
Benchmarks

This directory contains performance benchmarks for the SMS-C system using

Benchee.

Available Benchmarks

1. Raw SMS Benchmark (raw_sms_bench.exs)

Benchmarks the submit_message_raw API endpoint using real SMS PDUs.

Features:

Uses real SMS PDUs (add your PDUs to the @sample_pdus list in the file)

Disables duplicate detection by clearing fingerprints before each iteration

Outputs both console and HTML reports

Usage:

Output: benchmarks/output/raw_sms_benchmark.html

2. Message API Benchmark

(message_api_bench.exs)

Benchmarks various message API operations including insert, retrieval, and

routing.

Features:

Tests insert_message (simple and with routing)

Tests get_messages_for_smsc

Tests list_message_queues

mix run benchmarks/raw_sms_bench.exs

Pre-populates database with test data for realistic scenarios

Usage:

Output: benchmarks/output/message_api_benchmark.html

Configuration

All benchmarks use Benchee with the following default settings:

Warmup: 2 seconds

Time: 10 seconds

Memory time: 2 seconds

Extended statistics enabled

HTML reports auto-generated

Outputs

HTML benchmark reports are generated in benchmarks/output/ and include:

Detailed performance metrics

Comparison charts

Memory usage statistics

Statistical analysis

mix run benchmarks/message_api_bench.exs

SMS-C Operations

Documentation

← Back to Main README

Welcome to the SMS-C operations documentation. This comprehensive guide

covers all aspects of configuring, operating, monitoring, and troubleshooting

the SMS-C system.

Documentation Overview

Getting Started

Configuration Reference - Complete configuration options and examples

Day-to-Day Operations

Operations Guide - Daily tasks, monitoring, and maintenance

SMS Routing Guide - Route management and configuration

API Reference - Complete API documentation with examples

Performance & Monitoring

Performance Tuning - Optimization for different workloads

Metrics Guide - Prometheus metrics and monitoring

Troubleshooting

Troubleshooting Guide - Common issues and solutions

Compliance & Regulatory

ANSSI R226 Interception Compliance - French lawful interception

technical specifications

Multi-protocol frontend integration (IMS/SIP, SMPP, SS7/MAP)

ETSI X1/X2/X3 lawful interception interfaces

Mnesia + SQL two-tier storage architecture

CDR schema for lawful interception queries

Encryption and cryptanalysis capabilities

Quick Links

Common Tasks

Submitting a Message

Creating a Route

Checking Message Status

Monitoring System Health

Handling Delivery Failures

Configuration Examples

Message Storage & Retention

CDR Export Setup

Privacy Controls

High-Volume Configuration

Geographic Routing

Load Balancing

ENUM/NAPTR Setup

OCS Charging

Number Translation

Monitoring & Alerts

Key Metrics

Recommended Alerts

Dashboard Templates

System Architecture Overview

The SMS-C is a distributed, high-performance message routing platform with

the following key components:

Core Components

Message Storage - Mnesia-based fast storage with configurable retention

and CDR export

Routing Engine - Mnesia-based routing rules with prefix matching and

load balancing

Number Translation - Regex-based number normalization with priority

ordering

Charging Integration - OCS online charging with route-based policies

ENUM Lookup - DNS-based number routing with caching

Event Logging - Message lifecycle tracking

CDR Export - Automatic export to SQL database for long-term

billing/analytics

External Interfaces

REST API - Message submission and management (HTTPS)

Web UI - Route management, message browser, monitoring

Prometheus - Metrics exposure for monitoring

OCS - Charging/billing integration

DNS - ENUM/NAPTR lookups for routing

Distribution & HA

Multi-Node Clustering - Distributed message processing

Mnesia Replication - Route synchronization across nodes

Automatic Failover - Node failure handling

Load Balancing - Weighted route distribution

Related Documentation

Performance Benchmarks - Performance testing and results

CDR Schema Reference - Complete CDR database schema with SQL

examples

System Requirements

Minimum Requirements

CPU: 2 cores

RAM: 4 GB

Disk: 50 GB (grows with message retention)

OS: Linux (recommended), macOS (development)

Erlang/OTP: 26.x or later

Elixir: 1.15.x or later

SQL Database: MySQL 8.0+, MariaDB 10.5+, or PostgreSQL 13+ (for CDR

storage)

