
Introduction to Ansible

Deployment at

Omnitouch

Overview

Omnitouch Network Services uses Ansible as its infrastructure automation

platform to deploy complete cellular network solutions (4G/5G) in a consistent,

repeatable, and automated manner. This document provides an overview of

how we leverage Ansible to orchestrate complex telecom deployments.

What is Ansible?

Ansible is an open-source automation tool that allows you to:

Configure systems

Deploy software

Orchestrate complex workflows

Manage infrastructure as code

Ansible uses a declarative approach - you describe the desired state of your

systems, and Ansible ensures they reach that state.

How Omnitouch Uses Ansible

Key Concepts

1. Inventory (Hosts Files)

Defines what systems to manage. Each customer deployment has a hosts file

that describes:

All virtual machines in the network

Their IP addresses

Network configuration

Service-specific parameters

Host files are what you will be working with to define your network.

See: Hosts File Configuration

2. Roles

Defines how to configure each component. Roles are reusable units that

contain:

Tasks (steps to execute)

Templates (configuration file templates)

Handlers (actions triggered by changes)

Variables (default configuration values)

Example roles for OmniCore components: omnihss , omnisgwc , omnipgwc ,

omnidra , etc

These are defined by the ONS team, while you can edit them, there's generally

cleaner ways to make any tweaks you might need from within your hosts file.

3. Playbooks

Orchestrates when and where roles are applied:

We use these essentially as groups for the roles.

4. Group Variables

Provides customer-specific configuration that overrides role defaults. This is

where customer customization happens without modifying the base roles.

See: Group Variables and Configuration

Deployment Architecture

Hosts File

Ansible PlaybookGroup Vars

Roles

SSH to Hosts Configure Systems Running Network

The Deployment Process

1. Define Infrastructure

Create a hosts file describing your network topology:

Planning Note: Before defining infrastructure, review the IP Planning Standard

for guidance on network segmentation, IP address allocation, and subnet

organization.

Proxmox Users: If deploying on Proxmox, see Proxmox VM/LXC Deployment

for automated VM/container provisioning.

- name: Deploy EPC Core

 hosts: mme

 roles:

 - common

 - omnimme

See: Hosts File Configuration and Configuration Reference

2. Customize Configuration

Set customer-specific variables in group_vars :

#ToDo - Add link here to conifg reference for complete list

3. Run Playbooks

Deploy the network:

4. Automated Deployment

Ansible will:

Create/provision VMs (if using Proxmox/VMware integration)

Configure networking

Install software packages from APT cache

Deploy application code

Configure services with customer settings

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 mme_code: 1

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: customer

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

Start services

Validate deployment

Key Components We Deploy

OmniCore (4G/5G Packet Core Platform)

OmniHSS - Home Subscriber Server

OmniSGW - Serving Gateway (Control plane)

OmniPGW - Packet Gateway (Control plane)

OmniUPF - User Plane Function

OmniDRA - Diameter Routing Agent

OmniTWAG - Trusted WLAN Access Gateway

See: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall (Voice & Messaging Platform)

OmniCall CSCF - Call Session Control Function (P-CSCF, I-CSCF, S-CSCF)

OmniTAS - IMS Application Server (VoLTE/VoNR services)

OmniMessage - SMS Center (SMS-C)

OmniMessage SMPP - SMPP protocol support

OmniSS7 - SS7 signaling components (STP, HLR, CAMEL)

VisualVoicemail - Voicemail functionality

See: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM

CRM Platform - Customer relationship management, self-signup, billing

See: https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Support Services

DNS - Network DNS resolution

License Server - License management

Monitoring - Prometheus, Grafana

See: Deployment Architecture Overview

Package Management

We use a hybrid package distribution model:

Pre-compiled APT Packages

All Omnitouch software is distributed as Debian packages (.deb files):

Built from source in our CI/CD pipeline

Versioned and tested

Hosted on package repositories

APT Cache System

Customers can choose between:

1. Local APT Cache - Mirror of required packages on-site for offline

deployment

2. Public Repository - Direct access to Omnitouch's hosted package

repository

See: APT Cache System

License Management

All Omnitouch software components require valid licenses managed through a

central license server:

Components check license validity on startup

Features are enabled/disabled based on license

License server can be local or cloud-hosted

See: License Server

Benefits of This Approach

Repeatability

The same Ansible playbooks can deploy:

Development labs

Testing environments

Production networks

Customer sites

Consistency

Every deployment uses the same tested configurations, reducing human error.

Version Control

Infrastructure is defined as code in Git:

Track all changes

Review before deployment

Roll back if needed

Customization Without Complexity

Customers can customize their deployment through group_vars without

modifying core roles.

Rapid Deployment

Deploy a complete cellular network in hours instead of days or weeks.

Getting Started

Prerequisites

Before running Ansible playbooks, you need to set up a Python virtual

environment and install the required dependencies.

1. Create a Python Virtual Environment

Create an isolated Python environment for the Ansible deployment:

2. Activate the Virtual Environment

Activate the virtual environment:

On Windows, use:

3. Install Required Packages

Install all dependencies from the requirements.txt file:

This will install Ansible and all necessary Python packages for Omnitouch

deployment automation.

python3 -m venv .venv

source .venv/bin/activate

.venv\Scripts\activate

pip install -r requirements.txt

Note: Keep the virtual environment activated whenever running Ansible

commands. You can deactivate it when finished by running deactivate .

Deployment Steps

1. Review the Hosts File Configuration to understand how to define your

network

2. Learn about Group Variables for customization

3. Understand the APT Cache System for package management

4. Review the Deployment Architecture to see how everything fits together

5. Deploy!

Next Steps

IP Planning Standard - Plan your network architecture and IP

allocation

Hosts File Configuration - Learn how to define your network topology

APT Cache System - Understand package distribution

License Server - Learn about license management

Deployment Architecture Overview - See the complete picture

Group Variables Configuration - Customize your deployment

Utility Playbooks - Operational tools for health checks, backups, and

maintenance

APT Repository &

Package Distribution

Overview

The Omnitouch APT system provides package distribution for all deployments.

Two types of content are served:

1. APT Packages — Debian packages installed via apt install

2. Binary Releases — Pre-built binaries downloaded directly (Prometheus

exporters, agents, etc.)

Two deployment models are supported:

1. Direct Access — VMs pull packages directly from apt.omnitouch.com.au

2. Local Cache Mirror — A local server syncs from Omnitouch and serves

packages to VMs (for offline/airgapped deployments)

Architecture

Content Served

The APT server hosts all content required for deployments:

Content

Type
Description Path

Omnitouch

Packages

Custom-built .deb packages

(omnihss, omnimme, etc.)
/dists/<distro>/

Ubuntu

Packages

Cached Ubuntu packages

with all dependencies
/<distro>/pool/main/

GitHub

Releases

Pre-built binaries

(Prometheus, Grafana,

Homer, etc.)

/releases/<org>/<repo>/

Source

Tarballs

Source archives for web

apps (CGrateS_UI,

speedtest)

/repos/

Third-Party

Packages

Galera, FRR, InfluxDB,

KeyDB, etc.
/releases/<vendor>/

Configuration Variables

Two separate variable sets control package distribution. Understanding their

purposes is essential for correct configuration.

What They Configure
Configuration Variables

apt_repo

(APT package sources)

remote_apt_*

(Binary downloads)

/etc/apt/sources.list

Binary downloads

/releases/*

Variable Purposes

Variable Set Purpose Used For

apt_repo

Configures

APT package

sources

/etc/apt/sources.list and

/etc/apt/sources.list.d/*.list

remote_apt_*

Configures

binary

download

URLs

Downloading files from /releases/ path

(Node Exporter, Zabbix, Nagios, etc.)

When Each Variable Set Is Used

Scenario
APT Sources

(apt_repo)

Binary Downloads

(remote_apt_*)

use_apt_cache:

true

Uses

apt_repo.apt_server

Uses

apt_repo.apt_server

use_apt_cache:

false

Uses apt_repo.* with

credentials

Uses remote_apt_* with

credentials

When use_apt_cache: false , both variable sets are required.

Option 1: Direct Access

For deployments with internet connectivity, VMs pull packages directly from the

Omnitouch APT server.

Network Requirements

Source IP Whitelisting: Your public IP address must be whitelisted on the

Omnitouch APT server. During setup, provide your source subnets to

Omnitouch. In return, you will receive:

Username and password for HTTP Basic Auth

FQDN for the APT server

Firewall Requirements: Outbound access to the following Omnitouch IP

ranges must be allowed:

Network Range

IPv4 144.79.167.0/24

IPv4 160.22.43.0/24

IPv6 2001:df3:dec0::/48

ASN AS152894

Services requiring access to Omnitouch infrastructure:

Service Port Protocol Purpose

APT Server 80 TCP Package downloads

APT Server 53 TCP/UDP
DNS resolution for

apt.omnitouch.com.au

License

Server
123 UDP

NTP time synchronization for license

validation

License

Server
53 TCP/UDP DNS resolution for license validation

Ensure HTTP (TCP/80), NTP (UDP/123), and DNS (TCP+UDP/53) traffic is allowed

to the Omnitouch IP ranges.

Configuration

all:

 vars:

 use_apt_cache: false

 # APT package sources configuration

 # Configures /etc/apt/sources.list for apt install commands

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "your-username"

 apt_repo_password: "your-password"

 # Binary downloads configuration

 # Used for downloading files from /releases/ path

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

Parameters

APT Package Sources (apt_repo)

Parameter Type Required Default Descriptio

apt_repo.apt_server String Yes -

APT server

hostname o

IP address

apt_repo.apt_repo_username String Yes -

HTTP Basic

Auth

username

for APT

sources

apt_repo.apt_repo_password String Yes -

HTTP Basic

Auth

password fo

APT sources

Binary Downloads (remote_apt_*)

Parameter Type Required Default Description

remote_apt_server String Yes -

Server

hostname or IP

for binary

downloads

remote_apt_port Integer No 80

Server port for

binary

downloads

remote_apt_protocol String No http
Protocol (http

or https)

remote_apt_user String Yes -

HTTP Basic Auth

username for

downloads

remote_apt_password String Yes -

HTTP Basic Auth

password for

downloads

General

Parameter Type Required Default Description

use_apt_cache Boolean Yes -
Must be false for

direct access

URL Patterns (Direct Access)

APT Package Sources (configured in /etc/apt/sources.list):

deb [trusted=yes] http://{apt_repo_username}:

{apt_repo_password}@{apt_server}/ noble main

Binary Downloads (used by Ansible get_url tasks):

How It Works

VMs authenticate with HTTP Basic Auth for both APT packages and binary

downloads. Ubuntu system packages are also served from the Omnitouch

server (pre-cached), so VMs do not need access to Ubuntu mirrors.

