ANSSI R226
Interception
Compliance
Documentation

Document Purpose: This document provides technical specifications required
for ANSSI R226 authorization under Articles R226-3 and R226-7 of the French
Penal Code for the OmniTAS IMS Application Server.

Classification: Regulatory Compliance Documentation

Target Authority: Agence nationale de la sécurité des systemes d'information
(ANSSI)

Regulation: R226 - Protection of Correspondence Privacy and Lawful
Interception

1. DETAILED TECHNICAL
SPECIFICATIONS

1.1 Commercial Technical Datasheet

Product Name: OmniTAS IMS Application Server Product Type:
Telecommunications Application Server (TAS) Primary Function: IMS (IP
Multimedia Subsystem) call processing and session management Network
Protocols: SIP, Diameter, HTTP/HTTPS, SS7/MAP Deployment Model: On-
premises server application

Core Capabilities

Call Processing:

e Session Initiation Protocol (SIP) proxy and B2BUA functionality
e IMS Initial Filter Criteria (iFC) processing

e Session routing and call control

 Emergency call handling (E.164 PSAP routing)

e Call Detail Record (CDR) generation

Network Interfaces:

e Northbound: IMS S-CSCF interface (SIP over TCP/UDP)

e Southbound: SBC/Gateway interface (SIP trunking)

 Diameter: Sh (subscriber data), Ro (online charging)

e SS7: MAP gateway interface for HLR/MSC interworking

e HTTP/HTTPS: External service integration (SMS, TTS, MAP gateway)

Storage and Processing:

Real-time session state management

CDR storage and retrieval

Subscriber registration database (Sofia SIP)
Configuration database (SQLite)

1.2 Interception Capabilities

1.2.1 Signal Acquisition

SIP Signaling Capture:

e The OmniTAS processes all SIP signaling messages between IMS
subscribers and external networks

e Full access to SIP headers including:
o Calling party identification (From, P-Asserted-ldentity)

o Called party identification (To, Request-URI)
o Contact URIs and network location

o Call routing information

o Session description (SDP) including media codecs and endpoints
Call Metadata Acquisition:

e Complete Call Detail Records (CDR) stored in database with:
o Timestamp (start, answer, end times)

o Caller and callee identifiers (MSISDN, IMSI, SIP URI)
o Call direction (mobile originating/terminating)

o Call result (answered, busy, failed, etc.)

o Duration and charging information

o Network location data (cell tower information when available)
Session Recording Interface (SIPREC):

e SIPREC protocol support for lawful interception
e Capability to replicate SIP signaling to external recording servers
e Configurable session recording policies

e Licensing Control: SIPREC functionality requires explicit licensing
authorization

e Access Control: SIPREC configuration restricted to authorized
administrators

1.2.2 Media Processing Capabilities

Media Plane:

B2BUA with RTP media relay capabilities

RTP streams pass through the server

Access to media flows for interception purposes

SDP parsing for media endpoint and codec information
Signaling Plane:

e SIP message parsing and analysis
* Diameter message encoding/decoding (Sh, Ro interfaces)

e HTTP/HTTPS request/response processing

1.2.3 Analysis Capabilities

Real-Time Call Monitoring:

e Web Ul dashboard showing active calls with:
o (Call state (trying, ringing, active, terminated)

o Caller/callee information
o Call duration
o Media codec information

o Network endpoints
Historical Analysis:

e CDR database queryable by:
o Time range

o Calling/called party number
o Call type (voice, emergency, etc.)
o Call result/disposition

o Duration thresholds

Subscriber Tracking:

e Active registration monitoring

e Subscriber location tracking via:
o |MS registration contact URI

o P-Access-Network-Info header (cell tower identification)
o |P address and port information

e Historical registration records

Network Analytics:

Call volume metrics (Prometheus integration)

Gateway status and connectivity

Diameter peer connectivity

System performance metrics

For comprehensive metrics documentation: See for detailed
monitoring, alerting, and observability configuration.

Location Intelligence:

e Cell tower database integration

e E.164 number to geographic location mapping (North American Numbering
Plan)

e Emergency services routing (PSAP mapping)

1.3 Countermeasure Capabilities

1.3.1 Privacy Protection Mechanisms

Communication Confidentiality:

e Diameter TLS transport security
e HTTPS for web interfaces and APIs

e Database encryption at rest (configurable)
Access Control:

¢ Role-based access control (RBAC) for web Ul
e Password hashing with SHA-512 and salt (65,532 iterations)

Audit Logging:

e Complete audit trail of administrative actions
e Configuration change logging
e Authentication event logging

e Tamper-evident log storage
1.3.2 Anti-Interception Features
Secure Communications:

e Mandatory TLS for external interfaces (configurable)
e Certificate-based authentication

e Perfect Forward Secrecy (PFS) cipher suites

Data Protection:

e Automatic CDR retention policies
e Secure data deletion capabilities
e Database access controls

e Network segmentation support (separate management/signaling/media
networks)

System Hardening:

e Boot parameter protection
e Integrity verification mechanisms

e Minimal attack surface (only required services enabled)

1.4 Technical Architecture for Lawful
Interception

Lawful Interception Integration Points

1. SIPREC Interface (Session Recording Protocol - RFC 7866):

OmniTAS
Session Recording Client

SIP/SIPREC

!

Session Recording

Server
SRS
..--"ﬂ'--f-ff -x-%--ﬁh"“x
— l T~
v

, , , Media Recording Law Enforcement

Signaling Recording . ,
via MRF Delivery Interface

2. CDR Export Interface:

e CDR export to external systems
e Standard formats (CSV, JSON)

e Secure transfer (HTTPS)
3. Direct Database Access:

e Read-only database credentials for authorized systems
e SQL query access to CDR tables
e Subscriber registration data access

e Audit log access

4. API Integration:

RESTful API for call monitoring

Real-time active call queries

Historical CDR retrieval

Subscriber registration status

Interception Triggering Mechanisms
Target-Based Interception:

e Subscriber identifier matching (MSISDN, IMSI, SIP URI)
e Configurable interception rules in application logic

e SIPREC session forking based on caller/callee identity
Event-Based Interception:

e Emergency call detection and recording
e Specific destination number monitoring

e Geographic area-based triggering (cell tower location)
Time-Based Interception:

e Scheduled recording windows
e Retention period enforcement

e Automatic expiration of interception warrants

2. ENCRYPTION AND
CRYPTANALYSIS CAPABILITIES

2.1 Cryptographic Capabilities Overview

The OmniTAS IMS Application Server implements cryptographic mechanisms for
securing communications and protecting sensitive data. This section
documents all cryptographic capabilities in accordance with ANSSI
requirements.

2.2 Transport Layer Encryption
2.2.1 TLS/SSL Implementation
Supported Protocols:

e TLS 1.2 (RFC 5246)

e TLS 1.3 (RFC 8446)

e SSL 2.0/3.0: DISABLED (known vulnerabilities)

e TLS 1.0/1.1: DEPRECATED (configurable, disabled by default)

Cipher Suites (Configurable Priority List):
Preferred - TLS 1.3:

e TLS_AES 256 GCM_SHA384
e TLS_CHACHA20 POLY1305 SHA256
« TLS_AES_128 GCM_SHA256

Supported - TLS 1.2:

TLS_ECDHE_RSA WITH_AES 256 _GCM_SHA384
TLS_ECDHE_RSA WITH_AES_128 GCM_SHA256
TLS_ECDHE_RSA_WITH _CHACHA20 POLY1305 SHA256
TLS_DHE_RSA WITH_AES 256 _GCM_SHA384
TLS_DHE_RSA_WITH_AES 128 GCM_SHA256

Security Features:

e Perfect Forward Secrecy (PFS) required

e Strong Diffie-Hellman groups (2048-bit minimum)

e Elliptic Curve Cryptography: NIST P-256, P-384, P-521
e Server Name Indication (SNI) support

e OCSP stapling for certificate validation

Certificate Management:

X.509 certificate support

e RSA key sizes: 2048-bit minimum, 4096-bit recommended
e ECDSA support (P-256, P-384)

e Certificate chain validation

e CRL and OCSP revocation checking

e Self-signed certificates (development only)

e External CA integration
Applications:
e HTTPS for web Ul and API access
e Diameter over TLS
2.3 Data Encryption at Rest
2.3.1 Database Encryption
SQLite Encryption:

e SQLCipher integration support
e AES-256 encryption

e Encrypted storage for sensitive data (CDR, subscriber data)

2.3.2 File System Encryption

Sensitive Data Storage:

e CDR files: AES-256 encryption (optional)

e Configuration files: Encrypted storage for credentials
e Private keys: Encrypted keystores (PKCS#12, PEM with passphrase)

e Log files: Encryption support for archived logs
Key Storage:

e File-based keystores with passphrase protection

e Secure key rotation mechanisms

2.4 Authentication and Password Cryptography

2.4.1 Password Hashing

Algorithm: SHA-512 with salt Configuration:

Randomly generated salt (128-bit minimum)

65,532 iteration rounds (configurable)

Salt stored alongside hash

Resistant to rainbow table attacks

Storage Format:

6rounds=65532%$<salt>$<hash>

Applications:

Web Ul user authentication

API token generation

Administrator password storage

Database user credentials

2.4.2 SSH Key Authentication

Supported Key Types:

e RSA: 1024-4096 bits (2048-bit minimum recommended)
e DSA: 1024-4096 bits (deprecated, RSA preferred)

e ECDSA: P-256, P-384, P-521 curves
e Ed25519: 256-bit (preferred for new deployments)

Key Management:

e External key generation support

e Public key import for client authentication
e Server host key management

e Individual key revocation

e Key rotation procedures
SSH Protocol:

e SSH-2 protocol only (SSH-1 disabled)
e Strong MAC algorithms (HMAC-SHA2-256, HMAC-SHA2-512)

e Key exchange: curve25519-sha256, ecdh-sha2-nistp256, diffie-hellman-
groupl4-sha256

2.5 Diameter Protocol Security
2.5.1 Diameter Security Mechanisms
Transport Security:

e TLS over TCP for Diameter peer connections

e Mutual certificate authentication
Application-Level Security:

e Peer authentication via Origin-Host/Origin-Realm validation
e Shared secret configuration (legacy, deprecated)
e AVP (Attribute-Value Pair) encryption for sensitive data

e End-to-end security with CMS (Cryptographic Message Syntax)

2.6 SIP Identity Mechanisms

P-Asserted-ldentity:

¢ Trusted network assertion
e |dentity validation and translation

e Privacy header support

Note: Subscriber authentication is performed by the IMS Core (P-CSCF/S-CSCF),
not by the TAS.

2.7 Cryptanalysis and Security Assessment
Capabilities

2.7.1 Protocol Analysis Tools
Built-in Debugging Capabilities:

e SIP message tracing with full header/body capture
e Diameter message logging (AVP decoding)
e TLS handshake debugging

e Certificate chain validation logging
External Integration:

e Wireshark/tcpdump packet capture support
e SSLKEYLOGFILE export for TLS decryption (development only)

e PCAP export for offline analysis

2.7.2 Vulnerability Assessment Considerations

Known Cryptographic Weaknesses:

e Legacy MD5 support in SIP Digest (maintained for backward compatibility)
e Configurable weak cipher suites (disabled by default)

e Self-signed certificate support (development/testing only)
Security Testing:

e Regular security audits recommended
e Penetration testing support

e Cipher suite strength validation

e Certificate expiration monitoring

2.8 Key Management Infrastructure

2.8.1 Key Generation
Internal Key Generation:

e RSA key generation: OpenSSL library (FIPS 140-2 compliant algorithms)
e Random number generation: /dev/urandom (Linux kernel CSPRNG)

e Entropy sources: Hardware RNG, system entropy pool

2.8.2 Key Storage and Protection

Private Key Storage:

¢ File system with restricted permissions (0600)
e Encrypted PEM format with passphrase

e Secure deletion on key rotation
Key Backup:

e Encrypted backup procedures
e Split-key recovery mechanisms

e Secure key escrow (if required by regulation)
2.8.3 Key Distribution
Certificate Distribution:

e Manual import via web Ul
e Automated provisioning via API

e ACME protocol support (Let's Encrypt, future enhancement)
Symmetric Key Distribution:

e Qut-of-band key exchange for Diameter peers
e Diffie-Hellman key agreement in TLS

¢ No cleartext key transmission

2.9 Compliance and Standards

Cryptographic Standards Compliance:

e NIST SP 800-52: TLS guidelines

NIST SP 800-131A: Cryptographic algorithm transitions
RFC 7525: TLS recommendations

ETSI TS 133 310: IMS network security

3GPP TS 33.203: IMS access security

French Cryptography Regulations:

e Cryptographic means declaration (if applicable)
e ANSSI cryptographic product certification (if required)

e No export-restricted cryptography (all standard algorithms)

2.10 Cryptanalysis Resistance

2.10.1 Design Principles

Defense Against Cryptanalysis:

No custom/proprietary cryptographic algorithms

Industry-standard, peer-reviewed algorithms only

Regular security updates for cryptographic libraries

Deprecation of weak algorithms
2.10.2 Operational Security
Key Rotation:

e TLS certificate renewal (annually recommended)
e Session key rotation (per-session for TLS)

e Password expiration policies (configurable)
Monitoring and Detection:

e Failed authentication attempt logging

e Certificate expiration alerts
e Cipher suite negotiation logging

¢ Anomaly detection for encryption failures

3. INTERCEPTION CONTROL AND
AUTHORIZATION

3.1 Access Control for Lawful Interception

Administrative Authorization:

e Lawful interception features require administrator-level privileges
e SIPREC configuration access: Super-admin role only
e CDR access: Configurable role-based permissions

e Audit logging of all interception-related actions
Legal Framework Integration:

e Interception warrant tracking (external system integration)
e Target identifier authorization lists
e Time-limited interception activation

e Automatic deactivation on warrant expiration

3.2 Data Retention and Privacy

Retention Policies:

e CDR retention: Configurable (default 90 days, regulatory requirement 1
year)

e Registration logs: Configurable retention
e Audit logs: Minimum 1 year retention

e Automatic purging of expired data

Privacy Protections:

e Minimal data collection principle
e Purpose limitation (telecommunications service provision)

e Access logging and monitoring

3.3 Handover Interfaces for Law Enforcement
Standard Lawful Interception Interfaces:

e ETSI LI (Lawful Interception) interface support (via external mediation
device)

e SIPREC to LI gateway integration

e X1, X2, X3 interface support (external system)
Delivery Formats:

e IRI (Intercept Related Information): CDR metadata
e CC (Content of Communication): SIP signaling + media (via MRF)
e Structured reporting: XML, JSON formats

4. SYSTEM SECURITY AND
INTEGRITY

4.1 Boot Security
Secure Boot Mechanisms:

e Bootparameter protection (ANSSI R226 requirement)
e Configuration integrity verification
e Tamper detection on startup

e Secure configuration loading

4.2 Network Security

Network Security:

e Minimal exposed ports (SIP, Diameter, HTTPS only)
e Port-based access control

e |P whitelisting/blacklisting

4.3 Intrusion Detection

Monitoring Capabilities:

Failed authentication monitoring

Unusual call pattern detection

Anomalous Diameter traffic detection

Security event alerting (SIEM integration)

5. DOCUMENTATION REFERENCES

5.1 Technical Manuals
Available documentation in the project repository:

e README.md: System overview, architecture, and operational features
* doc/deployment_guide.md: Deployment instructions (if available)

e doc/configuration.md: Configuration reference (if available)

5.2 Security Certifications

* Penetration Test Reports: [To be provided upon request]
e Security Audit Reports: [To be provided upon request]
e Cryptographic Module Validation: OpenSSL FIPS 140-2 compliance

5.3 Compliance Documentation

e ANSSI R226 Authorization Request: This document

e Lawful Interception Compliance: As required by French
telecommunications regulations

6. CONTACT INFORMATION

Vendor/Operator Information:

Company Name: Omnitouch Network Services Pty Ltd
Address: PO BOX 296, QUINNS ROCKS WA 6030, AUSTRALIA

Contact Person: Compliance Team

Email:

Technical Security Contact:

¢ Name: Compliance Team

e Email:
Legal/Compliance Contact:

e Name: Compliance Team

e Email:

APPENDICES

Appendix A: SIP Message Flow Examples

A.1 Mobile Originating Call Flow with Interception Points

mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au

UE/Handset

P-CSCF

S-CSCF OmniTAS

SBC/Gateway

INVITE

180 Ringing

200 OK

ACK

INVITE

180 Ringing

200 OK

ACK

INVITE

180 Ringing

200 OK

ACK

[INTERCEPTION]
- SIP headers
- SDP info
- Caller ID
- Called party
- CDR created

[MEDIA RELAY]
- RTP anchored
- SIPREC fork

INVITE

183 Progress

180 Ringing

200 OK

ACK

RTP Media (relayed through OmniTAS)

BYE

BYE

BYE

[INTERCEPTION]
- Media copy
- SIPREC send

[INTERCEPTION]
- CDR updated
- Call end time

- Duration

BYE

200 OK

200 OK

200 OK

200 OK

SBC/Gateway

UE/Handset P-CSCF S-CSCF OmniTAS

Legend: [INTERCEPTION] = Points where lawful interception data is captured

A.2 Emergency Call with Location Tracking

UE/Handset P-CSCF S-CSCF OmniTAS SBC/Gateway

INVITE

L J

INVITE

INVITE

=

[INTERCEPTION]

OmniCharge OmniRAN)))
Downloads > English+ Omnitouch Website (2

- -
INVITE -
) 183 Progress
[MEDLA RELAY]
- RTP anchored
- 5IPREC fork
) 180 Ringing
-~ 180 Ringing
~ 180 Ringing
~ 180 Ringing
. 200 0K
- 200 0K
- 200 0K
) 200 0K
ACK -
ACK .
ACK .
ACK -
ATP Media (relayed through OmniTAS)
[INTERCEPTION]
- Media copy
- SIPREC send
BYE N
BYE -
BYE R
BYE R
' [INTERCEPTION] r
- CDR updated
- Call end time
- Duration

200 OK

[

200 0K

i

200 0K

F 1

200 0K

.|

UE/Handset P-CSCF S-CSCF OmniTAS SBC/Gateway

A.3 SIPREC Recording Session Establishment

OmniTAS Session Recording Server
(SRC) (SRS)

INVITE (SIPREC)
Content-Type: multipart/mixed
- recording-session SDP
- participant 1 SDP
- participant 2 SDP

200 OK

ACK

RTP Streams
- Signaling metadata
- Participant 1 media
- Participant 2 media

OmniTAS Session Recording Server
(SRC) (SRS)

Appendix B: CDR Schema

The OmniTAS system stores Call Detail Records in a SQLite database
(FreeSWITCH CDR format) located at /etc/freeswitch/db/cdr.db.

B.1 Key CDR Fields for Lawful Interception

Field Name

uuid

caller _id number

caller id name

destination number

start stamp

answer stamp

end stamp

duration

billsec

Type

TEXT

TEXT

TEXT

TEXT

DATETIME

DATETIME

DATETIME

INTEGER

INTEGER

Description

Unique call
identifier

Calling party
number
(MSISDN)

Calling party
display name

Called party
number

Call start
timestamp

Call answer
timestamp

Call end
timestamp

Total call
duration
(seconds)

Billable
seconds
(answered
time)

Interception
Relevance

Session
correlation

Primary
identifier for
target
tracking

Identity
verification

Target
destination
tracking

Event timeline

Call
establishment
time

Session
duration
calculation

Session length

Actual
conversation
duration

Field Name

hangup cause

sip hangup disposition

network addr

sip from user

sip to user

sip call id

Type

TEXT

TEXT

TEXT

TEXT

TEXT

TEXT

Description

Call
termination
reason

SIP
termination
details

Network IP
address

SIP From
header user
part

SIP To header
user part

SIP Call-ID
header

B.2 CDR Query Examples for Lawful Interception

Query calls by target number:

SELECT * FROM cdr

WHERE caller id number = '+33612345678'
= '+33612345678'
ORDER BY start stamp DESC;

OR destination number

Query calls within time window:

Interception
Relevance

Call outcome
analysis

Protocol-level
termination

Source
location
tracking

Original SIP
identity

SIP destination

SIP session
correlation

SELECT * FROM cdr
WHERE start stamp BETWEEN '2025-11-01 00:00:00' AND '2025-11-30
23:59:59"

AND (caller_id number = '+33612345678' OR destination number =
'+33612345678")
ORDER BY start stamp DESC;

Export to CSV for law enforcement:

.mode csv

.output /tmp/interception report.csv

SELECT caller id number, destination number, start stamp,
end stamp, duration, hangup cause

FROM cdr

WHERE caller id number = '+33612345678'

ORDER BY start stamp DESC;

.output stdout

B.3 CDR Retention

Default retention: Configurable (typically 90 days to 1 year)

Automatic purging: Supported

Manual export: Via Web Ul at /cdr or API
Format: SQLite database, exportable to CSV/JSON

Appendix C: SIPREC Configuration Examples

SIPREC (Session Initiation Protocol Recording) enables the OmniTAS to send
both call signaling and media to external Session Recording Servers for lawful
interception.

C.1 SIPREC Architecture

.
o

o - -

C.2 Triggering SIPREC Recording

Recording can be triggered based on:
Target-based:

e Caller phone number (caller_id_number)
* Called phone number (destination_number)
e SIP URI matching

Event-based:

e All emergency calls (911, 112, etc.)
e Calls to/from specific destinations

e Time-window based recording
Geographic:

e Cell tower location (via P-Access-Network-Info header)

e |P address ranges

C.3 SIPREC Session Content

The SIPREC session sends to the SRS:
Signaling Metadata:

e Complete SIP headers (From, To, P-Asserted-Identity)
e Call-ID and session identifiers
e Timestamps (start, answer, end)

e Caller/callee information
Media Streams:

e Participant 1 RTP stream (caller audio)
e Participant 2 RTP stream (callee audio)
e Codec information

e DTMF tones

C.4 Integration with Law Enforcement

The Session Recording Server provides:

¢ X1 Interface: Administrative function (warrant management)
* X2 Interface: Intercept Related Information (IRI) - call metadata

¢ X3 Interface: Content of Communication (CC) - actual media

The OmnITAS serves as the Session Recording Client (SRC) and delivers both IRI
and CC to the SRS for handover to law enforcement via standardized interfaces.

Appendix D: Encryption Configuration Guide

D.1 Certificate Generation

Generate TLS Certificate:

Generate private key
openssl genrsa -out server.key 4096

Generate certificate signing request
openssl req -new -key server.key -out server.csr

Self-signed certificate (for testing)
openssl x509 -req -days 365 -in server.csr -signkey server.key -

out server.crt

Production: Obtain certificate from trusted CA

Note: SIP signaling to/from IMS does not use TLS. SIP communication is
unencrypted TCP/UDP.

D.2 HTTPS Configuration for Web Ul

API/Web Server TLS (config/runtime.exs):

config :api_ex,
api: %{
enable tls: true,
tls cert path: "priv/cert/server.crt",
tls key path: "priv/cert/server.key",
tls versions: [:"tlsvl.2", :"tlsvl.3"],
ciphers: [
"ECDHE-RSA-AES256-GCM-SHA384",
"ECDHE-RSA-AES128-GCM-SHA256",
"TLS AES 256 GCM SHA384",
"TLS AES 128 GCM SHA256"

D.3 SIP Configuration

SIP interfaces use unencrypted TCP/UDP transport. No TLS configuration
required.

FreeSWITCH SIP Profile:

<!-- SIP profile uses TCP/UDP only -->
<profile name="external">
<settings>
<param name="sip-port" value="5060"/>
<param name="context" value="public"/>
</settings>
</profile>

D.4 Diameter TLS Configuration

Diameter Peer TLS:

Enable TLS for Diameter connections
config :diameter ex,

peers: [
%{
host: "dra.example.com",
port: 3868,
transport: :tls,
tls opts: [

certfile: "priv/cert/diameter.crt”,
keyfile: "priv/cert/diameter.key",
cacertfile: "priv/cert/ca.crt",
verify: :verify peer

D.5 Database Encryption

SQLite Encryption with SQLCipher:
config/runtime.exs
config :exqglite,

encryption: true,
encryption key: System.get env("DB ENCRYPTION KEY")

Note: Database encryption is optional. For lawful interception purposes,
physical access controls and database access logging may be sufficient.

D.6 Password Security Configuration

Password hashing is automatically configured with SHA-512 and salt:
Default password hashing configuration
config :pbkdf2 elixir,

rounds: 65 532,
salt len: 16

No additional configuration required - secure by default.

Appendix E: Glossary

Regulatory and Standards Bodies

» ANSSI: Agence nationale de la sécurité des systemes d'information -
French National Cybersecurity Agency

e ETSI: European Telecommunications Standards Institute

e 3GPP: 3rd Generation Partnership Project - Mobile telecommunications
standards organization

e IETF: Internet Engineering Task Force - Internet standards body

IMS Network Components

e IMS: IP Multimedia Subsystem - All-IP network architecture for multimedia
services

e CSCF: Call Session Control Function - SIP server in IMS core
o P-CSCF: Proxy-CSCF - First contact point for UE, SIP proxy

o I-CSCF: Interrogating-CSCF - Entry point to operator's network
o S-CSCF: Serving-CSCF - Session control and service triggering
e HSS: Home Subscriber Server - Subscriber database

e TAS: Telephony/Telecommunications Application Server - Service logic
execution

Protocols and Signaling

e SIP: Session Initiation Protocol (RFC 3261) - Signaling protocol for
voice/video calls

e SDP: Session Description Protocol (RFC 4566) - Media session parameters
e RTP: Real-time Transport Protocol (RFC 3550) - Media stream transport

e RTCP: RTP Control Protocol - Quality monitoring for RTP

e SRTP: Secure RTP (RFC 3711) - Encrypted media streams

 Diameter: AAA protocol used in IMS (authentication, authorization,
accounting)
o Sh: Diameter interface for subscriber data access

o Ro: Diameter interface for online charging

SIPREC: Session Initiation Protocol Recording (RFC 7866) - Call recording
protocol

Telecommunications Equipment

SBC: Session Border Controller - Network edge security and media gateway

MRF: Media Resource Function - Media processing (transcoding, mixing,
recording)

UE: User Equipment - Mobile handset or device
PSAP: Public Safety Answering Point - Emergency services call center

DRA: Diameter Routing Agent - Diameter message routing

Lawful Interception

LI: Lawful Interception - Legal monitoring of telecommunications

IRI: Intercept Related Information - Call metadata for law enforcement
CC: Content of Communication - Actual voice/media content

SRC: Session Recording Client - SIPREC client (OmniTAS role)

SRS: Session Recording Server - SIPREC server for recording storage
X1 Interface: LI administrative interface (warrant provisioning)

X2 Interface: Ll interface for IRI delivery

X3 Interface: Ll interface for CC delivery

R226: Articles R226-3 and R226-7 of French Penal Code governing
interception equipment

Call Processing

CDR: Call Detail Record - Billing and logging record for each call

B2BUA: Back-to-Back User Agent - SIP element that acts as both client and
server

DTMF: Dual-Tone Multi-Frequency - Touch-tone signals

MSISDN: Mobile Station International Subscriber Directory Number - Phone
number

IMSI: International Mobile Subscriber Identity - Unique subscriber identifier

E.164: International numbering plan for telephone numbers

Security and Encryption

e TLS: Transport Layer Security (RFC 5246, RFC 8446) - Encryption protocol

e PFS: Perfect Forward Secrecy - Cryptographic property ensuring session
key security

e SHA-512: Secure Hash Algorithm with 512-bit output

e AES: Advanced Encryption Standard

¢ RSA: Rivest-Shamir-Adleman - Public key cryptography algorithm
e« ECDSA: Elliptic Curve Digital Signature Algorithm

e PKI: Public Key Infrastructure - Certificate management system

e CA: Certificate Authority - Issues digital certificates

e CRL: Certificate Revocation List

e OCSP: Online Certificate Status Protocol

Network and Location

e MAP: Mobile Application Part - SS7 protocol for mobile networks

e HLR: Home Location Register - Subscriber location database (legacy)
e SS7: Signaling System No. 7 - Legacy telephony signaling

e NANP: North American Numbering Plan

¢ Cell Tower/Cell ID: Mobile network base station identifier for location
tracking

Data Formats and Storage

SQLite: Embedded relational database

SQLCipher: SQLite extension with encryption support

CSV: Comma-Separated Values - Export format

JSON: JavaScript Object Notation - Data interchange format

XML: eXtensible Markup Language - Structured data format

Application Components

API: Application Programming Interface - Programmatic access

Ul: User Interface - Web-based control panel

RBAC: Role-Based Access Control - Permission system

UUID: Universally Unique Identifier - Session tracking

Document Version: 1.0 Date: 2025-11-29 Prepared for: ANSSI R226
Authorization Application Document Classification: Regulatory Compliance -
Confidential

Configuration Guide

[

This document provides comprehensive configuration reference for the TAS
Application Server.

Related Documentation

Core Configuration

e [] - Overview and quick start
e [] - Monitoring and operational tasks
e] - Prometheus metrics and monitoring

Integration Interfaces

e [] - Subscriber data retrieval from HSS/Repository
e] - OCS integration and credit control
e [J - HLR queries for roaming and call forwarding

Call Processing

* 0 - XML dialplan and call routing logic
e] - E.164 normalization rules
o {3} - Call forwarding, CLI blocking, emergency

Value-Added Services

e [] - Voicemail service with SMS notifications
e [J - Text-to-Speech prompt configuration

e [- Multi-party conferencing

Testing & Compliance

e [] - Testing tools

° 0 - French market compliance

Config

The Application Server needs:

e To connect to SIP Trunks / SBCs for calls to/from off-net

e Connect to the DRA or HSS to get the Sh

e Optionally connect to DRA or OCS for Ro online charging

e Dialplan Config

e Configuration around the dialing rules / number translation
¢ Voicemail config

e Prompts

» Tests

e Metrics (Prometheus)

Event Socket Configuration

The Event Socket is used for call control, monitoring active calls, and
interacting with the telephony engine. This connection allows the TAS to control
call routing, retrieve channel variables, and manage active sessions.

Configuration Location: config/runtime.exs

config :tas,
fs event socket: %{
host: "127.0.0.1",
port: 8021,
secret: "YourSecretPassword"

Configuration Parameters:

* host (string, required): Hostname or IP address of the Event Socket server

o Default: "127.0.0.1" (localhost)
o Use localhost if the telephony engine runs on the same server as TAS
o Use remote IP for distributed deployments

o Example: "10.8.82.60" for remote connection

e port (integer, required): TCP port for Event Socket connections

o Default: 8021
o Standard Event Socket port is 8021
o Must match the Event Socket configuration in your telephony engine

o Example: 8021

e secret (string, required): Authentication password for Event Socket

o Must match the password configured in your telephony engine
o Used for authenticating ESL connections
o Security Note: Use a strong random password and keep it secure

o Example: "cd463RZ8qMK9AHMMDGT3V"

Use Cases:

e Real-time call control and routing

e Retrieving active call information for the /calls view in Control Panel
e Executing dialplan applications programmatically

e Monitoring call state changes and events

e Managing conference calls
Connection Behavior:

e TAS establishes persistent connections to the Event Socket
e Automatically reconnects on connection failure

e Used for both inbound (receiving events) and outbound (controlling calls)
modes

e Connection timeouts and retry logic are built-in

Security Considerations:

e Always use a strong, unique password for the secret parameter

e If using remote connections, ensure firewall rules allow only trusted TAS
servers

e Consider using localhost-only connections when TAS and telephony engine
are co-located

e Do not expose Event Socket port to public networks
Troubleshooting:

e Connection Refused: Verify the telephony engine is running and Event
Socket is enabled

¢ Authentication Failed: Check that secret matches the telephony engine
configuration
 Timeout Errors: Verify network connectivity and firewall rules

e Cannot Control Calls: Ensure TAS has connected successfully (check
logs)

Control Panel Configuration

The Control Panel provides a web-based interface for monitoring and managing
the TAS system. This includes viewing subscribers, CDRs, active calls, Diameter
peers, gateways, and system configuration.

Configuration Location: config/runtime.exs

config :control panel,
page order: ["/application", "/configuration"]

config :control panel, ControlPanelWeb.Endpoint,
url: [host: "0.0.0.0", path: "/"],
https: [
port: 443,
keyfile: "priv/cert/server.key",
certfile: "priv/cert/server.crt"

Configuration Parameters:

Page Order Configuration

* page_order (list of strings): Controls the display order of configuration

pages in the Control Panel
o Specifies which pages appear in navigation and their order

o Example: ["/application", "/configuration"]

o Default: If not set, pages appear in default alphabetical order

Web Endpoint Configuration

e url (map): Public URL configuration for the Control Panel

o host: Hostname for generating URLs (e.g., "tas.example.com" or
||0.0.0.0||)

o path: Base path for all Control Panel routes (default: "/")

o Used for generating absolute URLs in redirects and links

e https (map): HTTPS/TLS configuration for secure access

o port (integer): HTTPS port number (standard is 443)

o keyfile (string): Path to TLS private key file (PEM format)
o certfile (string): Path to TLS certificate file (PEM format)
o Both files must be readable by the TAS application

Certificate Management:
The Control Panel requires valid TLS certificates for HTTPS access:

1. Self-Signed Certificates (Development/Testing):

openssl req -x509 -newkey rsa:4096 -keyout priv/cert/server.key

\
-out priv/cert/server.crt -days 365 -nodes

2. Production Certificates:

o Use certificates from a trusted Certificate Authority (CA)

o Common providers: Let's Encrypt (free), commercial CAs

o Ensure certificates include full chain for browser trust

o Keep private keys secure with appropriate file permissions (chmod 600)

Access Control:

The Control Panel provides access to sensitive operational data:

Subscriber Information: Registration details, call history, locations
Call Detail Records: Complete call records with MSISDN data

System Configuration: Diameter peers, gateways, routing

Active Calls: Real-time monitoring of ongoing sessions
Recommended Security Measures:

e Deploy behind firewall or VPN for production environments

e Use strong TLS certificates from trusted CAs

¢ Implement network-level access controls (IP whitelisting)

e Consider additional authentication layers if exposing externally
e Regularly audit access logs

e Use HTTPS only - never serve over plain HTTP
Common Deployment Patterns:

1. Internal-Only Access:

url: [host: "10.8.82.60", path: "/"] # Internal network only

2. External Access with Domain:

url: [host: "tas.operator.com", path: "/"]
https: [port: 443, ...]

3. Behind Reverse Proxy:

url: [host: "tas.internal", path: "/panel"] # Nginx/Apache
forwards to this

Troubleshooting:

» Certificate Errors: Verify paths to keyfile and certfile are correct and
files are readable

e Port Already in Use: Check if another service is using port 443, or change
to another port

e Cannot Access Ul: Verify firewall rules allow access to the configured
HTTPS port

e SSL Handshake Failures: Ensure certificate and key match and are in
PEM format

API Configuration

The TAS includes a REST API for programmatic access to system functions,
subscriber management, and operational data. The API supports
OpenAPIl/Swagger documentation and is secured with TLS.

Configuration Location: config/runtime.exs

config :api ex,
api: %{

port: 8444,
listen ip: "0.0.0.0",
product name: "OmniTAS",
title: "API - OmniTAS",
hostname: "localhost",
enable tls: true,
tls cert path: "priv/cert/server.crt",
tls _key path: "priv/cert/server.key"

Configuration Parameters:
e port (integer, required): TCP port for the API server

o Default: 8444

o Choose a port that doesn't conflict with other services

o Standard HTTPS port is 443, but custom ports are common for APIs
o Example: 8444, 8443, 9443

listen_ip (string, required): IP address to bind the API server

o "0.0.0.0": Listen on all network interfaces (external access)
o "127.0.0.1": Listen only on localhost (internal access only)
o Specific IP: Bind to a particular interface (e.g., "10.8.82.60")
o Security: Use "127.0.0.1" if APl only needed internally

product_name (string): Product identifier for API metadata

o Used in API responses and documentation

o Example: "OmniTAS", "MyOperator-IMS"

title (string): Human-readable title for APl documentation

o Displayed in OpenAPl/Swagger Ul header
o Example: "API - OmniTAS", "IMS Application Server API"

hostname (string): Hostname for APl server in documentation

o Used in OpenAPI spec for generating example URLs
o Should match how clients access the API

o Examples: "localhost", "api.operator.com", "10.8.82.60"

enable_tls (boolean): Enable or disable TLS/HTTPS for API

o true: Serve APl over HTTPS (recommended for production)
o false: Serve APl over HTTP (only for testing/development)

o Security: Always use true in production environments

tls_cert_path (string): Path to TLS certificate file (PEM format)

o Required when enable tls: true
o Must be readable by the TAS application

o Example: "priv/cert/server.crt"

tls_key path (string): Path to TLS private key file (PEM format)

[e]

Required when enable tls: true

[e]

Must be readable by the TAS application

(o]

Security: Protect with file permissions (chmod 600)

(o]

Example: "priv/cert/server.key"
API Features:
The REST API provides programmatic access to:

e Subscriber management and provisioning
e Call Detail Records (CDR) queries

e System status and health checks

e Diameter peer status

e Gateway status and statistics

e Active call monitoring

e Configuration management
OpenAPl/Swagger Documentation:

The API includes built-in OpenAPI (Swagger) documentation:

Access Swagger Ul at: https://hostname:port/api/swaggerui

OpenAPI JSON spec at: https://hostname:port/api/openapi

Interactive API testing directly from the browser

Complete endpoint documentation with request/response schemas
Security Considerations:

¢ Authentication: Implement API authentication based on your security
requirements

¢ Network Access: Use firewall rules to restrict APl access to authorized
clients

e TLS Required: Always enable TLS in production (enable tls: true)
e Certificate Validation: Use trusted certificates for production APIs
* Rate Limiting: Consider implementing rate limiting for public-facing APIs

e Access Logs: Monitor APl access logs for suspicious activity

Example Usage:

Query API with curl (replace with actual endpoint)
curl -k https://localhost:8444/api/health

Access Swagger documentation
https://localhost:8444/api/swaggerui

Common Deployment Scenarios:

1. Internal API Only:

listen ip: "127.0.0.1" # Only accessible from localhost
enable tls: false # HTTP for internal testing

2. Production APl with TLS:

listen ip: "0.0.0.0" # Accessible from network
enable tls: true # HTTPS required
hostname: "api.operator.com"

3. Development/Testing:

listen ip: "0.0.0.0"
enable tls: false # HTTP for easier testing
port: 8080 # Non-privileged port

Troubleshooting:

e Port Binding Failed: Verify port is not in use by another service, or run as
root for ports < 1024

e TLS Errors: Check that certificate and key paths are correct and files are
readable

e Cannot Connect: Verify firewall allows access to the configured port

¢ Certificate Mismatch: Ensure hostname matches the certificate Common
Name (CN) or SAN

¢ API Returns 404: Check that the API application started successfully in
logs

SIP Trunk Config

Ansible is responsible for creating the XML config for each outgoing gateway,
visible in the Gateways tab, which are used for outgoing calls.