Recommended Production

CPU: 8+ cores

RAM: 16+ GB

Disk: 500+ GB SSD

Network: 1 Gbps+

SQL Database: Dedicated server with replication (for CDR storage)

Network Ports

80/443 - Web UI (HTTP/HTTPS)

8443 - API (HTTPS)

4369 - Erlang Port Mapper (clustering)

9100-9200 - Erlang distribution (clustering)

9568 - Prometheus metrics

Support & Resources

Logs

Application Logs: /var/log/sms_c/ (production) or console

(development)

Web UI Logs: Real-time log viewer at /logs

Event Logs: Per-message event tracking via API

Diagnostics

Health Check: GET /api/status

Metrics: GET http://localhost:9568/metrics (Prometheus format)

Frontend Status: Web UI at /frontend_status

Message Queue: Web UI at /message_queue

Getting Help

1. Check the Troubleshooting Guide

2. Review application logs

3. Check Prometheus metrics for anomalies

4. Use the routing simulator to test routing logic

5. Examine per-message event logs

Version Information

This documentation is current as of:

Last Updated: 2025-10-30

SMS-C Version: Latest development build

Supported Elixir: 1.15.x - 1.17.x

Supported Erlang/OTP: 26.x - 27.x

Documentation Conventions

Throughout this documentation:

Configuration examples show typical values; adjust for your

environment

API examples use curl command-line format

IP addresses and domains are examples only; replace with your actual

values

Metric names follow Prometheus naming conventions

All timestamps are in UTC unless otherwise specified

Quick Start

1. Configuration: Configure via config/runtime.exs - see Configuration

Reference

2. Initial Routes: Create routing rules via Web UI or configuration file - see

SMS Routing Guide

3. Submit Test Message: Use API or Web UI - see API Reference

4. Monitor: Set up Prometheus scraping - see Metrics Guide

Documentation Feedback

This documentation is maintained alongside the SMS-C codebase. For

corrections or improvements, please update the markdown files in the docs/

directory.

ANSSI R226

Interception

Compliance

Documentation

Document Purpose: This document provides technical specifications required

for ANSSI R226 authorization under Articles R226-3 and R226-7 of the French

Penal Code for the OmniMessage SMS Service Center (SMSc).

Classification: Regulatory Compliance Documentation

Target Authority: Agence nationale de la sécurité des systèmes d'information

(ANSSI)

Regulation: R226 - Protection of Correspondence Privacy and Lawful

Interception

1. DETAILED TECHNICAL

SPECIFICATIONS

1.1 Commercial Technical Datasheet

Product Name: OmniMessage SMSc (SMS Service Center) Product Type:

Telecommunications Message Center Primary Function: SMS message

routing, storage, and delivery Network Protocols: REST API (HTTPS), SMS

protocols (SMPP, IMS, SS7/MAP via external frontends) Deployment Model:

On-premises server application Technology Stack: Elixir/Erlang, Phoenix

Framework, Mnesia, MySQL/PostgreSQL

Core Capabilities

Message Processing:

Centralized SMS message queue with REST API

Protocol-agnostic design supporting SMPP, IMS, SS7/MAP frontends

Dynamic routing engine with prefix-based routing

Retry logic with exponential backoff

Message expiration and dead letter queue handling

Call Detail Record (CDR) generation and archival

Performance: ~1,750 messages/second insert rate, 150 million

messages/day capacity

Message Storage:

Active Message Queue: Mnesia in-memory database with optional disc

persistence

Primary storage: RAM for ultra-fast access (sub-millisecond latency)

Disc backup: disc_copies mode writes to disk for crash recovery

Automatic recovery: Messages survive system restarts

Retention: Configurable (default 24 hours), then automatic cleanup

Long-term CDR Archive: MySQL/PostgreSQL database (separate from

message queue)

CDRs written when messages are delivered, expired, failed, or rejected

SQL database used ONLY for CDR export/archival, NOT for active

message operations

No performance impact on message routing (async write)

Two-tier Architecture Benefits:

Active queue: Blazing fast (1,750 msg/sec) with no SQL bottleneck

CDR archive: Long-term retention (months/years) for billing and lawful

interception

Clean separation: Message operations never touch SQL

Cluster support for high availability (Mnesia replication across nodes)

Network Interfaces:

