Benchmarks

This directory contains performance benchmarks for the SMS-C system using
Benchee.

Available Benchmarks

1. Raw SMS Benchmark (raw_sms_bench.exs)
Benchmarks the submit message raw API endpoint using real SMS PDUs.
Features:

e Uses real SMS PDUs (add your PDUs to the @sample pdus list in the file)
e Disables duplicate detection by clearing fingerprints before each iteration

e Outputs both console and HTML reports

Usage:

mix run benchmarks/raw sms bench.exs
Output: benchmarks/output/raw sms benchmark.html
2. Message API Benchmark

(message_api_bench.exs)

Benchmarks various message API operations including insert, retrieval, and
routing.

Features:

e Tests insert_message (simple and with routing)
» Tests get_messages_for_smsc

e Tests list message _queues

e Pre-populates database with test data for realistic scenarios

Usage:
mix run benchmarks/message api bench.exs

Output: benchmarks/output/message api benchmark.html

Configuration

All benchmarks use Benchee with the following default settings:

Warmup: 2 seconds

Time: 10 seconds

Memory time: 2 seconds

Extended statistics enabled

HTML reports auto-generated

Outputs

HTML benchmark reports are generated in benchmarks/output/ and include:

Detailed performance metrics

Comparison charts

Memory usage statistics

Statistical analysis

SMS-C Operations
Documentation

Welcome to the SMS-C operations documentation. This comprehensive guide
covers all aspects of configuring, operating, monitoring, and troubleshooting
the SMS-C system.

Documentation Overview

Getting Started

. - Complete configuration options and examples

Day-to-Day Operations

. - Daily tasks, monitoring, and maintenance
. - Route management and configuration
. - Complete APl documentation with examples

Performance & Monitoring

. - Optimization for different workloads
. - Prometheus metrics and monitoring
Troubleshooting

o - Common issues and solutions

Compliance & Regulatory

- French lawful interception

technical specifications

(o]

o

e}

o

o

Multi-protocol frontend integration (IMS/SIP, SMPP, SS7/MAP)
ETSI X1/X2/X3 lawful interception interfaces
Mnesia + SQL two-tier storage architecture
CDR schema for lawful interception queries

Encryption and cryptanalysis capabilities

Quick Links

Common Tasks

Monitoring & Alerts

System Architecture Overview

The SMS-C is a distributed, high-performance message routing platform with
the following key components:

Core Components

e Message Storage - Mnesia-based fast storage with configurable retention
and CDR export

 Routing Engine - Mnesia-based routing rules with prefix matching and
load balancing

e Number Translation - Regex-based number normalization with priority
ordering

e Charging Integration - OCS online charging with route-based policies
e ENUM Lookup - DNS-based number routing with caching
e Event Logging - Message lifecycle tracking

e CDR Export - Automatic export to SQL database for long-term
billing/analytics

External Interfaces

e REST API - Message submission and management (HTTPS)
e Web Ul - Route management, message browser, monitoring
e Prometheus - Metrics exposure for monitoring

* OCS - Charging/billing integration

e DNS - ENUM/NAPTR lookups for routing

Distribution & HA

e Multi-Node Clustering - Distributed message processing
e Mnesia Replication - Route synchronization across nodes
e Automatic Failover - Node failure handling

* Load Balancing - Weighted route distribution

Related Documentation

. - Performance testing and results

. - Complete CDR database schema with SQL
examples

System Requirements

Minimum Requirements

e CPU: 2 cores

e RAM: 4 GB

e Disk: 50 GB (grows with message retention)

e OS: Linux (recommended), macOS (development)
e Erlang/OTP: 26.x or later

e Elixir: 1.15.x or later

e SQL Database: MySQL 8.0+, MariaDB 10.5+, or PostgreSQL 13+ (for CDR
storage)

Recommended Production

e CPU: 8+ cores
e RAM: 16+ GB
e Disk: 500+ GB SSD
e Network: 1 Gbps+

e SQL Database: Dedicated server with replication (for CDR storage)

Network Ports

e 80/443 - Web Ul (HTTP/HTTPS)

e 8443 - API (HTTPS)

e 4369 - Erlang Port Mapper (clustering)

e 9100-9200 - Erlang distribution (clustering)

¢ 9568 - Prometheus metrics

Support & Resources

Logs

e Application Logs: /var/log/sms c/ (production) or console
(development)

e Web Ul Logs: Real-time log viewer at /logs

e Event Logs: Per-message event tracking via API

Diagnostics

Health Check: GET /api/status

Metrics: GET http://localhost:9568/metrics (Prometheus format)

Frontend Status: Web Ul at /frontend status

Message Queue: Web Ul at /message queue

Getting Help

1. Check the

2. Review application logs

3. Check Prometheus metrics for anomalies

4. Use the routing simulator to test routing logic

5. Examine per-message event logs

Version Information

This documentation is current as of:

Last Updated: 2025-10-30

SMS-C Version: Latest development build
Supported Elixir: 1.15.x - 1.17.x
Supported Erlang/OTP: 26.x - 27.x

Documentation Conventions

Throughout this documentation:

e Configuration examples show typical values; adjust for your
environment

e APl examples use curl command-line format

e IP addresses and domains are examples only; replace with your actual
values

¢ Metric names follow Prometheus naming conventions

e All timestamps are in UTC unless otherwise specified

Quick Start

1. Configuration: Configure via config/runtime.exs - see
2. Initial Routes: Create routing rules via Web Ul or configuration file - see

3. Submit Test Message: Use APl or Web Ul - see

4. Monitor: Set up Prometheus scraping - see

Documentation Feedback

This documentation is maintained alongside the SMS-C codebase. For
corrections or improvements, please update the markdown files in the docs/
directory.

ANSSI R226
Interception
Compliance
Documentation

Document Purpose: This document provides technical specifications required
for ANSSI R226 authorization under Articles R226-3 and R226-7 of the French
Penal Code for the OmniMessage SMS Service Center (SMSc).

Classification: Regulatory Compliance Documentation

Target Authority: Agence nationale de la sécurité des systemes d'information
(ANSSI)

Regulation: R226 - Protection of Correspondence Privacy and Lawful
Interception

1. DETAILED TECHNICAL
SPECIFICATIONS

1.1 Commercial Technical Datasheet

Product Name: OmniMessage SMSc (SMS Service Center) Product Type:
Telecommunications Message Center Primary Function: SMS message
routing, storage, and delivery Network Protocols: REST API (HTTPS), SMS
protocols (SMPP, IMS, SS7/MAP via external frontends) Deployment Model:
On-premises server application Technology Stack: Elixir/Erlang, Phoenix
Framework, Mnesia, MySQL/PostgreSQL

Core Capabilities

Message Processing:

e Centralized SMS message queue with REST API

e Protocol-agnostic design supporting SMPP, IMS, SS7/MAP frontends
e Dynamic routing engine with prefix-based routing

e Retry logic with exponential backoff

e Message expiration and dead letter queue handling

e Call Detail Record (CDR) generation and archival

e Performance: ~1,750 messages/second insert rate, 150 million
messages/day capacity

Message Storage:

e Active Message Queue: Mnesia in-memory database with optional disc
persistence
o Primary storage: RAM for ultra-fast access (sub-millisecond latency)

o Disc backup: disc copies mode writes to disk for crash recovery
o Automatic recovery: Messages survive system restarts
o Retention: Configurable (default 24 hours), then automatic cleanup

e Long-term CDR Archive: MySQL/PostgreSQL database (separate from
message queue)

o CDRs written when messages are delivered, expired, failed, or rejected

o SQL database used ONLY for CDR export/archival, NOT for active
message operations

o No performance impact on message routing (async write)
e Two-tier Architecture Benefits:
o Active queue: Blazing fast (1,750 msg/sec) with no SQL bottleneck

o CDR archive: Long-term retention (months/years) for billing and lawful
interception

o Clean separation: Message operations never touch SQL

e Cluster support for high availability (Mnesia replication across nodes)
Network Interfaces:

e REST API: HTTPS (port 8443) for external frontend communication
e Control Panel: HTTPS (port 8086) for web-based management

* Frontend Protocols: SMPP, IMS, SS7/MAP (via external gateway
applications)
 Database: MySQL/PostgreSQL for CDR storage

Routing and Processing:

e Dynamic SMS routing with runtime configuration updates

Prefix-based matching (calling/called numbers)

e Source SMSC and type filtering

e Priority and weight-based load balancing

¢ Number translation and normalization
e ENUM (E.164 Number Mapping) DNS lookup support

e Auto-reply and message drop capabilities

e Per-route charging control (CGRates integration)

[] Complete architecture and features documented in

1.2 Interception Capabilities

1.2.1 Message Acquisition

SMS Message Capture:

¢ The OmniMessage SMSc processes all SMS messages between subscribers

and external networks

e Full access to message metadata and content including:

(o]

o

e}

Source MSISDN (mobile number)

Destination MSISDN (mobile number)

Source IMSI (International Mobile Subscriber Identity)
Destination IMSI

Message body (text content)

Raw PDU (Protocol Data Unit) data

TP-DCS (Data Coding Scheme) information

Message encoding (GSM7, UCS-2, 8-bit, Latin-1)
Multipart message indicators and reassembly data

User Data Header (UDH) information

Message Metadata Acquisition:

e Complete Call Detail Records (CDR) stored in database with:

O

(o]

o

Message ID (unique identifier)

Calling number (source MSISDN)

Called number (destination MSISDN)

Submission timestamp (when message entered system)
Delivery timestamp (when message was delivered)
Expiry timestamp (when message expired if undeliverable)
Status (delivered, expired, failed, rejected)

Delivery attempts count

Message parts (for concatenated/multi-part SMS)
Source SMSC identifier

Destination SMSC identifier

Origin node (Erlang cluster node name)

Destination node (for distributed deployments)

Deadletter flag (retry exhaustion indicator)

[Complete CDR schema documented in

Message Queue Access:

e Real-time message queue monitoring

e REST API endpoints for message retrieval

e Database queries for historical message search

e Filter capabilities by:

(o]

o

Phone number (source/destination)

SMSC gateway

o Time range

(o]

o

Message status

Delivery attempts

[] Complete API documentation in

1.2.2 Data Processing Capabilities

Message Storage Architecture (Two-Tier System):

The SMSc uses a sophisticated two-tier storage architecture that separates
operational message processing from long-term archival:

Tier 1: Active Message Queue (Mnesia)

e Purpose: Real-time message routing and delivery operations
* Technology: Erlang Mnesia distributed database

e Storage Mode: In-memory with disc_copies backup
o Primary storage in RAM for maximum speed

o Automatic disc synchronization for crash recovery
o Messages persist across system restarts
e Performance: Sub-millisecond read/write operations
¢ Retention: Short-term (default 24 hours), configurable
¢ Cleanup: Automatic archival to CDR database, then deletion from Mnesia

e Operations: All message queue operations (insert, update, delivery status,
routing)

e Critical Feature: SQL database is NEVER queried during message
routing/delivery

Tier 2: CDR Archive (MySQL/PostgreSQL)

e Purpose: Long-term storage for billing, analytics, and lawful interception
* Technology: Traditional SQL database (MySQL or PostgreSQL)

e Write Trigger: CDRs written ONLY when messages reach final state:
o Message delivered successfully

o Message expired (exceeded validity period)
o Message permanently failed
o Message rejected by routing rules

* Write Mode: Asynchronous batch writing (no impact on message routing
performance)

¢ Retention: Long-term (months to years), configurable per regulatory
requirements
e Operations: Historical queries, reporting, compliance, lawful interception

e Access: SQL queries, REST API (future), CSV/JSON export

Key Architectural Benefits:

1. Performance: Active routing operations never touch SQL (no database
bottleneck)

2. Scalability: Mnesia handles 1,750+ messages/second without SQL
overhead

3. Reliability: Disc_copies mode ensures no message loss on crash
4. Compliance: CDR database provides permanent audit trail

5. Separation of Concerns: Operational data vs. archival data clearly
separated

Message Lifecycle:

1. Message submitted - Stored in Mnesia (RAM + disc backup)

2. Message routed - Mnesia query (ultra-fast)

3. Message delivered/expired - CDR written to SQL (async)

4. After 24h - Message deleted from Mnesia (cleanup worker)

5. CDR remains in SQL - Available for lawful interception queries
(years)

Data Retention and Retrieval:

e Configurable message body retention or deletion for privacy
e Binary data preservation (raw PDU storage in both Mnesia and CDR)
e Full-text search capability (if enabled on CDR database)

e Indexed CDR fields for fast lawful interception queries
Frontend Tracking:

¢ Real-time tracking of external SMSC frontends (SMPP, IMS, MAP gateways)
e Frontend registration with heartbeat monitoring

e Health status tracking (active/expired)

e Uptime/downtime history

e |P address and hostname tracking

e Frontend-specific configuration logging

1.2.3 Analysis Capabilities

Real-Time Monitoring:

e Web Ul dashboard showing:
o Active message queue

o Message submission and delivery
o Routing decisions and gateway selection
o Frontend gateway status
o System resource utilization
e Prometheus metrics integration for operational monitoring

e Performance metrics (throughput, latency, success rates)

[Complete monitoring guide in [0 Metrics
documentation in

Historical Analysis:

e CDR database queryable by:
o Time range

o Calling/called party number

o Message status

o SMSC gateway

o Delivery attempts

o Message content (full-text search if enabled)

e Statistical analysis capabilities:
o Message volume by hour/day/month

o Success/failure rates by route
o Average delivery times
o Multi-part message analysis

o Failed delivery patterns

Subscriber Tracking:

Message history by phone number (MSISDN)

IMSI-based tracking (when available from IMS/MAP frontends)

Call pattern analysis

Communication party correlation

e Temporal analysis (message frequency, timing patterns)
Network Analytics:

¢ Route performance metrics

e Gateway availability and health

e Message flow visualization

e Cluster node distribution (multi-node deployments)
e Delivery attempt analysis

e Retry pattern analysis

Number Intelligence:

E.164 number normalization

Country/region identification from number prefix

Number translation and rewriting rules

ENUM DNS lookup for routing intelligence

Prefix-based routing decisions
[0 Number translation guide in

guide in

1.3 Countermeasure Capabilities

1.3.1 Privacy Protection Mechanisms

Communication Confidentiality:

HTTPS/TLS for REST API communications

Certificate-based authentication

Database connection encryption (TLS support)

Configurable message body deletion after delivery
Access Control:

¢ Web Ul access control

¢ API authentication mechanisms

[0 Routing

e Database access controls

e Frontend registration authentication
Audit Logging:

e Complete system event logging

e Message submission/delivery logging

Configuration change tracking

Administrative action logging

Structured logging with configurable levels

1.3.2 Data Protection Features

Message Privacy:

Configurable message body deletion after delivery

Message body excluded from Ul display (optional)

Message body excluded from exports (optional)

CDR message body field can be set to NULL for privacy
Database Security:

e MySQL table encryption support (ENCRYPTION="Y")
e PostgreSQL transparent data encryption support

e Database access role separation

e Read-only user accounts for analytics

e Restricted access to message content

System Hardening:

Minimal exposed network ports

TLS certificate management

Secure configuration storage

Environment-based configuration separation

Cluster security with Erlang distribution protocol

1.4 Storage Architecture: Mnesia + SQL Two-
Tier Design

Overview

The OmniMessage SMSc employs a unigue two-tier storage architecture
specifically designed to separate high-performance operational message
processing from long-term compliance and archival storage.

Tier 1: Mnesia In-Memory Message Queue
What is Mnesia?

e Distributed database built into Erlang/OTP runtime
e Hybrid storage: Primary in-memory with automatic disc backup
e ACID-compliant transactions

e Cluster replication across multiple nodes
Storage Mode: disc_copies

¢ In-Memory Primary: All active messages stored in RAM
o Lightning-fast read/write operations (sub-millisecond)

o No disk I/O during normal message routing operations
o Enables 1,750+ messages/second throughput

e Disc Backup (Automatic): Mnesia synchronizes RAM to disk
o Writes happen asynchronously in background

o Disk copy updated on every transaction commit
o Crash recovery: System restarts with all messages intact

o Location: Mnesia.*/ directory in application data
Message Lifecycle in Mnesia:

1. Message arrives via REST APl - Inserted into Mnesia RAM + disc backup
2. Routing engine queries Mnesia — Instant response (memory access)

3. External gateway polls for messages -» Mnesia query (memory access)
4. Gateway updates delivery status = Mnesia update (memory + disc)

5. After delivery/expiry - Message marked for cleanup

6. Cleanup worker (24h default) - Message deleted from Mnesia

Critical Performance Feature:

e ZERO SQL database queries during active message routing/delivery
e SQL is completely bypassed for operational message processing
e This eliminates the traditional SMS-C bottleneck (database 1/O)

Tier 2: SQL Database for CDR Export/Archival

What is CDR (Call Detail Record)?

e Permanent audit record of message metadata and content
e Written to MySQL or PostgreSQL database

e Used for billing, analytics, compliance, and lawful interception

When CDRs are Written: CDR records are created ONLY when messages
reach a final state:

e [] Message delivered successfully
e [] Message expired (exceeded validity period without delivery)
e [] Message permanently failed (invalid number, routing error)

e [] Message rejected (routing rules, validation failure)
How CDRs are Written:

e Asynchronous batch writing: CDRs written in background worker
process

* No blocking: Message routing never waits for SQL write

 Batched inserts: Multiple CDRs grouped (default 100) and written
together

¢ Flush interval: 100ms default (configurable)

e Error handling: Failed CDR writes logged, message processing continues

Configuration in config/runtime.exs
config :sms c,

batch insert batch size: 100, # Batch size for CDR
writes
batch insert flush interval ms: 100 # Flush interval

SQL Database Purpose:

[0 NOT used for: Active message queue operations

[0 NOT used for: Message routing decisions

[1 NOT used for: Real-time message delivery

[] ONLY used for: Long-term CDR archival and historical queries

[J ONLY used for: Lawful interception queries (months/years of history)

00 ONLY used for: Billing and analytics reports

Architecture Diagram

Active Message

External Gateway

l

r1)

Recent Messages

h

REST API
.-{f----
\,
W -)
'-\.______ - - ______..-‘_,_,_,-'-""F
Mnesia Database
RAM + Disc Backup .
— . . . -k_
| ,
Async CDR Write !
J
Long-Term Archival (Tier -L //.
CDR Batch Worker Routing Engine ‘
i :
I Lawful Interception
- D Access
SQL Database

MySQL/PostgreSQL

Law Enforcement
SQL Queries

Legend:

Solid lines: Synchronous operations (real-time)

Dashed lines: Asynchronous operations (background)

Green: High-performance tier (in-memory)

Blue: Archival tier (persistent SQL)

Lawful Interception Implications

Recent Messages (< 24 hours):

REST APl Access

| R ———

Law Enforcement
Real-time Access

Accessible via Mnesia (REST API queries)

Ultra-fast retrieval

Full message content available

Real-time monitoring possible
Historical Messages (> 24 hours):

e Accessible via SQL database (CDR table)
e Standard SQL query performance
e Full message metadata always available

e Message body available (unless privacy mode enabled)
Compliance Benefits:

1. No data loss: Disc_copies mode ensures messages survive crashes
2. Permanent audit trail: CDRs retained for years in SQL database
3. Performance: Lawful interception queries don't impact message routing

4. Flexibility: Recent messages (Mnesia) + historical messages (SQL) both
accessible

1.5 Multi-Protocol Frontend Integration
Architecture

The OmniMessage SMSc employs a protocol-agnostic core design that
interfaces with external protocol-specific gateways (frontends) via a unified
REST API. This architecture allows lawful interception to capture messages
regardless of which telecommunications protocol was used to send or receive
them.

Architecture Overview

REST API
Port 8443 HTTPS

Mnesia Queue
Active Messages

SQL CDR Database
Historical Archive

Historiglll queries

LI Mediation Function
X1/X2/X3 Interfaces

Frontend Protocol Integration Details

1. IMS/SIP Frontend Integration

IMS networks use SIP protocol for SMS-over-IP messaging. The IMS gateway
translates between SIP and the SMSc REST API.

- -

T R T LR LR B

Metwa
IM5/NVOLTE Network SMPP Provider SST/SIGTRAN Network
SIP/Diameter SMS Aggregator MAP Protocol

4 _ _ External Protocol \“_m_‘
Is (Gateways)
IM5 Gateway SMPP Gateway MAP Gateway
SIP = REST SMPP — REST 557/MAP — REST
HTTPS Pl_]STfGI:"F HTTPS POST/GET HTTPS F_DST!GI:‘I’

-

Dn‘iﬂil‘n‘lessage S_ME:: —

REST API ol
Port 6443 HTTPS

l

Routing Engine

l

Mnesia Queue
Active Messages

Asynic COR write

T

Real-time S0L CDR Database
Historical Archive

Historical queries
|

Lau'iﬁ.JI Intercept’pnﬁ

LI Mediation Function
X1X2/X3 Interfaces

IMS-Specific Interception Data:

e Source/Destination IMSI (from IMS registration)
P-Asserted-ldentity SIP headers

SIP Call-ID for correlation

IMS network location (P-Access-Network-Info)
Subscriber profiles from IMS HSS

2. SMPP Frontend Integration

Circuit Switched
Mabile Metwork

SMPP is the industry-standard protocol for SMS aggregators and service

providers. The SMPP gateway translates PDU-based SMPP messages to REST
API calls.

SMSc REST API Mnesia Queue

External SMPP SMPP Gateway
Client (ESME) (SMPP Frontend)

BIND_TRANSMITTER
system_id: "customer123"

BIND_TRANSMITTER_RESP

SUBMIT_SM
source_addr: "447700900123"
dest_addr: "447700900456"
short_message: "Test SMS"
data_coding: 0 (GSM7)

Decode SMPP PDU
Extract all TP-DCS fields
Extract UDH if present

POST /api/messages

{

“source_msisdn": "447700900123",
"destination_msisdn": "447700900456",
"message_body": "Test SMS",
"source_smsc": "smpp.customer123",
"tp_dcs_character_set": "gsm7",
"tp_dcs_coding_group": "general_data_coding",
"raw_pdu": "base64_encoded_pdu"

}
Insert message
Message ID: 12346

201 Created
{id: 12346}

SUBMIT_SM_RESP
message_id: "12346"

[INTERCEPTION POINT]
Full SMPP PDU preserved

Iy [Polling for delivery]
GET /api/messages/get_by_smsc?smsc=smpp.provider-01
Messages to deliver
DELIVER_SM

DELIVER_SM_RESP

External SMPP SMPP Gateway
Client (ESME) (SMPP Frontend)

SMPP-Specific Interception Data:

PATCH /api/messages/{id}
{status: "delivered"}

SMSc REST API Mnesia Queue

Complete SMPP PDU (binary format preserved)
Data Coding Scheme (DCS) details

User Data Header (UDH) for concatenated messages

ESME system_id (customer identification)

TON/NPI numbering plan information

e Registered delivery flags
3. SS7/MAP Frontend Integration

Legacy circuit-switched networks use SS7 MAP protocol for SMS. The MAP
gateway translates between SS7 signaling and REST API.

MSC/VLR MAP Gateway
(Mobile Network) (SS7 Frontend)

MAP MO-ForwardSM
MSISDN: +689871234
Destination: +689879999
TPDU: binary_data
IMSI: 547050123456789

SMSc REST API Mnesia Queue

Decode MAP parameters
Extract GT/IMSI
Decode TP-DU

POST /api/messages

"source_msisdn": "+689871234",
"destination_msisdn": "+689879999",
"source_imsi": "547050123456789",
"message_body": "Decoded text",
"source_smsc": "map.msc-01",
"raw_pdu": "hex_encoded_tpdu",
"tp_dcs_character_set": "gsm7"

}
Insert message
Message ID: 12347
201 Created

MAP MO-ForwardSM Response
Success

[INTERCEPTION POINT]
SS7 GT + IMSI captured

Iy [Polling for delivery]
GET /api/messages/get_by_smsc?smsc=map.smsc-out
Messages to deliver

MAP MT-ForwardSM
IMSI/MSISDN
TPDU

MAP MT-ForwardSM Response

PATCH /api/messages/{id}
{status: "delivered"}

MSC/VLR MAP Gateway .
(Mobile Network) (SS7 Frontend) SMSc REST API Mnesia Queue

SS7/MAP-Specific Interception Data:

e |IMSI| from MAP messages

e Global Title (GT) addresses

e MSC/VLR address (network element identification)
e SCCP calling/called party addresses

e MAP operation codes

e TP-User-Data binary format

Unified Interception Across All Protocols

Key Benefit for Lawful Interception: Regardless of which protocol was used
(IMS/SIP, SMPP, or SS7/MAP), all messages converge in the SMSc core with
normalized data structure, enabling:

1. Protocol-Agnostic Monitoring: Single interception point captures all
message types

2. Unified CDR Format: All protocols write to same CDR schema

3. Cross-Protocol Correlation: Track messages across protocol boundaries

4. Complete Metadata Preservation: Protocol-specific fields preserved in
CDR

Data Flow Summary:

External SMPP SMPP Gatew

ay §
Client (ESME} {EMPP Frontend) SMSc REST APl Mnesia Queus

BIND_TRANSMITTER
system_id: “customerl23®

BIND _TRAMSMITTER_RESP

SLBMIT_SM
source_addr: “447700900123"
dest_addr: “447T00GM04 56"
short_message: "Test SMS®
data_coding: 0 (EZSM7]

Decode SMPP PDU
Extract all TP-DCS fields
Extract UDH if present

POST -':pi.'_rrr:'.ugl:-:.

‘source_msisdn®: *447T700900123%,
‘destination_msisdn®: "4477 000004567,
‘message_body®: "Test SME®,
“source_smsc™: "smpp.customerl23®,
“tp_dcs_character s=t®: “gam7",
*tp_dcs_coding_group®: "general_dsts_coding®,
“raw_pdu®: "bhasefd_encoded_pdu”®

Ins=rl message

Message ID: 12346

e
201 Created
{id: 12346}
S —
SUBMIT_SM_RESP
message_id: "12346°
T —————
[INTERCEPTION POINT]
Full SMPP POU preserved
loop [Palling for defivery]
GET fapiimessages/gel_by smsc?smsc=smpg.provider-01
Messages to deliver
R R R g e e
DELIVER_SM
-
DELIVER_SM_RESP
.. *
PATCH fapi/messages/ {id}
{status: “deliver=d”}
-
External SMPP SMPP Gateway .
Client (ESME} {EMPP Frontend) SMSc REST APl Mnesia Queus

Protocol Identification in CDR:

* source smsc field indicates frontend protocol (e.g., "ims.gateway-01",
“smpp.customerl23”, "map.msc-01")

e Enables filtering and analysis by protocol type

e Lawful interception queries can target specific protocols or all protocols

1.6 Technical Architecture for Lawful
Interception

Lawful Interception Integration Points

The two-tier storage architecture provides multiple access points for lawful
interception, optimized for both real-time monitoring (Mnesia) and historical
analysis (SQL).

1. REST API Access for Recent Messages (Mnesia):

Access to active messages in the Mnesia queue (typically last 24 hours):

REST API

E=3
/
-—\—

API Endpoints for Real-Time Interception:

GET /api/messages - List active messages with filtering

GET /api/messages/{id} - Get specific message details (from Mnesia)

GET /api/messages/get by smsc?smsc=X - Get messages by gateway

All queries hit Mnesia (in-memory) for instant response

Note: These endpoints query the active Mnesia message queue, providing

access to messages currently being processed or recently delivered (within
retention period).

Query Parameters:

 Filter by source/destination MSISDN
e Filter by time range

e Filter by SMSC gateway

e Filter by message status

e Sort and pagination support

2. CDR Database Direct Access for Historical Messages (SQL):

Access to archived messages in the SQL database (all delivered/expired/failed
messages):

MSC/VLR MAP Gatewa .
{Mabile Metwark] (57 Frontend) Zofe AT e el

MAPR MO-FarwardSM
MSISDN: +6B9BT1234
Destination: +6EAETHG99
TPDU: binary _data
M5I: 54T0S0123456789

Decode MAP parameters

Extract GTAMSI
Decade TR-DU

POST Japifméddageas

“source msidn®: "+G6EUET1234%,

“destination_msidn®: *+6E9ETI999°,
“Lowrce_irmdi®: “547050123456TE9",
"message body®: "Decaded text®,
“Source Smsc”: “map.msc-01°,
“rawi_pdu®: “hex_éncoded_tpdu®,
tp_des_character Let®: "garm7
}
Ingarl meédisge
Messmge ID: 12347
R R ———
201 Created
-
MAP MO-FarmardsSM Redpands
SucCess
U R—
[INTERCEPTION POINT]
S57 GT + IMSI captured
lnop [Palling far delivery]
GET [fapiimessages/oet by smsc?smsc=map smsc-aut
=
Messages Lo deliver
A g e
MAP MT-FarwardSM
IMEMSISDN
TPDU
MAP MT-FarwardSM Responge
....................................... -
PETCH fapiimessages/{id}
{anatus: “delverad®}
MSCALR MAP Gatewa -
{Mabile Netwark) (S57 Frantend) S it el

Direct SQL Access:

e Read-only database credentials for authorized systems

e SQL query access to cdrs table (permanent audit trail)

e Access Method: Standard SQL client (mysql, psql, DBeaver, etc.)
e Data Source: Only archived messages (not active queue)

Indexed fields for efficient searching:
o calling number (indexed) - Source phone number

o called number (indexed) - Destination phone number

o message id (indexed) - Unique message identifier

o submission time (indexed) - When message entered system
o status (indexed) - Final delivery status

o dest smsc (indexed) - Gateway used for delivery

Note: CDR database contains permanent records of all processed messages.
This is the primary data source for historical lawful interception queries
(months/years of data).

3. Real-Time Message Feed (PubSub):

e Phoenix PubSub integration for real-time events
e Message submission notifications

e Message delivery notifications

* Message status change events

e Configurable event filtering by criteria

e WebSocket support for live monitoring
4. Batch Export Interface:

e CSV export of CDR records

JSON export for programmatic access

Configurable export fields

Time-range based exports

Privacy-aware exports (optional message body exclusion)

ETSI Lawful Interception Standard Interfaces

The OmniMessage SMSc provides the foundation for implementing ETSI-
compliant lawful interception interfaces. While the SMSc core does not natively
implement X1/X2/X3 interfaces, it provides all necessary data access points
that can be integrated with external Lawful Interception Mediation Function
(LIMF) systems.

Standard ETSI LI Interfaces:

Mnesia
Active Messages

SQL CDR
Historical Messages

LI Mediation
Function

Interface Descriptions:
X1 Interface - Administration Function:

e Purpose: Warrant and target provisioning from law enforcement to
interception system

e Direction: LEMF - LIMF (bidirectional)
* Functions:
o Activate/deactivate interception for specific targets (MSISDNs, IMSIs)
o Set interception duration and validity period
o Configure filtering criteria (phone numbers, time windows)
o Retrieve interception status

¢ Integration with SMSc:
o LIMF maintains target list (warrant database)

o LIMF queries SMSc CDR/API for matching messages

o LIMF filters based on X1 provisioned criteria
X2 Interface - IRI (Intercept Related Information) Delivery:

e Purpose: Deliver message metadata to law enforcement
e Direction: LIMF -» LEMF (one-way)
e Data Format: ETSI TS 102 232-x compliant XML/ASN.1

¢ Content from SMSc CDR:
o Message ID

o Calling number (source MSISDN)

o Called number (destination MSISDN)

o [MSI (source and destination, if available)

o Submission timestamp

o Delivery timestamp

o Message status (delivered/failed/expired)

o Delivery attempts

o SMSC gateway information (source/destination)
o Network location (if available)

e Integration with SMSc:
o LIMF queries CDR database for target phone numbers

o LIMF transforms CDR records into ETSI IRI format
o LIMF delivers IRI to LEMF via X2

X3 Interface - CC (Content of Communication) Delivery:

e Purpose: Deliver actual message content to law enforcement
e Direction: LIMF -» LEMF (one-way)
e Data Format: ETSI TS 102 232-x compliant

¢ Content from SMSc:
o Message body (text content)

Raw PDU (binary SMS data)

(o]

(o]

Character encoding information

[e]

Multipart message segments
TP-DCS information

(o]

o User Data Header (UDH)

e Integration with SMSc:
o LIMF retrieves message content from CDR message body field

o LIMF retrieves raw PDU data if available
o LIMF packages content in ETSI CC format
o LIMF delivers CC to LEMF via X3

Implementation Architecture:

Law Enforcement X1 Admin LI Mediation OmniMessage
Monitoring Facility Function SMSc CDR Database ‘ ‘ X2 ‘ X3
Activate interception
Target: +33612345678
Duration: 30 days
Store warrant + target list
Polling/feed from SMSc
- [Continuous Monitoring]
Query messages for target
WHERE calling_number = '+33612345678'
OR called_number = '+33612345678'
Matching messages
- [New intercepted message found]
Generate IRIl (metadata)
Send IRI to LEMF
IRI delivered
Generate CC (content)
Send CC|to LEMF
CC delivered
Deactivate interception
Remove target from list
Law Enforcement X1 Admin LI Mediation OmniMessage
Monitoring Facility Function SMSc CDR Database ‘ ‘ X2 ‘ X3

SMSc Data Mapping to LI Interfaces:

SMSc Data
Field

Message ID

Calling Number

Called Number

Submission Time

Delivery Time

Status

Message Body

Raw PDU

Source SMSC

Dest SMSC

IMSI

X2 (IRI)

[] Correlation ID

0 Party A

[Party B

0 Timestamp

0 Completion

[] Result

[] Network
element

[] Network
element

[] Subscriber ID

LIMF Integration Options:

Option 1: Polling Architecture

Low complexity, easy to implement

X3 (CC)

[
Reference

[] Content

0 Binary

CDR Table
Column

message id

calling number

called number

submission time

delivery time

status

message body

(Mnesia/CDR)

source_smsc

dest smsc

(Via frontends)

LIMF periodically queries CDR database (every 1-60 seconds)

SQL query filters by target phone numbers from X1 warrant list

Slight delay between message delivery and LI delivery

Option 2: Real-Time Feed Architecture

e SMSc PubSub publishes message events

LIMF subscribes to real-time message stream
LIMF filters based on target list

Near-zero latency for lawful interception

Requires custom integration development
Option 3: Hybrid Architecture

e Recent messages: Real-time PubSub feed (< 24 hours)
e Historical messages: CDR database polling

e Optimal balance of latency and reliability

Interception Triggering Mechanisms

Target-Based Interception:

Phone number matching (MSISDN)
IMSI-based targeting (when available)

Configurable watch lists

Database views for target isolation

API filtering by target identifiers

Event-Based Interception:

All messages to/from specific numbers

Messages via specific SMSC gateways

Messages with specific characteristics (multi-part, failed delivery, etc.)

Geographic routing (via ENUM or prefix matching)
Time-Based Interception:

e Date/time range filtering in CDR queries
e Retention period enforcement
e Automatic archival of old messages

e Configurable data retention policies

Example SQL Queries for Lawful Interception:

-- Get all messages for target number

SELECT * FROM cdrs

WHERE calling number = '+33612345678'
OR called number = '+33612345678'

ORDER BY submission time DESC;

-- Get messages 1in specific time window
SELECT * FROM cdrs
WHERE (calling number = '+33612345678' OR called number =
'+33612345678")

AND submission time BETWEEN '2025-11-01 00:00:00' AND '2025-11-
30 23:59:59'
ORDER BY submission time;

-- Get conversation between two parties
SELECT * FROM cdrs
WHERE (calling number
'+33687654321")

OR (calling number
'+33612345678")
ORDER BY submission time;

'+33612345678"' AND called number

'+33687654321' AND called number

2. ENCRYPTION AND
CRYPTANALYSIS CAPABILITIES

2.1 Cryptographic Capabilities Overview

The OmniMessage SMSc implements cryptographic mechanisms for securing
communications and protecting sensitive data. This section documents all
cryptographic capabilities in accordance with ANSSI requirements.