Option 2: Local Cache Mirror

For offline, airgapped, or bandwidth-constrained deployments, deploy a local

APT cache that syncs all content from Omnitouch.

http://{remote_apt_user}:

{remote_apt_password}@{remote_apt_server}:

{remote_apt_port}/releases/prometheus/node_exporter/node_exporter-

1.8.1.linux-amd64.tar.gz

Architecture

Customer Network

Omnitouch

Infrastructure
Initial Sync

(requires internet)

Serve Packages

(offline capable)

Serve Packages

(offline capable)

Serve Packages

(offline capable)

apt.omnitouch.com.au
APT Cache Mirror

(apt_cache_servers)

VM

VM

VM

Configuration

Define the cache server in your hosts file with its repository configuration:

How it works:

Cache server (192.168.1.100): Uses remote_apt_* credentials to sync

packages from apt.omnitouch.com.au:80

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Cache server syncs packages from authenticated repository

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

all:

 vars:

 # use_apt_cache: true # Auto-set when apt_cache_servers group

exists

 # apt_repo.apt_server: auto-derived to 192.168.1.100 (first

cache server)

All other hosts: Automatically derive apt_repo.apt_server:

"192.168.1.100" and pull from cache at port 8080 without credentials

Parameters

APT Package Sources (apt_repo)

Parameter Type Required Default Descrip

apt_repo.apt_server String Yes
Auto-

derived

Local cache

IP. Automat

derived from

apt_cache_

host if not

specified.

apt_repo.apt_repo_username String No -

Not required

using cache

auth neede

apt_repo.apt_repo_password String No -

Not required

using cache

auth neede

Cache Server Sync (remote_apt_*)

These variables configure how the cache server syncs content from Omnitouch:

Parameter Type Required Default Description

remote_apt_server String Yes -

Omnitouch APT

server to sync

from

remote_apt_port Integer No 80
Omnitouch APT

server port

remote_apt_protocol String No http
Protocol for

sync connection

remote_apt_user String Yes -

Credentials for

syncing from

Omnitouch

remote_apt_password String Yes -

Credentials for

syncing from

Omnitouch

General

Parameter Type Required Default Description

use_apt_cache Boolean No true

Automatically set to

true when

apt_cache_servers

group exists

apt_cache_port Integer No 8080
Port the local cache

server listens on

URL Patterns (Cache Mode)

APT Package Sources (configured in /etc/apt/sources.list):

Binary Downloads (used by Ansible get_url tasks):

No credentials required for cache access—it uses [trusted=yes] APT

configuration.

Deploying the Cache

1. Provision the cache server (VM or LXC container with 50+ GB disk)

2. Run the cache setup playbook:

3. Verify the cache by browsing to http://192.168.1.100:8080/

What Gets Synced

The cache mirror syncs all content from the Omnitouch APT server using

recursive wget download:

Local Cache Mirror

apt.omnitouch.com.au

Omnitouch .deb

Packages

/pool/main/

Ubuntu Packages +

Deps

/noble/pool/main/

GitHub Releases

/releases/

Source Tarballs

/repos/

APT Metadata

/dists/

Omnitouch .deb

Packages

Ubuntu Packages +

Deps
GitHub Releases Source Tarballs APT Metadata

Content directories synced:

deb [trusted=yes] http://192.168.1.100:8080/noble noble main

http://192.168.1.100:8080/releases/prometheus/node_exporter/node_expo

1.8.1.linux-amd64.tar.gz

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

Path Content

/dists/<distro>/ APT repository metadata (Packages, Release files)

/pool/main/ Omnitouch custom .deb packages

/<distro>/pool/main/ Ubuntu packages and all dependencies

/releases/
GitHub releases (Prometheus, Grafana, Zabbix,

etc.)

/repos/ Source tarballs (Erlang, Elixir, CGrateS_UI, etc.)

After initial sync, the cache can serve all packages without internet

connectivity.

How It Works

The cache mirror uses wget --recursive with HTTP Basic Auth to download all

content from the Omnitouch APT server. Subsequent syncs only download

new/changed files (timestamping).

Automatic Configuration

When an apt_cache_servers group exists in your inventory, the system

automatically:

1. Sets use_apt_cache: true for all hosts (unless explicitly overridden)

2. Derives apt_repo.apt_server from the first cache server's ansible_host

IP

Minimal Configuration Example

What happens automatically:

All hosts (except cache server) get use_apt_cache: true

All hosts (except cache server) get apt_repo.apt_server:

"192.168.1.100"

All hosts pull from http://192.168.1.100:8080/ without credentials

Cache server syncs packages from http://your-username:your-

password@apt.omnitouch.com.au/

Override Automatic Behavior

To force direct access even with cache servers defined:

apt_cache_servers:

 hosts:

 apt-cache-01:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Cache server syncs content from Omnitouch repository

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "your-username"

 remote_apt_password: "your-password"

Configuration Summary

Scenario 1: Direct Access to APT Server (No

Cache)

All hosts pull packages directly from the APT repository server.

all:

 vars:

 use_apt_cache: false # Force direct access even with cache

servers defined

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_user: "user"

 remote_apt_password: "pass"

all:

 vars:

 use_apt_cache: false

 # APT package sources - used by all hosts

 apt_repo:

 apt_server: "apt.omnitouch.com.au"

 apt_repo_username: "user"

 apt_repo_password: "pass"

 # Binary downloads - used by all hosts

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

Result: All hosts generate deb [trusted=yes]

http://user:pass@apt.omnitouch.com.au/ noble main

Scenario 2: APT Cache Server Defined in Hosts

File (Automatic)

Cache server is in your inventory and will be deployed/synced by Ansible.

Result:

Cache server: Syncs from http://user:pass@apt.omnitouch.com.au:80/

All other hosts: Generate deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (no credentials)

Scenario 3: Remote APT Cache NOT in Hosts

File (Manual)

Cache server exists elsewhere and is already set up (not managed by your

Ansible).

apt_cache_servers:

 hosts:

 cache-server:

 ansible_host: 192.168.1.100

 gateway: 192.168.1.1

 vars:

 # Cache server syncs packages from authenticated repository

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "user"

 remote_apt_password: "pass"

No configuration needed in all: vars:

Everything auto-derived from apt_cache_servers group

Result: All hosts generate deb [trusted=yes]

http://192.168.1.100:8080/noble noble main (no credentials)

Complete Example

Here's a complete working example showing cache server configuration with

multiple application hosts:

all:

 vars:

 use_apt_cache: true

 # Point all hosts to the external cache server

 apt_repo:

 apt_server: "192.168.1.100" # IP of external cache server

 apt_repo_port: 8080 # Cache typically runs on port

8080

No apt_cache_servers group needed

No remote_apt_* needed (cache is already set up externally)

APT Cache Server Group

apt_cache_servers:

 hosts:

 customer-apt-cache:

 ansible_host: 10.179.1.114

 gateway: 10.179.1.1

 host_vm_network: "vmbr0"

 num_cpus: 4

 memory_mb: 16384

 proxmoxLxcDiskSizeGb: 120

 vars:

 # Cache server syncs packages from authenticated repository

 remote_apt_server: "apt.omnitouch.com.au"

 remote_apt_port: 80

 remote_apt_protocol: "http"

 remote_apt_user: "customer-username"

 remote_apt_password: "customer-secure-token"

Application Servers

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.179.2.177

 gateway: 10.179.2.1

Global Configuration

all:

 vars:

 # Auto-configuration (no manual config needed):

 # - use_apt_cache: true (auto-enabled when apt_cache_servers

exists)

What happens during deployment:

1. Cache server (10.179.1.114):

Uses remote_apt_* from its vars: section

Downloads all packages from http://customer-username:customer-

secure-token@apt.omnitouch.com.au:80/

Serves packages on port 8080 via nginx

2. Application hosts (customer-hss01 , customer-mme01 , customer-dns01):

Auto-detect apt_cache_servers group exists

Auto-set use_apt_cache: true

Auto-derive apt_repo.apt_server: "10.179.1.114"

Generate: deb [trusted=yes] http://10.179.1.114:8080/noble

noble main

Pull all packages from cache server (no credentials required)

Updating the Cache

To sync new packages or updates:

This incrementally syncs all content from the Omnitouch APT server:

New Omnitouch package versions

New Ubuntu packages and dependencies

New GitHub releases

Updated source tarballs

 # - apt_repo.apt_server: "10.179.1.114" (auto-derived from

cache server)

ansible-playbook -i hosts/customer/production.yml

services/apt_cache.yml

The sync uses wget --timestamping , so existing unchanged files are skipped,

making re-sync fast.

Note: The Omnitouch APT server (apt.omnitouch.com.au) is the single source

of truth for all packages. Run services/apt.yml on the apt server first to

build/update packages, then run services/apt_cache.yml on cache mirrors to

sync.

Troubleshooting

APT Update Fails with 401 Unauthorized

Symptoms:

Possible causes:

apt_repo configuration defined in all: vars: instead of

apt_cache_servers: vars:

Hosts trying to access authenticated repository directly instead of cache

Incorrect apt_repo_username or apt_repo_password

Source IP not whitelisted on Omnitouch APT server

Using cache credentials for direct access or vice versa

Resolution:

1. Check configuration scope: Ensure apt_repo with credentials is defined

in apt_cache_servers: vars: , NOT in all: vars:

2. Verify cache mode: When using cache, hosts should connect to cache

server (port 8080), not repository (port 80)

3. Check generated sources: On failing host, check

/etc/apt/sources.list.d/omnitouch.list

Failed to fetch

http://10.179.1.115:80/noble/dists/noble/main/binary-

amd64/Packages 401 Unauthorized

Correct (cache mode): deb [trusted=yes]

http://10.179.1.114:8080/noble noble main

Incorrect (has credentials in wrong place): deb [trusted=yes]

http://user:pass@10.179.1.115:80/noble noble main

4. Verify credentials are correct for your deployment mode

5. Confirm your public IP is whitelisted with Omnitouch (if using direct access)

Binary Downloads Fail (Node Exporter, Zabbix,

etc.)