REST API: HTTPS (port 8443) for external frontend communication

Control Panel: HTTPS (port 8086) for web-based management

Frontend Protocols: SMPP, IMS, SS7/MAP (via external gateway

applications)

Database: MySQL/PostgreSQL for CDR storage

Routing and Processing:

Dynamic SMS routing with runtime configuration updates

Prefix-based matching (calling/called numbers)

Source SMSC and type filtering

Priority and weight-based load balancing

Number translation and normalization

ENUM (E.164 Number Mapping) DNS lookup support

Auto-reply and message drop capabilities

Per-route charging control (CGRates integration)

� Complete architecture and features documented in README.md

1.2 Interception Capabilities

1.2.1 Message Acquisition

SMS Message Capture:

The OmniMessage SMSc processes all SMS messages between subscribers

and external networks

Full access to message metadata and content including:

Source MSISDN (mobile number)

Destination MSISDN (mobile number)

Source IMSI (International Mobile Subscriber Identity)

Destination IMSI

Message body (text content)

Raw PDU (Protocol Data Unit) data

TP-DCS (Data Coding Scheme) information

Message encoding (GSM7, UCS-2, 8-bit, Latin-1)

Multipart message indicators and reassembly data

User Data Header (UDH) information

Message Metadata Acquisition:

Complete Call Detail Records (CDR) stored in database with:

Message ID (unique identifier)

Calling number (source MSISDN)

Called number (destination MSISDN)

Submission timestamp (when message entered system)

Delivery timestamp (when message was delivered)

Expiry timestamp (when message expired if undeliverable)

Status (delivered, expired, failed, rejected)

Delivery attempts count

Message parts (for concatenated/multi-part SMS)

Source SMSC identifier

Destination SMSC identifier

Origin node (Erlang cluster node name)

Destination node (for distributed deployments)

Deadletter flag (retry exhaustion indicator)

� Complete CDR schema documented in CDR_SCHEMA.md

Message Queue Access:

Real-time message queue monitoring

REST API endpoints for message retrieval

Database queries for historical message search

Filter capabilities by:

Phone number (source/destination)

SMSC gateway

Time range

Message status

Delivery attempts

� Complete API documentation in API_REFERENCE.md

1.2.2 Data Processing Capabilities

Message Storage Architecture (Two-Tier System):

The SMSc uses a sophisticated two-tier storage architecture that separates

operational message processing from long-term archival:

Tier 1: Active Message Queue (Mnesia)

Purpose: Real-time message routing and delivery operations

Technology: Erlang Mnesia distributed database

Storage Mode: In-memory with disc_copies backup

Primary storage in RAM for maximum speed

Automatic disc synchronization for crash recovery

Messages persist across system restarts

Performance: Sub-millisecond read/write operations

Retention: Short-term (default 24 hours), configurable

Cleanup: Automatic archival to CDR database, then deletion from Mnesia

Operations: All message queue operations (insert, update, delivery status,

routing)

Critical Feature: SQL database is NEVER queried during message

routing/delivery

Tier 2: CDR Archive (MySQL/PostgreSQL)

Purpose: Long-term storage for billing, analytics, and lawful interception

Technology: Traditional SQL database (MySQL or PostgreSQL)

Write Trigger: CDRs written ONLY when messages reach final state:

Message delivered successfully

Message expired (exceeded validity period)

Message permanently failed

Message rejected by routing rules

Write Mode: Asynchronous batch writing (no impact on message routing

performance)

Retention: Long-term (months to years), configurable per regulatory

requirements

Operations: Historical queries, reporting, compliance, lawful interception

Access: SQL queries, REST API (future), CSV/JSON export

Key Architectural Benefits:

1. Performance: Active routing operations never touch SQL (no database

bottleneck)

2. Scalability: Mnesia handles 1,750+ messages/second without SQL

overhead

3. Reliability: Disc_copies mode ensures no message loss on crash

4. Compliance: CDR database provides permanent audit trail

5. Separation of Concerns: Operational data vs. archival data clearly

separated

Message Lifecycle:

Data Retention and Retrieval:

Configurable message body retention or deletion for privacy

Binary data preservation (raw PDU storage in both Mnesia and CDR)

Full-text search capability (if enabled on CDR database)

Indexed CDR fields for fast lawful interception queries

Frontend Tracking:

Real-time tracking of external SMSC frontends (SMPP, IMS, MAP gateways)

