCore stack on Proxmox, this guide
explains in detail how to use the proxmox plays to setup their environment
using Proxmox.

We still continue to support VMware, HyperV and cloud (Currently Vultr / AWS /
GCP) for deployments.

See Also:
. - Define VMs to deploy
. - IP address assignment guidelines
. - Secondary IPs and multi-NIC setup
. - Complete deployment workflow

LXC vs VM

LXC Containers:

e Lightweight, shares host kernel

e Fast startup, low overhead

e Limited isolation

e Cannot run custom kernels or kernel modules
* Not suitable for production deployments

e Cannot run UPF (requires kernel modules/TUN devices)

VMs (KVM):

Full virtualization with dedicated kernel

Complete isolation

Can run kernel modules and custom networking

Higher resource overhead

e Recommended for production

e Required for UPF deployments
Use Cases:

e VMs: Production sites, UPF, all network functions

e LXC: Lab/test environments, lightweight services (apt-cache, monitoring)

Proxmox Setup

1. Create API Token

In Proxmox UI: Datacenter - Permissions - API Tokens
Create token: root@pam!<TokenName>
Copy the token secret (shown once)

2. Create Cloud-Init VM Template (for VMs
only)

Run this script on the Proxmox host. It downloads Ubuntu's cloud image and
creates a template with cloud-init user credentials.

#!/bin/bash
set -e

TEMPLATE ID=9000

IMAGE URL="https://cloud-images.ubuntu.com/noble/current/noble-
server-cloudimg-amd64.img"
IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Downloading Ubuntu cloud image ==="
cd /var/lib/vz/template/iso

wget -N "$IMAGE URL"

echo "=== Cleaning up old template ==="

gm destroy $TEMPLATE ID --purge 2>/dev/null || true
echo "=== Enabling snippets storage ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Creating cloud-init user-data ==="
mkdir -p /var/lib/vz/snippets
cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'
#cloud-config
ssh _pwauth: true
users:
- name: omnitouch

plain_text passwd: password

lock passwd: false

shell: /bin/bash

sudo: ALL=(ALL) NOPASSWD:ALL

groups: sudo
USERDATA

echo "=== Creating template VM ==="

gm create $TEMPLATE ID --name ubuntu-2404-template --memory 2048 -
-cores 2 --net0O virtio,bridge=vmbro

gm importdisk $TEMPLATE ID $IMAGE local-lvm

gm set $TEMPLATE ID --scsihw virtio-scsi-pci --scsi® local-
lvm:vm-${TEMPLATE ID}-disk-0

gm set $TEMPLATE ID --ide2 local-lvm:cloudinit

gm set $TEMPLATE ID --boot c --bootdisk scsi0

gm set $TEMPLATE ID --vga std

gm set $TEMPLATE ID --agent enabled=1

gm set $TEMPLATE ID --cicustom user=local:snippets/user-data.yml

gm template $TEMPLATE ID

echo "=== Template $TEMPLATE ID created successfully ==="

Notes:

Template provides a fallback login: omnitouch / password (for console
access if cloud-init fails)

When cloning via Ansible, credentials are overridden from local users in
your hosts file:
o Username: First user's key from local users

o Password: First user's password field (defaults to 'password' if not set)
o SSH key: First user's public key field

e --vga std ensures the Proxmox web console works

-N flag on wget only downloads if newer than local copy

Alternative: Manual Template from ISO

If cloud images aren't available or you need a custom install:
Step 1: Create VM via Web UI

e Create New VM - VM ID 9000, Name: ubuntu-2404-template
¢ 0OS: Upload Ubuntu Server ISO or use existing ISO

e System: Default (SCSI Controller: VirtlO SCSI)

e Disks: 32GB, Bus: SCSI

e CPU: 2 cores

e Memory: 2048 MB

e Network: VirtlO, bridge vmbr0

e Start VM and install Ubuntu Server

Step 2: Inside VM - Clean and prepare

Install cloud-init
sudo apt update
sudo apt install cloud-init gemu-guest-agent -y

Clean machine-specific data

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id
sudo rm -f /etc/ssh/ssh host *

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Clear bash history and shutdown
history -c
sudo poweroff

Step 3: Add Cloud-Init and Convert to Template

e Select VM - Hardware —» Add — CloudInit Drive (select storage e.g., local-
lvm)

e Cloud-Init = User: omnitouch, Password: password
e Hardware — Options - QEMU Guest Agent —» Enable
¢ Right-click VM —= Convert to Template