CSCF addresses and Gateway addresses have to be included in the that are
visible in the runtime config, so we know what IPs to allow calls from, we do
this in the allowed sbc source ips for Gateways / SBCs (sources that will
send MT traffic towards the network) and allowed cscf ips for CSCFs (sources
that MO traffic will originate from).

Note - If you will route calls from your TAS to itself (ie a MO call to an on-net
subscriber routes back into the MT dialplan) then your TAS IP must also be in
the allowed source IPs list.

config :tas,
allowed sbc source ips: ["10.5.198.200", "103.26.174.36"],
allowed cscf ips: ["10.8.3.34"],

From the Web Ul we can see the state of each gateway, and:

e S|P Registration status (if register is enabled)

e SIP Realm

e SIP Proxy Address (if used)

e Username

e Ping Time (Average SIP OPTIONSs response time (if SIP OPTIONs enabled))
e Uptime (Seconds since the profile was restarted or came up)

e Calls in / Calls Out / Failed Calls In / Failed Calls Out

e Last SIP OPTIONs ping time (Epoch)

e S|P OPTIONs ping frequency

e More info in the detail button

Gateway Configuration Reference

Gateways are configured in XML format. Each gateway represents a SIP trunk
connection to an external SBC, carrier, or PSTN gateway.

Basic Gateway Example:

<include>
<gateway name="carrier trunk">
<param name="proxy" value="203.0.113.50;transport=tcp"/>
<param name="register" value="true"/>
<param name="caller-id-in-from" value="true"/>
<param name="username" value="trunk user"/>
<param name="password" value="secure password"/>
<param name="register-transport" value="tcp"/>
<param name="retry-seconds" value="30"/>
<param name="ping" value="25"/>
</gateway>
</include>

Gateway without Registration:

<include>
<gateway name="sbc static">
<param name="proxy" value="198.51.100.10"/>
<param name="register" value="false"/>
<param name="caller-id-in-from" value="true"/>
</gateway>
</include>

Gateway Parameters
Required Parameters
name (gateway attribute)

e The unique name identifier for this gateway

e Used in dialplan to reference the gateway:
sofia/gateway/name/destination

e Example: <gateway name="my trunk">
proxy

e S|P proxy/gateway IP address or hostname
e Can include port and transport protocol

e Examples:
o value="203.0.113.50" (default port 5060, UDP)

o value="203.0.113.50:5061" (custom port)
o value="203.0.113.50;transport=tcp" (TCP transport)
o value="203.0.113.50:5061;transport=tls" (TLS on port 5061)

register

e Whether to send SIP REGISTER to the gateway
e Values: true | false
e Set to true if the trunk requires registration

e Set to false for static IP-based trunks

Authentication Parameters

username

SIP authentication username
Used in REGISTER and for digest authentication

Required if register="true"

Example: value="trunk account 123"

password

SIP authentication password

Used for digest authentication challenges

Required if register="true"

Example: value="MySecureP@sswOrd"
realm

¢ SIP realm for authentication
e Optional - usually auto-detected from challenge

e« Example: value="sip.carrier.com"
auth-username

¢ Alternative username for authentication (if different from username)

e Rarely needed - only if carrier requires different user in auth vs From
header

e Example: value="auth user 456"

Registration Parameters

register-transport

Transport protocol for REGISTER messages

Values: udp | tcp | tls

Must match transport specified in proxy parameter

Example: value="tcp"
register-proxy

e Alternative proxy address for REGISTER (if different from call routing)
e Useful when registration server differs from call routing server

e Example: value="register.carrier.com:5060"
retry-seconds

e Seconds to wait before retrying failed registration
e Default: 30
e Range: 5 to 3600

e Example: value="30"

expire-seconds

Registration expiry time in seconds
Default: 3600 (1 hour)

The gateway will re-register before expiry

Example: value="1800" (30 minutes)
caller-id-in-from

¢ Include caller ID in SIP From header
e Values: true | false

e true: From header includes actual caller number (required by most
carriers)

e false: From header uses gateway username
e Recommendation: Set to true for most deployments

e Example: value="true"

Monitoring Parameters
ping

¢ Send SIP OPTIONS ping every N seconds

e Monitors gateway availability and measures latency
e Disabled if not specified or setto 0

e Typical values: 15 to 60 seconds

e Visible in Gateway Status Ul as "Ping Time"

e Example: value="25"
ping-max

¢ Maximum time (seconds) to retry pings before marking gateway down
e Default: Calculated from ping interval

e Example: value="3"

Call Routing Parameters

extension

e Fixed destination number to always dial on this gateway
e Rarely used - usually destination comes from dialplan

e Example: value="+12125551234"

extension-in-contact

Include extension in Contact header

Values: true | false
Default: false

Example: value="false"
contact-params

e Additional parameters to append to Contact header
e Useful for carrier-specific requirements

e Example: value="1line=1;isup=true”
Advanced Parameters
from-user

e Override username in From header
e Default: Uses calling number or gateway username

e Example: value="trunk pilot"
from-domain

e Override domain in From header
e Default: Uses proxy domain

e Example: value="my-domain.com"
outbound-proxy

e Outbound proxy for all SIP messages
» Different from proxy - used as Route header target

e Example: value="edge-proxy.carrier.com:5060"

context

Dialplan context for incoming calls from this gateway

Default: public

Allows different incoming call routing per gateway

Example: value="from-carrier"
channels

¢ Maximum concurrent calls on this gateway
e Default: Unlimited
e Used for capacity management

e Example: value="100"
dtmf-type

e DTMF transmission method

e Values: rfc2833 | info | inband | auto

e Default: rfc2833 (recommended)

e rfc2833: RTP telephone events (most common)
e info: SIP INFO messages

e inband: Audio tones

e Example: value="rfc2833"

codec-prefs

Preferred codec list for this gateway

Comma-separated list in preference order
Example: value="PCMU,PCMA,6G729"
Common codecs: PCMU, PCMA, G729, AMR, AMR-WB, G722, OPUS

rtp-timeout-sec

Hangup call if no RTP received for N seconds
Default: 0 (disabled)

Useful for detecting dead calls

Example: value="120"

rtp-hold-timeout-sec

e Timeout for calls on hold with no RTP
e Default: 0 (disabled)

* Example: value="1800" (30 minutes)
SIP Signaling Options
sip-port

e Local SIP port to use for this gateway
e Default: Profile's port
e Rarely needed

e Example: value="5060"
rtp-ip

e Local IP address for RTP media
e Default: Profile's RTP IP

e Example: value="10.0.0.5"
register-proxy-port

e Port for registration proxy
e Only needed if different from proxy port

e Example: value="5061"
contact-host

e Override host portion of Contact header

e Useful for NAT scenarios

* Example: value="public-ip.example.com"
distinct-to

e Use distinct To header (different from Request-URI)
e Values: true | false

e Carrier-specific requirement

e Example: value="false"

cid-type

Caller ID type in Remote-Party-ID or P-Asserted-Identity headers

Values: rpid | pid | none

rpid: Remote-Party-ID header

pid: P-Asserted-ldentity header

Example: value="pid"
extension-in-contact

e Add extension parameter to Contact URI
e Values: true | false

e Example: value="true"
Transport Security

transport (in proxy parameter)

Transport protocol

Values: udp | tcp | tls | ws | wss

Specified as part of proxy value

Example: proxy="203.0.113.50;transport=tcp"

For TLS connections, additional certificate configuration may be required in the
SIP profile.

Complete Example with Common Options

<include>
<gateway name="primary carrier">
<!-- Required: Basic connection -->
<param name="proxy"
value="sbc.carrier.com:5060;transport=tcp"/>
<param name="register" value="true"/>

<!-- Authentication -->
<param name="username" value="customer_ trunk 01"/>
<param name="password" value="SecurePasswordl23"/>

<!-- Registration -->

<param name="register-transport" value="tcp"/>
<param name="expire-seconds" value="1800"/>
<param name="retry-seconds" value="30"/>

<!-- Caller ID -->
<param name="caller-id-in-from" value="true"/>

<!-- Monitoring -->
<param name="ping" value="30"/>

<!-- Media -->
<param name="codec-prefs" value="PCMU,PCMA,G729"/>
<param name="dtmf-type" value="rfc2833"/>

<!-- Call limits -->
<param name="channels" value="100"/>

<!-- RTP timeouts -->
<param name="rtp-timeout-sec" value="300"/>
</gateway>
</include>

Gateway Usage in Dialplan

Reference gateways in your dialplan using the
sofia/gateway/name/destination format:

<!-- Route to specific gateway -->
<action application="bridge" data="sofia/gateway/primary carrier/+12]

<!-- Route using variable -->
<action application="bridge" data="sofia/gateway/primary carrier/${te

<!-- Route with custom SIP headers -->
<action application="bridge" data="{sip h X-Custom=Value}sofia/gatews

<!-- Failover between gateways -->

<action application="bridge"
data="sofia/gateway/primary carrier/${tas destination_ number}|sofia/c

Troubleshooting Gateway Issues

Gateway Won't Register:

Verify username and password are correct

Check proxy address is reachable

Confirm register-transport matches carrier requirements

Review logs for authentication failures

Calls Fail:

Check gateway status in Web Ul (/gw)

Verify caller-id-in-from setting matches carrier requirement

Confirm codec compatibility with codec-prefs
Check firewall allows SIP and RTP traffic

Poor Call Quality:

* Review ping times in Gateway Status
e Check rtp-timeout-sec isn't too aggressive
e Verify codec preferences match network capabilities

e Monitor network latency and packet loss

Diameter Peer Config
Dimeter peers must be defined in the runtime config.

This config is largely boilerplate.

The Ro interface does not need to be included in the Applications if Ro is not

used in your deployment.

Diameter Peer Connectivity

Sh-

TAS _— | Repository on Sh
|—— DRA-1:3868 (Sh/Ro)
e -
/! / ~—_ —
s - ‘[ocs
DiameterEx Service
listen_ip:port [
\\ J — o I
N ,f-fSh_ Repository (HA)
e DRA-2:3869 (5h/Ro)

-

RO™ ocs (HA)

config :diameter ex,
diameter: %{
service name: :omnitouch tas,
listen ip: "10.8.82.60",
listen port: 3868,
decode format: :map,
host: "example-dc0l-as01",
realm: "epc.mnc@O0l.mcc001.3gppnetwork.org",
product name: "OmniTAS",
request timeout: 5000,
peer selection algorithm: :random,
allow undefined peers to connect: true,
log unauthorized peer connection attempts: true,
control module: Tas.Control.Diameter,
processor module: DiameterEx.Processor,
auth application ids: [],
acct application ids: [],
vendor id: 10415,
supported vendor ids: [10415],
Optional: Global destination realm for all applications
destination realm: "global.destination.realm",
applications: [
%{
application name: :sh,
application dictionary: :diameter gen 3gpp sh,
Optional: Application-specific destination realm for Sh
requests
destination realm: "sh.destination.realm",
vendor specific application ids: [
%{
vendor_id: 10415,
auth application id: 16 777 217,
acct application id: nil
}
]

o°

{
application name: :ro,

application dictionary: :diameter gen 3gpp ro,

Optional: Application-specific destination realm for Ro
requests

destination realm: "ocs.destination.realm",

vendor specific application ids: [

%{
vendor id: 0O,
auth application id: 4,
acct application id: nil

}

¥
I
peers: [
%{
port: 3868,
host: "example-dcOl-
dra®l.epc.mnc001l.mcc001.3gppnetwork.org",

ip: "1.2.3.4",
realm: "epc.mnc00l.mcc@Ol.3gppnetwork.org",
tls: false,

transport: :diameter tcp,
initiate connection: true

port: 3869,

host: "example-dcOl-
dra02.epc.mnc001l.mcc001.3gppnetwork.org",

ip: "1.2.3.44",

realm: "epc.mncOO0l.mcc001.3gppnetwork.org",

tls: false,

transport: :diameter tcp,

initiate connection: true

Diameter Configuration Parameters
Service Configuration:
e service_name (atom): Unigue identifier for this Diameter service instance

o Example: :omnitouch tas

o Used internally for service management

listen_ip (string): IP address to bind for Diameter connections

o Example: "10.8.82.60"
o Use "0.0.0.0" to listen on all interfaces

o Peers will connect to this IP

listen_port (integer): TCP port for Diameter connections

o Standard Diameter port: 3868

o Must not conflict with other services

host (string): Diameter host identity (without realm)

o Example: "example-dc0l-as0l"
o Combined with realm to form Origin-Host AVP

o Must be unique within the Diameter network

realm (string): Diameter realm identity

o Example: "epc.mncOO01l.mccO01.3gppnetwork.org"
o Used in Origin-Realm AVP

o Must match 3GPP network identifier conventions

product_name (string): Product identifier in CER/CEA messages

o Example: "OmniTAS"

o Used in Capabilities-Exchange messages

request_timeout (integer): Timeout in milliseconds for Diameter requests

o Example: 5000 (5 seconds)

o Requests without response within this time will timeout

peer_selection_algorithm (atom): Algorithm for selecting peer when
multiple available

o Values: :random | :round robin | :priority
o :random: Random peer selection

o :round robin: Distribute requests evenly across peers

e vendor_id (integer): 3GPP vendor ID

o Standard 3GPP vendor ID: 10415
o Used in Vendor-Specific-Application-ld AVP

Destination Realm Configuration

The destination realm parameter controls the Destination-Realm AVP
included in Diameter requests. This AVP tells the Diameter Routing Agent (DRA)
where to route the request.

Three levels of configuration:

1. Application-specific (highest priority): Set destination realm within
each application configuration

2. Global: Set destination realm at the top level of the diameter config

3. Fallback (lowest priority): Uses the realm value if neither of the above are
configured

Configuration Examples:

Example 1: Application-specific destination realms
config :diameter ex,
diameter: %{
realm: "epc.mnc@O0l.mcc001.3gppnetwork.org",
applications: [
%{
application name: :sh,
destination realm:
"hss.epc.mncO01.mccOOL1.3gppnetwork.org",
... other config

application name: :ro,
destination realm:

"ocs.epc.mnc001.mccOO1.3gppnetwork.org",
... other config

Example 2: Global destination realm with app-specific override
config :diameter_ex,
diameter: %{
realm: "epc.mncOO0l.mcc001.3gppnetwork.org",
destination realm: "dra.epc.mnc001l.mcc@01l.3gppnetwork.org", #
Default for all apps
applications: [
%{
application name: :sh,
Will use global: "dra.epc.mnc001l.mcc001.3gppnetwork.org"

application name: :ro,
destination realm:
"ocs.epc.mnc001.mccOOLl.3gppnetwork.org", # Override

}

Example 3: No destination realm configured (uses realm)
config :diameter ex,
diameter: %{
realm: "epc.mncOOl.mcc001.3gppnetwork.org",

No destination realm specified anywhere
applications: [
%{
application name: :sh,
Will use realm fallback:
"epc.mncO01.mccOO1.3gppnetwork.org"”

}

When to Use Destination Realm:

» Different backend systems: When Sh goes to HSS and Ro goes to OCS in
different realms

e DRA routing: When DRA uses Destination-Realm to route to different
backend clusters

 Multi-tenant deployments: Route different applications to different
tenant realms

* Testing scenarios: Override destination realm per application for testing
without changing peers

Fallback Hierarchy:

Application-specific destination realm
Lt (if not set)

Global destination realm
L (1f not set)

realm

This ensures the mandatory Destination-Realm AVP is always present in
outgoing requests.

You can check the status of Diameter peers from the Diameter tab on the Web
Ul.

You can also test retriving Sh data from the Sh tab on the Web Ul to try to
fetch any of the data from Sh.

Dialplan Configuration
& Call Routing

[

Comprehensive guide to XML dialplan configuration, call routing logic, and
dialplan variables.

Related Documentation

Core Documentation

e [J - Overview and quick start
e [] - SIP trunk and gateway configuration
e [] - Dialplan testing and templates viewer

Call Processing Flow

- E.164 normalization (happens before dialplan)
- Subscriber data retrieved for dialplan variables
- MSRN/HLR data in dialplan variables
- OCS authorization in call flow

°
I O Y [|

Services Implementation

o {3 - Implementing call forwarding, CLI blocking
in dialplan
e] - Voicemail routing and deposit/retrieval in dialplan

e [] - Using prompts in dialplan with playback

Monitoring

e [J - Dialplan-specific metrics and monitoring

* [- General system metrics

Dialplan Config / Call Routing

The TAS uses XML dialplans with a schema compatible with standard telecom

XML dialplan formats, with variables populated by the TAS. This means you can
define your own dialplan as needed, with the business logic for the operator,

but have all the required data such as Repository Data, SS7 routing info, IMPI /
IMPU identities, dialplan normalization, etc, etc.

Dialplans are written into priv/templates and take the form:

e mo dialplan.xml - Mobile Originated Call Dialplan

* mo_emergency dialplan.xml - Mobile Originated Emergency Call Dialplan
e mt dialplan.xml - Mobile Terminated Call Dialplan

You can view the Dialplans from inside the Web UL.

Various variables are set by the TAS before the XML gets parsed, these

variables are printed to the log at the start of the call with their current values
and are very helpful when defining your own call logic.

Call Processing Flow

[INVITE |

l

OmniCharge OmniRAN)))
Downloads > English+ Omnitouch Website (2

- -
Mﬂ,f’- MT Emergency
.-f l !
L L j
mo_dialplan.oml mt_dialplan.cmil ‘ mo_emergency_dialplan.xml ‘
Normalize numbers, Mormalize B-Mumber,
Route to PSAPIGW
translation pre-XML CF logic via Shjdefaults ‘ L
Ro enabled?

not skipped by regex?

/ yes
no ‘ CCRI/CCR-WCCRT

)

Bridge to On-
MNet/SBCMTrunk
{msrn override if set)

!

Mo answer/Busy?

¢
yes no

voicemail / missed call

200 OK / BYE
hook -

FreeSWITCH XML Dialplan Fundamentals

OmniTAS uses the same XML call routing system as the FreeSWITCH project,
which allows for flexible call routing to meet your needs.

This section explains the core concepts and provides practical examples.

Basic Structure

A dialplan consists of extensions containing conditions and actions:

<extension name="description-of-what-this-does">
<condition field="${variable}" expression="regex-pattern">
<action application="app name" data="parameters"/>
<anti-action application="app name" data="parameters"/>
</condition>
</extension>

Extensions are evaluated in order from top to bottom. When a condition
matches, its actions execute.

Conditions and Regex Matching

Conditions test variables against regular expressions. If the regex matches,
actions execute; if not, anti-actions execute.

Basic exact match:

<condition field="${tas destination number}" expression="2222">
<action application="1log" data="INFO Calling voicemail access

number" />

</condition>

Multiple number match:

<condition field="${tas destination number}"
expression=""(2222|3444|3445)%">

<action application="1log" data="INFO Calling special service"/>
</condition>

Pattern matching with capture groups:

<condition field="${tas destination number}" expression=""1(8[0-9]
{9})$">

<!-- Matches 1 followed by 8 and 9 more digits -->

<action application="1log" data="INFO Matched toll-free: $1"/>

<action application="bridge"
data="sofia/gateway/trunk/${tas destination number}"/>
</condition>

Prefix matching:

<condition field="${tas destination number}" expression=""00">
<!-- Matches any number starting with 00 (international) -->
<action application="log" data="INFO International call

detected"/>

</condition>

Range matching:

<condition field="${msisdn}" expression=""5551241[0-9]{4}%$">
<!-- Matches 55512410000 through 55512419999 -->
<action application="1log" data="INFO Subscriber in range"/>
</condition>

Actions vs Anti-Actions

Actions execute when a condition matches. Anti-actions execute when a
condition does NOT match.

<condition field="${cli withheld}" expression="true">
<!-- Executes if CLI is withheld -->
<action application="set"
data="effective caller_id number=anonymous"/>
<action application="set"
data="origination privacy=hide number"/>

<!-- Executes if CLI is NOT withheld -->
<anti-action application="1log" data="DEBUG CLI is normal"/>
<anti-action application="set"
data="effective caller id number=${msisdn}"/>
</condition>

The continue="true" Attribute

By default, when an extension's condition matches, the dialplan stops
processing further extensions. The continue="true" attribute allows
processing to continue to the next extension.

Without continue (default behavior):

<extension name="First-Check">
<condition field="${tas destination number}"
expression=""(.*)$">
<action application="1log" data="INFO Processing call"/>
</condition>
</extension>

<extension name="Never-Reached">

<!-- This NEVER executes because the previous extension matched
-->

<condition field="${tas destination number}"
expression=""(.*)$">

<action application="log" data="INFO This won't print"/>

</condition>

</extension>

With continue="true":

<extension name="Print-Vars" continue="true">
<condition field="${tas destination number}"
expression=""(.*)$">
<action application="info" data=""/>
</condition>
</extension>

<extension name="Check-Balance" continue="true">
<condition field="${hangup case}"
expression="0UTGOING CALL BARRED">
<action application="1log" data="ERROR Insufficient balance"/>
<action application="hangup" data="${hangup case}"/>
</condition>
</extension>

<extension name="Route-Call">
<!-- This extension still gets evaluated -->
<condition field="${tas destination number}"
expression=""(.*)$">
<action application="bridge"
data="sofia/gateway/trunk/${tas destination number}"/>
</condition>
</extension>

Use continue="true" for:

e Logging/debugging extensions
e Setting variables that apply to multiple scenarios

¢ Validation checks that don't route the call

Common Applications
call control

answer - Answer the call (send 200 OK)

<action application="answer" data=""/>

hangup - Terminate the call with a specific cause

<action application="hangup" data="NORMAL CLEARING"/>
<action application="hangup" data="USER BUSY"/>
<action application="hangup" data="NO ANSWER"/>

bridge - Connect the call to another destination

<!-- Bridge to external gateway -->

<action application="bridge"
data="sofia/gateway/trunk/+12125551234" />

<!-- Bridge to internal extension with codec preferences -->
<action application="bridge" data="{absolute codec string=AMR-
WB,AMR,PCMA}sofia/internal/sip:user@domain.com"/>

<!-- Bridge with timeout -->

<action application="bridge" data="
{originate timeout=30}sofia/gateway/trunk/${tas destination number}",

Variables and Channel Data

set - Set a channel variable

<action application="set" data="my variable=my value"/>
<action application="set" data="sip h X-Custom-
Header=CustomValue"/>

<action application="set"
data="effective caller_id number=anonymous"/>

unset - Remove a channel variable

<action application="unset" data="sip h P-Asserted-Identity"/>

export - Set variable and export to B-leg (bridged call)

<action application="export" data="sip h X-Account-Code=ABC123"/>

Media and Prompts

playback - Play an audio file

<action application="playback"
data="/sounds/en/us/callie/misc/8000/out of credit.wav"/>
<action application="playback"

data="$${base dir}/sounds/custom prompt.wav"/>

sleep - Pause for specified milliseconds

<action application="sleep" data="1000"/> <!-- Sleep for 1 second
-->

echo - Echo audio back to caller (testing)

<action application="echo" data=""/>

conference - Place call into conference

<action application="conference"
data="room-${destination number}@wideband"/>

voicemail

voicemail - Access voicemail system

<!l-- [eave voicemail for mailbox -->
<action application="voicemail" data="default default ${msisdn}"/>

<!-- Check voicemail with auth -->
<action application="voicemail" data="check auth default default
${msisdn}"/>

Logging and Debugging

log - Write to log file

<action application="1log" data="INFO Processing call from
${msisdn}"/>

<action application="log" data="DEBUG Destination:

${tas destination number}"/>

<action application="1log" data="ERROR Call failed with cause:
${hangup cause}"/>

info - Dump all channel variables to log

<action application="info" data=""/>

Misc Applications

say - Text-to-speech number reading

<action application="say" data="en number iterated
${tas destination number}"/>

send_dtmf - Send DTMF tones

<action application="send dtmf" data="1234#"/>

Practical Examples

Emergency Services Routing:

<extension name="Emergency-911">
<condition field="${tas destination number}"
expression=""(911|112)%$">
<action application="1log" data="ALERT Emergency call from
${msisdn}"/>
<action application="answer" data=""/>
<action application="playback"
data="/sounds/emergency services transfer.wav"/>
<action application="bridge"
data="sofia/gateway/emergency gw/${tas destination number}"/>
</condition>
</extension>

Conditional Routing Based on Balance:

<extension name="Check-Credit">
<condition field="${hangup case}"
expression="0UTGOING CALL BARRED">
<action application="answer" data=""/>
<action application="playback"
data="/sounds/out of credit.wav"/>
<action application="hangup" data="CALL REJECTED"/>
</condition>
</extension>

On-Net vs Off-Net Routing:

<extension name="Route-Decision">
<condition field="${on net status}" expression="true">
<!-- On-net: route back through TAS -->
<action application="1log" data="INFO Routing to on-net
subscriber"/>
<action application="bridge"
data="sofia/internal/+${tas destination number}@l0.179.3.60"/>
<anti-action application="log" data="INFO Routing off-net"/>
<anti-action application="bridge"
data="sofia/gateway/trunk/+${tas destination number}"/>
</condition>
</extension>

Anonymous Caller ID Handling:

<extension name="CLI-Privacy" continue="true">
<condition field="${cli withheld}" expression="true">
<action application="set"
data="effective caller_id name=anonymous"/>
<action application="set"
data="effective caller id number=anonymous"/>
<action application="set"
data="origination privacy=hide number"/>
</condition>
</extension>

Voicemail on No Answer:

<extension name="Try-Bridge-Then-VM">
<condition field="${tas destination number}"
expression=""(555124115\d{2})$">
<action application="set" data="call timeout=30"/>
<action application="bridge"
data="sofia/internal/${tas destination number}@domain.com"/>

<!-- If bridge fails, go to voicemail -->

<action application="1log" data="INFO Bridge failed, routing to
voicemail"/>

<action application="answer" data=""/>

<action application="voicemail" data="default default
${tas_destination number}"/>

</condition>

</extension>

Number Range Routing:

<extension name="Local-Numbers">
<condition field="${tas destination number}" expression=""([2-
9]\d{2})s$">
<!-- 3-digit local extensions 200-999 -->
<action application="1log" data="INFO Local extension: $1"/>
<action application="bridge"
data="sofia/internal/$1l@pbx.local"/>
</condition>
</extension>

<extension name="National-Numbers">
<condition field="${tas destination number}"
expression=""555\d{7}$">
<!-- National mobile numbers -->
<action application="1log" data="INFO National mobile call"/>
<action application="bridge"
data="sofia/gateway/national trunk/${tas destination number}"/>
</condition>
</extension>

<extension name="International">
<condition field="${tas destination number}"
expression=""00\d+$">
<!-- International calls starting with 00 -->
<action application="1log" data="INFO International call"/>
<action application="bridge"
data="sofia/gateway/intl trunk/${tas destination number}"/>
</condition>
</extension>

Further Documentation

For complete details on each application:

* FreeSWITCH Dialplan Documentation:

e FreeSWITCH mod_dptools:

(complete application reference)

e Regular Expression Reference:

https://freeswitch.org/confluence/display/FREESWITCH/Dialplan
https://freeswitch.org/confluence/display/FREESWITCH/mod_dptools
https://freeswitch.org/confluence/display/FREESWITCH/Regular+Expression

¢ Channel Variables:

The FreeSWITCH wiki contains detailed documentation for every dialplan
application, including all parameters and use cases.

Dialplan Variables

Variables set by the TAS in the XML dialplan logic:

Common Variables (All Call Types)

Initial Setup:

e destination number - translated destination number
* tas destination number - translated destination number

e effective caller id number - translated source number

Emergency Calls

e hangup_case - "none"

e ims private identity - private user identity
e ims public identity - public user identity

e msisdn - subscriber number (stripped of +)

e imsi - IMSI from private identity

e ims domain - domain from private identity

MT Calls (Mobile Terminated)

* ims private identity - private user identity

e ims public identity - public user identity

e msisdn - subscriber number (stripped of +)

e imsi - IMSI from private identity

e ims domain - domain from private identity

e call forward all destination - CFA destination or "none"

e call forward not reachable destination - CFNRc destination

e scscf address - S-CSCF address or "none"

https://freeswitch.org/confluence/display/FREESWITCH/Channel+Variables

e scscf domain - S-CSCF domain or "none"
e no _reply timer -timeout for no reply
* hangup case - "none" or "UNALLOCATED_NUMBER"

e msrn - MSRN from PRN (if roaming) or forwarded number from SRI (if call
forwarding active)

* tas destination number - Routing destination override (set to MSRN or
forwarded number)

MO Calls (Mobile Originated)

* hangup case - "none", "OUTGOING_CALL_BARRED", or
"UNALLOCATED NUMBER"

e ims private identity - private user identity

e ims public identity - public user identity

e msisdn - subscriber number (stripped of +)

e imsi - IMSI from private identity

e ims domain - domain from private identity

* allocated time - time allocated by OCS (if online charging enabled)

e cli withheld - "true" or "false" string

* on net status - "true" or "false" string (whether destination is on-net)
e msrn - MSRN for roaming subscribers (if applicable)

e tas destination number - MSRN override (if roaming)

Emergency Calling

Emergency calling is controlled through the emergency call codes
configuration parameter and is automatically detected during call
authorization.

Configuration

Configure the emergency call codes in your TAS configuration file:

Configuration parameters:

* emergency call codes: List of emergency service numbers to detect

e Common codes: "911" (US), "112" (EU), "000" (AU), "999" (UK), "sos"

e These codes are checked in addition to SIP emergency URNs (e.q.,
<urn:service:sos>)

e The system performs exact match comparison against the destination
number

Example configuration values:

e US deployment: ["911", "933"] - 911 for emergency, 933 for test
e European deployment: ["112", "999"]

e Australian deployment: ["000", "106"] - 000 for emergency, 106 for text
relay

e Multi-region: ["911", "112", "000", "sos"]

How Emergency Detection Works

The system checks two conditions:

1. SIP URI Emergency Service URN: Detects <urn:service:sos> or any
URI containing "service:sos"

2. Destination Number Match: Compares Caller-Destination-Number
against configured emergency call codes

If either condition is true, the call is classified as emergency.

Processing Flow

Emergency Call Processing Flow

-
e [EEE oo wxms

Call Flow Details:

1. Call arrives at TAS
2. Authorization module checks destination against emergency patterns

3. If emergency detected:

o Call type is set to :emergency

o mo_emergency dialplan.xml template is used
o OCS authorization is typically bypassed

o Call is routed to PSAP gateway

4. Metrics are recorded with call type: emergency label

Dialplan Routing

Define the routing for emergency calls in
priv/templates/mo emergency dialplan.xml. This template determines how
calls are routed to your PSAP (Public Safety Answering Point) gateway or SIP
URI based on your market requirements.

Example emergency dialplan:

<extension name="Emergency-S0S">
<condition field="${destination number}"
expression=""(911|912|913|sos)$">
<action application="1log" data="ALERT Emergency call from
${msisdn}"/>
<action application="answer" data=""/>
<action application="bridge"
data="sofia/gateway/psap gw/${destination number}"/>
</condition>
</extension>

Best Practices

e Always include "sos" in your emergency codes list for SIP URN
compatibility

¢ Include all local emergency numbers for your jurisdiction (e.g., 911,
112, 000, 999)

e Test emergency routing regularly using the Call Simulator

e Bypass OCS for emergency calls to ensure they always connect
(configured via skipped regex)

e Configure PSAP gateway with high availability and redundancy

e Monitor emergency call metrics to ensure system reliability

On-Net Mobile Originated call to an On-Net
Mobile-Terminating Subscriber

When a subscriber calls another subscriber on your network (on-net call), the
proper approach is to route the MO call back through the TAS for MT
processing. This ensures the called party receives full MT call treatment
including call forwarding, voicemail, MSRN routing for roaming, and all other
subscriber services.

Why Route MO to MT?

Without MT processing (direct routing):

Called party's call forwarding settings are ignored

No voicemail on no-answer

No MSRN routing for roaming subscribers

Missing subscriber service logic

With MT processing (route back to TAS):

Full call forwarding support (CFU, CFB, CFNRy, CFNRc)

Voicemail on busy/no-answer

MSRN routing for CS roaming subscribers

Complete subscriber service experience

Proper call state tracking for both parties

Implementation

The MO dialplan checks if the destination is on-net (served by your TAS), and if
so, routes the call back to the TAS itself. The TAS receives this as a new MT call
and processes it through the mt dialplan.xml template.

Example dialplan snippet:

<extension name="0On-Net-Route">
<condition field="${on net status}" expression="true">
<action application="1log" data="DEBUG On-Net MO call - Routing be

<!-- Clean up headers for internal routing -->
<action application="set" data="sip copy multipart=false"/>
<action application="set" data="sip h Request-Disposition=no-fork

<!-- Route back to TAS (becomes MT call) -->
<action application="bridge"
data="{absolute codec string='AMR-

WB,AMR,PCMA,PCMU' ,originate retries=1,originate timeout=60,sip invite
/>

<action application="hangup" data="" />

</condition>

</extension>

Key parameters:

* ${sip local network addr} - TAS IP address (e.g., 10.179.3.60)

* ${tas _destination number} - Called party's MSISDN

* sip invite call id=${sip call id} - Preserves call-id for tracking
* sip copy multipart=false - Prevents multipart message copying

e sip h Request-Disposition=no-fork - Ensures sequential processing

Call Flow:

P LR = no ——+ Procsed normal MO fSow
HO IRNTTE . aR

wrargancy_tall_codeaT NEE F mao_amangency disipien em - Anrauncemant prompk + Bridgs b= PSAP OW /LRI v Raporng | Matnicy

Important configuration:

e The TAS IP (e.g., 10.179.3.60) must be in your allowed sbc source ips
configuration list

e This allows the TAS to receive calls from itself for MT processing

e Without this, the TAS will reject the call as coming from an unauthorized
source

MSRN Usage for 2G/3G Roaming
Subscribers

When a subscriber is roaming in a 2G/3G Circuit-Switched (CS) network, the
TAS must obtain an MSRN (Mobile Station Roaming Number) to route the
incoming call to the subscriber's current location. This section explains how
MSRN retrieval and routing works.

What is MSRN?

MSRN (Mobile Station Roaming Number) is a temporary routing number
assigned by the visited network's VLR (Visitor Location Register) to route calls
to a roaming subscriber. It acts as a temporary destination number that points
to the subscriber's current location in the CS network.

MSRN Retrieval Flow

The TAS retrieves MSRN data via SS7 MAP (Mobile Application Part) protocol
using a two-step process:

MSRN Retrieval for MT Calls to Roaming Subscribers

g active

Implementation Details

Step 1: Send Routing Information (SRI)

The TAS queries the HLR via SS7 MAP to get routing information for the called
subscriber.

SRI Response Scenarios:
1. MSRN directly in SRI - Roaming subscriber with MSRN already available

o Response includes: MSISDN, GMSC, IMSI, and MSRN
o Example MSRN: 61412345678 (Australian mobile number format)

2. IMSI + VLR number - Subscriber registered in CS network (requires PRN)

o Response includes: MSISDN, GMSC, IMSI, and MSC/VLR number

o |ndicates subscriber is in CS network but MSRN must be requested

3. IMSI only (no VLR) - Subscriber not in CS network (IMS/PS only)

o Response includes: MSISDN, GMSC, IMSI

o Indicates subscriber is registered in IMS/4G only, not in CS network

4. Call forwarding active - SRl returns forwarding information

o Response includes forwarding reason (unconditional, busy, no-reply,
not-reachable)

o Response includes forwarded-to number

Step 2: Provide Roaming Number (PRN) - If Needed

If SRI returns IMSI + VLR but no MSRN, the TAS sends a PRN request to the VLR
to obtain the MSRN.

The VLR allocates a temporary MSRN from its pool and returns it to the TAS.
This MSRN is valid only for this specific call setup.