Frontend registration with heartbeat monitoring

Health status tracking (active/expired)

Uptime/downtime history

IP address and hostname tracking

Frontend-specific configuration logging

1.2.3 Analysis Capabilities

1. Message submitted → Stored in Mnesia (RAM + disc backup)

2. Message routed → Mnesia query (ultra-fast)

3. Message delivered/expired → CDR written to SQL (async)

4. After 24h → Message deleted from Mnesia (cleanup worker)

5. CDR remains in SQL → Available for lawful interception queries

(years)

Real-Time Monitoring:

Web UI dashboard showing:

Active message queue

Message submission and delivery

Routing decisions and gateway selection

Frontend gateway status

System resource utilization

Prometheus metrics integration for operational monitoring

Performance metrics (throughput, latency, success rates)

� Complete monitoring guide in OPERATIONS_GUIDE.md � Metrics

documentation in METRICS.md

Historical Analysis:

CDR database queryable by:

Time range

Calling/called party number

Message status

SMSC gateway

Delivery attempts

Message content (full-text search if enabled)

Statistical analysis capabilities:

Message volume by hour/day/month

Success/failure rates by route

Average delivery times

Multi-part message analysis

Failed delivery patterns

Subscriber Tracking:

Message history by phone number (MSISDN)

IMSI-based tracking (when available from IMS/MAP frontends)

Call pattern analysis

Communication party correlation

Temporal analysis (message frequency, timing patterns)

Network Analytics:

Route performance metrics

Gateway availability and health

Message flow visualization

Cluster node distribution (multi-node deployments)

Delivery attempt analysis

Retry pattern analysis

Number Intelligence:

E.164 number normalization

Country/region identification from number prefix

Number translation and rewriting rules

ENUM DNS lookup for routing intelligence

Prefix-based routing decisions

� Number translation guide in number_translation_guide.md � Routing

guide in sms_routing_guide.md

1.3 Countermeasure Capabilities

1.3.1 Privacy Protection Mechanisms

Communication Confidentiality:

HTTPS/TLS for REST API communications

Certificate-based authentication

Database connection encryption (TLS support)

Configurable message body deletion after delivery

Access Control:

Web UI access control

API authentication mechanisms

Database access controls

Frontend registration authentication

Audit Logging:

Complete system event logging

Message submission/delivery logging

Configuration change tracking

Administrative action logging

Structured logging with configurable levels

1.3.2 Data Protection Features

Message Privacy:

Configurable message body deletion after delivery

Message body excluded from UI display (optional)

Message body excluded from exports (optional)

CDR message body field can be set to NULL for privacy

Database Security:

MySQL table encryption support (ENCRYPTION='Y')

PostgreSQL transparent data encryption support

Database access role separation

Read-only user accounts for analytics

Restricted access to message content

System Hardening:

Minimal exposed network ports

TLS certificate management

Secure configuration storage

Environment-based configuration separation

Cluster security with Erlang distribution protocol

1.4 Storage Architecture: Mnesia + SQL Two-

Tier Design

Overview

The OmniMessage SMSc employs a unique two-tier storage architecture

specifically designed to separate high-performance operational message

processing from long-term compliance and archival storage.

Tier 1: Mnesia In-Memory Message Queue

What is Mnesia?

Distributed database built into Erlang/OTP runtime

Hybrid storage: Primary in-memory with automatic disc backup

ACID-compliant transactions

Cluster replication across multiple nodes

Storage Mode: disc_copies

In-Memory Primary: All active messages stored in RAM

Lightning-fast read/write operations (sub-millisecond)

No disk I/O during normal message routing operations

Enables 1,750+ messages/second throughput

Disc Backup (Automatic): Mnesia synchronizes RAM to disk

Writes happen asynchronously in background

Disk copy updated on every transaction commit

Crash recovery: System restarts with all messages intact

Location: Mnesia.*/ directory in application data

Message Lifecycle in Mnesia:

1. Message arrives via REST API → Inserted into Mnesia RAM + disc backup

2. Routing engine queries Mnesia → Instant response (memory access)

3. External gateway polls for messages → Mnesia query (memory access)

4. Gateway updates delivery status → Mnesia update (memory + disc)

5. After delivery/expiry → Message marked for cleanup

6. Cleanup worker (24h default) → Message deleted from Mnesia

Critical Performance Feature:

ZERO SQL database queries during active message routing/delivery

SQL is completely bypassed for operational message processing

This eliminates the traditional SMS-C bottleneck (database I/O)

Tier 2: SQL Database for CDR Export/Archival

What is CDR (Call Detail Record)?