3. Download LXC Template (for LXC only)

In Proxmox node shell:
pveam update
pveam download local ubuntu-24.04-standard 24.04-2 amd64.tar.zst

Hosts File Configuration

For VM Deployment (proxmox.yml)

all:
vars:
proxmoxServers:

pve-node-01:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxRootPassword: YourPassword
proxmoxApiTokenName: ansible
proxmoxApiTokenSecret: "your-token-secret-uuid"
proxmoxTemplateName: ubuntu-2404-template
proxmoxTemplateId: 9000
proxmoxNodeName: pve-node-01
storage: local-lvm # optional

pve-node-02:
... second node config

User credentials - first user is used for VM cloud-init
local users:
admin_user:
name: Admin User
public key: "ssh-rsa AAAA..."
password: "optional-password" # defaults to 'password' if
not set

mme:
hosts:
site-mme0O1l:
ansible host: 192.168.1.10
gateway: 192.168.1.1
vlanid: "100" # optional

For LXC Deployment (proxmox Ixc.yml)

all:
vars:
proxmoxServerAddress: 192.168.1.100
proxmoxServerPort: 8006
proxmoxNodeName: ['pve-node-0l1', 'pve-node-02'] # single or
list

proxmoxApiTokenName: ansible

PROXMOX API TOKEN: "your-token-secret-uuid"

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-
standard 24.04-2 amd64.tar.zst'

proxmoxLxcCores: 2

proxmoxLxcMemoryMb: 4096

proxmoxLxcDiskSizeGb: 30

proxmoxLxcRootFsStorageName: local-lvm

mask cidr: 24

host vm network: vmbrO

User credentials - first user is used for initial VM/LXC
access
local users:
admin user:
name: Admin User
public key: "ssh-rsa AAAA..."
password: "optional-password" # defaults to 'password' if

not set

apt cache servers:
hosts:
site-cache:
ansible host: 192.168.1.20
gateway: 192.168.1.1
vlanid: "100" # optional
proxmoxLxcDiskSizeGb: 120 # per-host override

Usage
Deploy VMs

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Deploy LXC Containers

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox 1lxc.yml

Delete VMs/LXCs

ansible-playbook -i hosts/Customer/hosts.yml
services/proxmox_delete.yml

Behavior

proxmox.yml

e Checks if VM with same name already exists in Proxmox

e Distributes VMs across nodes using round-robin

¢ Clones from template

e Configures static IP, tags, and cloud-init

e Sets cloud-init user credentials from first local_users entry

e Supports VLAN tagging

proxmox_Ixc.yml

e Checks container doesn't exist by name or IP

e Distributes LXCs across nodes using round-robin

e Creates container with static IP

e Automatically creates first local_users account with sudo access
and SSH key

e Configures netplan for networking
e Auto-starts containers
e Excludes UPF hosts

proxmox_delete.yml

e Stops and deletes VM/LXC matching inventory hosthname
e Searches across all configured nodes

e Force stops after 20 seconds

VM/LXC Distribution & Tagging

Round-Robin Distribution

VMs and LXCs are automatically distributed across Proxmox nodes using round-
robin (modulo) logic:

Example with 3 hypervisors and 5 MMEs:

mmeOl - pve-node-01 (index 0 % 3 = 0)
mme02 - pve-node-02 (index 1 % 3 = 1)
mmeO3 - pve-node-03 (index 2 % 3 = 2)
mme0@4 - pve-node-01 (index 3 % 3 = 0)
mmeO5 - pve-node-02 (index 4 % 3 = 1)

How it works:

1. Playbook identifies the host's role group (e.g., mme, sgw, hss)
2. Calculates host index within that group (0-based)
3. Uses modulo operation: host index % number of nodes

4. Selects hypervisor based on result

Configuration:

For VMs (proxmox.yml) - define multiple servers

proxmoxServers:
pve-node-01: { ... }
pve-node-02: { ... }
pve-node-03: { ... }

For LXCs (proxmox lxc.yml) - list multiple nodes
proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

Automatic Tagging
VMs and LXCs are automatically tagged with:

* Role/Group names: All Ansible groups the host belongs to

* Site name: The site name variable

Example:

site name: "melbourne-prod"

mme :
hosts:
melbourne-mme@1: { ... }

Result: VM/LXC tagged with: mme, melbourne-prod

Tags are visible in Proxmox Ul and useful for filtering/organization.