Example PRN Response: MSRN 61412345678

Dialplan Variable: msrn

Once the MSRN is retrieved via SS7 MAP, it's set as a dialplan variable that can
be used in the MT dialplan.

Variable: ${msrn}

Type: String (E.164 number without leading +)
Example: "61412345678" (Australian mobile format)

Usage: Route calls to CS roaming subscribers

Set by: HLR data retrieval process during MT call processing

Routing to MSRN in mt_dialplan.xml

The MSRN variable is used in the MT dialplan template to route calls to roaming
subscribers.

Dialplan logic:

1. Check for MSRN: Extension checks if msrn variable is set (contains digits)

2. Set timeout parameters:
o Progress timeout: 10 seconds to receive early media

o Bridge answer timeout: Uses subscriber's configured no-reply timer

3. Bridge to MSRN: Route call to MSRN via CS gateway
o Uses ignore early media=ring ready for consistent ringback

o Codec preference: AMR (mobile), PCMA/PCMU (wireline)
o Gateway: sofia/gateway/CS Gateway/+${msrn}

4. Fallback on failure: If bridge fails, route to call forwarding destination

Example dialplan snippet:

<extension name="Route-to-CS-MSRN" continue="false">
<condition field="msrn" expression=""(\d+)$">
<!-- Configure timeouts -->
<action application="set" data="progress timeout=10" />
<action application="set" data="bridge answer timeout=${no reply_

<!-- Bridge to MSRN via CS gateway -->
<action application="bridge"
data="
{ignore early media=ring ready,absolute codec string='AMR,PCMA,PCMU',
/>

<!-- Fallback to voicemail/call forwarding -->
<action application="bridge"
data="sofia/internal/${call forward not reachable destination}¢
</condition>
</extension>

Key Points

1. MSRN is temporary - Valid only for the duration of the call setup

2. CS network only - MSRN is used for 2G/3G roaming, not VoLTE/IMS
roaming

3. Priority in MT flow - MSRN check happens before standard IMS routing

4. Fallback to forwarding - If MSRN bridge fails, routes to call forwarding
destination

5. HLR overrides Sh - MSRN from HLR takes precedence over Sh subscriber
data

Configuration
SS7 MAP integration must be enabled in the TAS configuration:
Required settings:

e enabled: Set to true to enable SS7 MAP queries

e http_map_server_url_base: URL of your SS7 MAP gateway (e.g.,
"http://10.1.1.100:5001")

e gmsc: Gateway MSC number for SRI/PRN requests (e.g., "61400000000")

e timeout_ms: Query timeout in milliseconds (default: 5000ms)

See

for complete configuration details.

Call Forwarding Data Usage

Call forwarding settings determine how calls are routed when the primary
destination is unavailable. The TAS retrieves call forwarding data from two
sources: the Sh interface (HSS) and SS7 MAP (HLR), with HLR data taking

precedence.

Call Forwarding Types

The system supports four types of call forwarding:

Forwarding
Type

Call Forward
Unconditional
(CFU)

Call Forward
Busy (CFB)

Call Forward
No Reply
(CFNRYy)

Call Forward
Not
Reachable
(CFNRCc)

Variable

call forward all destination

call forward not reachable destination

call forward not reachable destination

call forward not reachable destination

When Aci

Always forwe
all calls
immediately

Subscriber's
busy

Subscriber d:
answer withi
timeout

Subscriber is
unreachable;

Data Sources

1. Sh Interface (HSS)

Static configuration stored in the HSS subscriber profile.

The TAS retrieves call forwarding settings from the HSS via Sh interface during
call processing. These are the provisioned/default settings for the subscriber.

Example retrieved data:

e call forward all destination: CFU destination (e.g., "61412345678")

e call forward not reachable destination: CFB/CFNRy/CFNRc destination
(e.g., "61487654321")

* no reply timer: Seconds before CFNRYy triggers (e.g., "20")

2. SS7 MAP (HLR)

Real-time data from the HLR, which may differ from HSS if subscriber
changed settings via USSD/MMI codes (e.qg., dialing *21* codes).

The TAS queries the HLR via SS7 MAP during call setup to get the current/active
forwarding settings.

HLR forwarding response includes:

e forwarded to number: The destination number for forwarding (e.g.,
"61412345678")

e reason: Forwarding type (unconditional, busy, no-reply, not-reachable)

e notification flags: Whether to notify calling party, forwarding party, etc.
Mapping to dialplan variables:

e If reason is unconditional - Sets call forward all destination

e If reason is busy, no-reply, or not-reachable - Sets
call forward not reachable destination

Variable Merging Priority

HLR data overrides Sh data when both are present.

The TAS retrieves subscriber data from both sources during MT call processing:

1. First, retrieves static configuration from HSS via Sh interface

2. Then, queries HLR via SS7 MAP for real-time settings

3. Merges the data, with HLR values taking precedence over Sh values

This ensures that recent subscriber changes (via USSD codes) are respected

even if HSS hasn't been updated yet.

Dialplan Variables

Available in MT calls:

Variable

call forward all destination

call forward not reachable destination

no reply timer

Default values:

e If not configured: "none" (string)

Type

String

String

String

Example

"61412345678"

"61487654321"

II20II

CFU
nun

CFB
desi

Tim:
sec(
CFN

e Check for presence: Use regex ~(?!none$) .* to match any value except

"none"

Call Forwarding in mt_dialplan.xml

Example 1: Call Forward Unconditional (CFU)

Routes ALL incoming calls immediately to the forwarding destination. The
forwarding destination is typically an off-net number, so it uses an external
gateway.

Gateway used: sofia/gateway/ExternalSIPGateway (your PSTN/interconnect
gateway)

Template example:

<extension name="Check-Call-Forward-All">
<condition field="${call forward all destination}" expression=""(7!
<action application="1log" data="INFO Call Forward All Set to redi

<!-- Set History-Info header for call forwarding -->
<action application="set" data="sip h History-Info=<sip:${destine

<!-- Mark call-id to indicate call forwarding type -->
<action application="set" data="sip call id=${sip call id};CALL F

<!-- Bridge to off-net forwarding destination -->
<action application="bridge"
data="{absolute codec string='AMR-
WB,AMR,PCMA,PCMU' ,originate retries=1,originate timeout=60}sofia/gate
/>
</condition>
</extension>

Key points:

e Uses external gateway because forwarding is typically to off-net number
e Marks call-id with ;CALL_FORWARD UNCONDITIONAL for tracking
e Sets History-Info header to identify original called number

e Example: Subscriber 61412345678 has CFU to 61487654321 - all calls
immediately forwarded

Example 2: Call Forward No Reply/Not Reachable

Used as fallback when bridge to primary destination fails (subscriber doesn't
answer, is busy, or unreachable).

Example dialplan snippet:

<!-- After bridge to MSRN or IMS fails... -->
<action application="log" data="INFO Failed to bridge Call - Routing

<!-- Set History-Info to indicate forwarding -->
<action application="set" data="sip h History-Info=<sip:${destinatior

<!-- Route to forwarding destination -->
<action application="bridge"
data="

{absolute codec string='AMR,PCMU,PCMA',originate timeout=65}sofia/gat
/>

Example scenario:

e Subscriber 61412345678 has CFNRy to voicemail number 61487654321
¢ Incoming call attempts to reach subscriber
e No answer after 20 seconds (no_reply_timer)

e Call forwarded to 61487654321 with History-Info header preserving original
destination

History-Info Header

The History-Info SIP header tracks call forwarding:

<action application="set" data="sip h History-Info=
<sip:${destination number}@${ims domain}>;index=1.1" />

Purpose:

* Indicates the call was originally for ${destination number}
¢ Allows downstream systems to identify forwarded calls

e Used by voicemail systems to deposit to correct mailbox

Example in voicemail routing:

<extension name="Voicemail Route" continue="false">
<condition field="${tas destination number}"

expression=""(555121|555122)%">

<!-- Extract the phone number from the History Info -->

<action application="set"
data="history info value=${sip i history info}"/>

<action application="1log" data="DEBUG Called Voicemail Deposit
Number for ${history info value}" />

<!-- Deposit voicemail to ORIGINAL called party, not voicemail
number -->
<action application="voicemail" data="default default
${history info value}"/>
</condition>
</extension>

How it works:

e Voicemail service numbers: 555121, 555122 (generic short codes)

e When call is forwarded to voicemail, History-Info contains original
destination

e Voicemail system extracts original number from History-Info header

e \Voicemail deposited to original called party's mailbox, not voicemail service
number

Best Practices

1. Always check for "none" - Use regex "~ (?!none$).* to avoid routing to
literal string "none"

2. Set History-Info - Always set when forwarding for proper call tracking
3. Use continue_on_fail - Allow fallback to forwarding if primary route fails

4. Adjust CLI format - National vs international prefix formatting (see Caller
ID section)

5. Test forwarding loops - Ensure forwarding destinations don't create
routing loops

Caller ID (CLI) Management

The TAS manages Calling Line Identification (CLI) presentation and formatting
throughout the call flow, handling privacy requests, prefix normalization, and

network-specific formatting requirements.

CLI Variables

Core CLI variables in dialplans:

Variable Usage Example
_ Subscriber's
msisdn "61412345678"
number (no +)
_ . Displayed caller "+61412345678" or
effective caller id number
- - = number "anonymous"
_ , Displayed caller "+61412345678" or
effective caller id name
name "anonymous"
. : , CLI for outbound
origination caller id number . "+61412345678"
Standard
caller id number FreeSWITCH CLI "+61412345678"

sip from user

cli withheld

origination privacy

var

SIP From header
user part

Privacy flag

Privacy setting

"0412345678" or
"+61412345678"

"true" or "false"

(string)

"hide number"

CLI Privacy (Withheld/Anonymous)

Detection Methods

The TAS detects CLI privacy requests through three methods:

1. Blocked Prefix in Dialed Number

Subscriber dials a prefix before the destination number to block their caller ID.
Common prefixes:

e *67 - North American standard
e #31# - European/GSM standard

e 1831 - Alternative format

The TAS checks if the dialed number starts with any configured blocked CLI
prefix. If detected, the cli withheld variable is set to "true".

Example: Subscriber dials *67555 1234 - the *67 prefix is detected and
removed, call proceeds to 5551234 with CLI withheld.

2. Anonymous in From Header

The user equipment (UE) sets the caller name to "anonymous" in the SIP From
header.

The TAS checks the Caller-0rig-Caller-ID-Name field (case-insensitive) for
the string "anonymous". If found, cli withheld is setto "true".

3. SIP Privacy Headers

The S-CSCF may set Privacy: id headers in the SIP INVITE, which are honored
by the dialplan.

Dialplan Implementation

The dialplan checks the cli withheld variable and sets all CLI-related
variables accordingly.

Example dialplan snippet:

<extension name="Manage-Caller-ID" continue="true">
<condition field="${cli withheld}" expression="true">

<!-- CLI is withheld - set to anonymous -->

<action application="1log" data="DEBUG CLI withheld detected"
/>

<action application="set"
data="effective caller id name=anonymous" />

<action application="set"
data="effective caller_id number=anonymous" />

<action application="set"
data="origination caller id number=anonymous" />

<action application="set"
data="origination privacy=hide number" />

<!-- CLI is NOT withheld - use normal MSISDN -->
<anti-action application="1log" data="DEBUG CLI is normal (not
withheld)" />
<anti-action application="set"
data="effective caller id number=${msisdn}" />
</condition>
</extension>

Note: This extension uses continue="true" so call processing continues to
routing extensions even after CLI is set.

CLI Format: National vs International

Different destinations may require different CLI formats depending on your
network's requirements.

Example: National Format

For national calls within your country, you may need to present CLI without the
country code.

Example dialplan snippet (Australian mobile network):

<extension name="Qutgoing-Call-CLI-National" continue="true">
<condition field="${msisdn}" expression=""61(.*)$">
<action application="1log" data="Setting source CLI to $1 for
national" />
<action application="set"
data="effective caller id number=$1"/> <!-- (0412345678 -->
<action application="set" data="effective caller id name=$1"/>
<action application="set" data="sip from user=$1"/>
<action application="set" data="sip cid type=pid"/>
</condition>
</extension>

How it works:

e Regex "61(.*)$ captures everything after country code 61
e Input: msisdn="61412345678" — Output: $1="412345678" or "0412345678"
¢ Presents CLI in national format for domestic calls

Example: International Format
For international calls, present CLI in full E.164 format with + prefix.

Example dialplan snippet:

<extension name="Qutgoing-Call-CLI-International" continue="true">
<condition field="${tas destination number}"
expression=""61(.*)%$">
<action application="log" data="Call is to national" />

<!-- Anti-action runs when destination is NOT national -->

<anti-action application="log" data="Setting source CLI for
international" />

<anti-action application="set"
data="effective caller id number=+${msisdn}"/> <!/-- +61412345678
-->

<anti-action application="set"
data="effective caller id name=+${msisdn}"/>

<anti-action application="set"
data="sip from user=+${msisdn}"/>

<anti-action application="set" data="sip cid type=pid"/>

</condition>

</extension>

How it works:

e Condition checks if destination starts with national prefix (e.g., 61 for
Australia)

e <anti-action> executes when condition does NOT match (international
call)

e Adds + prefix for full E.164 format on international calls

CLI Format for Call Forwarding

When routing to call forwarding destinations, you may need to adjust CLI
format depending on whether forwarding to on-net or off-net numbers.

Example: Adjusting CLI prefix for call forwarding

<!-- Adjust CLI format if needed for forwarding destination -->
<action application="set"

data="effective caller id number=${effective caller id number:3}"/>
<action application="set"

data="effective caller id name=${effective caller id name:3}"/>

String Slicing: ${variable:N} removes first N characters

e Input: effective caller id number="+61412345678" with :3 - Output:

"412345678"
* Input: effective caller id number="+61412345678" with :1 — Output:
"61412345678"
Use cases:

e Remove + for national forwarding: Use :1

e Remove country code for local format: Use appropriate offset (:3 for +61,
:2 for +1, etc.)

SIP P-Asserted-ldentity (PAl)

The sip cid type=pid setting controls how caller ID is presented:
<action application="set" data="sip cid type=pid"/>

Effect:

e Sets SIP P-Asserted-Identity header with caller information
e Used for trusted network caller ID assertion

e Standard for IMS networks

Removing Proprietary Headers

To prevent leaking internal network information, dialplans should remove
proprietary or internal headers before routing calls off-net.

Example: Cleaning headers before external routing

<action application="set" data="sip copy multipart=false"/>
<action application="set" data="sip copy custom headers=false"/>
<action application="unset" data="sip h P-Internal-Correlation-
ID"/>

<action application="unset" data="sip h P-Access-Network-Info"/>
<!-- Add more vendor-specific or internal headers as needed -->

Purpose:

Prevents internal routing data from reaching external networks

Removes vendor-specific proprietary headers

Privacy and security best practice

Reduces SIP message size

Common headers to remove:

Internal correlation/tracking IDs

Access network information (may reveal network topology)

Vendor-specific P-headers

Custom application headers meant for internal use only

Best Practices

1. Use continue="true" for CLI extensions - Allows multiple CLI formatting
rules

. Set sip_cid_type=pid - Required for IMS network compliance
. Test CLI withholding - Verify *67 and #31# prefixes work
. Format per destination - National vs international CLI formatting

. Remove proprietary headers - Prevent internal data leakage

o U A W N

. Handle anonymous gracefully - Both display and routing should work
with anonymous CLI

Bridging to Gateways

The TAS bridges calls to external gateways (IMS core, PSTN, etc.) using

FreeSWITCH's bridge application with carefully configured parameters for
codec negotiation, timeout handling, and retry logic.

Gateway Configuration

Gateways are configured as SIP trunks to external systems. The TAS uses a
single SIP interface for all traffic, with different gateways defined for different

destinations.

Example gateway configuration:

<gateway name="CS Gateway">
<param name="proxy" value="10.1.1.100:5060"/>
<param name="register" value="false"/>
<param name="caller-id-in-from" value="true"/>
<param name="extension-in-contact" value="true"/>
</gateway>
See for complete gateway setup.

Bridge Syntax

Calls are bridged to gateways using the following syntax:

Basic syntax:

<action application="bridge"
data="sofia/gateway/GATEWAY NAME/DESTINATION NUMBER"

With parameters:

/>

<action application="bridge" data="

{paraml=valuel, param2=value2}sofia/gateway/GATEWAY NAME/DESTINATION M
/>

Where GATEWAY NAME is the name of the gateway defined in your configuration
(e.g., IMS Core, PSTN Primary, International Gateway).

Bridge Parameters

Codec Selection

absolute codec_string - Prioritized codec list for negotiation:

<action application="bridge" data="

{absolute codec string='AMR,PCMA,PCMU'}sofia/gateway/IMS Gateway/+${n
/>

Codec priority order:

1. AMR (Adaptive Multi-Rate) - Mobile-optimized, preferred for cellular
2. PCMA (G.711 a-law) - Fixed-line standard in Europe/international
3. PCMU (G.711 p-law) - Fixed-line standard in North America

Template usage: priv/templates/mt dialplan.xml:80,
mo dialplan.xml:124, mo dialplan.xml:202

Timeout Configuration

originate_timeout - Maximum seconds to wait for answer (includes ringing):

<action application="set" data="originate timeout=60"/>
<action application="bridge" data="

{originate timeout=60}sofia/gateway/CS Gateway/+${msisdn}" />

progress_timeout - Seconds to wait for 180/183 (early media/ringing):

<action application="set" data="progress timeout=10" />

bridge_answer timeout - Seconds to wait for 200 OK after ringing starts:

<action application="set"
data="bridge answer timeout=${no reply timer}" />

leg_progress_timeout - Per-leg progress timeout:

<action application="set"
data="leg progress timeout=${no reply timer}" />

Template example: priv/templates/mt dialplan.xml:73-76

<action application="set" data="progress timeout=10" />
<!-- How long do we wait between the INVITE and a 200 0K
(Including RINGING) -->

<action application="set"
data="bridge answer timeout=${no reply timer}" />
<action application="set"

data="leg progress timeout=${no reply timer}" />

Variable: ${no reply timer} comes from subscriber data (typically 20-30
seconds)

Retry and Failure Handling

originate_retries - Number of retry attempts:

<action application="bridge" data="
{originate retries=1}sofia/gateway/CS Gateway/+${msisdn}" />

continue_on_fail - Continue dialplan execution after bridge failure:

<action application="set" data="continue on fail=true" />
<action application="bridge" data="

{continue on fail=true}sofia/gateway/CS Gateway/+${msisdn}" />
<!-- Subsequent actions execute if bridge fails -->

<action application="1log" data="INFO Bridge failed - routing to
voicemail" />

hangup_after_bridge - Hangup A-leg when B-leg hangs up:

<action application="set" data="hangup after bridge=true"/>

Early Media Handling

ignore_early media - Control early media behavior:

<action application="set" data="ignore early media=ring ready" />
<action application="bridge" data="

{ignore early media=ring ready}sofia/gateway/CS Gateway/+${msisdn}"
/>

Options:

* ring ready - Generate local ringback, ignore remote early media
e true - Completely ignore early media

o false (default) - Pass through early media (announcements, tones)

Why use ring_ready ? - Prevents caller from hearing network announcements
or tones from remote network

Template example: priv/templates/mt dialplan.xml:78-79

<action application="set" data="ignore early media=ring ready" />
<action application="bridge" data="

{ignore early media=ring ready, ...}sofia/gateway/CS Gateway/+${msrn}’
/>

On-net vs Off-net caller handling:

<extension name="Route-to-IMS-Sub-Early-Media" continue="true">
<condition field="${on net caller}" expression="true">

<!-- On-net caller - use ring ready -->

<action application="1log" data="INFO On-net caller
${effective caller _id number} - using
ignore early media=ring ready"/>

<action application="set"
data="ignore early media=ring ready"/>

<!-- Off-net caller - provide instant ringback -->
<anti-action application="1log" data="INFO Off-net caller

${effective caller id number} - setting instant ringback"/>
<anti-action application="set" data="instant ringback=true"/>
<anti-action application="set" data="ringback=${fr-ring}"/>
<anti-action application="set" data="transfer ringback=${fr-

ring}"/>

</condition>
</extension>

Note: The ${on net caller} variable is set based on your network's
subscriber numbering plan. You can also use regex patterns to match your
specific number ranges.

Caller ID Parameters

sip cid type=pid - Use P-Asserted-ldentity for caller ID:

<action application="set" data="sip cid type=pid" />
<action application="bridge" data="
{sip cid type=pid}sofia/gateway/CS Gateway/+${msisdn}" />

Common Bridge Patterns

Pattern 1: Route to IMS Subscriber via IMS Domain

Route MT call to IMS subscriber by sending to the IMS domain (S-CSCF will
resolve and route).

Template example:

<extension name="Route-to-IMS-Sub" continue="false">

<condition field="destination number" expression=""(.*)$">

<action application="set" data="continue on fail=true" />
<action application="set" data="hangup after bridge=true"/>
<action application="set" data="progress timeout=10" />

<!-- How long do we wait between the INVITE and a 200 OK (Includi
<action application="set" data="bridge answer timeout=${no reply_
<action application="set" data="leg progress timeout=${no reply t

<!-- Send call to IMS domain (S-CSCF resolves) -->
<action application="set" data="ignore early media=ring ready" /=
<action application="set" data="sip cid type=pid" />

<action application="bridge"
data="{absolute codec string='AMR-

WB,AMR,PCMA,PCMU"' ,ignore early media=ring ready,continue on fail=true

/>
<!-- Fallback to call forwarding if bridge fails -->
<action application="1log" data="INFO Failed to bridge Call - Rout
<action application="set" data="sip h History-Info=<sip:${destine
<action application="set" data="sip h Diversion=<sip:${destinatic
<!-- Route to off-net gateway for call forwarding -->
<action application="bridge"

data="{absolute codec string='AMR-WB,AMR,PCMU,PCMA',originate t
</condition>
</extension>

Key points:

Routes to ${msisdn}@${ims domain} (e.q.,
5551234567@ims.mnc380.mcc313.3gppnetwork.org)

IMS core (S-CSCF/I-CSCF) handles final routing to subscriber
ignore early media=ring ready provides consistent ringback
On failure, uses external gateway for off-net call forwarding

Sets History-Info and Diversion headers for call forwarding tracking

Pattern 2: Route to MSRN (CS Roaming)

Route to roaming subscriber via CS network:

Template: priv/templates/mt dialplan.xml:67-80

<extension name="Route-to-CS-MSRN" continue="false">
<condition field="msrn" expression=""(\d+)$">

<action application="set"
<action application="set"
<action application="set"
<action application="set"
<action application="set"

data="continue on fail=true" />
data="hangup after bridge=true"/>
data="progress timeout=10" />
data="bridge answer timeout=${no reply_
data="leg progress timeout=${no reply t

<!-- Send call to MSRN via Gateway -->

<action application="set"
<action application="set"

data="ignore early media=ring ready" /=
data="sip cid type=pid" />

<action application="bridge"

data="

{ignore early media=ring ready,absolute codec string='AMR,PCMA,PCMU",

/>
</condition>
</extension>

Pattern 3: On-Net Routing (MO to MT via TAS)

When a subscriber calls another on-net subscriber, the call must be routed
back to the TAS for full MT processing. This pattern is critical for ensuring that
on-net calls receive the same service treatment as external MT calls.

Why this pattern is required:

Without routing back to TAS, on-net calls would bypass MT processing entirely,

meaning:

Call forwarding settings would not be honored
Voicemail-on-busy/no-answer would not work
MSRN routing for roaming subscribers would fail
Subscriber service logic would be skipped

Call tracking and CDRs would be incomplete

By routing the MO call back to the TAS as a new MT call, the destination
subscriber gets full service treatment.

Template example:

<extension name="On-Net-Route">
<condition field="${on net status}" expression="true">
<action application="1log" data="DEBUG On-Net MO call - Routing bt

<!-- Clean up headers for internal routing -->
<action application="set" data="sip copy multipart=false"/>
<action application="set" data="sip h Request-Disposition=no-fork

<!-- Route back to TAS (becomes MT call) -->
<action application="bridge"
data="{absolute codec string='AMR-

WB,AMR,PCMA,PCMU' ,originate retries=1,originate timeout=60,sip invite
/>

<action application="hangup" data="" />

</condition>

</extension>

How it works:

1. MO Call Arrives: Subscriber A calls Subscriber B (both on-net)

2. Check On-Net Status: TAS determines destination is on-net via
${on net status} variable

3. Route to TAS: Bridge to
sofia/internal/${tas destination number}@${sip local network addr}
o Uses TAS's own IP address as destination

o Preserves original call-id for tracking

4. MT Processing: TAS receives call as new MT call and processes
mt _dialplan.xml
o Checks call forwarding settings (CFU, CFB, CFNRy, CFNRc)

o Queries for MSRN if subscriber is roaming
o Routes to IMS domain or forwards appropriately

5. Complete Service: Destination subscriber gets full MT treatment

Key points:

* Routes to ${sip local network addr} (TAS IP address, e.g., 10.179.3.60)
e Call is re-processed as MT call to destination subscriber

* Preserves call-id with sip invite call id parameter for end-to-end
tracking

e Enables all MT features: call forwarding, voicemail, MSRN routing,
subscriber services

e Proper call state tracking and CDR generation for both parties
e On-net calls get identical service treatment to external MT calls

e TAS IP must be in allowed sbc source ips configuration list

Variable: ${on net status} issetto "true" when the destination number is
served by your TAS. This is determined during MO call authorization by
checking if the destination MSISDN exists in your subscriber database.

Pattern 4: Off-Net Routing (MO to PSTN/External)

Route MO call to external PSTN, interconnect, or other external network via
gateway.

Gateway used: sofia/gateway/ExternalSIPGateway or
sofia/gateway/PSTN Gateway

Template example:

<extension name="Qutgoing-Call-Off-Net">
<condition field="${tas destination number}" expression=""(.*)$">

<action application="1log"

data="Sending call off-net" />

<!-- Clean up headers before external routing -->

<action application="set"

<!-- Set call event hooks

<action application="set"

<action application="set"
${api body}'/>

<action application="set"

<action application="set"
${api_body}'/>

data="sip copy multipart=false"/>

for CDR/billing -->
data='api body=caller=${msisdn}&called-
data='api on answer=curl http://localhc

data='api body=caller=${msisdn}&called-=
data='api hangup hook=curl http://local

<!-- Set P-Asserted-Identity for trusted network -->

<action application="set"
<action application="set"

<action application="set"
<action application="set"

data="sip h Request-Disposition=no-fork
data="sip h P-Asserted-Identity=<sip:${

data="hangup after bridge=true"/>
data="continue on fail=true"/>

<!-- Bridge to external PSTN/interconnect gateway -->

<action application="set"

data="used gateway=ExternalSIPGateway"/,

<action application="bridge"
data="{absolute codec string="'AMR-
WB,AMR,PCMA,PCMU' ,originate retries=1,originate timeout=60,sip invite

/>
<!-- If bridge fails, provide error treatment -->
<action application="answer" data="" />
<action application="1log" data="INFO Bridge failed with SIP code
<action application="sleep" data="500"/>
<action application="transfer" data="${last bridge proto specific
</condition>
</extension>

Key points:

e Uses sofia/gateway/ExternalSIPGateway for external routing

e Sets P-Asserted-Identity for caller ID on trusted interconnect

Call event hooks for CDR/billing tracking

e continue on fail=true allows error handling

On failure, transfers to error announcement based on SIP code

used gateway variable for reporting/troubleshooting
Common off-net gateways:

e ExternalSIPGateway - Primary PSTN trunk/interconnect
e BackupSIPGateway - Backup PSTN trunk (for failover)
e International GW - International calling gateway

* Emergency GW - Emergency services gateway

Gateway Routing Strategy

All calls are routed via gateways. Understanding which gateway to use for
different call scenarios is critical for proper call routing:

On-Net vs Off-Net Decision Tree

Gateway Selection Decision Flow

mim =

Gateway Types and Organization

You will need to define your own gateways based on your network's
interconnection requirements. Gateways are typically organized by traffic type,
destination, or provider to enable flexible routing policies and cost optimization.

Common gateway usage patterns:

Gateway Type Usage Examples

* PSTN termination
* International carriers

PSTN/Interconnect Off-net call termination]
e Other domestic
providers
Circuit-switched e 2G/3G roaming (MSRN
CS Network IreUit-swi / I 9! .)
network * CS network integration
Emergency Emergency call routin * 911/112/000 calls
uti
Services gency g * PSAP routing
: : , , _ * Voicemail deposit
Voicemail Platform Voicemail services

* Message retrieval

Common gateway organization patterns:
1. By Destination Type:

o sofia/gateway/International Gateway - International calls (least-cost
routing)

o sofia/gateway/National Gateway - Domestic/national calls
o sofia/gateway/Mobile Gateway - Mobile-to-mobile interconnect

o sofia/gateway/Emergency Gateway - Emergency services
(911/112/000)

2. By Provider:

o sofia/gateway/Provider A Primary - Primary carrier for Provider A
traffic

o sofia/gateway/Provider A Backup - Backup route for Provider A
o sofia/gateway/Provider B - Secondary carrier interconnect

o sofia/gateway/Transit Provider - Transit/hubbing provider

3. By Geographic Region:

o sofia/gateway/APAC Gateway - Asia-Pacific region
o sofia/gateway/EMEA Gateway - Europe/Middle East/Africa

o sofia/gateway/Americas Gateway - North/South America

4. By Function:

o sofia/gateway/Voice Gateway - Standard voice traffic
o sofia/gateway/SMS Gateway - SMS over SIP (if supported)
o sofia/gateway/Wholesale Gateway - Wholesale/carrier traffic

o sofia/gateway/CS Network Gateway - Circuit-switched (2G/3G)
integration

Example: Multi-gateway configuration

<profile name="external">
<gateways>
<!-- International traffic -->
<gateway name="International Primary">
<param name="proxy" value="10.1.1.100:5060"/>
<param name="register" value="false"/>
</gateway>

<!-- National/domestic providers -->
<gateway name="Domestic Provider A">
<param name="proxy" value="10.1.2.100:5060"/>
<param name="register" value="false"/>
</gateway>

<gateway name="Domestic Provider B">
<param name="proxy" value="10.1.3.100:5060"/>
<param name="register" value="false"/>
</gateway>

<!-- Emergency services -->
<gateway name="Emergency PSAP">
<param name="proxy" value="10.1.4.100:5060"/>
<param name="register" value="false"/>
</gateway>

<!-- (S network integration (for MSRN routing) -->
<gateway name="CS Network">
<param name="proxy" value="10.1.5.100:5060"/>
<param name="register" value="false"/>
</gateway>
</gateways>
</profile>

Routing logic examples:

You can then route calls to different gateways based on your business logic:

<!-- International calls (country codes other than domestic) -->
<extension name="Route-International">

<condition field="${tas destination number}"
expression=""(?161).*$">

<action application="bridge"

data="sofia/gateway/International Primary/${tas destination number}"
/>

</condition>
</extension>

<!-- Route to specific provider based on destination prefix -->
<extension name="Route-Provider-A">

<condition field="${tas destination number}"
expression=""614\d{8}$">

<action application="bridge"

data="sofia/gateway/Domestic Provider A/${tas destination number}"
/>

</condition>
</extension>

<!-- Fallback routing with multiple gateways -->
<extension name="Route-With-Failover">
<condition field="${tas destination number}" expression=""(.*)$">
<action application="set" data="continue on fail=true"/>
<action application="bridge"
data="sofia/gateway/Primary Gateway/$1"/>
<!-- If primary fails, try backup -->
<action application="bridge"
data="sofia/gateway/Backup Gateway/$1"/>
</condition>
</extension>

Best practices for gateway organization:

e Use descriptive names that reflect the gateway's purpose

e Plan for redundancy with primary/backup gateways

e Organize by cost to enable least-cost routing policies

e Separate critical traffic (emergency calls on dedicated gateway)

e Document interconnection details for each gateway (SIP trunk
specifications, codec support)

* Monitor gateway health and implement failover logic in dialplans

Common Routing Patterns

Pattern: On-net MO call

Subscriber A (MO) - TAS - sofia/internal/B@TAS IP - TAS (MT
processing) - IMS - Subscriber B

Pattern: Off-net MO call

Subscriber A (MO) - TAS -
sofia/gateway/ExternalSIPGateway/+123456789 - PSTN

Pattern: MT call to IMS subscriber

External - TAS (MT) - sofia/internal/msisdn@ims.domain - I-CSCF -
S-CSCF - Subscriber

Pattern: MT call with CFU to off-net

External - TAS (MT) - CFU detected -
sofia/gateway/ExternalSIPGateway/+forwarding number - PSTN

Pattern: MT call to CS roaming subscriber

External - TAS (MT) - MSRN retrieved -
sofia/gateway/CS Gateway/+msrn - CS Network - Subscriber

Configuration

See for complete gateway configuration details.

Gateway configuration example:

<!-- External PSTN Gateway -->
<gateway name="ExternalSIPGateway">
<param name="proxy" value="10.1.1.100:5060"/>
<param name="register" value="false"/>
<param name="caller-id-in-from" value="true"/>
</gateway>

<!-- CS Network Gateway (for MSRN routing) -->
<gateway name="CS Gateway">

<param name="proxy" value="10.1.1.200:5060"/>

<param name="register" value="false"/>

<param name="caller-id-in-from" value="true"/>
</gateway>

<!-- Emergency Services Gateway -->
<gateway name="Emergency GW">
<param name="proxy" value="10.1.1.250:5060"/>
<param name="register" value="false"/>
<param name="caller-id-in-from" value="true"/>
</gateway>

Best Practices

1. Always set codecs - Use absolute codec string to ensure proper codec
negotiation

2. Configure timeouts - Set progress timeout and bridge answer timeout
appropriately

3. Handle failures - Use continue on fail=true with fallback actions

4. Clean headers - Remove proprietary headers before external routing

5. Use early media wisely - ring ready prevents unexpected
announcements

6. Prevent forking - Set Request-Disposition: no-fork for sequential
routing

7. Log bridge results - Add logging before/after bridge for troubleshooting

8. Test retry logic - Verify originate retries works as expected

Troubleshooting

Enable FreeSWITCH debug logging:

<action application="set" data="sip trace=on"/>

<action application="info" data=""/>

log -->

Common issues:

Issue

No audio

Call drops
immediately

Timeout too
short

Unwanted
announcements

Wrong caller ID

Cause

Codec mismatch

Gateway
unreachable

originate timeout
too low

Early media passing
through

sip cid type not
set

<!-- Dumps all variables to

Solution

Check absolute codec string

Verify gateway configuration

Increase timeout values

Use
ignore early media=ring_ ready

Set sip cid type=pid

Prometheus Metrics
and Monitoring Guide

Overview

OmniTAS exports comprehensive operational metrics in Prometheus format for
monitoring, alerting, and observability. This guide covers all available metrics,
their usage, troubleshooting, and monitoring best practices.

Metrics Endpoint

All metrics are exposed at: http://<tas-ip>:8080/metrics

Complete Metric Reference

Diameter Metrics

diameter_response_duration_milliseconds

Type: Histogram Labels: application (ro, sh), command (ccr, cca, etc),
result (success, error, timeout) Buckets: 10, 50, 100, 250, 500, 1000, 2500,
5000, 10000 ms Description: Duration of Diameter requests in milliseconds

Usage:

Average Diameter Response Time
rate(diameter response duration milliseconds sum[5m]) /
rate(diameter response duration milliseconds count[5m])

P95 Diameter latency
histogram quantile(0.95,
rate(diameter response duration milliseconds bucket[5m]))

Alert When:
e P95 > 1000ms - Slow Diameter responses

diameter_requests_total

Type: Counter Labels: application (ro, sh), command (ccr, udr, etc)
Description: Total number of Diameter requests sent

Usage:

Request rate
rate(diameter requests total[5m])

diameter_responses_total

Type: Counter Labels: application (ro, sh), command (ccr, udr, etc),

result code (2001, 3002, 5xxx, etc) Description: Total number of Diameter
responses received

Usage:

Success rate

rate(diameter responses total{result code="2001"}[5m]) /
rate(diameter responses total[5m]) * 100

diameter_peer_state

Type: Gauge Labels: peer host, peer realm, application (ro, sh)
Description: State of Diameter peers (1=up, 0=down) Update interval:
Every 10 seconds

Usage:

Check for down peers
diameter_peer_state ==

Alert When:

e Any peer down for > 1 minute
Dialplan Generation Metrics

1. HTTP Request Metrics

http_dialplan_request_duration_milliseconds

Type: Histogram Labels: call type (mt, mo, emergency, unknown)
Description: End-to-end HTTP request duration from when the dialplan
HTTP request is received to when the response is sent. This includes all
processing: parameter parsing, authorization, Diameter lookups (Sh/Ro), HLR
lookups (557 MAP), and XML generation.