Permanent audit record of message metadata and content

Written to MySQL or PostgreSQL database

Used for billing, analytics, compliance, and lawful interception

When CDRs are Written: CDR records are created ONLY when messages

reach a final state:

� Message delivered successfully

� Message expired (exceeded validity period without delivery)

� Message permanently failed (invalid number, routing error)

� Message rejected (routing rules, validation failure)

How CDRs are Written:

Asynchronous batch writing: CDRs written in background worker

process

No blocking: Message routing never waits for SQL write

Batched inserts: Multiple CDRs grouped (default 100) and written

together

Flush interval: 100ms default (configurable)

Error handling: Failed CDR writes logged, message processing continues

SQL Database Purpose:

❌ NOT used for: Active message queue operations

❌ NOT used for: Message routing decisions

❌ NOT used for: Real-time message delivery

� ONLY used for: Long-term CDR archival and historical queries

� ONLY used for: Lawful interception queries (months/years of history)

� ONLY used for: Billing and analytics reports

Architecture Diagram

Configuration in config/runtime.exs

config :sms_c,

 batch_insert_batch_size: 100, # Batch size for CDR

writes

 batch_insert_flush_interval_ms: 100 # Flush interval

Legend:

Solid lines: Synchronous operations (real-time)

Dashed lines: Asynchronous operations (background)

Green: High-performance tier (in-memory)

Blue: Archival tier (persistent SQL)

Lawful Interception Implications

Recent Messages (< 24 hours):

Accessible via Mnesia (REST API queries)

Ultra-fast retrieval

Full message content available

Real-time monitoring possible

Historical Messages (> 24 hours):

Accessible via SQL database (CDR table)

Standard SQL query performance

Full message metadata always available

Message body available (unless privacy mode enabled)

Compliance Benefits:

1. No data loss: Disc_copies mode ensures messages survive crashes

2. Permanent audit trail: CDRs retained for years in SQL database

3. Performance: Lawful interception queries don't impact message routing

4. Flexibility: Recent messages (Mnesia) + historical messages (SQL) both

accessible

1.5 Multi-Protocol Frontend Integration

Architecture

The OmniMessage SMSc employs a protocol-agnostic core design that

interfaces with external protocol-specific gateways (frontends) via a unified

REST API. This architecture allows lawful interception to capture messages

regardless of which telecommunications protocol was used to send or receive

them.

Architecture Overview

Lawful Interception

OmniMessage SMSc

Core

External Protocol

Frontends (Gateways)

Telecommunications

Networks

HTTPS POST/GET HTTPS POST/GET HTTPS POST/GET

Async CDR write

Real-time

Historical queries

IMS/VoLTE Network

SIP/Diameter

SMPP Provider

SMS Aggregator

SS7/SIGTRAN Network

MAP Protocol

Circuit Switched

Mobile Network

IMS Gateway

SIP → REST

SMPP Gateway

SMPP → REST

MAP Gateway

SS7/MAP → REST

REST API

Port 8443 HTTPS

Routing Engine

Mnesia Queue

Active Messages

SQL CDR Database

Historical Archive

LI Mediation Function

X1/X2/X3 Interfaces

Frontend Protocol Integration Details

1. IMS/SIP Frontend Integration

IMS networks use SIP protocol for SMS-over-IP messaging. The IMS gateway

translates between SIP and the SMSc REST API.

IMS-Specific Interception Data:

Source/Destination IMSI (from IMS registration)

P-Asserted-Identity SIP headers

SIP Call-ID for correlation

IMS network location (P-Access-Network-Info)

Subscriber profiles from IMS HSS

2. SMPP Frontend Integration

SMPP is the industry-standard protocol for SMS aggregators and service

providers. The SMPP gateway translates PDU-based SMPP messages to REST

API calls.