Symptoms: Ansible playbook fails downloading files from /releases/ path

Possible causes:

remote_apt_* variables not configured

Incorrect remote_apt_user or remote_apt_password

Missing remote_apt_server when use_apt_cache: false

Resolution:

1. Ensure all remote_apt_* variables are defined

2. Verify credentials match those provided by Omnitouch

3. Check that remote_apt_server points to correct host

Cache Server Cannot Sync

Symptoms: Cache server playbook fails to download packages

Possible causes:

Cache server has no internet access

remote_apt_* credentials incorrect

Firewall blocking outbound connections to Omnitouch

Resolution:

1. Verify cache server can reach apt.omnitouch.com.au on port 80

2. Check remote_apt_* credentials

3. Review firewall rules for outbound access

Related Documentation

Hosts File Configuration — Inventory and variable configuration

Configuration Reference — Complete parameter reference

Deployment Architecture — Overall system architecture

Proxmox Deployment — Deploying cache server as LXC container

Configuration

Reference

Overview

This document provides a comprehensive reference for configuring OmniCore

deployments through hosts files. Configuration is primarily defined in host

inventory files with minimal group_vars overrides needed for modern

deployments.

For product-specific documentation, see:

OmniCore: https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall: https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge: https://docs.omnitouch.com.au/docs/repos/OmniCharge

Configuration Approach

Modern OmniCore deployments use a simplified configuration model:

Key Principle: Most configuration is defined directly in the hosts file. Role

defaults handle the majority of settings, with group_vars used only for specific

customizations.

Network Planning

Before configuring hosts, review the IP Planning Standard for guidance on:

Network segmentation strategies

IP address allocation

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Subnet organization

Public IP handling

Common Host Parameters

#ToDo - Just say to check hosts-file-configuration.md for this

Service-Specific Flags

Global Variables (all:vars)

The all:vars section contains deployment-wide settings. Modern deployments

use minimal global variables with most configuration in role defaults.

Essential Global Variables

Authentication & Access

Alternative: Use SSH keys instead of passwords:

cdrs_enabled: True # Enable CDR generation

in_pool: False # Exclude from load balancing

pool

online_charging_enabled: False # Enable OCS integration

recording: True # Enable call recording (AS)

populate_crm: False # Populate CRM with initial data

ansible_connection: ssh

ansible_user: root

ansible_password: password

ansible_become_password: password

ansible_ssh_private_key_file: '/path/to/key.pem'

Customer Identity

PLMN Configuration

Purpose: Uniquely identifies your mobile network. Used for Diameter realm

construction.

Network Names

Displayed: Network names shown on UE devices in Settings > Mobile Network.

DNS Configuration

APT Repository Configuration

customer_name_short: omnitouch

customer_legal_name: "YKTN Lab"

site_name: YKTN

region: AU

TZ: Australia/Melbourne

plmn_id:

 mcc: '001' # Mobile Country Code (3 digits)

 mnc: '01' # Mobile Network Code (2-3 digits)

 mnc_longform: '001' # Zero-padded MNC (always 3 digits)

diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

network_name_short: Omni

network_name_long: Omnitouch

tac_list: [10100,100] # Default TAC list (can override

per-MME)

netplan_DNS: False # Use systemd-resolved instead of

netplan DNS

Automatic Defaults: When an apt_cache_servers group is defined with

hosts:

use_apt_cache automatically defaults to True (unless explicitly set to

False)

apt_repo.apt_server automatically defaults to the first cache server's IP

See: APT Cache System

License Server

See: License Server

MME Settings

Manual configuration (optional if apt_cache_servers group

exists)

use_apt_cache: True # Use local APT cache vs direct

repo access

apt_repo:

 apt_server: "10.10.1.114" # APT cache server or repo server

 # Credentials only needed when use_apt_cache: False

 # apt_repo_username: "omni"

 # apt_repo_password: "omni"

Binary downloads and cache sync configuration

Used for: (1) downloading binaries from /releases/ when

use_apt_cache: false

(2) cache server syncing from Omnitouch when

use_apt_cache: true

remote_apt_server: "apt.omnitouch.com.au"

remote_apt_user: "omni"

remote_apt_password: "omni"

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

SAEGW Settings

IMS Settings

RAN Monitor Configuration

mme_dns: False # Enable MME DNS resolution

mtu: 1400 # Maximum Transmission Unit

ims_dra_support: False # Route IMS through DRA

enable_homer: False # Enable Homer SIP capture

Firewall Configuration

use_nokia_monitor: True

use_casa_monitor: True

install_influxdb: True

influxdb_user: monitor

influxdb_password: "secure-password"

influxdb_organisation_name: omnitouch

influxdb_nokia_bucket_name: nokia-monitor

influxdb_casa_bucket_name: casa-monitor

influxdb_operator_token: "generated-token"

influxdb_url: http://127.0.0.1:8086

enable_pm_collection: False

enable_alarm_collection: False

enable_location_collection: False

enable_ran_status_collection: True

enable_nokia_rectifier_collection: False

collection_interval_in_seconds: 120

ran_monitor:

 sql:

 user: ran_monitor

 password: "secure-password"

 database_host: 127.0.0.1

 database_name: ran_monitor

 influxdb:

 address: 10.10.2.135

 port: 8086

 nokia:

 airscales:

 - address: 10.7.15.66

 name: site-Lab-Airscale

 port: 8080

 web_password: nemuuser

 web_username: Nemuadmin

Roaming DNS Servers

Local Users (SSH Keys)

firewall:

 allowed_ssh_subnets:

 - '10.0.1.0/24'

 - '10.0.0.0/24'

 allowed_ue_voice_subnets:

 - '10.0.1.0/24'

 allowed_carrier_voice_subnets:

 - '10.0.1.0/24'

 allowed_signaling_subnets:

 - '10.0.1.0/24'

roaming_dns_servers:

 wildcard: ['10.0.99.1']

 # Carrier-specific DNS (PLMN-based)

 123456: # Example Carrier 1

 - '10.10.2.197'

 654321: # Example Carrier 2

 - '10.10.0.4'

local_users:

 usera:

 name: Example User A

 public_key: "ssh-rsa AAAAB3Nza..."

 userb:

 name: Example User B

 public_key: "ssh-ed25519 AAAAC3..."

Hypervisor Configuration

Proxmox

proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: password

 proxmoxApiTokenName: AnsibleToken

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve01

Default Proxmox settings

proxmoxServerAddress: 10.10.0.100

proxmoxServerPort: 8006

proxmoxNodeName: 'pve01'

proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-standard_24.04-

2_amd64.tar.zst'

proxmoxApiTokenName: DocsTest

proxmoxLxcCores: 8

proxmoxLxcDiskSizeGb: 20

proxmoxLxcMemoryMb: 64000

proxmoxLxcRootFsStorageName: SSD_RAID0

proxmoxLxcBridgeName: vmbr0

proxmoxTemplateName: "ubuntu-24.04-cloud-init-template"

proxmoxStorage: SSD_RAID0

vLabNetmask: 24

PROXMOX_API_TOKEN: "token-secret"

vlabRootPassword: password

vLabPublicKey: "ssh-rsa AAAAB3..."

mask_cidr: 24

VMware vCenter

Related Documentation

IP Planning Standard - Network architecture and IP allocation guidelines

Hosts File Configuration - How to structure hosts files

Group Variables Configuration - When and how to use group_vars

Netplan Configuration - Secondary IPs and multi-NIC setup

Deployment Architecture - How components interact

APT Cache System - Package management

License Server - License configuration

Product Documentation

For detailed operational guides and advanced configuration:

OmniCore Components:

https://docs.omnitouch.com.au/docs/repos/OmniCore

vcenter_ip: "vcenter.example.com"

vcenter_username: "administrator@vsphere.local"

vcenter_password: "password"

vcenter_datacenter: "DC1"

vcenter_vm_template: ubuntu-24.04-model

vcenter_vm_disk_size: 50

vcenter_folder: "Omnicore"

host_vm_network: "Management"

vhosts:

 "10.0.0.23":

 vcenter_cluster_ip: 10.0.0.23

 vcenter_datastore: "datastore1 (3)"

netmask: 255.255.255.0

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniCall Components:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniCharge/OmniCRM:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Deployment

Architecture Overview

Overview

This document provides a complete view of how Omnitouch Network Services'

cellular network software is deployed using Ansible, showing how all

components fit together to create a working 4G/5G network.

See the IP Planning Standard for detailed component placement, IP address

assignment guidelines, and public IP handling.

Complete Deployment Example

0. Infrastructure Provisioning (Optional)

For Proxmox deployments, provision VMs/LXCs before configuration:

See: Proxmox VM/LXC Deployment

Deploy VMs on Proxmox

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

Or deploy LXC containers (lab/test only)

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

1. Infrastructure Definition (Hosts File)

See: Hosts File Configuration

2. Customization (group_vars)

The group_vars folder is where we can store any config overrides needed at a

host, site or network level.

For example you'd have a folder with your OmniMessage SMSc config, the SIP

trunks your TAS connects to would live here, all your Diameter Routing logic,

etc, etc.

See: Group Variables Configuration

3. Package Distribution (APT Cache)

See: APT Cache System

Define what to deploy and where

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

... all other components

Configure where to get packages

apt_repo:

 apt_server: "10.254.10.223" # Cache server IP or direct repo

server

use_apt_cache: false # true = use local cache, false = direct

repo access

4. License Configuration

See: License Server

5. Execute Deployment

Individual components can be deployed by running services/twag.yml for

example, but the services/all.yml will handle everything, and you can use -

-limit=myhost or --limit=mmee,sgw , etc, to limit the hosts we're working on.

Related Documentation

Introduction to Ansible Deployment - Getting started

Hosts File Configuration - Defining infrastructure

IP Planning Standard - Network architecture and IP allocation

Group Variables Configuration - Customization

APT Cache System - Package management

License Server - License management

Point components to license server

license_server_api_urls: ["https://10.10.2.150:8443/api"]

license_enforced: true

Deploy complete network

ansible-playbook -i hosts/customer/host_files/production.yml

services/all.yml

Or deploy specific components

ansible-playbook -i hosts/customer/host_files/production.yml

services/epc.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/ims.yml

Product Documentation

For detailed information on configuring each component:

OmniCore (4G/5G Packet Core):

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS, OmniSGW, OmniPGW, OmniUPF, OmniDRA, OmniTWAG

OmniCall (Voice & Messaging):

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS, OmniCall CSCF, OmniMessage, OmniSS7, VisualVoicemail

OmniCharge/OmniCRM (Billing):

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Main Documentation: https://docs.omnitouch.com.au/

https://docs.omnitouch.com.au/docs/repos/OmniCore
https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge
https://docs.omnitouch.com.au/

Group Variables

Configuration

Overview

The group_vars directory is where you store custom configuration files that

override default templates.