Usage:

Average end-to-end HTTP request time
rate(http dialplan request duration milliseconds sum[5m]) /
rate(http dialplan request duration milliseconds count[5m])

P95 by call type
histogram quantile(0.95,

rate(http dialplan request duration milliseconds bucket[5m])
) by (call type)

Compare MT vs MO performance
histogram quantile(0.95,

rate(http dialplan request duration milliseconds bucket{call type="mt
[5m])

)

VS

histogram quantile(0.95,

rate(http dialplan request duration milliseconds bucket{call type="mc

[5m])
)

Alert When:

P95 > 2000ms - Slow HTTP response times

P95 > 3000ms - Critical performance issue

P99 > 5000ms - Severe performance degradation

Any requests showing call type="unknown" - Call type detection failure

Insights:

e This is the most important metric for understanding user-facing latency
e Typical values: P50: 100-500ms, P95: 500-2000ms, P99: 1000-3000ms
¢ Includes all component timings (Sh + HLR + OCS + processing)

e If this is slow, drill down into component metrics (subscriber_data, hilr_data,
ocs_authorization)

e Expected range: 100ms (fast local calls) to 5000ms (slow with
retries/timeouts)

Important Notes:

* Replaces the older dialplan generation duration milliseconds metric
which only measured XML generation

e Accurately reflects what FreeSWITCH/SBC experiences

e Use this for SLA monitoring and capacity planning

2. Subscriber Data Metrics

subscriber_data_duration_milliseconds

Type: Histogram Labels: result (success, error) Description: Time taken to
retrieve subscriber data from Sh interface (HSS)

Usage:

Average Sh lookup time
rate(subscriber data duration milliseconds sum[5m]) /
rate(subscriber data duration milliseconds count[5m])
95th percentile Sh lookup time

histogram quantile(0.95,
rate(subscriber data duration milliseconds bucket[5m])

Alert When:

e P95 > 100ms - Slow HSS responses

e P95 > 500ms - Critical HSS performance issue

subscriber_data lookups total

Type: Counter Labels: result (success, error) Description: Total number of
subscriber data lookups

Usage:

Sh lookup rate
rate(subscriber data lookups total[5m])

Sh error rate
rate(subscriber data lookups total{result="error"}[5m])

Sh success rate percentage
(rate(subscriber data lookups total{result="success"}[5m]) /
rate(subscriber data lookups total[5m])) * 100

Alert When:

e Error rate > 5% - HSS connectivity issues

e Error rate > 20% - Critical HSS failure

2. HLR Data Metrics

hlr_data_duration_milliseconds

Type: Histogram Labels: result (success, error) Description: Time taken to
retrieve HLR data via SS7 MAP

Usage:
Average HLR lookup time

rate(hlr data duration milliseconds sum[5m]) /
rate(hlr _data duration milliseconds count[5m])

95th percentile HLR lookup time

histogram quantile(0.95,
rate(hlr _data duration milliseconds bucket[5m])

)

Alert When:

e P95 > 500ms - Slow SS7 MAP responses
e P95 > 2000ms - Critical SS7 MAP issue

hlr_lookups_total

Type: Counter Labels: result type (msrn, forwarding, error, unknown)
Description: Total HLR lookups by result type

Usage:

HLR lookup rate by type
rate(hlr_ lookups total[5m])

MSRN discovery rate (roaming subscribers)
rate(hlr lookups total{result type="msrn"}[5m])

Call forwarding discovery rate
rate(hlr lookups total{result type="forwarding"}[5m])

HLR error rate
rate(hlr_ lookups total{result type="error"}[5m])

Alert When:

e Error rate > 10% - SS7 MAP issues

e Sudden drop in MSRN rate - Possible roaming issue

Insights:

e High MSRN rate indicates many roaming subscribers
e High forwarding rate indicates many forwarded calls

e Compare to call volume for roaming percentage

3. OCS Authorization Metrics

ocs_authorization_duration_milliseconds

Type: Histogram Labels: result (success, error) Description: Time taken for
OCS authorization

Usage:

Average 0CS auth time

rate(ocs _authorization duration milliseconds sum[5m]) /
rate(ocs authorization duration milliseconds count[5m])
95th percentile 0CS auth time

histogram quantile(0.95,
rate(ocs authorization duration milliseconds bucket[5m])

Alert When:

e P95 > 1000ms - Slow OCS responses

e P95 > 5000ms - Critical OCS performance issue

ocs_authorization_attempts_total

Type: Counter Labels: result (success, error), skipped (yes, no)
Description: Total OCS authorization attempts

Usage:

0CS authorization rate
rate(ocs authorization attempts total{skipped="no"}[5m])

OCS error rate
rate(ocs authorization attempts total{result="error",skipped="no"}

[5m])

0CS skip rate (emergency, voicemail, etc.)
rate(ocs authorization attempts total{skipped="yes"}[5m])

0CS success rate percentage
(rate(ocs authorization attempts total{result="success",6 skipped="no")

[5m]) /
rate(ocs authorization attempts total{skipped="no"}[5m])) * 100

Alert When:

e Error rate > 5% - OCS connectivity issues

e Success rate < 95% - OCS declining too many calls

Insights:

e High skip rate indicates many emergency/free calls
e Error rate spikes indicate OCS outages

e Compare success rate to business expectations

4. Call Processing Metrics

call param_errors_total

Type: Counter Labels: error _type (parse_failed, missing_required_params)
Description: Call parameter parsing errors

Usage:

Parameter error rate
rate(call param errors total[5m])

Errors by type
rate(call param errors total[5m]) by (error type)

Alert When:

e Any errors > 0 - Indicates malformed call parameter requests

e Errors > 1% of call volume - Critical issue

authorization_decisions_total

Type: Counter Labels: disposition (mt, mo, emergency, unauthorized),
result (success, error) Description: Authorization decisions by call type

Usage:
Authorization rate by disposition
rate(authorization decisions total[5m]) by (disposition)

MT call rate
rate(authorization decisions total{disposition="mt"}[5m])

MO call rate
rate(authorization decisions total{disposition="mo"}[5m])

Emergency call rate
rate(authorization decisions total{disposition="emergency"}[5m])

Unauthorized call rate

rate(authorization decisions total{disposition="unauthorized"}
[5m])

Alert When:

e Unauthorized rate > 1% - Possible attack or misconfiguration

e Sudden spike in emergency calls - Possible emergency event
e Unexpected change in MT/MO ratio - Possible issue

Insights:

e MT/MO ratio indicates traffic patterns
e Emergency call rate indicates service usage

e Unauthorized rate indicates security posture

freeswitch_variable_set_duration_milliseconds

Type: Histogram Labels: batch size (1, 5, 10, 25, 50, 100) Description:
Time to set Dialplan Variables

Usage:

Average variable set time
rate(freeswitch variable set duration milliseconds sum[5m]) /
rate(freeswitch variable set duration milliseconds count[5m])

Variable set time by batch size
histogram quantile(0.95,

rate(freeswitch variable set duration milliseconds bucket[5m])
) by (batch size)

Alert When:

e P95 > 100ms - Slow variable set performance

e Growing trend - Possible system performance issue

5. Module Processing Metrics

dialplan_module_duration_milliseconds

Type: Histogram Labels: module (MT, MO, Emergency, CallParams, etc.),
call type Description: Processing time for each dialplan module

Usage:

Processing time by module
histogram quantile(0.95,

rate(dialplan module duration milliseconds bucket[5m])
) by (module)

MT module processing time
histogram quantile(0.95,

rate(dialplan module duration milliseconds bucket{module="MT"}
[5m])

)

Alert When:

¢ Any module P95 > 500ms - Performance issue

e Growing trend in any module - Potential leak or issue

Insights:

e |dentify which module is slowest
e Optimize the slowest modules first

e Compare module times across call types

6. Call Volume Metrics

call _attempts_total

Type: Counter Labels: call type (mt, mo, emergency, unauthorized), result
(success, rejected) Description: Total call attempts

Usage:

Call attempt rate
rate(call attempts total[5m])

Success rate by call type
(rate(call attempts total{result="success"}[5m]) /
rate(call attempts total[5m])) * 100 by (call type)

Rejected call rate
rate(call attempts total{result="rejected"}[5m])

Alert When:

e Rejected rate > 5% - Possible issue
e Sudden drop in call volume - Service outage

e Sudden spike in call volume - Possible attack
active calls

Type: Gauge Labels: call type (mt, mo, emergency) Description: Currently
active calls

Usage:

Current active calls
active calls

Active calls by type
active calls by (call type)

Peak active calls (last hour)
max_over time(active calls[1lh])

Alert When:

e Active calls > capacity - Overload

e Active calls = 0 for extended time - Service down

7. Simulation Metrics

call_simulations_total

Type: Counter Labels: call type (mt, mo, emergency, unauthorized), source
(web, api) Description: Call simulations run

Usage:

Simulation rate
rate(call simulations total[5m])

Simulations by type
rate(call simulations total[5m]) by (call type)

Insights:

» Track diagnostic tool usage
e |dentify heavy users

e Correlate with troubleshooting activity

8. SS7 MAP Metrics

ss7_map_http_duration_milliseconds

Type: Histogram Labels: operation (sri, prn), result (success, error,
timeout) Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000, 10000 ms
Description: Duration of SS7 MAP HTTP requests in milliseconds

Usage:

SS7 MAP Error Rate
rate(ss7 map operations total{result="error"}[5m]) /
rate(ss7 map operations total[5m]) * 100

Alert When:

e P95 > 500ms - Slow SS7 MAP responses

e Error rate > 50% - Critical SS7 MAP issue

ss7_map_operations_total

Type: Counter Labels: operation (sri, prn), result (success, error)
Description: Total number of SS7 MAP operations

9. Online Charging Metrics

online_charging_events_total

Type: Counter Labels: event type (authorize, answer, reauth, hangup),

result (success, nocredit, error, timeout) Description: Total number of online
charging events

Usage:

0CS Credit Failures
rate(online charging events total{result="nocredit"}[5m])

Alert When:

e High rate of credit failures

10. System State Metrics

tracked_registrations

Type: Gauge Description: Number of currently active SIP registrations (from
FreeSWITCH Sofia registration database) Update interval: Every 10 seconds

Notes:

e Automatically decrements when registrations expire (FreeSWITCH manages
expiration)

tracked_call_sessions

Type: Gauge Description: Number of currently tracked call sessions in ETS
Update interval: Every 10 seconds

11. HTTP Request Metrics
http_requests_total

Type: Counter Labels: endpoint (dialplan, call event, directory, voicemail,

sms_ccr, metrics), status code (200, 400, 500, etc) Description: Total
number of HTTP requests by endpoint

Usage:

HTTP Error Rate

rate(http requests total{status code=~"5.."}[5m]) /
rate(http requests total[5m]) * 100

Alert When:

e HTTP 5xx error rate > 10%

12. Call Rejection Metrics

call_rejections_total
Type: Counter Labels: call type (mo, mt, emergency, unknown), reason

(nocredit, unauthorized, parse_failed, missing_params, hlir_error, etc)
Description: Total number of call rejections by reason

Usage:

Call Rejection Rate by Reason
sum by (reason) (rate(call rejections total[5m]))

Alert When:

* Rejection rate > 1/sec - Investigation needed

13. Event Socket Connection Metrics

event_socket_connected

Type: Gauge Labels: connection type (main, log_listener) Description:
Event Socket connection state (1=connected, 0=disconnected) Update
interval: Real-time on connection state changes

Usage:

Event Socket Connection Status
event socket connected

Alert When:
e Connection down for > 30 seconds

event_socket_reconnections_total

Type: Counter Labels: connection type (main, log listener), result
(attempting, success, failed) Description: Total number of Event Socket
reconnection attempts

Grafana Dashboard Integration

The metrics can be visualized in Grafana using the Prometheus data source.
Recommended panels:

Dashboard 1: Call Volume

e Active calls gauge
» Call attempts rate by type (MO/MT/Emergency)

e Call rejection rate

Dashboard 2: Diameter Performance

e Response time heatmap

e Request/response rates
e Peer status table

e Error rate by result code

Dashboard 3: Online Charging Health

¢ Credit authorization success rate
¢ "No credit" event rate

¢ OCS timeout rate

Dashboard 4: System Performance

e Dialplan generation latency (P50/P95/P99)
e SS7 MAP response times

e Overall system availability

Recommended Grafana Dashboard Layout
Row 1: Call Volume

e Call attempts rate (by type)
e Active calls gauge

e Success rate percentage
Row 2: Performance

e P95 HTTP dialplan request time (by call type) - PRIMARY METRIC
e P95 Sh lookup time

e P95 HLR lookup time

e P95 OCS authorization time

e P95 dialplan module processing time (by module)
Row 3: Success Rates

e Sh lookup success rate

e HLR lookup success rate

e OCS authorization success rate

e Call attempt success rate
Row 4: Module Performance

e P95 processing time by module

¢ Module call counts
Row 5: Errors

e Parameter errors

Unauthorized attempts

Sh errors

HLR errors

OCS errors

Critical Alerts

Priority 1 (Page immediately):

Dialplan completely down
rate(call attempts total[5m]) ==

HSS completely down
rate(subscriber data lookups total{result="error"}[5m]) /
rate(subscriber data lookups total[5m]) > 0.9

0CS completely down

rate(ocs authorization attempts total{result="error"}[5m]) /
rate(ocs authorization attempts total[5m]) > 0.9

Priority 2 (Alert):

Slow dialplan generation
histogram quantile(0.95,

rate(dialplan_generation duration milliseconds bucket[5m])
) > 1000

High HSS error rate
rate(subscriber data lookups total{result="error"}[5m]) /
rate(subscriber data lookups total[5m]) > 0.2

High 0OCS error rate
rate(ocs authorization attempts total{result="error"}[5m]) /
rate(ocs authorization attempts total[5m]) > 0.1

Priority 3 (Warning):

Elevated HSS latency

histogram quantile(0.95,
rate(subscriber data duration milliseconds bucket[5m])

) > 100

Elevated 0CS latency
histogram quantile(0.95,

rate(ocs_authorization duration milliseconds bucket[5m])
) > 1000

Moderate error rate
rate(call attempts total{result="rejected"}[5m]) /
rate(call attempts total[5m]) > 0.05

Alerting Examples

Diameter Peer Down

alert: DiameterPeerDown
expr: diameter peer state ==
for: 1m
annotations:
summary: "Diameter peer {{ $labels.peer host }} is down"

High Diameter Latency

alert: HighDiameterLatency
expr: histogram quantile(0.95,
rate(diameter response duration milliseconds bucket[5m])) > 1000
for: 5m
annotations:
summary: "Diameter P95 latency above 1s"

OCS Credit Failures

alert: HighOCSCreditFailures
expr: rate(online charging events total{result="nocredit"}[5m]) >
0.1
for: 2m
annotations:
summary: "High rate of 0CS credit failures"

SS7 MAP Gateway Errors

alert: SS7MapErrors
expr: rate(ss7 map operations total{result="error"}[5m]) /
rate(ss7 map operations total[5m]) > 0.5
for: 3m
annotations:
summary: "SS7 MAP error rate above 50%"

Event Socket Disconnected

alert: EventSocketDown
expr: event socket connected ==
for: 30s
annotations:
summary: "Event Socket {{ $labels.connection type }}
disconnected"

High Call Rejection Rate

alert: HighCallRejectionRate
expr: rate(call rejections total[5m]) > 1
for: 2m
annotations:
summary: "High call rejection rate: {{ $value }} rejections/sec"

HTTP Error Rate High

alert: HighHTTPErrorRate
expr: rate(http requests total{status code=~"5.."}[5m]) /
rate(http requests total[5m]) > 0.1
for: 3m
annotations:
summary: "HTTP 5xx error rate above 10%"

Troubleshooting with Metrics

Problem: Call type showing as "unknown"
Symptoms:

e All metrics show call type="unknown" instead of mt, mo, or emergency

e Cannot differentiate performance between call types

Root Cause: The call type extraction is failing or not being properly passed
through the processing pipeline.

Investigation:

1. Check logs for "HTTP dialplan request" messages - they should show the
correct call type

2. Review system logs for call type processing errors

Resolution: Contact support if call type detection continues to fail.

Problem: Calls are slow
Investigation:

1. Check http dialplan request duration milliseconds P95 - START
HERE

2. If high, check component timings:
o Check subscriber data duration milliseconds for Sh delays

o Check hlr data duration milliseconds for HLR delays
o Check ocs authorization duration milliseconds for OCS delays

o Check dialplan module duration milliseconds for module-specific
delays

3. Check if call type="unknown" - indicates call type detection failure
4. Compare MT vs MO vs Emergency processing times

5. Correlate with system logs for detailed error messages

Resolution: Optimize the slowest component

Problem: Calls are failing
Investigation:

1. Check call attempts total{result="rejected"} rate

2. Check subscriber data lookups total{result="error"} for Sh issues
3. Check hlr lookups total{result type="error"} for HLR issues
4.

Check ocs authorization attempts total{result="error"} for OCS
issues

5. Check authorization decisions total{disposition="unauthorized"} for
auth issues

Resolution: Fix the failing component

Problem: High load
Investigation:

1. Check active calls current value

2. Check call attempts total rate

3. Check if rate matches expected traffic
4. Compare MT vs MO ratio

5. Check for unusual patterns (spikes, steady growth)

Resolution: Scale up or investigate unusual traffic

Problem: Roaming issues
Investigation:

1. Check hlr_lookups total{result type="msrn"} rate
2. Check hlr _data duration milliseconds for delays
3. Use HLR Lookup tool for specific subscribers

4. Check if MSRN is being retrieved correctly

Resolution: Fix HLR connectivity or configuration

Performance Baselines

Typical Values (Well-Tuned System)

e HTTP dialplan request (end-to-end): P50: 100-500ms, P95: 500-
2000ms, P99: 1000-3000ms

e Sh lookup time: P50: 15ms, P95: 50ms, P99: 100ms

e HLR lookup time: P50: 100ms, P95: 300ms, P99: 800ms

e OCS auth time: P50: 150ms, P95: 500ms, P99: 1500ms

e Dialplan module processing: P50: 1-5ms, P95: 10-25ms, P99: 50ms
* Sh success rate: > 99%

* HLR success rate: > 95% (lower is normal due to offline subscribers)
e OCS success rate: > 98%

¢ Call success rate: > 99%

Note: HTTP dialplan request time is the sum of all component times plus
overhead. It should roughly equal: Sh lookup + HLR lookup + OCS auth +
dialplan module processing + network/parsing overhead. Minimum expected
time is ~100ms (when only Sh lookup is needed), maximum typical time is
~2000ms (with all lookups and retries).

Capacity Planning

Monitor these trends:

Growth in call attempts total rate

Growth in active calls peak

Stable or improving P95 latencies

Stable or improving success rates
Plan for scaling when:

e Active calls approaching 80% of capacity
e P95 |atencies growing despite stable load

e Success rates declining despite stable external systems

Integration with Logging

Correlate metrics with logs:

1. High error rate in metrics = Search logs for ERROR messages
2. Slow response times - Search logs for WARNING messages about timeouts
3. Specific call issues = Search logs by call ID or phone number

4. Use simulation tool to reproduce and debug

Best Practices

. Set up dashboards before issues occur

. Define alert thresholds based on your baseline

. Test alerts by using Call Simulator

. Review metrics weekly to identify trends

. Correlate metrics with business events (campaigns, outages, etc.)
. Use metrics to justify infrastructure investments

. Share dashboards with operations team

00 N O U1 b W N B

. Document your alert response procedures

Configuration

Metrics collection is automatically enabled when the application starts. The
metrics endpoint is exposed on the same port as the API (default: 8080).

To configure Prometheus to scrape metrics, add this job to your
prometheus.yml:

scrape_configs:
- job name: ‘'omnitas'
static configs:
- targets: ['<tas-ip>:8080']
metrics path: '/metrics'
scrape_interval: 10s

Metric Cardinality

The metrics are designed with controlled cardinality to avoid overwhelming
Prometheus:

e Peer labels: Limited to configured peers only
e Call types: Fixed set (mo, mt, emergency, unauthorized)
¢ Result codes: Limited to actual Diameter/OCS result codes received

e Operations: Fixed set per interface (sri/prn for MAP, ccr/cca for Diameter)

Total estimated time series: ~200-500 depending on number of configured
peers and active result codes.

Metric Retention

Recommended retention periods:

e Raw metrics: 30 days (high resolution)
e 5-minute aggregates: 90 days

e 1-hour aggregates: 1 year

 Daily aggregates: 5 years

This supports:

e Real-time troubleshooting (raw metrics)

e Weekly/monthly analysis (5-min/1-hour aggregates)
e Capacity planning (daily aggregates)

e Historical comparison (yearly aggregates)

HLR Lookup and Call
Simulator - User Guide

Overview

Two new diagnostic tools have been added to help operations staff troubleshoot
call routing issues without affecting live traffic.

HLR Lookup Tool

Purpose

The HLR Lookup tool queries the Home Location Register (HLR) via SS7 MAP
protocol to retrieve real-time subscriber routing information.

Access

Navigate to /hlr or click "HLR" in the navigation menu.

What It Shows
For any phone number, the HLR Lookup displays:

1. MSRN (Mobile Station Roaming Number)

o Temporary routing number assigned when subscriber roams to 2G/3G
network

o Only present if subscriber is currently roaming

o Used by the dialplan to route calls to roaming subscriber's current
location

2. Call Forwarding Settings

o Real-time call forwarding configuration from HLR
o Types: Unconditional, Busy, No-Reply, Not-Reachable
o Shows forwarding destination number

o Shows if notification is enabled

3. Dialplan Variables

o Exactly which channel variables will be set
o Variables match those used in actual call processing

o Shows how HLR data overrides Sh data

Use Cases

Diagnosing Roaming Issues

Scenario: Incoming call to roaming subscriber fails or routes incorrectly
Steps:

1. Open HLR Lookup page

2. Enter the subscriber's phone number

3. Click "Lookup HLR Data"

4. Check for MSRN in results

5. If MSRN present: Subscriber is roaming, verify MSRN is valid

6. If no MSRN: Subscriber may be in LTE/VOLTE (no MSRN needed)

Verifying Call Forwarding

Scenario: Call forwarding not working as expected
Steps:

1. Open HLR Lookup page

2. Enter the subscriber's phone number
3. Click "Lookup HLR Data"

4. Look for "Call Forwarding" in results

5. Verify forwarding type (Unconditional, Busy, etc.)

6. Verify forwarding destination number
7. Note: HLR data overrides any Sh/HSS data

Testing HLR Connectivity

Scenario: Verify SS7 MAP gateway is working
Steps:

. Open HLR Lookup page

. Enter any known subscriber number
. Click "Lookup HLR Data"

Check for "Error" in results

If error: Check SS7 MAP gateway connectivity

o U A W N P

. Common errors:
o "SS7 MAP is disabled" - Check configuration

o "Timeout" - Network issue to HLR

o "No VLR Number" - Subscriber offline or doesn't exist

Information Box
The HLR Lookup page includes educational information explaining:

e What MSRN is and when it's used
e How call forwarding works in HLR

e How this integrates with call processing
e SS7 MAP protocol basics

Call Simulator Tool

Purpose

The Call Simulator allows you to simulate complete call routing without actually
placing a call or affecting live traffic.

Access

Navigate to /simulator or click "Simulator" in the navigation menu.

Features

Input Parameters

1. Source Number (Caller)

o Phone number of calling party
o For MT calls: Can be any number

o For MO calls: Must be provisioned subscriber

2. Destination Number (Called Party)

o Phone number of called party
o For MT calls: Must be provisioned subscriber
o For MO calls: Can be any number

o For Emergency: Use "urn:service:sos" or similar

3. Source IP Address

o |P address of SIP signaling source

o Must be in allowed sbc source ips (for MT) or allowed cscf ips (for
MO)

o Determines call disposition (MT vs MO)

4. Force Disposition

o

Auto: Determine from IP address (normal behavior)

(o]

MT: Force Mobile Terminating (incoming)

[e]

MO: Force Mobile Originating (outgoing)

o

Emergency: Force emergency call processing

5. Options

o Skip OCS Authorization: Bypass online charging (faster simulation)
o Skip HLR Lookup: Bypass SS7 MAP query (faster simulation)

Output
The simulator shows comprehensive results:
1. Call Type Banner

o MT, MO, or Emergency
o Color-coded for quick identification

o Shows source and destination numbers

2. Processing Steps (Left Column)

o

Subscriber Data: Results from Sh interface (HSS)
HLR Data: Results from SS7 MAP lookup (MT only)
OCS Authorization: Results from online charging (MO only)

(o]

[e]

On-Net Status: Whether destination is on your network (MO only)

o

3. Dialplan Variables (Right Column)

o Every variable that would be set on the channel
o Sorted alphabetically for easy reading

o Color-coded values (green for normal, red for errors)

4. Processing Notes

o Step-by-step explanation of what happened
o Describes data flow and decision points

o Helps understand why certain variables were set

Use Cases

Pre-Flight Testing

Scenario: Testing configuration change before deploying to production
Steps:

1. Make configuration change in dev/test environment

2. Open Call Simulator

3. Test multiple scenarios:

o MT call from your SBC
o MO call from your CSCF
o Emergency call

o On-net destination

o Off-net destination

4. Verify all variables are correct

5.
6.

Check processing notes for any issues

Deploy to production with confidence

Debugging MT Call Issues

Scenario: Incoming calls to subscriber failing

Steps:

=
o

Open Call Simulator

Enter destination as the problem subscriber

. Enter source as test number

Set source IP to your SBC IP

Leave Force Disposition as "Auto"

. Click "Simulate Call"

. Check Subscriber Data section for Sh lookup success

. Check HLR Data section for MSRN or forwarding

. Check Final Variables for hangup case

. If hangup case is "UNALLOCATED_NUMBER": Subscriber not provisioned
11.

If variables look correct: Issue may be in dialplan template

Debugging MO Call Issues

Scenario: Outgoing calls from subscriber failing

Steps:

1.
2.

Open Call Simulator

Enter source as the problem subscriber

© ® N O U AW

Enter destination as test number

Set source IP to your CSCF IP

Uncheck "Skip OCS Authorization" if testing charging
Click "Simulate Call"

. Check Caller Data section for Sh lookup success

Check OCS Authorization section for success/failure

. Check On-Net Status to verify correct routing
10.
11.

Check Final Variables for allocated time or hangup case
If hangup case is "OUTGOING_CALL BARRED": OCS denied the call

Testing Emergency Call Handling

Scenario: Verify emergency calls work correctly

Steps:

O© 00 N O U1 ~ W N B

. Open Call Simulator

. Enter source as test subscriber

. Enter destination as "urn:service:sos"

. Set any source IP (emergency calls bypass IP auth)

. Click "Simulate Call"

. Verify Call Type shows "Emergency (SOS)"

. Verify hangup case is "none" (emergency calls always proceed)
. Check that OCS and HLR were bypassed

. Verify caller data was retrieved for location info

Training Staff

Scenario: Teaching operations staff how call routing works

Steps:

1.
2.

Open Call Simulator

Run various scenarios and explain each section:
o Show MT call and explain Sh + HLR lookups

o Show MO call and explain OCS authorization

3.
4.
5.

o Show Emergency call and explain bypass behavior
o Show unauthorized IP and explain rejection

Have staff try different combinations

Use Processing Notes to explain each decision

Compare variables between different scenarios

Comparing Sh vs HLR Data

Scenario: Understanding how HLR overrides Sh data

Steps:

o v oA W N e

. Open Call Simulator for MT call
. Uncheck "Skip HLR Lookup"

Click "Simulate Call"
Compare Subscriber Data variables vs HLR Data variables

Check Final Variables to see which values won

. Note: HLR data always takes precedence for:

o MSRN
o call forward all destination

o call forward not reachable destination

Tips

Use "Skip OCS Authorization" and "Skip HLR Lookup" for faster simulations
when testing other aspects

Copy/paste phone numbers from logs into simulator for quick testing
Use "Force Disposition" to test specific call types regardless of IP
Check Processing Notes if you're unsure why certain variables were set
Run simulation multiple times to verify consistency

Compare simulation results to actual call logs

Limitations

The simulator:

e Does NOT actually place calls

e Does NOT affect the call routing system

e Does NOT consume OCS quota (even if OCS is queried)
e Does NOT generate CDRs

e |s safe to use on production systems
The simulator DOES:

e Query actual Sh interface (HSS) if not skipped
Query actual HLR via SS7 MAP if not skipped

Query actual OCS if not skipped

Show exactly what would happen in real call

Use real configuration values

Integration with Monitoring

Both tools integrate with Prometheus metrics:

* HLR lookups via the tool are counted in hlr lookups total

e Call simulations are counted in call simulations total{call type,
source}

e Processing times are tracked in respective duration metrics
This helps:

e Track diagnostic tool usage
e Monitor performance of diagnostic queries

e |dentify heavy users of diagnostic tools

For complete metrics documentation: See for all available
metrics, query examples, and monitoring setup.

Best Practices

1. Use Call Simulator First

o Before making configuration changes
o When troubleshooting subscriber-specific issues

o To understand call flow for training

2. Use HLR Lookup For

o Quick check of roaming status
o Verifying call forwarding from HLR
o Testing SS7 MAP connectivity

3. Document Findings

o Take screenshots of simulator results
o Note any unexpected behavior

o Share results with team for analysis

4. Compare to Logs

o Run simulation with same parameters as failed call
o Compare simulator variables to actual call logs

o |dentify discrepancies

5. Regular Testing

o Weekly spot checks with simulator
o Test each call type (MT/MO/Emergency)
o Verify OCS and HLR integration

Troubleshooting the Tools

HLR Lookup Issues
Tool shows "SS7 MAP is disabled"

e Check config/runtime.exs for ss7 map.enabled

e Restart application after config change

Tool shows timeout errors

e Check SS7 MAP gateway is reachable
e Check network connectivity to HLR

* Check ss7 map.timeout ms in configuration

Tool shows "No VLR Number"

e Subscriber is offline or doesn't exist in HLR
e Normal for subscribers who are powered off
¢ Normal for non-existent numbers

Call Simulator Issues

Simulator shows "No Sh data"

e Subscriber not provisioned in HSS
e HSS is unreachable

e Check diameter.sh application configuration
Simulator shows "Source IP is not authorized"

e IPnotin allowed sbc source ips or allowed cscf ips

e Use "Force Disposition" to override IP-based auth
Simulator shows "Missing required parameters"”

e All fields are required except options
e Enter valid phone numbers

e Enter valid IP address
Simulator takes too long

e Uncheck "Skip OCS Authorization" if not testing OCS
e Uncheck "Skip HLR Lookup" if not testing HLR

e Check actual system performance (Sh/HLR/OCS response times)

Support

For issues with these tools:

1. Check application logs for errors

2. Verify configuration (Sh, HLR, OCS)

3. Test connectivity to external systems

4. Contact support team with screenshots and error messages

IMS Conference Server
- User Guide

Overview

The IMS Conference Server provides multi-party conferencing capabilities
compliant with the 3GPP IMS Conference Framework (RFC 4579, RFC 4575, TS
24.147). It enables subscribers to create and manage audio/video conferences

through the IMS Application Server.

Architecture

The IMS Conference Server is an integrated component of OmniTAS that

provides:

e Conference Factory URI: SIP URI for creating new conferences
e Conference Focus: Manages conference state and participants
e Conference Policy Control: Enforces participant roles and permissions

e Media Mixing: Handles audio/video mixing for conference participants

IMS Conference Factory Architecture

The TAS implements the 3GPP Conference Factory pattern as defined in TS
24.147 and RFC 4579:

M5 Conference Factary Archibecture (IR.92 § 3GPP TS 24.147)

User Equipment

User A User B Lizer C
Conference Cresbor Participant Participant

SIF INVITE ZF INVITE SIF INVITE

M5 Core Rjeworc

- =
Proxy
&
=
*

S-CSCF
Servirg Call
Session Comirel

SIF IFC :

OmniTAS - IM5

_ HS5
Subscriber
Dabsbhese

Cresie Conference

Corference Contol
'I'. L

Ayl idan MEXINg Reraeding Engine

Confererice Pallcy
Butrorization & Roles

Conference Creation Flow (RFC 4579 Factory
Pattern)

This diagram shows how a user creates a new conference through the
Conference Factory URI:

User A (Creator)
UE/Phone

Conference Creation Flow - 3GPP TS 24.147 / IR.92

OmniTAS
Conference Factory

OmniTAS
Conference DB Media Server

Phase 1: Conference Creation Request

INVITE

80.mcc31

User dials conference

factory URI or uses
one-button conference

INVITE (with P-Access-Network-Info)

CSCF adds network info
and forwards to 5-CSCF

S-CSCF evaluates iFC

(Initial Filter Criteria)
Routes to TAS

INVITE (iFC triggers AS)

Phase 2: Conference Instantiation

Authenticate Creator
Check Authorization

Set Creator as Moderator (Role=1)
Generate Conference URI

Conference URI:
sip:conf-1-1765699908

@conference.ims.local

Create Conference Record

Conference ID: 1-1765699908

Create Conference
sip:user-a@ims.local

Conference Created

ference Room
65699908

Instantiate C

Phase 3: Connect Creator to Conference

Bridge User A to Conference

Add partic{gant to room

Enable Jdio/video
Participant|Added
Phase 4: SIP Response with Conference Info
200 0K
Contact: sip:conf-1-1765699908@conference.ims.local
Conference-Info header
Response includes:
- Conference URI
- Conference-Info header
- Session parameters
200 0K
2000k
Ack
ACK
ACK
Confirm Session
Conference Active - Creator Connected
NOTIFY (Conference State - RFC 4575)
Event Package notification
with conference state
pant list
200 OK (NOTIFY)
Conference 11765699908 Is now active
Creator can invite participants or share conference URI
User A (Creator) OmniTAS OmniTAS
UE/Phone Conference Factory ConisenceDe Media Server

Participant Join Flow

This diagram shows how additional participants join an existing conference:

e

B I P B w5

Do a
e] =
i B
CUT rasinale
Sy oy
[
Pl I Cosfeves
e Py e 4 ailemed
et
- L

Cadirs e
L]
Beartrerrir =

e

Comemeai dalier - Crea e
1 P g i
Y
pp——)

= NS e e
raen e o L e et 8
S & Erraien G i
g ey R . O Sy

Conference Event Package (RFC 4575)

Mrai e
e
o
Sereul
— e

The conference server sends conference state notifications to all participants:

Conference Event Package - RFC 4575 State Notifications

OmniTAS

OmniTAS

Media Server

S e
(Moderator) ‘ (Participant) (Participant) Conference Focus

T T T
‘ All users subscribed to conference event package ‘

‘ Event: User C Joins Conference ‘

INVITE (join conference)

Add User C

User C Added

Conference State Changed
Generate RFC 4575 Notification

- [Notify All Participants]

NOTIFY (Conference State)

XML Body:
<?xml version="1.0"?>
<conference-info>
<conference-state>active</conference-state>
<users>
<user entity="sip:userA@ims.local'>
<roles><entry>moderator</entry></roles>
</user>
<user entity='sip:userB@ims.local'>
<roles><entry>participant</entry></roles>
</user>
<user entity='sip:userC@ims.local'>
<roles><entry>participant</entry></roles>
</user>
</users>
</conference-info>

NOTIFY (Conference State)

NOTIFY (Conference State)

200 OK

200 OK

200 OK

Event: Moderator Locks Conference

SIP INFO or Web Ul Action
Lock Conference

Lock Conference

Conference Locked

- [Notify All Participants]
NOTIFY (Conference Locked)
NOTIFY |(Conference Locked)

NOTIFY (Conference Locked)

200 OK
200 OK
200 OK
Event: User B Leaves Conference
BYE

Remove User B
User B Removed

200 OK

- [Notify Remaining Participants]

NOTIFY (User B left)

NOTIFY (User B left)

200 OK
200 OK
[[Leave Announcement Enabled]
Play leave tone

Play leave tone

Event: Conference Terminated

BYE (Moderator leaves/destroys)
Destroy Conference

Disconnect

- [Final Notifications]
200 OK (BYE)

BYE (conference terminated)

200 OK

‘ Conference 1-1765699908 terminated

User A User B User C OmniTAS
(Moderator) (Participant) (Participant) Conference Focus

Conference Management Operations

Operations performed through Web Ul or OmniTAS Console:

OmniTAS
Media Server

Access

Web Interface

Navigate to /conference or click "Conference" in the navigation menu to
access the Conference Management interface.

OmniTAS Console

Access the conference server from the OmniTAS console using the
ims conference command.

Features

Conference Management Interface

The web interface provides real-time monitoring and management of active
IMS conferences:

Statistics Dashboard
Displays high-level conference server statistics:

* Active Conferences: Total number of ongoing conferences
e Total Participants: Combined participant count across all conferences
* Video Conferences: Number of conferences with video enabled

* Locked Conferences: Number of conferences locked to new participants
The dashboard also shows server configuration:

e Domain: Conference server domain (e.g., conference.ims.local)

Factory URI: SIP URI for conference creation requests
MNC/MCC: Mobile Network Code and Country Code
Access Network: Network type (e.g., 3GPP-E-UTRAN-FDD)

Default Max Participants: Maximum participants per conference

* Video by Default: Whether video is enabled by default

e Recording Enabled: Whether conference recording is available

Conference List

Shows all active conferences with:

e Conference ID: Unique identifier for the conference
e URI: SIP URI of the conference
e Participants: Current number of participants

¢ Creator: Phone number/URI of the conference creator

Click on any conference to expand and view detailed information.

Conference Details
Expanding a conference shows:

Conference Information:

e ID and URI

e Room name

e Creator identity

* Conference state

e Participant count (current/max and minimum)
e Video status (Enabled/Disabled)

e Lock status (Locked/Unlocked)

e Recording status (Active/Inactive)
Participant List:

e SIP URI of each participant
Session UUID

Participant state

Role (0 = participant, 1 = moderator)

Video status

Conference Actions:

¢ Lock/Unlock conference
e Enable/Disable video

¢ (Additional actions available via CLI)

Auto-Refresh

The interface automatically refreshes every 5 seconds to show real-time
conference status. You can toggle auto-refresh on/off or manually refresh using
the "Refresh" button.