2.2 Transport Layer Encryption

2.2.1 TLS/SSL Implementation

Supported Protocols:

TLS 1.2 (RFC 5246)

TLS 1.3 (RFC 8446) - Recommended

SSL 2.0/3.0: NOT SUPPORTED (known vulnerabilities)
TLS 1.0/1.1: DEPRECATED (not recommended)

Implementation:

e Erlang/OTP SSL/TLS library (cryptographically validated)
e Cowboy web server with TLS support

e Phoenix Framework HTTPS endpoints
Cipher Suites:

The system uses Erlang/OTP's default secure cipher suite selection, which
includes:

Preferred - TLS 1.3:

« TLS_AES 256 GCM_SHA384
« TLS_AES 128 GCM_SHA256
e TLS_CHACHA20 POLY1305 SHA256

Supported - TLS 1.2:

» ECDHE-RSA-AES256-GCM-SHA384
» ECDHE-RSA-AES128-GCM-SHA256
e DHE-RSA-AES256-GCM-SHA384
e DHE-RSA-AES128-GCM-SHA256

Security Features:

e Perfect Forward Secrecy (PFS) via ECDHE/DHE key exchange
e Strong Diffie-Hellman groups (2048-bit minimum)
e Elliptic Curve Cryptography support

e Server Name Indication (SNI) support

Certificate Management:

e X.509 certificate support

e RSA key sizes: 2048-bit minimum, 4096-bit recommended
e ECDSA support

e Certificate chain validation

e Self-signed certificates (development only)

e External CA integration

TLS Configuration Location:

config/runtime.exs
config :api_ex,
api: %{
enable tls: true,
tls cert path: "priv/cert/omnitouch.crt",
tls key path: "priv/cert/omnitouch.pem”

}

[0 Complete configuration reference in
Applications:

e HTTPS for REST API (port 8443)
e HTTPS for web control panel (port 8086)
e Database connections (MySQL/PostgreSQL over TLS)

2.3 Data Encryption at Rest
2.3.1 Database Encryption
MySQL/MariaDB Encryption:

e Table-level encryption support
e AES-256 encryption algorithm
e Transparent data encryption (TDE)

ALTER TABLE cdrs ENCRYPTION='Y";

PostgreSQL Encryption:

e Transparent data encryption support
e Filesystem-level encryption

e Column-level encryption (pgcrypto extension)
2.3.2 Mnesia Disc Storage
Mnesia Database:

e Disc copies storage for message persistence
e File system-level encryption recommended (LUKS, dm-crypt)

e Memory protection via Erlang VM isolation

2.3.3 File System Encryption

Sensitive Data Storage:

Configuration files: Filesystem encryption recommended

Private keys: File permissions (0600) + filesystem encryption

Log files: Configurable encryption for archived logs

CDR exports: Encrypted storage for sensitive exports
Key Storage:

e TLS certificates and keys stored in priv/cert/
e File-based keystores with restricted permissions

e Secure key rotation procedures

2.4 Authentication and Access Control

2.4.1 API Authentication

REST API Security:

HTTPS/TLS transport encryption mandatory

Header-based authentication (SMSc header for frontend identification)

IP-based access control (firewall level)

Certificate-based client authentication (optional)

Frontend Registration:

Unique frontend identification (name, type, IP, hostname)

Heartbeat-based authentication

Expiration-based session management (90-second timeout)

Frontend tracking and monitoring

2.4.2 Database Authentication

Database Access Control:

Username/password authentication

TLS/SSL connection support

IP-based connection restrictions

Role-based access control (RBAC)

Configuration:

config/runtime.exs
config :sms c, SmsC.Repo,

username: "omnitouch",

password: "omnitouch2024", # Should use strong passwords in
production

hostname: "localhost",

ssl: true # Enable TLS for database connections

Access Control Recommendations:

-- Create read-only user for law enforcement access
CREATE USER 'li readonly'@'Ss' IDENTIFIED BY 'secure password';
GRANT SELECT ON sms c.cdrs TO 'li readonly'@'%";

-- Create limited user without message body access
CREATE USER ‘'analytics'@'%' IDENTIFIED BY 'secure password';
GRANT SELECT (id, message id, calling_number, called number,
source smsc, dest smsc, submission time,
delivery time,
status, delivery attempts)
ON sms c.cdrs TO 'analytics'@'%’';

2.5 Cryptographic Algorithm Details

2.5.1 Hashing Algorithms

Available in Erlang/OTP:

e SHA-256, SHA-384, SHA-512 (recommended)
e SHA-1 (deprecated, legacy compatibility only)
e MD5 (deprecated, not used for security)

e BLAKE2 (available in modern OTP versions)
Usage:

e Message fingerprinting (duplicate detection)
e Data integrity verification

e Audit log integrity
2.5.2 Symmetric Encryption
Available Algorithms:

e AES (Advanced Encryption Standard)
o AES-128-GCM

o AES-256-GCM
o AES-128-CBC
o AES-256-CBC

e ChaCha20-Poly1305
Key Sizes:

e 128-bit (minimum)

e 256-bit (recommended)
Usage:

e TLS session encryption
e Database encryption at rest

e Optional message body encryption

2.5.3 Asymmetric Encryption

Supported Algorithms:

¢ RSA (2048-bit minimum, 4096-bit recommended)

e ECDSA (Elliptic Curve Digital Signature Algorithm)
o P-256, P-384, P-521 curves

e Ed25519 (EdADSA)
Usage:

e TLS certificate authentication
e Digital signatures

e Key exchange

2.6 SMS Protocol Security

2.6.1 SMS Message Encoding

Character Encoding Support:

GSM 7-bit (standard SMS encoding)
UCS-2 (Unicode, 16-bit)

8-bit binary data

Latin-1

TP-DCS (Data Coding Scheme):

Message class indication

Compression flags

Coding group specification

Character set identification
No Native SMS Encryption:

e SMS protocol does not provide end-to-end encryption
e Message content accessible at SMSc level

e Enables lawful interception as required

2.6.2 Protocol Security Considerations

SMPP Protocol (External Frontend):

e Username/password authentication at SMPP level
e TLS support available (SMPP over TLS)

¢ Bind authentication
IMS Protocol (External Frontend):

e S|P-based messaging
¢ S|P authentication mechanisms

e Integration with IMS core network security
SS7/MAP Protocol (External Frontend):

e SS7 network security
e MAP protocol authentication
e SCCP/TCAP layer security

Note: Protocol-specific security is implemented in external frontend gateways,
not in the SMSc core.

2.7 Cryptanalysis and Security Assessment
Capabilities

2.7.1 Protocol Analysis Tools

Built-in Debugging Capabilities:

Comprehensive logging system

Message flow tracing

API request/response logging

Database query logging

Error and exception tracking

External Integration:

Standard logging output (stdout/files)

PCAP capture support for network analysis

Database query logging for forensics

Prometheus metrics export

2.7.2 Vulnerability Assessment Considerations

Known Limitations:

e SMS protocol inherently unencrypted (by design, enables lawful
interception)

e Database credentials in configuration files (should use secrets
management)

e Self-signed certificate support (development/testing only)
Security Hardening Recommendations:

e Use strong TLS cipher suites

Implement database connection encryption

Use external secrets management (Vault, AWS Secrets Manager)

Regular security updates for Erlang/OTP and dependencies

Firewall restrictions on API ports

e |P whitelisting for frontend access

Security Testing:

Reqgular dependency vulnerability scanning

Penetration testing support

TLS configuration validation

Database security audits

Access control review

2.8 Key Management Infrastructure

2.8.1 Key Generation

TLS Certificate Generation:

Generate private key (RSA 4096-bit)
openssl genrsa -out omnitouch.pem 4096

Generate certificate signing request
openssl req -new -key omnitouch.pem -out omnitouch.csr

Self-signed certificate (development)
openssl x509 -req -days 365 -in omnitouch.csr -signkey

omnitouch.pem -out omnitouch.crt

Production: Obtain certificate from trusted CA

Random Number Generation:

e Erlang/OTP CSPRNG (Cryptographically Secure Pseudo-Random Number
Generator)

e System entropy pool (/dev/urandom)

e Strong randomness for session keys, IDs, tokens

2.8.2 Key Storage and Protection

Private Key Storage:

File system with restricted permissions (0600)

Stored in priv/cert/ directory

PEM format (optionally encrypted)

Secure backup procedures
Key Rotation:

e TLS certificate renewal (annually recommended)
e Database credential rotation

e API token rotation (if implemented)

2.8.3 Key Distribution

Certificate Distribution:

e Manual installation in priv/cert/
e Configuration file references

¢ ACME protocol support possible (Let's Encrypt)
Symmetric Key Distribution:

e Out-of-band key exchange for database credentials
e Diffie-Hellman key agreement in TLS

¢ No cleartext key transmission

2.9 Compliance and Standards

This section documents compliance with international telecommunications
standards, regulatory frameworks, and security specifications applicable to SMS
processing across all supported protocols.

2.9.1 SMS over SS7/MAP Protocol Compliance
3GPP and ETSI Standards:

e 3GPP TS 23.040: Technical realization of Short Message Service (SMS) -
Core SMS protocol specification

e 3GPP TS 23.038: Alphabets and language-specific information - Character
encoding (GSM7, UCS-2)

e 3GPP TS 29.002: Mobile Application Part (MAP) specification - SS7
signaling for SMS

e 3GPP TS 23.003: Numbering, addressing and identification - MSISDN, IMSI
formats

e ETSITS 100 901: Point-to-Point Short Message Service specification
e ETSITS 100 902: Cell Broadcast Short Message Service specification

SS7 Signaling Standards:

ITU-T Q.711-Q.716: Signaling Connection Control Part (SCCP)
ITU-T Q.771-Q.775: Transaction Capabilities Application Part (TCAP)
ITU-T Q.701-Q.710: Message Transfer Part (MTP) Levels 1-3

ETSI EN 300 356: Signaling System No.7 - ISDN User Part (ISUP)

Security Standards for SS7/MAP:

GSMA FS.07: SS7 and Diameter Signaling Security - Baseline security
controls

GSMA FS.11: SS7 Security Monitoring Guidelines

3GPP TS 33.117: Catalogue of general security assurance requirements

ETSI TS 133 210: Network domain security - IP network layer security
Lawful Interception for SS7/MAP:

e ETSITS 101 671: Lawful Interception (LI); Handover interface for the
lawful interception of telecommunications traffic

e ETSITS 102 232-1: Lawful Interception (LI); Handover specification - Part
1: Handover interface for LI management

e 3GPP TS 33.107: Lawful Interception architecture and functions for 3G
networks

2.9.2 SMS over IMS Protocol Compliance

3GPP IMS Standards:

e 3GPP TS 23.228: IP Multimedia Subsystem (IMS) - Stage 2 architecture

e 3GPP TS 24.229: |P Multimedia Call Control Protocol - SIP and SDP
procedures

e 3GPP TS 24.341: Support of SMS over IP networks - Stage 3 specification

e 3GPP TS 23.204: Support of Short Message Service (SMS) over generic
3GPP IP access - Stage 2

e 3GPP TS 29.228: IP Multimedia (IM) Subsystem Cx and Dx interfaces
IMS Security Standards:

e 3GPP TS 33.203: 3G security; Access security for IP-based services (IMS
AKA)

e 3GPP TS 33.210: 3G security; Network Domain Security (NDS); IP network
layer security (IPsec)

e 3GPP TS 33.310: Network Domain Security (NDS); Authentication
Framework (AF)

e ETSITS 133 203: Access security for IP-based services

SIP Protocol Standards:

RFC 3261: SIP: Session Initiation Protocol - Core specification
RFC 3428: SIP Extension for Instant Messaging - MESSAGE method
RFC 3325: Private Extensions to SIP for Asserted Identity

RFC 5765: Security Issues and Solutions in Peer-to-Peer Systems
Lawful Interception for IMS:

e ETSITS 102 232-5: Lawful Interception (LI); Handover specification - Part
5: Service-independent LI for IP Multimedia Subsystem services

e 3GPP TS 33.107: Lawful Interception requirements and architecture
e 3GPP TS 33.108: Handover interface for Lawful Interception (LI)

2.9.3 SMPP Protocol Compliance
SMPP Specification:

e SMPP v3.4: Short Message Peer-to-Peer Protocol Specification - Industry
standard

e SMPP v5.0: Extended SMPP protocol with enhanced features

SMPP Security Guidelines:

e TLS over SMPP: Transport layer security for SMPP connections (SMPP over
TLS)

e SMPP Bind Authentication: System ID and password authentication

 IP-based Access Control: Network-level restrictions for SMPP connections

Interoperability Standards:

e GSM 03.40 (ETSI TS 100 901): Technical realization of SMS Point-to-Point
(PP)

e GSM 03.38 (ETSI TS 100 900): Alphabets and language-specific
information

e GSM 04.11 (ETSI TS 100 942): Point-to-Point SMS support on mobile
radio interface

Message Encoding Compliance:

e ITU-T T.50: International Alphabet No. 5 (I1A5)
e ISO/IEC 8859-1: Latin-1 character encoding
e ISO/IEC 10646: Universal Character Set (UCS-2/UTF-16)

2.9.4 Cryptographic Standards Compliance

TLS and Network Security:

NIST SP 800-52: Guidelines for the Selection, Configuration, and Use of
TLS Implementations

e NIST SP 800-131A: Transitioning the Use of Cryptographic Algorithms and
Key Lengths

e RFC 7525: Recommendations for Secure Use of TLS and DTLS
e RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3

Cryptographic Algorithm Standards:

e FIPS 197: Advanced Encryption Standard (AES)
e FIPS 180-4: Secure Hash Standard (SHA-2 family)

e NIST SP 800-38D: Recommendation for Block Cipher Modes of Operation:
GCM Mode

e RFC 7539: ChaCha20 and Poly1305 for IETF Protocols
Key Management:

e NIST SP 800-57: Recommendation for Key Management

e RFC 5280: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile

2.10 Cryptanalysis Resistance

2.10.1 Design Principles

Defense Against Cryptanalysis:

e No custom/proprietary cryptographic algorithms

e Industry-standard, peer-reviewed algorithms only

e Reqgular security updates for cryptographic libraries
e Deprecation of weak algorithms

e Use of authenticated encryption (GCM, Poly1305)

2.10.2 Operational Security
Key Rotation:

e TLS certificate renewal procedures
e Session key rotation (per-session for TLS)

» Database credential rotation policies

Monitoring and Detection:

Failed authentication logging

Certificate expiration monitoring

TLS handshake failure logging

Anomaly detection for encryption failures

Security event alerting

3. INTERCEPTION CONTROL AND
AUTHORIZATION

3.1 Access Control for Lawful Interception
Administrative Authorization:

e System administrator access required for configuration
e Database-level access controls for CDR queries
e API access restricted by IP/authentication

e Audit logging of all access
Legal Framework Integration:

e Interception warrant tracking (external system integration)
e Target identifier authorization lists (database views)
e Time-limited queries (SQL WHERE clauses)

e Automatic enforcement via access policies

3.2 Data Retention and Privacy
Retention Policies:

e Active message retention: Configurable (default 24 hours in Mnesia)
e CDR retention: Configurable (typical 6 months to 2 years)
e Automatic archival from Mnesia to SQL

e Automatic purging of old CDRs (cron-based)
Privacy Protections:

¢ Message body deletion option after delivery

Message body exclusion from Ul/exports

Database encryption at rest

Access logging and monitoring

Minimal data collection principle

Configuration:

config/runtime.exs

config :sms c,
Mnesia message retention before archival
message retention hours: 24,

Delete message body after delivery for privacy
delete message body after delivery: false, # Set true for

privacy mode

CDR writing control
cdr_enabled: true,

Batch archival settings

batch insert batch size: 100,
batch insert flush interval ms: 100

[See for all retention settings

3.3 Handover Interfaces for Law Enforcement

Standard Interfaces:

1. REST API Access:

HTTPS endpoints for message retrieval

JSON format data exchange

Authentication and authorization

Query filtering by target criteria

2. Direct Database Access:

Read-only SQL credentials
Standard SQL queries

CDR table access

Indexed search capabilities

3. Batch Export:

CSV export format
JSON export format
Time-range based exports

Configurable field selection

Delivery Formats:

IRI (Intercept Related Information):

e CDR metadata fields:

o

o

o

Message ID

Calling/called numbers

Timestamps (submission, delivery, expiry)
Status

Delivery attempts

SMSC routing information

Node information (cluster tracking)

CC (Content of Communication):

Message body (text content)
Raw PDU data
Encoding information

Multipart message assembly

Export Example:

CSV export for law enforcement
mysql -u li readonly -p -D sms c -e
SELECT

message id,

calling number,

called number,

message body,

submission time,

delivery time,

status
FROM cdrs
WHERE (calling number = '+33612345678' OR called number =
'+33612345678")

AND submission time BETWEEN '2025-11-01' AND '2025-11-30'
ORDER BY submission time
" --batch --silent | sed 's/\t/,/g' > interception_report.csv

4. SYSTEM SECURITY AND
INTEGRITY

4.1 Application Security

Elixir/Erlang Security:

Erlang VM isolation and sandboxing

Process isolation and supervision

Crash recovery and fault tolerance

No buffer overflow vulnerabilities (managed runtime)

Dependency Management:

Dependency version locking (mix.lock)

Security vulnerability scanning

Regular dependency updates

Minimal dependency footprint

4.2 Network Security

Network Exposure:

Minimal exposed ports:
o 8443 (HTTPS REST API)

o 8086 (HTTPS Control Panel)

Firewall configuration recommended

IP whitelisting for frontend access

DMZ deployment for internet-facing services

Network Segmentation:

Separate management network

Isolated database network

Frontend gateway network separation

Cluster communication network (Erlang distribution)

4.3 Monitoring and Intrusion Detection
Logging Capabilities:

e Structured application logging

e Configurable log levels

e Log rotation and archival

e Syslog integration support

e Centralized logging (ELK stack compatible)

Security Event Monitoring:

Failed authentication attempts

Unusual message patterns
Database connection failures
TLS handshake failures

System resource anomalies

Metrics and Alerting:

e Prometheus metrics export

e Message throughput monitoring
e Error rate tracking

e System resource utilization

e Custom alert rules

[Complete monitoring documentation in and

4.4 High Availability and Disaster Recovery
Cluster Support:

e Erlang distributed cluster capability
e Mnesia replication across nodes
e Automatic failover

¢ Node discovery and joining

Data Redundancy:

Mnesia disc_copies on all cluster nodes
SQL database replication (MySQL/PostgreSQL native)

CDR backup procedures

Configuration backup

Recovery Procedures:

Database backup and restore

Mnesia table recovery

Configuration restoration

Node replacement procedures

5. DOCUMENTATION REFERENCES

5.1 Technical Manuals

Available documentation in the project repository:

. - System overview, architecture, and features

. - Complete configuration reference

. - REST APl documentation

. - Operational procedures and monitoring
. - Call Detail Record database schema

. - SMS routing configuration

. - Number normalization

. - Prometheus metrics and monitoring

. - Performance optimization

. - Common issues and solutions

5.2 Security Certifications

* Penetration Test Reports: [To be provided upon request]
e Security Audit Reports: [To be provided upon request]
e Vulnerability Assessments: [To be provided upon request]

e Erlang/OTP Cryptographic Validation: Industry-standard cryptographic
library

5.3 Compliance Documentation

e ANSSI R226 Authorization Request: This document

e Lawful Interception Compliance: As required by French
telecommunications regulations

e Data Protection Compliance: GDPR considerations for message data

6. CONTACT INFORMATION

Vendor/Operator Information:

e Company Name: Omnitouch Network Services Pty Ltd
e Address: PO BOX 296, QUINNS ROCKS WA 6030, AUSTRALIA
e Contact Person: Compliance Team

e Email:
Technical Security Contact:

¢ Name: Compliance Team

e Email:
Legal/Compliance Contact:

e Name: Compliance Team

e Email:

APPENDICES

Appendix A: SMS Message Flow with
Interception Points

A.1l Outbound SMS Flow (Mobile Terminated)

mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au

Real-time Message
Retrieval

OmniMessage SM5c
Mnesia Queue

|
REST API

—

Law Enforcement
Monitoring System

¥

Active Queue Monitoring

Recent Message Feed

Legend: [INTERCEPTION POINT] = Points where lawful interception data is

captured and stored

A.2 Inbound SMS Flow (Mobile Originated)

External Gateway

Message Store

Application ‘

(Mnesia)

Mobile Network (SMPP/IMS/MAP) SMSc REST API (Mnesia) CDR Database
Inbound SMS
POST /api/messages
(Submit inbound)
[INTERCEPTION POINT]
- Source MSISDN
- Destination MSISDN
- Message body
- Source SMSC
- Protocol type
- Timestamp
Insert message
Message stored
201 Created
Acknowledge
Write CDR record
GET /api/messages?source_smsc=X
Query messages
Inbound messages
Messages list
Mobile Network ﬁ’gﬁg},aﬂ'w?sa/tﬂvgy SMSc REST API Message Store CDR Database Application ‘

Appendix B: CDR Schema for Lawful
Interception

The OmniMessage SMSc stores Call Detail Records in a SQL database (MySQL
or PostgreSQL) for long-term retention and lawful interception access.

B.1 Key CDR Fields for Lawful Interception

Field Name

id

message id

calling number

called number

source _smsc

dest smsc

origin node

destination node

submission time

delivery time

expiry time

Type

BIGINT

BIGINT

VARCHAR(255)

VARCHAR(255)

VARCHAR(255)

VARCHAR(255)

VARCHAR(255)

VARCHAR(255)

DATETIME

DATETIME

DATETIME

Description

Auto-incrementing primary key

Unique message identifier

Source MSISDN

Destination MSISDN

Source gateway identifier

Destination gateway identifier

Erlang cluster node (origination)

Erlang cluster node (delivery)

Message submission timestamp

Message delivery timestamp

Message expiry timestamp

Field Name

status

delivery attempts

message parts

deadletter

message body

inserted at

updated at

Type

VARCHAR(50)

INT

INT

BOOLEAN

TEXT

DATETIME

DATETIME

Description

Message status
(delivered/expired/failed/rejected)

Number of delivery attempts

Number of SMS segments

Dead letter queue flag

SMS message content

CDR creation timestamp

CDR update timestamp

[0 Complete schema documentation with SQL examples in

B.2 CDR Query Examples for Lawful Interception

Query all messages for target number:

SELECT * FROM cdrs
WHERE calling number
OR called number = '+33612345678'

= '+33612345678"

ORDER BY submission time DESC;

Query messages within time window:

SELECT * FROM cdrs
WHERE (calling number = '+33612345678' OR called number =
'+33612345678")

AND submission time BETWEEN '2025-11-01 00:00:00' AND '2025-11-
30 23:59:59'
ORDER BY submission time;

Export to CSV for law enforcement:

.mode csv

.output /tmp/interception report.csv

SELECT message id, calling number, called number, message body,
submission time, delivery time, status

FROM cdrs

WHERE calling number = '+33612345678"

ORDER BY submission time DESC;

B.3 CDR Database Access Methods

1. Direct SQL Access:

Read-only database credentials

Standard SQL queries

JDBC/ODBC connectivity

Database client tools (MySQL Workbench, pgAdmin)

2. REST API Access:

Future enhancement: REST API for CDR queries

JSON format responses

Authentication and authorization

Query parameter filtering
3. Batch Export:

e CSV export via mysqgl/psql command-line
e Automated export scripts

e Scheduled exports via cron

B.4 CDR Retention and Privacy

Retention Configuration:

config/runtime.exs
config :sms c,
Delete message body after delivery (privacy mode)
delete message body after delivery: false, # true for privacy

Enable/disable CDR writing
cdr_enabled: true,

Mnesia to CDR archival settings
message retention hours: 24

Privacy Options:

Message body can be set to NULL after delivery
Database table encryption (MySQL ENCRYPTION="Y")

Column-level access restrictions

Masked exports for analytics

Appendix C: REST API Reference for
Interception

C.1 Message Retrieval Endpoints

Get all messages:

GET /api/messages
Authorization: Bearer <token>

Get messages by SMSC:
GET /api/messages/get by smsc?smsc=gateway-name

Get specific message:

GET /api/messages/{id}

Response Format:

"status": "success",
"data": |
{
"id": 12345,

"message id": 12345,

"source msisdn": "+33612345678",
"destination msisdn": "+33687654321",
"message body": "Message content here",
"source smsc": "ims.gateway",

"dest smsc": "smpp.provider",

"status": "delivered",

"delivery attempts": 1,

"inserted at": "2025-11-29T10:30:00Z",
“deliver time": "2025-11-29T10:30:05Z",
“expires": "2025-11-30T10:30:00Z"

[] Complete API documentation in

C.2 Filtering and Search

Query Parameters:

source smsc - Filter by source gateway

dest smsc - Filter by destination gateway
Time-range filtering (via CDR database queries)

Status filtering (via CDR database queries)

Future Enhancements:

e REST API for CDR queries

e Advanced filtering by phone number

e Date range filtering

e Full-text search on message body

Appendix D: Configuration Examples

D.1 TLS Certificate Configuration

Generate TLS Certificate:

Generate 4096-bit RSA private key
openssl genrsa -out priv/cert/omnitouch.pem 4096

Generate certificate signing request
openssl req -new -key priv/cert/omnitouch.pem -out
priv/cert/omnitouch.csr \

-subj "/C=FR/ST=IDF/L=Paris/0=0mnitouch/CN=smsc.example.com"

Self-signed certificate (development/testing)
openssl x509 -req -days 365 -in priv/cert/omnitouch.csr \
-signkey priv/cert/omnitouch.pem -out priv/cert/omnitouch.crt

Production: Submit CSR to trusted CA for signing
Configure in application:

config/runtime.exs
config :api ex,
api: %{
enable tls: true,
tls cert path: "priv/cert/omnitouch.crt",
tls key path: "priv/cert/omnitouch.pem”

}

D.2 Database Encryption Configuration

MySQL Table Encryption:

-- Enable encryption for CDR table
ALTER TABLE cdrs ENCRYPTION='Y';

-- Verify encryption status

SELECT TABLE NAME, CREATE_OPTIONS

FROM information schema.TABLES

WHERE TABLE SCHEMA = 'sms c' AND TABLE NAME = 'cdrs';

PostgreSQL Connection Encryption:

config/runtime.exs
config :sms c, SmsC.Repo,
username: "omnitouch",
password: "secure password",
hostname: "localhost",
database: "sms c",
ssl: true,
ssl opts: [
verify: :verify peer,
cacertfile: "/path/to/ca.crt",
certfile: "/path/to/client.crt",
keyfile: "/path/to/client.key"

D.3 Privacy Configuration

Enable Message Body Deletion:

config/runtime.exs

config :sms _c,
Delete message body after successful delivery
delete message body after delivery: true,

Hide message body in UI
hide message body in ui: true,

Hide message body in exports
hide message body in export: true

Create Privacy-Preserving Database View:

-- Create view without message bodies for general analytics
CREATE VIEW cdrs metadata AS
SELECT
id, message id, calling number, called number,
source smsc, dest smsc, origin node, destination node,
submission time, delivery time, expiry time,
status, delivery attempts, message parts, deadletter,
inserted at, updated at
FROM cdrs;

-- Grant access to analytics users
GRANT SELECT ON cdrs metadata TO 'analytics'@'%';

Appendix E: Glossary

Regulatory and Standards Bodies

» ANSSI: Agence nationale de la sécurité des systemes d'information -
French National Cybersecurity Agency

e ETSI: European Telecommunications Standards Institute

e 3GPP: 3rd Generation Partnership Project - Mobile telecommunications
standards

e IETF: Internet Engineering Task Force - Internet standards body

Telecommunications Terms

e SMSc: SMS Service Center - Central system for SMS message routing and
delivery

e SMPP: Short Message Peer-to-Peer protocol - Industry standard for SMS
exchange

e ESME: External Short Message Entity - SMPP client application

e IMS: IP Multimedia Subsystem - All-IP network architecture for multimedia
services

e SIP: Session Initiation Protocol - Signaling protocol for IMS messaging

e P-CSCF: Proxy Call Session Control Function - IMS network entry point

S-CSCF: Serving Call Session Control Function - IMS session control
HSS: Home Subscriber Server - IMS subscriber database

SS7/MAP: Signaling System 7 / Mobile Application Part - Legacy mobile
signaling protocols

MSC: Mobile Switching Center - Circuit-switched network element
VLR: Visitor Location Register - Subscriber location database

GT: Global Title - SS7 addressing scheme

SCCP: Signaling Connection Control Part - SS7 network layer

TCAP: Transaction Capabilities Application Part - SS7 application layer

MSISDN: Mobile Station International Subscriber Directory Number - Phone
number

IMSI: International Mobile Subscriber Identity - Unique subscriber identifier
E.164: International numbering plan for telephone numbers

ENUM: E.164 Number Mapping - DNS-based phone number to URI mapping
PDU: Protocol Data Unit - Binary encoded SMS message

TP-DCS: Transfer Protocol Data Coding Scheme - SMS encoding
specification

TP-DU: Transfer Protocol Data Unit - SMS-specific PDU format

UDH: User Data Header - Header for concatenated/special SMS messages

TON/NPI: Type of Number / Numbering Plan Indicator - Number format
classification

GSM7: GSM 7-bit default alphabet - Standard SMS character encoding
UCS-2: Universal Character Set 2-byte - Unicode encoding for SMS

System Components

Mnesia: Erlang distributed database system - In-memory/disc storage
CDR: Call Detail Record - Billing and analytics record for messages
REST API: Representational State Transfer - HTTP-based API architecture
Phoenix: Elixir web framework

Cowboy: Erlang HTTP server

Ecto: Elixir database wrapper and query language

PubSub: Publish-Subscribe messaging pattern

Lawful Interception

e LI: Lawful Interception - Legal monitoring of telecommunications

e LIMF: Lawful Interception Mediation Function - System that interfaces
between telecom network and law enforcement

e LEMF: Law Enforcement Monitoring Facility - Law enforcement system
receiving intercepted data

e IRI: Intercept Related Information - Call/message metadata for law
enforcement

e CC: Content of Communication - Actual message content

e X1 Interface: ETSI LI administrative interface - Warrant provisioning and
target activation

e X2 Interface: ETSI LI interface for IRI delivery - Metadata handover to law
enforcement

e X3 Interface: ETSI LI interface for CC delivery - Content handover to law
enforcement

e R226: Articles R226-3 and R226-7 of French Penal Code governing
interception equipment

e ETSI: European Telecommunications Standards Institute - Defines LI
standards

e ETSITS 102 232: Technical specification for lawful interception handover
interfaces

Message Processing

e MT: Mobile Terminated - Outbound message to mobile subscriber
¢ MO: Mobile Originated - Inbound message from mobile subscriber
e DLR: Delivery Receipt - Confirmation of message delivery

e Dead Letter: Message that failed delivery after all retry attempts

 Exponential Backoff: Increasing retry delay (2min, 4min, 8min, etc.)

Security and Encryption

e TLS: Transport Layer Security - Encryption protocol

e PFS: Perfect Forward Secrecy - Cryptographic property for session key
security

e AES: Advanced Encryption Standard
e RSA: Rivest-Shamir-Adleman - Public key cryptography

ECDSA: Elliptic Curve Digital Signature Algorithm

SHA: Secure Hash Algorithm

X.509: Certificate standard

CA: Certificate Authority

CSPRNG: Cryptographically Secure Pseudo-Random Number Generator

Database Terms

e MySQL: Open-source relational database

e PostgreSQL: Open-source object-relational database
e TDE: Transparent Data Encryption

 RBAC: Role-Based Access Control

Document Version: 1.0 Date: 2025-11-29 Prepared for: ANSSI R226
Authorization Application Document Classification: Regulatory Compliance -
Confidential

SMS-C API Reference

Complete reference for all SMS-C REST API endpoints with request/response
examples.

Table of Contents

APl Overview

The SMS-C REST API provides programmatic access to message submission,
routing, and management functions.

Base URL

https://api.example.com:8443/api

Default Port: 8443 (configurable) Protocol: HTTPS (TLS required in
production)

Content Type

All requests and responses use JSON:
Content-Type: application/json
API Versioning
The current APl is version 1 (implicit). Future versions will use URL versioning:

https://api.example.com:8443/api/v2/. ..

Authentication

TLS Client Certificates (Recommended)

Production deployments should use TLS client certificate authentication:

curl --cert client.crt --key client.key \
https://api.example.com:8443/api/status

API Key Authentication

Custom API key authentication via X-API-Key header:

curl -H "X-API-Key: your api key here" \
https://api.example.com:8443/api/status

IP Whitelisting
Restrict API access to trusted IP addresses at the firewall level.
Common Response Formats

Success Response

"data": {

Error Response

{
"errors": {
"detail": "Error message describing what went wrong"

}
}

List Response

{
“data": [
{...},
{...}

Status Endpoint

Health check endpoint for monitoring and load balancers.

Get API Status

Request:
GET /api/status

Response (200 OK):

{
"status": "ok",
"application": "OmniMessage",
“timestamp": "2025-10-30T12:34:56Z"
}
Example:

curl https://api.example.com:8443/api/status

Use Cases:

e Load balancer health checks
e Monitoring system connectivity

e Service availability verification

Message Queue API

Core message submission and management endpoints.

List Messages
Retrieve messages from the queue.

Request:
GET /api/messages

Optional Headers:

* smsc: frontend name - Filter by destination SMSC

e include-unrouted: true|false|1l|0 - Include messages without location
registration (default: false)
o false (default): Only return messages with explicit routing or location
registration

o true: Include messages without location registration (backward
compatible mode)

Query Parameters:

e status - Filter by status: pending, delivered, expired, dropped
e source smsc - Filter by source SMSC

e dest smsc - Filter by destination SMSC

e limit - Limit results (default: 100, max: 1000)

e offset - Pagination offset

Response (200 OK):

"data": [
{
"id": 12345,
"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Hello World",

"source smsc": "api client",
"dest smsc": "uk gateway",
"status": "pending",

"send time": "2025-10-30T12:00:00Z",
"deliver time": null,

"delivery attempts": 0O,

"inserted at": "2025-10-30T12:00:00Z"

Examples:

Get pending messages for specific SMSC (only with explicit routing or location):

curl -H "smsc: uk gateway" \
https://api.example.com:8443/api/messages

Get pending messages including unrouted messages (backward compatible):

curl -H "smsc: uk gateway" \
-H "include-unrouted: true" \
https://api.example.com:8443/api/messages

Get all delivered messages:

curl "https://api.example.com:8443/api/messages?
status=delivered&limit=50"

Get Single Message
Retrieve details for a specific message.

Request:
GET /api/messages/:id

Response (200 OK):

"data": {
"id": 12345,
"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Hello World",
"source smsc": "api client",
"dest smsc": "uk gateway",
"source imsi": null,
"dest imsi": null,
"message parts": 1,
"message part number": 1,
"tp data coding scheme": "00",
“tp_user data header": null,
"status": "pending",
"send time": "2025-10-30T12:00:00Z",
"deliver time": null,
"expires": "2025-10-31T12:00:00Z",
"deadletter": false,
"delivery attempts": 0O,
"charge failed": false,
"deliver after": "2025-10-30T12:00:00Z",
"raw data flag": false,
"raw sip flag": false,
"raw pdu": null,
"inserted at": "2025-10-30T12:00:00Z",
"updated at": "2025-10-30T12:00:00Z"

Example:

curl https://api.example.com:8443/api/messages/12345

Submit Message (Synchronous)
Submit a message and receive the message ID immediately.