This is where your customer-specific configurations live - SIP trunks, Diameter

routing rules, SMS routing logic, dialplans, and any other customizations where

you don't want the default config - It lives in group_vars .

Location: hosts/{Customer}/group_vars/

How It Works

Ansible roles have default configuration templates. To customize for a specific

deployment, place your custom files in group_vars and reference them in your

hosts file.

Example 1: Custom Configuration

Template (OmniMessage)

Some components accept custom Jinja2 configuration templates.

Role Default Template → group_vars Override (if specified) →

Deployed Config

File Structure

Reference in Hosts File

What happens:

1. Ansible finds smsc_template_config: smsc_controller.exs

2. Looks in hosts/Customer/group_vars/smsc_controller.exs

3. Templates it with Jinja2 (can use {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Deploys to /etc/omnimessage/runtime.exs

5. Restarts the service

Without smsc_template_config , the default template from the role is used.

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCall

hosts/Customer/

└── group_vars/

 └── smsc_controller.exs # Your custom config template

omnimessage:

 hosts:

 customer-smsc-controller01:

 ansible_host: 10.10.3.219

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 smsc_template_config: smsc_controller.exs # Reference your

template filename in group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCall

Example 2: Configuration File

Collections (OmniTAS Gateways &

Dialplans)

Some components use directories of configuration files.

File Structure

Reference in Hosts File

What happens:

1. Ansible finds gateways_folder: "gateways_prod"

hosts/Customer/

└── group_vars/

 ├── gateways_prod/ # SIP gateway configs

 │ ├── gateway_carrier1.xml

 │ ├── gateway_carrier2.xml

 │ └── gateway_emergency.xml

 ├── gateways_lab/ # Lab gateways

 │ └── gateway_test.xml

 └── dialplan/ # Call routing rules

 ├── mo_dialplan.xml # Mobile Originated (outgoing)

 ├── mt_dialplan.xml # Mobile Terminated (incoming)

 └── emergency.xml

applicationserver:

 hosts:

 customer-tas01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 gateways_folder: "gateways_prod" # Reference your gateway

folder to use on this host

2. Copies all files from hosts/Customer/group_vars/gateways_prod/ to

/etc/freeswitch/sip_profiles/

3. Copies all files from hosts/Customer/group_vars/dialplan/ to OmniTAS

templates directory

4. Services load the configurations

Different environments: Use different folders per environment:

gateways_folder: "gateways_lab"

gateways_folder: "gateways_prod"

gateways_folder: "gateways_customer_specific"

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCall

Example 3: Custom Configuration

Template (OmniHSS)

The Home Subscriber Server accepts custom runtime configuration templates.

File Structure

hosts/Customer/

└── group_vars/

 └── hss_runtime.exs.j2 # Your custom HSS config

template

https://docs.omnitouch.com.au/docs/repos/OmniCall

Reference in Hosts File

What happens:

1. Ansible finds hss_template_config: hss_runtime.exs.j2

2. Looks in hosts/Customer/group_vars/hss_runtime.exs.j2

3. Templates it with Jinja2 (can use {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Deploys to /etc/omnihss/runtime.exs

5. Restarts the service

Without hss_template_config , the default template from the role is used.

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCore

Example 4: Custom Configuration

Template (OmniMME)

The Mobility Management Entity accepts custom runtime configuration

templates.

omnihss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.3.50

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 hss_template_config: hss_runtime.exs.j2 # Reference your

template filename in group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

File Structure

Reference in Hosts File

What happens:

1. Ansible finds mme_template_config: mme_runtime.exs.j2

2. Looks in hosts/Customer/group_vars/mme_runtime.exs.j2

3. Templates it with Jinja2 (can use {{ inventory_hostname }} , {{

plmn_id.mcc }} , etc.)

4. Deploys to /etc/omnimme/runtime.exs

5. Restarts the service

Without mme_template_config , the default template from the role is used.

Configuration details: See

https://docs.omnitouch.com.au/docs/repos/OmniCore

hosts/Customer/

└── group_vars/

 └── mme_runtime.exs.j2 # Your custom MME config

template

omnimme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.3.51

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 mme_template_config: mme_runtime.exs.j2 # Reference your

template filename in group_vars

https://docs.omnitouch.com.au/docs/repos/OmniCore

Real-World Directory Structure

Example

hosts/Customer/

├── host_files/

│ └── production.yml # Hosts file references group_vars

files

└── group_vars/

 ├── smsc_controller.exs # OmniMessage custom template

 ├── smsc_smpp.exs # OmniMessage SMPP custom template

 ├── tas_runtime.exs.j2 # TAS custom template

 ├── hss_runtime.exs.j2 # HSS custom template

 ├── mme_runtime.exs.j2 # MME custom template

 ├── dra_runtime.exs.j2 # DRA custom template

 ├── pgwc_runtime.exs.j2 # PGW custom template

 ├── dea_runtime.exs.j2 # DEA custom template

 ├── upf_config.yaml # UPF configuration

 ├── crm_config.yaml # CRM configuration

 ├── stp.j2 # SS7 STP template

 ├── hlr.j2 # SS7 HLR template

 ├── camel.j2 # SS7 CAMEL template

 ├── ipsmgw.j2 # IP-SM-GW template

 ├── omnicore_smsc_ims.yaml.j2 # SMSC IMS config

 ├── pytap.yaml # TAP3 configuration

 ├── sip_profiles/ # SIP gateways (folder)

 │ └── gateway_otw.xml

 └── dialplan/ # Call routing rules (folder)

 ├── mo_dialplan.xml # Mobile Originated

 ├── mt_dialplan.xml # Mobile Terminated

 └── mo_emergency.xml # Emergency routing

Common Parameters That

Reference group_vars

Parameter Component References

smsc_template_config omnimessage

Jinja2 template file

(e.g.,

smsc_controller.exs)

smsc_smpp_template_config omnimessage_smpp
Jinja2 template file

(e.g., smsc_smpp.exs)

gateways_folder applicationserver
Folder name (e.g.,

sip_profiles)

Dialplans (automatic) applicationserver
dialplan/ folder of

routing XMLs

tas_template_config applicationserver

Jinja2 template file

(e.g.,

tas_runtime.exs.j2)

hss_template_config omnihss

Jinja2 template file

(e.g.,

hss_runtime.exs.j2)

mme_template_config omnimme

Jinja2 template file

(e.g.,

mme_runtime.exs.j2)

dra_template_config dra

Jinja2 template file

(e.g.,

dra_runtime.exs.j2)

pgwc_template_config pgwc

Jinja2 template file

(e.g.,

pgwc_runtime.exs.j2)

Parameter Component References

frr_template_config omniupf
Jinja2 template file

(e.g., frr.conf.j2)

SS7 templates ss7 (various roles)

Jinja2 template files

(e.g., stp.j2 , hlr.j2 ,

camel.j2)

Config YAMLs Various components

Direct config files

(e.g.,

upf_config.yaml ,

crm_config.yaml)

Key Points

1. group_vars holds customizations - Overrides for default configurations

2. Reference by name - Use parameters like smsc_template_config or

gateways_folder

3. Templates support Jinja2 - Access any Ansible variable with {{

variable_name }}

4. Folders deploy everything - All files in referenced folders are copied

5. Version control everything - Commit all group_vars to Git

When to Use group_vars

� Use group_vars for:

Custom component configuration templates

SIP gateway definitions

Call routing dialplans

Diameter routing rules

Customer-specific settings that override defaults

❌ Don't use group_vars for:

Basic host configuration (IPs, hostnames) - Use hosts file

One-off testing - Use host-specific vars in hosts file

Temporary changes - Edit on target, commit to group_vars if permanent

Related Documentation

Configuration Reference - All host parameters and what they do

Hosts File Configuration - How to structure hosts files

OmniCall Configuration:

https://docs.omnitouch.com.au/docs/repos/OmniCall - What goes in the

config files

OmniCore Configuration:

https://docs.omnitouch.com.au/docs/repos/OmniCore - Component

configuration details

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCore

Utility Playbooks

Overview

This repository includes several utility playbooks for maintenance, monitoring,

and operational tasks. These complement the main deployment playbooks with

day-to-day management capabilities.

Health Check Utility

The Health Check utility generates an HTML report showing system health,

service status, uptime, and version information across all OmniCore

components.

Runs automatically as part of services/all.yml playbook.

Usage

Manual Run

Output

Report is generated at /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Open in any web browser to view.

Report Contents

The HTML report displays:

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Host Information

Host name and IP address

Network/Subnet (from host_vm_network variable, or N/A if not set)

CPU (vCPU count)

RAM (total and free memory)

Disk (root partition total and free space with percentage)

OS (distribution and version)

Service Status

Service status (active/inactive with color indicators)

Uptime

Version/release information

HSS Diameter Peers

Database connection status (connected/disconnected)

Diameter peer connections (IP, origin host, status)

Fetched from HSS metrics endpoint (port 9568)

Other Common Utilities

Base System Configuration

Common Role (services/common.yml)

Applies base system configuration to all hosts

Sets up repositories, SSH keys, timezone, NTP

Configures networking and system hardening

Run this before deploying services

ansible-playbook -i hosts/customer/host_files/production.yml

services/common.yml

Setup Users (services/setup_users.yml)

Creates and configures user accounts across all hosts

Manages SSH keys and sudo privileges

Ensures consistent user setup

Reboot (services/reboot.yml)

Gracefully reboots all targeted hosts

Waits for systems to come back online (5 minute timeout)

Useful after kernel updates or configuration changes

Operational Utilities

IP Plan Generator (util_playbooks/ip_plan_generator.yml)

Generates HTML report of IP address assignments

Shows complete network topology from hosts file

Useful for documentation and troubleshooting

HSS Backup (util_playbooks/hss_backup.yml)

Backs up HSS database tables

Copies MySQL dump to local Ansible machine

Interactive prompts for backup path

ansible-playbook -i hosts/customer/host_files/production.yml

services/setup_users.yml

ansible-playbook -i hosts/customer/host_files/production.yml

services/reboot.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Get Local Capture (util_playbooks/getLocalCapture.yml)

Fetches the two most recent packet capture files from all hosts

Retrieves pcap files from /etc/localcapture/

Useful for debugging connectivity issues

Update MTU (util_playbooks/updateMtu.yml)

Updates network interface MTU settings

Applies changes via netplan

Useful for jumbo frame configuration

Related Documentation

Main README - Overview and getting started

Introduction to Ansible Deployment - Running playbooks

Hosts File Configuration - Configure your inventory

Deployment Architecture - Complete system overview

APT Cache System - Package management

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/hss_backup.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

Hosts File

Configuration

Overview

The hosts file (also called inventory file) is the central configuration document

that defines your entire cellular network deployment. It specifies:

What network functions to deploy

Where they run (IP addresses, network segments)

How they're configured (service-specific parameters)

Customer-specific settings (PLMN, credentials, features)

File Location

Hosts files are organized by customer and environment:

Example Hosts File Structure

Here's a simplified example showing the key sections:

services/hosts/

└── Customer_Name/

 └── host_files/

 ├── production.yml

 ├── staging.yml

 └── lab.yml

EPC Components

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 network_name_short: Customer

 tac_list: [600, 601, 602]

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 ip_pools:

 - '100.64.16.0/24'

IMS Components

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

Support Services

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

Global Variables

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

Common Host Parameters

Network Configuration

Every host typically includes:

Note: For guidance on IP address planning and network segmentation

strategies, see the IP Planning Standard which outlines the recommended four-

subnet architecture for OmniCore deployments.