OmniTAS Console Commands

All conference management operations are available through the
ims conference command in the OmniTAS console.

Command Syntax

ims conference <command> [arguments]

Available Commands
list

Lists all active IMS conferences.

omnitas@server> ims conference list
IMS Conferences:

Conference ID Conference URI Partici
Creator

1-1765699908 sip:conf-1-1765699908@conference.ims.local 3
19078720151

Total: 1 conferences

info

Shows detailed information about a specific conference.
Syntax: ims conference info <conf id>

Important: Use the Conference ID (e.g., 1-1765699908), not the conference
name with prefix.

omnitas@server> ims conference info 1-1765699908
Conference Information:

ID: 1-1765699908

URI: sip:conf-1-1765699908@conference.ims.local

Room: ims-conf-1-1765699908

Creator: 19078720151

State: 1

Participants: 3/10 (min: 2)

Video: Enabled

Locked: No

Recording: Inactive

Participants:

- sip:1235;phone-
context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwc
(342d50e0-9f67-4cc5-9179-4acaebf65134)

State: 3, Role: 0, Video: On

- sip:1235;phone-
context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwc
(bd98ca37-64fd-4618-b2db-aabal®8c73e2)

State: 3, Role: 0, Video: On
- 19078720151 (6270da85-9b94-4285-8130-8769b11d0aa2)
State: 3, Role: 1, Video: On

stats

Displays overall conference server statistics and configuration.

omnitas@server> ims conference stats
IMS Conference Server Statistics:

Active conferences: 1
Total participants: 3
Video conferences: 1
Locked conferences: 0

Configuration:

Domain: conference.ims. local

Factory URI: sip:conference-factory@conf-
factory.ims.mnc380.mcc313.3gppnetwork.org

MNC/MCC: 380/313

Access Network: 3GPP-E-UTRAN-FDD

Default max participants: 10

Allow anonymous: Yes

Video by default: Yes

Recording enabled: Yes

Announcements: Join=0n, Leave=0n, Count=0n

create

Creates a new conference.

Syntax: ims conference create <creator uri>

omnitas@server> ims conference create sip:19078720151@ims. local

Conference created: 1-1765699909

Conference URI: sip:conf-1-1765699909@conference.ims.local

destroy

Terminates a conference and disconnects all participants.

Syntax: ims conference destroy <conf id>

omnitas@server> ims conference destroy 1-1765699908

Conference 1-1765699908 destroyed

add

Adds a participant to an existing conference.

Syntax: ims conference add <conf id> <sip uri>

omnitas@server> ims conference add 1-1765699908
sip:19078720152@ims. local

Adding participant sip:19078720152@ims.local to conference 1-
1765699908

remove

Removes a participant from a conference.
Syntax: ims conference remove <conf id> <uuid>

Note: Use the participant's session UUID from the info command output.

omnitas@server> ims conference remove 1-1765699908 342d50e0-9f67-
4cc5-9179-4acae6f65f34
Removed participant from conference 1-1765699908

lock

Locks a conference to prevent new participants from joining.

Syntax: ims conference lock <conf id>

omnitas@server> ims_ conference lock 1-1765699908
Conference 1-1765699908 locked

unlock

Unlocks a conference to allow new participants.

Syntax: ims conference unlock <conf id>

omnitas@server> ims conference unlock 1-1765699908
Conference 1-1765699908 unlocked

video

Controls video for a conference.

Syntax: ims conference video <conf id> on|off

omnitas@server> ims conference video 1-1765699908 on
Video enabled for conference 1-1765699908

omnitas@server> ims conference video 1-1765699908 off
Video disabled for conference 1-1765699908

record

Controls conference recording.

Syntax: ims conference record <conf id> start|stop

omnitas@server> ims conference record 1-1765699908 start
Recording started for conference 1-1765699908

omnitas@server> ims conference record 1-1765699908 stop
Recording stopped for conference 1-1765699908

announce

Plays an announcement to all conference participants.

Syntax: ims conference announce <conf id> <message>

omnitas@server> ims conference announce 1-1765699908 "This
conference will end in 5 minutes"
Announcement sent to conference 1-1765699908

subscribers

Lists all subscribers currently in a conference (alternative view to info).

Syntax: ims conference subscribers <conf id>

omnitas@server> ims conference subscribers 1-1765699908
Subscribers in conference 1-1765699908:
- sip:1235;phone-
context=ims.mnc380.mcc313.3gppnetwork.org@ims.mnc380.mcc313.3gppnetwc
- 19078720151

Conference States

Conferences and participants have numeric state values:

Conference States

0: Initializing
1: Active

2: Terminating

3: Terminated

Participant States

Invited
Dialing
Alerting
Connected

Disconnecting

[]
vk WN RO

Disconnected

Participant Roles

e 0: Reqgular participant

e 1: Moderator/Creator

Use Cases

Monitoring Active Conferences
Scenario: Operations team needs to see how many conferences are active
Steps:

1. Open Conference Management interface (/conference)
2. View the Statistics Dashboard for high-level metrics
3. Review the conference list for specific conferences

4. Use auto-refresh to monitor in real-time

CLI Alternative:

omnitas@server> ims conference stats
omnitas@server> ims conference list

Troubleshooting Conference Issues
Scenario: User reports they cannot join a conference
Steps:

. Get the conference ID from the user

. Run ims conference info <conf id> to check conference state
. Check if conference is locked (Locked: Yes)

Check current participant count vs. maximum

Review participant list for any connection issues

o U A W N R

. Check OmniTAS logs for SIP invite failures

Common Issues:

e Conference locked: ims conference unlock <conf id>
e Maximum participants reached: Check default_max_participants config

e Network issues: Check SIP connectivity and firewall rules

Managing Conference Bandwidth
Scenario: Need to reduce bandwidth usage during network congestion
Steps:

1. Identify conferences with video enabled

2. For non-critical conferences, disable video:

ims conference video <conf id> off

3. Monitor bandwidth usage

4. Re-enable video when congestion clears
Handling Disruptive Participants
Scenario: A participant is being disruptive in a conference
Steps:

1. Get the conference ID and participant's session UUID

2. Remove the participant:

ims conference remove <conf id> <participant uuid>

3. Lock the conference to prevent them from rejoining:

ims conference lock <conf id>

4. Add legitimate participants manually if needed:

ims conference add <conf id> <sip uri>

Recording Important Conferences

Scenario: Need to record a conference for compliance or documentation

Steps:

1. Identify the conference ID

2. Start recording:

ims conference record <conf id> start

3. Monitor that recording is active (Recording: Active in info output)

4. Stop recording when complete:

ims conference record <conf id> stop
5. Recording files are stored in the OmniTAS recordings directory

Emergency Conference Termination
Scenario: Need to immediately terminate a conference
Steps:

1. Optionally announce to participants:

ims conference announce <conf id> "This conference is being
terminated"”

2. Wait a few seconds for announcement to play

3. Destroy the conference:

ims conference destroy <conf id>

4. All participants will be disconnected immediately

Integration with IMS Network

Conference Creation Flow

1. Subscriber sends SIP INVITE to conference factory URI

2. IMS Application Server receives request

Conference Server creates new conference instance
Conference ID and URI are generated

Conference policy is initialized based on creator
Creator is added as first participant with moderator role

Conference URI is returned to creator

© N o U kW

Other participants can now join via the conference URI

Participant Roles

Moderator (Role: 1)

Can lock/unlock conference

Can remove other participants

Can control video settings

Receives conference notifications

Participant (Role: 0)

Can join/leave conference

Can speak and listen

Can enable/disable own video

Subject to conference policies

3GPP Compliance

The IMS Conference Server implements key 3GPP specifications:

e TS 24.147: Conferencing using IP Multimedia (IM) Core Network (CN)
subsystem

e RFC 4579: Session Initiation Protocol (SIP) Call Control - Conferencing for
User Agents

e RFC 4575: A Session Initiation Protocol (SIP) Event Package for Conference
State

e RFC 5239: A Framework for Centralized Conferencing

Network Elements Integration

e P-CSCF: Handles initial SIP signaling from UE

e S-CSCF: Routes conference requests to Application Server

¢ OmniTAS: Hosts the Conference Server functionality and provides media
mixing

e HSS: Provides subscriber authentication and authorization

Configuration

Conference server configuration is managed through OmniTAS configuration
files:

Key Parameters:

e domain: Conference server domain

e factory uri: SIP URI for conference creation

e mnc_mcc: Mobile network identifiers

e access network: Network access type

e default max participants: Default maximum participants per conference
* allow anonymous: Whether to allow anonymous participants

e video by default: Default video setting for new conferences

* recording enabled: Whether recording feature is available

* announce join: Play tone when participant joins

e announce leave: Play tone when participant leaves

e announce count: Announce participant count

Best Practices

Capacity Planning

e Monitor active conference count and participant counts
e Plan for peak usage (e.g., business hours)

e Allocate sufficient CPU/memory for media mixing

e Consider video vs. audio-only for bandwidth management

Security

e Ensure conference URIs are not easily guessable

Use conference locking for private conferences

Monitor for unauthorized access attempts

Implement maximum participant limits

Review conference recordings access controls

Operational Monitoring

Set up alerts for conference server errors

Monitor conference creation/destruction rates

Track average conference duration

Review participant connection failures

Monitor media quality metrics

For detailed metrics documentation: See for:

RTP/RTCP media quality metrics (Port 9093)

Active call and session metrics (Port 9090)
System and Erlang VM metrics (Port 8080)

Prometheus query examples

Troubleshooting

Check OmniTAS logs for conference-related errors

Verify SIP connectivity between participants and conference server

Monitor RTP media streams for packet loss

Verify network bandwidth availability

Check participant device compatibility

Limitations

e Maximum participants per conference: Configurable (default: 10)

¢ Maximum concurrent conferences: Limited by server resources

e Video quality: Depends on network bandwidth and participant devices
e Recording format: Determined by OmniTAS configuration

e Conference ID format: Auto-generated, cannot be customized via web
interface

Support

For issues or questions about the IMS Conference Server:

1. Check OmniTAS logs for error messages
2. Verify conference server configuration
3. Review network connectivity and firewall rules

4. Contact Omnitouch support with conference ID and timestamps

Metrics Documentation

This document describes the Prometheus metrics exposed by the IMS
Application Server components.

Table of Contents

Metrics Endpoints

Port

9090

8080

9093

Endpoint

/metrics

/metrics

/esl?
module=default

Jump to
Purpose .
Section

System, gateway, and core
telephony metrics

TAS engine, Diameter, HLR,
OCS, and Erlang VM metrics

RTP/RTCP media quality and
call statistics

Port 9090 - System Metrics

Call and Session Metrics

Metric Name Port Description
Number of
freeswitch bridged calls 9090 bridged calls

currently active

Number of
freeswitch detailed bridged calls 9090 detailed bridged
calls active

_ Number of calls
freeswitch current calls 9090)
- - currently active

Number of
freeswitch detailed calls 9090 detailed calls
active

Number of
freeswitch current channels 9090 channels
currently active

Number of
freeswitch current sessions 9090 sessions
currently active

Peak number of
freeswitch current sessions peak 9090 sessions since
startup

Peak number of
freeswitch current sessions peak last 5min 9090 sessions in the
last 5 minutes

Metric Name

freeswitch sessions total

freeswitch current sps

freeswitch current sps peak

freeswitch current sps peak last 5min

freeswitch max sessions

freeswitch max sps

Port

9090

9090

9090

9090

9090

9090

Description

Total number of
sessions since
startup (counter)

Current sessions
per second

Peak sessions
per second since
startup

Peak sessions
per second in
the last 5
minutes

Maximum
number of
sessions allowed

Maximum
sessions per
second allowed

System Resource Metrics

Metric Name Port Description
freeswitch current idle cpu 9090 Current CPU idle percentage

Minimum CPU idle percentage

freeswitch min idle cpu 9090
- - recorded
freeswitch uptime seconds 9090 Uptime in seconds
Whether system time is in sync
freeswitch time synced 9090 with exporter host time

(1l=synced, 0=not synced)

Memory Metrics

Metric Name Port Description

freeswitch memory arena 9090 Total non-mmapped bytes (malloc
- - arena)

freeswitch memory ordblks 9090 Number of free chunks
freeswitch memory smblks 9090 Number of free fastbin blocks
freeswitch memory hblks 9090 Number of mapped regions
freeswitch memory hblkhd 9090 Bytes in mapped regions
freeswitch memory usmblks 9090 Maximum total allocated space

freeswitch memory fsmblks 9090 Free bytes held in fastbins
freeswitch memory uordblks 9090 Total allocated space
freeswitch memory fordblks 9090 Total free space

freeswitch memory keepcost 9090 Topmost releasable block

Codec Status Metrics

Metric Name Port Description

Codec status with labels: ikey
(module), name (codec name), type

freeswitch codec status 9090 . .
- - (codec). Value=1 indicates codec is

available

Available Codecs Include:

G.711 alaw/ulaw

PROXY PASS-THROUGH
PROXY VIDEO PASS-THROUGH
RAW Signed Linear (16 bit)
Speex

VP8/VP9 Video

AMR variants

B64

G.723.1, G.729, G.722, G.726 variants
OPUS

MP3

ADPCM, GSM, LPC-10

Endpoint Status Metrics

Metric Name Port

freeswitch endpoint status 9090

Available Endpoints Include:

Description

Endpoint status with labels: ikey
(module), name (endpoint name),
type (endpoint). Value=1 indicates
endpoint is available

e error, group, pickup, user (mod_dptools)

loopback, null (mod_loopback)
rtc (mod_rtc)
rtp, sofia (mod_sofia)

modem (mod_spandsp)

Module Status Metrics

Metric Name Port Description

Module load status (1=loaded, 0=not

freeswitch load module 9090
- - loaded) with label: module

Key Modules Monitored:

e mod_sofia (SIP)

e mod_conference, mod_conference_ims
e mod_opus, mod g729, mod_amr, etc.
e mod_event socket

e mod_dptools

e mod_python3

e mod_rtc

e And many more...

Registration Metrics

Metric Name Port Description

, , , Total number of active
freeswitch registrations 9090 _ ,
registrations
Detailed registration
information with labels:
_ , _ : expires, hostname,
freeswitch registration defails 9090 _
network_ip, network_port,
network_proto, realm,

reg_user, token, url

Sofia Gateway Metrics

Metric Name Port Description

Gateway status
with labels:
. : context, name,
freeswitch sofia gateway status 9090 .
- profile, proxy,
scheme, status

(UP/DOWN)

Number of inbound
freeswitch sofia gateway call in 9090 calls through
gateway

Number of
freeswitch sofia gateway call out 9090 outbound calls
through gateway

. : . : Number of failed
freeswitch sofia gateway failed call in 9090
inbound calls

_ . _ Number of failed
freeswitch sofia gateway failed call out 9090
outbound calls

Last ping
freeswitch sofia gateway ping 9090 timestamp (Unix

epoch)

Last ping time in

f itch sofia gatewa ingtime 9090
e N milliseconds
E o mm " S 9090 Ping frequency in
reeswitch sofia gateway pingfre
- — SR TRIER seconds
_ . . Number of pings
freeswitch sofia gateway pingcount 9090

sent

Metric Name

freeswitch sofia gateway pingmin

freeswitch sofia gateway pingmax

Exporter Health Metrics

Metric Name Port
freeswitch up 9090
freeswitch exporter total scrapes 9090

freeswitch exporter failed scrapes 9090

Port Description

Minimum ping

9090

time recorded

Maximum ping

9090

time recorded

Description

Whether the last scrape
was successful
(1=success, 0=failure)

Total number of scrapes
performed (counter)

Total number of failed
scrapes (counter)

Port 8080 - TAS Engine Metrics

These metrics are exposed by the Telephony Application Server engine and
provide insight into call processing, database operations, and Erlang VM

performance.

Application Call Metrics

Metric Name

call simulations total

call attempts total

call rejections total

call param errors total

active calls

tracked call sessions

Port

8080

8080

8080

8080

8080

8080

Description

Total number of call simulations
(counter)

Total number of call attempts
(counter)

Total number of call rejections by
reason (counter)

Total number of call parameter
parsing errors (counter)

Number of currently active calls with
labels: call _type (mo/mt/emergency)

Number of currently tracked call
sessions in ETS

Diameter Protocol Metrics

Metric Name

diameter peer state

diameter requests total

diameter responses total

diameter response duration milliseconds

Port

8080

8080

8080

8080

Description

State of Diameter
peers (1=up,
O=down) with
labels: peer_host,
peer_realm,
application

Total number of
Diameter requests
(counter)

Total number of
Diameter responses
(counter)

Duration of
Diameter requests
in milliseconds
(histogram)

Telephony Operations Metrics

Metric Name

hlr lookups total

hlr data duration milliseconds

subscriber data lookups total

subscriber data duration milliseconds

ss7 map operations total

ss7 map_http duration milliseconds

tracked registrations

Port

8080

8080

8080

8080

8080

8080

8080

Description

Total number of HLR
lookups (counter)

Duration of HLR data
retrieval in
milliseconds
(histogram)

Total number of
subscriber data
lookups (counter)

Duration of Sh
subscriber data
retrieval in
milliseconds
(histogram)

Total number of SS7
MAP operations
(counter)

Duration of SS7 MAP
HTTP requests in
milliseconds
(histogram)

Number of currently
tracked SIP
registrations

Online Charging System (OCS) Metrics

Metric Name

ocs _authorization attempts total

ocs authorization duration milliseconds

online charging events total

authorization decisions total

Port

8080

8080

8080

8080

Description

Total number of OCS
authorization
attempts (counter)

Duration of OCS
authorization in
milliseconds
(histogram)

Total number of
online charging
events (counter)

Total number of
authorization
decisions (counter)

Dialplan & Processing Metrics

Metric Name

http requests total

http dialplan request duration milliseconds

dialplan module duration milliseconds

freeswitch variable set duration milliseconds

Port

8080

8080

8080

8080

Description

Total number
of HTTP
requests with
labels:
endpoint,
status_code
(counter)

Duration of
HTTP dialplan
requests in
milliseconds
(histogram)

Duration of
individual
dialplan
module
processing
(histogram)

Duration of
variable
setting
operations
(histogram)

Event Socket Metrics

Metric Name

event socket connected

event socket reconnections total

event socket commands total

event socket command timeouts total

Command Types Tracked:

e uuid_setvar, uuid_dump, uuid_kill, uuid_transfer

e uuid_set media_stats
e sched _hangup, sched transfer
e vm_boxcount

e status, echo, show, sofia

Result Values:

Port

8080

8080

8080

8080

e success: Command completed successfully

Description

Event Socket connection
state (1=connected,
O=disconnected) with
label: connection_type

Total number of Event
Socket reconnection
attempts (counter) with
labels: connection_type,
result

Total number of Event
Socket commands
executed (counter) with
labels: command_type,
result

Total number of Event
Socket command
timeouts (counter) with
label: command_type

¢ timeout: Command exceeded timeout threshold

e error: Command returned unexpected response

Feature Usage Metrics

Metric Name Port Description

Total number of TAS feature
feature invocations total 8080 invocations (counter) with labels:
feature, call_type, result

Total number of feature data source
feature data source total 8080 usages (counter) with labels:
feature, source

Features:

e call forward all - Unconditional call forwarding

e call forward not reachable - Call forwarding when subscriber not
reachable

e call forward no reply - Call forwarding on no reply
e call barring - OCS-based call barring (insufficient credit)

e cli withheld - CLI privacy/screening
Call Types: mo, mt
Data Sources: sh interface, hlr, config fallback

Result Values: success, error, skipped

SMS Trigger Metrics

Metric Name Port

sms_trigger attempts total 8080

sms_trigger errors total 8080

smsc_requests total 8080

Description

Total number of SMS trigger
attempts (counter) with labels:
trigger _type, result

Total number of SMS trigger errors
(counter) with labels: trigger_type,
error_stage

Total number of SMSC HTTP
requests (counter) with labels:
message_type, result

Trigger Types: voicemail deposit, voicemail clear

Error Stages: vm _boxcount, template render, smsc request

Message Types: notification, mwi

Result Values: success, error

Erlang Mnesia Database Metrics

Metric Name

erlang mnesia held locks

erlang mnesia lock queue

erlang mnesia transaction participants

erlang mnesia transaction coordinators

erlang mnesia failed transactions

erlang mnesia committed transactions

erlang mnesia logged transactions

erlang mnesia restarted transactions

Port

8080

8080

8080

8080

8080

8080

8080

8080

Description

Number of held
locks

Number of
transactions
waiting for a
lock

Number of
participant
transactions

Number of
coordinator
transactions

Number of failed
(aborted)
transactions
(counter)

Number of
committed
transactions
(counter)

Number of
transactions
logged (counter)

Total number of
transaction

Metric Name

erlang mnesia memory usage bytes

erlang mnesia tablewise memory usage bytes

erlang mnesia tablewise size

Port

8080

8080

8080

Description

restarts
(counter)

Total bytes
allocated by all
mnesia tables

Bytes allocated
per mnesia table
with label: table

Number of rows
per table with
label: table

Erlang VM Memory Metrics

Metric Name

erlang vm memory atom bytes total

erlang vm memory bytes total

erlang vm _memory dets tables

erlang vm memory ets tables

erlang vm memory processes bytes total

erlang vm memory system bytes total

Port

8080

8080

8080

8080

8080

8080

Description

Memory allocated for a
with label: usage (used

Total memory allocated
label: kind

(system/processes)

DETS tables count

ETS tables count

Memory allocated for
processes with label: u
(used/free)

Memory for emulator (r
process-related) with la
usage

(atom/binary/code/ets/c

Erlang VM Statistics

Metric Name

erlang vm statistics bytes output total

erlang vm statistics bytes received total

erlang vm statistics context switches

erlang vm statistics dirty cpu run queue length

erlang vm statistics dirty io run queue length

erlang vm statistics garbage collection number of gcs

erlang vm statistics garbage collection bytes reclaimed

Port

8080

8080

8080

8080

8080

8080

8080

Des

Tota
outy
port
(coL

Tota
rece
thro
port
(coL

Tota
swit
sinc
star
(coL

Len
dirty
run-

Len
dirt
que

Nun
gart
colle
(coL

Byte
recl

Metric Name

erlang vm statistics garbage collection words reclaimed

erlang vm statistics reductions total

erlang vm statistics run queues length

erlang vm statistics runtime milliseconds

erlang vm statistics wallclock time milliseconds

Port

8080

8080

8080

8080

8080

Des

by
(coL

Wor
recl:
by (
(coL

Tota
redt
(coL

Len
norr
que

Sun
runt
all t
(cou

Rea
me:c
(coL

Erlang VM System Information

Metric Name

erlang vm dirty cpu schedulers

erlang vm dirty cpu schedulers online

erlang vm dirty io schedulers

erlang vm ets limit

erlang vm logical processors

erlang vm logical processors available

erlang vm logical processors online

erlang vm port count

erlang vm port limit

erlang vm process count

erlang vm process limit

Port

8080

8080

8080

8080

8080

8080

8080

8080

8080

8080

8080

Description

Number of dirty CPU
scheduler threads

Number of dirty CPU
schedulers online

Number of dirty 1/0
scheduler threads

Maximum number of
ETS tables allowed

Number of logical
processors
configured

Number of logical
processors available

Number of logical
processors online

Number of ports
currently existing

Maximum number of
ports allowed

Number of processes
currently existing

Maximum number of
processes allowed

Metric Name

erlang vm schedulers

erlang vm schedulers online

erlang vm smp support

erlang vm threads

erlang vm thread pool size

erlang vm time correction

erlang vm wordsize bytes

erlang vm atom count

erlang vm atom limit

Port

8080

8080

8080

8080

8080

8080

8080

8080

8080

Description

Number of scheduler
threads

Number of
schedulers online

1 if compiled with
SMP support, 0
otherwise

1 if compiled with
thread support, O
otherwise

Number of async
threads in pool

1 if time correction
enabled, O otherwise

Size of Erlang term
words in bytes

Number of atoms
currently existing

Maximum number of
atoms allowed

Erlang VM Microstate Accounting (MSACC)

Detailed time tracking for scheduler activities with labels: type, id

Metric Name

erlang vm _msacc_aux seconds total

erlang vm msacc_check io seconds total

erlang vm msacc emulator seconds total

erlang vm msacc gc seconds total

erlang vm _msacc_other seconds total

erlang vm msacc _port seconds total

erlang vm msacc_sleep seconds total

erlang vm msacc_alloc seconds total

erlang vm msacc bif seconds total

Port

8080

8080

8080

8080

8080

8080

8080

8080

8080

Description

Time spent handling
auxiliary jobs
(counter)

Time spent
checking for new
I/0 events (counter)

Time spent
executing Erlang
processes (counter)

Time spent in
garbage collection
(counter)

Time spent on
unaccounted
activities (counter)

Time spent
executing ports
(counter)

Time spent sleeping
(counter)

Time spent
managing memory
(counter)

Time spent in BIFs
(counter)

Metric Name Port Description

. Time spent busy
erlang vm msacc busy wait seconds total 8080 "
waiting (counter)

Time spent in ETS

erlang vm msacc ets seconds total 8080
- - - BIFs (counter)
Time spent in
erlang vm msacc gc full seconds total 8080 fullsweep GC
(counter)
. Time spent in NIFs
erlang vm msacc nif seconds total 8080
- - - (counter)
Time spent sending
erlang vm msacc send seconds total 8080
- - - - messages (counter)
Time spent
erlang vm msacc timers seconds total 8080 managing timers
(counter)

Erlang VM Allocators
Detailed memory allocator metrics with labels: alloc, instance_no, kind, usage
Metric Name Port Description
Allocated (carriers_size) and used

erlang vm allocators 8080 (blocks_size) memory for different
allocators. See erts_alloc(3).

Allocator types include: temp alloc, sl alloc, std_alloc, Il _alloc, eheap_alloc,
ets_alloc, fix_alloc, literal_alloc, binary_alloc, driver_alloc

Port 9093 - Media & Call Quality
Metrics

These metrics provide real-time RTP/RTCP statistics and call quality information
per channel.

Metric Name Port Description
freeswitch info 9093 System info with label: version

_ Ready status (1=ready, O0=not
freeswitch up 9093

ready)
freeswitch stack bytes 9093 Stack size in bytes
freeswitch session total 9093 Total number of sessions

freeswitch session active 9093 Active number of sessions

freeswitch session limit 9093 Session limit

RTP channel info with labels for

rtp channel info 9093
p_ 1 channel details

RTP Audio - Byte Counters

Metric Name

rtp audio in raw bytes total

rtp audio out raw bytes total

rtp audio in media bytes total

rtp audio out media bytes total

RTP Audio - Packet Counters

Metric Name

rtp audio in packets total

rtp audio out packets total

rtp audio in media packets total

rtp audio out media packets total

rtp_audio_in skip packets total

rtp audio out skip packets total

RTP Audio - Special Packet Types

Port

9093

9093

9093

9093

Port

9093

9093

9093

9093

9093

9093

Description

Total bytes received
(including headers)

Total bytes sent (including
headers)

Total media bytes received
(payload only)

Total media bytes sent
(payload only)

Description

Total packets received

Total packets sent

Total media packets
received

Total media packets sent

Inbound packets discarded

Outbound packets
discarded

Metric Name Port Description

itter buffer packets
rtp audio in jitter packets total 9093 J _ P
received

rtp_audio_in dtmf packets total 9093 DTMF packets received
rtp_audio out dtmf packets total 9093 DTMF packets sent

. Comfort Noise Generation
rtp_audio in cng packets total 9093 ,
- - - - packets received

_ Comfort Noise Generation
rtp audio out cng packets total 9093
packets sent

Flushed packets (buffer

rtp audio in flush packets total 9093
- - - - resets)

RTP Audio - Jitter & Quality Metrics

Metric Name

rtp audio in jitter buffer bytes max

rtp audio in jitter seconds min

rtp audio in jitter seconds max

rtp audio in jitter loss rate

rtp audio in jitter burst rate

rtp audio in mean interval seconds

rtp_audio in flaw total

rtp _audio _in quality percent

rtp audio in quality mos

RTCP Metrics

Port

9093

9093

9093

9093

9093

9093

9093

9093

9093

Description

Largest jitter buffer size
in bytes

Minimum jitter in
seconds

Maximum jitter in
seconds

Packet loss rate due to
jitter (ratio)

Packet burst rate due
to jitter (ratio)

Mean interval between
inbound packets

Total audio flaws
detected (glitches,
artifacts)

Audio quality as
percentage (0-100)

Mean Opinion Score (1-
5, where 5 is best)

Metric Name Port Description

rtcp_audio bytes total 9093 Total RTCP bytes

rtcp audio packets total 9093 Total RTCP packets

Go Runtime Metrics

Metric Name Port Description

Number of goroutines
go goroutines 9090 g ,
- currently running

Number of OS threads
go threads 9090

created
Information about the Go
go info 9090 environment (with version
label)
, Pause duration of garbage
go gc duration seconds 9090 ,
collection cycles (summary)
Number of bytes allocated
go memstats alloc bytes 9090 .
- - - and still in use
Total number of bytes
go memstats alloc bytes total 9090
allocated (counter)
Heap bytes allocated and
go memstats heap alloc bytes 9090 .
still in use
Heap bytes waiting to be
go memstats heap idle bytes 9090 e/ .
used
go memstats heap inuse bytes 9090 Heap bytes currently in use
. Number of allocated heap
go memstats heap objects 9090

objects

go_memstats heap released bytes 9090 Heap bytes released to OS

Metric Name

go memstats heap sys bytes

go memstats sys bytes

Process Metrics

Metric Name

process cpu seconds total

process max_ fds

process open_ fds

process resident memory bytes

process virtual memory bytes

process virtual memory max bytes

process start time seconds

Port

9090

9090

Port

9090

9090

9090

9090

9090

9090

9090

Description

Heap bytes obtained from
system

Total bytes obtained from

system

Description

Total user and system CPU
time spent (counter)

Maximum number of open
file descriptors

Current number of open file
descriptors

Resident memory size in
bytes

Virtual memory size in
bytes

Maximum amount of virtual
memory available

Process start time since
Unix epoch

Prometheus HTTP Metrics

Metric Name Port Description

Current number
promhttp metric handler requests in flight 9090 of scrapes being
served

Total number of
scrapes by HTTP
status code
(counter)

promhttp metric handler requests total 9090

Metric Types

e gauge: A metric that can go up or down (e.g., current_calls, cpu_idle)
e counter: A metric that only increases (e.g., sessions_total, failed_scrapes)

e summary: A metric that tracks quantiles over a sliding time window (e.g.,
gc_duration_seconds)

Usage

To scrape these metrics, configure your Prometheus server to scrape all three
endpoints:

scrape _configs:
- job _name: 'ims as system'
static configs:
- targets: ['localhost:9090']

- job name: 'ims as _engine'
static configs:
- targets: ['localhost:8080']
metrics path: '/metrics'
- job name: 'ims as media‘
static configs:
- targets: ['localhost:9093']
metrics path: '/esl'

params:
module: ['default']

Example Queries

Quick Links:

General Metrics

Current call volume:
freeswitch current calls

Gateway health:

freeswitch sofia gateway status{status="UP"}
Average ping time to gateways:
avg(freeswitch sofia gateway pingtime)
Sessions per second rate:
freeswitch current sps
Memory usage:
freeswitch memory uordblks
Media Quality Metrics
Call quality (MOS score):
rtp audio in quality mos
Audio quality percentage:
rtp audio in quality percent
Jitter rate:
rate(rtp audio in jitter packets total[5m])
Packet loss rate:

rtp _audio in jitter loss rate

Average jitter:

avg(rtp audio in jitter seconds max -
rtp audio in jitter seconds min)

RTP bandwidth (inbound):
rate(rtp audio in media bytes total[lm]) * 8
Audio flaws detected:
increase(rtp audio in flaw total[5m])
TAS Engine Metrics
Active calls by type:
active calls
Diameter peer health:
diameter peer state{application="sh"}
Call attempt rate:
rate(call attempts total[5m])
HLR lookup latency (95th percentile):
histogram quantile(0.95, hlr data duration milliseconds)

OCS authorization latency:

histogram quantile(0.99, ocs authorization duration milliseconds)

Subscriber data lookup rate:

rate(subscriber data lookups total[5m])

Diameter request success rate:

rate(diameter responses total[5m]) /
rate(diameter requests total[5m])

Event Socket connection status:

event socket connected

Mnesia transaction performance:

rate(erlang mnesia committed transactions[5m])

Mnesia failed transaction rate:

rate(erlang mnesia failed transactions[5m])

Erlang VM process count:

erlang vm process count

Erlang VM memory usage:

erlang vm memory bytes total

Garbage collection rate:

rate(erlang vm statistics garbage collection number of gcs[5m])
Scheduler run queue length:

erlang vm statistics run queues length
ETS table count:

erlang vm memory ets tables
HTTP dialplan request duration (median):

histogram quantile(0.5,
http dialplan request duration milliseconds)

Grafana Dashboard Integration

The metrics can be visualized in Grafana using the Prometheus data source.