Request:

POST /api/messages
Content-Type: application/json

Body:

"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Hello World",

"source smsc": "api_ client"

Optional Fields:

e dest smsc - Override routing decision

* send time - Schedule for future delivery (ISO 8601)
e message parts - Total parts for multi-part message
* message part number - Part number (1-indexed)

e tp data coding scheme - SMS DCS (default: "00")
e source imsi - Source subscriber IMSI

e dest imsi - Destination subscriber IMSI

Response (201 Created):

"data": {
"id": 12345,
"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Hello World",

"source smsc": "api client",
"dest smsc": "uk gateway",
"status": "pending",

"send time": "2025-10-30T12:00:00Z",
"inserted at": "2025-10-30T12:00:00Z"

Example:

curl -X POST https://api.example.com:8443/api/messages \
-H "Content-Type: application/json" \
-d '{
"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Hello World",
"source smsc": "api client"

}I
Performance: ~70 messages/second, 14ms average response time

Use When:

¢ Need message ID immediately
e Processing messages/second

¢ Require immediate confirmation

Submit Message (Asynchronous)
Submit a message with high throughput (batch processing).

Request:

POST /api/messages/create async
Content-Type: application/json

Body: Same as synchronous endpoint

Response (202 Accepted):

{
"data": {
"status": "accepted",
"message": "Message queued for processing"
}
}
Example:
curl -X POST

https://api.example.com:8443/api/messages/create async \
-H "Content-Type: application/json" \
-d '{
"source msisdn": "+15551234567",
"destination msisdn": "+447700900000",
"message body": "Bulk notification message",
"source smsc": "bulk api"

} 1

Performance: ~4,650 messages/second, 0.22ms average response time

Latency: Message appears in database within 100ms (configurable)

Use When:

e High-volume bulk messaging (> 100 msg/sec)
e Don't need message ID in API response

e Throughput more important than instant confirmation

Update Message
Partially update message fields.

Request:

PATCH /api/messages/:id
Content-Type: application/json

Body:

{

"dest smsc": "alternate gateway",
"deliver after": "2025-10-30T14:00:00Z"

}

Updatable Fields:

e dest smsc - Change destination
e deliver after - Delay delivery
* message body - Update message text

e status - Change status

Response (200 OK):

{
"data": {
"id": 12345,
"dest smsc": "alternate gateway",
"deliver after": "2025-10-30T14:00:00Z",
}
}

Example:

curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{
"dest smsc": "backup gateway"
}
Mark Message Delivered

Mark a message as successfully delivered.

Request:

POST /api/messages/:id/mark delivered
Content-Type: application/json

Body:

"dest smsc": "uk gateway"

}

Response (200 OK):

{
"data": {
"id": 12345,
"status": "delivered",
"deliver time": "2025-10-30T12:05:30Z",
"dest smsc": "uk gateway",
}
}

Example:

curl -X POST
https://api.example.com:8443/api/messages/12345/mark delivered \
-H "Content-Type: application/json" \
-d '{
"dest smsc": "uk gateway"

} 1
Use Case: Called by frontend systems after successful delivery

Increment Delivery Attempt
Increment retry counter and apply exponential backoff.

Request:
PUT /api/messages/:id

Response (200 OK):

{
"data": {
"id": 12345,
"delivery attempts": 2,
"deliver after": "2025-10-30T12:08:00Z",
}
}

Backoff Calculation:

deliver after = now + 2~ (delivery attempts) minutes

Example:

curl -X PUT https://api.example.com:8443/api/messages/12345

Use Case: Called by frontend after delivery failure to schedule retry

Delete Message
Remove message from queue.

Request:
DELETE /api/messages/:id

Response (204 No Content)

Example:
curl -X DELETE https://api.example.com:8443/api/messages/12345

Warning: Deleting messages removes them permanently. Use with caution.

Raw SMS PDU API

Submit SMS messages as raw PDU (Protocol Data Unit) for maximum
compatibility with legacy systems.

Submit Raw SMS (Synchronous)

Request:

POST /api/messages raw
Content-Type: application/json

Body:

"pdu": "0001000B916407007009F0000004D4F29COE",
"source smsc": "legacy system"

}

PDU Format: Hex-encoded SMS TPDU (Transport Protocol Data Unit)

Response (201 Created):

{
"data": {
"id": 12346,
"source msisdn": "+447700900000",
"destination msisdn": "+447700900000",
"message body": "Test",
"source smsc": "legacy system",
"raw pdu": "0001000B916407007009F0000004D4F29COE",
}
}
Example:

curl -X POST https://api.example.com:8443/api/messages raw \
-H "Content-Type: application/json" \

-d '{
"pdu": "0001000B916407007009F0000004D4F29COE",
"source smsc": "legacy system"

} 1

Submit Raw SMS (Asynchronous)

Request:

POST /api/messages raw/async
Content-Type: application/json

Body: Same as synchronous

Response (202 Accepted):

{
"data": {
"status": "accepted",
"message": "PDU queued for processing"
¥
}
Example:

curl -X POST https://api.example.com:8443/api/messages raw/async \
-H "Content-Type: application/json" \

-d '{
"pdu": "0001000B916407007009F0000004D4F29COE",
"source smsc": "legacy gateway"

}I

PDU Handling

The system automatically:

. Decodes PDU using SMS standards (3GPP TS 23.040)
. Extracts phone numbers, message text, DCS

. Detects delivery reports (CP-ACK, RP-ACK, etc.)

. Performs IMSI to MSISDN lookup if needed

. Applies routing rules

OO U b W N

. Stores original PDU for reference

Delivery Report Detection:

e CP-ACK, CP-ERROR - Connection Protocol acknowledgments
¢ RP-ACK, RP-ERROR, RP-SMMA - Relay Protocol responses

e Delivery reports are logged but not stored as messages

Location Management API

Manage subscriber location information for mobile-terminated message
delivery.

List Locations

Request:
GET /api/locations

Response (200 OK):

"data": [
{

"id": 1,
"msisdn": "+15551234567",
"imsi": "001001000000001",
"location": "mscl.regionl.example.com",
"ran_location": "cell tower 12345",
“imei": "123456789012345",
"ims_capable": true,
"csfb": false,
"registered": true,
"expires": "2025-10-30T13:00:00Z",
"user agent": "Samsung Galaxy",
“inserted at": "2025-10-30T12:00:00Z",
"updated at": "2025-10-30T12:00:00Z"

Example:

curl https://api.example.com:8443/api/locations

Get Location

Request:

GET /api/locations/:id

Response (200 OK):

{
"data": {
"id": 1,
"msisdn": "+15551234567",
"imsi": "001001000000001",
}
}
Example:

curl https://api.example.com:8443/api/locations/1

Create/Update Location
Creates new location or updates existing based on IMSI (unique identifier).

Request:

POST /api/locations
Content-Type: application/json

Body:

"msisdn": "+15551234567",

"imsi": "001001000000001",

"location": "mscl.regionl.example.com",
"ran_location": "cell tower 12345",
"imei": "123456789012345",

"ims capable": true,

"csfb": false,

"registered": true,

"expires": "2025-10-30T13:00:00Z",
"user agent": "Samsung Galaxy"

Required Fields:

e imsi - Unique subscriber identifier

¢ msisdn - Phone number
Optional Fields:

e location - MSC/VLR address

e ran_location - Cell tower/sector ID
e 1imei - Device identifier

e ims capable - IMS VOLTE capability
e csfb - Circuit-switched fallback flag
* registered - Currently registered

e expires - Registration expiry

* user agent - Device model/info

Response (201 Created or 200 OK):

{
"data": {
"id": 1,
"msisdn": "+15551234567",
}

Example:

curl -X POST https://api.example.com:8443/api/locations \
-H "Content-Type: application/json" \
-d '{
"msisdn": "+15551234567",
"imsi": "001001000000001",
"location": "mscl.regionl.example.com",
"ims capable": true,
"registered": true

} 1

Use Case: Called by mobility management systems (HSS, MME, etc.) when
subscriber registers

Update Location

Request:

PATCH /api/locations/:id
Content-Type: application/json

Body: Partial update with any location fields

Response (200 OK):

Example:

curl -X PATCH https://api.example.com:8443/api/locations/1 \
-H "Content-Type: application/json" \

-d '{
"location": "msc2.region2.example.com",
"ran_location": "cell tower 67890"

}I

Delete Location

Request:
DELETE /api/locations/:id

Response (204 No Content)

Example:
curl -X DELETE https://api.example.com:8443/api/locations/1

Use Case: Called when subscriber de-registers or times out

Frontend Registration API

Track and manage frontend SMSC connections.

List All Frontends

Request:
GET /api/frontends

Response (200 OK):

"data": [
{
"id": 1,
“frontend name": "uk gateway 1",
“frontend type": "smpp",
“ip address": "10.0.1.50",
"hostname": "gatewayl.uk.example.com",
"uptime seconds": 86400,
“configuration": {
“max_throughput": 1000,
"bind type": "transceiver"

}

"status": "active",

"expires at": "2025-10-30T12:02:00Z",
"last seen at": "2025-10-30T12:00:30Z",
“inserted at": "2025-10-29T712:00:00Z",
"updated at": "2025-10-30T12:00:30Z"

Example:

curl https://api.example.com:8443/api/frontends
List Active Frontends Only
Request:

GET /api/frontends/active

Response (200 OK): Same format, only active frontends

Example:

curl https://api.example.com:8443/api/frontends/active

Use Case: Get list of available destinations for routing

Get Frontend Statistics

Request:

GET /api/frontends/stats

Response (200 OK):

{
"data": {
"active count": 5,
"expired count": 2,
"unique frontends": 7,
“total registrations": 1523
¥
}
Example:

curl https://api.example.com:8443/api/frontends/stats
Get Frontend History
Request:

GET /api/frontends/history/:name

Response (200 OK):

"data": [
{
"id": 1,
“frontend name": "uk gateway 1",
"status": "active",

"inserted at": "2025-10-30T12:00:00Z",

{
"id": 2,
“frontend name": "uk gateway 1",
"status": "expired",

"inserted at": "2025-10-29T712:00:00Z",

Example:

curl
https://api.example.com:8443/api/frontends/history/uk gateway 1

Register Frontend
Register or update frontend connection.

Request:

POST /api/frontends/register
Content-Type: application/json

Body:

"frontend name": "uk gateway 1",
“frontend type": "smpp",
"ip address": "10.0.1.50",
"hostname": "gatewayl.uk.example.com",
"uptime seconds": 86400,
“configuration": {
"max_throughput": 1000,
"bind type": "transceiver",
"system id": "gatewayl"
}
}

Required Fields:

e frontend name - Unique identifier for frontend

e frontend type - Type: smpp, sip, http, etc.
Optional Fields:

e ip address - Frontend IP
e hostname - Frontend hostname
e uptime seconds - Uptime since start

e configuration - Custom config object

Response (201 Created):

{
"data": {
"id": 1,
“frontend name": "uk gateway 1",
"status": "active",
"expires at": "2025-10-30T12:01:30Z",
}
}

Example:

curl -X POST https://api.example.com:8443/api/frontends/register \
-H "Content-Type: application/json" \
-d '{
“frontend name": "uk gateway 1",
"frontend type": "smpp",
"ip address": "10.0.1.50",
"hostname": "gatewayl.uk.example.com"

} 1

Registration Timeout: 90 seconds (frontends must re-register every 60-90
seconds)

Use Case: Called periodically by frontend systems to maintain active status

Event Logging API

Track message lifecycle events.

Get Message Events

Request:
GET /api/events/:message id

Response (200 OK):

"data": [

{
"event epoch": 1698672000,
"name": "message inserted",
"description"”: "Message inserted into queue",
"event source": "nodel@server.example.com"

b

{
"event epoch": 1698672001,
“name": "message routed",
"description": "Routed to uk gateway via route 1id=42",
"event source": "nodel@server.example.com"

},

{
"event epoch": 1698672005,
"name": "message delivered",
"description": "Successfully delivered",
"event source": "node2@server.example.com"

¥

]
}
Example:

curl https://api.example.com:8443/api/events/12345

Event Types:

* message inserted - Message created

e message routed - Routing decision made

* message delivered - Successful delivery

* message failed - Delivery failed

e message dropped - Dropped by route

* auto reply sent - Auto-reply triggered

* number translated - Number transformation applied
e routing failed - No route found

e charging failed - Charging error

Record Event

Request:

POST /api/events
Content-Type: application/json

Body:
{
"message id": 12345,
“name": "custom event",
"description"”: "Custom event description”,
"event source": "external system"

Response (201 Created):

{
"data": {
"message id": 12345,
“name": "custom event",
“description”: "Custom event description”,
"event source": "external system",
"event epoch": 1698672010
}
}
Example:

curl -X POST https://api.example.com:8443/api/events \
-H "Content-Type: application/json" \

-d '{
"message id": 12345,
"name": "external delivery confirmed",
"description": "Confirmed by downstream system"

} 1

Event Retention: 7 days (configurable)

MMS Message API

Manage Multimedia Messaging Service (MMS) messages.

List MMS Messages

Request:
GET /api/mms messages
Response (200 OK): Similar to SMS messages with additional MMS fields

Create MMS Message

Request:

POST /api/mms messages
Content-Type: application/json

Body:

"source msisdn": "+15551234567",

"destination msisdn": "+447700900000",

"subject": "Photo",

"content type": "image/jpeg",

"content location": "https://cdn.example.com/media/12345.jpg",
"message size": 524288

Response (201 Created): Full MMS message object

SS7 Event API

Track SS7 signaling events.

List SS7 Events

Request:
GET /api/ss7_events

Response (200 OK):

{
"data": [
{
"id": 1,
"event type": "MAP UPDATE LOCATION",
"imsi": "001001000000001",
"msisdn": "+15551234567",
“timestamp": "2025-10-30T12:00:00Z",
}
]
}

Create SS7 Event

Request:

POST /api/ss7 events
Content-Type: application/json

Body:

"event type": "MAP_UPDATE LOCATION",
"imsi": "001001000000001",
"msisdn": "+15551234567"

Response (201 Created): Full event object

Error Codes

HTTP Status Codes

Code

200

201

202

204

400

401

403

404

422

429

500

503

Meaning

OK

Created

Accepted

No Content

Bad Request

Unauthorized

Forbidden

Not Found

Unprocessable Entity

Too Many Requests

Internal Server Error

Service Unavailable

Description

Request successful

Resource created successfully

Request accepted for processing

Successful deletion

Invalid request format

Authentication required

Insufficient permissions

Resource doesn't exist

Validation errors

Rate limit exceeded

Server error

Temporarily unavailable

Error Response Format

"errors": {

"detail": "Validation failed: destination msisdn is required"

Common Error Messages

Error

"destination_msisdn is
required"”

"Invalid phone number
format"

"Message too long"

"No route found"

"Charging failed"

"Message not found"

"Frontend not registered"

Cause

Missing
required field

Malformed
number

Exceeds size
[imit

Routing failed

OCS error

Invalid
message ID

Unknown SMSC

Solution

Include destination_msisdn
in request

Use E.164 format:
+15551234567

Split into multiple parts

Check routing configuration

Verify charging system
connectivity

Verify ID exists

Register frontend first

Rate Limiting
Default Limits

Endpoint Limit Window
POST /api/messages 100 req/sec Per IP
POST /api/messages/create_async 1000 reqg/sec Per IP
POST /api/messages_raw 100 req/sec Per IP

GET /api/* 1000 reqg/sec Per IP

Rate Limit Headers

X-RateLimit-Limit: 100
X-RateLimit-Remaining: 95
X-RatelLimit-Reset: 1698672060

Rate Limit Exceeded

Response (429 Too Many Requests):

{

"errors": {
"detail": "Rate limit exceeded. Retry after 5 seconds."

Best Practices

Message Submission

1. Use Async for Bulk: Use /create async for > 100 msg/sec
2. Include source_smsc: Always identify your system

3. Validate Numbers: Use E.164 format (+country code)

4. Handle Errors: Implement retry logic for 5xx errors

5. Check Routing: Test routes before bulk submission

Frontend Integration

1. Register Regularly: Re-register every 60 seconds
2. Poll for Messages: Query with smsc header for your messages

3. Use include-unrouted Wisely: By default, only messages with explicit
routing or location registration are returned. Set include-unrouted: true
only if you need backward compatible behavior to receive all unrouted
messages

4. Mark Delivered: Always call mark _delivered after success
5. Increment on Failure: Use PUT endpoint for retry logic

6. Monitor Events: Check event log for delivery issues

Performance

1. Connection Pooling: Reuse HTTP connections

2. Batch Requests: Group multiple messages per request
3. Parallel Processing: Make concurrent API calls

4. Monitor Metrics: Watch Prometheus for bottlenecks

5. Set Timeouts: Use 30-second timeout for API calls

Security

1. Use TLS: Always use HTTPS in production

2. Validate Certificates: Don't skip certificate validation

3. Rotate API Keys: Change keys regularly
4. IP Whitelist: Restrict to known sources

5. Log API Activity: Monitor for suspicious patterns

Error Handling

1. Retry 5xx Errors: Server errors are usually temporary
2. Don't Retry 4xx: Client errors need code fixes

3. Exponential Backoff: Wait longer between retries

4. Circuit Breaker: Stop after repeated failures

5. Alert on Patterns: Monitor error rates

Example Integration (Python)

import requests
import time

class SMSCClient:
def init (self, base url, api key=None):
self.base url = base url
self.session = requests.Session()
if api key:
self.session.headers.update({"X-API-Key": api key})

def submit message(self, from num, to num, text,
async_mode=False):
endpoint = "/messages/create async" if async mode else
"/messages”
url = f"{self.base url}{endpoint}"

payload = {
"source msisdn": from num,
"destination msisdn": to_num,
"message body": text,
"source smsc": "python client"

try:
response = self.session.post(url, json=payload,
timeout=30)
response.raise for status()
return response.json()["data"]
except requests.exceptions.RequestException as e:
print(f"API Error: {e}")
return None

def get pending messages(self, smsc name,
include unrouted=False):
url = f"{self.base url}/messages"”
headers = {"smsc": smsc name}

Include unrouted messages if requested (backward
compatible mode)
if include unrouted:
headers["include-unrouted"] = "true"

try:
response = self.session.get(url, headers=headers,
timeout=30)
response.raise for status()
return response.json()["data"]
except requests.exceptions.RequestException as e:
print(f"API Error: {e}")
return []

def mark delivered(self, message id, smsc name):
urt = f"
{self.base url}/messages/{message id}/mark delivered"
payload = {"dest smsc": smsc name}

try:
response = self.session.post(url, json=payload,
timeout=30)
response.raise for status()
return True
except requests.exceptions.RequestException as e:
print(f"API Error: {e}")
return False

Usage
client = SMSCClient("https://api.example.com:8443/api",
api key="your key")

Submit single message

result = client.submit message("+15551234567", "+447700900000",
"Hello")

print(f"Message ID: {result['id']}")

Submit bulk messages (async)
for i in range(1000):

client.submit message("+15551234567", f"+44770090{i:04d}",
f"Bulk {i}", async_mode=True)

Frontend polling loop

while True:
Get messages with explicit routing or location registration
messages = client.get pending messages("my gateway")

Or use include unrouted=True for backward compatible

behavior
messages = client.get pending messages("my gateway",
include unrouted=True)

for msg in messages:
Deliver message via your protocol
success = deliver via smpp(msg)

if success:
client.mark delivered(msg["id"], "my gateway")
else:
Increment for retry
requests.put(f"
{client.base url}/messages/{msg['id"']}")

time.sleep(5) # Poll every 5 seconds

API Changelog

Version 1 (Current)

 Initial release

e Message queue CRUD
e Raw PDU submission

e Location management
e Frontend registration

e Event logging

Planned Features

e Batch message submission (single request, multiple messages)
e Message templates

e Scheduled delivery API

e Real-time webhooks for events

e GraphQL API endpoint

e OAuth2 authentication

For questions or issues with the API, check the
contact support.

or

CDR (Call Detail
Record) Schema
Reference

Complete reference for the CDR database table used for long-term message
storage, billing, and analytics.

Table of Contents

Overview

The cdrs table stores Call Detail Records for all SMS messages processed by
the system. CDRs are written when:

e Messages are successfully delivered
e Messages expire without delivery
e Messages fail permanently

e Messages are rejected

CDRs provide long-term storage separate from the operational Mnesia
database, enabling:

Billing and invoicing

Analytics and reporting

Compliance and auditing

Message history beyond Mnesia retention period

Table Schema
MySQL / MariaDB

CREATE TABLE cdrs (
id BIGINT AUTO INCREMENT PRIMARY KEY,

-- Message identification
message id BIGINT NOT NULL,

-- Phone numbers
calling number VARCHAR(255) NOT NULL,
called number VARCHAR(255) NOT NULL,

-- SMSC routing
source _smsc VARCHAR(255),
dest smsc VARCHAR(255),

-- Node information (for clustered deployments)
origin node VARCHAR(255),
destination node VARCHAR(255),

-- Timestamps

submission time DATETIME NOT NULL,
delivery time DATETIME,

expiry time DATETIME,

-- Status and metadata

status VARCHAR(50) NOT NULL,
delivery attempts INT DEFAULT 0,
message parts INT,

deadletter BOOLEAN DEFAULT FALSE,

-- Optional message body (privacy controls)
message body TEXT,

-- Audit timestamps
inserted at DATETIME NOT NULL,
updated at DATETIME NOT NULL,

-- Indexes
INDEX idx cdrs message id (message id),

INDEX
INDEX
INDEX
INDEX
INDEX

idx_cdrs _calling number (calling number),
idx_cdrs_called number (called number),
idx_cdrs_status (status),

idx cdrs submission time (submission time),
idx _cdrs dest smsc (dest smsc)

PostgreSQL

CREATE TABLE cdrs (

);

id BIGSERIAL PRIMARY KEY,

-- Message identification
message id BIGINT NOT NULL,

-- Phone numbers
calling number VARCHAR(255) NOT NULL,
called number VARCHAR(255) NOT NULL,

-- SMSC routing
source smsc VARCHAR(255),
dest smsc VARCHAR(255),

-- Node information (for clustered deployments)
origin node VARCHAR(255),
destination node VARCHAR(255),

-- Timestamps

submission time TIMESTAMP NOT NULL,
delivery time TIMESTAMP,

expiry time TIMESTAMP,

-- Status and metadata

status VARCHAR(50) NOT NULL,
delivery attempts INTEGER DEFAULT 0O,
message parts INTEGER,

deadletter BOOLEAN DEFAULT FALSE,

-- Optional message body (privacy controls)
message body TEXT,

-- Audit timestamps

inserted at TIMESTAMP NOT NULL,
updated at TIMESTAMP NOT NULL

Indexes

CREATE INDEX idx cdrs message id ON cdrs(message id);
CREATE INDEX idx cdrs calling number ON cdrs(calling number);
CREATE INDEX idx cdrs called number ON cdrs(called number);

CREATE INDEX idx cdrs status ON cdrs(status);
CREATE INDEX idx cdrs submission time ON cdrs(submission time);
CREATE INDEX idx cdrs dest smsc ON cdrs(dest smsc);

Field Descriptions
Primary Key

Field Type Nullable Description

Auto-incrementing primary key for the CDR

id BIGINT NO
record

Message ldentification

Field Type Nullable Description

Unique message identifier from the
message id BIGINT NO SMS-C message queue. References the
original message ID in Mnesia.

Phone Numbers

Field Type Nullable Description

Source MSISDN (mobile
number) of the message
calling number VARCHAR(255) NO sender. Typically in E.164
format (e.qg.,
+15551234567).

Destination MSISDN
(mobile number) of the
called number VARCHAR(255) NO message recipient.
Typically in E.164 format
(e.g., +15551234567).

SMSC Routing

Field Type Nullable Description

Name or identifier of the
source SMSC that submitted
source smsc VARCHAR(255) YES the message. NULL if
submitted via APl or other
non-SMSC interface.

Name or identifier of the
destination SMSC that
dest smsc VARCHAR(255) YES delivered (or attempted to

deliver) the message. NULL if
message was never routed.

Node Information

For clustered deployments, tracks which nodes handled the message:

Field Type Nullable

origin node VARCHAR(255) YES

destination node VARCHAR(255) YES

Timestamps

All timestamps are stored in UTC:

Description

Erlang node name where
message was originally
received (e.qg.,

Useful for troubleshooting
and load distribution
analysis.

Erlang node name where
message was delivered frc
(if different from origin).
NULL for single-node
deployments or if messag:
never delivered.

mailto:sms@node1.example.com

Field Type

submission time DATETIME

delivery time DATETIME

expiry time DATETIME

Delivery Duration Calculation:

Nullable

NO

YES

YES

Description

When the message was first
submitted to the SMS-C. Used
as the start time for billing
calculations.

When the message was
successfully delivered. NULL if
message expired, failed, or
was rejected.

When the message expired
(became undeliverable). NULL
if message was delivered or is
still pending.

TIMESTAMPDIFF (SECOND, submission time, delivery time) AS

delivery duration seconds

Status and Metadata

Field Type

status VARCHAR(50)

delivery attempts INT

message parts INT

deadletter BOOLEAN

Status Values:

Nullable

NO

NO

YES

NO

Description

Final message status.
Valid values:
delivered, expired,
failed, rejected

Number of delivery

attempts made before
final status. Default: 0.
Range: 0-255 typically.

Number of SMS
segments for
concatenated
messages. 1 for single-
part messages, 2+ for
multi-part. NULL if
unknown.

Whether message was
moved to dead letter
queue. TRUE indicates
message couldn't be
delivered and
exhausted all retries.
Default: FALSE

Delivery

Status Description Billable .
Time
. Successfully delivered to
delivered . Yes Set
recipient
_ Exceeded validity period Depends on
expired . , . . NULL
without delivery billing policy
Permanent delivery failure Depends on
failed se Y Epends ¢ NULL
(invalid number, etc.) billing policy
_ Rejected by routing rules or
rejected No NULL

validation

Message Body

Field Type Nullable Description

The actual SMS message content. Can
be NULL if

delete message body after delivery
is enabled for privacy. Max length
varies by database (typically 65,535
characters for TEXT type).

message body TEXT YES

Privacy Modes:

e Full retention: Message body stored in CDR for compliance/archival
e Privacy mode: Message body set to NULL when
delete message body after delivery: true

e Compliance mode: Body stored encrypted or hashed (requires custom
implementation)

Audit Timestamps

Field Type Nullable Description

When the CDR record was first
inserted into the database.
Typically same as or shortly after
delivery_time/expiry_time.

inserted at DATETIME NO

When the CDR record was last
updated at DATETIME NO updated. Same as inserted_at if
never updated.

SQL Examples

Basic Queries

Find all CDRs for a specific phone number:

SELECT * FROM cdrs

WHERE calling number = '+15551234567"
OR called number = '+15551234567'

ORDER BY submission time DESC

LIMIT 100;

Count messages by status:

SELECT status, COUNT(*) as count
FROM cdrs
GROUP BY status;

Average delivery time for delivered messages:

SELECT AVG(TIMESTAMPDIFF(SECOND, submission time, delivery time))
AS avg delivery seconds
FROM cdrs
WHERE status = 'delivered'
AND delivery time IS NOT NULL;

Billing Queries

Daily message volume by destination SMSC:

SELECT

DATE (submission time) AS date,

dest smsc,

COUNT (*) AS message count,

SUM(CASE WHEN status = 'delivered' THEN 1 ELSE O END) AS
delivered count,

SUM(message parts) AS total segments
FROM cdrs
WHERE submission time >= DATE SUB(NOW(), INTERVAL 30 DAY)
GROUP BY DATE(submission time), dest smsc
ORDER BY date DESC, message count DESC;

Billable messages for a customer (by calling number prefix):

SELECT
DATE (submission time) AS date,
COUNT (*) AS message count,
SUM(message parts) AS total segments,
SUM(message parts) * 0.01 AS total cost
FROM cdrs
WHERE calling number LIKE '+1555%'
AND status = 'delivered'
AND submission time >= '2025-10-01'
AND submission time < '2025-11-01'
GROUP BY DATE(submission time);

Route performance analysis:

SELECT

dest smsc,

COUNT(*) AS total messages,

SUM(CASE WHEN status = 'delivered' THEN 1 ELSE O END) AS
delivered,

ROUND(100.0 * SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0
END) / COUNT(*), 2) AS delivery rate pct,

AVG(delivery attempts) AS avg attempts,

AVG(TIMESTAMPDIFF (SECOND, submission time, delivery time)) AS
avg delivery seconds
FROM cdrs
WHERE submission time >= DATE SUB(NOW(), INTERVAL 7 DAY)

AND dest smsc IS NOT NULL
GROUP BY dest smsc
ORDER BY delivery rate pct DESC;

Analytics Queries

Messages by hour of day (traffic pattern):

SELECT
HOUR (submission time) AS hour,
COUNT (*) AS message count
FROM cdrs
WHERE submission time >= DATE SUB(NOW(), INTERVAL 7 DAY)
GROUP BY HOUR(submission time)
ORDER BY hour;

Multi-part message analysis:

SELECT
message parts,
COUNT (*) AS message count,
AVG(TIMESTAMPDIFF (SECOND, submission time, delivery time)) AS
avg delivery seconds
FROM cdrs
WHERE message parts IS NOT NULL
AND status = 'delivered'
GROUP BY message parts
ORDER BY message parts;

Failed message analysis:

SELECT
called number,
COUNT(*) AS failure count,
AVG(delivery attempts) AS avg attempts,
MAX(submission time) AS last failure
FROM cdrs
WHERE status IN ('failed', 'expired')
AND submission time >= DATE SUB(NOW(), INTERVAL 7 DAY)
GROUP BY called number
HAVING failure count >= 5
ORDER BY failure count DESC;

Compliance and Audit Queries

Find all messages between two parties in a time range:

SELECT
submission time,
calling number,
called number,
status,
message body,
delivery time
FROM cdrs
WHERE (
(calling number
'+15559876543 ")
OR
(calling number
'+15551234567")
)
AND submission time >= '2025-10-01'
AND submission time < '2025-11-01"
ORDER BY submission time;

'+15551234567"' AND called number

'+15559876543"' AND called number

Retention policy enforcement (delete old CDRs):

-- Find records older than retention period (example: 2 years)

SELECT COUNT(*) FROM cdrs
WHERE submission time < DATE SUB(NOW(), INTERVAL 2 YEAR);

-- Delete old records (use with caution!)

DELETE FROM cdrs
WHERE submission time < DATE SUB(NOW(), INTERVAL 2 YEAR)

LIMIT 10000; -- Batch delete to avoid locking

Cluster Analysis

Message distribution across nodes:

SELECT
origin node,

COUNT(*) AS message count,

SUM(CASE WHEN status =

delivered count
FROM cdrs

‘delivered' THEN 1 ELSE O END) AS

WHERE submission time >= DATE SUB(NOW(), INTERVAL 1 DAY)

GROUP BY origin node;

Indexes

The following indexes are created to optimize common queries:

Index Name

PRIMARY

idx cdrs message id

idx _cdrs calling number

idx cdrs called number

idx_cdrs_status

idx cdrs submission time

idx cdrs dest smsc

Columns

id

message id

calling number

called number

status

submission time

dest smsc

Purpose

Primary key, ensures
unique record

Lookup CDR by original
message 1D

Find messages from a
specific sender

Find messages to a
specific recipient

Filter by delivery status

Time-based queries,
billing periods

Route performance
analysis

Additional Index Recommendations
For high-volume deployments, consider these additional indexes:

Composite index for billing queries:

CREATE INDEX idx cdrs billing ON cdrs(calling number,
submission time, status);

Composite index for route analysis:

CREATE INDEX idx cdrs route perf ON cdrs(dest smsc,
submission time, status);

Composite index for compliance searches:

CREATE INDEX idx cdrs party time ON cdrs(calling number,
called number, submission time);

Full-text index for message body searches (MySQL):

ALTER TABLE cdrs ADD FULLTEXT INDEX idx cdrs message body ft
(message body);

SELECT * FROM cdrs
WHERE MATCH(message body) AGAINST('keyword' IN NATURAL LANGUAGE
MODE) ;

Data Types by Database

Field type mappings across supported databases:

Field

id

message id

String fields

message body

Timestamps

Integers

Booleans

MySQL/MariaDB

BIGINT
AUTO_INCREMENT

BIGINT

VARCHAR(255)

TEXT

DATETIME

INT

BOOLEAN
(TINYINT(1))

PostgreSQL

BIGSERIAL

BIGINT

VARCHAR(255)

TEXT

TIMESTAMP

INTEGER

BOOLEAN

Privacy Considerations

Notes

64-bit integer,
auto-incrementing

64-bit integer

Variable-length
string, max 255
chars

Large text, up to
65,535 bytes
(MySQL), unlimited
(PostgreSQL)

UTC timestamps
recommended

32-bit signed
integer

MySQL stores as
0/1

The CDR table may contain sensitive personal information (phone numbers,

message content). Consider these privacy measures:

1. Message Body Privacy

Configuration options in config/runtime.exs:

config :sms c,
Delete message body after successful delivery
delete message body after delivery: true,

Hide message body in UI
hide message body in ui: true,

Hide message body in exports
hide message body in export: true

2. Phone Number Masking

For analytics that don't require full numbers:

-- Mask last 4 digits of phone numbers
SELECT

CONCAT (SUBSTRING(calling number, 1, LENGTH(calling number) - 4),
"XXXX') AS masked calling,

CONCAT (SUBSTRING(called number, 1, LENGTH(called number) - 4),
"XXXX') AS masked called,

COUNT(*) AS message count
FROM cdrs
GROUP BY masked calling, masked called;

3. Database Encryption

Enable encryption at rest for the database server:

MySQL:

-- Enable table encryption
ALTER TABLE cdrs ENCRYPTION='Y';

PostgreSQL: Use PostgreSQL transparent data encryption (TDE) or filesystem-
level encryption.