Proxmox Users: The host_vm_network parameter specifies which bridge to

use. See Proxmox VM/LXC Deployment for automated provisioning.

VM Resource Allocation

For services needing specific resources:

 customer_name_short: customer

 plmn_id:

 mcc: '001'

 mnc: '01'

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.1.15 # IP address for SSH access

 gateway: 10.10.1.1 # Default gateway

 host_vm_network: "vmbr1" # name of NIC to use on

Hypervisor

num_cpus: 4 # CPU cores

memory_mb: 8192 # RAM in megabytes

proxmoxLxcDiskSizeGb: 50 # Disk size in GB

Service-Specific Parameters

Each network function has its own parameters. Examples:

MME:

PGW:

For detailed explanation of what each variable controls, see: Configuration

Reference

Application Server:

Global Variables Section

The all:vars section contains settings that apply to the entire deployment:

mme_code: 1 # MME identifier (1-255)

mme_gid: 1 # MME Group ID

network_name_short: Customer # Network name (shown on phones)

network_name_long: Customer Network

tac_list: [600, 601, 602] # Tracking Area Codes

ip_pools: # IP pools for subscribers

 - '100.64.16.0/24'

 - '100.64.17.0/24'

combined_CP_UP: false # Separate control/user plane

online_charging_enabled: true # Enable OCS integration

tas_branch: "main" # Software branch to deploy

gateways_folder: "gateways_prod" # SIP gateway configuration

Understanding Host Groups

Ansible organizes hosts into groups that correspond to roles:

all:

 vars:

 # Authentication

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 # Customer Identity

 customer_name_short: customer

 customer_legal_name: "Customer Inc."

 site_name: "Chicago DC1"

 region: US

 # PLMN (Mobile Network) Identifier

 plmn_id:

 mcc: '001' # Mobile Country Code

 mnc: '01' # Mobile Network Code

 mnc_longform: '001' # Zero-padded MNC

 # Network Names

 network_name_short: Customer

 network_name_long: Customer Network

 # APT Repository

 # Note: If apt_cache_servers group is defined with hosts,

 # use_apt_cache defaults to true and apt_repo.apt_server

 # defaults to the first cache server's IP automatically

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Timezone

 TZ: America/Chicago

When you run a playbook targeting mme , it applies to all hosts in the

mme:hosts: section.

Configuration with Jinja2 Templates

Ansible uses Jinja2 templating to generate configuration files from the

variables defined in your hosts file and group_vars.

How Jinja2 Works

Hosts File Variables

Jinja2 TemplateGroup Variables

Role Defaults

Generated Config File

Example Template Usage

Hosts file defines:

plmn_id:

 mcc: '001'

 mnc: '01'

customer_name_short: acme

Jinja2 template (in role):

Generated configuration file:

Common Jinja2 Patterns

Accessing nested variables:

Conditional logic:

Loops:

mme_config.yml.j2

network:

 plmn:

 mcc: {{ plmn_id.mcc }}

 mnc: {{ plmn_id.mnc }}

 operator: {{ customer_name_short }}

 realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org

network:

 plmn:

 mcc: 001

 mnc: 01

 operator: acme

 realm: epc.mnc001.mcc001.3gppnetwork.org

{{ plmn_id.mcc }}

{{ apt_repo.apt_server }}

{% if online_charging_enabled %}

 charging:

 enabled: true

 ocs_ip: {{ ocs_ip }}

{% endif %}

Formatting:

Overriding Variables with

group_vars

While the hosts file defines infrastructure and host-specific settings,

group_vars can override defaults for groups of hosts.

See: Group Variables Configuration

Complete Example Hosts File

Here's a more complete example (with sensitive data obscured):

tracking_areas:

{% for tac in tac_list %}

 - {{ tac }}

{% endfor %}

Zero-pad to 3 digits

mnc{{ '%03d' | format(plmn_id.mnc|int) }}

EPC Core

mme:

 hosts:

 customer-mme01:

 ansible_host: 10.10.1.15

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 mme_code: 1

 mme_gid: 1

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601, 602, 603]

 omnimme:

 sgw_selection_method: "random_peer"

 pgw_selection_method: "random_peer"

sgw:

 hosts:

 customer-sgw01:

 ansible_host: 10.10.1.25

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 cdrs_enabled: true

pgwc:

 hosts:

 customer-pgw01:

 ansible_host: 10.10.1.21

 gateway: 10.10.1.1

 host_vm_network: "vmbr1"

 ip_pools:

 - '100.64.16.0/24'

 combined_CP_UP: false

hss:

 hosts:

 customer-hss01:

 ansible_host: 10.10.2.140

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

IMS Core

pcscf:

 hosts:

 customer-pcscf01:

 ansible_host: 10.10.4.165

 gateway: 10.10.4.1

 host_vm_network: "vmbr4"

icscf:

 hosts:

 customer-icscf01:

 ansible_host: 10.10.3.55

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

scscf:

 hosts:

 customer-scscf01:

 ansible_host: 10.10.3.45

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

applicationserver:

 hosts:

 customer-as01:

 ansible_host: 10.10.3.60

 gateway: 10.10.3.1

 host_vm_network: "vmbr3"

 online_charging_enabled: false

 gateways_folder: "gateways_prod"

Support Services

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

monitoring:

 hosts:

 customer-oam01:

 ansible_host: 10.10.2.135

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

 num_cpus: 4

 memory_mb: 8192

dns:

 hosts:

 customer-dns01:

 ansible_host: 10.10.2.177

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

Global Variables

all:

 vars:

 ansible_connection: ssh

 ansible_password: password

 ansible_become_password: password

 customer_name_short: customer

 customer_legal_name: "Customer Network Inc."

 site_name: "Primary DC"

 region: US

 TZ: America/Chicago

 # PLMN Configuration

 plmn_id:

 mcc: '001'

 mnc: '01'

 mnc_longform: '001'

 diameter_realm: epc.mnc{{ plmn_id.mnc_longform }}.mcc{{

plmn_id.mcc }}.3gppnetwork.org

 # Network Names

 network_name_short: Customer

 network_name_long: Customer Network

 tac_list: [600, 601]

 # APT Configuration

 apt_repo:

 apt_server: "10.254.10.223"

 apt_repo_username: "customer"

 apt_repo_password: "secure-password"

 use_apt_cache: false

 # Charging Configuration

 charging:

See Proxmox VM/LXC Deployment for complete Proxmox setup and

configuration details.

Product Documentation References

For detailed configuration of each component, refer to the official product

documentation:

OmniCore Components:

OmniCore Documentation:

https://docs.omnitouch.com.au/docs/repos/OmniCore

 data:

 online_charging:

 enabled: false

 voice:

 online_charging:

 enabled: true

 domain: "mnc{{ plmn_id.mnc_longform }}.mcc{{ plmn_id.mcc

}}.3gppnetwork.org"

 # Firewall Rules

 firewall:

 allowed_ssh_subnets:

 - '10.0.0.0/8'

 - '192.168.0.0/16'

 allowed_ue_voice_subnets:

 - '10.0.0.0/8'

 allowed_signaling_subnets:

 - '10.0.0.0/8'

 # Hypervisor Configuration (Proxmox example)

 proxmoxServers:

 customer-prxmx01:

 proxmoxServerAddress: 10.10.0.100

 proxmoxServerPort: 8006

 proxmoxApiTokenName: Customer

 proxmoxApiTokenSecret: "token-secret"

 proxmoxTemplateName: ubuntu-24.04-cloud-init-template

 proxmoxNodeName: pve01

https://docs.omnitouch.com.au/docs/repos/OmniCore

OmniHSS - Home Subscriber Server

OmniSGW - Serving Gateway (Control plane)

OmniPGW - Packet Gateway (Control plane)

OmniUPF - User Plane Function

OmniDRA - Diameter Routing Agent

OmniTWAG - Trusted WLAN Access Gateway

OmniCall Components:

OmniCall Documentation:

https://docs.omnitouch.com.au/docs/repos/OmniCall

OmniTAS - IMS Application Server (VoLTE/VoNR)

OmniCall CSCF - Call Session Control Functions

OmniMessage - SMS Center

OmniMessage SMPP - SMPP Protocol Support

OmniSS7 - SS7 Signaling Stack

VisualVoicemail - Voicemail

OmniCharge/OmniCRM:

OmniCharge Documentation:

https://docs.omnitouch.com.au/docs/repos/OmniCharge

Related Documentation

Introduction to Ansible Deployment - Overall deployment process

Configuration Reference - Complete guide to all configuration

variables

Group Variables Configuration - Overriding default configurations

IP Planning Standard - Network architecture and IP allocation

guidelines

Netplan Configuration - Secondary IPs and advanced network

configuration

APT Cache System - Package distribution

License Server - License management

https://docs.omnitouch.com.au/docs/repos/OmniCall
https://docs.omnitouch.com.au/docs/repos/OmniCharge

Deployment Architecture Overview - Complete system view

Next Steps

1. Create your hosts file based on this template

2. Define your PLMN and network identity

3. Configure APT repository access

4. Set up license server

5. Customize with group_vars as needed

6. Deploy with Ansible playbooks

OmniCore IP Planning

Standard

Overview

This document outlines the standard IP planning approach for OmniCore

deployments. The architecture requires four internal subnets to properly

segment network functions for security, performance, and operational clarity.