Recommended Dashboard Layout

Row 1: Call Volume & Health

Active calls gauge (active calls)

Call attempts rate by type (rate(call attempts total[5m]))

Call rejection rate (rate(call rejections total[5m]))

Gateway health (freeswitch sofia gateway status)
Row 2: Performance (Latency Percentiles)

e P95 HTTP dialplan request time by call type

P95 Sh subscriber data lookup time
P95 HLR lookup time
P95 OCS authorization time

P95 Diameter response time by application
Row 3: Success Rates

e Subscriber data lookup success rate
e HLR lookup success rate
e OCS authorization success rate

e Diameter peer state

Row 4: Media Quality

Call quality MOS score (rtp_audio in quality mos)

Audio quality percentage (rtp audio in quality percent)

Jitter statistics

Packet loss rate

Row 5: System Resources

e Erlang VM process count

e Erlang VM memory usage

e ETS table count

e Scheduler run queue length

e Garbage collection rate

Row 6: Error Tracking

Call parameter errors

Authorization failures

Event Socket connection status

Mnesia transaction failures

Example Panel Queries

Active Calls by Type:

sum by (call type) (active calls)
P95 Dialplan Generation Latency:

histogram quantile(0.95,
rate(http dialplan request duration milliseconds bucket[5m])

)
Diameter Success Rate:

rate(diameter responses total{result="success"}[5m]) /
rate(diameter requests total[5m]) * 100

Media Quality - Average MOS:

avg(rtp audio in quality mos)

Alerting Examples

Critical Alerts (Page Immediately)

System Down - No Call Attempts:

alert: SystemDown

expr: rate(call attempts total[5m]) ==

for: 2m

labels:
severity: critical

annotations:
summary: "TAS system appears down - no call attempts"
description: "No call attempts detected for 2 minutes"

Diameter Peer Down:

alert: DiameterPeerDown
expr: diameter peer state ==
for: 1m
labels:
severity: critical
annotations:
summary: "Diameter peer {{ $labels.peer host }} is down"
description: "Peer for {{ $labels.application }} application is
unavailable"

Event Socket Disconnected:

alert: EventSocketDisconnected
expr: event socket connected ==
for: 30s
labels:
severity: critical
annotations:
summary: "Event Socket {{ $labels.connection type }}
disconnected"
description: "Critical communication channel down"

High Severity Alerts

High Diameter Latency:

alert: HighDiameterLatency
expr: |
histogram quantile(0.95,
rate(diameter response duration milliseconds bucket[5m])
) > 1000
for: 5m
labels:
severity: high
annotations:
summary: "High Diameter latency detected"
description: "P95 latency is {{ $value }}ms"

OCS Authorization Failures:

alert: OCSAuthFailures
expr: |
rate(ocs authorization attempts total{result="no credit"}[5m]) /
rate(ocs authorization attempts total[5m]) > 0.1
for: 5m
labels:
severity: high
annotations:
summary: "High rate of O0CS no-credit responses"
description: "{{ $value | humanizePercentage }} of requests
denied credit"

High Call Rejection Rate:

alert: HighCallRejectionRate
expr: |
rate(call rejections total[5m]) /
rate(call attempts total[5m]) > 0.05
for: 5m
labels:
severity: high
annotations:
summary: "Call rejection rate above 5%"
description: "{{ $value | humanizePercentage }} of calls
rejected"

Poor Media Quality:

alert: PoorMediaQuality

expr: avg(rtp audio in quality mos) < 3.5

for: 3m

labels:
severity: high

annotations:
summary: "Poor call quality detected"”
description: "Average MOS score is {{ $value }}"

Warning Alerts

High Memory Usage:

alert: HighMemoryUsage
expr: |
erlang vm memory bytes total{kind="processes"} /
(erlang vm process limit * 1000000) > 0.8
for: 10m
labels:
severity: warning
annotations:
summary: "Erlang VM memory usage high"
description: "Process memory at {{ $value | humanizePercentage

P

High Scheduler Run Queue:

alert: HighSchedulerRunQueue
expr: erlang vm statistics run_queues length > 10
for: 5m
labels:
severity: warning
annotations:
summary: "High scheduler run queue length"
description: "Run queue length is {{ $value }}"

Mnesia Transaction Failures:

alert: MnesiaTransactionFailures
expr: rate(erlang mnesia failed transactions[5m]) > 1
for: 5m
labels:
severity: warning
annotations:
summary: "Mnesia transaction failures detected"
description: "{{ $value }} failures per second"

Troubleshooting with Metrics

Problem: Calls are slow

Investigation Steps:

1. Check overall dialplan generation time:

histogram quantile(0.95,
rate(http dialplan request duration milliseconds bucket[5m]))

2. Break down by component:

Subscriber data lookup
histogram quantile(0.95,

rate(subscriber data duration milliseconds bucket[5m]))

HLR lookup
histogram quantile(0.95,
rate(hlr data duration milliseconds bucket[5m]))

OCS authorization
histogram quantile(0.95,
rate(ocs authorization duration milliseconds bucket[5m]))

3. Check module-specific delays:

histogram quantile(0.95,

rate(dialplan module duration milliseconds bucket[5m])
) by (module)

Common Causes:

e External system latency (HSS, HLR, OCS)

e Network issues

e Database contention

e High system load

Problem: Calls are failing
Investigation Steps:

1. Check call rejection reasons:
sum by (reason) (rate(call rejections total[5m]))
2. Check authorization decisions:

sum by (decision) (rate(authorization decisions total[5m]))

3. Check Diameter peer health:

diameter peer state

4. Check Event Socket connection:

event socket connected

Problem: High load
Investigation Steps:

1. Check call volume:

rate(call attempts total[5m])
active calls

2. Check Erlang VM resources:

erlang vm process count
erlang vm statistics run queues length
erlang vm memory bytes total

3. Check garbage collection:

rate(erlang vm statistics garbage collection number of gcs[5m])

Problem: Poor Media Quality

Investigation Steps:

1. Check MOS scores:

rtp audio in quality mos
rtp audio in quality percent

2. Check jitter:

rtp audio in jitter seconds max
rtp audio in jitter loss rate

3. Check packet loss:

rtp_audio in skip packets total
rtp audio in flaw total

4. Check bandwidth usage:

rate(rtp audio in media bytes total[lm]) * 8

Performance Baselines

Typical Values (Well-Tuned System)
Latency (P95):

e HTTP dialplan request: 200-500ms

e Subscriber data (Sh) lookup: 50-150ms
e HLR data lookup: 100-300ms

e OCS authorization: 100-250ms

e Diameter requests: 50-200ms

e Dialplan module processing: 10-50ms per module
Success Rates:

e Call completion: >95%

Subscriber data lookups: >99%
HLR lookups: >98%

OCS authorizations: >99% (excluding legitimate no-credit)

Diameter peer uptime: >99.9%
Media Quality:

e MOS score: >4.0
e Audio quality percentage: >80%
e Jitter: <30ms

e Packet loss rate: <1%

System Resources:

Erlang process count: <50% of limit

Erlang memory usage: <70% of available

Scheduler run queue: <5
ETS tables: <1000

Capacity Planning
Per-Server Capacity (recommended maximums):

e Concurrent calls: 500-1000 (depends on hardware)
e Calls per second: 20-50 CPS
e Registered subscribers: 10,000-50,000

Scaling Indicators (add capacity when):

Active calls consistently >70% of capacity

Erlang process count >70% of limit

P95 latency degrading

Scheduler run queues consistently >10

Best Practices

Monitoring Strategy
1. Set up dashboards for different audiences:

o Operations dashboard: Call volume, success rates, system health

o Engineering dashboard: Latency percentiles, error rates, resource
usage

o Executive dashboard: High-level KPIs, uptime, cost metrics

2. Configure alerts at multiple levels:

o Critical: Page on-call (system down, major outage)
o High: Alert during business hours (degraded performance)

o Warning: Track in ticket system (potential issues)

3. Use appropriate time ranges:

o Real-time monitoring: 5-minute windows
o Troubleshooting: 15-minute to 1-hour windows

o Capacity planning: Daily/weekly aggregates
4. Focus on user impact:

o Prioritize end-to-end latency metrics
o Track success rates over individual error counters

o Monitor media quality for user experience

Query Performance

1. Use recording rules for frequently-used queries:

groups:
- name: ims as aggregations
interval: 30s
rules:
- record: job:call attempts:rate5m
expr: rate(call attempts total[5m])

- record: job:dialplan latency:p95

expr: histogram quantile(0.95,
rate(http dialplan request duration milliseconds bucket[5m]))

2. Avoid high-cardinality labels in queries (e.g., don't group by phone
number)

3. Use appropriate rate intervals:

o Short-term trends: [5m]
o Medium-term trends: [1h]

o Long-term trends: [1d]

Metric Cardinality

Monitor cardinality to prevent Prometheus performance issues:

Check metric cardinality
count by (_ name) ({ name =~".+"})

High-cardinality risks:

e Labels with unique values per call (phone numbers, call IDs)
e Unbounded label values

e Labels with >1000 unique values
Solution:

e Use labels for categories, not unique identifiers
e Aggregate high-cardinality data in external systems

e Use recording rules to pre-aggregate

Number Translation

[

Number translation converts phone numbers between different formats to
ensure consistent E.164 formatting throughout the system.

Related Documentation

Core Documentation

° [- Overview and quick start

e [] - Number translation configuration
(number_translate)

e [] - Number translation testing in Control Panel

Call Processing Flow

°
(|

- Using translated numbers in dialplan

—

translation happens first)
- Sh lookup uses translated numbers

- OCS receives translated numbers

°
O O &3

- HLR queries use translated numbers

Related Services

o {3 - CLI blocking prefix stripping during
translation
e [] - Voicemail numbers in translation
Monitoring

e [- Number translation metrics

Number Translation

Number translation converts phone numbers between different formats (local,
national, international) to ensure consistent E.164 formatting throughout the
system.

What is Number Translation?

Number translation normalizes phone numbers to E.164 format (international
standard) before call processing. This ensures:

e Consistent numbering throughout the system
e Proper routing to on-net and off-net destinations

e Compatibility with international SIP trunks and IMS networks
E.164 Format: [Country Code][National Number] (no + prefix, no spaces)

 Example: 61403123456 (Australia mobile)
e Example: 16505551234 (US number)

When Translation Occurs

Translation happens:

Before Sh lookups

Before HLR lookups

Before OCS authorization

Before dialplan XML is generated

For MT Calls: Translate destination number (called party) For MO Calls:
Translate both source and destination numbers

Configuration

config :tas,
number translate: %{

country code: :PF, # IS0 3166-1 alpha-2 country code
localAreaCode: "617" # Default area code for short
numbers
}
Parameters:

* country_code: ISO country code as atom (e.g., :AU, :US, :PF)

e localAreaCode: Area code prepended to short local numbers

Supported Country Codes

The TAS includes translation logic for these countries:

Countr E.164
4 Country Supported Formats .
Code Prefix
ONSN (10-digit), SN (8-digit),
:AU Australi 61
ustralia E 164
US United NPANXXXXXX (10-digit), !
' States 1+NPANXXXXXX, E.164
French Local (6-digit), National (8-
: PF , . 689
Polynesia digit), E.164

Adding New Country Codes: Contact your integration engineer to add
support for new countries.

Special Translation Behaviors

1. CLI Blocking Prefix Stripping

Before format translation, CLI blocking prefixes are removed:

Input: *67555123456
Step 1: Strip *67 - 555123456

Step 2: Translate - 1555123456 (if US)

2. SIP Parameter Stripping

Parameters after semicolons are removed:

Input: 61403123456;npdi; rn=+61400000000
Step 1: Strip ;npdi;rn=... - 61403123456

Step 2: Translate - 61403123456

3. Non-Digit Character Removal

All non-digit characters (except +) are stripped:

Input: +61 (403) 123-456

Step 1: Strip formatting - +61403123456

Step 2: Translate - 61403123456

Variables Set After Translation

Variable Value
. . E.164
destination number
— format
E.164
tas destination number
- - format
E.164
effective caller id number
- - = format

Description

Normalized destination number

Same as destination number
(both set for compatibility)

Normalized source number (MO
calls)

What Happens When Translation Fails

Scenario: Undefined Country Code
config :tas, number translate: %{country code: :XX} # Invalid

Result: {:error, "Undefined Country Code"} - call rejected

Scenario: Invalid Number Format

Input: "abcl23" (contains letters)

Step 1: Strip non-digits - "123"

Step 2: Too short, cannot match any pattern

Result: May pass through as-is or reject based on dialplan logic

Best Practice: Always validate subscriber provisioning with correct E.164
numbers in HSS.

Testing Number Translation
Web Ul Translation Tester (/translate):

1. Navigate to /translate in Control Panel
2. Select country code from dropdown

3. Enter test number in any format

4. View translated E.164 output

5. Test multiple formats to validate

Common Test Scenarios:

¢ Local short codes —» E.164
National format (ONSN) —» E.164
International format (+CC) —» E.164

Numbers with CLI prefixes — stripped and translated

Numbers with formatting (spaces, dashes) —» clean E.164

Troubleshooting Number Translation
Problem: Calls failing with "UNALLOCATED_NUMBER"
1. Check translated number format:

o Use /translate tool to test number
o Verify output matches expected E.164 format

o Confirm country code and area code are correct

2. Check Sh lookup:

o Translated number is used for Sh query
o Use /sh test with translated number
o Verify subscriber exists with that MSISDN

3. Check dialplan variables:

o Review logs for destination number value

o Confirm translation occurred before dialplan
Problem: Wrong area code applied
Configuration
config :tas, number translate: %{

country code: :AU,
localAreaCode: "617" # Wrong for your region

Input: 12345678 (8-digit local)
Output: 6161712345678 (incorrect - double area code)
Fix: Set correct localAreaCode for your deployment

Problem: International numbers not recognized
Check if number includes country code:

e [] +61403123456 or 61403123456 — Recognized
e [] 0403123456 in wrong country code config - Misrouted

MO vs MT Translation Behavior
MT (Mobile Terminated) Calls:

¢ Only destination number (called party) is translated
e Source number (caller) passed through as-is from SIP

e Destination used for Sh lookup of called subscriber

MO (Mobile Originating) Calls:

Destination number (called party) translated

Source number (calling party) also translated

Source used for Sh lookup of calling subscriber

Both numbers normalized for consistent logging/CDR

Best Practices
1. Use Correct Country Code:

o Set country code to match your deployment region

o Test thoroughly before production

2. Configure Appropriate Local Area Code:

o localAreaCode should match your network's default area

o Used for short numbers without area code

3. Test All Number Formats:

o Local (short codes)
o National (ONSN format)
o International (+CC format)

o Special service numbers (emergency, voicemail)

4. Monitor Translation Logs:

o Check for "Undefined Country Code" errors

o Watch for unexpected number formats

o Validate E.164 output matches expectations

5. Document Your Numbering Plan:

o Define which formats subscribers will use
o Test each format in /translate tool

o Train operations staff on expected formats

Online Charging
System (OCS)
Integration

Comprehensive guide to OmniTAS integration with Online Charging Systems via
Diameter Ro interface, including real-time credit control, AVP extraction, and
FreeSWITCH variable mapping.

Table of Contents

Architecture Overview

OmniTAS implements the Diameter Ro interface per for real-
time online charging. The system authorizes calls by requesting credit from an
OCS before call setup, monitors credit during the call, and reports final usage
on termination.

https://www.3gpp.org/DynaReport/32299.htm

Subscriber OmniTAS Online Charging System FreeSWITCH

SIP INVITE

|

Call Received

CCR-Initial (Request Credit)

T

CCA (Grant 6005 + AVPs)

e

Extract AVPs:
Service-Information
Carrier Routing Info

Setup Call
with CCA AVP Variables

.
|

Variables Available:
CCA Service-Information.*

Call Connected

&

Call Active (600s granted)

CCR-Update (Re-auth)

L

CCA (Grant &600s)

F

Call Continues

SIP BYE

L J

CCR-Terminate (Final Usage)

.
L

CCA {Acknowledged)

F

Hangup Call

L 4

Subscriber OmniTAS Online Charging System FreeSWITCH

Key Components
Credit-Control-Request (CCR):

e CCR-Initial (Type 1): Sent before call setup to request initial credit
authorization

e CCR-Update (Type 2): Sent during active calls for re-authorization or
interim updates

e CCR-Terminate (Type 3): Sent on call termination with final usage
reporting

Credit-Control-Answer (CCA):

e Contains granted service units (time quota in seconds)
¢ Includes vendor-specific AVPs with additional charging data

e Provides routing information, charged party details, and service identifiers

Credit Control Flow

Call Authorization Sequence

Call Received

Call Ended

Credit Exhaustion Handling

OmniTAS supports multiple mechanisms for handling credit exhaustion, with
automatic integration between scheduled hangups and credit exhaustion
announcements.

Scheduled Hangup with Dynamic Rescheduling

When schedule hangup auth is enabled, OmniTAS schedules a FreeSWITCH
timer that automatically terminates calls when granted credit expires. This

timer is dynamically rescheduled every time new credit is granted via CCR-
Update responses.

How it works:

Call Received

0OC5 Enabled?

Matches Skip
Regex?

\

Mo

l

Send CCR-Initial ‘

No

Bypass OCS
Allow Call

OmniCharge OmniRAN

- -

Downloads ¥ English + Omnitouch Website [*

| WAL TUT LA |

<

Result Code

2001 Success

Parse AVIPs

4xxx/5xxx Emmor Timeout

Granted
Units = 07

| .

'ris | \.

Map AVPs to

FreeSWITCH Variables Heject Call

v
Setup Call with
AVP Variables
Monitor Call
i - i K\-.
¥
II
|
!
Periodic
Re-auth Time?
| .
\ ,-'I =
Mo, 5 __—
- ~ P
. Y |
Continue Call send CCR-Update |
]
. /
Call
Active?
|
Mo
Send CCR-Terminate

hs . l ____.-.-f

T CallEnded ©
_ o
Buffer Logic:

OmniTAS sends CCR-Update messages before the granted credit expires to
ensure continuous service. The buffer time is configurable via
ccr _update buffer seconds (default: 2 seconds).

Example timeline:

e T+0s: Call answered, OCS grants 10s, timer scheduled for T+10s
e T+8s: CCR-U sent (10s - 2s buffer)

T+8.1s: OCS grants 10s, timer rescheduled to T+18.1s (10s from now)

T+16.1s: CCR-U sent
T+16.2s: OCS grants 10s, timer rescheduled to T+26.2s

Call continues as long as OCS keeps granting credit

Logs to watch:

[0CS HANGUP RESCHEDULE] Found UUID <uuid> for call <id> -

rescheduling timer to 10s from now
[SCHED TRANSFER] Scheduling transfer to credit exhausted dialplan

for <uuid> in 10s
[0OCS HANGUP RESCHEDULE] Successfully rescheduled timer for call

<id> (UUID: <uuid>)

Integration: schedule_hangup_auth +
credit_exhaustion_announcement

When both features are enabled, OmniTAS automatically uses scheduled
transfers instead of direct hangups, allowing the caller to hear an
announcement before call termination.

Without announcement configured:

config :tas, :online charging,
schedule hangup auth: true,
credit exhaustion announcement: nil

- Uses sched hangup - direct hangup when credit expires

With announcement configured:

config :tas, :online charging,
schedule hangup auth: true,
credit exhaustion announcement:
"${base dir}/sounds/en/us/callie/misc/8000/credit exhausted.wav"

- Uses sched transfer - transfers to credit exhausted dialplan which plays
announcement then hangs up

How the transfer works:

1. OmniTAS sets tas call reason=credit exhausted channel variable

2. Schedules transfer to credit exhausted extension in ims_as dialplan
context

3. When timer fires:
o FreeSWITCH transfers A-leg to credit_exhausted dialplan

o Bridge breaks automatically, B-leg receives BYE
o Dialplan plays announcement to A-leg

o Call terminates after announcement

Benefits:

Caller hears professional announcement instead of abrupt disconnect

B-leg (called party) doesn't hear announcement

CCR-T still sent with actual usage

Announcement path: Must be relative to FreeSWITCH base directory (use
${base_dir} variable)

Immediate Credit Exhaustion During CCR-Update

If the OCS denies credit or returns zero seconds during a CCR-Update,
OmniTAS immediately triggers credit exhaustion handling, overriding any
scheduled timer.

OCS Response Scenarios:

Error|4012
IT_LIM|T_RE

Grant N seco
N >

rant 0 seco ICE_DENIE er Error

(N 7
| carmmnes

Handled Error Codes:

OCS Response

{:0k, 0} (Zero seconds)

{:error, 4012}
(CREDIT_LIMIT_REACHED)

{:error, 4010}
(END_USER_SERVICE_DENIED)

{:error, reason} (Other
errors)

{:0k, N} whereN>0

Action

Immediate
credit
exhaustion
hangup

Immediate
credit
exhaustion
hangup

Immediate
credit
exhaustion
hangup

Stop
periodic
CCR job,
scheduled
timer fires

Reschedule
timer to +N
seconds

Logs

Credit exhausted (zero
seconds allocated) -
triggering immediate
hangup

Credit exhausted (4012
CREDIT LIMIT REACHED) -
triggering immediate
hangup

Service denied (4010
END USER SERVICE DENIED)
- triggering immediate
hangup

Periodic CCR failed with
error <reason> -
Stopping job

Periodic CCA allocated
Ns, will send next CCR-U
in (N-buffer)s

Priority: Immediate credit exhaustion handling wins over scheduled timer. If
OCS denies credit at T+8s but timer was scheduled for T+10s, the immediate
hangup at T+8s occurs and the scheduled timer becomes irrelevant.

Example timeline with mid-call credit denial:

T+0s: Call answered

T+0.1s: 0OCS grants 10s - Timer scheduled for T+10.1s
T+8s: CCR-U sent (buffer = 2s)

T+8.1s: 0OCS returns 0 seconds - Immediate transfer to
credit exhausted dialplan

T+8.2s: Announcement plays to caller

T+10s: Call terminated (scheduled timer irrelevant)

Logs for immediate credit exhaustion:

[warning] Credit exhausted (zero seconds allocated) - triggering
immediate hangup

[warning] Hanging up call <id> (UUID: <uuid>) due to credit
exhaustion

[info] Credit exhaustion announcement config:

"${base dir}/sounds/..."

[info] Playing announcement before hangup:

[info] Setting tas call reason=credit exhausted for <uuid>
[info] Transferring to credit exhausted dialplan: uuid transfer
<uuid> credit exhausted XML ims as

Summary: Credit Exhaustion Mechanisms

OmniTAS provides two complementary mechanisms:
1. Scheduled Timer (schedule hangup auth):

o Automatic hangup/transfer when granted credit expires
o Dynamically rescheduled on each CCR-U response
o Uses buffer logic to send CCR-U before expiration

o Integrates with announcement feature

2. Immediate Exhaustion Handling:

(o]

Triggered when OCS denies credit during CCR-U

Overrides scheduled timer

(o]

[e]

Supports announcement playback

(o]

Handles specific Diameter error codes

Both mechanisms respect the credit exhaustion announcement configuration
and will play the configured audio before terminating calls when configured.

AVP Parsing and Variable Mapping

Overview

OmniTAS automatically extracts Attribute-Value Pairs (AVPs) from Credit-
Control-Answer messages and makes them available to FreeSWITCH as channel
variables. This enables dialplan logic to use OCS-provided data for routing
decisions, billing purposes, or call treatment.

Supported AVP Types:

e Simple values (UTF8String, Unsigned32, Integer32)
e Grouped AVPs with nested structures

e Vendor-specific AVPs (e.g., 3GPP Service-Information)

Variable Naming Convention: AVPs are flattened into dot-notation channel
variables with the prefix CCA:

CCA.<AVP-Name>.<Nested-AVP-Name>.<Value-AVP-Name> = "value"

Common AVP Mappings

Service-Information AVP (3GPP)

The Service-Information grouped AVP (AVP Code 873, Vendor-ID 10415)
contains IMS-specific charging details:

Example OCS Response:

Service-Information
— IMS-Information
| — Carrier-Select-Routing-Information: "14608"
| L— Node-Functionality: 6
L— Alternate-Charged-Party-Address: "NickTest"

Resulting FreeSWITCH Variables:

CCA.Service-Information.Carrier-Select-Routing-Information =
“1408"
CCA.Service-Information.Alternate-Charged-Party-Address =
"NickTest"

Accessing in Dialplan: Variables use dot notation and hyphens as shown
above:

<action application="1log" data="INFO Carrier: ${CCA.Service-
Information.Carrier-Select-Routing-Information}"/>

Viewing with uuid_dump: In FreeSWITCH console or ESL, variables appear
with the variable prefix:

variable CCA.Service-Information.Carrier-Select-Routing-
Information: 1408

variable CCA.Service-Information.Alternate-Charged-Party-Address:
NickTest

Note: FreeSWITCH preserves dots and hyphens in variable names. The
variables work in all dialplan contexts and applications.

Granted-Service-Unit AVP
Time quotas are extracted and made available:

OCS Response:

Granted-Service-Unit
L— CC-Time: 600

Variable:

allocated time = 600

AVP Processing Logic

Receive CCA

No

Variables Ready

Grouped

Processing Rules:

1. Grouped AVPs add a level to the variable name hierarchy but have no
value themselves

2. Simple AVPs are mapped to variables with their full dotted path
3. Vendor-Specific AVPs are processed identically to standard AVPs

4. Unknown AVPs are safely skipped without errors

Example: Multi-Level Nesting

OCS CCA Structure:

Service-Information (Grouped)
— IMS-Information (Grouped)
— Node-Functionality: 6
— Role-0f-Node: 1
— Calling-Party-Address: "tel:+313380000000670"
L— Time-Stamps (Grouped)
— SIP-Request-Timestamp: "2026-01-24T22:40:182Z"
L— SIP-Response-Timestamp: "2026-01-24T22:40:18Z"
IN-Information (Grouped)
L— Real-Called-Number: "24724741234"

——————

FreeSWITCH Variables Created:

CCA.Service-Information.IMS-Information.Node-Functionality = "6"
CCA.Service-Information.IMS-Information.Role-0f-Node = "1"
CCA.Service-Information.IMS-Information.Calling-Party-Address =
"tel:+313380000000670"
CCA.Service-Information.IMS-Information.Time-Stamps.SIP-Request-
Timestamp = "2026-01-24T22:40:18Z"
CCA.Service-Information.IMS-Information.Time-Stamps.SIP-Response-
Timestamp = "2026-01-24T22:40:18Z"
CCA.Service-Information.IN-Information.Real-Called-Number =
"24724741234"

Configuration

Online Charging Parameters

Parameter Type
enabled Boolean
periodic_ccr_time seconds Integer
ccr _update buffer seconds Integer
schedule hangup auth Boolean

Required

No

No

No

No

Default

false

60

false

Er

al

St
cr
Ui

(i
er
e
S€

Er
he
cr
O
tit
fro
re
re

Parameter

credit exhaustion_ announcement

skipped regex

Type

String

List[String]

Required

No

No

Default

nil

[]

Li
de

nt

Diameter Connection Parameters

Parameter Type Required Default Des

OmniTAS Diameter Id:
unique across your Di

origin host String Yes -
Example:
“tasOl.epc.mncl23.n
OmniTAS Diameter Re
origin_realm String Yes - decisions. Example:

"epc.mncl23.mcc456.

, _ , OCS Diameter Realm.
destination realm String Yes - . ,
peers in this realm.
Specific OCS Diamete
routing based on des-
when direct routing tc
required.

destination host String No nil

Configuration Example

config :tas, :online charging,
Enable online charging
enabled: true,

Send CCR-Update every 60 seconds
periodic ccr time seconds: 60,

Schedule hangup based on granted credit
schedule hangup auth: true,

Play announcement before credit exhaustion hangup
credit exhaustion_announcement: "ivr/ivr-
account balance low.wav",

Skip 0CS for emergency calls and voicemail
skipped regex: [

"~9114", # Emergency (US)
"000%" # Emergency (AU)
"A*86%" # Voicemail access

config :tas, :diameter,
Service identity
origin host: "tas0l.epc.mnc380.mcc313.3gppnetwork.org",
origin realm: "epc.mnc380.mcc313.3gppnetwork.org",

0CS routing
destination realm: "epc.mnc380.mcc313.3gppnetwork.org",
destination host: nil # Realm-based routing

How it works:
When a call is received:

1. Destination number is checked against skipped regex patterns
2. If matched, call bypasses OCS (useful for emergency services)
3. If not matched, CCR-Initial sent to OCS at destination realm

4. CCA response is parsed for granted units and AVPs

5. AVPs are mapped to FreeSWITCH variables (see)

6. Call proceeds with allocated time and AVP data available

7. CCR-Update sent every periodic ccr time seconds during call

8. If schedule hangup auth enabled, automatic hangup when credit expires

9. CCR-Terminate sent on call completion

Use cases:

e Basic OCS: Enable with defaults for standard credit control

* High-value calls: Reduce periodic ccr time seconds to 30s for frequent
re-auth

* Prepaid service: Enable schedule hangup auth and set
credit exhaustion_announcement

* Emergency compliance: Add emergency numbers to skipped regex to
ensure always connected

FreeSWITCH Integration

Accessing AVP Variables in Dialplan

AVP data extracted from CCA messages is available as channel variables in
FreeSWITCH dialplan:

<extension name="Route with OCS Data">
<condition field="destination number" expression=""(.+)$">

<!-- Access carrier routing info from 0CS -->
<action application="1log"
data="INFO Carrier Code: ${CCA.Service-
Information.Carrier-Select-Routing-Information}"/>

<!-- Access charged party from 0CS -->
<action application="1log"
data="INFO Charged Party: ${CCA.Service-
Information.Alternate-Charged-Party-Address}"/>

<!-- Access granted time -->
<action application="1log"
data="INFO Allocated Time: ${allocated time}
seconds"/>

<!-- Route based on carrier code -->
<action application="set"
data="carrier code=${CCA.Service-Information.Carrier-
Select-Routing-Information}"/>
<action application="bridge"

data="sofia/external/$l@carrier-${carrier code}.sip.example.com"/>

</condition>
</extension>

Variable Availability
Timing:

e Variables are set before FreeSWITCH call setup
e Available throughout entire call duration

e Persist across call transfers and updates
Scope:

e Channel-scoped (specific to individual call leg)

e Not inherited by bridged/transferred legs

e Safe to use in all dialplan applications

Example Use Cases

1. Carrier Selection Based on OCS Data

Use OCS-provided carrier code to route calls:

<extension name="Carrier Selection">
<condition field="${CCA.Service-Information.Carrier-Select-
Routing-Information}" expression=""(.+)$">
<action application="bridge"

data="sofia/external/${destination number}@carrier-$1.example.com"/>
</condition>

<!-- Fallback if no carrier specified -->

<condition field="${CCA.Service-Information.Carrier-Select-
Routing-Information}" expression=""$">

<action application="bridge"
data="sofia/external/${destination number}@default-

carrier.example.com"/>

</condition>
</extension>

How it works: OCS returns carrier code "1408" in Service-Information AVP.
FreeSWITCH routes call to carrier-1408.example.com gateway based on this
data.

2. Alternate Billing Party

Route billing to a different party based on OCS response:

<extension name="Alternate Billing">
<condition field="${CCA.Service-Information.Alternate-Charged-
Party-Address}" expression=""(.+)$">

<!-- Log billing party for CDRs -->

<action application="set"
data="billed party=$1"/>

<action application="export"
data="billed party=$1"/>

<!-- Include in SIP headers -->
<action application="set"
data="sip h X-Billed-Party=$1"/>
<action application="bridge"
data="sofia/external/${destination number}@trunk.example.com"/>

</condition>
</extension>

How it works: OCS specifies alternate charged party (e.g., corporate account).
OmniTAS extracts "NickTest" from AVP and makes it available to dialplan for
CDR recording and SIP header insertion.

3. Time-Limited Calls with Warnings

Provide warnings before credit expires:

<extension name="Credit Warnings">
<condition field="destination number" expression=""(.+)$

>

<!-- Schedule warning 30 seconds before hangup -->
<action application="set"
data="warning time=${expr(${allocated time} - 30)}"/>

<action application="sched hangup"
data="+${allocated time} ALLOTTED TIMEOUT"/>

<action application="sched broadcast"
data="+${warning time} playback::ivr/ivr-
account balance low.wav"/>
<action application="bridge"
data="sofia/external/$1l@trunk.example.com"/>

</condition>
</extension>

How it works: Uses allocated time from OCS to schedule automatic hangup
and plays warning announcement 30 seconds before disconnection.

Diameter Messages

CCR-Initial (Request Type 1)

Sent before call setup to request authorization and initial credit allocation.

Key AVPs Sent:

AVP

Session-ld

Auth-
Application-Ild

Service-
Context-Id

CC-Request-
Type

CC-Request-
Number

Subscription-
Id

Requested-
Service-Unit

Service-
Information

Example CCR-I:

Code

263

258

461

416

415

443

437

873

Type

UTF8String

Unsigned32

UTF8String

Enumerated

Unsigned32

Grouped

Grouped

Grouped

Description
Unique session identifier:
<origin host>;<timestamp>;

<random>

Value 4 for Diameter Credit
Control Application per

"000.000.12.32260@3gpp.org" for
IMS charging per

Value 1 (INITIAL_REQUEST)

Sequence number, starts at 1

Subscriber MSISDN or IMSI

Requested credit (time or units)

IMS-specific call details
(calling/called party, timestamps)

https://datatracker.ietf.org/doc/html/rfc4006
https://www.3gpp.org/DynaReport/32299.htm

Session-Id: "tasOl.example.org;1769294418268;8a078232"

Auth-Application-Id: 4

CC-Request-Type: 1 (INITIAL REQUEST)

CC-Request-Number: 1
Subscription-Id:

- Subscription-ID-Type: 0 (END USER E164)
"313380000000670"

Subscription-ID-Data:
Requested-Service-Unit:

- CC-Time: 0 (Request maximum available)

Service-Information:
- IMS-Information:

- Calling-Party-Address:
- Called-Party-Address:

- Node-Functionality: 6 (AS)

"tel:+313380000000670"
"tel:+24724741234"

CCA (Credit-Control-Answer)

Response from OCS with authorization decision and granted credit.

Key AVPs Received:

AVP Code
Result-Code 268
Granted-

431

Service-Unit

Service-
Information

873

Example CCA with AVPs:

Type

Unsigned32

Grouped

Grouped

Description

2001 for success. See
for error values.

Allocated credit (time in seconds)

Additional charging data (carrier
info, charged party, etc.)

Session-Id: "tasOl.example.org;1769294418268;8a078232"
Result-Code: 2001 (DIAMETER SUCCESS)
CC-Request-Type: 1
CC-Request-Number: 1
Granted-Service-Unit:

- CC-Time: 600 (10 minutes granted)
Service-Information:

- IMS-Information:

- Carrier-Select-Routing-Information: "1408"
- Alternate-Charged-Party-Address: "NickTest"

Resulting Variables:

allocated time = 600
CCA.Service-Information.Carrier-Select-Routing-Information =
"1408"
CCA.Service-Information.Alternate-Charged-Party-Address =
"NickTest"

CCR-Update (Request Type 2)

Sent during active calls for periodic re-authorization or interim usage reporting.
When Sent:

e Every periodic _ccr time seconds (default: 60s)
e On call answer (transition from setup to active)

 When explicitly triggered (e.g., service change)
Key Differences from CCR-I:

e CC-Request-Type: 2 (UPDATE_REQUEST)
e (CC-Request-Number: Increments with each update
e Used-Service-Unit: Reported usage since last request

e Requested-Service-Unit: Additional credit requested

CCR-Terminate (Request Type 3)
Sent on call termination with final usage reporting.
Key AVPs:

e (CC-Request-Type: 3 (TERMINATION REQUEST)
e Used-Service-Unit: Total call duration

e Termination-Cause: Reason for session end

Result Codes

Code Name Description

Request

2001 DIAMETER_SUCCESS
- approved

Service
4010 DIAMETER_END USER _SERVICE DENIED denied for
subscriber

Insufficient

4012 DIAMETER CREDIT LIMIT REACHED .
- - - credit

OCS policy

5003 DIAMETER AUTHORIZATION REJECTED _
- - denied

OCs
configuration

5xxx Permanent failures
or system

error

Reference: and

OmniTi

Parse AVP:

Reject call
CALL REJE

Reject call
OUTGOING

Reject call
CALL REJE

Reject call

https://datatracker.ietf.org/doc/html/rfc6733#section-7.1
https://www.3gpp.org/DynaReport/32299.htm

Metrics

Diameter Request Metrics

Metric: diameter requests total Type: Counter Description: Total Diameter
requests sent by application and request type Labels:

e application - Diameter application: ro (online charging)
e command - Request type: ccr

e status - Result: success, error, timeout

Example queries:

CCR success rate
sum(rate(diameter requests total{application="ro",command="ccr", statt

[5m]))
/ sum(rate(diameter requests total{application="ro",command="ccr"}|

CCR timeout rate

rate(diameter requests total{application="ro",command="ccr",6 status="t
[5m])

Diameter Response Metrics

Metric: diameter responses total Type: Counter Description: Diameter
responses received by result code Labels:

e application - ro
e command - ccr

e result code - Diameter result code (2001, 4012, etc.)

Example queries:

Responses by result code
sum by (result code)
(rate(diameter responses total{application="ro"}[5m]))

Credit limit rejections (4012)

rate(diameter responses total{application="ro",result code="4012"}
[5m])

OCS Authorization Metrics

Metric: ocs authorizations total Type: Counter Description: OCS
authorization attempts and outcomes Labels:

e result - success, nocredit, timeout, error

e skipped - true if bypassed via regex, false otherwise

Example queries:

Authorization success rate (excluding skipped)
sum(rate(ocs authorizations total{result="success", skipped="false"}

[5m]))
/ sum(rate(ocs authorizations total{skipped="false"}[5m]))

No-credit rejections
rate(ocs _authorizations total{result="nocredit"}[5m])

Diameter Duration Metrics

Metric: diameter request duration seconds Type: Histogram Description:
Diameter request round-trip time Labels:

e application - ro
e command - ccr

e status - success, error, timeout

Example queries:

95th percentile CCR latency
histogram quantile(0.95,

sum(rate(diameter request duration seconds bucket{application="ro"}
[5m])) by (le)
)

Average latency by status
avg(rate(diameter request duration seconds sum{application="ro"}
[5m]))

by (status)

/

avg(rate(diameter request duration seconds count{application="ro"}
[5m]))
by (status)

Troubleshooting

AVP Variables Not Available in FreeSWITCH
Symptoms:

e FreeSWITCH dialplan cannot access ${CCA.Service-Information.*}
variables

e Variables show as empty or undefined

Possible causes:

1. OCS not returning Service-Information AVPs in CCA
2. AVP parsing failed due to unexpected structure

3. Variables not exported to FreeSWITCH channel

Resolution:

1. Verify OCS Response Contains AVPs

Check OmniTAS logs for CCA message:

[debug] Credit Control Answer: {:diameter packet, ...}

[debug] Parsed AVP variables: %{
"CCA.Service-Information.Carrier-Select-Routing-Information"

=> "1408",
"CCA.Service-Information.Alternate-Charged-Party-Address" =>

"NickTest"

}

If "Parsed AVP variables" is empty %{}, OCS is not returning the expected
AVPs.

. Check for AVP Parsing Errors

Look for warnings in logs:

[warning] got back another type of reply: {...}

This indicates AVP structure doesn't match expected format. Check
Diameter packet structure.

. Verify FreeSWITCH Variable Export

In FreeSWITCH console or ESL:

freeswitch> uuid dump <call-uuid>

Look for variables with the variable prefix and CCA. in the name:

variable CCA.Service-Information.Carrier-Select-Routing-
Information: 1408

variable CCA.Service-Information.Alternate-Charged-Party-
Address: NickTest

variable CCA.Auth-Application-Id: 4

variable CCA.Result-Code: 2001

Note: FreeSWITCH preserves dots and hyphens in variable names. They
work correctly in dialplan:

<action application="1log" data="Carrier: ${CCA.Service-
Information.Carrier-Select-Routing-Information}"/>

Call Rejected with "unhandled" Error
Symptoms:

e Logs show: [warning] Could not authorize call: :unhandled
e Valid CCA responses (Result-Code 2001) are rejected
e Calls fail despite OCS approving them

Possible causes:

e CCA message structure doesn't match expected pattern
e Vendor-specific AVPs in unexpected positions

e AVP position index mismatch
Resolution:

This was a known issue fixed in recent releases. Ensure you're running current
version.

Previous behavior: Pattern matching required:

e Granted-Service-Unit AVP at position 7 exactly

e Empty vendor-specific AVP list []
Current behavior: Pattern matching accepts:

e Granted-Service-Unit AVP at any position

¢ Non-empty vendor-specific AVP lists
If issue persists:

1. Capture CCA packet structure from logs
2. Check if AVPs are in expected Diameter format
3. Verify Result-Code is 2001

OCS Timeout on All Requests
Symptoms:

e All CCR requests timeout

e Logs show: [debug] Got back response for authorize: {:error,
:timeout}

e No CCA received within 5 seconds

Possible causes:

Network connectivity to OCS/DRA

Firewall blocking Diameter port (3868)

Incorrect destination realm or destination host

OCS not responding to requests
Resolution:
1. Verify Network Connectivity

Test TCP connection to OCS:

telnet ocs.example.com 3868

Should connect successfully. If connection refused or timeout, check
firewall rules.