4. Access Controls

Restrict CDR table access:

-- Create read-only billing user
CREATE USER 'billing ro'@'%s' IDENTIFIED BY 'secure password';

GRANT SELECT ON sms c.cdrs TO 'billing ro'@'Ss";

-- Create limited analytics user (no message body access)
CREATE USER ‘'analytics'@'%' IDENTIFIED BY 'secure password';
GRANT SELECT (id, message id, calling number, called number,

source_smsc,
dest smsc, submission time, delivery time, status,

delivery attempts, message parts)
ON sms c.cdrs TO 'analytics'@'%’';

Retention and Archival

Retention Policies
Define retention periods based on regulatory and business requirements:
Industry Typical Retention Regulatory Basis
Telecom (US) 18-24 months FCC, state laws
Telecom (EU) 6 months - 2 years GDPR, ePrivacy
Financial 5-7 years SOX, SEC

Healthcare 6 years HIPAA

Archival Strategy

1. Partition by Date (MySQL 8.0+, PostgreSQL 11+)

-- MySQL partitioning by month

ALTER TABLE cdrs PARTITION BY RANGE (TO DAYS(submission time)) (
PARTITION p202510 VALUES LESS THAN (TO DAYS('2025-11-01')),
PARTITION p202511 VALUES LESS THAN (TO DAYS('2025-12-01')),
PARTITION p202512 VALUES LESS THAN (TO DAYS('2026-01-01")),
PARTITION p future VALUES LESS THAN MAXVALUE

);

-- Drop old partition (fast archival)
ALTER TABLE cdrs DROP PARTITION p202510;

2. Archive to Cold Storage

-- Export old CDRs to archive table
CREATE TABLE cdrs_archive LIKE cdrs;

INSERT INTO cdrs archive
SELECT * FROM cdrs
WHERE submission time < DATE SUB(NOW(), INTERVAL 2 YEAR);

-- Verify and delete from main table

DELETE FROM cdrs
WHERE submission time < DATE SUB(NOW(), INTERVAL 2 YEAR);

3. Automated Cleanup Script

#!/bin/bash
cleanup old cdrs.sh - Run via cron

MYSQL USER="cleanup user"
MYSQL PASS="secure password"
MYSQL DB="sms c"

RETENTION DAYS=730 # 2 years

Archive old records

mysql -u"$MYSQL USER" -p"$MYSQL PASS" "$MYSQL DB" <<EOF

INSERT INTO cdrs_archive

SELECT * FROM cdrs

WHERE submission time < DATE SUB(NOW(), INTERVAL $RETENTION DAYS
DAY)

LIMIT 100000;

DELETE FROM cdrs
WHERE submission time < DATE SUB(NOW(), INTERVAL $RETENTION DAYS
DAY)

LIMIT 100000;
EOF

Cron entry:

Run daily at 2 AM
© 2 * * * Jusr/local/bin/cleanup old cdrs.sh >>
/var/log/sms c/cleanup.log 2>&1

Billing Integration

Rate Card Schema

Create a separate rates table for billing:

CREATE TABLE billing rates (
id INT AUTO INCREMENT PRIMARY KEY,
destination prefix VARCHAR(20) NOT NULL,
description VARCHAR(255),
rate per message DECIMAL(10, 6) NOT NULL,
rate per segment DECIMAL(10, 6) NOT NULL,
currency VARCHAR(3) DEFAULT 'USD',
effective date DATE NOT NULL,
expiry date DATE,
INDEX idx prefix (destination prefix),
INDEX idx dates (effective date, expiry date)
);

-- Example rates

INSERT INTO billing rates (destination prefix, description,
rate per message, rate per segment, effective date) VALUES
('+1', 'United States/Canada', 0.0050, 0.0050, '2025-01-01'),
('+44', 'United Kingdom', 0.0080, 0.0080, '2025-01-01'),
('+61', 'Australia', 0.0100, 0.0100, '2025-01-01'),

('+', '"International default', 0.0150, 0.0150, '2025-01-01');

Billing Query

Join CDRs with rates for invoicing:

SELECT
DATE(c.submission time) AS date,
c.dest smsc AS route,
LEFT(c.called number,
CASE
WHEN c.called number LIKE '+1%' THEN 2
WHEN c.called number LIKE '+%' THEN
LENGTH(SUBSTRING INDEX(c.called number, '‘', 4))
ELSE 0
END
) AS destination prefix,
COUNT (*) AS message count,
SUM(c.message parts) AS segment count,
COALESCE(r.rate per segment, 0.015) AS rate,
SUM(c.message parts) * COALESCE(r.rate per segment, 0.015) AS
total cost
FROM cdrs c
LEFT JOIN billing rates r ON c.called number LIKE
CONCAT(r.destination prefix, '%")
AND c.submission time >= r.effective date
AND (r.expiry date IS NULL OR c.submission time < r.expiry date)
WHERE c.status = 'delivered'
AND c.submission time >= '2025-10-01'
AND c.submission time < '2025-11-01°
GROUP BY date, route, destination prefix
ORDER BY date DESC, total cost DESC;

Export for Billing Systems

CSV Export:

mysql -u billing ro -p -D sms c -e "
SELECT
id,
message 1id,
calling number,
called number,
dest smsc,
submission time,
delivery time,
status,
message parts
FROM cdrs
WHERE submission time >= '2025-10-01'
AND submission time < '2025-11-01°
AND status = ‘'delivered’
" --batch --silent | sed 's/\t/,/g' > billing_export_202510.csv

See Also

. - Configure CDR export settings
. - CDR maintenance procedures
. - Query CDRs via REST API

SMS-C Configuration
Reference

Complete reference for all SMS-C configuration options with examples for
common deployment scenarios.

Table of Contents

Configuration Files

The SMS-C uses three main configuration files:

config/config.exs

Static configuration loaded at compile time. Contains:

Application-wide defaults

Logger configuration

Development/test settings

Performance tuning parameters

config/runtime.exs
Runtime configuration loaded at startup. Contains:

* Database connection settings

e Cluster configuration

e External service integration (OCS, ENUM)
 Initial routes and translation rules

e Environment-specific settings

config/prod.exs (optional)
Production-specific overrides.

Best Practice: Use environment variables in runtime.exs for sensitive values
like passwords and API keys.

SQL CDR Storage Configuration

The SMS-C uses Mnesia for operational data (message queue, routing rules,
number translations) and supports external SQL databases for long-term CDR
(Call Detail Record) storage, billing, and analytics.

Supported SQL Databases

The system supports the following SQL databases for CDR export:

Database

MySQL

MariaDB

PostgreSQL

Version

8.0+

10.5+

13+

Adapter

Ecto.Adapters.MyXQL

Ecto.Adapters.MyXQL

Ecto.Adapters.Postgres

Default
Port

3306

3306

5432

Best For

General
purpose,
proven
reliability

MySQL-
compatible
open
source

Advanced
features,
JSON
support

Note: Mnesia is used automatically for operational data (message queue,

routing, translations) and requires no configuration. The SQL database is only

used for CDR export and long-term storage.

MySQL / MariaDB Configuration

config/runtime.exs
config :sms _c, SmsC.Repo,
adapter: Ecto.Adapters.MyXQL,

username: System.get env("DB_USERNAME") || "sms user",
password: System.get env("DB PASSWORD") || "secure password",
hostname: System.get env("DB HOSTNAME") || "localhost",

port: String.to integer(System.get env("DB PORT") || "3306"),
database: System.get env("DB NAME") || "sms c _prod",

pool size: String.to integer(System.get env("DB POOL SIZE") ||

"20")

PostgreSQL Configuration

config/runtime.exs
config :sms c, SmsC.Repo,
adapter: Ecto.Adapters.Postgres,

username: System.get env("DB USERNAME") || "sms user",
password: System.get env("DB PASSWORD") || "secure password",
hostname: System.get env("DB HOSTNAME") || "localhost",

port: String.to integer(System.get env("DB PORT") || "5432"),
database: System.get env("DB NAME") || "sms c prod",

pool size: String.to integer(System.get env("DB POOL SIZE") ||
II20II)

Choosing a SQL Database
MySQL/MariaDB - Recommended for most deployments:

e Excellent performance for CDR writes
e Proven reliability in telecom environments
e Wide tooling support for billing systems

e Easy replication setup

PostgreSQL - Consider if you need:

Advanced JSON/JSONB features for analytics

Complex queries on CDR data

Existing PostgreSQL infrastructure

PostGIS for geographic analysis

Deployment Topologies

Important: The SQL CDR database can run on a separate server from your
SMS-C instance(s). This is the recommended approach for production
deployments.

Single-Server Deployment (Development/Testing):

SMS-C Server |

| Instance | | (CDR)

I | .
| SMS-C | | sqL DB
|
| |

| Mnesia (Operational) | |
| | |

Distributed Deployment (Production - Recommended):

| |
SMS-C Node 1 | | SMS-C Node 2
SMs-C				SMS-C
Instance	<F——————1>	Instance		

T
|
v
<}—————{>| Mnesia

| | |(Rep11cated)
| | !
| |

| |
| |
|
| Network

v

Dedicated SQL Server

|
v

|
| Mnesia

|

|
| (Replicated) |
| |

| |
| MySQL/MariaDB |
| or PostgresQL |
| (CDR Storage) |
| |

Benefits of Separate SQL Server:

e Performance Isolation: CDR writes don't impact message processing

Scalability: Independently scale database and message processing

Reliability: Database maintenance doesn't affect SMS-C uptime

Data Management: Centralized CDR storage for multiple SMS-C instances

Backup Flexibility: Independent backup schedules and retention policies

Pool Size Guidelines

Pool -
Workload . Description
Size
Development 5-10 Minimal concurrency
Low Volume (< 100 msg/sec) 10-15 Small deployments
Medium Volume (100-1000 , _
20-30 Typical production
msg/sec)
_ High-throughput
High Volume (> 1000 msg/sec) 40-100

scenarios

Calculation: pool size = (expected concurrent DB operations) * 1.5

Database Connection Examples

Using Environment Variables (Recommended for Production):

Set environment variables

export DB USERNAME=sms prod user

export DB PASSWORD=strong password here

export DB HOSTNAME=db-primary.internal.example.com
export DB PORT=3306

export DB NAME=sms c production

export DB POOL SIZE=30

Direct Configuration (Development Only):

config :sms c, SmsC.Repo,
username: "dev user",
password: "dev password",
hostname: "localhost",
database: "sms c dev",
pool size: 5

Connection Pool Monitoring
Monitor pool usage via Prometheus metrics:

* ecto pools queue time - Time waiting for connection
e ecto pools query time - Query execution time

e ecto pools connected count - Active connections

Alert if wait time exceeds 100ms consistently - indicates need for larger pool.

APl Configuration

The REST API provides message submission and management capabilities.
Basic APl Configuration

config/runtime.exs
config :api ex,

port: String.to integer(System.get env("API PORT") || "8443"),
listen ip: System.get env("API LISTEN IP") || "0.0.0.0",
enable tls: System.get env("API ENABLE TLS") !'= "false"

TLS/SSL Configuration

Production Setup with TLS (Recommended):

config :api_ex,
port: 8443,
listen ip: "0.0.0.0",
enable tls: true,
tls cert path: "/etc/sms c/certs/server.crt”,
tls key path: "/etc/sms c/certs/server.key"

Development Setup without TLS:

config :api ex,
port: 8080,
listen ip: "127.0.0.1",
enable tls: false

API Certificate Setup

Generate self-signed certificate for testing:

Create certificate directory
mkdir -p priv/cert

Generate private key
openssl genrsa -out priv/cert/server.key 2048

Generate certificate signing request
openssl req -new -key priv/cert/server.key -out
priv/cert/server.csr \

-subj "/C=US/ST=State/L=City/0=0rganization/CN=sms-
api.example.com"

Generate self-signed certificate (valid 365 days)
openssl x509 -req -days 365 -in priv/cert/server.csr \
-signkey priv/cert/server.key -out priv/cert/server.crt

Set permissions
chmod 600 priv/cert/server.key
chmod 644 priv/cert/server.crt

For production, use certificates from a trusted CA (Let's Encrypt, commercial
CA, etc.).

API Access Control

IP Whitelisting (Application Firewall):

Using iptables (Linux)
iptables -A INPUT -p tcp --dport 8443 -s 10.0.0.0/8 -j ACCEPT
iptables -A INPUT -p tcp --dport 8443 -j DROP

Using firewalld (Red Hat/CentQS)

firewall-cmd --permanent --add-rich-rule='rule family="ipv4"
source address="10.0.0.0/8" port protocol="tcp" port="8443"
accept'

firewall-cmd --reload

APl Key Authentication (Application Level):

Configure via custom plug in router - see Operations Guide for implementation
details.

Web Ul Configuration

The web interface provides route management, message browsing, and
monitoring.

Basic Web Ul Configuration

config/runtime.exs

config :control panel,
port: String.to integer(System.get env("WEB PORT") || "80"),
hostname: System.get env("WEB HOSTNAME") || "localhost",
enable tls: System.get env("WEB ENABLE TLS") == "true"

Production Web Ul Setup

config :control panel,
port: 443,
hostname: "sms-admin.example.com",
enable tls: true,
tls _cert path: "/etc/sms_c/certs/web.crt",
tls key path: "/etc/sms c/certs/web.key"

Reverse Proxy Setup (Recommended)

Use Nginx or Apache as reverse proxy for additional security and features:

Nginx Configuration Example:

upstream sms web {
server 127.0.0.1:4000;
keepalive 32;

}

server {
listen 80;
server _name sms-admin.example.com;
return 301 https://$server name$request uri;

}

server {
listen 443 ssl http2;
server name sms-admin.example.com;

ssl certificate /etc/letsencrypt/live/sms-
admin.example.com/fullchain.pem;

ssl certificate key /etc/letsencrypt/live/sms-
admin.example.com/privkey.pem;

ssl protocols TLSv1.2 TLSvl.3;

ssl ciphers HIGH:'!'aNULL:!MD5;

Basic auth for additional security
auth basic "SMS-C Admin";
auth basic user file /etc/nginx/.htpasswd;

location / {
proxy pass http://sms web;
proxy http version 1.1;
proxy set header Upgrade $http upgrade;
proxy set header Connection "upgrade";
proxy set header Host $host;
proxy set header X-Real-IP $remote addr;
proxy set header X-Forwarded-For $proxy add x forwarded for;
proxy set header X-Forwarded-Proto $scheme;

WebSocket support for LiveView
location /live {
proxy pass http://sms web;
proxy http version 1.1;
proxy set header Upgrade $http upgrade;
proxy set header Connection "upgrade";

proxy read timeout 86400;
}
}

Cluster Configuration

The SMS-C supports multi-node clustering for high availability and load
distribution.

Single Node Setup

config/runtime.exs

config :sms _c,
cluster nodes: [], # Empty list = single node mode
smsc_node name: "nodel"

Multi-Node Static Cluster

Node 1: config/runtime.exs
config :sms _c,
cluster nodes: [
:"sms@nodel.internal.example.com",
:"sms@node2.internal.example.com",
:"sms@node3.internal.example.com"
1,
smsc _node name: "nodel"

Node 2: config/runtime.exs
config :sms c,
cluster nodes: [
:"sms@nodel.internal.example.com",
:"sms@node2.internal.example.com",
:"sms@node3.internal.example.com"

1,
smsc_node name: "node2"

DNS-Based Auto-Discovery

config :sms c,
dns cluster query: "sms-cluster.internal.example.com",
smsc_node name: System.get env("NODE NAME") || “"nodel"

DNS Setup for Auto-Discovery:

Configure SRV or A records for cluster nodes

SRV record (preferred):

_sms. tcp.sms-cluster.internal.example.com. IN SRV 0 0 0O
nodel.internal.example.com.

_sms. _tcp.sms-cluster.internal.example.com. IN SRV 0 0 0O
node2.internal.example.com.

_sms. tcp.sms-cluster.internal.example.com. IN SRV 0 0 0O
node3.internal.example.com.

A records (alternative):

sms-cluster.internal.example.com. IN A 10.0.1.10
sms-cluster.internal.example.com. IN A 10.0.1.11
sms-cluster.internal.example.com. IN A 10.0.1.12

Erlang Distribution Configuration

Start Nodes with Proper Names:

Node 1

export NODE NAME=sms@nodel.internal.example.com

export ERLANG COOKIE=shared secret cookie here

elixir --name $NODE NAME --cookie $ERLANG COOKIE -S mix phx.server

Node 2

export NODE NAME=sms@node2.internal.example.com

export ERLANG COOKIE=shared secret cookie here

elixir --name $NODE NAME --cookie $ERLANG COOKIE -S mix phx.server

Important: All nodes in a cluster MUST use the same Erlang cookie for
security.

Cluster Network Requirements

Open these ports between cluster nodes:

Port Range Protocol Purpose
4369 TCP Erlang Port Mapper Daemon (EPMD)
9100-9200 TCP Erlang distribution

Firewall Configuration Example:

Allow cluster traffic from internal network
iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 4369 -j ACCEPT
iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 9100:9200 -j ACCEPT

Message Queue Configuration

Controls message retention and expiration behavior.

Message Expiration

config/runtime.exs
config :sms c,
dead letter time minutes: 1440 # 24 hours

Common Values:

e 60 - 1 hour (testing/development)
e 1440 - 24 hours (typical production)
e 4320 - 3 days (extended retention)

e 10080 - 7 days (maximum retention)

Messages older than this value become undeliverable and are marked for
cleanup.

Delivery Retry Configuration

Retry behavior uses exponential backoff:

Retry Delay = 2"~ (attempt count) minutes

Attempt Delay

1 2 minutes

2 4 minutes

3 8 minutes

4 16 minutes
5 32 minutes
6 64 minutes
7 128 minutes
8 256 minutes

Maximum attempts before dead letter: Limited by dead letter time minutes.

Cleanup Configuration

config/config.exs

config :sms _c,
cleanup interval minutes: 10,
fingerprint ttl minutes: 5,
event ttl days: 7

Cleanup Intervals:

e cleanup _interval minutes: How often cleanup worker runs (default: 10)
e fingerprint_ttl minutes: Duplicate detection window (default: 5)

e event_ttl_days: Event log retention (default: 7)

Charging Configuration

Integration with OCS for online charging and billing.
Enable Charging

config/runtime.exs
config :sms c,
default charging enabled: true,
ocs url: "http://ocs.internal.example.com:2080/jsonrpc",
ocs tenant: "sms.example.com",
ocs destination: "default",
ocs source: "sms platform",
ocs subject: "sms user",
ocs account: "default account"

Disable Charging

config/runtime.exs
config :sms c,
default charging enabled: false

When disabled, all messages are processed without charging checks.

Per-Tenant Charging Configuration

config :sms_c,

ocs url: System.get env("OCS URL") ||
"http://localhost:2080/jsonrpc",

ocs tenant: System.get env("OCS TENANT") ||
"tenantl.example.com",

ocs_account: System.get env("0CS_ACCOUNT") || "default"

Environment Variables by Tenant:

Tenant 1

export OCS TENANT=tenantl.example.com
export OCS ACCOUNT=tenantl account

Tenant 2

export OCS TENANT=tenant2.example.com
export O0CS ACCOUNT=tenant2 account

Charging Failure Behavior

Configure what happens when charging fails:

config :sms c,
charging failure action: :allow # or :deny

e :allow - Process message even if charging fails (log error)

e :deny - Reject message if charging fails

OCS Connection Example

Test OCS Connectivity:

Test 0CS API
curl -X POST http://ocs.internal.example.com:2080/jsonrpc \
-H "Content-Type: application/json" \

-d '{
"method": "SessionSvl.AuthorizeEvent",
"params": [{

"Tenant": "sms.example.com",
"Account": "test account",
"Destination": "1234567890",
“Usage": 100
R
"id": 1
}

Expected response:

{

"id": 1,

"result": {
"Attributes": {},
"MaxUsage": 100,

}

}

ENUM Configuration

DNS-based E.164 number lookups for intelligent routing.

Disable ENUM (Default)

config/runtime.exs
config :sms c,
enum _enabled: false

Enable ENUM with Default DNS

config :sms_c,
enum_enabled: true,
enum domains: ["el64.arpa", "el64.org"],
enum dns servers: [], # Use system default DNS
enum_timeout: 5000 # 5 seconds

Enable ENUM with Custom DNS Servers

config :sms c,
enum _enabled: true,
enum domains: ["el64.internal.example.com", "el64.arpa"],
enum _dns_servers: [

{"10.0.1.53", 53}, # Internal DNS server
{"8.8.8.8", 53}, # Google Public DNS (fallback)
{"1.1.1.1", 53} # Cloudflare DNS (fallback)

1,
enum_timeout: 3000 # 3 seconds (faster failover)

ENUM Domain Priority
Domains are queried in order until a successful lookup:

config :sms c,
enum_domains: [

"elb4.internal.example.com”, # Try internal first
"el6b4.carrier.net", # Then carrier
"el64.arpa" # Then public registry

ENUM Performance Tuning

For Low-Latency Networks:

enum_timeout: 2000 # 2 seconds

For High-Latency/Satellite Links:

enum_timeout: 10000 # 10 seconds

ENUM DNS Setup Example

Configure Private ENUM Zone (BIND9 format):

; Zone file for el64.internal.example.com
$ORIGIN el64.internal.example.com.
$TTL 300

; Number: +1-555-0100 becomes
0.0.1.0.5.5.5.1.el64.internal.example.com
0.0.1.0.5.5.5.1.el64.internal.example.com. IN NAPTR 100 10 "u"
"E2U+sip" "!”.*$!sip:15550100@voip-gateway.example.com!”
0.0.1.0.5.5.5.1.el64.internal.example.com. IN NAPTR 100 20 "u"
"E2U+pstn” "1™, *$Ipstn:gateway-a.example.com!"

; Number: +1-555-0200

0.0.2.0.5.5.5.1.el64.internal.example.com. IN NAPTR 100 10 "u"
"E2U+sip" "!”.*$!sip:15550200@voip-gateway.example.com!”

Test ENUM Resolution:

Query ENUM domain
dig @10.0.1.53 NAPTR 0.0.1.0.5.5.5.1.el64.internal.example.com

Expected output includes NAPTR records:
0.0.1.0.5.5.5.1.el164.internal.example.com. 300 IN NAPTR 100 10
“u" "E2U+sip" "!7.*$!sip:15550100@voip-gateway.example.com!"

Number Translation Configuration

Regex-based number normalization applied before routing.

Disable Number Translation

config/runtime.exs
config :sms c,
translation rules: []

Basic Number Translation Examples

Add Country Code to Local Numbers:

config :sms c,
translation rules: [
%{
calling prefix: nil,
called prefix: "",
source smsc: nil,

calling match: "~(\d{10})$", # Match 10-digit
numbers
calling replace: "+1\1", # Prepend +1

called match: "~(\d{10})s$",

called replace: "+I1\1",

priority: 100,

description: "Add +1 to 10-digit North American numbers"
enabled: true

Normalize International Format:

o°
-~

calling prefix: nil,

called prefix: nil,

source smsc: nil,

calling match: "700(\d+)$", # Match 00 prefix
calling replace: "+\1", # Replace with +
called match: "~00(\d+)$",

called replace: "+\1",

priority: 10,

description: "Convert 00 international prefix to +",

enabled: true

Remove Formatting Characters:

o°
~

calling prefix: nil,

called prefix: nil,

source smsc: nil,

calling_match: "A\+?17[\s\-\.\(\) I*(\d{3}) [\s\-\.\)\(]1*(\d{3})
[\Ns\N-NLN(N) I*(\d{4})s$",

calling replace: "+1\1\2\3",

called_match: ""\+?17[\s\-\.\(\)I1*(\d{3}) [\s\-\.\)\(]1*(\d{3})
[\Ns\-\.N(\) I*(\d{4})s$",

called replace: "+1\1\2\3",

priority: 50,

description: "Normalize US phone number formatting",

enabled: true

Carrier-Specific Translation

Route Code Stripping:

%1

calling prefix: nil,

called prefix: "101", # Only for 101
prefix

source smsc: "carrier a", # Only from this
carrier

calling match: nil, # Don't change
calling

calling replace: nil,

called match: "7101(\d+)$", # Strip 101 route
code

called replace: "\1",

priority: 5,

description: "Strip carrier route code from called number",
enabled: true

Multi-Rule Translation

Rules are evaluated in priority order (lower number = higher priority):

config :sms c,
translation rules: [

Priority 1: Most specific rules first

[¢)

%{

calling prefix: "1555",

called prefix: nil,

source smsc: nil,

calling match: "~(1555\d{7})$",
calling replace: "+\1",

called match: nil,

called replace: nil,

priority: 1,

description: "Premium number normalization",

enabled: true

}

Priority 50: General rules
%{
calling prefix: nil,
called prefix: nil,
source smsc: nil,
calling match: "~(\d{10})$",
calling replace: "+1\1",
called match: "~(\d{10})s$",
called replace: "+1\1",
priority: 50,

description: "General 10-digit normalization",

enabled: true

Routing Configuration

Initial routing rules loaded on first startup. See
routing documentation.

for complete

Load Routes from Configuration

config/runtime.exs
config :sms c,
sms routes: [
Geographic routing example
%{
calling prefix: nil,
called prefix: "+1",
source smsc: nil,
dest smsc: "north america gateway",
source type: nil,
enum _domain: nil,
auto reply: false,
auto reply message: nil,
drop: false,
charged: :default,
weight: 100,
priority: 50,
description: "North America routing",
enabled: true

}

Load balanced routing example
%{
calling prefix: nil,
called prefix: "+44",
source smsc: nil,
dest smsc: "uk gateway 1",
source type: nil,
enum domain: nil,
auto reply: false,
auto reply message: nil,
drop: false,
charged: :default,
weight: 70,
priority: 50,
description: "UK primary gateway (70%)",
enabled: true

%{
calling prefix: nil,
called prefix: "+44",

source smsc: nil,

dest smsc: "uk gateway 2",
source type: nil,

enum domain: nil,

auto reply: false,

auto reply message: nil,
drop: false,

charged: :default,

weight: 30,

priority: 50,

description: "UK backup gateway (30%)",
enabled: true

Skip Initial Route Loading

Don't load routes from config (manage via Web UI only)
config :sms_c,
sms_routes: []

Routes defined in configuration are ONLY loaded if the routing table is empty
(first startup).

Performance Tuning Configuration

See for detailed optimization strategies.
Batch Insert Worker

config/config.exs
config :sms c,

batch insert batch size: 100,
batch insert flush interval ms: 100

Performance Profiles:

Messages per batch
Max wait time in ms

Profile Batch Size Interval Throughput Latency
High Volume 200 200ms ~5,000 msg/sec Up to 200ms
Balanced 100 100ms ~4,500 msg/sec Up to 100ms
Low Latency 50 20ms ~3,000 msg/sec Up to 20ms
Real-time 10 10ms ~1,500 msg/sec Up to 10ms

Logging Configuration
Log Levels

config/config.exs

config :logger, :console,
level: :info, # :debug, :info, :warning, :error
format: "$time $metadata[$level] $message\n”,
metadata: [:request id, :message id, :route id]

Production Recommended: :info or :warning Development
Recommended: :debug

Log Output Destinations

Console Only (Development):

config :logger,
backends: [:console]

File Logger (Production):

config :logger,
backends: [:console, {LoggerFileBackend, :file log}]

config :logger, :file log,
path: "/var/log/sms c/application.log",
level: :info,
format: "$time $metadata[$level] $message\n",
metadata: [:request id, :message id]

Log Rotation

Using logrotate (Linux):

/etc/logrotate.d/sms c
/var/log/sms c/*.log {
daily
rotate 30
compress
delaycompress
notifempty
create 0644 sms user sms_group
sharedscripts
postrotate
Signal application to reopen log file
systemctl reload sms c
endscript

Common Configuration Scenarios

High-Volume Aggregator

Optimize for maximum throughput (5,000+ messages/second):

Database
config :sms c, SmsC.Repo,
pool size: 50

Batch worker
config :sms c,
batch insert batch size: 200,
batch insert flush interval ms: 200

Message retention
config :sms c,
dead letter time minutes: 1440 # 24 hours

Charging (disabled for performance)
config :sms c,

default charging enabled: false
Cleanup (extended intervals)

config :sms c,
cleanup interval minutes: 30

Enterprise Real-Time Messaging

Optimize for low latency (< 20ms):

Database
config :sms c, SmsC.Repo,
pool size: 20

Batch worker (low latency)
config :sms c,
batch insert batch size: 20,
batch insert flush interval ms: 10

Message retention
config :sms c,
dead letter time minutes: 4320 # 3 days

Charging (enabled)
config :sms c,

default charging enabled: true,
ocs url: "http://ocs.local:2080/jsonrpc"

Development/Testing

Optimize for debugging and visibility:

Database
config :sms c, SmsC.Repo,
pool size: 5

Batch worker (immediate)
config :sms c,
batch insert batch size: 1,
batch insert flush interval ms: 10

Logging (verbose)
config :logger, :console,
level: :debug

Message retention (short)
config :sms c,
dead letter time minutes: 60 # 1 hour

Charging (disabled)
config :sms c,
default charging enabled: false

Multi-Tenant Service Provider

Separate configuration per tenant:

Tenant 1 environment

export DB NAME=sms c tenantl

export OCS TENANT=tenantl.example.com

export 0CS ACCOUNT=tenantl account

export NODE NAME=sms tenantl@nodel.example.com

Tenant 2 environment

export DB NAME=sms c tenant2

export OCS TENANT=tenant2.example.com

export OCS ACCOUNT=tenant2 account

export NODE NAME=sms tenant2@nodel.example.com

Geographic Redundancy

Cluster across regions:

US East cluster
config :sms c,
cluster nodes: [
:"sms@us-east-la.example.com",
:"sms@us-east-1b.example.com",
:"sms@us-west-la.example.com” # Cross-region for DR
I
smsc_node name: "us-east-la"

Configuration Validation

Test configuration before deployment:

Check configuration syntax
mix compile

Validate database connection
mix ecto.create
mix ecto.migrate

Test 0CS connectivity (if enabled)
curl -X POST http://localhost:2080/jsonrpc -H "Content-Type:
application/json" \

-d '{"method":"SessionSv1l.Ping","params":[],"id":1}"

Start application in interactive mode
iex -S mix phx.server

Environment Variables Reference

Common environment variables used in configuration

Variable Purpose Example

DB USERNAME Database username sms_prod user
DB_PASSWORD Database password strong password

DB _HOSTNAME Database host db.internal.example.com
DB PORT Database port 3306

DB NAME Database name sms_c_production

DB _POOL SIZE Connection pool size 30

API PORT API listen port 8443

API LISTEN IP APl listen IP 0.0.0.0

WEB PORT Web Ul port 443

NODE NAME Erlang node name sms@nodel.example.com

ERLANG COOKIE Cluster secret shared cookie value

0CS URL OCS API URL http://0cs.local:2080/jsonrpc
0CS_TENANT OCS tenant sms.example.com

Configuration Best Practices

1. Use Environment Variables for sensitive values (passwords, APl keys)
2. Test Configuration Changes in staging before production

3. Document Custom Settings in deployment notes

4. Version Control Config Files (excluding secrets)

5. Monitor After Changes for performance regressions

6. Keep Backups of working configurations

7. Validate Before Restart to avoid startup failures

8. Use Consistent Naming across environments

9. Set Resource Limits appropriate to hardware

10. Review Periodically to remove unused features

Troubleshooting Configuration

Issues

Symptom

Application won't
start

Database
connection fails

API not accessible

Cluster nodes
won't connect

Charging failures

ENUM lookups fail

Poor performance

Messages not
routing

Likely Cause

Syntax error in
config

Wrong
credentials/host

Wrong port/IP
binding

Cookie mismatch,
firewall

OCS unreachable

DNS server
unreachable

Wrong batch
settings

Routes not loaded

For additional help, see the

Solution

Check logs, validate syntax

Verify DB_* environment
variables

Check API_PORT and listen_ip

Verify ERLANG_COOKIE, check
ports 4369, 9100-9200

Test connectivity to ocs_url

Test DNS connectivity, check
timeout

Review Performance Tuning
Guide

Check sms_routes config or
Web Ul

Message Storage Configuration
(Mnesia)

Message Retention

Messages are stored in Mnesia for fast access with configurable automatic

cleanup.

config :sms c,
How long to keep messages in Mnesia (hours)
message retention hours: 24,

How often to check for old messages (minutes)
retention check interval minutes: 60

Recommendations:

e Production: 24-72 hours (balance operational needs vs memory)
e Development: 4-8 hours (faster cleanup for testing)

e High volume: 12-24 hours (conserve memory)

Memory Impact:

e Average message: ~1KB
e 10,000 messages: ~10MB
e 100,000 messages: ~100MB

CDR (Call Detail Record) Export

When messages are delivered or expired, CDRs can be automatically written to
your Ecto database for long-term storage and billing analytics.

config :sms c,
Enable/disable CDR writing
cdr _enabled: true

CDR Records Include:

e Message ID, calling/called numbers

e Source/destination SMSC

e Origin/destination node (for clusters)

e Submission, delivery, expiry timestamps
e Status, delivery attempts

e Optional message body (see privacy controls)
When to Disable:

e Testing environments where CDRs aren't needed

e Temporary troubleshooting to reduce database load

Privacy Controls

Configure message body visibility and retention for privacy compliance.

config :sms c,
Delete message body from Mnesia after successful delivery
delete message body after delivery: false,

Hide message body in web UI
hide message body in ui: false,

Hide message body in CSV exports
hide message body in export: false

Use Cases:

Configuration

delete message body after delivery:

true

hide message body in ui: true

hide message body in export: true

Example Configurations:

Maximum Privacy (Compliance)

config :sms c,

Use Case

Save Mnesia space, privacy
compliance

Prevent operator viewing of
message content

Data export compliance,
sanitized reports

delete message body after delivery: true,

hide message body in ui: true,

hide message body in export: true,

cdr _enabled: true # Keep CDRs without bodies

Development (Full Visibility)

config :sms c,

delete message body after delivery: false,

hide message body in ui: false,

hide message body in export: false,

cdr _enabled: true

Startup Logging

On application startup, configuration status is logged:

[info] Message storage: Mnesia (retention: 24h)

[info] CDR export: ENABLED

[info] Body deletion after delivery: DISABLED

[info] OCS charging: ENABLED (url: http://..., tenant:

This provides immediate visibility into active features.

.)

SMS-C Prometheus
Metrics Documentation

Overview

This document describes all Prometheus metrics exposed by the SMS-C system.
These metrics are designed for operations staff to monitor system health,
performance, and troubleshoot issues.

Accessing Metrics

The Prometheus metrics endpoint is available at:
http://localhost:9568/metrics

This endpoint exposes metrics in Prometheus text format that can be scraped
by a Prometheus server. The metrics are updated in real-time as the system
processes messages.

Metric Naming Convention

All metrics follow the pattern: sms c.<category>.<metric name>.<type>
Categories:

e license - License status metrics
e message - Message processing metrics
e routing - Routing decision metrics

e enum - ENUM/NAPTR lookup metrics

e delivery - Message delivery metrics

e queue - Queue management metrics

e charging - Billing/charging metrics

* mnesia - Database metrics

e frontend - Frontend connection metrics

e location - Location/registration metrics

e phoenix.endpoint - HTTP API request metrics

e vm - Erlang VM system metrics

License Metrics

sms_c_license_status

Type: Gauge

Description: Current license status of the OmniMessage SMS-C system.
Values:

e 1 -Valid license

e 0 -Invalid/expired license
Labels: None
Product Name: omnimessage

Use Case: Monitor license validity to ensure system is operating with a valid
license. When invalid, messages are still received but routed to destination
"NOLICENCE" instead of normal routing.

Behavior When License Invalid:

Inbound messages are accepted and stored

Message destination (dest smsc) is automatically set to "NOLICENCE"

Normal routing is bypassed

Ul and monitoring remain accessible

e Database and all services remain operational

Alerting:

- alert: SMS C License Invalid
expr: sms c license status ==
for: 1m
labels:
severity: critical
annotations:
summary: "SMS-C license invalid or expired"
description: "License status is invalid - messages being
routed to NOLICENCE"

Example Prometheus Queries:

Check if license is valid
sms_c license status ==

Alert on invalid license
sms c license status ==

Count messages routed to NOLICENCE (indicates license issue)
sms c routing route matched count{dest smsc="NOLICENCE"}

Message Processing Metrics

sSms_Cc_message received count

Type: Counter

Description: Total number of messages received by the SMS-C from all
sources.

Labels:

e source_smsc: Name of the source SMSC that sent the message

* source type: Type of source connection (ims, circuit_switched, smpp)

e message type: Type of message (sms, mms)

Use Case: Monitor incoming message volume by source and type. Use to
detect traffic patterns, identify busy periods, and spot anomalies in message
flow.

Alerting: Set alerts for sudden drops (potential source connectivity issues) or
spikes (potential attack/spam).

sms_c_message validated count
Type: Counter
Description: Total number of message validations performed.
Labels:
e valid: Whether validation passed (true or false)

Use Case: Track validation success/failure rates. High failure rates may
indicate malformed messages or integration issues.

Alerting: Alert when validation failure rate exceeds threshold (e.g., > 5%
failures).

SmMS_Cc_message processing stop duration
Type: Histogram

Description: Time taken to process a message from receipt to completion
(includes validation, routing, and queueing).