IP Allocation Requirements

Standard Allocation: Four /24 Subnets

Each OmniCore deployment requires four distinct subnets for internal

networking:

1. Packet Core Network - First /24

2. Signaling Network - Second /24

3. IMS Internal Network - Third /24

4. UE Public Network - Fourth /24

Important: These are Recommendations, Not

Requirements

The subnet allocation described in this document is a recommended best

practice for organizing OmniCore deployments. However, the architecture is

completely flexible:

All hosts in one subnet: You can place all components in a single subnet

if that suits your deployment needs

Each host type in its own subnet: You can create separate subnets for

each component type (one for MMEs, one for HSS, etc.)

Custom groupings: You can organize hosts into any subnet structure that

makes sense for your specific requirements

Mix internal and public IPs: Some hosts can use internal (RFC 1918)

addresses while others use public IPs, all within the same deployment

The recommended four-subnet approach provides optimal security isolation,

traffic management, and operational clarity, which is why we suggest it

for production deployments. However, you should adapt the IP plan to fit your

specific network topology, available address space, and operational

requirements.

Network Segment Breakdown

1. Packet Core Network (First /24)

Purpose: User plane and core control plane elements

Components:

OmniMME (Mobility Management Entity)

OmniSGW (Serving Gateway)

OmniPGW-C (PDN Gateway Control Plane)

OmniUPF/PGW-U (User Plane Function / PDN Gateway User Plane)

Example: 10.179.1.0/24

mme:

 hosts:

 omni-site-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

2. Signaling Network (Second /24)

Purpose: Diameter signaling, policy, charging, and management functions

Components:

OmniHSS (Home Subscriber Server)

OmniCharge OCS (Online Charging System)

OminiHSS PCRF (Policy and Charging Rules Function)

OmniDRA DRA (Diameter Routing Agent)

DNS Servers

TAP3/CDR Servers

Monitoring/OAM

SIP capture

License Server

RAN Monitor

Omnitouch Warning Link CBC (Cell Broadcast Center) - if deployed

APT Cache Servers - if deployed

Example: 10.179.2.0/24

3. IMS Internal Network (Third /24)

Purpose: IMS core signaling and services (internal SIP signaling)

Components:

OmniCSCF S-CSCF (Serving Call Session Control Function)

hss:

 hosts:

 omni-site-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

OmniCSCF I-CSCF (Interrogating Call Session Control Function)

OmniTAS (Telephony Application Server / Application Server)

OmniMessage (SMS Controller, SMPP, IMS)

OmniSS7 STP (SS7 Signaling Transfer Point)

OmniSS7 HLR (Home Location Register) - for 2G/3G

OmniSS7 IP-SM-GW (MAP SMSc)

OmniSS7 CAMEL Gateway

Example: 10.179.3.0/24

4. UE Public Network (Fourth /24)

Purpose: User-facing services such as IMS and DNS

Components:

OmniCSCF P-CSCF (Proxy Call Session Control Function)

XCAP Servers

Visual Voicemail Servers

Customer DNS

Example: 10.179.4.0/24

scscf:

 hosts:

 omni-site-scscf01:

 ansible_host: 10.179.3.45

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

Implementation Methods

OmniCore supports two primary methods for implementing this network

segmentation:

Method 1: Physical/Virtual Network Interfaces

(Recommended for Production)

Use separate NICs or virtual bridges for each network segment. This provides

the strongest isolation and is the recommended approach for production

deployments.

Example:

pcscf:

 hosts:

 omni-site-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Method 2: VLAN-Based Segmentation

Use a single physical interface with VLAN tagging to separate networks. This is

suitable for smaller deployments or when physical NICs are limited.

Example:

Packet Core - vmbr1

mme:

 hosts:

 omni-lab07-mme01:

 ansible_host: 10.179.1.15

 gateway: 10.179.1.1

 host_vm_network: "vmbr1"

Signaling - vmbr2

hss:

 hosts:

 omni-lab07-hss01:

 ansible_host: 10.179.2.140

 gateway: 10.179.2.1

 host_vm_network: "vmbr2"

IMS Internal - vmbr3

icscf:

 hosts:

 omni-lab07-icscf01:

 ansible_host: 10.179.3.55

 gateway: 10.179.3.1

 host_vm_network: "vmbr3"

UE Public - vmbr4

pcscf:

 hosts:

 omni-lab07-pcscf01:

 ansible_host: 10.179.4.165

 gateway: 10.179.4.1

 host_vm_network: "vmbr4"

Network Configuration:

Configure VLANs on the physical switch

Tag traffic appropriately at the hypervisor level

Route between VLANs at the gateway/firewall

Example VLAN Mapping:

All components use vmbr12 with different VLANs

applicationserver:

 hosts:

 ons-lab08sbc01:

 ansible_host: 10.178.2.213

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dra:

 hosts:

 ons-lab08dra01:

 ansible_host: 10.178.2.211

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

dns:

 hosts:

 ons-lab08dns01:

 ansible_host: 10.178.2.178

 gateway: 10.178.2.1

 host_vm_network: "ovsbr1"

 vlanid: "402"

VLAN 10: 10.x.1.0/24 (Packet Core)

VLAN 20: 10.x.2.0/24 (Signaling)

VLAN 30: 10.x.3.0/24 (IMS Internal)

VLAN 40: 10.x.4.0/24 (UE Public)

Working with Public IP Addresses

Overview

Many OmniCore deployments require some components to have public IP

addresses for external connectivity, such as:

DRA - For roaming diameter signaling with external carriers

Roaming SGW/PGW - For GTP traffic from roaming partners

ePDG - For WiFi calling (IPsec tunnels from UEs)

SMSC Gateway - For SMPP connections to external SMS aggregators

P-CSCF (in some deployments) - For direct UE SIP registration

How to Assign Public IPs

Public IPs are handled exactly the same way as internal IPs in your host

inventory files. Simply specify the public IP address in the ansible_host field

along with the appropriate gateway and netmask.

Example: Roaming SGW/PGW with Public IPs

Example: DRA with Public IP

Example: ePDG with Public IP

sgw:

 hosts:

 # Internal SGWs on private network

 opt-site-sgw01:

 ansible_host: 10.4.1.25

 gateway: 10.4.1.1

 host_vm_network: "v400-omni-packet-core"

 # Roaming SGWs with public IPs

 opt-site-roaming-sgw01:

 ansible_host: 203.0.113.10

 gateway: 203.0.113.9

 netmask: 255.255.255.248 # /29 subnet

 host_vm_network: "498-public-servers"

 in_pool: False

 cdrs_enabled: True

smf: # PGWs

 hosts:

 # Roaming PGW with public IP

 opt-site-roaming-pgw01:

 ansible_host: 203.0.113.20

 gateway: 203.0.113.17

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

 in_pool: False

 ip_pools:

 - '100.64.24.0/22'

dra:

 hosts:

 opt-site-dra01:

 ansible_host: 198.51.100.50

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

Mixing Internal and Public IPs

It's common to have a mix of internal and public IPs within the same

component group. For example:

Internal SGWs for local sites using GTP

Public SGWs specifically for roaming traffic from external carriers

The same PGW-C can manage both internal and external SGWs

OmniCore's architecture handles this seamlessly - just configure each host with

its appropriate IP addressing.

epdg:

 hosts:

 opt-site-epdg01:

 ansible_host: 198.51.100.51

 gateway: 198.51.100.49

 netmask: 255.255.255.240 # /28 subnet

 host_vm_network: "497-public-services-LTE"

License Server

Overview

The License Server manages feature activation for all Omnitouch components.

Each component validates its license on startup and periodically during

operation.

Setup

1. Define in Hosts File

2. Provide License File

Place license.json (provided by Omnitouch) in hosts/Customer/group_vars/

3. Deploy

license_server:

 hosts:

 customer-licenseserver:

 ansible_host: 10.10.2.150

 gateway: 10.10.2.1

 host_vm_network: "vmbr2"

all:

 vars:

 customer_legal_name: "Customer Name"

 license_server_api_urls: ["https://10.10.2.150:8443/api"]

 license_enforced: true

ansible-playbook -i hosts/customer/host_files/production.yml

services/license_server.yml

You can check the status of all license by browsing to https://license_server .

Network Requirements

Firewall Configuration

Client site firewalls must be configured to allow HTTPS (port 443) traffic to the

following Omnitouch license validation servers:

Hostname IP Address Purpose

time.omnitouch.com.au 160.22.43.18 License validation server 1

time.omnitouch.com.au 160.22.43.66 License validation server 2

time.omnitouch.com.au 160.22.43.114 License validation server 3

Required outbound rules:

Protocol: HTTPS (TCP/443)

Destination: 160.22.43.18, 160.22.43.66, 160.22.43.114

Direction: Outbound

DNS Requirements

The license server requires functional DNS resolution to communicate with the

Omnitouch license validation infrastructure.

Required DNS configuration:

The license server must have access to public DNS servers

Configure DNS to use one of the following:

1.1.1.1 (Cloudflare - supports secure DNS)

8.8.8.8 (Google Public DNS)

Do not use internal/corporate DNS servers for the license server

Note: The Omnitouch license servers use secure DNS (DoH/DoT). Using public

DNS servers ensures proper DNSSEC validation and prevents issues with DNS

interception by security appliances.

Related Documentation

Configuration Reference

Hosts File Configuration

Netplan Configuration

Overview

OmniCore can automatically configure network interfaces on deployed VMs

using netplan. This is useful for:

Setting up the primary management interface (eth0)

Adding secondary interfaces for public IPs, peering connections, or

dedicated traffic

Configuring static routes for specific destinations

Enabling Netplan Configuration

To enable automatic netplan configuration for a host, add the netplan_config

variable pointing to a Jinja2 template in your group_vars folder:

The template will be sourced from

hosts/<customer>/group_vars/netplan.yaml.j2 .