2. Check Diameter Configuration

Verify destination realm matches OCS configuration:

config :tas, :diameter,
destination realm: "epc.mnc380.mcc313.3gppnetwork.org" #
Must match OCS realm

3. Review OCS Logs

Check OCS for incoming CCR messages. If OCS receives requests but
doesn't respond:

o Verify OmniTAS origin host is recognized by OCS
o Check OCS peer configuration allows connections from OmniTAS

o Verify Service-Context-ld and Application-ld match OCS expectations

Credit Exhaustion Not Hanging Up Calls
Symptoms:

e Calls continue beyond granted credit time
e No automatic hangup when allocated time expires

* schedule hangup auth enabled but not working
Possible causes:

e FreeSWITCH scheduled hangup not configured
e schedule hangup auth is false

e Call state not tracked properly
Resolution:
1. Verify Configuration

Ensure schedule hangup _auth is enabled:

config :tas, :online charging,
schedule hangup auth: true

2. Check FreeSWITCH ESL Connection

Verify OmniTAS can send commands to FreeSWITCH:
[debug] Schedule Hangup Response: {:ok, "+0K"}

If error or no response, check FreeSWITCH Event Socket configuration.

3. Monitor Call State

Check that call UUID is tracked in call state:
[debug] Setting Scheduled Hangup for call in 600 seconds

If UUID not found, call state tracking may have issues.

Skipped Regex Not Bypassing OCS
Symptoms:

 Emergency calls (911, 000) still go through OCS authorization
* Numbers matching skipped regex patterns are not bypassed

e Delays on emergency calls
Possible causes:

e Regex pattern syntax error
¢ Destination number format mismatch

e Regex not properly escaped
Resolution:
1. Verify Regex Patterns

Test regex compilation:
Regex.compile("”911$") # Should return {:ok, ~r/"911%$/}

Common mistakes:

o Missing anchors: Use ~911$ not 911

o Escaping: Use * for literal asterisk, not *

2. Check Number Format

Verify destination number format matches pattern:

[debug] Checking if dialled number "911" matches skipped

regex. ..

If number is formatted as "+1911" but pattern is "~911%", it won't match.

3. Example Patterns

config :tas, :online charging,
skipped regex: [

“~011%", # US Emergency
"~000%", # AU Emergency
"~112%", # International Emergency
"M\ *86%", # Voicemail (escaped asterisk)
"~17800\d{7}%$" # Toll-free numbers
]
Reference

3GPP Specifications

Specification Title

Diameter charging
applications

Charging architecture and
principles

Cx and Dx interfaces

Relevant Sections

§6.3 (Ro interface), §7.2 (AVP
definitions)

§5 (Online charging)

Service-Information AVP
usage in IMS

https://www.3gpp.org/DynaReport/32299.htm
https://www.3gpp.org/DynaReport/32240.htm
https://www.3gpp.org/DynaReport/29229.htm

IETF RFCs

RFC Title

Diameter Base Protocol

Diameter Credit-Control
Application

AVP Codes Reference

Common AVPs used in OCS integration:

Relevant Sections

§3 (Protocol overview), §7 (Error
handling)

§8 (Credit-Control messages)

https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc6733
https://datatracker.ietf.org/doc/html/rfc4006
https://datatracker.ietf.org/doc/html/rfc4006

AVP Name

Session-ld

Auth-
Application-Id

CC-Request-Type

CC-Request-
Number

Result-Code

Granted-Service-
Unit

CC-Time

Service-
Information

IMS-Information

Carrier-Select-
Routing-
Information

Code

263

258

416

415

268

431

420

873

876

2023

Vendor-
ID

10415

10415

10415

Type

UTF8String

Unsigned32

Enumerated

Unsigned32

Unsigned32

Grouped

Unsigned32

Grouped

Grouped

UTF8String

Description

Unique session
identifier

Diameter
application ID (4 for
CQC)

1=Initial,

2=Update,
3=Terminate

Sequence number

Request result
(2001=success)

Allocated credit

Time quota in
seconds

3GPP service-
specific data

IMS charging
information

Carrier routing code

Vendor-

AVP Name Code ID Type Description
Alternate- .
_ Billing party
Charged-Party- 1280 10415 UTF8String] .
identifier
Address

Vendor-ID 10415 = 3GPP

FreeSWITCH Channel Variables

All extracted AVP data is available as FreeSWITCH channel variables:

Variable Name

${allocated time}

${CCA.Session-Id}

${CCA.Result-Code}

${CCA.Auth-
Application-Id}

${CCA.CC-Request-
Type}

${CCA.CC-Request-
Number}

${CCA.CC-Time}

${CCA.Origin-Host}

${CCA.Origin-Realm}

Source

Granted-
Service-

Unit / CC-
Time

Session-ld
AVP

Result-
Code AVP

Auth-
Application-
Id AVP

CC-
Request-
Type AVP

CC-
Request-
Number
AVP

CC-Time
AVP (if
present)

Origin-Host
AVP

Origin-
Realm AVP

Example Value

600

omni-as@l.epc...;1769299669873;

2001

I

600

ocs0l.epc.mnc380.mcc313.3gppnet

epc.mnc380.mcc313.3gppnetwork.c

Variable Name

${CCA.Service-
Information.Carrier-
Select-Routing-
Information}

${CCA.Service-
Information.Alternate-
Charged-Party-Address}

Variable Format:

Source

Service-
Information
- Carrier-
Select-
Routing-
Information

Service-
Information
-
Alternate-
Charged-
Party-
Address

All CCA AVPs use the prefix CCA.
Nested AVPs use dot notation: CCA.Parent.Child

Example uuid_dump output:

variable allocated time: 600
variable CCA.Service-Information.Carrier-Select-Routing-

Information: 1408

Example Value

1408

NickTest

Dots and hyphens are preserved in variable names

In uuid_dump, variables appear with variable prefix

variable CCA.Service-Information.Alternate-Charged-Party-Address:

NickTest

variable CCA.Result-Code: 2001

Operations Guide

[

This document covers operational monitoring and management features
available in the Control Panel.

Related Documentation

Core Documentation

e [] - Overview and quick start
* [- System configuration reference
e] - Prometheus metrics and monitoring

Monitoring & Testing Tools

e [] - Testing tools for HLR and call simulation
e] - Conference management and monitoring
e [] - Dialplan-specific metrics

Call Processing & Services

- Call routing and dialplan reference
- Subscriber data testing
- OCS testing

- Number translation testing

°
O O O O &

- Voicemail management

Integration Interfaces

e [] - HLR/MAP testing

o (¥ - Emergency calling, call forwarding

Operations

This section covers operational monitoring and management features available
in the OmniTAS Control Panel.

Table of Contents

Subscribers View

The Subscribers view provides real-time monitoring of IMS subscriber
registrations stored in the Sofia SIP registration database.

Access: Navigate to /subscribers in the Control Panel

Features

e Registration List: View all active subscriber registrations
* Registration Details: Click on any registration to view complete details
including:
o S|P User and Realm
o Contact URI

o Registration status and expiration

o Network information (IP, port, hostname)
o Authentication details

o Cell tower location (when available via P-Access-Network-Info)
= MCC/MNC, Radio Type, TAC/LAC, Cell ID

= Geographic coordinates and coverage range

= |nteractive map view powered by OpenStreetMap and OpenCelllD
data

Data Source

Registration data is queried directly from the Sofia registration database,
providing real-time visibility into subscriber attachment status. Cell tower
locations are resolved using the OpenCelllD database when subscribers provide
P-Access-Network-Info headers in their SIP REGISTER messages.

Use Cases

e Monitor active subscriber registrations

* Verify subscriber attachment status
e Troubleshoot registration issues

e Audit subscriber connectivity

Call Detail Records (CDR)

The CDR view provides access to call detail records stored by TAS for billing,
troubleshooting, and analytics purposes.

Access: Navigate to /cdr in the Control Panel

Features

* Paginated View: Browse through call records (100 per page with
Previous/Next controls)
e Advanced Search: Powerful search with support for exact match,
inverse/exclude, and multiple terms
e Column Selection: Customize which fields to display
o Click "Columns" button to open column picker modal

[e]

Select/deselect individual columns

[e]

Select All / Deselect All quick actions

[o]

Selection persists across sessions (saved to browser localStorage)

(o]

Shows "X /Y columns" counter

e Sortable Columns: Click any column header to sort
(ascending/descending)
o Visual indicators (A ascending, ¥ descending)

e}

o

Sorted column highlighted in blue

Resets to page 1 when sorting changes

e Multiple Filter Options:

o

o

o

o

o

Text Search: Search across all fields with advanced operators
Date Range Filter: Filter by start/end date and time (datetime picker)

Field-Specific Filter: Filter by exact field value (hangup cause, caller
ID, destination, context)

Active Filter Display: Visual chips show currently active filters

Clear All: One-click removal of all active filters

e Detailed Information: Click on any CDR row to expand and view all fields:

(e]

o

o

o

o

o}

(o]

Call parties (caller ID name/number, destination number)

Timestamps (start, answer, end)

Duration and billed seconds

Hangup cause (color-coded: green=normal, yellow=cancel, red=error)
Call UUIDs (A-leg and B-leg)

Context and account code

All available database fields in alphabetical order

e Color-Coded Hangup Causes:

o

o

(e}

[] Green: NORMAL CLEARING
[] Yellow: Cancelled calls

[] Red: Error conditions

e Total Count: Real-time display of total matching records

* Responsive Layout: Filters wrap appropriately on smaller screens

How to Use

1. Basic Viewing:

o

o

O

(o]

Page loads with latest 100 CDR records (sorted by start stamp
descending)

Total record count shown in top-right
Use Previous / Next buttons to navigate pages

Click any row to expand and see all fields

2. Customize Columns:

o Click "Columns" button in top-right

o Modal shows all available fields

o Check/uncheck fields to show/hide columns

o Use "Select All" or "Deselect All" for quick selection
o Settings automatically saved to browser

o Close modal to apply changes

3. Sort Data:

o Click any column header to sort by that field
o First click: Descending (V)

o Second click: Ascending (A)

o Third click: Back to descending

o Sorted column highlighted in blue

4. Search Records:

o Enter search query in "Search" box
o Supports advanced operators (see Search Syntax below)

o Searches across multiple fields: caller_id number,
destination number, uuid, caller id name, hangup cause

o Click "Apply" to execute search

5. Filter by Date Range:

o Use "Start Date" and "End Date" datetime pickers
o Both dates required for date filtering

o Supports date and time selection

o Click "Apply" to filter

6. Filter by Specific Field:

o Select field from "Select Field to Filter" dropdown:
= Hangup Cause

= Caller ID
= Destination

= Context

o Enter exact value in "Enter Filter Value"

o Click "Apply" to filter

7. Combine Filters:

o All filters can be used simultaneously:
» Text search + Date range + Field filter all work together

o Active filters shown as chips below the filter form

o Click "Clear All" to remove all filters at once

8. View Details:

o Click any CDR row to expand

o Shows all database fields in a grid layout

o Fields displayed in alphabetical order

o Hangup cause color-coded for quick identification

o Click row again to collapse

Advanced Search Syntax

The search box supports powerful query syntax for precise record filtering
across multiple fields simultaneously.

How Search Works:

The search engine checks all searchable fields in each CDR record. A record
is included in results when it matches your search criteria in any of these
fields:

e caller_id number

* destination number
e yuid

e caller _id name

* hangup cause
Search Operators (can be combined):

1. Contains Search (default):

o Syntax: term (no quotes)

o Matches: Records where any field contains the term anywhere within
it

o SQL: Uses LIKE 'sterm%' across all searchable fields joined with OR

o Example: 61480 matches "61480123456", "55561480999", etc.

2. Exact Match:

o Syntax: "term" (with double quotes)
o Matches: Records where any field exactly equals the term
o SQL: Uses = 'term' across all searchable fields joined with OR

o Example: "911" matches only exactly "911", not "9115" or "1911"

3. Inverse/Exclude:

o Syntax: !term (exclamation mark prefix, no quotes)
o Matches: Records where no field contains the term

o SQL: Uses NOT LIKE '%term%' across all searchable fields joined with
AND

o Example: !NORMAL excludes any record with "NORMAL" in any field

4. Exact Inverse/Exclude:

o Syntax: !"term" (exclamation mark + double quotes)
o Matches: Records where no field exactly equals the term
o SQL: Uses '= 'term' across all searchable fields joined with AND

o Example: !"NORMAL CLEARING" excludes records where any field is
exactly "NORMAL_CLEARING"

5. Multiple Terms with AND:

o Syntax: terml AND term2 (case-insensitive AND)

o Matches: Records matching all terms (each term can match different
fields)

o Each term is processed with its own operator (quotes, !, etc.)

o Terms are combined with AND in SQL

o Example: "911" AND "12345" finds records with "911" in one field AND
"12345" in another

Search Execution Logic:

For each CDR record:
For normal search (no !):
- Check if ANY field contains/equals the term - Include if
TRUE
- SQL: fieldl LIKE '%term%' OR field2 LIKE 'Sterm%' OR ...

For inverse search (!):
- Check if ALL fields do NOT contain/equal the term - Include
if TRUE
- SQL: fieldl NOT LIKE 'S%term%' AND field2 NOT LIKE 'Sterm'

AND ...

For AND searches:
- Each term is evaluated separately
- ALl term conditions must be TRUE - Include if TRUE
- SQL: (terml conditions) AND (term2 conditions) AND ...

Complex Search Examples:

Query

61480

II911II

'NORMAL CLEARING

I'""NORMAL_ CLEARING"

“911" AND "12345"

'NORMAL AND 61480

I'""ANSWER" AND
NORMAL

61480 AND
INORMAL CLEARING

Practical Use Cases:

How It Works

Contains search across
all fields

Exact match across all
fields

Inverse contains search

Exact inverse

Exact "911" AND exact
"12345"

Inverse contains
"NORMAL" AND
contains "61480"

Exact inverse
"ANSWER" AND inverse
contains "NORMAL"

Contains "61480" AND
inverse contains
"NORMAL_CLEARING"

Result

All records with "61480"
anywhere (caller,
destination, UUID, etc.)

Records where any field
is exactly "911"

Excludes records with
"NORMAL CLEARING" in
ANY field (failed calls)

Excludes records where
any field exactly equals
"NORMAL CLEARING"

Records with both

values (e.qg.,
caller="12345",
destination="911")

Non-normal calls
involving "61480"

Exclude answered calls
and anything with
"NORMAL"

Failed calls involving
"61480"

* Find specific number: 61480123456 - Contains search finds partial
matches

* Find exact emergency calls: "911" - Only calls to exactly "911"
* All failed calls: !NORMAL CLEARING - Exclude successful calls

e Specific caller's failed calls: "61480123456" AND !NORMAL - Combine
exact caller with inverse

e Exclude test numbers: !test AND !demo - Multiple inverse searches

e Complex debugging: 61480 AND !"ANSWER" AND !CANCEL - Contains one
term, exclude exact and partial others

Data Source

CDR data is queried directly from the TAS CDR SQLite database.

The schema may vary between deployments based on specific requirements.

CDR Export Options

Important: CDR records can be exported in various formats to support
integration with billing systems, analytics platforms, and reporting tools.

The CDR database schema and export formats are deployment-specific. When
setting up your system, please request the specific CDR output formats
you need from your integration engineer. Common export formats
include:

e CSV (Comma-Separated Values)
JSON (for API integration)
e XML

Direct database access

Custom formatted exports

Your integration engineer can configure CDR export mechanisms tailored to
your operational and billing requirements.

Use Cases

e Call Troubleshooting: Search for specific calls by number or UUID to
debug issues

e Billing Reconciliation: Filter by date range to match billing periods

¢ Quality Analysis: Filter by hangup cause to identify problem patterns

e Emergency Call Auditing: Search for "911" to verify emergency call
handling

¢ Customer Support: Look up specific customer calls by caller ID or
destination

e Pattern Analysis: Sort by duration or timestamps to identify anomalies

e Compliance & Record Keeping: Date range filters for regulatory
reporting

* Failed Call Analysis: Use !'NORMAL CLEARING to find all failed calls

 Context-Based Reports: Filter by context to analyze specific call flows

Configuration
Default Visible Columns

You can configure which CDR fields are shown by default in the LiveView by
setting cdrs_field list in your config/runtime.exs:

config :tas,
cdrs_field list: [
“caller id number",
"destination number",
"start stamp",
"duration",
“hangup cause"

Behavior:

e If cdrs_field list is not set: All available CDR fields are shown by
default

e If cdrs field list is set: Only the specified fields are shown by default,
but all other fields remain available in the column picker

e If a field in the list doesn't exist in the CDR data, it will be automatically
skipped
e Field names can be specified as strings or atoms

e Users can manually select additional columns from the column picker at
any time

Use Cases:

Set a clean default view with only essential fields visible

Reduce information overload for new users

Standardize the initial column layout across all users

Keep advanced fields hidden by default but still accessible

Example Configuration:

Show only essential call information by default
cdrs field list: [

"start stamp",

"caller_id number",

"destination number",

"duration",

"billsec",

"hangup_ cause"

Note: This configuration sets the default visible columns. All CDR fields remain
available in the "Columns" picker - users can manually show/hide any field they
need.

Troubleshooting
No Results Found

1. Check for typos in search terms
2. Try removing quotes for broader search
3. Verify the term exists in searchable fields

4. Check date range isn't too restrictive

Too Many Results

1. Add more AND terms to narrow
2. Use exact match with quotes
3. Apply date range filters

4. Use field-specific filters

Unexpected Results

1. Remember search applies to ALL searchable fields
2. Check if term appears in unexpected field (like UUID)
3. Use exact match to avoid partial matches

4. Verify inverse logic (AND vs OR)
Tips

¢ Column Selection: Hide unused columns to focus on relevant data and
improve performance

e Combine Filters: Use search + date range + field filter together for
precise queries

 Date Range Performance: Narrow date ranges return results faster for
large databases

e Sort for Analysis: Sort by duration to find long/short calls, or by
timestamp to see call patterns

¢ Active Filter Chips: Use visual chips to verify which filters are currently
active

e Persistent Settings: Column selections are saved per browser, useful for
different analysis tasks

e Color Coding: Quickly scan hangup causes - green is good, red needs
investigation

 Expandable Details: Click rows to see all fields without cluttering the
main view

e Search Operators: Master the search syntax for powerful filtering:
o Use quotes for exact matches: "911"

o Use ! to exclude: 'NORMAL CLEARING
o Combine with AND: "61480" AND !NORMAL

e Pagination: Remember filters persist across pages - use pagination to
review large result sets

Active Calls Monitoring

The Active Calls view shows real-time information about ongoing calls through
the system.

Access: Navigate to /calls in the Control Panel

Features

¢ Real-time Status: Live view of active call sessions
¢ Call Details: View channel variables and call state information

e UUID Tracking: Monitor both A-leg and B-leg call identifiers

IMS Conference Server

The IMS Conference Server provides multi-party conferencing capabilities
compliant with 3GPP IMS standards (RFC 4579, RFC 4575, TS 24.147).

Access: Navigate to /conference in the Control Panel

Documentation: See for detailed
documentation

Features

* Real-time Monitoring: Live view of active conferences and participants

¢ Conference Statistics Dashboard:
o Active conference count

o Total participants across all conferences

o Video conference count

o Locked conference count

o Server configuration details (domain, MNC/MCC, max participants)

e Conference List: View all active conferences with:
o Conference ID and SIP URI

o Current participant count

o Conference creator identity

e Conference Details: Click any conference to expand and view:
o Full conference information (state, video status, locked status,
recording status)

o Complete participant list with roles and states
o Participant video status

e Conference Control Actions:
o Lock/Unlock conferences to control access

o Enable/Disable video for conferences
o Real-time status updates with action feedback

e Auto-Refresh: Configurable auto-refresh (default: 5 seconds) for real-time
monitoring

OmniTAS Console Management

All conference operations are also available through the OmniTAS console using
the ims conference command:

ims conference list # List all active
conferences

ims conference info <conf id> # Show conference details
ims conference stats # Show server statistics
ims conference lock <conf id> # Lock a conference

ims conference unlock <conf id> # Unlock a conference

ims _conference video <conf id> on|off # Control video
ims conference record <conf id> start|stop # Control recording

ims conference add <conf id> <sip uri> # Add participant

ims conference remove <conf id> <uuid> # Remove participant

ims conference destroy <conf id> # Terminate conference
Use Cases

e Operational Monitoring: Real-time visibility into active conferences and
resource usage

e Capacity Management: Monitor participant counts and video usage to
manage bandwidth

* Troubleshooting: Diagnose conference access issues, participant
connection problems

e Conference Control: Lock conferences for privacy, manage video to
control bandwidth

e« Compliance: Monitor and record conferences for regulatory compliance

3GPP Compliance

The conference server implements key 3GPP IMS conferencing specifications:

e TS 24.147: Conferencing using IM Core Network subsystem
e RFC 4579: SIP Call Control - Conferencing for User Agents
e RFC 4575: SIP Event Package for Conference State

e RFC 5239: Framework for Centralized Conferencing

Gateway Status
Monitor the status and health of SIP gateways/trunks connected to the TAS.

Access: Navigate to /gw in the Control Panel

Features

* Registration Status: View gateway registration state
e Call Statistics: Track incoming/outgoing calls and failures
* Ping Monitoring: SIP OPTIONS ping times and reachability

e Gateway Details: Complete configuration and status information

Monitored Metrics

e SIP Registration status

e Ping time (average SIP OPTIONS response time)
e Uptime (seconds since profile restart)

e Calls In / Calls Out

e Failed Calls In / Failed Calls Out

e Last ping time and frequency

Diameter Peer Status
Monitor Diameter peer connectivity for Sh and Ro interfaces.

Access: Navigate to /diameter in the Control Panel

Features

* Peer Status: Connection state for each configured peer
e Application Support: View supported Diameter applications (Sh, Ro)
e Watchdog Status: Diameter watchdog monitoring

System Logs Viewer

Real-time unified log viewer for both TAS Backend (Elixir) and TAS Call
Processing (FreeSWITCH) logs.

Access: Navigate to /logs in the Control Panel

Features

e Unified Log Stream: View logs from both TAS Backend and Call
Processing in one interface
* Real-time Updates: Live streaming of log messages as they occur (auto-
refresh every 1 second)
e Color-Coded Log Levels:
o [] Console - Console messages (purple/magenta)

o [] Alert/Critical - Urgent issues requiring immediate attention (red)

[e]

[Error - Error conditions (light red)

o

[0 Warning - Warning messages (yellow)

(o]

[] Notice - Notable informational messages (cyan)

[e]

[] Info - General informational messages (blue)
o o Debug - Debug/verbose logging (gray)

e Source Badges:
o [] TAS Backend - Elixir application logs (blue badge)

o [] TAS Call Processing - FreeSWITCH logs (purple badge)

* Left Border Indicators: Color-coded left border matching log level for
quick visual scanning

e Multiple Filters:
o Source Filter: All Sources / TAS Backend / TAS Call Processing

o Level Filter: All / Console / Alert / Critical / Error / Warning / Notice /
Info / Debug

o Text Search: Real-time keyword search across log messages

 Pause/Resume: Freeze log streaming to analyze specific entries without
losing context

e Clear Logs: Remove all current log entries from display

* Log Counter: Shows filtered logs vs total logs (e.g., "Showing 150 of 500
logs")
e Tail Behavior: Maintains last 500 log entries for performance

e Metadata Display: File name and line number for source code references
(when available)

e Scrollable View: Fixed-height container with auto-scroll for latest logs

How to Use

1. Basic Viewing:

(o]

Page loads with latest 500 log entries from both sources

(o]

Logs appear in real-time as they're generated

[e]

Most recent logs appear at the top

o

Auto-refreshes every 1 second

2. Filter by Source:

o Select from "Source" dropdown:
= All Sources - Show both TAS Backend and Call Processing logs

= TAS Backend - Only Elixir application logs
= TAS Call Processing - Only FreeSWITCH/dialplan logs

o Filter applies immediately

3. Filter by Log Level:

o Select from "Level" dropdown:
= All - Show all log levels

= Console through Debug - Show only that specific level

o Useful for focusing on errors or debugging specific issues

4. Search for Keywords:

o

Type in the "Search logs..." box

o Case-insensitive search across log messages

[e]

Filters in real-time as you type

o

Combines with source and level filters

5. Pause/Resume Stream:

o Click "Pause" button (orange) to freeze log updates
o "PAUSED" indicator appears in header
o Review specific log entries without new logs interrupting

o Click "Resume" button (green) to restart live streaming

6. Clear Logs:

o Click "Clear" button (red) to remove all displayed logs
o Clears both TAS Backend and Call Processing logs

o Fresh logs will appear as they're generated

7. Read Log Entries:

o Timestamp: Shows time in HH:MM:SS.milliseconds format
o Source Badge: Indicates TAS Backend (blue) or Call Processing
(purple)

o Log Level: Color-coded level in brackets [ERROR], [INFO], etc.

o File/Line: Source code location (when available)

o Message: The actual log message content

Log Levels Explained

Level

Console

Alert

Critical

Error

Warning

Notice

Info

Debug

Use Cases

Color

Purple

Red

Red

Light
Red

Yellow

Cyan

Blue

Gray

When Used

Console-specific
messages

Immediate action
required

Critical conditions

Error conditions

Warning conditions

Notable normal
events

Informational
messages

Debug-level
messages

Example

High-priority FreeSWITCH
console output

System component failure

Database connection lost

Failed to process call, invalid
configuration

Deprecated function used,
retry attempt

Configuration reloaded,
service started

Call connected, Diameter
request sent

Function entry/exit, variable
values

* Real-time Troubleshooting: Monitor logs during active call to debug

issues

e Error Investigation: Filter by Error/Critical levels to find problems

e Call Flow Analysis: Search for Call-ID or phone number to trace call path

e Performance Monitoring: Watch for warnings and errors during load
testing

¢ Integration Debugging: Filter TAS Backend to see Diameter/Sh/Ro
messages

e Dialplan Debugging: Filter TAS Call Processing to see FreeSWITCH call
routing

e System Health Monitoring: Keep logs open to watch for anomalies

e Development & Testing: Use Debug level to see verbose application
behavior

Tips

e Combine Filters: Use Source + Level + Search together for precise

filtering
o Example: Source="TAS Backend" + Level="Error" +
Search="Diameter" - Find Diameter errors

e Pause Before Searching: Pause stream before typing search query to
avoid logs scrolling

e Use Debug Wisely: Debug level is verbose - filter to specific source to
reduce noise

e Color Scanning: Quickly scan left borders - red borders indicate problems

e Source Badges: Blue badges (Backend) for app logic, Purple badges (Call
Processing) for calls

e Timestamp Precision: Millisecond timestamps help correlate events
across systems

* File References: Click/note file:line references to jump to source code

e Clear Regularly: Clear logs when switching investigation contexts for
clarity

e Search for UUIDs: Search for Call-ID/UUID to follow a specific call through
entire system

e Emergency Search: Search "911" or "emergency" to quickly find
emergency call handling

Technical Details

e Log Limit: Maximum 500 logs displayed (oldest discarded when limit
reached)

 Refresh Rate: Auto-refresh every 1000ms (1 second)
e Search: Case-insensitive substring matching on message field only

e Empty Filtering: Automatically filters out empty/placeholder log
messages

e Source Detection: Logs tagged with :elixir or :freeswitch source
e Sorting: Logs sorted by timestamp descending (newest first)
e PubSub: Elixir logs delivered via Phoenix PubSub for real-time updates

* FreeSWITCH Logs: Collected via Event Socket Interface (ESI) log listener

Cell Tower Database

Manage and query the OpenCellID cell tower location database for emergency
services and location-based features.

Access: Navigate to /cell towers in the Control Panel

Features

 Database Statistics: View total records, coverage by country/network

e Search & Query:
o Search by MCC (Mobile Country Code)

o Search by MNC (Mobile Network Code)
o Search by radio type (GSM, UMTS, LTE)

o Search by location string

« Database Management:
o Import cell tower data

o Re-download latest dataset from OpenCelllD
o View import status and progress

e Location Resolution: Resolve cell IDs to geographic coordinates

Use Cases

Emergency call location determination

Subscriber location tracking (with consent)

Network coverage analysis

Troubleshooting roaming location issues

Cell tower database maintenance

Data Source

Cell tower data is sourced from OpenCellID (), a
collaborative community project to create a free database of cell tower
locations worldwide.

Call Simulator

Interactive call simulation tool for testing dialplan logic without making real
calls.

Access: Navigate to /simulator in the Control Panel
Detailed Documentation: See

Features

e Simulate Call Types: Test MO, MT, and Emergency calls

e Configurable Parameters:
o Source and destination numbers

o Source IP address (to simulate SBC/CSCF)
o Force specific call disposition

o Skip OCS authorization for faster testing

https://opencellid.org/

e Comprehensive Results:
o Complete dialplan variable output

o Sh/HLR lookup results

o OCS authorization result

o SS7 MAP query results (if applicable)
o Generated dialplan XML

* Step-by-Step Processing: View each stage of call processing

Use Cases

e Test dialplan changes before deployment

Verify subscriber provisioning

Debug call routing issues

Train staff on call flow
Validate OCS/HLR integration

Test emergency call handling

HLR/MAP Testing

Test SS7 MAP operations including Send Routing Info (SRI) and Provide Roaming
Number (PRN) queries.

Access: Navigate to /hlr in the Control Panel
Detailed Documentation: See

Features

¢ SRI Query: Test Send Routing Info for call routing

* PRN Query: Test Provide Roaming Number for roaming subscribers
 Real Results: Actual queries to configured MAP gateway

* Response Display: View MSRN, MSC address, and forwarding status

e Error Handling: Clear display of MAP errors and timeouts

Use Cases

Verify HLR connectivity

Test roaming number allocation

Debug call routing to roaming subscribers

Validate MAP gateway configuration

Troubleshoot call forwarding issues

OCS Testing

Test Diameter Ro (Online Charging) Credit-Control-Request (CCR) operations
directly against your OCS.

Access: Navigate to /ocs test in the Control Panel

Features

* Flexible CCR Types: Send INITIAL, UPDATE, TERMINATION, or EVENT
requests

e Session Simulation: Reuse the same Call ID to simulate a complete
session lifecycle

e Event Type Selection: Test both SMS (event-based) and Call (session-
based) charging

e Direction Control: Test both outgoing (MO) and incoming (MT) scenarios

e Optional Parameters: Specify Destination-Host and Username for
advanced testing

¢ Real-time Results: View complete CCA (Credit-Control-Answer) responses

How to Use

1. Enter Test Parameters:

o Called MSISDN: The destination number (e.g., 61400123456)
o Calling MSISDN: The originating number (e.g., 61400987654)

o Event Type: Choose sms or call
= SMS defaults to EVENT_REQUEST (type 4)

= Call defaults to INITIAL_ REQUEST (type 1)

o Direction: out for MO or in for MT

2. Configure CCR Type:

o Request-Type: Select the CCR type:
= 1 — INITIAL REQUEST - Start a new session

= 2 — UPDATE REQUEST - Mid-session re-authorization

= 3 — TERMINATION REQUEST - End session and report usage
= 4 — EVENT REQUEST - One-time event (SMS, immediate event)

o Request-Number: Starts at 1, increment for each request in the same
session

3. Session Testing:

o Call ID: Auto-generated unique identifier for correlation
o Click "New ID" to generate a fresh Call ID for a new test session

o Keep the same Call ID to simulate a complete session:
= First request: INITIAL_ REQUEST (type 1, number 1)

= Mid-session: UPDATE _REQUEST (type 2, number 2, 3, 4...)
» Final request: TERMINATION REQUEST (type 3, number N+1)

4. Advanced Options:

o Destination-Host: Target a specific OCS node (optional)

o Username: Override the subscriber identifier (optional)

5. Run and Review:

o Click "Run CCR" to send the request
o View the complete CCA response with all AVPs

o Check result code, granted units, and validity time

o Last run timestamp shown in top-right corner

Use Cases

e OCS Connectivity Testing: Verify Diameter Ro connection and
authentication

e Credit Control Logic: Test credit allocation, consumption, and exhaustion
scenarios

e Session Flow Testing: Simulate complete call lifecycle (INITIAL - UPDATE
- TERMINATION)

* Rating Validation: Verify correct charging rates for different number
ranges

¢ Failover Testing: Test OCS redundancy by targeting specific Destination-
Host

e Integration Debugging: Troubleshoot OCS integration issues with
detailed AVP inspection

* Load Testing Preparation: Validate OCS behavior before load testing

e Emergency Number Bypass: Verify that emergency numbers bypass
charging correctly

Tips
e Use the same Call ID with incrementing Request-Numbers to test session
continuity
e Monitor OCS logs simultaneously to correlate test requests

e Test UPDATE requests to verify mid-session re-authorization logic

* Verify that TERMINATION requests properly close sessions and prevent
leaks

e Test credit exhaustion by sending UPDATE requests after consuming
granted units

Sh Interface Testing

Test Diameter Sh User-Data-Request (UDR) operations to retrieve subscriber
profile data from the HSS.

Access: Navigate to /sh test in the Control Panel

Features

e Multiple Data References: Query over 20 different subscriber data types
* Real HSS Queries: Live Diameter Sh requests to your configured HSS

e Complete Response Display: View full XML subscriber data and AVPs

e Session Tracking: Shows HSS hostname, realm, and session ID

e Error Handling: Clear display of Diameter result codes and error
conditions

How to Use
1. Enter Public Identity:

o Public Identity: The subscriber's IMS Public Identity
o Format: sip:61400123456@ims.mncXXX.mccXXX.3gppnetwork.org
o Can also use tel:+61400123456 format

2. Select Data Reference: Choose the type of subscriber data to retrieve:

o RepositoryData (0): Complete subscriber profile

o IMSPublicldentity (10): List of public identities

o IMSUserState (11): Registration state

o S-CSCFName (12): Assigned S-CSCF

o InitialFilterCriteria (13): iFC triggers for application servers
o LocationInformation (14): Current location

o Charginginformation (16): P-Charging addresses

o MSISDN (17): Phone number
o IMSI (32): International Mobile Subscriber Identity
o IMSPrivateUserldentity (33): Private user identity

o And many more...

3. Run and Review:

o Click "Fetch SH Data" to send the UDR request
o View the complete User-Data-Answer (UDA) response
o Check subscriber profile XML, service data, and iFC rules

o Session metadata shows which HSS responded

Use Cases

e Subscriber Verification: Confirm subscriber is provisioned in HSS

* iFC Debugging: Review Initial Filter Criteria and trigger points

¢ Registration Troubleshooting: Check user state and S-CSCF assignment
e Charging Configuration: Verify P-Charging-Function-Addresses

e HSS Connectivity Testing: Validate Diameter Sh connection

e Profile Validation: Ensure correct service profile is assigned

e Integration Testing: Test HSS integration after provisioning changes

e Roaming Analysis: Check location information and serving network
Tips

e Use IMSPublicldentity (10) to see all aliases for a subscriber

e Use RepositoryData (0) to get the complete subscriber profile in one
query

e Check IMSUserState (11) to verify if a subscriber is registered

e InitialFilterCriteria (13) shows which application servers will be triggered

e The session ID can be used to correlate queries in HSS logs

e Error responses include Diameter result codes (e.g., 5001 = User Unknown)

Number Translation Testing
Test number translation rules and formatting without making actual calls.

Access: Navigate to /translate in the Control Panel

Features

 Real-time Translation: Auto-translates as you type

e Country Code Support: Test different country code contexts

e Disposition-Aware: Apply different rules based on call disposition
e Live Results: Immediate feedback with translated number

e Debug Information: View raw return values for troubleshooting

How to Use

1. Configure Parameters:

o Country Code: The dialing context (e.g., AU, US, NZ)
= Defaults to the configured country code in config/runtime.exs

= Accepts formats: AU, :AU, au

o Phone Number: The number to translate
= Examples: +61400111222, 0400111222, 61400111222

o Disposition: (Optional) Call context for conditional rules
= Examples: originate, route, emergency

2. Test Translation:

o Enter values in the form

o Translation runs automatically as you type
o Or click "Translate" to manually trigger

o View the translated result immediately

3. Review Results:

o Translated: Shows the formatted output number
o Error: Displays validation errors or translation failures

o Raw return (debug): Shows the complete Elixir tuple for debugging

Use Cases

e Dialplan Development: Test number formatting rules before deployment

 Format Validation: Verify E.164 conversion is working correctly

e Country Code Testing: Ensure correct handling of international prefixes

e Emergency Number Detection: Verify emergency numbers are properly
identified

* Short Code Handling: Test special service codes (voicemail, etc.)

e Trunk Preparation: Format numbers correctly for SIP trunk requirements

e Disposition Logic: Test different rules for MO vs MT scenarios

e Debugging Translation Issues: Troubleshoot why specific numbers fail
routing

Tips

e Test both local format (0400111222) and international format
(+61400111222)

e Verify emergency numbers (000, 112) are detected correctly

e Use disposition field to test different call scenarios (MO, MT, emergency)

e Check that short codes and internal numbers are handled appropriately

e The debug output shows the raw return value - useful for investigating
issues

e Test edge cases like leading zeros, international prefixes, and special
characters

Voicemail Management
Manage and listen to voicemail messages stored in the system.