Unit: Milliseconds
Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

Labels:

e success: Whether processing succeeded (true or false)

Use Case: Monitor end-to-end message processing performance. Identify
slowdowns in the processing pipeline.

Alerting: Alert when p95 or p99 latency exceeds SLA thresholds.

Routing Metrics

sms_c_routing route_matched count
Type: Counter

Description: Total number of times a specific route was matched and selected
for message routing.

Labels:

* route id: Unique identifier of the matched route
e dest smsc: Destination SMSC selected by the route

e priority: Priority value of the matched route

Use Case: Understand which routes are being used most frequently. Identify
underutilized or overloaded routes. Useful for capacity planning and route
optimization.

Alerting: Alert if high-priority routes are rarely matched (may indicate routing
misconfiguration).

sms_c_routing failed count
Type: Counter

Description: Total number of routing failures where no suitable route could be
found.

Labels:
e reason: Failure reason (no_route found, validation_failed, etc.)

Use Case: Track routing failures to identify configuration gaps or unexpected
traffic patterns.

Alerting: Alert on any routing failures as they indicate messages cannot be
delivered.

sms_c_routing action_count

Type: Counter

Description: Total number of special routing actions taken.
Labels:

e action: Type of action (drop, auto_reply, forward)

* route id: Route that triggered the action

Use Case: Monitor drop rules (anti-spam), auto-reply usage, and forwarding
patterns.

Alerting: Alert on unexpected spikes in drop actions (may indicate spam
attack).

sms_c_routing stop duration

Type: Histogram

Description: Time taken to evaluate all routes and select the best match.
Unit: Milliseconds

Buckets: 1, 5, 10, 25, 50, 100, 250, 500 ms

Labels:

e dest smsc: Selected destination SMSC

Use Case: Monitor routing engine performance. Slow routing indicates too
many routes or complex matching logic.

Alerting: Alert when routing takes consistently longer than expected (e.g., p95
> 50ms).

ENUM/NAPTR Lookup Metrics

sms_c_enum_cache_hit_count
Type: Counter

Description: Total number of ENUM lookups served from cache (did not require
DNS query).

Labels:
e domain: ENUM domain queried

Use Case: Monitor cache effectiveness. High cache hit rates reduce DNS load
and improve performance.

Alerting: Alert if cache hit rate drops below threshold (may indicate cache
issues or unusual traffic).

sms_c_enum_cache_miss count
Type: Counter

Description: Total number of ENUM lookups that required a DNS query (not in
cache).

Labels:

e domain: ENUM domain queried

Use Case: Track cache misses to understand cache effectiveness. Use with hit
count to calculate hit rate.

Calculation: cache hit rate = hits / (hits + misses)

sms_c_enum_cache size size
Type: Gauge
Description: Current number of entries in the ENUM cache.

Use Case: Monitor cache size to ensure it's not growing unbounded. Help tune
cache TTL settings.

Alerting: Alert if cache size exceeds expected bounds (may indicate memory
leak).

sms_c_enum_lookup stop duration
Type: Histogram

Description: Time taken to complete an ENUM lookup (including DNS query if
not cached).

Unit: Milliseconds
Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms
Labels:

e domain: ENUM domain queried
e success: Whether lookup succeeded (true or false)

e cache hit: Whether result was served from cache (true or false)

Use Case: Monitor ENUM lookup performance. Identify slow DNS servers or
network issues.

Alerting: Alert when p95 lookup time exceeds timeout threshold.

sms_c_enum_naptr records record count
Type: Histogram
Description: Number of NAPTR records returned by a successful ENUM lookup.
Buckets: 0, 1, 2, 3,5, 10
Labels:
e domain: ENUM domain queried

Use Case: Understand ENUM record distribution. Most lookups should return 1-
3 records.

Alerting: Alert if frequently returning 0 records (DNS configuration issue).

Delivery Metrics

sms_c_delivery queued count
Type: Counter

Description: Total number of messages queued for delivery to a destination
SMSC.

Labels:
e dest smsc: Destination SMSC name

Use Case: Monitor message flow to each destination. Useful for capacity
planning.

Alerting: Compare with delivery success/failure counts to detect accumulation.

sms_c_delivery attempted count
Type: Counter
Description: Total number of delivery attempts made (includes retries).
Labels:
e dest smsc: Destination SMSC name

Use Case: Track delivery attempt volume. High attempt count relative to
queued count indicates retry behavior.

sms_c_delivery succeeded count
Type: Counter

Description: Total number of messages successfully delivered to destination
SMSC.

Labels:

e dest smsc: Destination SMSC name
Use Case: Track successful deliveries per destination. Primary success metric.
Alerting: Alert if success rate drops below SLA threshold.

Calculation: success rate = succeeded / queued

sms_c_delivery failed count

Type: Counter

Description: Total number of messages that failed delivery after all retry
attempts.

Labels:

e dest smsc: Destination SMSC name

e reason: Failure reason

Use Case: Track delivery failures to identify problematic destinations or failure
patterns.

Alerting: Alert on elevated failure rates or specific failure reasons.

sms_c_delivery dead letter count
Type: Counter

Description: Total number of messages moved to dead letter queue
(undeliverable).

Labels:
* reason: Reason for dead letter (e.g., max retries exceeded, expired)
Use Case: Monitor undeliverable messages requiring manual intervention.

Alerting: Alert on any dead letter events as they represent complete delivery
failure.

sms_c_delivery succeeded duration

Type: Histogram

Description: End-to-end time from message queued to successful delivery.
Unit: Milliseconds

Buckets: 100, 500, 1000, 5000, 10000, 30000, 60000 ms

Labels:
e dest smsc: Destination SMSC name

Use Case: Monitor delivery latency. Identify slow destinations or network
issues.

Alerting: Alert when p95 delivery time exceeds SLA thresholds.

sms_c_delivery succeeded attempt count
Type: Histogram
Description: Number of delivery attempts required before successful delivery.
Buckets: 1, 2, 3, 5, 10
Labels:
e dest smsc: Destination SMSC name

Use Case: Understand retry behavior. Most deliveries should succeed on first
attempt.

Alerting: Alert if average attempt count exceeds 2 (indicates destination
reliability issues).

sms_c_delivery failed attempt count
Type: Histogram

Description: Number of delivery attempts made before final failure.
Buckets: 1, 2, 3, 5, 10

Labels:

e dest smsc: Destination SMSC name

Use Case: Understand how many retries occur before giving up.

Queue Metrics

SMS_C_queue _sSize size
Type: Gauge

Description: Current total number of messages in queue (all states
combined).

Labels:
e queue type: Type of queue (message_queue, dead_letter)
Use Case: Monitor queue depth to detect backlogs or processing issues.

Alerting: Alert when queue size exceeds capacity thresholds.

SmMS_C_queue _size pending
Type: Gauge

Description: Current number of messages pending delivery (not yet
attempted).

Labels:
e queue type: Type of queue

Use Case: Monitor pending message count. High pending counts indicate
processing delays.

Alerting: Alert when pending count exceeds threshold for extended period.

sms_c_queue size failed
Type: Gauge
Description: Current number of messages in failed state (awaiting retry).
Labels:
* queue type: Type of queue
Use Case: Monitor failed message accumulation. Indicates delivery issues.

Alerting: Alert on elevated failed count as it impacts delivery rates.

sms_c_queue _size delivered
Type: Gauge

Description: Current number of delivered messages awaiting cleanup/removal
from queue.

Labels:
* queue type: Type of queue

Use Case: Monitor cleanup lag. High counts indicate cleanup process is falling
behind.

Alerting: Alert if delivered messages accumulate significantly.

sms_c_queue oldest message age seconds
Type: Gauge

Description: Age (in seconds) of the oldest message currently in pending
state.

Labels:

* queue type: Type of queue

Use Case: Detect message aging and processing stalls. Critical for SLA
monitoring.

Alerting: Alert when oldest message age exceeds SLA threshold (e.g., > 300
seconds).

Charging Metrics

sms_c_charging requested count
Type: Counter

Description: Total number of charging/billing requests made to OCS or billing
system.

Labels:
e account: Account identifier being charged

Use Case: Track charging volume per account. Useful for billing reconciliation.

sms_c_charging succeeded count
Type: Counter
Description: Total number of successful charging operations.
Labels:

e account: Account identifier charged
Use Case: Monitor charging success rate per account.

Calculation: success rate = succeeded / requested

sms_c_charging failed count

Type: Counter

Description: Total number of failed charging operations.
Labels:

e account: Account identifier

e reason: Failure reason

Use Case: Identify charging failures that may impact revenue or require
account intervention.

Alerting: Alert on elevated charging failure rates.

sms_c_charging succeeded duration
Type: Histogram
Description: Time taken to complete a successful charging request.
Unit: Milliseconds
Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms
Labels:
e account: Account identifier

Use Case: Monitor billing system performance. Slow charging can delay
message delivery.

Alerting: Alert when p95 charging time exceeds threshold.

System Health Metrics

sms_c_mnesia_table size record count
Type: Gauge
Description: Current number of records in each Mnesia database table.
Labels:
e table: Table name (e.g., sms_route)
Use Case: Monitor database growth. Detect unexpected data accumulation.

Alerting: Alert on unexpected table growth rates.

sms_c_frontend_status count

Type: Gauge

Description: Number of frontends in each connection status.
Labels:

e frontend name: Frontend identifier

¢ status: Connection status (connected, disconnected)
Use Case: Monitor frontend connectivity. Detect connection failures.

Alerting: Alert when expected frontends disconnect.

sms_c_location _registered count
Type: Counter

Description: Total number of location/subscriber registrations received by the
system.

Labels:

e location: Frontend/SMSC name where subscriber is registered

e ims capable: Whether the subscriber supports IMS (true/false)

Use Case: Monitor subscriber registration activity. Track IMS vs non-IMS
subscribers. Detect registration storms or failures.

Alerting: Set alerts for:

e Registration rate drops (may indicate network issues)
e Unusual spikes in registrations

e High ratio of non-IMS registrations (legacy device influx)

Example Query:

Registration rate per minute
rate(sms c location registered count[1m])

IMS vs non-IMS registration ratio

sum(rate(sms c location registered count{ims capable="true"}[5m]))

/
sum(rate(sms c location registered count[5m]))

HTTP APl Request Metrics

phoenix_endpoint stop_duration
Type: Distribution (Histogram)

Description: HTTP request processing duration in milliseconds, from request
start to response completion.

Labels:

e route: APl endpoint route (e.g., /api/messages, /api/frontends)

Buckets: 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2.5s, 5s

Use Case: Monitor APl performance. Identify slow endpoints. Track response
time SLAs.

Alerting: Set alerts for:

e P95 latency > 500ms for critical endpoints
e P99 |atency > 1s for any endpoint

e Increasing latency trends

Example Query:

P95 response time by endpoint
histogram quantile(0.95,
rate(phoenix endpoint stop duration bucket[5m]))

Requests slower than 1 second
sum(rate(phoenix endpoint stop duration bucket{le="1000"}[5m]))

phoenix_endpoint _stop count

Type: Counter

Description: Total number of HTTP requests completed, categorized by route
and HTTP status code.

Labels:

e route: APl endpoint route
e status: HTTP status code (200, 201, 400, 404, 500, etc.)

Use Case: Monitor API request volume and success rates. Track error rates by
endpoint.

Alerting: Set alerts for:

e Error rate > 5% for any endpoint

e 5xx errors on critical endpoints

e Sudden drops in request volume

Example Query:

Request rate per endpoint
sum by (route) (rate(phoenix endpoint stop count[5m]))

Error rate by endpoint

sum by (route) (rate(phoenix endpoint stop count{status=~"5.."}
[5m])) /

sum by (route) (rate(phoenix endpoint stop count[5m]))

Success rate

sum(rate(phoenix _endpoint stop count{status=~"2.."}[5m])) /
sum(rate(phoenix_endpoint stop count[5m]))

phoenix _router _dispatch_exception_count

Type: Counter

Description: Total number of exceptions/errors raised during HTTP request
processing.

Labels:

e route: APl endpoint route where exception occurred

e kind: Type of exception (error, exit, throw)

Use Case: Track application errors. Identify problematic endpoints. Monitor
system stability.

Alerting: Set alerts for any non-zero value on critical endpoints.

Example Query:

Exception rate by endpoint
rate(phoenix router dispatch exception count[5m])

Total exceptions in last hour
increase(phoenix router dispatch exception count[1h])

Erlang VM Metrics

vm_memory_total

Type: Gauge

Description: Total memory allocated by the Erlang VM in bytes.

Use Case: Monitor overall memory usage. Detect memory leaks. Plan capacity.

Alerting: Alert when memory usage > 80% of available system memory.

vm_memory_ processes
Type: Gauge
Description: Memory used by Erlang processes in bytes.

Use Case: Track process memory consumption. Most common source of
memory growth.

Alerting: Alert on sustained high growth rate.

vm_total run_queue_lengths total

Type: Gauge

Description: Total number of processes waiting to be scheduled across all CPU
schedulers.

Use Case: Measure system load. High values indicate CPU saturation.

Alerting: Alert when consistently > 10 * number of CPU cores.

vim_system_counts_process_count

Type: Gauge

Description: Current number of processes running in the VM.

Use Case: Monitor process creation patterns. Detect process leaks.

Alerting: Alert when approaching process limit (default 262,144).

Metric Collection and Polling

The system automatically collects the following metrics every 10 seconds:

* Queue sizes and ages
e Mnesia table sizes
¢ ENUM cache statistics

All other metrics are event-driven and emitted when the corresponding action
occurs.

Common Monitoring Patterns

Delivery Success Rate by Destination

Track the success rate of message delivery for each destination SMSC:

Formula: (sms _c delivery succeeded count) /
(sms_c delivery queued count)

Interpretation: Should be > 95% for healthy destinations. Lower rates
indicate delivery issues.

End-to-End Message Latency
Monitor total time from message receipt to delivery:
Metrics:

e sms_c _message processing stop duration (processing)

* sms c delivery succeeded duration (delivery)

Interpretation: Sum represents total user-facing latency.

ENUM Cache Effectiveness

Measure how well the ENUM cache is performing:

Formula: (sms c enum cache hit count) / (sms c enum cache hit count +
sms_c_enum cache miss count)

Interpretation: Should be > 80% after warm-up. Lower rates may indicate
short TTL or high traffic variance.

Route Utilization
Identify which routes handle the most traffic:
Metric: sms_c routing route matched count grouped by route id

Interpretation: Use to identify hot routes for optimization and capacity
planning.

Queue Backlog Trend
Monitor if message queue is growing (backlog) or shrinking (catching up):
Metrics:

* sms c queue size pending (current pending)

* sms c queue oldest message age seconds (age trending)

Interpretation: Growing pending count + increasing age = backlog forming.

Retry Rate
Understand how often delivery retries are required:
Metric: sms_c delivery succeeded attempt count histogram percentiles

Interpretation: If p95 > 1, most messages require retries. Indicates
destination reliability issues.

Recommended Alerts

Alert Condition Severit
High Routing , Ve
, routing failed count increase Critical
Failure Rate
Queue _ . _
queue size pending > threshold Warning
Backlog - -
Old
Messages in queue oldest message age seconds > 300 Critical
Queue
Delivery . . _ _
, , delivery failed count spike High
Failure Spike

Dead Letter

delivery dead letter count >0 High
Events
ENUM
Lookup enum_lookup stop duration p95 > 5000ms Warning
Timeouts
Low Cache
_ ENUM cache hit rate < 0.7 Warning
Hit Rate
Frontend frontend status count{status="disconnected"} High
Disconnected >0 '9
Charging . . :
charging failed count > threshold High

Failures

Alert Condition Severit

Slow
message processing stop duration p95 >)
Message Warning
_ 1000ms
Processing

Dashboard Recommendations

Operations Dashboard
Purpose: Real-time system health monitoring
Panels:

. Message throughput (received/processed/delivered per minute)
. Queue sizes (pending, failed, delivered)

. Delivery success rate by destination

. Active frontends status

1
2
3
4. p95 processing and delivery latency
5
6. Current alerts

Performance Dashboard
Purpose: System performance analysis
Panels:

. Message processing duration histogram
. Routing duration histogram

. ENUM lookup duration histogram

. Charging duration histogram

Delivery attempts distribution

o U A W N P

. Cache hit rates

Business Dashboard
Purpose: Traffic and usage analysis
Panels:

. Messages by source SMSC
. Messages by destination SMSC

. Route utilization heatmap

1
2
3
4. Auto-reply and drop action counts
5. ENUM usage statistics

6

. Charging volume by account

Metric Retention

Recommended Prometheus retention settings:

e Raw metrics: 15 days
e 5-minute aggregates: 90 days

e 1-hour aggregates: 2 years

This provides detailed recent history while maintaining long-term trends for
capacity planning.

Troubleshooting with Metrics

Scenario: Messages Not Being Delivered
Investigation Steps:

1. Check sms c message received count - Are messages being received?

2. Check sms_c routing failed count - Are they being routed?

3. Check sms c delivery queued count - Are they being queued?
4. Check sms _c delivery failed count - Are delivery attempts failing?

5. Check dest smsc labels to identify problematic destination

Scenario: Slow Message Processing
Investigation Steps:

1. Check sms_c _message processing stop duration histogram - Overall
processing time

2. Check sms_c_routing stop duration - Is routing slow?
3. Check sms_c_enum_lookup stop duration - Are ENUM lookups slow?
4. Check sms c charging succeeded duration - Is charging slow?

5. ldentify bottleneck and investigate specific component

Scenario: Growing Message Queue
Investigation Steps:

1. Check sms c queue size pending trend - Is it growing?

2. Check sms c delivery attempted count - Are delivery attempts
happening?

3. Check sms_c delivery failed count - Are they failing?
4. Check sms _c delivery succeeded duration - Is delivery taking too long?

5. Check dest smsc labels to identify slow destinations

Prometheus Query Examples

Message Throughput

Messages Received Per Second (5-minute average):

rate(sms c message received count[5m])
Messages Received Per Minute (1-hour average):

rate(sms c message received count[1lh]) * 60
Total Messages Today:

increase(sms c message received count[24h])
Messages by Source Type:

sum by (source type) (rate(sms c message received count[5m]))
Messages by Source SMSC:

sum by (source smsc) (rate(sms c message received count[5m]))
Delivery Performance
Delivery Success Rate (Percentage):

(rate(sms c delivery succeeded count[5m]) /
rate(sms c delivery queued count[5m])) * 100

Delivery Failure Rate (Percentage):

(rate(sms c delivery failed count[5m]) /
rate(sms c delivery queued count[5m])) * 100

Average Delivery Attempts (p95):

histogram quantile(0.95,
sms c delivery succeeded attempt count bucket)

Delivery Success by Destination:

sum by (dest smsc) (rate(sms c delivery succeeded count[5m]))
Delivery Failure Reasons:

sum by (reason) (rate(sms c delivery failed count[5m]))
Time to Delivery (p95):

histogram quantile(0.95, sms c delivery succeeded duration bucket)
Time to Delivery (p99):

histogram quantile(0.99, sms c delivery succeeded duration bucket)
Queue Metrics
Current Pending Messages:

sms_C _queue size pending
Failed Messages Awaiting Retry:

sms _c queue size failed
Oldest Message Age (Minutes):

sms_c queue oldest message age seconds / 60

Queue Growth Rate (Messages/Hour):
rate(sms c queue size size[1lh]) * 3600
Messages Entering Queue:
rate(sms c delivery queued count[5m])
Messages Leaving Queue:

rate(sms c delivery succeeded count[5m]) +
rate(sms c delivery failed count[5m])

Queue Backlog (Entering - Leaving):

rate(sms c delivery queued count[5m]) -
(rate(sms c delivery succeeded count[5m]) +
rate(sms c delivery failed count[5m]))

Routing Performance
Routing Success Rate:

(1 - (rate(sms c routing failed count[5m]) /
(rate(sms_c routing route matched count[5m]) +
rate(sms c routing failed count[5m])))) * 100

Most Used Routes:

topk (10, sum by (route id, dest smsc)
(rate(sms c routing route matched count[1lh])))

Routing Latency (p50, p95, p99):

histogram quantile(0.50, sms c routing stop duration bucket)
histogram quantile(0.95, sms c routing stop duration bucket)
histogram quantile(0.99, sms c routing stop duration bucket)

Routing Failures Per Minute:

rate(sms ¢ routing failed count[5m]) * 60
Drop Actions Per Hour:

increase(sms c routing action count{action="drop"}[1h])
Auto-Reply Actions Per Hour:

increase(sms c routing action count{action="auto reply"}[1lh])
ENUM Performance
ENUM Cache Hit Rate:

rate(sms _c_enum cache hit count[5m]) /
(rate(sms c enum cache hit count[5m]) +
rate(sms c enum cache miss count[5m]))

ENUM Cache Hit Percentage:

(rate(sms _c_enum cache hit count[5m]) /
(rate(sms_c _enum cache hit count[5m]) +
rate(sms c enum cache miss count[5m])))

* 100
ENUM Lookup Latency (p95):

histogram quantile(0.95, sms c enum lookup stop duration bucket)

ENUM Lookups Per Second (Cached vs Uncached):

Cached (fast)
rate(sms c enum cache hit count[5m])

Uncached (requires DNS query)
rate(sms c enum cache miss count[5m])

Average NAPTR Records Returned:

rate(sms c enum naptr records record count sum[5m]) /
rate(sms _c _enum naptr _records record count count[5m])

ENUM Cache Size:
sms_c_enum cache size size

Processing Performance

Message Processing Latency (p95):

histogram quantile(0.95,
Sms c _message processing stop duration bucket)

Message Processing Latency (p99):

histogram quantile(0.99,
sms_Cc _message processing stop duration bucket)

Processing Failures:

rate(sms c message processing stop duration count{success="false"}
[5m])

Validation Failure Rate:

rate(sms c message validated count{valid="false"}[5m]) /
rate(sms c message validated count[5m])

Charging Metrics
Charging Success Rate:

rate(sms c charging succeeded count[5m]) /
rate(sms c charging requested count[5m])

Charging Failures Per Minute:

rate(sms c charging failed count[5m]) * 60
Charging Latency (p95):

histogram quantile(0.95, sms c charging succeeded duration bucket)
Charging Volume by Account:

sum by (account) (rate(sms c charging requested count[1lh]))
Frontend Health
Active Frontends:

sum(sms_c_ frontend status count{status="connected"})

Disconnected Frontends:

sum(sms_c_frontend status count{status="disconnected"})
Frontends by Name:

sum by (frontend name)
(sms c frontend status count{status="connected"})

System Health
Mnesia Table Sizes:
sms_c mnesia table size record count
Route Count:
sms_c mnesia table size record count{table="sms route"}
Translation Rule Count:

sms_c mnesia table size record count{table="translation rule"}

Grafana Dashboard Examples

Dashboard 1: Real-Time Operations
Purpose: Monitor current system activity and health.
Panels:

1. Message Throughput (Graph)

o Query: rate(sms c message received count[5m])

o Query: rate(sms c delivery succeeded count[5m])

o Unit: messages/second

o Legend: {{source type}}

2. Delivery Success Rate (Gauge)

o Query: (rate(sms c delivery succeeded count[5m]) /
rate(sms c delivery queued count[5m])) * 100

o Unit: percent (0-100)

o Thresholds:
= Red: <90

= Yellow: 90-95

= Green: > 95

3. Queue Depth (Graph)

o Query: sms_c_queue size pending
o Query: sms c queue size failed
o Unit: messages

o Legend: {{queue _type}}

4. Oldest Message Age (Stat)

o Query: sms _c queue oldest message age seconds / 60
o Unit: minutes

o Thresholds:
= Green: <5

= Yellow: 5-10
= Red: > 10

5. Active Frontends (Stat)

o Query: sum(sms_c_frontend status count{status="connected"})
o Unit: count

o Color: Blue

6. Routing Failures (Graph)

o Query: rate(sms c routing failed count[5m]) * 60

o Unit: failures/minute
o Alert threshold: > 0

Dashboard 2: Performance Analysis
Purpose: Analyze system performance and identify bottlenecks.
Panels:

1. End-to-End Latency (Graph)

o Query: histogram quantile(0.50,

sms_Cc _message processing stop duration bucket) (p50)
o Query: histogram quantile(0.95,

sms c _message processing stop duration bucket) (p95)
o Query: histogram quantile(0.99,

sms c _message processing stop duration bucket) (p99)
o Unit: milliseconds

o Legend: Percentile

2. Component Latencies (Bar Gauge)

o Routing: histogram quantile(0.95,
sms c routing stop duration bucket)

o ENUM: histogram quantile(0.95,
sms_c _enum lookup stop duration bucket)

o Charging: histogram quantile(0.95,
sms_c_charging succeeded duration bucket)

o Delivery: histogram quantile(0.95,
sms_c delivery succeeded duration bucket)

o Unit: milliseconds

o Horizontal bars

3. Delivery Attempts Distribution (Heatmap)

o Query: sms_c delivery succeeded attempt count bucket

o Shows how many attempts are typically needed

o Color scale: Blue (1 attempt) to Red (many attempts)

4. ENUM Cache Performance (Graph)

o Hit Rate: rate(sms _c_enum cache hit count[5m]) /
(rate(sms_c _enum cache hit count[5m]) +
rate(sms c enum cache miss count[5m]))

o Cache Size: sms_c_enum cache size size

o Dual Y-axis (rate vs size)

5. Processing Success Rate (Gauge)

o Query:
(rate(sms_c _message processing stop duration count{success="tru

e"}[5m]) /
rate(sms _c message processing stop duration count[5m])) * 100

o Unit: percent

o Thresholds:
= Red: <95

= Yellow: 95-99

= Green: > 99
Dashboard 3: Traffic Analysis
Purpose: Analyze message traffic patterns and routing distribution.
Panels:

1. Messages by Source Type (Pie Chart)

o Query: sum by (source type)
(increase(sms c message received count[1lh]))

o Shows distribution: IMS vs CS vs SMPP

2. Messages by Source SMSC (Bar Chart)

o Query: sum by (source smsc)
(rate(sms c message received count[1lh]))

o Top 10 sources

o Horizontal bars

3. Route Utilization (Table)

o Columns:
= Route ID

= Destination SMSC

= Messages (1h): sum by (route id, dest smsc)
(increase(sms c routing route matched count[1lh]))

= Priority
= Success Rate

o Sorted by message count

4. Delivery by Destination (Graph)

o Query: sum by (dest smsc)
(rate(sms_c delivery succeeded count[5m]))

(o]

Unit: messages/second

Stacked area chart

(o]

[e]

Legend: {{dest smsc}}

5. Drop/Auto-Reply Actions (Stat)

o Dropped: increase(sms c routing action count{action="drop"}
[1h])

o Auto-Replied:
increase(sms c routing action count{action="auto reply"}[1lh])

o Side by side stats

6. Hourly Traffic Pattern (Graph)

o Query: rate(sms _c message received count[1lh]) * 3600
o Time range: Last 7 days

o Shows daily patterns

Dashboard 4: Capacity & Resources

Purpose: Monitor resource usage and capacity limits.

Panels:
1. Queue Capacity (Graph)

o Current: sms_c queue size size
o Capacity line: Fixed value based on system limits

o Shows utilization trend

2. Database Table Growth (Graph)

o Messages:
sms_c mnesia table size record count{table="sms route"}
o Translations:
sms c mnesia table size record count{table="translation rule"}

o Trend over last 30 days

3. Message Backlog Trend (Graph)

o Query: rate(sms c delivery queued count[5m]) -
(rate(sms c delivery succeeded count[5m]) +
rate(sms c delivery failed count[5m]))

o Positive = backlog growing

o Negative = catching up

4. Peak Traffic (Stat)

o Query: max over time(rate(sms c message received count[5m])
[24h:])

o Shows highest 5m rate in last 24h

o Unit: messages/second

5. Capacity Utilization (Gauge)

(o]

Query: (rate(sms c message received count[5m]) / MAX CAPACITY)
* 100

Replace MAX_CAPACITY with your system limit

(o]

o

Unit: percent

Thresholds:
= Green: < 70

[e]

= Yellow: 70-85
= Red: > 85

Dashboard 5: SLA Compliance

Purpose: Track SLA metrics and compliance.

Panels:

1. SLA Compliance (Gauge)

o Delivery Success: (rate(sms c delivery succeeded count[1lh]) /
rate(sms c delivery queued count[1lh])) * 100

o Target line at 99%

o Thresholds:
= Red: < 95

= Yellow: 95-99

= Green: >= 99

2. Messages Delivered Within SLA (Stat)

o Query:
count(sms c delivery succeeded duration bucket{le="5000"}) /

count(sms c delivery succeeded duration bucket)
o Shows percentage delivered within 5 seconds

o Unit: percent

3. SLA Violations (Counter)

o Messages exceeding 5 minutes:
increase(sms c queue oldest message age seconds{} > 300)([24h:]

o Should be 0

4. Uptime (Stat)

o Query: up{job="sms-c"}
o Binary: 1 = up, 0 = down

o Shows current status

5. Daily Success Rate Trend (Graph)

o Query: avg over time((rate(sms_c delivery succeeded count[1lh])
/ rate(sms c delivery queued count[1lh]))[24h:1h])

o Time range: Last 30 days
o SLA line at 99%

Alert Rule Examples

Critical Alerts

Routing Failures:

alert: RoutingFailuresDetected
expr: increase(sms c routing failed count[5m]) > ©
for: 2m
labels:
severity: critical
annotations:
summary: "{{ $value }} routing failures in last 5 minutes"
description: "Messages cannot be routed. Check routing
configuration."

Queue Backlog:

alert: MessageQueueBacklog

expr: sms_C queue size pending > 10000

for: 5m

labels:
severity: critical

annotations:
summary: "Message queue has {{ $value }} pending messages"
description: "Queue is backing up. Check delivery performance."

Old Messages in Queue:

alert: OldMessagesInQueue

expr: sms c queue oldest message age seconds > 300

for: 2m

labels:
severity: critical

annotations:
summary: "Oldest message is {{ $value }} seconds old"
description: "Messages not being delivered. Check frontends."

All Frontends Disconnected:

alert: NoActiveFrontends
expr: sum(sms_c frontend status count{status="connected"}) ==
for: 1m
labels:

severity: critical
annotations:

summary: "No frontends connected"

description: "No delivery path available. Check frontend
connectivity."

Dead Letter Queue Growing:

alert: DeadLetterMessagesIncreasing
expr: rate(sms c delivery dead letter count[10m]) > O
for: 5m
labels:
severity: critical
annotations:
summary: "{{ $value }} messages moved to dead letter queue"
description: "Messages are becoming undeliverable. Investigate
failures."

Warning Alerts

Low Delivery Success Rate:

alert: LowDeliverySuccessRate
expr: (rate(sms c delivery succeeded count[1Om]) /
rate(sms c delivery queued count[10m])) < 0.95
for: 10m
labels:

severity: warning
annotations:

summary: "Delivery success rate is {{ $value |
humanizePercentage }}"

description: "Success rate below 95%. Investigate delivery
failures."

High Retry Rate:

alert: HighDeliveryRetryRate
expr: histogram quantile(0.95,
sms_c delivery succeeded attempt count bucket) > 2
for: 15m
labels:
severity: warning
annotations:
summary: "95th percentile delivery attempts: {{ $value }}"
description: "Messages requiring multiple attempts. Check
destination reliability."

Slow Message Processing:

alert: SlowMessageProcessing
expr: histogram quantile(0.95,
sms c _message processing stop duration bucket) > 1000
for: 10m
labels:
severity: warning
annotations:
summary: "95th percentile processing time: {{ $value }}ms"
description: "Message processing is slow. Check system
resources."

ENUM Lookups Failing:

alert: HighEnumFailureRate
expr: rate(sms c enum lookup stop duration count{success="false"}
[16m]) > 0.1
for: 10m
labels:
severity: warning
annotations:
summary: "ENUM lookup failure rate: {{ $value }}"
description: "DNS lookups failing. Check DNS servers."

Low ENUM Cache Hit Rate:

alert: LowEnumCacheHitRate
expr: rate(sms c enum cache hit count[10m]) /
(rate(sms c enum cache hit count[1Om]) +
rate(sms _c _enum cache miss count[10m])) < 0.70
for: 30m
labels:
severity: warning
annotations:
summary: "ENUM cache hit rate: {{ $value | humanizePercentage
I3
description: "Low cache efficiency. May indicate unique number
traffic."

Charging Failures:

alert: ChargingFailuresDetected
expr: rate(sms c charging failed count[10m]) > 0.05
for: 10m
labels:
severity: warning
annotations:
summary: "Charging failure rate: {{ $value }}"
description: "Charging system errors. Check OCS connectivity."

Additional Notes

e All duration metrics use nanosecond precision internally but are converted
to milliseconds for reporting

e Counter metrics are cumulative and should be used with rate() or
increase() functions in Prometheus queries

e Gauge metrics represent instantaneous values at collection time

e Histogram metrics provide percentile calculations (p50, p95, p99) and can
be used to create heatmaps

e All metrics include default labels added by Prometheus (instance, job, etc.)

¢ When creating dashboards, use appropriate time ranges: 5m for real-time,
1h for trends, 24h+ for capacity planning

e Set up recording rules in Prometheus for frequently-used complex queries
to improve dashboard performance

e Use variable templating in Grafana for dynamic dashboards (select
dest _smsc, source_smsc, etc.)

SMS-C Number
Translation Guide

Overview

The SMS-C Number Translation system provides flexible, regex-based
transformation of phone numbers before routing. Translation rules can
normalize numbers, add international prefixes, format numbers for specific
gateways, and chain multiple transformations together. Rules are stored in
Mnesia for persistence and can be modified at runtime without service
interruption.

Key Features

* Prefix-based matching: Match numbers by prefix before applying
transformations

 Regex-based transformation: Powerful pattern matching and
replacement with capture groups

e Source SMSC filtering: Apply different translations based on message
origin

e Priority-based evaluation: Control rule order with configurable priorities
(1-255)

* Rule chaining: Continue processing through multiple rules with loop
prevention

e Separate calling/called transforms: Independent transformation for
originating and destination numbers

e Configuration file loading: Load initial rules from runtime.exs on first
startup

¢« Runtime configuration: Add, modify, or disable rules without restarting

e Web Ul: Full CRUD interface for rule management

e Simulation tool: Test translation logic with step-by-step evaluation
 Backup/Restore: Export and import translation configurations

¢ Pre-routing integration: Translations applied before routing for
consistent number formats

Architecture

Data Model

Each translation rule contains the following fields:

Field

rule id

calling prefix

called prefix

source_smsc

calling match

calling replace

called match

called replace

priority

description

enabled

continue

Type

integer

string/nil

string/nil

string/nil

string/nil

string/nil

string/nil

string/nil

integer

string

boolean

boolean

Description

Auto-incrementing unique
identifier

Prefix match for calling
number (nil = wildcard)

Prefix match for called
number (nil = wildcard)

Source SMSC name (nil =
wildcard)

Regex pattern to match calling
number

Replacement pattern for
calling number

Regex pattern to match called
number

Replacement pattern for
called number

Rule priority (1-255, lower =
higher priority)

Human-readable description

Enable/disable rule

Continue evaluating rules
after match (default: false)

Required

Yes (auto)

No

No

No

No

No

No

No

Yes

No

Yes

No

Note: Rules are evaluated in priority order (lowest number first). Only enabled
rules are evaluated.