Mnesia QueueSMSc REST API
SMPP Gateway

(SMPP Frontend)

External SMPP

Client (ESME)

Mnesia QueueSMSc REST API
SMPP Gateway

(SMPP Frontend)

External SMPP

Client (ESME)

Decode SMPP PDU

Extract all TP-DCS fields

Extract UDH if present

[INTERCEPTION POINT]

Full SMPP PDU preserved

loop [Polling for delivery]

BIND_TRANSMITTER

system_id: "customer123"

BIND_TRANSMITTER_RESP

SUBMIT_SM

source_addr: "447700900123"

dest_addr: "447700900456"

short_message: "Test SMS"

data_coding: 0 (GSM7)

POST /api/messages

{

"source_msisdn": "447700900123",

"destination_msisdn": "447700900456",

"message_body": "Test SMS",

"source_smsc": "smpp.customer123",

"tp_dcs_character_set": "gsm7",

"tp_dcs_coding_group": "general_data_coding",

"raw_pdu": "base64_encoded_pdu"

}

Insert message

Message ID: 12346

201 Created

{id: 12346}

SUBMIT_SM_RESP

message_id: "12346"

GET /api/messages/get_by_smsc?smsc=smpp.provider-01

Messages to deliver

DELIVER_SM

DELIVER_SM_RESP

PATCH /api/messages/{id}

{status: "delivered"}

SMPP-Specific Interception Data:

Complete SMPP PDU (binary format preserved)

Data Coding Scheme (DCS) details

User Data Header (UDH) for concatenated messages

ESME system_id (customer identification)

TON/NPI numbering plan information

Registered delivery flags

3. SS7/MAP Frontend Integration

Legacy circuit-switched networks use SS7 MAP protocol for SMS. The MAP

gateway translates between SS7 signaling and REST API.

Mnesia QueueSMSc REST API
MAP Gateway

(SS7 Frontend)

MSC/VLR

(Mobile Network)

Mnesia QueueSMSc REST API
MAP Gateway

(SS7 Frontend)

MSC/VLR

(Mobile Network)

Decode MAP parameters

Extract GT/IMSI

Decode TP-DU

[INTERCEPTION POINT]

SS7 GT + IMSI captured

loop [Polling for delivery]

MAP MO-ForwardSM

MSISDN: +689871234

Destination: +689879999

TPDU: binary_data

IMSI: 547050123456789

POST /api/messages

{

"source_msisdn": "+689871234",

"destination_msisdn": "+689879999",

"source_imsi": "547050123456789",

"message_body": "Decoded text",

"source_smsc": "map.msc-01",

"raw_pdu": "hex_encoded_tpdu",

"tp_dcs_character_set": "gsm7"

}

Insert message

Message ID: 12347

201 Created

MAP MO-ForwardSM Response

Success

GET /api/messages/get_by_smsc?smsc=map.smsc-out

Messages to deliver

MAP MT-ForwardSM

IMSI/MSISDN

TPDU

MAP MT-ForwardSM Response

PATCH /api/messages/{id}

{status: "delivered"}

SS7/MAP-Specific Interception Data:

IMSI from MAP messages

Global Title (GT) addresses

MSC/VLR address (network element identification)

SCCP calling/called party addresses

MAP operation codes

TP-User-Data binary format

Unified Interception Across All Protocols

Key Benefit for Lawful Interception: Regardless of which protocol was used

(IMS/SIP, SMPP, or SS7/MAP), all messages converge in the SMSc core with

normalized data structure, enabling:

1. Protocol-Agnostic Monitoring: Single interception point captures all

message types

2. Unified CDR Format: All protocols write to same CDR schema

3. Cross-Protocol Correlation: Track messages across protocol boundaries

4. Complete Metadata Preservation: Protocol-specific fields preserved in

CDR

Data Flow Summary:

Protocol Identification in CDR:

source_smsc field indicates frontend protocol (e.g., "ims.gateway-01",

"smpp.customer123", "map.msc-01")

Enables filtering and analysis by protocol type

Lawful interception queries can target specific protocols or all protocols

1.6 Technical Architecture for Lawful

Interception

Lawful Interception Integration Points

The two-tier storage architecture provides multiple access points for lawful

interception, optimized for both real-time monitoring (Mnesia) and historical

analysis (SQL).

1. REST API Access for Recent Messages (Mnesia):

Access to active messages in the Mnesia queue (typically last 24 hours):

REST API

OmniMessage SMSc

Mnesia Queue

Law Enforcement

Monitoring System

Real-time Message

Retrieval
Active Queue Monitoring Recent Message Feed

API Endpoints for Real-Time Interception:

GET /api/messages - List active messages with filtering

GET /api/messages/{id} - Get specific message details (from Mnesia)

GET /api/messages/get_by_smsc?smsc=X - Get messages by gateway

All queries hit Mnesia (in-memory) for instant response

Note: These endpoints query the active Mnesia message queue, providing

access to messages currently being processed or recently delivered (within

retention period).