Access: Navigate to /voicemail in the Control Panel

Features

e Complete Voicemail List: View all voicemail messages across all
mailboxes

e In-Browser Playback: Listen to voicemail recordings directly in the web
interface

e Message Details: View username, UUID, timestamps, file paths, and
metadata

e Delete Functionality: Remove individual voicemail messages
« Auto-Refresh: Refresh button to reload latest voicemail data

« Dynamic Columns: Automatically displays all available database fields

How to Use

1. View Voicemail List:

o

Page loads automatically with all voicemail records

(o]

Table shows all fields from the voicemail database

(o]

Timestamps are automatically formatted from epoch values

[e]

File paths are shortened for readability

2. Listen to Messages:

o Click "p» Play" button next to any voicemail

o Audio player appears with controls (play, pause, seek, volume)

o Supports WAV, MP3, and OGG formats

o Click "Stop" to close the audio player

3. Delete Messages:

o Click "Delete" button to remove a voicemail
o Confirmation prompt prevents accidental deletion

o Page automatically refreshes after successful deletion

4. Refresh Data:

o Click "Refresh" button in top-right to reload voicemail list

o Useful after new voicemails are left

Message Details Displayed

The table dynamically shows all available fields, typically including:

e Username: Mailbox owner

e UUID: Unigue message identifier

e Created Epoch: When the message was left (auto-formatted to readable
date/time)

e Read Epoch: When the message was accessed (if applicable)

e File Path: Location of the audio file

e Additional metadata from the voicemail database

Use Cases

e Subscriber Support: Listen to voicemail messages for troubleshooting
e Testing Voicemail Delivery: Verify voicemails are being stored correctly
* Message Management: Clean up old or test voicemail messages

 Troubleshooting Recording Issues: Check file paths and verify audio
files exist

* Mailbox Maintenance: Monitor voicemail storage and usage

e Quality Assurance: Review recorded messages for audio quality

Tips

e File paths are automatically shortened to show only the relevant portion
e Epoch timestamps are automatically converted to human-readable format
e Empty voicemail database shows "No voicemail records found"

e Audio playback uses HTML5 audio element - supported in all modern
browsers

* Delete confirmation prevents accidental removal of important messages

TTS Prompt Management

Manage Text-to-Speech (TTS) generated audio prompts used throughout the
system.

Access: Navigate to /prompts in the Control Panel

Features

* Prompt Settings Display: View current TTS voice, response format, and
instructions

e Recording Status: See which prompts exist and which are missing

* File Details: View file size, modification time, and path for each prompt

e In-Browser Playback: Listen to prompts directly in the web interface

e Generate Missing: Automatically create all missing prompt files

* Re-record Individual: Regenerate a specific prompt with updated settings

e Re-record All: Regenerate all prompts (useful after changing voice or
settings)

How to Use

1. Review Prompt Settings:

o Voice: TTS voice being used (e.g., alloy, nova, shimmer)
o Response Format: Audio format (e.g., wav, mp3, opus)

o Instructions: Special instructions passed to TTS engine

2. Check Recording Status:

o Text: The prompt text to be spoken

o

Relative Path: Where the audio file is stored

(o]

Exists: Green "Yes" if file exists, Yellow "No" if missing
Size: File size in bytes/KiB/MiB

Modified: Last modification timestamp

[e]

o

3. Generate Prompts:

o Generate Missing: Creates only prompts that don't exist yet
= Useful for initial setup or after adding new prompts

o Re-record All: Regenerates all prompts regardless of existence
= Useful after changing voice, format, or instructions

= Use with caution as it regenerates everything

4. Manage Individual Prompts:

o p Play: Listen to the prompt (only enabled if file exists)

o [] Re-record: Regenerate just this one prompt
= Useful if one prompt sounds incorrect

= Uses current voice and settings

5. Listen to Prompts:

o Click "p Play" to hear the prompt
o Audio player appears at bottom with full controls

o Click "Stop" to close the player

Prompt Configuration

Prompts are configured in your application config:

config :tas, :prompts,
voice: "nova",
response format: "wav",
instructions: "Speak clearly and professionally.",
recordings: [
%{path: "/sounds/en/us/callie/voicemail/vm-enter id.wav",
text: "Please enter your mailbox ID followed by pound"},
... more prompts

Use Cases

e Initial Setup: Generate all prompts after system installation

e Voice Changes: Re-record all prompts with a different TTS voice

e Quality Improvement: Fix individual prompts that don't sound right

* Format Updates: Regenerate prompts in different audio format (wav —»
mp3)

* Text Updates: Re-record after changing prompt text in config

e Testing TTS: Preview how prompts will sound before deployment

* Troubleshooting Playback: Verify prompt files exist and are accessible

 Storage Management: Check file sizes and manage disk usage
Tips
e Use "Generate Missing" for initial setup - it won't overwrite existing
prompts
e Use "Re-record All" after changing voice or format in config
e Individual "Re-record" is useful for iterating on specific prompts
e Listen to prompts before deployment to ensure quality
e Larger response formats (wav) have better quality but use more disk space
e The instructions field can guide TTS engine for tone and pacing

e Re-recording can take time if you have many prompts - be patient

e Prompts are stored in FreeSWITCH sounds directory for easy access

Dialplan XML Templates
View and inspect FreeSWITCH dialplan XML templates used for call routing.

Access: Navigate to /routing in the Control Panel

Features

e Template List: View all XML dialplan templates from priv/templates/
directory

* File Details: See filename and last modified timestamp for each template

e Syntax Highlighting: Color-coded XML display for easy reading
o Tags in teal

o Attributes in light blue
o Values in orange/tan
o Comments in green
e« Expandable View: Click any template to view its full XML content
e Read-Only View: Safe inspection without risk of accidental modification

e Scrollable Content: Large templates scroll within fixed-height container
(max 600px)

How to Use
1. View Template List:

o Page loads with all .xml files from the templates directory
o Sorted alphabetically by filename

o Shows modification timestamp for each file

2. Inspect Template:

o Click any row to expand and view the XML content
o Template displays with syntax highlighting

o Click again to collapse

3. Read XML Content:

o Tags (teal): XML element names like <extension>, <condition>
o Attributes (light blue): Attribute names like name=, field=

o Values (orange): Attribute values like "public",
"destination_number"

o Comments (green): XML comments <!-- ... -->

Use Cases

* Review Dialplan Logic: Inspect routing rules and call flow templates

e Troubleshoot Call Routing: Understand which templates are used for
different call types

e Verify Template Syntax: Check XML structure before deployment

e Training & Documentation: Share template contents with team
members

e Change Auditing: Compare modification timestamps to track updates

e Template Development: Reference existing templates when creating new
ones

Tips

e Templates are loaded from priv/templates/ within the TAS application
e Only .xml files are displayed

e Templates are read-only through the web interface

e Modification timestamps help identify recent changes

e Use this view to verify templates match your dialplan expectations

e Syntax highlighting makes complex XML easier to parse visually

e Combine with /logs view to correlate routing behavior with templates

Technical Details

* Location: Templates stored in priv/templates/ directory

e Format: FreeSWITCH XML dialplan format

* File Extension: Only .xml files listed

e Sorting: Alphabetical by filename

e Syntax Highlighting: Client-side colorization using regex patterns

« Max Display Height: 600px with scroll for large files

ESL Command Runner

Execute FreeSWITCH Event Socket Layer (ESL) commands directly from the web
interface.

Access: Navigate to /command in the Control Panel

Features

e Command Execution: Run any ESL/FreeSWITCH APl command

e Live Output: See command results in real-time

e Command History: Recent commands dropdown (last 10 commands)
e Auto-Complete Ready: Monospace input for precise command entry
e Error Handling: Clear display of command errors and exceptions

* No Auto-Execute: Selecting history fills input but requires explicit "Run"
click

How to Use

1. Enter Command:

o Type ESL command in the input box

o Examples:
= status - Show FreeSWITCH status

» show channels - List active calls

= uuid dump <uuid> - Dump all variables for a call
= sofia status - Show SIP profile status

» reloadxml - Reload XML dialplan

= version - Show FreeSWITCH version

2. Run Command:

o Click "Run" button to execute
o Button shows "Running..." while executing

o Cannot run multiple commands simultaneously

3. View Output:

(o]

Results appear in the "Output" section below

(o]

Successful commands show raw response
Errors prefixed with "ERROR:"
Output is scrollable with max height of 600px

[e]

o

o Monospace font for aligned data

4. Use Command History:

o Recent commands appear in dropdown after first execution
o Select from "Recent:" dropdown to fill input field

o History maintains last 10 unique commands

o Most recent command at top

o Selecting history does NOT auto-execute (safety feature)

Common Commands

Command

status

show channels

show calls

uuid dump <uuid>

uuid kill <uuid>

sofia status

sofia status profile

<name>

reloadxml

version

global getvar <var>

api help

Use Cases

Description

System status and
uptime

List all active calls

Summary of active
calls

All variables for a call

Hangup specific call

SIP profile status

Specific profile details

Reload dialplan XML

FreeSWITCH version
info

Get global variable

List available
commands

Example Output

FreeSWITCH running
info

Channel list or "0
total"

Call count summary

Complete variable
dump

"+OK" or error

Profile list and states

Registration count,
etc

"+0OK" confirmation

Version string

Variable value

Command reference

e Call Debugging: Get detailed info about active call with uuid dump
e System Status: Check FreeSWITCH health with status and show calls

e SIP Troubleshooting: Inspect SIP profiles with sofia status

e Dialplan Reload: Apply config changes with reloadxml

* Emergency Actions: Kill stuck calls with uuid kill

e Variable Inspection: Check global or channel variables

Troubleshooting

Subscribers Not Showing

e Verify OmniTAS is running
* Check Sofia profile is active: sofia status profile internal

* Verify database path in configuration matches actual database location

CDR Records Not Appearing

e Confirm OmniTAS CDR module is loaded
e Check CDR database exists at configured path
e Verify CDR module configuration in OmniTAS

Performance Considerations

e Large CDR databases (>1M records) may require additional indexing for
optimal performance

e Consider archiving old CDR records periodically

e Subscriber registration queries are typically fast as the registration
database is small

Configuration

Access Control

The Control Panel should be deployed behind appropriate access controls
(firewall, VPN, authentication) as it provides visibility into subscriber activity
and call records.

TTS Prompt
Configuration

[

Configuration for Text-to-Speech (TTS) prompts using OpenAl's TTS engine.

Related Documentation

Core Documentation

e [- Overview and quick start

e [J - TTS prompts configuration (voice, instructions,
recordings)

e [] - TTS prompt management in Control Panel

Integration & Usage

e [] - Using prompts in dialplan with playback
application

e [] - Voicemail greeting and instruction prompts

o - Service announcement prompts

e] - Out-of-credit prompts

Prompt Configuation

You can define prompts in the config that are then generated with Text to
Speech.

You can then use these in your dialplan with the playback commands.

For the prompts we can define "instructions" for tone, language, accent, etc,

and pick the voice. The TTS engine uses OpenAl's text to speech engine, which
you can test from

config :tas,

prompts: %{
voice: "alloy",
instructions: "Speak with a prim, British accent.",
response format: "wav",
recordings: [
%{
text:
"You do not have sufficient credit to make that call,
please topup your service and then try again ",
path: "/sounds/en/us/callie/misc/8000/out of credit.wav"

%{
text:
reached",

path:
"/sounds/en/us/callie/misc/8000/unable to be reached.wav"

I
%1

"The destination you have called is unabled to be

text: "Your call is being transferred to emergency
services",

path:

"/sounds/en/us/callie/misc/8000/emergency services transfer.wav"

}
]

https://www.openai.fm/

Sh Interface
(Subscriber Data
Retrieval)

[

The Sh interface provides access to subscriber profile data from the
HSS/Repository via Diameter.

Related Documentation

Core Documentation

e [] - Overview and quick start
* - Diameter peer configuration
e] - Sh interface testing in Control Panel

Call Processing Integration

e [] - Using Sh data in dialplan variables
o {3 - MMTel-Config for call forwarding
e [J - HLR data vs Sh data priority

Related Interfaces

e [] - Ro interface (also uses Diameter)
e [] - Number normalization before Sh lookup
Monitoring

e [] - Sh interface metrics and monitoring

Sh Interface (Subscriber Data
Retrieval)

The Sh interface is used to retrieve subscriber profile data from the
HSS/Repository before processing calls. This data includes subscriber identities,
services, and MMTel configuration.

What is the Sh Interface?

The Sh interface is a 3GPP-standardized Diameter interface between the TAS
and HSS/Repository (Repo). It provides real-time access to:

e |MS subscriber identities (IMPI/IMPU)
e Call forwarding settings (MMTel-Config)
e Subscriber service authorization

e S-CSCF assignment

When Sh Lookups Occur

Sh Interface Data Retrieval Flow
S-CSCFSBC TAS Application Server DRA HZ5/Repasitory

MT or MO call received

SIP INVITE

Parse called/calling number

I

UDR (User-Data-Request)

UDR for subscriber MSISDN

UDA {User-Data-Answer) with Sh-User-Data

UDA
-

Parse XML response:
- IMPIIMPU identities
- MMTel services (call forward)
- 5-CSCF address

Let dialplan variables
-«

Generate dialplan XML

- .-:
200 OK with dialplan

S-CSCFSBC TAS Application Server DRA HZ5/Repasitory
Sh Lookups Happen On:

e MT Calls: Lookup called party (destination subscriber)
e MO Calls: Lookup calling party (source subscriber)

e Emergency Calls: Lookup calling party (for location/identity)

Data Retrieved from Sh Interface

The TAS queries for Sh-User-Data which returns an XML document containing:
1. IMS Identities:

e IMPI (Private Identity): username@domain - used for authentication
o Format: {IMSI}@ims.mnc{MNC}.mcc{MCC}.3gppnetwork.org

o Example: 505014001234567@ims.mncO01.mcc505.3gppnetwork.org

e IMPU (Public Identity): sip:+number@domain - used for routing
o Format: sip:+{MSISDN}@ims.mnc{MNC}.mcc{MCC}.3gppnetwork.org

o Example: sip:+61403123456@ims.mncO®01.mcc505.3gppnetwork.org
2. S-CSCF Assignment:

e S-CSCF server name and domain where subscriber is registered

e Used for routing on-net calls back to IMS core
3. MMTel Services (Multimedia Telephony Configuration):

e Call Forward All (CFA): Unconditional forwarding to another number
e Call Forward Busy (CFB): Forward when subscriber is busy

e Call Forward No Reply (CFNRy): Forward after timeout (includes timer
value)

¢ Call Forward Not Reachable (CFNRc): Forward when subscriber is
offline/unregistered

What is MMTel-Config?

MMTel-Config is the subscriber's Multimedia Telephony service configuration
stored in the HSS/Repository. It contains:

<MMTelSS>
<CDIV>
<SS-ActivationState>active</SS-ActivationState>
<Ruleset>
<Rule>
<RuleCondition>communication-diverted</RuleCondition>
<ForwardTo>+61403555123</ForwardTo>
<NotificationType>notify</NotificationType>
</Rule>
</Ruleset>
</CDIV>
</MMTelSS>

Common MMTel Services:

¢ CDIV (Communication Diversion): Call forwarding rules

* OIP (Originating Identity Presentation): Caller ID presentation rules

e TIP (Terminating Identity Presentation): Called party number rules

Dialplan Variables Set from Sh Data

After a successful Sh lookup, these variables are populated:

Variable

ims private identity

ims public identity

msisdn

imsi

ims domain

scscf address

scscf domain

call forward all destination

call forward not reachable destination

no reply timer

Source

IMPI

IMPU

IMPU
(parsed)

IMPI
(parsed)

IMPI/IMPU

S-CSCF
name

S-CSCF
domain

MMTel
CDIV

MMTel
CDIV

MMTel
CDIV

Examp|

505014001234567@

sip:+61403123456

61403123456

505014001234567

ims.mncO®O01l.mcc50

scscfOl.ims.doma

ims.domain Or "nc

61403555123 or "r

2222 or config def

30 or config defau

Priority: Sh Data vs Configuration Defaults
The TAS uses this priority for call forwarding data:

1. MMTel-Config from Sh (highest priority - subscriber-specific settings)

2. HLR Data from SS7 MAP (overrides Sh for MT calls if roaming/forwarding
active)

3. Configuration Defaults (lowest priority - used when no Sh data available)

Example:
Configuration defaults (used only if Sh returns no MMTel-Config)
config :tas,

call forward not reachable destination: "2222", # Voicemail
default no reply timer: 30

What Happens When Sh Lookup Fails

Failure Scenarios:
1. Subscriber Not Provisioned in HSS:

o Sh returns "User Unknown" error
° hangup_case variable set to “UNALLOCATED NUMBER"

o Call rejected with appropriate SIP response

2. HSS Unreachable / Timeout:

o Sh request times out (default: 5000ms)
o Error logged and metric recorded

o Call may be rejected or routed with defaults (deployment-specific)

3. No MMTel-Config in Response:

o Subscriber exists but has no call forwarding configured

o Configuration defaults are used for
call forward not reachable destination and no reply timer

o Call proceeds normally with default values

Monitoring Sh Interface

Key Metrics:

Sh lookup success rate
rate(subscriber data lookups total{result="success"}[5m]) /
rate(subscriber data lookups total[5m]) * 100

Sh lookup latency (P95)
histogram quantile(0.95,
rate(subscriber data duration milliseconds bucket[5m]))

Sh error rate
rate(subscriber data lookups total{result="error"}[5m])

Alert Thresholds:

e P95 latency > 100ms: Slow HSS responses
e Error rate > 5%: HSS connectivity issues
e Error rate > 20%: Critical HSS failure

Troubleshooting:

1. Check Diameter peer status in Web Ul (/diameter)

2. Test Sh lookup in Web Ul (/sh _test) with known subscriber
3. Review logs for "Subscriber Data" errors

4. Verify HSS/Repository is reachable from TAS

5. Check subscriber data lookups total metric for patterns

Testing Sh Interface
Use the Web Ul Sh Test tool (/sh_test):

1. Navigate to /sh test in Control Panel
2. Enter subscriber MSISDN (e.g., +61403123456)
3. Click "Query Sh*"

4. Review returned data:
o |IMPI/IMPU identities

o S-CSCF assignment
o MMTel services

o Call forwarding configuration

Common Test Scenarios:

Verify newly provisioned subscribers are in HSS

Check call forwarding settings for specific subscriber

Validate S-CSCF assignment after IMS registration

Test HSS connectivity and response times

SS7 MAP / Gateway-
MSC Configuration

[

Configuration for HLR queries to retrieve MSRN (roaming numbers) and call
forwarding information via SS7 MAP.

Related Documentation

Core Documentation

e [J - Overview and quick start
e [] - SS7 MAP configuration (ss7 map parameters)
e [] - HLR/MAP testing in Control Panel

Call Processing Integration

e [] - Using MSRN and forwarded to _number in
dialplan routing

o {3 - HLR-based call forwarding (alternative to
Sh/MMTel)

e [] - Sh vs MAP data priority

e [] - Number format for HLR queries

Testing & Monitoring

e [- Testing HLR/MAP integration
* [- HLR/MAP query metrics

Gateway-MSC Configuration

The TAS can query an HLR to retrieve the roaming number (MSRN) or MSC
when a subscriber is roaming on 2G/3G networks, and can also retrieve call
forwarding information.

This will set the msrn or forwarded to number dialplan variables which can
then be used to route the call appropriately.

Configuration Parameters:

e enabled - Enable/disable SS7 MAP functionality
e http map server url base - Base URL of the MAP gateway HTTP API
e gmsc - Gateway MSC address used for SRI/PRN queries

e timeout ms - HTTP timeout for MAP operations in milliseconds (default:
5000)

config :tas,

ss7 map: %{
enabled: true,
http map server url base: "http://10.5.1.216:8080",
gmsc: "55512411506",
timeout ms: 5000 # Optional, defaults to 5000ms

557 MAP Gateway Routing Information Retrieval

TAS Application Server HTTP MAP Server HLR/DE

GET /sendRoutinglnfo?msisdn=...

¥

MAP SRI(MSRMN/MSC)

S5RI-Res (msm=.... msc=...}

Set routing variables, route to V-M5C using MSRN

TAS Application Server HTTP MAP Server HLR/DBE

Functionality: The TAS performs SRI (Send Routing Information) and handles
routing based on the following priority:

1. Call Forwarding Active - If the SRI response contains a forwarded
number, it is treated as an MSRN (no PRN is performed). The forwarded
number is set in the msrn variable and used for routing.

2. Roaming (2G/3G) - If the subscriber is roaming (VLR present) and no call
forwarding is active, performs PRN (Provide Roaming Number) to get the
MSRN for routing to the V-MSC

3. Normal - If neither forwarding nor roaming applies, the call proceeds with
standard routing

The msrn and tas destination number dialplan variables are set appropriately
for routing (either from PRN or from the forwarded number)

Supplementary
Services

[

Configuration and implementation of call forwarding, CLI blocking, and
emergency calling services.

Related Documentation

Core Documentation

* I - Overview and quick start

e [] - Service configuration parameters (emergency
codes, CLI blocking, default call forward)

e [] - Testing supplementary services

Call Processing & Data Sources

e] - Implementing services in dialplan logic
e [] - MMTel-Config for call forwarding settings

°] - HLR-based call forwarding (alternative to Sh)

e] - CLI blocking prefix handling

Service Interactions

e [] - Emergency calls bypass OCS
e] - Call forward on busy/no-answer routes to voicemail
Monitoring

e [] - Call forwarding and service metrics

e] - Service usage metrics

Supplementary Services (Call
Forward / Blocked CLI / Emergency
Codes)

Config for blocked CLI prefixes, emergency call codes, and default Call Forward
data (Call Forward / No Reply data is only used when no MMTel-Config data is

returned from the Repository on Sh).

config :tas,

blocked cli prefix: ["*67"],

call forward not reachable destination: "2222",
default no reply timer: 30,

emergency call codes: ["911", "912", "913", "sos"],

Configuration Parameters:

* blocked cli_prefix (list of strings): Prefixes that trigger CLI (Calling Line
ID) withholding

o Example: ["*67"] - dialing *67 before a number hides caller ID

o Used in dialplan to set cli_withheld variable

e call _forward not reachable_destination (string): Default destination for
Call Forward Not Reachable (CFNRc)

o Only used when no MMTel-Config is returned from Sh interface

o Example: "2222" - forwards to voicemail

* default_no_reply timer (integer): Default timeout in seconds before
CFNRc activates

o Only used when no MMTel-Config is returned from Sh interface

o Example: 30 - rings for 30 seconds before forwarding

e emergency_call_codes (list of strings): Emergency service numbers for
your jurisdiction

o Checked during call authorization to detect emergency calls

o S|P emergency URNs (e.g., <urn:service:sos>) are always checked in
addition to these codes

o Common examples: [II911II’ II112II’ IIOOOII’ II999II’ IISOSII]

o See section for detailed usage

How Caller ID Blocking Works

The TAS supports two methods for blocking caller ID (CLI withholding), both of
which set the cli withheld dialplan variable to "true":

Caller ID Blocking Logic Flow

MO Call Received
Destination: *67555123456
From: User
<sip:+61403123456@domain>

l

Mumber Translation
Module

Destination starts with
blocked_cli_prefix?
(*67, #31#, etc.)

/S

OmniCharge OmniRAN i i i
Downloads 2 English+ Omnitouch Website (2

- -

Strip prefix from
destination
*57555123456 —»
555123456

Set cli_withheld = true
(prefix detected)

SIP From header
contains 'anonymous’?

Yes
'

Set cli_withheld = true
{From header detected)

\

HND

!

cli withheld remains
current value

J

ey

—

‘ Set Dialplan Variables ‘

l

Dialplan XML Processing

l

Check ${cli_ withheld}

== "true'?
.
-
YES/ \NG
: v
Apply Privacy:
- Use normal caller 1D:
effective_caller_id number=anonymous -
- effective_caller_id_name=anonymous effective_caller_id_number=%{msisdn}
- origination_privacy=hide _number - Caller identity visible
- sip_h_Privacy=id T
|
_,—'-""'-/
\ Fﬁ
Bridge Call

Method 1: Prefix-Based Blocking

When a subscriber dials a destination number prefixed with a code from

blocked cli prefix:

1. The number translation module detects the prefix (e.q., caller dials
*67555123456)

2. The prefix is stripped from the destination number (becomes 555123456
3. The cli withheld variable is set to "true"

4. The dialplan can then use this variable to hide the caller's identity

Example configuration:

blocked cli prefix: ["*67"] # US-style blocking
blocked cli prefix: ["#31#"] # European GSM-style blocking
blocked cli prefix: ["*67", "#31#"] # Support both

Method 2: SIP From Header Detection
When the UE/handset requests privacy via SIP headers:

1. The TAS checks if the SIP From header display name contains "anonymous"
(case-insensitive)

2. If found, the cli withheld variable is set to "true"

3. This honors the subscriber's privacy request set at the device level

Implementing CLI Blocking in Dialplan

The TAS sets the cli withheld variable, but your dialplan XML must
implement the actual blocking behavior:

<extension name="CLI-Privacy" continue="true">
<condition field="${cli withheld}" expression="true">
<!-- Hide caller identity -->
<action application="set"
data="effective caller id name=anonymous"/>
<action application="set"
data="effective caller id number=anonymous"/>
<action application="set"
data="origination privacy=hide number"/>

<!-- Optionally set P-Asserted-Identity privacy -->
<action application="set" data="sip h Privacy=id"/>

</condition>
</extension>

Variables Set by TAS for CLI Blocking:

The TAS sets these variables before dialplan execution:

Variable Type Values Description

Indicates if CLI blocking

— . “true" or) ,
cli withheld string — was requested via prefix
n a Sell
OR From header
, Destination with blocking
. . _ normalized _
tas destination number string prefix removed (e.qg.,
number
555123456)
, Same as
) normalized
destination number string tas destination number
- number — -

(both are set)

Variables Your Dialplan Should Set (when cli_withheld="true"):

These variables control how caller identity is presented:

. Recommended
Variable Purpose
Value
: , Hides the caller's
effective caller id number "anonymous"
- - - phone number
: , Hides the caller's
effective caller id name “anonymous")
display name
. : , : SIP privacy flag for
origination privacy "hide number"
outbound leg
_ _ . SIP Privacy header
sip _h Privacy “id"

(RFC 3323)

Optional: Remove P-
sip h P-Asserted-Identity (unset or remove) Asserted-Identity
header

Complete Dialplan Example:

<extension name="CLI-Privacy-Handler" continue="true">
<condition field="${cli withheld}" expression="true">
<!-- Log for troubleshooting -->
<action application="log" data="INFO CLI blocking requested
for call to ${tas destination number}"/>

<!-- Hide caller identity on outbound call -->
<action application="set"
data="effective caller id name=anonymous"/>
<action application="set"
data="effective caller_id number=anonymous"/>
<action application="set"
data="origination privacy=hide number"/>

<!-- Set SIP Privacy headers -->
<action application="set" data="sip h Privacy=id"/>

<!-- Optional: Remove P-Asserted-Identity if present -->
<action application="unset" data="sip h P-Asserted-Identity"/>

<!-- Anti-action runs if cli withheld is false -->
<anti-action application="1log" data="DEBUG Using normal caller
ID: ${msisdn}"/>
<anti-action application="set"
data="effective caller_id number=${msisdn}"/>
</condition>
</extension>

<!-- This extension continues to the actual call routing -->
<extension name="Route-Outbound-Call">

<condition field="${tas destination number}"
expression=""(.+)$">

<action application="bridge"

data="sofia/gateway/trunk/${tas destination number}"/>

</condition>
</extension>

Important Notes:

e Both methods can work simultaneously (prefix OR SIP header triggers
blocking)

e The prefix is always stripped from the destination number, even if
dialplan doesn't implement privacy

e The cli withheld variable is a string ("true" or "false"), not a boolean

e Call Forwarding / Blocked CLI behavior is implemented in your dialplan XML

e The example config includes these features, but if you do not define them
in your dialplan, they will not function

e Variables are set during the MO (Mobile Originating) call flow only

How Call Forwarding Works

Call forwarding (also known as Communication Diversion or CDIV) allows
subscribers to redirect incoming calls to another destination. The TAS supports
multiple types of call forwarding with configurable behavior.

Call Forwarding Decision Flow (MT Calls)

Types of Call Forwarding

1. Call Forward All (CFA) - Unconditional Forwarding

* Variable: call forward all destination

e When Active: All incoming calls are immediately forwarded

e Priority: Checked first (after HLR forwarding)

e Common Use: Subscriber wants all calls sent to another number

e Example: Business calls forwarded to personal phone
2. Call Forward Busy (CFB)

* When Active: Call forwarded when subscriber is already on a call

e SIP Response: 486 Busy triggers forwarding

¢ Common Use: Forward to voicemail when on another call
3. Call Forward No Reply (CFNRy)

e Variable: no reply timer

* When Active: Call forwarded after ringing for specified seconds with no
answer

e Timeout: Typically 15-30 seconds

¢ Common Use: Forward to voicemail if not answered
4. Call Forward Not Reachable (CFNRc)

* Variable: call forward not reachable destination

When Active: Subscriber is offline, unregistered, or unreachable

SIP Response: 480 Temporarily Unavailable

Common Use: Forward to voicemail when phone is off

Default: Configuration parameter used if no MMTel-Config

Data Source Priority

Call forwarding data is retrieved from multiple sources with this priority:

1. HLR Data (SS7 MAP) [Highest Priority - overrides all]
t (if no HLR forwarding active)
2. MMTel-Config (Sh Interface) [Subscriber-specific settings from
HSS]
L (if no MMTel-Config returned)
3. Configuration Defaults [Lowest Priority - fallback
values]

Why This Priority?

e HLR Data: Real-time forwarding status for roaming/network scenarios
e MMTel-Config: Subscriber-configured preferences in IMS

e Config Defaults: Network-wide fallback (typically voicemail)

Dialplan Variables for Call Forwarding

Variable

call forward all destination

call forward not reachable destination

no reply timer

msrn

tas _destination number

Implementing Call Forwarding in Dialplan

Example MT Dialplan with Call Forwarding:

Type

string

string

integer

string

string

Source

Sh/MMTel
or "none"

Sh/MMTel
or config

Sh/MMTel
or config

HLR (MT
only)

Calculated

Exal

Va

"61403!

"2222"

30

"61400:

"2222"

<!-- Check for Call Forward All (highest priority after HLR) -->
<extension name="Check-CFA" continue="true">
<condition field="${call forward all destination}"
expression=""(?'none$) .+$">
<action application="log" data="INFO Call Forward All active to
${call forward all destination}"/>
<action application="set"
data="tas destination number=${call forward all destination}"/>
</condition>
</extension>

<!-- Attempt to bridge to subscriber -->
<extension name="Bridge-To-Subscriber">
<condition field="${msrn}" expression=""none$">
<!-- No MSRN, route to local subscriber -->
<action application="set" data="call timeout=${no reply timer}"/:
<action application="bridge"
data="sofia/internal/${tas destination number}@${scscf address}"/>

<!-- If bridge fails, check forwarding -->
<action application="1log" data="INFO Bridge failed, checking call
forwarding"/>

<!-- Call Forward Not Reachable -->
<action application="set"
data="forward destination=${call forward not reachable destination}"/
<action application="1log" data="INFO Forwarding to
${forward destination}"/>
<action application="answer"/>
<action application="voicemail" data="default default
${msisdn}"/>
</condition>
</extension>

Configuring Default Call Forwarding

Set network-wide defaults in config/runtime.exs:

config :tas,

Default CFNRc destination (used when no MMTel-Config)

call forward not reachable destination: "2222", # Voicemail
access number

Default timeout before CFNRy activates (used when no MMTel-
Config)
default no reply timer: 30 # Ring for 30 seconds

When Defaults Are Used:

e Subscriber exists in HSS but has no MMTel-Config provisioned
e Sh lookup succeeds but returns no call forwarding settings

e New subscribers before call forwarding is configured

Troubleshooting Call Forwarding
Problem: Calls not forwarding as expected

1. Check Sh Data:

o Use Web Ul /sh test to query subscriber
o Verify MMTel-Config contains CDIV rules

o Check call forward all destination value

2. Check Dialplan Variables:

o Review call logs for variable values
o Confirm call forward all destination !'= "none"

o Verify tas destination number is set to forwarding destination

3. Check HLR Data (if SS7 MAP enabled):

o Use Web Ul /hlr to query subscriber

o HLR forwarding overrides Sh data

o Verify msrn variable doesn't contain unexpected forwarding number

4. Check Configuration Defaults:

o Verify call forward not reachable destination in config
o Confirm default no reply timer is appropriate

o These only apply when no MMTel-Config exists

Problem: Forwarding loops
Symptoms: Call forwards to a number that forwards back, creating a loop

Prevention in Dialplan:

<!-- Track forwarding hop count -->
<extension name="Prevent-Forward-Loop" continue="true">
<condition field="${sip h X-Forward-Hop-Count}" expression=""$">
<action application="set" data="sip h X-Forward-Hop-Count=1"/>
<anti-action application="set" data="sip h X-Forward-Hop-
Count=${expr(${sip h X-Forward-Hop-Count}+1)}"/>
</condition>
</extension>

<extension name="Check-Forward-Hop-Limit">
<condition field="${sip h X-Forward-Hop-Count}"
expression=""([3-9]|[1-9][0-9]+)%$">
<action application="1log" data="ERROR Forwarding Lloop
detected, hop count: ${sip h X-Forward-Hop-Count}"/>
<action application="hangup" data="LOOP DETECTED"/>
</condition>
</extension>

Monitoring Call Forwarding

Key Indicators:

e High rate of calls to voicemail numbers
» Pattern of calls timing out at no_reply timer value

e Calls consistently routed to same forwarding destinations

Useful Logs:

INFO Call Forward All active to 61403555123
INFO Forwarding to 2222
INFO Bridge failed, checking call forwarding

Business Intelligence:

e Track forwarding activation rates by subscriber
e Monitor voicemail usage patterns

e |dentify subscribers with unconditional forwarding

Voicemail & Missed Call
Service

[

Configuration and implementation of voicemail service with SMS notifications.

Related Documentation

Core Documentation

e [- Overview and quick start

e [] - Voicemail configuration (timezone, SMSc,
notification templates)

e [] - Voicemail management in Control Panel

Call Processing Integration

e [] - Voicemail deposit/retrieval in dialplan

o (i} - Call forward on busy/no-answer to
voicemail

e [J - Voicemail greeting prompts

Related Services

e [] - Voicemail access number translation

Monitoring

e [] - Voicemail usage metrics

Voicemail / Missed Call Service

Voicemail is added in the XML dialplan as needed and is not turned on unless
you call it in your dialplan.

Voicemail and Missed Call Notification Flow

TAS Application Server Voicemail Service SM5C

Call bridge fails, routing to voicemail

5et call variables (History-Info, call_id. language)

«—

Initiate voicemail recording for subscriber

Register hangup hook for notification
—
-

alt [voicemail left]
Count messages, render notification template (single/multiple)
-

Send SMS notification

kL J

[mo voicemail left]

Render missed call notification with time vars

——

—

Send SMS notification (missed call)

k J

TAS Application Server Voicemail Service SM5C

You can view the voicemail box usage and message status from the Control
Pannels' voicemail tab, for example putting this after your bridge command, to
be called if the bridge fails:

<action application="1log"
data="INFO Failed to bridge Call - Routing to Call Forward No-Ans
<action application="set"
data="sip h History-Info=<sip:${destination number}@${ims domain]
<action application="set" data="sip call id=${sip call id};CALL FOF
<action application="1log" data="DEBUG Called Voicemail Deposit Numt
<action application="set" data="default language=fr"/>
<action application="answer" />
<action application="sleep" data="500"/>
<!--This notifies the TAS of missed calls or deposited voicemails ¢
notifications after the call hangs up-->
<action application="set"
data='vm post body=mailbox=${msisdn}&caller=${effective caller _id nun
<action application="set" data='api hangup hook=curl http://localhc
type application/x-www-form-urlencoded post ${vm post body}'/>
<action application="voicemail" data="default default ${msisdn}"/>

You can also access voicemails with a block like this:

<extension name="Static-Route-Voicemail-Check">
<condition field="${tas destination number}"
expression=""(2222]55512411520)$">
<action application="1log" data="DEBUG Called Voicemail Check
Number" />
<action application="set" data="default language=fr"/>
<action application="answer" />
<action application="set" data="voicemail authorized=true"/>
<action application="set"
data='vm post body=mailbox=${msisdn}&action="clear"'/>
<action application="set" data='api hangup hook=curl
http://localhost:8080/vm end content-type application/x-www-form-
urlencoded post ${vm post body}'/>
<action application="voicemail" data="check auth default
default ${msisdn}"/>
</condition>
</extension>

You can also enable missed call (but no voicemail left) SMS notifications and
voicemail MWI notification SMS from the configuration.

Variables available in the missed call notification include:

bindings = [
caller: caller,
day: day,
month: month,
hour: hour,
minute: minute,
message count: message count

NB: message count is only set when message count is greater than 1.

config :tas,

voicemail: %{

timezone: "Pacific/Tahiti", #Timezone
used in Timestamps
smsc: %{
smsc url: "http://10.8.81.215", #SMSc API
Base URL
smsc_api key: "nicktestkeyl23", #API key
on SMSc
source msisdn: "2222" #Source
(Sender) for the notification messages
}

#For usage of variables in this section see docs.
voicemail notification text: %{
not left:

"Vous avez 1 appel manqué du <%= caller %> le <%= day
%>/<%= month %> a <%= hour %>:<%= minute %>",

single voicemail:

"“Vous avez un nouveau message vocal du <%= caller %> le
<%= day %>/<%= month %> a <%= hour %>:<%= minute %>. Pour le
consulter, composez le 2222.",

multiple voicemails:

"Vous avez <%= message count %> nouveaux messages vocaux.

Pour les consulter, composez le 2222."

}