Translation Algorithm
When translating numbers, the system:

1. Retrieves enabled rules sorted by priority (lowest first)

2. Evaluates rules sequentially against message parameters:
o Match calling prefix (if specified)

o Match called prefix (if specified)
o Match source smsc (if specified)

3. Applies first matching rule:
o Transform calling number using calling match and calling replace

o Transform called number using called match and called replace

4. Checks continue flag:
o If continue: false — Stop processing, return result

o If continue: true — Remove matched rule from available rules,
continue with step 2 using transformed numbers

5. Returns final numbers and list of all applied rules

Rule Chaining with Loop Prevention

The continue flag enables powerful rule chaining while preventing infinite
loops:

Get Enabled Rules
Sorted by Priority

OmniCharge OmniRAN

- -

Downloads 3 English+ Omnitouch Website (2

Enabled Rules
Matched Rules = Empty

Mo Match Match Found

-

Add Rule to
Matched Rules List
T

Hru/ \'r?s
\\‘ / Loop Prevention:

Update Current ‘ Once a rule matches,

[T S SR

EE e

NUNnIuT > L3 I eEd i
to Transformed Values Available Rules
Can't match again

Wildcards

e nil or empty values act as wildcards that match any value
e A rule with no matching criteria is a catch-all rule

¢ A rule with no transformation patterns (nil match/replace) passes numbers
through unchanged

Example: Rule Chaining Scenario

Parse error on line 20: ...] style R1 fill: #38B2AC style R ----------=mmmmmmeeuv ~
Expecting 'SOLID_OPEN_ARROW!', 'DOTTED_OPEN_ARROW?!, 'SOLID_ARROW!',
'‘BIDIRECTIONAL _SOLID_ARROW!', 'DOTTED_ARROW!',

'‘BIDIRECTIONAL DOTTED_ARROW!', 'SOLID _CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got "TXT"

Configuration

Loading Rules from Configuration File

Translation rules can be defined in config/runtime.exs and will be
automatically loaded on first startup.

Important: Rules from configuration are only loaded when the translation
table is empty (first startup). This preserves rules added via the Web Ul during
runtime and prevents duplicates on restarts.

Configuration Loading Flow

\

Load rules
from\nconfig/runtime.exs

®
-]

A ¢

Add to Mnesia

No

Skip config
load\nPreserve existing
rules

~

Example Configuration

config/runtime.exs
config :sms c, :translation rules, [
Add +1 to 10-digit US numbers
%q{
calling prefix: nil,
called prefix: nil,
source smsc: "us domestic smsc",
calling match: "~(\d{10})$",
calling replace: "+1\1",
called match: "~(\d{10})$",
called replace: "+1\1",
priority: 10,
description: "Add +1 to 10-digit US numbers from domestic
SMSC",
enabled: true,
continue: false

}

Strip leading zeros from international format
%{
calling prefix: "00",
called prefix: nil,
source smsc: nil,
calling match: "700(.+)$",
calling replace: "+\1",
called match: nil,
called replace: nil,
priority: 5,
description: "Convert 00 international prefix to +",
enabled: true,
continue: true # Continue to apply more formatting

}I

Format UK numbers for specific gateway
%{

calling prefix: "+44",

called prefix: "+44",

source smsc: nil,

calling match: "~\+44(.*)$",

calling replace: "0044\1",

called match: "~\+44(.*)$",

called replace: "0044\1",

priority: 20,

description: "Format UK numbers for legacy gateway",
enabled: true,
continue: false

Getting Started

Initialization Flow

Application Starts

Translation
Table\nEmpty?

OmniCharge OmniRAN

- -

Downloads 2 English+ Omnitouch Website (2

For each rule\nin config

Validate rule fields

No < Valid?

Yes Yes

No

Log success

No

l

Report summary\nN/M
rules loaded

-

Rules ready

Message Translation Flow

Application Translation Engine Rule Database

Event Logger

translate_numbers(calling, called, source_smsc)
Log "translation_started"
Get enabled rules (sorted by priority)
Return rule list
Log "N enabled rules"

do_translate_numbers
(available_rules, matched_rules=[])

- [For each matching rule]

Find first matching rule

Iy [Rule matches criteria]

Log "rule matched"

Apply calling_match - calling_replace

Apply called_match - called_replace

Log transformations

Add rule to matched_rules

y [Rule has continue: true]

Log "continue processing"

Remove rule from available_rules

Continue loop with
transformed numbers

[Rule has continue: false]

Stop processing

[No more matches]

Stop processing

Log final result

{:0k, final_calling, final_called, matched_rules}

Application Translation Engine Rule Database

Event Logger

Common Use Cases

International Number Normalization

Normalize various international formats to E.164:

Starts wi Starts w/ 10 di no prefix eady +

~—— N\ J

Gateway-Specific Formatting

Chain rules to format numbers for specific gateway requirements:

Parse error on line 2: ...rt TD I[Input: "5551234567"] --> S1[------------mmmmmmmmm- ~
Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',
'SUBROUTINEEND!, 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',
‘TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

SMSC-Specific Translations

Apply different translations based on message source:

Application Translation Engine Rule Database Event Logger

OmniCharge OmniRAN

- -

Downloads ¥ English+ Omnitouch Website %

Get enabled rules (sorted by priority)

Fetumn rule list

e E A
Log "M enabled rules®
= "
do_translate_numbers
[awvailable_rules, makched_rules=[])
Ty
- —
loop [For each matching rule]
Find first matching ruke
"
[—
alt [Rule matches criteria]
Log “rule matched™®
Apply calling_match - calling_replace
—
Apply called_miatch - called_replace
-— o
Log transformations
Add rule to matched_rules
-—
alt [Rule has continue: true]
Log “continue processing”
Remave rule from available_rules
Continue loop with
transformed numbers
[Rule has continue: false]
Stop precessing
=
[—
[No more matchas]
Stop processing
-—
Lo final result
{-ok, final_calling, final_called, matched_rulas}
plication ranslation Engine e Database nt Logoer
licati Translation Engi Rule Datab; Ewent L

Prefix-Based Routing Preparation

Normalize numbers before routing to ensure consistent prefix matching:

T e T
/ N\
i

Number Portability Handling

Handle ported numbers that require prefix changes:

Parse error on line 18: ... style Input fill: #3182CE style R -----------=cmmcmeeeev ~
Expecting 'SOLID OPEN_ARROW!', 'DOTTED_OPEN_ARROW?!, 'SOLID _ARROW!',
'BIDIRECTIONAL_SOLID _ARROW!', 'DOTTED_ARROW!,
'BIDIRECTIONAL_DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

Web Interface

Translation Rule Management Ul

Access the rule management interface at /number translation (via navigation
menu):

Features:

e View all rules in a sortable table by priority

Add new rules with form validation

e Edit existing rules

e Enable/disable rules without deleting

e Delete rules with confirmation

e Visual indicator for rules with continue: true

e Import/Export rules as JSON
Adding a Rule:

1. Fill in matching criteria (optional):
o Ca|||ng preﬁX (e.g.’ |l+1n’ ||44||)

o Called prefix (e.g., "+639", "1555")
o Source SMSC (leave empty for any)

2. Define transformations (optional):
o Calling number regex match and replace

o Called number regex match and replace
3. Set priority (1-255, lower = higher priority)
4. Set status:

o Enabled: Rule is active

o Continue Processing: Continue evaluating more rules after this one
5. Add description
6. Click "Add Rule" or "Update Rule"

Continue Processing Toggle:

* Stop (default): Stop processing after this rule matches

e Continue: Apply this rule and continue evaluating remaining rules

e Rules with continue enabled show a blue "l Continue" badge in the table
Editing a Rule:

1. Click "Edit" next to the rule
2. Modify fields as needed
3. Click "Update Rule"

Rule Table Indicators:

 Enabled/Disabled badge shows rule status
e | Continue badge shows rules that will continue processing
e Priority badge shows evaluation order

e Regex patterns displayed in monospace font for clarity

Translation Simulator
Access the simulator at /translation simulator (via navigation menu):
Features:

e Test translation logic with actual numbers

e Step-by-Step Transformation showing each rule applied
e See before/after values for each transformation

e View which rules matched and why

e Load example scenarios for quick testing

e View test history (last 10 tests)
Using the Simulator:

1. Enter test parameters:
o Calling number (from)

o Called number (to)
o Source SMSC (optional)
2. Click "Test Translation"

3. View comprehensive results:

o Translation Result: Final numbers after all transformations

o Rules Applied: Count and list of all rules that matched

o Step-by-Step Transformations: Detailed view of each rule:

Step number and rule information

Rule description

Before — After for both calling and called numbers

"l Continue" indicator for rules that continued processing
Transformations highlighted in green

Unchanged values marked as "passed through"

4. Load pre-configured examples using the example buttons

5. Review test history to compare different scenarios

Example Output:

Translation Result

Calling Number: 5551234567 - +1-555-123-4567
Called Number: 9078720155 - +1-907-872-0155
v Translated by 3 rule(s)

Step-by-Step Transformations

— S‘tep 1 1
| Rule #1 (Priority 10) v Continue |
| Add country code to 10-digit numbers |

| Called: 9078720155 - +19078720155 |
|

— Step 2 |
| Rule #2 (Priority 20) v Continue |
| Format area code with dashes |

| Called: +19078720155 - +1-907-8720155 |
|

— Step 3
| Rule #3 (Priority 30) |
| Final formatting for gateway |
| |

| Called: +1-907-8720155 - +1-907-872-0155|
| |

APl Reference

Core Operations Overview

o

-

.-"f--
_—
v s —,

’ ' .
Starts with 00 Starts with 011 10 digits, no prefix “Already +

)

Translation Parameters

translate_numbers accepts the following parameters:

calling number (optional): Originating phone number

called number (optional): Destination phone number

source_smsc (optional): Source SMSC identifier

* message id (optional): For event logging
Returns:

e {:0k, translated calling, translated called, [rules applied]} -
Always successful

e Returns original numbers if no rules match

e Returns list of all rules that were applied (in order)

Example usage
{:0k, new calling, new called, rules} =
NumberTranslation.translate numbers (
calling number: "5551234567",
called number: "9078720155",
source smsc: "domestic gateway",
message id: "msg 123"
)

Check if any translation occurred
if rules !'= [] do
Logger.info("Applied #{length(rules)} translation rules")
Enum.each(rules, fn rule ->
Logger.info(" - Rule ##{rule.rule id}: #{rule.description}")
end)
end

Rule Management Operations

Add a new rule
{:0k, rule} = NumberTranslation.add rule(%{
calling prefix: nil,
called prefix: nil,
source smsc: "gatewayl",
calling match: "~(\d{10})$",
calling replace: "+1\1",
called match: "~(\d{10})$",
called replace: "+1\1",
priority: 10,
description: "Add +1 to 10-digit numbers",
enabled: true,
continue: false

})

Update a rule

{:0k, updated rule} = NumberTranslation.update rule(rule id,
enabled: false,
description: "Disabled for testing"

})

Delete a rule
:0k = NumberTranslation.delete rule(rule id)

Get a specific rule
rule = NumberTranslation.get rule(rule id)

List all rules
all rules = NumberTranslation.list rules()

List only enabled rules (sorted by priority)
enabled rules = NumberTranslation.list enabled rules()

o°

Import/Export Operations

Export all rules

backup = NumberTranslation.export rules()
Returns: %{

version: "1.0",

exported at: ~U[2024-01-15 10:30:00Z],
count: 5,

rules: [...]
i

Save to JSON file
json = Jason.encode! (backup, pretty: true)
File.write! ("translation rules backup.json", json)

Import rules (merge with existing)

{:0k, %{imported: 3, failed: 0}} =
NumberTranslation.import rules(backup, mode: :merge)

Import rules (replace all existing)

{:0k, %{imported: 5, failed: 0}} =
NumberTranslation.import rules(backup, mode: :replace)

Best Practices

Rule Design
1. Keep priorities organized:

o 1-10: Critical normalization rules (add country codes, fix formats)
o 11-50: Gateway-specific formatting
o 51-100: Optional transformations

o 101+: Catch-all or debugging rules

2. Use continue strategically:

o Enable continue: true for normalization rules that prepare numbers
for further processing

o Disable continue: false for final formatting rules

o Avoid long chains (3-4 rules maximum) to maintain performance

3. Document your rules:

o Always add clear descriptions

o |Include examples in the description (e.qg., "5551234567 —»
+15551234567")

o Document the purpose and expected input/output

4. Test regex patterns:

o Test patterns with the simulator before deploying
o Use capture groups (\1, \2) for flexible transformations

o Escape special regex characters (dots, parentheses, etc.)

Performance

1. Minimize rule count:

o Combine similar rules where possible

o Use prefix matching to reduce regex evaluations

o Remove or disable unused rules

2. Optimize regex patterns:

o Use prefix matching first (faster than regex)
o Keep regex patterns simple

o Avoid backtracking-heavy patterns

3. Limit rule chaining:

o Long chains (5+ rules) can impact performance

o Consider combining multiple steps into one rule if possible

o Monitor translation latency with Telemetry metrics

Operations
1. Test before deploy:

o Use the simulator with real-world examples
o Test edge cases (empty numbers, special characters)

o Verify continue flag behavior

2. Backup regularly:

o Export rules before making major changes
o Version control your exports

o Test imports in non-production first

3. Monitor translations:

o Enable message_id logging for debugging
o Check event logs for translation decisions

o Monitor which rules are being applied

4. Gradual rollout:

o Add new rules as disabled first
o Test with simulator
o Enable and monitor

o Adjust as needed

Regex Tips
1. Common patterns:

o 10-digit US number: ~(\d{10})$
o International format: "\+(\d+)$
o Remove leading zeros: ~0+(.+)$
o Add dashes: ~(\d{3}) (\d{3}) (\d{4})$ — \1-\2-\3

2. Capture groups:

o Use parentheses to capture: ~(\d{3}) (\d{7})$
o Reference in replace: +1\1\2
o Multiple captures: "\+(\d{1,3}) (\d+)$ — 00\1\2

3. Escape special characters:

o Literal dot: \.
o Literal plus: \+

o Literal parenthesis: \(or \)

Troubleshooting

Rule Not Matching

Symptom: Expected rule doesn't match, numbers pass through unchanged

Possible causes:

Prefix doesn't match (check for exact prefix match)
Source SMSC doesn't match

Regex pattern doesn't match input format

Rule is disabled

Higher priority rule matched first (with continue: false)
Solutions:

1. Use simulator to see which rules are evaluated
2. Check rule status (enabled/disabled)

3. Verify prefix matching (case-sensitive)

4. Test regex pattern separately

5. Check priority order

Wrong Transformation Applied

Symptom: Number transformed but result is incorrect

Possible causes:

e Regex pattern matches but replace pattern is wrong
e Multiple rules applying in unexpected order

e Capture group references incorrect (\1, \2, etc.)
Solutions:

1. Use simulator to see step-by-step transformations
2. Verify regex pattern captures correct groups

3. Check replace pattern syntax

4. Test regex in online regex tester

5. Review rule priority and continue flags

Infinite Loop / Performance Degradation
Symptom: Translation takes very long or appears to hang

Note: This should not happen due to loop prevention, but if it does:
Possible causes:

e Bug in loop prevention logic
e Extremely long regex evaluation

e Very long rule chain
Solutions:

1. Check application logs for errors
2. Review rules with continue: true
3. Simplify regex patterns

4. Reduce number of chained rules

5. Report bug if loop prevention failed

Unexpected Rule Chaining

Symptom: More rules applied than expected

Possible causes:

e Rules have continue: true when they shouldn't
e Priority ordering allows multiple matches

e Transformed number matches additional rules
Solutions:

1. Use simulator to see exact rule chain
2. Review continue flags on all rules
3. Adjust priorities to control order

4. Set continue: false on final rule

Translation Not Applied Before Routing
Symptom: Router sees untranslated numbers
Possible causes:

e Translation not integrated in message flow
e Translation happening after routing

e Application code bypassing translation
Solutions:

1. Verify application integration: translation should be called before routing
2. Check message processing pipeline
3. Review event logs for translation events

4. Ensure translate_numbers is called in correct order

Advanced Topics

Integration with Routing

Translation happens before routing to ensure consistent number formats:

Number Translation Routing Engine

Application

translate_numbers(calling, called, source_smsc)

Gateway

{translated_calling, translated_called, rules}

route_message(translated_calling, translated_called)

{dest_smsc, route}

send_message(dest_smsc, translated numbers)

Translation ensures
routing rules see
normalized numbers

Number Translation Routing Engine

Application

Event Logging

Gateway

Translation decisions are logged via the EventLogger:

* translation started: Translation begins

* translation candidates: Number of enabled rules

e translation matched: Rule matched and applied

* translation calling: Calling number transformed

* translation called: Called number transformed

e translation continue: Rule has continue=true, continuing evaluation

* translation_none: No rules matched

Enable logging by passing message id to translate numbers/1.

Telemetry Metrics

Monitor translation performance with Telemetry:

:telemetry.attach(

"number-translation-handler",

[:sms_c, :number_ translation, :translate, :stop],

fn _event name, measurements, metadata, config ->
measurements: %{duration: microseconds}
metadata: %{rules applied: count, ...}

end,

nil

Key metrics to monitor:

e Translation duration (p50, p95, p99)
e Rules applied per message
e Rules matched vs not matched

e Continue flag usage

Clustering

Mnesia tables are automatically distributed across clustered nodes. Translation
rules are replicated for high availability.

Parse error on line 25: ... style New fill:#3182CE style P --------------meeeeuv ~
Expecting 'SOLID_OPEN_ARROW!', '‘DOTTED_OPEN_ARROW!, 'SOLID_ARROW!',
'BIDIRECTIONAL_SOLID_ARROW!', 'DOTTED_ARROW!,
'BIDIRECTIONAL_DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

Migration Strategies

When deploying new translation rules:

Examples

Example 1: US Number Normalization

Requirement: Convert various US number formats to E.164 (+LXXXXXXXXXX)

Rule 1: 10-digit numbers (highest priority)

{

calling match: "~(\d{10})s$",

calling replace: "+1\1",

called match: "~(\d{10})$",

called replace: "+1\1",

priority: 5,

description: "Add +1 to bare 10-digit numbers",
enabled: true,

continue: false

o°

Rule 2: 1 + 10 digits (medium priority)

{

calling match: "~1(\d{10})$",

calling replace: "+1\1",

called match: "~1(\d{10})s$",

called replace: "+1\1",

priority: 10,

description: "Convert IXXXXXXXXXX to +IXXXXXXXXXX",
enabled: true,

continue: false

o°

}

Test cases:

"5551234567" - "+15551234567" (Rule 1)

"15551234567" - "+15551234567" (Rule 2)

"+15551234567" - "+15551234567" (No match, pass through)

Example 2: International Prefix Conversion
with Chaining

Requirement: Convert 00 prefix to +, then format for gateway

Rule 1: Convert 00 to + (continues to next rule)

{

calling match: "700(.+)$",

calling replace: "+\1",

called match: "7~00(.+)$",

called replace: "+\1",

priority: 5,

description: "Convert 00 international prefix to +",
enabled: true,

continue: true # Continue to format

o°

Rule 2: Format for gateway (stops processing)

{

calling match: ""\+(\d+)$",

calling replace: "00\1",

called match: "™\+(\d+)$",

called replace: "00\1",

priority: 10,

description: "Format + numbers as 00 for gateway",
enabled: true,

continue: false # Stop after this

o°

Test case:

Step 1: "00441234567890" - "+441234567890" (Rule 1, continue)
Step 2: "+441234567890" - "00441234567890" (Rule 2, stop)

Result: "00441234567890"

Rules applied: [Rule 1, Rule 2]

Example 3: SMSC-Specific Handling

Requirement: Apply different rules based on source SMSC

Rule 1: Trusted SMSC - pass through (priority 5)
{

source smsc: "trusted gateway",

calling match: nil, # No transformation

calling replace: nil,

called match: nil,

called replace: nil,

priority: 5,

description: "Pass through numbers from trusted gateway",
enabled: true,

continue: false

o°

Rule 2: Untrusted SMSC - normalize (priority 10)
{

source smsc: "untrusted gateway",

calling match: "~(.*)$",

calling replace: "+VALIDATE\1",

called match: "~(.*)$",

called replace: "+VALIDATE\1",

priority: 10,

description: "Add validation prefix for untrusted source",
enabled: true,

continue: false

o°

Rule 3: Catch-all for other SMSCs (priority 100)
{

source smsc: nil, # Wildcard

calling match: "~(\d{10})$",

calling replace: "+1\1",

called match: "~(\d{10})$",

called replace: "+1\1",

priority: 100,

description: "Default: Add +1 to 10-digit numbers"”,
enabled: true,

continue: false

o°

Example 4: Multi-Step Formatting Chain

Requirement: Normalize - Add country code - Format with dashes

Rule 1: Strip leading zeros (continue)
{

calling match: "70+(.+)$",

calling replace: "\1",

called match: "70+(.+)$",

called replace: "\1",

priority: 5,

description: "Strip leading zeros",
enabled: true,

continue: true

o°

Rule 2: Add country code if missing (continue)
{

calling match: "~(\d{10})$",

calling replace: "+1\1",

called match: "~(\d{10})$",

called replace: "+1\1",

priority: 10,

description: "Add +1 to 10-digit numbers",
enabled: true,

continue: true

o°

Rule 3: Format with dashes (stop)

{

calling match: "~\+1(\d{3}) (\d{3}) (\d{4})$",
calling replace: "+1-\1-\2-\3",

called match: "~\+1(\d{3}) (\d{3}) (\d{4})s",
called replace: "+1-\1-\2-\3",

priority: 15,

description: "Format as +1-XXX-XXX-XXXX",
enabled: true,

continue: false

o°

Test case:

Input: "005551234567"

Step 1: "005551234567" - "5551234567" (Rule 1, continue)
Step 2: "5551234567" - "+15551234567" (Rule 2, continue)
Step 3: "+15551234567" - "+1-555-123-4567" (Rule 3, stop)

Result: "+1-555-123-4567"
Rules applied: [Rule 1, Rule 2, Rule 3]

Support

For issues or questions:

e Check the test suite at
test/sms c/messaging/number translation test.exs for examples

e Use the simulator to debug translation logic

e Review event logs for translation decisions

* Check Mnesia table contents: :mnesia.table info(:translation rule,
:size)

e Monitor Telemetry metrics for performance issues

SMS-C Operations
Guide

Daily operational procedures, monitoring, and maintenance tasks for SMS-C
operations teams.

Table of Contents

Daily Operations

Morning Health Check
Perform these checks at the start of each day:

1. Check System Status

API health check
curl https://api.example.com:8443/api/status

Expected response:

{"status":"ok","application":"OmniMessage", "timestamp":"2025-10-
30T08:00:00Z2"}

2. Review Prometheus Metrics
Access Prometheus dashboard and check:

e Message throughput (last 24 hours)

e Routing failure rate (should be < 1%)

* Queue backlog (should be < 1000 pending)
e Delivery success rate (should be > 95%)

e Frontend connection status (all expected frontends active)
3. Check Message Queue
Access Web Ul: https://sms-admin.example.com/message queue

Review:

Total pending messages (should be low)

Oldest message age (should be < 5 minutes)

Messages with high delivery attempts (investigate if > 3)

Dead letter messages (investigate any present)

4. Review Frontend Status

Access Web Ul: https://sms-admin.example.com/frontend status
Verify:

e All expected frontends are active
¢ No unexpired disconnections

* No frontend errors in last 24 hours

5. Check Application Logs
Access Web Ul: https://sms-admin.example.com/logs or check log files
Look for:

e Error-level messages

e Routing failures

e Charging failures

e Database connection issues

e Cluster node problems
Message Volume Monitoring

Check Hourly Message Counts:

Use Prometheus query:

Messages received per hour
increase(sms _c _message received count[1lh])

Messages delivered per hour
increase(sms c delivery succeeded count[1lh])

Calculate delivery rate

rate(sms c delivery succeeded count[1lh]) /
rate(sms c message received count[1lh])

Expected Patterns:

e Business hours: Higher volume
e Nights/weekends: Lower volume

e Delivery rate: Should be > 95%
Alert Conditions:

e Sudden drop in messages (> 50% decrease)

e Sudden spike in messages (> 200% increase)

e Delivery rate drop below 90%

Monitoring

Key Metrics to Watch

Message Processing Metrics

Message Received Count (sms _c message received count):

e What: Total messages entering system
e Alert: Sudden drop or spike

* Query: rate(sms c message received count[5m])
Message Processing Duration (sms c message processing stop duration):

e What: End-to-end processing time
e Alert: p95 > 1000ms

* Query: histogram quantile(0.95,
sms_c _message processing stop duration)

Routing Metrics

Routing Failures (sms c routing failed count):

e What: Messages that couldn't be routed
e Alert: Any failures (> 0)

* Query: increase(sms c routing failed count[5m])
Route Matched (sms_c routing route matched count):

e What: Which routes are being used
e Alert: High-priority routes not matching

e Query: sms_c routing route matched count

Delivery Metrics

Delivery Success Rate:

* What: Percentage of successful deliveries
e Alert: Rate < 95%

* Query: rate(sms_c delivery succeeded count[5m]) /
rate(sms c delivery queued count[5m])

Delivery Attempts (sms _c delivery succeeded attempt count):

e What: Retries needed for delivery
e Alert: p95 > 2 (too many retries)

* Query: histogram quantile(0.95,
sms c delivery succeeded attempt count)

Queue Metrics
Queue Size (sms _c queue size size):

« What: Total messages in queue
e Alert: Size > 10,000

e Query: sms _c queue size size
Oldest Message Age (sms c queue oldest message age seconds):

e What: Age of oldest pending message
e Alert: Age > 300 seconds

* Query: sms_c queue oldest message age seconds

Dashboard Setup

Operational Dashboard Panels:
1. Message Throughput (Graph)

o Messages received (5-minute rate)
o Messages delivered (5-minute rate)

o Time range: Last 24 hours

2. Queue Status (Single Stats)

o Current pending messages
o Oldest message age

o Failed message count

3. Delivery Performance (Graph)

o Success rate over time
o Failure rate over time

o Time range: Last 24 hours

4. Routing Status (Table)

(o]

Route ID
Match count (last hour)
Destination SMSC

(o]

[e]

o

Priority

5. Frontend Status (Table)

(o]

Frontend name

(o]

Status (active/expired)

[e]

Last seen

o

Message count (last hour)

6. System Health (Single Stats)

o API response time (p95)
o Database query time (p95)
o ENUM lookup time (p95)

Alert Configuration

Critical Alerts (Immediate Response Required):

No route found - messages cannot be delivered
- alert: RoutingFailures

expr: increase(sms c routing failed count[5m]) > 0O

severity: critical

description: "{{ $value }} messages failed routing in last 5
minutes"

Queue building up - processing falling behind
- alert: QueueBacklog
expr: sms c queue size pending > 10000
severity: critical
description: "Queue has {{ $value }} pending messages"

Messages aging - delivery stuck

- alert: 0OldMessagesInQueue
expr: sms_c queue oldest message age seconds > 300
severity: critical
description: "Oldest message is {{ $value }} seconds old"

Frontend disconnected - no delivery path

- alert: FrontendDisconnected
expr: sms_c frontend status count{status="disconnected"} > 0
severity: critical
description: "{{ $value }} frontends disconnected"

Warning Alerts (Investigation Needed):

Delivery success rate dropping
- alert: LowDeliveryRate
expr: rate(sms c delivery succeeded count[10m]) /
rate(sms c delivery queued count[10m]) < 0.90
severity: warning
description: "Delivery success rate is {{ $value }}"

Too many delivery retries
- alert: HighRetryRate
expr: histogram quantile(0.95,
sms c delivery succeeded attempt count) > 2
severity: warning
description: "95th percentile delivery attempts: {{ $value }}"

ENUM lookups slow or failing
- alert: SlowEnumLookups

expr: histogram quantile(0.95, sms c enum lookup stop duration)
> 5000

severity: warning

description: "ENUM lookups taking > 5 seconds"

Low ENUM cache hit rate
- alert: LowEnumCacheHitRate
expr: rate(sms c enum cache hit count[10m]) /
(rate(sms _c_enum cache hit count[10m]) +
rate(sms_c_enum cache miss count[10m])) < 0.70
severity: warning
description: "ENUM cache hit rate: {{ $value }}"

Message Tracking

Find Specific Message
By Message ID:

1. Web Ul: Navigate to /message queue
2. Enter message ID in search box

3. View full details and event history

Via API:

curl https://api.example.com:8443/api/messages/12345

By Phone Number:

1. Web Ul: Navigate to /message queue
2. Enter phone number in search box

3. View all messages for that number

Track Message Lifecycle
View Event History:

1. Web Ul: Click on message in queue, view "Events" section
2. APIl: GET /api/events/12345

Common Event Sequence:

1. message inserted - Message created

2. :lumber_translated - Numbers normalized (if configured)
3. ;essage_routed - Routing decision made

4, ::harging_attempted - Charging check (if enabled)

5. ;essage_delivered - Successfully delivered

Failed Delivery Sequence:

1. message inserted
i

2. message routed
i

3. delivery attempt 1 - First attempt failed
i

4. delivery attempt 2 - Second attempt failed (2min delay)
i

5. delivery attempt 3 - Third attempt failed (4min delay)
i

6. message dead letter - Exceeded retry limit

Check Delivery Status
Pending Messages:

e Status: "pending"”
e deliver_after: Future timestamp

e delivery attempts: 0 or low number
Delivered Messages:

e Status: "delivered"
e deliver_time: Timestamp of delivery

e dest smsc: Frontend that delivered
Failed Messages:

e Status: "pending" with high delivery attempts
e deadletter: true (if expired)

e Check event log for failure reasons

Location-Based Message Routing

The SMS-C supports location-based message retrieval, allowing frontends to
automatically receive messages destined for subscribers registered at their
location.

How It Works:

When a frontend queries for pending messages using

get messages for smsc(smsc name), the system returns messages in two
ways:

1. Explicit Routing - Messages where dest smsc explicitly matches the
frontend name

2. Location-Based Routing - Messages where:
o dest smsc is null (not explicitly routed)

o destination msisdn has an active location record
o The location's location field matches the frontend name

o The location has not expired

Example Scenario:

A subscriber with MSISDN +447700900123 registers at frontend uk gateway:

Subscriber registers (creates location record)
POST /api/locations

{
"msisdn": "+447700900123",
"imsi": "234150123456789",
"location": "uk gateway",
"expires": "2025-11-01T12:00:00Z"
}

When a message arrives for this subscriber without explicit routing:

Message submitted without dest smsc
POST /api/messages
{
"source msisdn": "+15551234567",
"destination msisdn": "+447700900123",
"message body": "Hello",
"source smsc": "api"
Note: dest smsc is null

}

The uk gateway frontend will automatically receive this message when it polls:

Frontend polls for messages
GET /api/messages/queue?smsc=uk gateway

Returns the message even though dest smsc is null
because the destination subscriber is registered at uk gateway

Location Requirements:
For location-based routing to work:

* The locations table must have an entry for the destination msisdn
e The location field must match the querying SMSC name

* The expires timestamp must be in the future
Monitoring Location-Based Routing:

Check location records:

Via API
GET /api/locations/{msisdn}

Check if location is expired
expires field should be > current time

Common Issues:

e Message not delivered: Check if location has expired
e Wrong frontend: Verify location field matches expected frontend name

e Location not found: Subscriber may need to re-register

Manual Interventions

Retry Failed Message:

Reset delivery attempts and deliver after
curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{
"delivery attempts": 0,
"deliver after": "2025-10-30T12:00:00Z"

} 1
Change Destination:

Route to different SMSC
curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{
"dest smsc": "backup gateway"

} 1
Delete Stuck Message:

curl -X DELETE https://api.example.com:8443/api/messages/12345

Route Management

View Current Routes

Web Ul: Navigate to /sms_routing

Via API:

List all routes
curl https://api.example.com:8443/api/routes

Check Route Usage:

Prometheus query:

Messages routed by each route (last hour)
increase(sms c routing route matched count[1lh])

Add

New Route

Web Ul:

1. Navigate to /sms_routing
2. Click "Add New Route"
3. Fill in fields:

o

o

o

o

Calling Prefix: Source number prefix (optional)

Called Prefix: Destination number prefix (required for geographic
routing)

Source SMSC: Source system filter (optional)

Dest SMSC: Destination gateway (required unless auto-reply/drop)
Priority: Route priority (1-255, lower = higher priority)

Weight: Load balancing weight (1-100)

Description: Human-readable description

Enabled: Check to activate immediately

4. Click "Save Route"

Example: Geographic Route:

* Called Prefix: +44

e Dest SMSC: uk gateway
e Priority: 50

e Weight: 100

e Description: "UK routing"

Example: Load Balanced Route:

Create two routes with same criteria but different weights:

Route 1:

e Called Prefix: +44

Dest SMSC: uk primary
Priority: 50
Weight: 70

Description: "UK primary (70%)"
Route 2:

e Called Prefix: +44

Dest SMSC: uk backup

Priority: 50

Weight: 30

Description: "UK backup (30%)"

Test Routes
Routing Simulator:

1. Navigate to /simulator

2. Enter test parameters:
o Calling Number: +15551234567

o Called Number: +447700900000
o Source SMSC: (optional)
o Source Type: (optional)

3. Click "Simulate Routing"

4. Review results:
o Selected Route: Which route was chosen

o All Matches: Which routes matched criteria

o Evaluation: Why each route matched or didn't match

Test Before Production:

e Test all new routes in simulator
e Verify correct route is selected
e Check priority ordering

e Validate weight distribution

Modify Existing Route
Web Ul:

1. Navigate to /sms_routing
2. Find route in list

3. Click "Edit"

4. Modify fields

5. Click "Save Route"

Common Modifications:

Disable Route: Uncheck "Enabled" (temporary removal)

Adjust Weight: Change load balance distribution

Change Priority: Reorder route evaluation

Update Destination: Switch to different SMSC

Delete Route
Web Ul:

1. Navigate to /sms routing
2. Find route in list
3. Click "Delete"

4. Confirm deletion

Warning: Deleting routes is permanent. Consider disabling instead.

Export/Import Routes
Export Routes (Backup):

1. Navigate to /sms_ routing
2. Click "Export Routes"
3. Save JSON file

Import Routes:

1. Navigate to /sms routing
2. Click "Import Routes"
3. Select JSON file

4. Choose import mode:
o Merge: Add to existing routes

o Replace: Delete all and import

Use Cases:

Backup before major changes

Copy routes between environments

Disaster recovery

Configuration versioning

Frontend Management

Monitor Frontend Connections
Web Ul: Navigate to /frontend_status
Check:

e All expected frontends are "active"
e Last seen times are recent (< 90 seconds)

¢ No unexpected expired frontends

Via API:

Get active frontends
curl https://api.example.com:8443/api/frontends/active

Get statistics
curl https://api.example.com:8443/api/frontends/stats

Investigate Disconnections
Frontend Expired:

1. Check frontend logs for errors
2. Verify network connectivity to SMS-C
3. Confirm frontend is running

4. Check frontend registration logic (should re-register every 60s)

Registration Not Showing:

1. Verify frontend is calling POST /api/frontends/register
2. Check API logs for registration errors
3. Verify JSON payload format

4. Test registration manually with curl

Example Manual Registration:

curl -X POST https://api.example.com:8443/api/frontends/register \
-H "Content-Type: application/json" \
-d '{
“frontend name": "test gateway",
"frontend type": "smpp",
"ip address": "10.0.1.50",
“hostname": "gateway.example.com"

X
View Frontend History

Web Ul:

1. Navigate to /frontend status
2. Find frontend in list
3. Click "History"

4. Review past registrations

Via API:

curl https://api.example.com:8443/api/frontends/history/uk gateway

Use Cases:

e Investigate connection reliability
e Track frontend uptime patterns

e |dentify configuration changes

Number Translation Management

Number translation rules are managed via config/runtime.exs. Changes

require application restart.