Template Reference

Here is the complete netplan.yaml.j2 template with comments explaining

each section:

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

network:

 version: 2

 ethernets:

 # Primary interface - uses ansible_host and gateway from

inventory

 eth0:

 addresses:

 - "{{ ansible_host }}/{{ mask_cidr | default(24) }}"

 nameservers:

 addresses:

{% if 'dns' in group_names %}

 # If this host IS a DNS server, use external DNS to avoid

circular dependency

 - 8.8.8.8

{% else %}

 # Otherwise, use DNS servers from the 'dns' group in

inventory

{% for dns_host in groups['dns'] | default([]) %}

 - {{ hostvars[dns_host]['ansible_host'] }}

{% endfor %}

{% endif %}

 search:

 - slice

 routes:

 - to: "default"

 via: "{{ gateway }}"

{% if secondary_ips is defined %}

 # Secondary interfaces - loop through secondary_ips dict from

inventory

 # Interface naming: ens19, ens20, ens21... (18 + loop.index)

{% for nic_name, nic_config in secondary_ips.items() %}

 ens{{ 18 + loop.index }}:

 addresses:

 - "{{ nic_config.ip_address }}/{{ mask_cidr | default(24)

}}"

{% if nic_config.routes is defined %}

 # Static routes for this interface - each route uses this

interface's gateway

 routes:

{% for route in nic_config.routes %}

 - to: "{{ route }}"

 via: "{{ nic_config.gateway }}"

Key points:

ansible_host and gateway come from the host's inventory entry

DNS servers are dynamically pulled from hosts in the dns group

Secondary interfaces are named ens19 , ens20 , etc. to match Proxmox NIC

naming

Each secondary IP can have its own gateway and static routes

Primary Interface Configuration

The primary interface (eth0) is configured automatically using:

ansible_host - The IP address

gateway - The default gateway

mask_cidr - Network mask (defaults to 24)

DNS servers are automatically set to:

Hosts in the dns group (uses their ansible_host IPs)

Falls back to 8.8.8.8 if the host is itself a DNS server

Secondary Interfaces

For hosts requiring additional network interfaces (public IPs, peering, etc.), use

the secondary_ips configuration.

{% endfor %}

{% endif %}

{% endfor %}

{% endif %}

Schema

Interface Naming

Secondary interfaces are automatically named using Ubuntu's predictable

naming scheme:

First secondary interface: ens19

Second secondary interface: ens20

Third secondary interface: ens21

And so on...

This matches the interface names assigned by Proxmox when adding additional

NICs to a VM.

secondary_ips:

 <logical_name>:

 ip_address: <ip_address>

 gateway: <gateway_ip>

 host_vm_network: <proxmox_bridge>

 vlanid: <vlan_id>

 routes: # Optional - static routes via this

interface

 - '<destination_cidr>'

 - '<destination_cidr>'

Example Configuration

Generated Netplan Output

The above configuration generates:

dra:

 hosts:

 <hostname>:

 ansible_host: 10.0.1.100

 gateway: 10.0.1.1

 host_vm_network: "ovsbr1"

 vlanid: "100"

 netplan_config: netplan.yaml.j2

 secondary_ips:

 public_ip:

 ip_address: 192.0.2.50

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24'

 - '203.0.113.0/24'

 peering_ip:

 ip_address: 172.16.50.10

 gateway: 172.16.50.1

 host_vm_network: "ovsbr2"

 vlanid: "300"

 routes:

 - '172.17.0.0/16'

Proxmox Integration

When using the proxmox.yml playbook, secondary NICs are automatically

created on the VM:

1. New VMs: Secondary NICs are added during initial provisioning

2. Existing VMs: Secondary NICs are added and the VM is rebooted to apply

changes

The Proxmox configuration uses:

network:

 version: 2

 ethernets:

 eth0:

 addresses:

 - "10.0.1.100/24"

 nameservers:

 addresses:

 - 10.0.1.53

 search:

 - slice

 routes:

 - to: "default"

 via: "10.0.1.1"

 ens19:

 addresses:

 - "192.0.2.50/24"

 routes:

 - to: "198.51.100.0/24"

 via: "192.0.2.1"

 - to: "203.0.113.0/24"

 via: "192.0.2.1"

 ens20:

 addresses:

 - "172.16.50.10/24"

 routes:

 - to: "172.17.0.0/16"

 via: "172.16.50.1"

host_vm_network - The bridge to attach the NIC to

vlanid - VLAN tag for the interface

How It Works

1. Variables from hosts file are passed to the Jinja2 template

2. Template renders to /etc/netplan/01-netcfg.yaml

3. Any existing netplan configs are removed to prevent conflicts

4. netplan apply activates the configuration

5. IP addresses are verified with ip addr show

Common Use Cases

Diameter Edge Agent (DEA) with Public IP

<hostname>:

 ansible_host: 10.0.1.100 # Internal management IP

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 diameter_roaming:

 ip_address: 192.0.2.50 # Public IP for roaming

partners

 gateway: 192.0.2.1

 host_vm_network: "vmbr0"

 vlanid: "200"

 routes:

 - '198.51.100.0/24' # Roaming partner network

PGW with S5/S8 Interface

Multi-homed Server with Separate

Management and Data Networks

Referencing Secondary IPs in

Templates

You can reference secondary IP addresses in other Jinja2 templates and

configuration files.

<hostname>:

 ansible_host: 10.0.2.20 # Internal IP

 gateway: 10.0.2.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 s5s8_interface:

 ip_address: 203.0.113.17 # Public S5/S8 IP

 gateway: 203.0.113.1

 host_vm_network: "vmbr0"

 vlanid: "50"

<hostname>:

 ansible_host: 10.0.1.100 # Management network

 gateway: 10.0.1.1

 netplan_config: netplan.yaml.j2

 secondary_ips:

 data_network:

 ip_address: 10.0.2.100 # Data network

 gateway: 10.0.2.1

 host_vm_network: "ovsbr2"

 vlanid: "200"

 backup_network:

 ip_address: 10.0.3.100 # Backup network

 gateway: 10.0.3.1

 host_vm_network: "ovsbr3"

 vlanid: "300"

On the Same Host

When configuring a service on the same host that has secondary IPs, you can

reference directly or use inventory_hostname :

From Another Host

When you need to reference a different host's secondary IP (e.g., configuring a

peer connection), use hostvars with the target hostname:

Example: DRA Peer Configuration

Configure a diameter peer to bind to its own public IP:

Reference directly (simplest)

{{ secondary_ips.diameter_public_ip.ip_address }}

Or explicitly via inventory_hostname (same result)

{{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Access other properties

{{ secondary_ips.diameter_public_ip.gateway }}

{{ secondary_ips.diameter_public_ip.vlanid }}

Reference first host in dra group

{{ hostvars[groups['dra'][0]]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

Loop through all DRA hosts and get their public IPs

{% for host in groups['dra'] %}

{% if hostvars[host]['secondary_ips'] is defined %}

 - {{ hostvars[host]['secondary_ips']['diameter_public_ip']

['ip_address'] }}

{% endif %}

{% endfor %}

Checking if Secondary IPs Exist

Always check if the variable exists before using it:

Troubleshooting

Verify Interface Names

SSH to the VM and check interface names:

Expected output for a VM with two secondary interfaces:

In dra_config.yaml.j2 - use inventory_hostname for the current

host

peers:

 - name: external_peer

 # Bind to this host's public diameter IP

 local_ip: {{ hostvars[inventory_hostname]['secondary_ips']

['diameter_public_ip']['ip_address'] }}

 remote_ip: 198.51.100.50

 port: 3868

{% if secondary_ips is defined and

secondary_ips.diameter_public_ip is defined %}

public_ip: {{ secondary_ips.diameter_public_ip.ip_address }}

{% else %}

public_ip: {{ ansible_host }}

{% endif %}

ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> ...

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

3: ens19: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

4: ens20: <BROADCAST,MULTICAST,UP,LOWER_UP> ...

Check Netplan Configuration

Apply Netplan Manually

Debug Netplan

Verify Routes

Related Documentation

Hosts File Configuration - Host inventory setup

Proxmox VM/LXC Deployment - VM provisioning

Configuration Reference - All configuration variables

cat /etc/netplan/01-netcfg.yaml

netplan apply

netplan --debug apply

ip route show

Proxmox VM/LXC

Deployment

The majority of our customers run the OmniCore stack on Proxmox, this guide

explains in detail how to use the proxmox plays to setup their environment

using Proxmox.

We still continue to support VMware, HyperV and cloud (Currently Vultr / AWS /

GCP) for deployments.

See Also:

Hosts File Configuration - Define VMs to deploy

IP Planning Standard - IP address assignment guidelines

Netplan Configuration - Secondary IPs and multi-NIC setup

Deployment Architecture - Complete deployment workflow

LXC vs VM

LXC Containers:

Lightweight, shares host kernel

Fast startup, low overhead

Limited isolation

Cannot run custom kernels or kernel modules

Not suitable for production deployments

Cannot run UPF (requires kernel modules/TUN devices)

VMs (KVM):

Full virtualization with dedicated kernel

Complete isolation

Can run kernel modules and custom networking

Higher resource overhead

Recommended for production

Required for UPF deployments

Use Cases:

VMs: Production sites, UPF, all network functions

LXC: Lab/test environments, lightweight services (apt-cache, monitoring)

Proxmox Setup

1. Create API Token

2. Create Cloud-Init VM Template (for VMs

only)

Run this script on the Proxmox host. It downloads Ubuntu's cloud image and

creates a template with cloud-init user credentials.

In Proxmox UI: Datacenter → Permissions → API Tokens

Create token: root@pam!<TokenName>

Copy the token secret (shown once)

#!/bin/bash

set -e

TEMPLATE_ID=9000

IMAGE_URL="https://cloud-images.ubuntu.com/noble/current/noble-

server-cloudimg-amd64.img"

IMAGE="noble-server-cloudimg-amd64.img"

echo "=== Downloading Ubuntu cloud image ==="

cd /var/lib/vz/template/iso

wget -N "$IMAGE_URL"

echo "=== Cleaning up old template ==="

qm destroy $TEMPLATE_ID --purge 2>/dev/null || true

echo "=== Enabling snippets storage ==="

pvesm set local --content images,vztmpl,iso,backup,snippets

echo "=== Creating cloud-init user-data ==="

mkdir -p /var/lib/vz/snippets

cat > /var/lib/vz/snippets/user-data.yml << 'USERDATA'

#cloud-config

ssh_pwauth: true

users:

 - name: omnitouch

 plain_text_passwd: password

 lock_passwd: false

 shell: /bin/bash

 sudo: ALL=(ALL) NOPASSWD:ALL

 groups: sudo

USERDATA

echo "=== Creating template VM ==="

qm create $TEMPLATE_ID --name ubuntu-2404-template --memory 2048 -

-cores 2 --net0 virtio,bridge=vmbr0

qm importdisk $TEMPLATE_ID $IMAGE local-lvm

qm set $TEMPLATE_ID --scsihw virtio-scsi-pci --scsi0 local-

lvm:vm-${TEMPLATE_ID}-disk-0

qm set $TEMPLATE_ID --ide2 local-lvm:cloudinit

qm set $TEMPLATE_ID --boot c --bootdisk scsi0

qm set $TEMPLATE_ID --vga std

qm set $TEMPLATE_ID --agent enabled=1

qm set $TEMPLATE_ID --cicustom user=local:snippets/user-data.yml

Notes:

Template provides a fallback login: omnitouch / password (for console

access if cloud-init fails)