Per-Host Overrides

Override defaults on specific hosts:

hosts:
high-spec-host:
ansible host: 192.168.1.50
gateway: 192.168.1.1
proxmoxLxcCores: 8 # override cores
proxmoxLxcMemoryMb: 16384 # override memory
proxmoxLxcDiskSizeGb: 100 # override disk

Utility Playbooks

Utility playbooks provide operational tools for managing deployed OmniCore
infrastructure. These playbooks are located in the util playbooks/ directory
and can be run independently to perform common maintenance and

troubleshooting tasks.

Quick Reference

Playbook

health check.yml

restore hss.yml

ip plan generator.yml

get ports.yml

getLocalCapture.yml

delete local user.yml

updateMtu.yml

systemctl status.yml

Purpose

Generate comprehensive health report for all
services

Restore HSS database and/or configuration from
backup

Generate network documentation with Mermaid
diagrams

Audit open ports and listening services across all
hosts

Retrieve packet capture files from hosts

Remove a local user account from all hosts

Set MTU to 9000 (jumbo frames) on network
interfaces

Check service status on EPC components

Health Check

File: util playbooks/health check.yml

Generates a comprehensive HTML health report covering all deployed
OmniCore and OmniCall services.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/health check.yml

Output: /tmp/health check YYYY-MM-DD HH:MM:SS.html

Information Collected

Component Data Collected

All services Service status, version, uptime

OmniHSS Database status, Diameter peer connections
OmniDRA Diameter peer connections and status
OmniTAS Active calls, sessions, registrations, CPU usage
OCS KeyDB replication status

HSS Restore

File: util playbooks/restore hss.yml

Restores OmniHSS from backup files. Supports restoring database only,
configuration only, or both.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/restore hss.yml

Backup File Formats

Type Filename Pattern Contents

MySQL dump of

Database hss dump <hostname> <timestamp>.sql ,
- - - omnihss database

Archive of
Config hss <hostname> <timestamp>.tar.gz /etc/omnihss

directory

IP Plan Generator

File: util playbooks/ip plan generator.yml

Generates network documentation from inventory, including:

e Host IP assignments (primary and secondary NICs)

e Network segment overview

e Interface connectivity diagrams (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/ip plan generator.yml

Output Files

File

/tmp/ip plan <customer> <site>.md

/tmp/ip plan <customer> <site>.html

Port Audit

File: util playbooks/get ports.yml

Format

Markdown

HTML

Description

Text-based
documentation

Interactive diagram
with filterable
layers

Audits all listening ports across the deployment and generates documentation.

ansible-playbook -i hosts/customer/host files/production.yml

util playbooks/get ports.yml

Output Files

File

Description

/tmp/all ports.csv CSV with hostname, IP, protocol, port, service

./open _ports.rst reStructuredText table for Sphinx documentation

Data Collected

Field Description
Hosthame Inventory hostname
IP Host's ansible host IP address
IP Version IPv4 or IPv6
Transport TCP or UDP
Port Listening port number

Service Process name

Local Capture Retrieval

File: util playbooks/getLocalCapture.yml

Retrieves the two most recent packet capture files from each host's
/etc/localcapture directory.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/getLocalCapture.yml

Output: ./localCapturePcaps/<hostname>/*.pcap

User Management

File: util playbooks/delete local user.yml

Removes a local user account from all hosts in the inventory.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/delete local user.yml

Prompt: Enter the username to delete when prompted.

MTU Configuration

File: util playbooks/updateMtu.yml

Sets the MTU to 9000 (jumbo frames) on the ens160 interface across all hosts.

ansible-playbook -i hosts/customer/host files/production.yml
util playbooks/updateMtu.yml

Note: This playbook is hardcoded for ens160 interface. Modify the playbook if
your environment uses different interface names.

Running Utility Playbooks

Basic Syntax

ansible-playbook -1i <inventory file> util playbooks/<playbook>.yml

Common Options

Option Description
-1 <inventory> Specify inventory file

--limit <hosts> Limit to specific hosts or groups

-v /[-vv [-vvv Increase verbosity

- -check Dry run (show what would change)

--diff Show file differences
Examples

Run health check on production
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/health check.yml

Restore HSS on a specific host
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/restore hss.yml --limit hssO1

Generate IP plan with verbose output
ansible-playbook -i hosts/acme/host files/production.yml
util playbooks/ip plan generator.yml -v