View Active Translation Rules

Check configuration file:

cat config/runtime.exs | grep -A 20 "translation rules:"

Common Translation Tasks
Add Country Code to Local Numbers:

Edit config/runtime.exs:

o°
-~

calling prefix: nil,

called prefix: nil,

source smsc: nil,

calling match: "~(\d{10})$",

calling replace: "+1\1",

called match: "~(\d{10})$",

called replace: "+1\1",

priority: 100,

description: "Add +1 to 10-digit US numbers",
enabled: true

Normalize International Format:

o°
~

calling prefix: nil,

called prefix: nil,

source smsc: nil,

calling match: "~00(\d+)$",

calling replace: "+\1",

called match: "7~00(\d+)$",

called replace: "+\1",

priority: 10,

description: "Convert 00 prefix to +",
enabled: true

Carrier-Specific Code Stripping:

o°
-~

calling prefix: nil,

called prefix: "101",

source smsc: "carrier a",

calling match: nit,

calling replace: nil,

called match: "7~101(\d+)$",

called replace: "\1",

priority: 5,

description: "Strip carrier code from carrier A",
enabled: true

Test Translation Rules
After configuration changes:

1. Restart application to load new rules
2. Submit test message with source/destination that should match
3. Check event log for number translated event

4. Verify numbers were transformed correctly

Disable Translation Rule

Set enabled: false in rule:

o
%{

enabled: false

Restart application.

System Maintenance

Database Maintenance
Check Database Size:
Use your database management tools to monitor CDR storage size:

* MySQL/MariaDB: Query information schema.tables for database size

* PostgreSQL: Use pg database size() function or \1+ command in psql
Cleanup Old CDR Records:

CDR records should be archived and purged periodically based on your
retention policy:

e Configure automatic archiving based on business requirements (typically
30-90 days in operational database)

e Archive older records to data warehouse or cold storage

* Delete archived records from operational database in batches to avoid lock
contention

Optimize Tables:
Periodically optimize database tables to maintain performance:

e MySQL/MariaDB: Run OPTIMIZE TABLE command during low-traffic
periods

e PostgreSQL: Run VACUUM ANALYZE regularly (or enable autovacuum)

Run Weekly during low-traffic period to maintain optimal performance.

Mnesia Database Maintenance

Check Mnesia Table Size:

In IEx console
:mnesia.table info(:sms route, :size)
:mnesia.table info(:translation rule, :size)

Backup Mnesia Tables:

Export routes (Web UI)
Navigate to /sms_routing
Click "Export Routes"

Or via Mnesia backup
:mnesia.backup("/var/backups/sms c/mnesia backup.bup")

Restore Mnesia:

Via Web UI import
Or restore backup:
:mnesia.restore("/var/backups/sms c/mnesia backup.bup", [])

Log Rotation

Configure logrotate for application logs:

/etc/logrotate.d/sms c
/var/log/sms_c/*.log {

daily

rotate 30

compress

delaycompress

notifempty

create 0644 sms user sms_group

sharedscripts

postrotate

systemctl reload sms c || true
endscript

Restart Application

Graceful Restart (zero downtime in cluster):

Restart one node at a time
systemctl restart sms c

Wait for node to join cluster
Repeat for each node

Emergency Restart (all nodes):
systemctl restart sms c

After Restart:

Verify all frontends reconnect

Check Prometheus for metric continuity

Monitor logs for errors

Verify message processing resumes

Backup and Recovery

What to Backup
1. Configuration Files:

o config/runtime.exs
o config/config.exs

o config/prod.exs (if exists)

2. Routing Tables (Mnesia):

o Export via Web Ul

o Or Mnesia backup command

3. SQL CDR Database:

o Daily full backup

o Transaction log backups (continuous)

4. TLS Certificates:
° priv/cert/*.crt
° priv/cert/*.key
Backup Procedures

Daily Configuration Backup:

#!/bin/bash
/opt/sms c/scripts/backup config.sh

BACKUP DIR="/var/backups/sms c/$(date +%Y%m%d)"
mkdir -p $BACKUP DIR

Backup configuration
cp -r /opt/sms c/config $BACKUP DIR/

Backup certificates
cp -r /opt/sms c/priv/cert $BACKUP DIR/

Set permissions
chmod 600 $BACKUP DIR/cert/*

echo "Configuration backup completed: $BACKUP DIR"

Database Backup:

#!/bin/bash
/opt/sms c/scripts/backup database.sh

BACKUP_DIR="/var/backups/sms c/database"
DATE=$ (date +%Y%m%d SH%M%S)

mkdir -p $BACKUP DIR

Backup SQL CDR database

MySQL/MariaDB: Use mysqgldump with --single-transaction for
consistency

PostgreSQL: Use pg dump -F ¢ for custom format

Example structure (adapt to your database):

- Use appropriate backup tool (mysqldump, pg dump)
- Enable transaction-safe backups for consistency
- Compress output to save space

- Configure retention period (e.g., 30 days)

H OB H K H

Remove old backups
find $BACKUP DIR -name "sms c *.gz" -mtime +30 -delete

echo "Database backup completed: sms c ${DATE}"

Routing Table Backup:

#!/bin/bash
/opt/sms c/scripts/backup routes.sh

BACKUP_DIR="/var/backups/sms c/routes"
DATE=$%$(date +%Y%m%d)

mkdir -p $BACKUP DIR
Export via API
curl https://api.example.com:8443/api/routes/export \

> $BACKUP DIR/routes ${DATE}.json

echo "Routes backup completed: routes ${DATE}.json"

Schedule Backups (crontab):

Daily at 2 AM

@ 2 * * * /opt/sms_c/scripts/backup config.sh
0@ 2 * * x /opt/sms c/scripts/backup database.sh
0@ 2 * * *x Jopt/sms c/scripts/backup routes.sh

Recovery Procedures

Restore Configuration:

Stop application
systemctl stop sms ¢

Restore config files
cp -r /var/backups/sms ¢/20251030/config/* /opt/sms c/config/

Restore certificates
cp -r /var/backups/sms c/20251030/cert/* /opt/sms c/priv/cert/

Start application
systemctl start sms c

Restore SQL CDR Database:
Use appropriate restore tools for your database:

e MySQL/MariaDB: Decompress and pipe to mysql client

* PostgreSQL: Use pg restore with custom format dumps

Important: Stop the SMS-C application before restoring database to prevent
data conflicts.

Restore Routing Tables:

1. Navigate to Web Ul /sms routing
2. Click "Import Routes"

3. Select backup JSON file

4. Choose "Replace" mode

5. Confirm import

Capacity Planning

Monitor Growth Trends
Message Volume Trend:

Prometheus query (30-day average):
avg over_time(sms c message received count[30d])

Database Growth Rate:

SELECT
DATE FORMAT(inserted at, 'SY-%m') AS month,
COUNT (*) AS message count,
ROUND (SUM(LENGTH(message_body)) / 1024 / 1024, 2) AS data_mb
FROM message queues
GROUP BY month
ORDER BY month DESC
LIMIT 12;

Capacity Indicators
CPU Usage:

e Normal: < 50% average
e High: > 70% sustained
e Critical: > 90%

Memory Usage:

 Normal: < 70% of available
e High: > 80%
¢ Critical: > 90%

Disk Usage:

¢ Normal: < 60% full
e High: > 75%
¢ Critical: > 85%

Queue Depth:

e Normal: < 1000 pending
e High: > 5000 pending
e Critical: > 10,000 pending

Scaling Recommendations

When to Scale Vertically (Upgrade Resources):

e CPU consistently > 70%
e Memory consistently > 80%

e Single-node bottleneck

When to Scale Horizontally (Add Nodes):

CPU > 50% on all nodes

Message volume > 5,000 msg/sec

Geographic distribution needed

High availability required

Database Scaling:

Read replicas for reporting queries

Connection pooling optimization

Index optimization

Partition large tables by date

Incident Response

Severity Levels

Critical (Immediate Response):

No messages being delivered

All frontends disconnected

Database unavailable

API completely down

High (Response within 1 hour):

Delivery success rate < 80%

Multiple frontends disconnected

Routing failures > 10%

Queue backlog growing

Medium (Response within 4 hours):

Single frontend disconnected

Delivery success rate 80-95%

Slow message processing

ENUM lookups failing
Low (Response within 24 hours):

e Minor performance degradation
e Single route issue

e Non-critical warning alerts

Incident Checklist

1. Assess Severity:

e Check Prometheus alerts

e Review dashboard metrics

e Check message queue status

e Verify frontend connections

2. Gather Information:

Recent configuration changes?

Recent deployments?
External dependencies status (OCS, DNS)?

Error messages in logs?

3. Immediate Actions:

Stop ongoing changes

Roll back recent deployments if suspected cause

Enable verbose logging if needed

Notify stakeholders

4. Investigation:

Review application logs

Check system resource usage

Examine database performance

Test external dependencies

5. Resolution:

Apply fix

Test in simulator

Deploy to production

Monitor for improvement

6. Post-Incident:

Document root cause

Update monitoring/alerts

Implement preventive measures

Update runbooks

Common Incidents
High Queue Backlog:

1. Check delivery success rate

2. Verify frontends are connected and polling
3. Check database performance

4. Review Prometheus for bottlenecks

5. Consider increasing batch size/interval

Routing Failures:

1. Review routing configuration
2. Test in routing simulator

3. Check for missing routes

4. Verify catch-all route exists

5. Check event logs for failure reasons

Frontend Disconnections:

1. Check frontend system status
2. Verify network connectivity

3. Review frontend logs

4. Test manual API registration

5. Check firewall rules

Slow Message Processing:

1. Check database query performance

2. Review batch worker configuration

3. Verify adequate resources (CPU/Memory)
4. Check for ENUM lookup delays

5. Review charging system performance

For detailed troubleshooting procedures, see the

Performance Tuning
Guide

This guide explains how to optimize SMS-C performance for different workload
scenarios.

Performance Overview

SMS-C delivers 1,750 messages/second throughput using Mnesia for in-
memory message storage with automatic SQL database archiving for CDR

retention.

Key Performance Metrics

Measured on Intel i7-8650U @ 1.90GHz (8 cores):

) Latency
Operation Throughput Improvement
(avg)
Message Insert (with 1,750 21x faster than
] 0.58ms

routing) msg/sec SQL
Message Insert 1,750 21x faster than

. 0.57ms
(simple) msg/sec SQL
Get Messages for 800 / 195 |
SMSC msg/sec .25ms n-memory query
Memory per Insert 62 KB - 50% reduction

Capacity: ~150 million messages per day on single node

Table of Contents

Message Storage Architecture

SMS-C uses a dual-storage architecture for optimal performance:

Active Message Store (Mnesia)

e Purpose: Ultra-fast message insertion, routing, and delivery

e Storage: In-memory with disk persistence (disc_copies)
 Performance: 1,750 msg/sec insert throughput, 0.58ms latency
e Retention: Configurable (default: 24 hours)

e Clustering: Supports distributed Mnesia for horizontal scaling

CDR Archive (SQL Database)

e Purpose: Long-term message history and reporting

* Storage: SQL database (MySQL/MariaDB or PostgreSQL) for durable
archival

 Performance: Batched writes to minimize database load

* Retention: Permanent (or per data retention policy)

* Queries: Analytics, reporting, compliance

Data Flow

REST API Mnesia MessageStore Async Task 50L Database (CDR)

Insert message (fast)

T

{:0k, message_id}
.1...............................

Trigger routing/post-processing

Active messages stored
for 24 hours

loop [Cleanup {hourly)]

Find messages > 24h old

Archive to CDR table (batch)

L J

Delete archived messages

D

REST API Mnesia MessageStore Async Task 50L Database (CDR)

Mnesia Optimization

Message Retention Configuration

config/runtime.exs
config :sms c,
message retention hours: 24 # Default: 24 hours

Tuning Guidelines:
e High volume (>1M msg/day): 12-24 hours retention

o Minimizes Mnesia table size
o Faster queries

o More frequent archiving to MySQL

e Medium volume (100K-1M msg/day): 24-48 hours retention

o Good balance for most deployments

o Adequate buffer for retry logic

e Low volume (<100K msg/day): 48-168 hours retention
o Longer message history in fast storage
o Less frequent archiving
Mnesia Table Indices
MessageStore automatically creates indices on:

e status - For filtering pending/delivered messages
e dest smsc - For SMSC-specific queries

e expires - For expiration handling

e destination msisdn - For subscriber queries

* source msisdn - For subscriber queries

Mnesia Disc Persistence
Messages are stored as disc copies providing:

e []In-memory performance
e [] Automatic disk persistence
e [] Crash recovery

e [] No data loss on restart

CDR Archiving Configuration

The BatchInsertWorker handles CDR archiving to MySQL using batched writes:

config/runtime.exs

config :sms c,
batch insert batch size: 100, # CDR batch size
batch insert flush interval ms: 100 # Auto-flush interval

CDR Tuning Guidelines

High Volume Archiving

batch insert batch size: 200
batch insert flush interval ms: 200

e Larger batches reduce MySQL load

e Higher latency for CDR writes (acceptable for archiving)

Balanced (Recommended)

batch insert batch size: 100
batch insert flush interval ms: 100

e Good balance for most deployments
e CDRs written within 100ms

Real-time CDR Requirements

batch insert batch size: 20
batch _insert flush interval ms: 20

e Faster CDR writes for compliance

e More MySQL write operations

Query Optimization

Using Mnesia Indices Effectively

Queries that use indexed fields are fastest:

Fast queries (use indices)
MessageStore.list(status: :pending)
MessageStore.list(dest smsc: "gateway-1")
Messaging.get messages for smsc("gateway-1")

Slower queries (full table scan)
MessageStore.list(limit: :infinity) # Returns all messages

MySQL Connection Pool

For CDR queries and archiving, configure MySQL connection pool:

config/runtime.exs
config :sms c, SmsC.Repo,
pool size: 10 # Increase for heavy CDR reporting

Guidelines:

e Standard deployment: pool size: 10
* Heavy CDR reporting: pool size: 20-30

e Archiving only: pool size: 5

Benchmarking

Running Benchmarks

The project includes Benchee-based benchmarks for performance testing:

Raw SMS API benchmark (compares sync vs async)
mix run benchmarks/raw sms bench.exs

General message API benchmark
mix run benchmarks/message api bench.exs

Interpreting Results

Example output:

Name ips average
deviation median 99th %

submit message raw async (batch) 4.65 K 0.22 ms
+41.72% 0.184 ms 0.55 ms

submit message raw (sync) 0.0696 K 14.36 ms
+33.42% 12.57 ms 33.71 ms

Key metrics:

e ips: Iterations per second (higher is better)
e average: Average execution time (lower is better)

e median: Middle value, more representative than average for skewed
distributions

e 99th %: 99th percentile latency (important for SLA compliance)

Performance Baseline

Expected performance on modern hardware (Intel i7-8650U, 8 cores):

Metric

Throughput (with
routing)

Throughput (simple)

Response Time (avg)

Response Time (p99)

Memory per operation

Performance Gain

Key Improvements:

Monitoring

[0 50% memory reduction

insert_message
(Mnesia)

1,750 msg/sec

1,750 msg/sec

0.58ms

<5ms

62 KB

21x faster

[0 Removed duplicate number translation calls
[] Async post-processing (routing, charging, events)

[] Mnesia in-memory storage vs MySQL disk I/O

Runtime Statistics

Check batch worker statistics:

SmsC.Messaging.BatchInsertWorker.stats()

Returns:

Previous
(MysQL)

83 msg/sec

89 msg/sec

16ms

30ms

121 KB

o°
-~

total enqueued: 10000,

total flushed: 9900,

total batches: 99,

current queue size: 100,

flush errors: 0O,

last flush at: ~U[2025-10-22 12:34:56Z],
last flush count: 100,

last flush duration ms: 45

Key Metrics to Monitor

1. Queue Size: current queue size - Should be below batch size most of
the time

2. Flush Duration: last flush duration ms - Should be < 100ms for
batch_size=100

3. Flush Errors: flush errors - Should be 0 or very low

4. Throughput: total flushed / uptime - Should match expected load

Alerts

Set up monitoring alerts for:

Queue size consistently at max (indicates backpressure)

Flush duration increasing (database performance degradation)

Flush errors > 0 (database connectivity issues)

Throughput below expected (performance degradation)

Troubleshooting

Symptom: Low Throughput
Possible causes:

1. Database connection pool exhausted: Increase pool size

2. Slow database: Check query performance, add indexes
3. Network latency: Optimize network path to database

4. Batch size too small: Increase batch insert batch size

Symptom: High Latency
Possible causes:

1. Flush interval too high: Reduce batch insert flush interval ms
2. Batch size too high: Reduce batch insert batch size
3. Database slow writes: Check disk I/O, optimize tables

4. Using async APl when you need sync: Switch to synchronous endpoint

Symptom: Memory Issues
Possible causes:

1. Queue backing up: Messages accumulating faster than flushing
2. Batch size too large: Reduce batch insert batch size
3. Flush failures: Check flush _errors in stats

4. Need to restart worker: Supervisor.terminate child/2 and restart

Best Practices

. Monitor in production for at least 1 week before optimizing

. Test configuration changes in staging with production-like load
. Use benchmarks to validate configuration changes

. Document your tuning decisions for future reference

. Set up alerts before optimizing to catch regressions

~N~ o0 O b WN

. Consider time zones - peak load varies by region

. Start with defaults (100/100ms) and tune based on observed behavior

Example Configurations
Configuration: High-Volume Aggregator

config/prod.exs
config :sms c,
batch insert batch size: 200,
batch insert flush interval ms: 200

config :sms c, SmsC.Repo,
pool size: 50

Configuration: Enterprise Real-Time Messaging

config/prod.exs
config :sms c,
batch insert batch size: 20,
batch insert flush interval ms: 10

config :sms c, SmsC.Repo,
pool size: 20

Configuration: Development/Testing

config/dev.exs
config :sms_c,
batch insert batch size: 10,
batch insert flush interval ms: 50

config :sms c, SmsC.Repo,
pool size: 5

Further Reading

https://hexdocs.pm/ecto/Ecto.Repo.html#module-shared-options

¢ Benchee Documentation

e Phoenix Under Pressure

https://hexdocs.pm/benchee/Benchee.html
https://dockyard.com/blog/2020/02/27/phoenix-liveview-under-pressure

SMS-C Routing Guide

Overview

The SMS-C Routing system provides flexible, high-performance routing of SMS
messages based on multiple criteria including number prefixes, SMSC
identifiers, connection types, and more. Routes are stored in Mnesia for
persistence and can be modified at runtime without service interruption.

Key Features

* Prefix-based routing: Route based on calling/called number prefixes with
longest-match-wins logic
e SMSC-based routing: Route based on source or destination SMSC

e Type-based routing: Route based on source connection type (IMS, Circuit
Switched, SMPP)

e Priority-based routing: Control route selection order with configurable
priorities

* Weight-based load balancing: Distribute traffic across multiple routes
using weights

e Auto-reply routing: Automatically send replies back to message
originators

e Drop routing: Discard messages matching specific criteria (spam filtering,
etc.)

e Charging control: Configure charging behavior per route (Yes/No/Default)

e Configuration file loading: Load initial routes from runtime.exs on first
startup

* Runtime configuration: Add, modify, or disable routes without restarting

e Web UI: Full CRUD interface for route management with frontend
dropdown

e Simulation tool: Test routing logic before deployment

e Backup/Restore: Export and import routing configurations

e ENUM support: DNS-based number lookup (for future implementation)

Architecture

Data Model

Each route contains the following fields:

Field

route id

calling prefix

called prefix

source_smsc

dest smsc

source_type

enum_domain

auto reply

auto reply message

drop

Type

integer

string/nil

string/nil

string/nil

string/nil

atom/nil

string/nil

boolean

string/nil

boolean

Description

Auto-incrementing
unique identifier

Prefix match for calling
number (nil = wildcard)

Prefix match for called
number (nil = wildcard)

Source SMSC name (nil
= wildcard)

Destination SMSC name
(required unless
auto_reply or drop is
true)

Source type: :ims,
:Ccircuit switched,
:smpp, or nil

DNS ENUM domain for
lookup

If true, sends reply back
to originator

Message text for auto-
reply (required if
auto_reply is true)

If true, discards message
(spam filtering)

Required

Yes (auto)

No

No

No

Conditional

No

No

No (default:
false)

Conditional

No (default:
false)

Field Type Description Required

Charging behavior: No (default:
charged atom
:yes, :no, or :default :default)

. _ Load balancing weight
weight integer Yes
(1-100, default 100)

. . Route priority (1-255,
priority integer , o Yes
lower = higher priority)

o , Human-readable
description string Jeseilaion No

enabled boolean Enable/disable route Yes

Note: A route must be one of three types:

1. Normal routing: auto reply=false, drop=false, requires dest smsc
2. Auto-reply: auto reply=true, requires auto reply message

3. Drop: drop=true, discards the message

Routing Algorithm

When routing a message, the system follows this priority order:
PRIORITY 1: Location-Based Routing (Highest)

1. Check subscriber registration: If the destination MSISDN is registered in
the locations table

2. Route directly to serving frontend: Skip all routing rules and send
directly to the frontend serving that subscriber

3. This happens AFTER number translation to ensure consistency with
location registrations

PRIORITY 2: Standard Routing Rules (if no location registration found)

1. Filters enabled routes that match ALL specified criteria

2. Sorts by specificity (more specific routes first):
o Longer called prefix = higher specificity (x100 points)

o Longer calling prefix = medium specificity (x50 points)

(o]

Source SMSC specified = +25 points

[e]

ENUM result domain specified = +15 points

o

Source type specified = +10 points
o ENUM domain specified = +5 points
3. Groups by priority (lower number = higher priority)
4. Selects from highest priority group using weighted random selection

5. Executes route action:
o Normal route: Returns destination SMSC for message delivery

o Auto-reply route: Sends reply back to originator asynchronously

o Drop route: Discards message and logs event

Wildcards

e nil or empty values act as wildcards that match any value

e A route with no criteria specified is a catch-all route

Configuration

Loading Routes from Configuration File

Routes can be defined in config/runtime.exs and will be automatically loaded
on first startup. This is useful for defining baseline routing rules that should be
present when the system first starts.

Important: Routes from configuration are only loaded when the routing table
is empty (first startup). This preserves routes added via the Web Ul during
runtime and prevents duplicates on restarts.

Configuration Loading Flow

Application Starts

Routing Table\nEmpty?

OmniCharge OmniRAN

- -

Downloads > English+ Omnitouch Website (2

For each route\nin
config

Validate route fields

No Valid?

yd Yes Yes

Mo Add to Mnesia

k 4

Log success

More routes?

MO

h
¥

Skip config
. L. Report summary\nhN/M
load\nPreserve existing
routes loaded
routes
N)

— ‘._______.

Routes ready

Example Route Configuration Structure

See config/runtime.exs and config/sms routes.example.exs for complete

examples including:

e Geographic routing

e Auto-reply routes

e Drop routes (spam filtering)
* Load-balanced routes

e Premium number routing with charging

Getting Started

Initialization Flow

Route Types Overview

Message Routing Flow

Application

Translate numbers (if needed)

Set dest_smsc = frontend

Route complete (skip standard routing)

Application

Check location by MSISDN (destination)

Location found (frontend: smsc1)

Not found

route_message(calling, called, source_sn

Location Store

Routing Engine

Route Database

Event Logger

[Subscriber registered on frontend

[No location registration]

{:0k, dest_smsc, route

Create reply message (async)

{:0k, nil, route}

{:0k, nil, route}

{:error, :no_route_found}

nsc, source_type)

Log "location_based_routing"

Filter matching routes
(prefix, SMSC, type, ENUM)

[Matching routes found]

Sort by priority & specificity

Group by priority

Weighted random selection

[Normal route

[Auto-reply route]

[Drop route]

[No matching routes

Get enabled routes

Log "routing_started"

Return route list

Log "N candidates found"

Log "route_selected"

Log "auto_reply_triggered"

Log "message_dropped"

Log "no_route_found"

Location Store

Routing Engine

Route Database

Event Logger

Common Use Cases

Location-Based Routing (Highest Priority)

Route messages directly to the frontend serving a registered subscriber,
bypassing all routing rules:

Parse error on line 4: ...ed
on frontend "ims-core-1"| REG[LOC ---------------
-------- ~ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',
'SUBROUTINEEND?, 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',
‘TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

How it works:

1. Message arrives with destination number

2. Numbers are translated (if configured)

3. System checks if translated destination MSISDN is in the locations table
4

. If registered, message routes directly to the frontend serving that
subscriber

5. Standard routing rules are completely skipped

6. If not registered, normal routing rules apply

Benefits:

 Guaranteed delivery to the correct frontend for registered subscribers
e Fastest routing - no route table evaluation needed
e Accurate routing - subscriber location is the source of truth

e Overrides all routing rules - ensures subscriber reach-ability
Use cases:

e IMS/VOLTE subscribers registered on specific IMS cores
e Mobile subscribers attached to specific MSCs

e SIP subscribers registered on specific application servers

Geographic Routing

Route messages to regional SMSCs based on destination country:

v w o Lt B g caorw e -l = — s—mr 1 axr doe e b i
e — —_ i —= e — - — -

Load Balancing

Distribute traffic across multiple SMSCs with weights:

Weight: 30

__/
o

Premium Number Routing

Route premium numbers to special handling with priority:

OmniCharge

-

OmniRAM

-

Downloads ¥ English «

P

Check location by MSISDN (destination)

ale

R

[Subscriber registered on frontend]

Location found (frontend: smscl}

Log *location_based_routing®

Sat dest smic = frontend
Route complete (skip standard routing)
I
[Mo location registration]
Mot found
S
route_message|{calling, called, source_smec, Source_type)
Log “routing started*
Get enabled routes
Aetum route st
e
Filter matching routes
{prefix, SMSC, type, ENUM)
Log *M candidates found*®
alt [Matching routes found]
Sort by priority & specificity
Group by priority
Weighted random selection
alt INormal moute]
Log “route_selected®
{-ok, dest_smsc, route}
[Avto-reply route]
Create reply message (async)
Log “auto_reply_Eriggensd™
{:ok, nil, route}
ol R R SR SRR AR BRI EE A RS BRI AR
[Drop route]
Log “message_dropped®
{:ok, nil, route=}
[Mo matching routes]
Log “no_route_found™
{-mrror, o _route found }
-
Applicstion Location Store Routing Engine Route Database Event Logger

Omnitouch Website 4

Protocol-specific Routing

Route based on source connection type:

Circul@QSwitched e specified

Default Gateway
Priority: 100

Network Migration

During migration, route specific prefixes to new infrastructure:

Pror/

D
N

Continue to next priority

Priority 50
Ye/ \o

N e
N

Complex Multi-criteria Routing

Combine multiple criteria for fine-grained control:

-

e

Weight: 70 Weight: 30

¥

Weighted random
selection
ensures traffic
distribution

Web Interface

Route Management Ul

Access the route management interface at /sms_routing (configure in your
router):

Features:

e View all routes in a sortable table

e Add new routes with form validation

e Edit existing routes

e Enable/disable routes without deleting
e Delete routes with confirmation

e Real-time updates (5-second refresh)

Adding a Route:

1. Click "Add New Route"

2. Fill in the form fields (only destination SMSC is required)

3. Set weight (1-100, default 100) and priority (1-255, default 100)
4. Check "Enabled" to activate immediately

5. Click "Save Route"

Editing a Route:

1. Click "Edit" next to the route
2. Modify fields as needed
3. Click "Save Route"

Disabling a Route:

e Click "Disable" to temporarily deactivate without deleting

e Click "Enable" to reactivate

Routing Simulator
Access the simulator at /simulator (via the navigation menu):
Features:

e Test routing logic with various parameters

e Detailed field-by-field evaluation showing why each route matched or
didn't match

e See all routes evaluated in priority order
e Visual indicators for matched/selected routes
* Load example scenarios for quick testing

e View test history (last 10 tests)
Using the Simulator:

1. Enter test parameters:
o Calling number (from)

o Called number (to)

o Source SMSC (optional)
o Source type (Any/IMS/Circuit Switched/SMPP)
2. Click "Simulate Routing"

3. View comprehensive results:
o Routing Result: Selected route and destination (or "No Route Found")

o Route Evaluation: All routes with field-by-field analysis:
= v Green checkmark = Field matched

= X Red X = Field didn't match
= Reason for each field's match/non-match

o Visual indicators:
= Green border + "SELECTED" badge = Route actually used

= Purple border + "MATCHED" badge = Routes that matched but
weren't selected

= Gray border = Routes that didn't match
4. Load pre-configured examples using the example buttons

5. Review test history to compare different scenarios

Example Evaluation Output: For each route, you'll see why it matched or
didn't:

e Calling prefix: "Matches prefix '1234'"" or "Does not start with '44""
e Called prefix: "Wildcard (matches any)" or "Does not start with '639""

e Source SMSC: "Matches 'smscl' or "Expected 'untrusted smsc', got
Inonelll

e Source type: "Wildcard (matches any)" or "Expected 'smpp', got 'IMS""

APl Reference

Core Operations Overview

Route Management Operations

App

Routing API

Mnesia Database

Initialize System

init_tables()

0k

Create tables if needed

Tables ready

Add New Route

add_route(route_data)

Validate fields

{:0k, route}

Insert route

Route ID assigned

Update Route

update_route(route_id, changes)

{:0k, updated_route}

Check route exists

Route found

Apply updates

Updated

Delete Route

delete_route(route_id)

0k

Remove route

Deleted

Query Routes

list_routes() or list_enabled_routes()

Query routes

Route list

[routes]

‘ App ‘ ‘ Routing API ‘ Mnesia Database

Message Routing Parameters
route_message accepts the following parameters:

e calling number (optional): Originating phone number
e called number (optional): Destination phone number
* source smsc (optional): Source SMSC identifier

* source type (optional): Connection type (:ims, :circuit switched,
:smpp)
* message id (optional): For event logging

Returns:

* {:0k, dest smsc, route} - Route found and selected

e {:error, :no _route found} - No matching route

II'v'I5 - SMF‘P Circuit Switched Mo type specified
; v
Default Gateway
Priority: 100
.-'I .--"/I
____________ "‘x.‘ ‘._____.-' ____________—--"
— e

Route Message

Import/Export Operations
R =

Best Practices

Route Design

1. Use priorities wisely: Reserve low priorities (1-10) for critical routes
2. Keep it simple: Start with broad routes and add specific ones as needed
3. Document routes: Always add descriptions to routes

4. Use catch-all: Always have a default route with low priority

Performance

1. Minimize route count: Combine similar routes where possible

2. Use longest prefixes: More specific prefixes reduce evaluation time

3. Disable unused routes: Don't delete routes you might need later; disable
them

Operations

1. Test before deploy: Use the simulator to verify routing logic
2. Backup regularly: Export routes before making major changes
3. Monitor routing: Check event logs for routing decisions

4. Gradual rollout: Use weights to gradually shift traffic to new routes

Testing

1. Write integration tests: Test your specific routing scenarios
2. Load test: Verify routing performance under load

3. Failover testing: Ensure backup routes work when primaries fail

Troubleshooting

No Route Found
Symptom: {:error, :no route found} returned

Possible causes:

No routes configured

All matching routes are disabled

Route criteria don't match message parameters

Prefix doesn't match (check for typos)
Solutions:

1. Check that routes exist: SmsRouting.list enabled routes()

2. Use simulator to test routing with actual message parameters

3. Add a catch-all route for debugging: add route(%{dest smsc:
"debug smsc", priority: 255})

4. Check event logs for routing evaluation details
Wrong Route Selected
Symptom: Message routed to unexpected destination
Possible causes:

e Priority misconfiguration
e Wildcard route has higher priority
e Specificity calculation favors different route

e Multiple routes with same criteria using weights
Solutions:

1. Use simulator to see all matching routes
2. Check priority values (lower = higher priority)
3. Verify specificity scores in simulator

4. Review weight distribution for load-balanced routes

Performance Issues
Symptom: Routing is slow
Possible causes:

e Too many routes in database
e Complex route patterns

e Mnesia table not properly indexed
Solutions:

1. Consolidate similar routes
2. Remove disabled routes that are no longer needed

3. Ensure Mnesia indexes are created (automatic in init tables)

4. Consider caching frequently-used routing decisions

Advanced Topics

ENUM/NAPTR Integration

ENUM (E.164 Number Mapping) provides DNS-based number lookup using
NAPTR records. The SMS-C includes full ENUM support with caching,
configurable DNS servers, and route matching based on ENUM lookup results.

What is ENUM?

ENUM maps E.164 phone numbers to DNS names using a simple
transformation:

e Phone Number: +1-212-555-1234
e ENUM Query: 4.3.2.1.5.5.5.2.1.2.1.e164.arpa
e DNS Record Type: NAPTR (Naming Authority Pointer)

e Result: SIP URI, routing information, or other service data
Configuration
ENUM functionality is configured in config/runtime.exs:
Enable ENUM Lookups:

Set enum enabled: true to enable ENUM lookups before routing. When
enabled, the system will perform DNS ENUM lookups for incoming messages
and use the results in routing decisions.

ENUM Domains:

List the ENUM domains to query in priority order. The system will try each
domain until a successful lookup occurs.

Common ENUM domains:

e el64.arpa - Official IETF ENUM domain

e el64.org - Alternative ENUM registry

e Custom private ENUM domains
DNS Servers:
Configure specific DNS servers for ENUM queries. Format: {ip address, port}
Leave empty or set to [] to use system default DNS servers.
Example custom DNS configuration:

* Google Public DNS: {"8.8.8.8", 53}, {"8.8.4.4", 53}
e Cloudflare DNS: {"1.1.1.1", 53}, {"1.0.0.1", 53}
e Custom ENUM DNS: {"10.0.0.53", 53}

Timeout:

Set the DNS query timeout in milliseconds (default: 5000ms). Increase for slow
networks, decrease for faster failover.

How ENUM Lookups Work

Parse error on line 37: ... style Router fill: #3182CE style C -------------mmmmueum- ~
Expecting 'SOLID OPEN_ARROW!', 'DOTTED_OPEN_ARROW!, 'SOLID _ARROW!',
'‘BIDIRECTIONAL_SOLID _ARROW!', 'DOTTED_ARROW!',

'‘BIDIRECTIONAL DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

ENUM Caching

The system caches ENUM lookup results for 15 minutes to improve
performance and reduce DNS load.

Cache Benefits:

e Reduces DNS query load

e Improves routing latency

e Protects against DNS server failures (cached results remain available)
Cache Statistics:

e View cache size and status in the NAPTR Test page
¢ Monitor cache hit/miss rates via Prometheus metrics

e Clear cache manually if needed (configuration changes, testing, etc.)
Cache Behavior:

e Both successful and failed lookups are cached
e Failed lookups cached to avoid repeated queries for invalid numbers
e Cache automatically expires after 15 minutes

e Cache survives application restarts (stored in ETS)
Using ENUM in Routes
Routes can match on ENUM lookup results using the enum result domain field:
Example Scenario:
ENUM lookup for +1-555-0100 returns NAPTR record:

e Service: E2U+sip
e Replacement: sip:customer@voip-carrier.com

e Result Domain: voip-carrier.com
Route Configuration:

Create a route with enum_result domain: "voip-carrier.com" to match
messages where ENUM lookup returned this domain.

Matching Logic:

* If route has enum result domain: nil - matches all messages (wildcard)

e If route has enum_result domain: "specific.com" - only matches if ENUM
returned that domain

e Routes with matching ENUM domains receive higher specificity scores

Priority Calculation:

Routes with ENUM result domains receive +15 specificity points, prioritizing
them over generic routes.