When cloning via Ansible, credentials are overridden from local_users in

your hosts file:

Username: First user's key from local_users

Password: First user's password field (defaults to 'password' if not set)

SSH key: First user's public_key field

--vga std ensures the Proxmox web console works

-N flag on wget only downloads if newer than local copy

Alternative: Manual Template from ISO

If cloud images aren't available or you need a custom install:

Step 1: Create VM via Web UI

Create New VM → VM ID 9000, Name: ubuntu-2404-template

OS: Upload Ubuntu Server ISO or use existing ISO

System: Default (SCSI Controller: VirtIO SCSI)

Disks: 32GB, Bus: SCSI

CPU: 2 cores

Memory: 2048 MB

Network: VirtIO, bridge vmbr0

Start VM and install Ubuntu Server

Step 2: Inside VM - Clean and prepare

qm template $TEMPLATE_ID

echo "=== Template $TEMPLATE_ID created successfully ==="

Step 3: Add Cloud-Init and Convert to Template

Select VM → Hardware → Add → CloudInit Drive (select storage e.g., local-

lvm)

Cloud-Init → User: omnitouch , Password: password

Hardware → Options → QEMU Guest Agent → Enable

Right-click VM → Convert to Template

3. Download LXC Template (for LXC only)

Install cloud-init

sudo apt update

sudo apt install cloud-init qemu-guest-agent -y

Clean machine-specific data

sudo cloud-init clean

sudo rm -f /etc/machine-id /var/lib/dbus/machine-id

sudo rm -f /etc/ssh/ssh_host_*

sudo truncate -s 0 /etc/hostname

sudo truncate -s 0 /etc/hosts

Clear bash history and shutdown

history -c

sudo poweroff

In Proxmox node shell:

pveam update

pveam download local ubuntu-24.04-standard_24.04-2_amd64.tar.zst

Hosts File Configuration

For VM Deployment (proxmox.yml)

all:

 vars:

 proxmoxServers:

 pve-node-01:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxRootPassword: YourPassword

 proxmoxApiTokenName: ansible

 proxmoxApiTokenSecret: "your-token-secret-uuid"

 proxmoxTemplateName: ubuntu-2404-template

 proxmoxTemplateId: 9000

 proxmoxNodeName: pve-node-01

 storage: local-lvm # optional

 pve-node-02:

 # ... second node config

 # User credentials - first user is used for VM cloud-init

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # defaults to 'password' if

not set

mme:

 hosts:

 site-mme01:

 ansible_host: 192.168.1.10

 gateway: 192.168.1.1

 vlanid: "100" # optional

For LXC Deployment (proxmox_lxc.yml)

all:

 vars:

 proxmoxServerAddress: 192.168.1.100

 proxmoxServerPort: 8006

 proxmoxNodeName: ['pve-node-01', 'pve-node-02'] # single or

list

 proxmoxApiTokenName: ansible

 PROXMOX_API_TOKEN: "your-token-secret-uuid"

 proxmoxLxcOsTemplate: 'local:vztmpl/ubuntu-24.04-

standard_24.04-2_amd64.tar.zst'

 proxmoxLxcCores: 2

 proxmoxLxcMemoryMb: 4096

 proxmoxLxcDiskSizeGb: 30

 proxmoxLxcRootFsStorageName: local-lvm

 mask_cidr: 24

 host_vm_network: vmbr0

 # User credentials - first user is used for initial VM/LXC

access

 local_users:

 admin_user:

 name: Admin User

 public_key: "ssh-rsa AAAA..."

 password: "optional-password" # defaults to 'password' if

not set

apt_cache_servers:

 hosts:

 site-cache:

 ansible_host: 192.168.1.20

 gateway: 192.168.1.1

 vlanid: "100" # optional

 proxmoxLxcDiskSizeGb: 120 # per-host override

Usage

Deploy VMs

Deploy LXC Containers

Delete VMs/LXCs

Behavior

proxmox.yml

Checks if VM with same name already exists in Proxmox

Distributes VMs across nodes using round-robin

Clones from template

Configures static IP, tags, and cloud-init

Sets cloud-init user credentials from first local_users entry

Supports VLAN tagging

proxmox_lxc.yml

Checks container doesn't exist by name or IP

Distributes LXCs across nodes using round-robin

ansible-playbook -i hosts/Customer/hosts.yml services/proxmox.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_lxc.yml

ansible-playbook -i hosts/Customer/hosts.yml

services/proxmox_delete.yml

Creates container with static IP

Automatically creates first local_users account with sudo access

and SSH key

Configures netplan for networking

Auto-starts containers

Excludes UPF hosts

proxmox_delete.yml

Stops and deletes VM/LXC matching inventory hostname

Searches across all configured nodes

Force stops after 20 seconds

VM/LXC Distribution & Tagging

Round-Robin Distribution

VMs and LXCs are automatically distributed across Proxmox nodes using round-

robin (modulo) logic:

Example with 3 hypervisors and 5 MMEs:

How it works:

1. Playbook identifies the host's role group (e.g., mme , sgw , hss)

2. Calculates host index within that group (0-based)

3. Uses modulo operation: host_index % number_of_nodes

4. Selects hypervisor based on result

mme01 → pve-node-01 (index 0 % 3 = 0)

mme02 → pve-node-02 (index 1 % 3 = 1)

mme03 → pve-node-03 (index 2 % 3 = 2)

mme04 → pve-node-01 (index 3 % 3 = 0)

mme05 → pve-node-02 (index 4 % 3 = 1)

Configuration:

Automatic Tagging

VMs and LXCs are automatically tagged with:

Role/Group names: All Ansible groups the host belongs to

Site name: The site_name variable

Example:

Result: VM/LXC tagged with: mme , melbourne-prod

Tags are visible in Proxmox UI and useful for filtering/organization.

Per-Host Overrides

Override defaults on specific hosts:

For VMs (proxmox.yml) - define multiple servers

proxmoxServers:

 pve-node-01: { ... }

 pve-node-02: { ... }

 pve-node-03: { ... }

For LXCs (proxmox_lxc.yml) - list multiple nodes

proxmoxNodeName: ['pve-node-01', 'pve-node-02', 'pve-node-03']

site_name: "melbourne-prod"

mme:

 hosts:

 melbourne-mme01: { ... }

hosts:

 high-spec-host:

 ansible_host: 192.168.1.50

 gateway: 192.168.1.1

 proxmoxLxcCores: 8 # override cores

 proxmoxLxcMemoryMb: 16384 # override memory

 proxmoxLxcDiskSizeGb: 100 # override disk

Utility Playbooks

Utility playbooks provide operational tools for managing deployed OmniCore

infrastructure. These playbooks are located in the util_playbooks/ directory

and can be run independently to perform common maintenance and

troubleshooting tasks.

Quick Reference

Playbook Purpose

health_check.yml
Generate comprehensive health report for all

services

restore_hss.yml
Restore HSS database and/or configuration from

backup

ip_plan_generator.yml
Generate network documentation with Mermaid

diagrams

get_ports.yml
Audit open ports and listening services across all

hosts

getLocalCapture.yml Retrieve packet capture files from hosts

delete_local_user.yml Remove a local user account from all hosts

updateMtu.yml
Set MTU to 9000 (jumbo frames) on network

interfaces

systemctl status.yml Check service status on EPC components

Health Check

File: util_playbooks/health_check.yml

Generates a comprehensive HTML health report covering all deployed

OmniCore and OmniCall services.

Output: /tmp/health_check_YYYY-MM-DD HH:MM:SS.html

Information Collected

Component Data Collected

All services Service status, version, uptime

OmniHSS Database status, Diameter peer connections

OmniDRA Diameter peer connections and status

OmniTAS Active calls, sessions, registrations, CPU usage

OCS KeyDB replication status

HSS Restore

File: util_playbooks/restore_hss.yml

Restores OmniHSS from backup files. Supports restoring database only,

configuration only, or both.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/health_check.yml

Backup File Formats

Type Filename Pattern Contents

Database hss_dump_<hostname>_<timestamp>.sql
MySQL dump of

omnihss database

Config hss_<hostname>_<timestamp>.tar.gz

Archive of

/etc/omnihss

directory

IP Plan Generator

File: util_playbooks/ip_plan_generator.yml

Generates network documentation from inventory, including:

Host IP assignments (primary and secondary NICs)

Network segment overview

Interface connectivity diagrams (Diameter, GTP, PFCP, SIP, SS7)

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/restore_hss.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/ip_plan_generator.yml

Output Files

File Format Description

/tmp/ip_plan_<customer>_<site>.md Markdown
Text-based

documentation

/tmp/ip_plan_<customer>_<site>.html HTML

Interactive diagram

with filterable

layers

Port Audit

File: util_playbooks/get_ports.yml

Audits all listening ports across the deployment and generates documentation.

Output Files

File Description

/tmp/all_ports.csv CSV with hostname, IP, protocol, port, service

./open_ports.rst reStructuredText table for Sphinx documentation

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/get_ports.yml

Data Collected

Field Description

Hostname Inventory hostname

IP Host's ansible_host IP address

IP Version IPv4 or IPv6

Transport TCP or UDP

Port Listening port number

Service Process name

Local Capture Retrieval

File: util_playbooks/getLocalCapture.yml

Retrieves the two most recent packet capture files from each host's

/etc/localcapture directory.

Output: ./localCapturePcaps/<hostname>/*.pcap

User Management

File: util_playbooks/delete_local_user.yml

Removes a local user account from all hosts in the inventory.

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/getLocalCapture.yml

Prompt: Enter the username to delete when prompted.

MTU Configuration

File: util_playbooks/updateMtu.yml

Sets the MTU to 9000 (jumbo frames) on the ens160 interface across all hosts.

Note: This playbook is hardcoded for ens160 interface. Modify the playbook if

your environment uses different interface names.

Running Utility Playbooks

Basic Syntax

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/delete_local_user.yml

ansible-playbook -i hosts/customer/host_files/production.yml

util_playbooks/updateMtu.yml

ansible-playbook -i <inventory_file> util_playbooks/<playbook>.yml

Common Options

Option Description

-i <inventory> Specify inventory file

--limit <hosts> Limit to specific hosts or groups

-v / -vv / -vvv Increase verbosity

--check Dry run (show what would change)

--diff Show file differences

Examples

Run health check on production

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/health_check.yml

Restore HSS on a specific host

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/restore_hss.yml --limit hss01

Generate IP plan with verbose output

ansible-playbook -i hosts/acme/host_files/production.yml

util_playbooks/ip_plan_generator.yml -v