Testing ENUM Lookups
Access the NAPTR Test page at /naptr test (via navigation menu).
Features:

e Perform live ENUM lookups against configured DNS servers

View detailed NAPTR record information

See result domains extracted from NAPTR records

Monitor cache statistics

Clear cache for testing
Test Workflow:

1. Enter a phone number (with or without + prefix)
2. Specify ENUM domain (default: el64.arpa)
3. Click "Perform Lookup"

4. Review results:
o NAPTR records found

o Order and preference values

o Service types (E2U+sip, E2U+tel, etc.)
o Regular expressions

o Replacement values

o Extracted result domains (used for route matching)

Current Configuration Display:

e DNS servers being used (or "System Default")
e Timeout setting
e Cache size and status

e Clear cache button

Understanding Results:

Each NAPTR record contains:

e Order: Priority for processing (lower first)

e Preference: Within same order (lower first)

e Flags: Processing instructions (u=terminal, s=continue)
e Service: Service type (E2U+sip, E2U+tel, etc.)

* Regexp: Substitution expression

* Replacement: Alternative domain or address

¢ Result Domain: Extracted domain for route matching
Common ENUM Use Cases
1. VoIP Peering

Use ENUM to identify numbers hosted on SIP/VoIP networks and route directly
to VolP gateways:

ENUM returns SIP URI: sip:number@voip-carrier.com

Result domain: voip-carrier.com

Route with enum_result domain: "voip-carrier.com" selected

Traffic sent to direct VoIP peering gateway
2. Carrier Identification

Identify the carrier serving a number and route accordingly:

ENUM returns carrier information

Result domain: carrier-a.com

Route to carrier A's interconnect

Optimize routing costs and quality
3. Number Portability
Handle ported numbers that moved between carriers:

e ENUM lookup returns current carrier
e Route to correct destination automatically

¢ No manual routing table updates needed

4. Least Cost Routing
Combine ENUM with multiple routes:

e ENUM identifies destination network
e Multiple routes for same domain with different costs

e Use priority and weights to prefer lower-cost routes
5. Emergency Services
Route emergency numbers (911, 112, etc.) to proper emergency services:

e ENUM lookup identifies local emergency gateway
e High-priority route ensures immediate routing

e No delay from normal route evaluation

ENUM Routing Strategy

Recommended Configuration:
1. High Priority ENUM Routes (Priority 1-10)

o Routes that match specific ENUM result domains
o Used for direct peering, VolP routing

o Highest specificity, selected first

2. Medium Priority Prefix Routes (Priority 50-100)

o Standard prefix-based routing
o Used when ENUM lookup fails or returns no records
o Reliable fallback

3. Low Priority Catch-All (Priority 200+)

o Default route for everything else

o Ensures no message goes unrouted

Example Route Hierarchy:

e Priority 1: enum result domain: "sip.carrier.com" — Direct VoIP gateway

e Priority 10: enum_result domain: "tel.carrier.com" - Carrier's PSTN
gateway

e Priority 50: called prefix: "+1" - North America default gateway
e Priority 100: called prefix: "+" - International default gateway

e Priority 200: No criteria = Ultimate fallback

Performance Considerations
DNS Query Latency:
ENUM lookups add DNS query time to routing:

e Cached: < 1ms (fast)
e Uncached: 10-100ms (depends on DNS server)

Recommendations:

Use geographically close DNS servers

Configure appropriate timeout (5000ms default)

Monitor cache hit rates (target > 80%)

Consider warming cache for known numbers
Scalability:

The caching system handles high-volume scenarios:

Cache is shared across all processes

Read-concurrent ETS table for performance

Automatic cache cleanup via TTL

Scales to millions of cached entries
Failure Handling:
ENUM failures gracefully fall back to regular routing:

e DNS timeout - Fall through to next route
* No NAPTR records — Use prefix-based routes

e Invalid NAPTR format - Log error, continue routing

e DNS server unavailable - Use cached results or fallback

Monitoring ENUM Operations

Use Prometheus metrics to monitor ENUM performance:

* sms _c enum lookup stop duration - Lookup latency
* sms_c_enum cache hit count - Cache hits

e sms_c_enum_cache miss count - Cache misses

* sms c enum cache size size - Current cache size

* sms _c_enum naptr records record count - NAPTR records per lookup
Key Metrics to Watch:

¢ Cache hit rate: Should be > 70% after warm-up
e Lookup duration p95: Should be < 1000ms

* Failed lookups: Monitor for DNS issues
See docs/METRICS.md for complete metrics documentation.

Troubleshooting ENUM

Issue: No NAPTR Records Found

e Verify ENUM domain configuration

Test DNS server connectivity

Check if number is actually in ENUM regqistry

Try alternative ENUM domain (e.g., el64.0rQg)

Use NAPTR Test page to diagnose

Issue: Slow ENUM Lookups

Check DNS server latency

Verify network connectivity

Increase timeout if needed

Consider using closer DNS servers

Check cache hit rate

Issue: Wrong Route Selected After ENUM

Verify enum result domain field in routes

Use Route Simulator to test routing logic

Check that result domain extraction is correct

Review NAPTR record format in Test page
Issue: ENUM Lookups Disabled

e Verify enum _enabled: true in config/runtime.exs
e Check that enum domains list is not empty
e Restart application after config changes

e Check application logs for ENUM initialization

Security Considerations

DNS Cache Poisoning:

Use trusted DNS servers only
Consider DNSSEC if available
Validate NAPTR record formats

Monitor for unexpected result domains

Resource Exhaustion:

e Cache limits prevent memory exhaustion
e Timeout prevents hanging on slow DNS

e Failed lookups cached to prevent retry storms
Information Disclosure:

« ENUM lookups reveal routing intentions to DNS servers
e Use private DNS servers for sensitive routing

e Consider VPN/encrypted DNS for privacy

Event Logging

Routing decisions are logged via the EventLogger:

* sms routing started: Routing evaluation begins

e sms_routing candidates: Number of enabled routes found
* sms routing matches: Number of matching routes

* sms_routing selected: Selected route details

e sms routing failed: No route found

Enable logging by passing message id to route message/1.

Clustering

Mnesia tables are automatically distributed across clustered nodes. Routes are
replicated for high availability.

Parse error on line 25: ... style New fill: #3182CE style P -—----—------meeemu- ~
Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW!', 'SOLID_ARROW',
'‘BIDIRECTIONAL_SOLID _ARROW!', 'DOTTED_ARROW!',

'‘BIDIRECTIONAL DOTTED_ARROW!', 'SOLID_CROSS', 'DOTTED_CROSS',
'SOLID_POINT', 'DOTTED_POINT', got 'TXT"

Examples

See the test suite at test/sms_c/messaging/sms_routing test.exs for
comprehensive examples of:

e Prefix matching

e Priority-based routing

e Weight-based load balancing
e Multi-criteria routing

e Edge cases

Migration from Old Routing

If migrating from the old config-based routing, follow this process:

OmniCharge OmniRAN

- -

Downloads % English+ Omnitouch Website (%

Priority 1

Priority-based routing
allows
gradual migration:
+ New ranges — Priority
1
* Legacy ranges —»

Priority 50
No

Yes Priority 50

=

Deliver Message

4]

Migration Steps Detail

1. Initialize Tables

o Creates Mnesia routing tables

o Prepares system for new routing

2. Analyze Old Routes

o Regex patterns — Prefix-based routes
o Canned responses — Auto-reply routes

o Custom logic —» Multi-criteria routes

3. Test Thoroughly

o Use the routing simulator
o Verify all scenarios

o Check edge cases

4. Update Code

o Replace old routing calls
o Use route message/1 API

o Update error handling

5. Deploy & Monitor

o Deploy new routing system
o Monitor for issues

o Keep old config as backup initially

6. Clean Up

o Remove old routing configuration
o Remove migration code

o Update documentation

Support

For issues or questions:

e Check the test suite for examples

e Use the simulator to debug routing logic
e Review event logs for routing decisions

* Check Mnesia table contents: :mnesia.table info(:sms_route, :size)

SMS-C Troubleshooting
Guide

Comprehensive guide for diagnosing and resolving common SMS-C issues.

Table of Contents

Diagnostic Tools

Quick Health Check

1. Check API status
curl https://api.example.com:8443/api/status

2. Check Prometheus metrics endpoint
curl https://api.example.com:9568/metrics | grep sms c

3. Check application logs
tail -f /var/log/sms c/application. log

4. Check process status
systemctl status sms c

5. Check SQL CDR database connectivity (MySQL/MariaDB)
mysql -u sms user -p -h db.example.com -e "SELECT 1"

For PostgreSQL:
psql -U sms user -h db.example.com -d sms ¢ prod -c "SELECT 1"

Log Analysis

View Recent Errors:

Last 100 error-level log entries
tail -1000 /var/log/sms c/application.log | grep "\[error\]"

Search for specific error patterns
grep "routing failed" /var/log/sms_c/application.log

Find SQL database errors

grep -i "database\|sql\]|ecto" /var/log/sms c/application.log |
grep error

Monitor Logs in Real-Time:

Follow logs with filter
tail -f /var/log/sms c/application.log | grep -E "
(error|warning|critical)"

Metric Queries

Check Message Processing Rate:

Messages per second
rate(sms c message received count[5m])

Delivery success rate

rate(sms c delivery succeeded count[5m]) /
rate(sms c delivery queued count[5m])

Check Queue Status:

Current queue depth
SmS C _queue size pending

Oldest message age (seconds)
sms c _queue oldest message age seconds

Check System Performance:

Message processing latency (p95)
histogram quantile(0.95,
sms_Cc _message processing stop duration bucket)

Routing latency (p95)
histogram quantile(0.95, sms c routing stop duration bucket)

Message Delivery Issues

Messages Not Being Delivered
Symptoms:

e Messages stuck in "pending" status
e High pending message count

e No delivery notifications
Diagnostic Steps:

1. Check Frontend Connections:

curl https://api.example.com:8443/api/frontends/active

Expected: List of active frontends Problem: Empty list or missing expected
frontends

2. Check Message Queue:

Access Web Ul: /message queue

Filter by status: "pending"

Check dest smsc value

Verify deliver after is notin future
3. Check Routing:
Access Web Ul: /simulator

e Test with actual message parameters

» Verify route matches and destination is correct

4. Check Frontend Polling:

Review frontend system logs:

e |Is frontend querying /api/messages?

e [s frontend sending smsc header correctly?

Solutions:

No Frontends Connected:

Check frontend system status
systemctl status frontend service

Verify frontend can reach API
curl -k https://api.example.com:8443/api/status

Manually register frontend
curl -X POST https://api.example.com:8443/api/frontends/register \

-H "Content-Type: application/json" \
-d '{
“frontend name": "test gateway",
“frontend type": "smpp",
"ip address": "10.0.1.50"

} 1
Messages Routed to Wrong SMSC:

e Review routing configuration
e Check route priorities
e Test in routing simulator

e Verify frontend name matches dest smsc in messages
Messages Scheduled for Future:

* Check deliver after timestamp

e Reset if needed:

curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{"deliver after": "2025-10-30T12:00:00Z"}"'

Messages Failing with Retries
Symptoms:

e delivery attempts counter increasing
e Messages with high attempt count (> 3)

e Exponential backoff delays
Diagnostic Steps:

1. Check Event Log:

curl https://api.example.com:8443/api/events/12345

Look for:

e Delivery failure events
e Error descriptions

e Retry timestamps

2. Check Frontend Logs:

e Why is frontend failing to deliver?
e Network errors?
e Protocol errors?

e Downstream system unavailable?
Solutions:
Temporary Network Issues:

e Wait for retry (automatic)

e Monitor for successful delivery

Persistent Failures:

Route to alternate gateway

curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{"dest smsc": "backup gateway"}'

Reset retry counter
curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \

-d '{"delivery attempts": 0, "deliver after": "2025-10-
30T12:00:00Z2"}"

Invalid Destination Number:

e Verify number format
e Check number translation rules

e Delete message if truly invalid

Dead Letter Messages
Symptoms:

e deadletter: true in message
e Messages past expiration time

e Status still "pending”
Diagnostic Steps:

1. Find Dead Letter Messages:
Access Web Ul: /message queue

e Filter by expired status

e Check expiration timestamps

2. Check Why Expired:

e Review event log
e Check delivery attempt history

e Verify routing was successful

Solutions:

Extend Expiration:

Add 24 hours to expiration

curl -X PATCH https://api.example.com:8443/api/messages/12345 \
-H "Content-Type: application/json" \
-d '{"expires": "2025-10-31T12:00:00Z", "deadletter": false}'

Routing Problems

No Route Found
Symptoms:

e Error: no route found
e sms c routing failed count metric increasing

e Event log shows "routing_failed"
Diagnostic Steps:

1. Check Routes Exist:
Access Web Ul: /sms routing

e Verify routes are configured

¢ Check at least one route is enabled
2. Test Routing:
Access Web Ul: /simulator

e Enter message parameters (calling number, called number, source SMSC)

¢ Review evaluation results
e Check why routes didn't match

3. Check Route Criteria:

e Prefix matches required?
e Source SMSC filter too restrictive?

¢ All routes disabled?
Solutions:
No Routes Configured:

Add catch-all route:

Calling Prefix: (empty)

Called Prefix: (empty)

Source SMSC: (empty)

Dest SMSC: default gateway

Priority: 255

Weight: 100

Enabled: v

Description: Catch-all default route

Routes Too Specific:

Add broader route:

Called Prefix: +

Dest SMSC: international gateway
Priority: 200

Weight: 100

Enabled: v

Description: International catch-all

All Routes Disabled:

e Enable appropriate routes via Web Ul

e Check configuration didn't accidentally disable routes

Wrong Route Selected

Symptoms:

e Messages routed to unexpected destination
e Wrong gateway receiving traffic

e Load balance not distributing as expected
Diagnostic Steps:

1. Use Routing Simulator:
Access Web Ul: /simulator

e Test with actual message parameters
e Review "All Matches" section

e Check priority and specificity scores
2. Check Route Priorities:

e Lower number = higher priority
e Routes evaluated in priority order

e Within same priority, weights apply
3. Check Route Specificity:
Specificity scoring:

e Longer called prefix: +100 points per character

Longer calling prefix: +50 points per character

Source SMSC specified: +25 points

Source type specified: +10 points

ENUM domain specified: +15 points
Solutions:
Adjust Priorities:

Make specific route higher priority:

Premium Route:
Called Prefix: +1555
Priority: 10 (high priority)

General Route:

Called Prefix: +1
Priority: 50 (lower priority)

Adjust Weights:

Change load balance distribution:

Primary (70%):
Weight: 70

Backup (30%):
Weight: 30

Add More Specific Route:

Override general route for specific case:

Specific Route:
Called Prefix: +15551234
Dest SMSC: dedicated gateway
Priority: 1

General Route:
Called Prefix: +1

Dest SMSC: general gateway
Priority: 50

Auto-Reply Not Working
Symptoms:

e Auto-reply route configured but not triggering

¢ No reply messages being sent

e Event log missing auto-reply event

Diagnostic Steps:

1. Check Route Configuration:

e auto reply: true
* auto reply message

e Route is enabled

contains text

e Route matches message criteria

2. Test in Simulator:

e Verify route is selected

e Check for "auto_reply" indication

3. Check Event Log:

curl https://api.example.com:8443/api/events/12345 | grep

auto reply

Solutions:

Route Not Matching:

e Broaden criteria (remove filters)

e Check priority (should be higher than normal routes)

e Verify enabled status
Message Not Set:

Edit route, add message:

Auto-Reply: v
Auto-Reply Message:
soon."

Wrong Priority:

"Thank you for your message. We will respond

Auto-reply routes should have high priority (low number):

Auto-Reply Route:
Priority: 10

Normal Route:
Priority: 50

Performance Issues

High Message Processing Latency
Symptoms:

* sms c message processing stop duration p95 > 1000ms
e Slow API responses

e Queue building up
Diagnostic Steps:

1. Check Component Latencies:

Routing latency
histogram quantile(0.95, sms c routing stop duration bucket)

ENUM lookup latency
histogram quantile(0.95, sms c enum lookup stop duration bucket)

Charging latency
histogram quantile(0.95, sms c charging succeeded duration bucket)

Delivery latency
histogram quantile(0.95, sms c delivery succeeded duration bucket)

2. Check System Resources:

CPU usage
top -b -n 1 | grep sms c

Memory usage
ps aux | grep beam.smp

Solutions:

Routing Slow (Many routes):

- Reduce number of enabled routes
- Combine similar routes

- Optimize route criteria

ENUM Lookups Slow:

- Check DNS server latency

- Increase timeout

- Use faster/closer DNS servers
- Disable ENUM if not needed

Charging Slow:

Check 0CS performance

Increase 0CS timeout

Disable charging if not needed
Use async charging

Database Slow:

- Increase connection pool size
Add indexes

Optimize queries

Upgrade database resources

Configuration Changes:

T elixir
config/config.exs
Increase batch size for throughput
config :sms_c,
batch insert batch size: 200,
batch _insert flush interval ms: 200

Increase database pool

config :sms c, SmsC.Repo,
pool size: 50

Low Message Throughput
Symptoms:

e Processing < 100 msg/sec
e Using async API but still slow

e High API response times
Diagnostic Steps:

1. Check Batch Worker:

In production console (iex)
SmsC.Messaging.BatchInsertWorker.stats()

Look for:

* current queue size near max

flush errors >0

last _flush duration ms very high

2. Check Bottlenecks:

Database query time
ecto pools query time

Connection pool queue time
ecto pools queue time

Solutions:
Database Bottleneck:

Increase pool size:

config :sms c, SmsC.Repo,
pool size: 50 # Increase from 20

Batch Configuration:

Tune for throughput:

config :sms _c,
batch insert batch size: 200, # Larger batches
batch insert flush interval ms: 200 # Longer interval

Use Async Endpoint:

High throughput: use /create async
curl -X POST
https://api.example.com:8443/api/messages/create async

NOT: /api/messages (synchronous)

Queue Backlog Growing
Symptoms:

e sms_c _queue_size pending increasing
¢ Oldest message age increasing

e Processing can't keep up with incoming rate
Diagnostic Steps:

1. Check Incoming vs Delivery Rate:

Incoming rate
rate(sms c message received count[5m])

Delivery rate
rate(sms c delivery succeeded count[5m])

2. Check Frontend Capacity:

Are frontends polling frequently enough?

Are frontends processing messages fast enough?

Any frontend errors?

3. Check Delivery Success Rate:

rate(sms c delivery succeeded count[5m]) /
rate(sms c delivery attempted count[5m])

Solutions:
Frontends Not Polling:

e Check frontend connectivity
e Verify polling interval (should be 5-10 seconds)

e Restart frontend services
Frontends Too Slow:

¢ Add more frontend instances
e Optimize frontend processing

* Increase frontend concurrency
High Retry Rate:

e Investigate delivery failures
e Fix downstream issues

e Route to alternate gateways
Temporary Spike:

e Wait for queue to drain
e Monitor until normal

e Consider capacity upgrades if recurring

Database Problems

Connection Failures
Symptoms:

e Error: "unable to connect to database"
e API returning 500 errors

e Application won't start
Diagnostic Steps:

1. Check SQL CDR Database Status:

MySQL/MariaDB
systemctl status mysql

PostgreSQL
systemctl status postgresql

Test connectivity (MySQL/MariaDB)
mysql -u sms user -p -h db.example.com -e "SELECT 1"

Test connectivity (PostgreSQL)
psql -U sms user -h db.example.com -d sms ¢ prod -c "SELECT 1"

2. Check Network:

Ping database host
ping db.example.com

Check port connectivity (MySQL/MariaDB: 3306, PostgreSQL: 5432)
telnet db.example.com 3306

or

telnet db.example.com 5432

3. Check Credentials:

Verify environment variables
echo $DB USERNAME

echo $DB HOSTNAME

echo $DB_PORT

Try manual connection with same credentials (MySQL/MariaDB)
mysql -u $DB USERNAME -p$DB PASSWORD -h $DB HOSTNAME

For PostgreSQL:
psql -U $DB USERNAME -h $DB HOSTNAME -d sms c prod

Solutions:

Database Down:

Start database (MySQL/MariaDB)
systemctl start mysql

Start database (PostgreSQL)
systemctl start postgresql

Wrong Credentials:

Update configuration:

export DB USERNAME=correct user
export DB PASSWORD=correct password

Restart application
systemctl restart sms c

Network Issue:

¢ Check firewall rules
e Verify security groups (cloud)

e Check VPN/network connectivity

Connection Pool Exhausted:

Increase pool size:

config :sms c, SmsC.Repo,
pool size: 50 # Increase from current value

Slow Queries
Symptoms:

* Database query time high
e API responses slow

e Connection pool queue building up
Diagnostic Steps:

1. Check Slow Query Log:

-- MySQL/MariaDB: Enable slow query log
SET GLOBAL slow query log = 'ON‘';
SET GLOBAL long query time = 1; -- Log queries > 1 second

-- View slow queries (MySQL/MariaDB)
SELECT * FROM mysql.slow log ORDER BY query time DESC LIMIT 10;

-- PostgreSQL: Enable slow query log in postgresql.conf
-- log min duration statement = 1000 # milliseconds
-- Then check PostgreSQL logs

2. Check Missing Indexes:

-- Check table indexes
SHOW INDEX FROM message queues;

-- Expected indexes:
-- - source smsc

-- - dest smsc

-- - send time

-- - 1Inserted at

3. Check Table Stats:

-- Table sizes (MySQL/MariaDB)
SELECT
table name,
table rows,
ROUND (data length / 1024 / 1024, 2) AS data mb,
ROUND (index length / 1024 / 1024, 2) AS index mb
FROM information schema.tables
WHERE table schema = 'sms c prod';

-- Table sizes (PostgreSQL)

-- SELECT schemaname, tablename,

pg size pretty(pg total relation size(schemaname||'.'||tablename))
AS size

-- FROM pg tables WHERE schemaname = 'public';

Solutions:

Missing Indexes:

CREATE INDEX idx message queues source smsc ON

message queues(source smsc);

CREATE INDEX idx message queues dest smsc ON

message queues(dest smsc);

CREATE INDEX idx message queues send time ON

message queues(send time);

CREATE INDEX idx message queues status ON message queues(status);

Table Fragmentation:

-- MySQL/MariaDB
OPTIMIZE TABLE message queues;
OPTIMIZE TABLE frontend registrations;

-- PostgreSQL
-- VACUUM ANALYZE message queues;
-- VACUUM ANALYZE frontend registrations;

Too Much Data:

Clean up old records:

-- Delete delivered messages older than 30 days
DELETE FROM message queues

WHERE status = 'delivered'’

AND deliver time < DATE SUB(NOW(), INTERVAL 30 DAY)
LIMIT 10000;

Disk Space Full
Symptoms:

e Error: "Disk full"
e Cannot write to database

e Application crashes
Diagnostic Steps:

1. Check Disk Usage:

df -h

Check SQL database directory (MySQL/MariaDB)
du -sh /var/lib/mysql

Check SQL database directory (PostgreSQL)
du -sh /var/lib/postgresql

2. Find Large Files:

Find largest files (MySQL/MariaDB)
find /var/lib/mysql -type f -exec du -h {} + | sort -rh

| head -20

Find largest files (PostgreSQL)
find /var/lib/postgresql -type f -exec du -h {&%#125; + | sort

-rh | head -20

Check log files
du -sh /var/log/sms c/*

Solutions:

Clean Old Data:

-- Delete old messages

DELETE FROM message queues
WHERE inserted at < DATE SUB(NOW(), INTERVAL 90 DAY)

LIMIT 100000;

Rotate Logs:

Force logrotate
logrotate -f /etc/logrotate.d/sms c

Clear old log files

find /var/log/sms _c -name "*.log.*" -mtime +30 -delete

Expand Disk:

¢ Resize volume (cloud)
¢ Add new disk and extend volume

e Move data to larger disk

Frontend Connection Issues

Frontend Not Showing as Active
Symptoms:

e Frontend status shows "expired"
¢ Frontend not in active list

e Messages not being delivered to frontend
Diagnostic Steps:

1. Check Registration:

curl https://api.example.com:8443/api/frontends/active | grep
frontend name

2. Check Frontend Logs:

* |s frontend calling /api/frontends/register?
e Any API errors?

e Registration frequency (should be every 60s)

3. Check API Logs:

grep "frontend.*register" /var/log/sms c/application.log | tail
-20

Solutions:
Frontend Not Registering:

Test manual registration:

curl -X POST https://api.example.com:8443/api/frontends/register \
-H "Content-Type: application/json" \
-d '{
“frontend name": "uk gateway",
"frontend type": "smpp",
"ip address": "10.0.1.50"
}

If successful, problem is in frontend code/configuration.
Registration Timing Out:

Frontends expire after 90 seconds. Ensure registration every 60 seconds:

Frontend should call register every 60 seconds
while True:

register with smsc()

time.sleep(60)

Network Issues:

e Check firewall between frontend and API
e Verify DNS resolution

e Test with curl from frontend server
Frontend Repeatedly
Connecting/Disconnecting
Symptoms:

e Frontend status flipping between active/expired
e High registration count in history

¢ Unstable connection
Diagnostic Steps:

1. Check Frontend Health:

Is frontend process stable?

Any crashes or restarts?

Resource issues (CPU/memory)?

2. Check Network Stability:

Check packet loss
ping -c 100 api.example.com

Check connection resets
netstat -s | grep -1 reset

3. Check Registration Timing:

e Too frequent? (every few seconds)

e Too infrequent? (> 90 seconds)
Solutions:
Frontend Unstable:

e Fix frontend application issues
¢ Increase frontend resources

e Check frontend logs for errors
Network Issues:

e Check for intermittent connectivity
e Review firewall logs

¢ Check load balancer health checks
Wrong Registration Interval:

Correct interval:

REGISTRATION INTERVAL = 60

Charging/Billing Issues

Charging Failures
Symptoms:

e sms _c charging failed count increasing
e Event log shows "charging failed"

* Messages marked as charge failed: true
Diagnostic Steps:

1. Check OCS Connectivity:

Test 0CS API
curl -X POST http://ocs.example.com:2080/jsonrpc \
-H "Content-Type: application/json" \

-d '{
"method": "SessionSvl1.Ping",
“params": [],
"id": 1

}

Expected: {"result":"Pong"}

2. Check OCS Logs:

tail -f /var/log/ocs/ocs.log

3. Check Configuration:

Verify 0CS URL
grep ocs url config/runtime.exs

Solutions:

OCS Unavailable:

Check 0CS status
systemctl status ocs

Start if needed
systemctl start ocs

Configuration Error:

Update configuration:

config :sms c,
ocs url: "http://correct-host:2080/jsonrpc",
ocs tenant: "correct tenant"

Disable Charging Temporarily:

config :sms_c,
default charging enabled: false

Restart application.
Account Issues:

¢ Check account exists in OCS
e Verify account has balance

e Check rating plans are configured

Charging Too Slow
Symptoms:

e sms _c charging succeeded duration p95 > 500ms
e Message processing slow when charging enabled

e Fast when charging disabled

Diagnostic Steps:

1. Check Charging Latency:

histogram quantile(0.95, sms c charging succeeded duration bucket)

2. Check OCS Performance:

0CS response time
curl -w "%{time total}\n" -X POST
http://ocs.example.com:2080/jsonrpc \

-H "Content-Type: application/json" \

-d '{"method":"SessionSv1l.Ping","params":[],"id":1}"

3. Check Network Latency:

Ping 0OCS host
ping -c 10 ocs.example.com

Solutions:
OCS Slow:

e Optimize OCS configuration
e Add OCS resources

* Use faster rating engine
Network Latency:

e Deploy OCS closer to SMS-C
e Use direct network path

e Avoid VPN/tunnels if possible
Timeout Too Low:

Increase timeout:

config :sms_c,
ocs timeout: 5000 # 5 seconds

ENUM Lookup Problems

ENUM Lookups Failing

Symptoms:

e sms_c_enum lookup stop duration showing failures
e Event log shows ENUM errors

* Routes with enum_result _domain not matching
Diagnostic Steps:

1. Check ENUM Configuration:

grep -A 10 "enum " config/runtime.exs

2. Test DNS Connectivity:

Test DNS server
dig @8.8.8.8 el64.arpa

Test ENUM query

For +15551234567:
dig @8.8.8.8 NAPTR 7.6.5.4.3.2.1.5.5.5.1.el64.arpa

3. Check DNS Server:

Is custom DNS reachable?
ping 10.0.1.53

Test port
nc -zv 10.0.1.53 53

Solutions:

DNS Server Unreachable:

Use alternate DNS:

config :sms c,
enum dns servers: [
{"8.8.8.8", 53}, # Google Public DNS
{"1.1.1.1", 53} # Cloudflare DNS

ENUM Domain Wrong:

Update domain:

config :sms _c,
enum domains: ["el64.arpa"] # Use standard domain

Timeout Too Short:

Increase timeout:

config :sms c,
enum_timeout: 10000 # 10 seconds

Disable ENUM (if not needed):

config :sms c,
enum _enabled: false

ENUM Cache Issues

Symptoms:

e Low cache hit rate (< 70%)
e Cache size growing unbounded

e Memory usage high

Diagnostic Steps:

1. Check Cache Stats:

Cache hit rate

rate(sms _c _enum cache hit count[5m]) /
(rate(sms c enum cache hit count[5m]) +
rate(sms c enum cache miss count[5m]))

Cache size
sms c_enum cache size size

2. Check Traffic Pattern:

e Are numbers repeating?

e Cache TTL appropriate?
Solutions:
Low Hit Rate (Expected):

e Traffic to unique numbers (normal)

e Monitor but don't alarm if < 70%
Cache Growing:
Clear cache via NAPTR Test page or restart application.
High Memory Usage:

e Expected with large cache
e Monitor overall system memory

e Consider TTL adjustment

Cluster Issues

Node Can't Join Cluster

Symptoms:

e Single node running

e Cluster queries returning only local results
e Erlang distribution errors

Diagnostic Steps:

1. Check Node Names:

In IEx console
Node.self()

Expected: :sms@nodel.example.com

Node. list()
Expected: List of other nodes

2. Check Erlang Cookie:

Check cookie file
cat ~/.erlang.cookie

Verify same on all nodes
3. Check Network:

Can nodes reach each other?
ping node2.example.com

Check ports
nc -zv node2.example.com 4369
nc -zv node2.example.com 9100-9200

Solutions:
Cookie Mismatch:

Set same cookie on all nodes:

export ERLANG COOKIE=same secret value here
Or update ~/.erlang.cookie

echo "same secret value here" > ~/.erlang.cookie
chmod 400 ~/.erlang.cookie

Firewall Blocking:

Open required ports:

EPMD
iptables -A INPUT -p tcp --dport 4369 -j ACCEPT

Erlang distribution
iptables -A INPUT -p tcp --dport 9100:9200 -j ACCEPT

DNS Issues:

Use IP addresses instead of hostnames:

config :sms _c,
cluster nodes: [
:"sms@l10.0.1.10",
:"sms@10.0.1.11"

Cluster Split Brain
Symptoms:

e Nodes running but disconnected
e Different data on different nodes

¢ Mnesia inconsistencies
Diagnostic Steps:

1. Check Node Connectivity:

On each node (IEx)
Node.list()

2. Check Mnesia:

:mnesia.system info(:running db nodes)

Solutions:

Reconnect Nodes:

Stop all nodes
systemctl stop sms c

Start one node first
systemctl start sms ¢ # On nodel

Wait for it to fully start, then start others

systemctl start sms ¢ # On node2
systemctl start sms ¢ # On node3

Mnesia Inconsistency:

e Export routes from correct node
e Stop all nodes

e Delete Mnesia directory

e Start nodes

e |mport routes

APl Problems

API Not Responding
Symptoms:

e Connection timeout

e Connection refused

* No response
Diagnostic Steps:

1. Check API Process:

Is application running?
systemctl status sms c

Check listening ports
netstat -tlnp | grep 8443

2. Check Firewall:

Check iptables
iptables -L -n | grep 8443

Test local connectivity
curl -k https://localhost:8443/api/status

3. Check TLS Configuration:

Check certificate exists
ls -1 priv/cert/server.crt priv/cert/server.key

Check certificate validity
openssl x509 -in priv/cert/server.crt -noout -dates

Solutions:

Application Not Running:
systemctl start sms c

Firewall Blocking:

Allow API port
iptables -A INPUT -p tcp --dport 8443 -j ACCEPT

Certificate Issues:
Generate new certificate (see Configuration Guide).
Wrong Port:

Check configuration:

grep "port:" config/runtime.exs

API Returning 500 Errors
Symptoms:

e |Internal Server Error
¢ 500 status code

e Errorin logs
Diagnostic Steps:

1. Check Application Logs:

tail -100 /var/log/sms c/application.log | grep "\[error\]"
2. Check Database:

mysql -u sms user -p -e "SELECT 1"

3. Check Resources:

Memory
free -h

CPU
top -b -n 1

Disk
df -h

Solutions:
Database Unavailable:

e Start database

e Fix connection configuration
Out of Memory:

* Restart application
* |ncrease system memory

e Check for memory leaks
Application Error:

e Check specific error in logs
e Fix configuration issue

e Restart application

Web Ul Issues

Can't Access Web Ul
Symptoms:

e Connection timeout
e 404 Not Found

e Page won't load

Diagnostic Steps:

1. Check Application Status:

systemctl status sms c

2. Check Port:

netstat -tlnp | grep 80

3. Check URL:

Correct hostname?

Correct port?
HTTP vs HTTPS?

Solutions:
Wrong Port:

Check configuration:

grep "control panel" config/runtime.exs

Access on correct port (default: 80 or 4000).

Application Not Running:

systemctl start sms c

Firewall:

iptables -A INPUT -p tcp --dport 80 -j ACCEPT

LiveView Not Updating
Symptoms:

e Page loads but doesn't update
e Data is stale

e \WebSocket errors in browser console
Diagnostic Steps:

1. Check Browser Console:

Open Developer Tools (F12)

Look for WebSocket errors

Check network tab for failed requests

2. Check Proxy Configuration:

If using reverse proxy, ensure WebSocket support:

location /live {
proxy http version 1.1;
proxy set header Upgrade $http upgrade;
proxy set header Connection "upgrade";
}

Solutions:
WebSocket Blocked:

e Configure proxy for WebSocket
e Check firewall

e Check browser extensions
Refresh Page:

¢ Hard refresh (Ctrl+F5)

e Clear browser cache

System Resource Issues

High CPU Usage

Symptoms:

e CPU consistently > 80%
e System slow

e Application unresponsive
Diagnostic Steps:

1. Check Process:

top -b -n 1 | grep beam.smp
2. Check Metrics:

Message processing rate
rate(sms c message received count[5m])

Routing operations
rate(sms c routing route matched count[5m])

Solutions:
High Traffic:

e Scale horizontally (add nodes)

e Scale vertically (add CPU)
Inefficient Routing:

e Reduce number of routes

e Optimize route criteria

Too Many ENUM Lookups:

e Check cache hit rate

e Consider disabling if not needed

High Memory Usage
Symptoms:

e Memory usage > 90%
e Application crashes

e Out of memory errors
Diagnostic Steps:

1. Check Memory:

free -h

ps aux | grep beam.smp

2. Check Cache Sizes:
sms _c_enum cache size size

Solutions:
ENUM Cache Too Large:

e Clear cache
e Reduce TTL
e Disable ENUM if not needed

Batch Queue Growing:

Check worker stats (IEx)
SmsC.Messaging.BatchInsertWorker.stats()

If queue is large, flush manually or restart.

Add Memory:

e Scale vertically

e Add swap (temporary)
Memory Leak:

e Restart application

e Report issue for investigation

For additional assistance, consult:

. - Daily procedures
. - Configuration options
. - Monitoring setup

Application logs - /var/log/sms _c/application.log