Query Parameters:

Filter by source/destination MSISDN

Filter by time range

Filter by SMSC gateway

Filter by message status

Sort and pagination support

2. CDR Database Direct Access for Historical Messages (SQL):

Access to archived messages in the SQL database (all delivered/expired/failed

messages):

Direct SQL Access:

Read-only database credentials for authorized systems

SQL query access to cdrs table (permanent audit trail)

Access Method: Standard SQL client (mysql, psql, DBeaver, etc.)

Data Source: Only archived messages (not active queue)

Indexed fields for efficient searching:

calling_number (indexed) - Source phone number

called_number (indexed) - Destination phone number

message_id (indexed) - Unique message identifier

submission_time (indexed) - When message entered system

status (indexed) - Final delivery status

dest_smsc (indexed) - Gateway used for delivery

Note: CDR database contains permanent records of all processed messages.

This is the primary data source for historical lawful interception queries

(months/years of data).

3. Real-Time Message Feed (PubSub):

Phoenix PubSub integration for real-time events

Message submission notifications

Message delivery notifications

Message status change events

Configurable event filtering by criteria

WebSocket support for live monitoring

4. Batch Export Interface:

CSV export of CDR records

JSON export for programmatic access

Configurable export fields

Time-range based exports

Privacy-aware exports (optional message body exclusion)

ETSI Lawful Interception Standard Interfaces

The OmniMessage SMSc provides the foundation for implementing ETSI-

compliant lawful interception interfaces. While the SMSc core does not natively

implement X1/X2/X3 interfaces, it provides all necessary data access points

that can be integrated with external Lawful Interception Mediation Function

(LIMF) systems.

Standard ETSI LI Interfaces:

Law Enforcement

Monitoring Facility

(LEMF)

LI Mediation Function

(External)

OmniMessage SMSc

Real-time feed SQL queries REST queries

Warrant provisioning

IRI metadata Content

Mnesia

Active Messages

SQL CDR

Historical Messages

REST API

LI Mediation

Function

X1 Interface

Administration

X2 Interface

IRI Delivery

X3 Interface

CC Delivery

LEMF System

Interface Descriptions:

X1 Interface - Administration Function:

Purpose: Warrant and target provisioning from law enforcement to

interception system

Direction: LEMF → LIMF (bidirectional)

Functions:

Activate/deactivate interception for specific targets (MSISDNs, IMSIs)

Set interception duration and validity period

Configure filtering criteria (phone numbers, time windows)

Retrieve interception status

Integration with SMSc:

LIMF maintains target list (warrant database)

LIMF queries SMSc CDR/API for matching messages

LIMF filters based on X1 provisioned criteria

X2 Interface - IRI (Intercept Related Information) Delivery:

Purpose: Deliver message metadata to law enforcement

Direction: LIMF → LEMF (one-way)

Data Format: ETSI TS 102 232-x compliant XML/ASN.1

Content from SMSc CDR:

Message ID

Calling number (source MSISDN)

Called number (destination MSISDN)

IMSI (source and destination, if available)

Submission timestamp

Delivery timestamp

Message status (delivered/failed/expired)

Delivery attempts

SMSC gateway information (source/destination)

Network location (if available)

Integration with SMSc:

LIMF queries CDR database for target phone numbers

LIMF transforms CDR records into ETSI IRI format

LIMF delivers IRI to LEMF via X2

X3 Interface - CC (Content of Communication) Delivery:

Purpose: Deliver actual message content to law enforcement

Direction: LIMF → LEMF (one-way)

Data Format: ETSI TS 102 232-x compliant

Content from SMSc:

Message body (text content)

Raw PDU (binary SMS data)

Character encoding information

Multipart message segments

TP-DCS information

User Data Header (UDH)

Integration with SMSc:

LIMF retrieves message content from CDR message_body field

LIMF retrieves raw PDU data if available

LIMF packages content in ETSI CC format

LIMF delivers CC to LEMF via X3

Implementation Architecture:

X3X2CDR Database
OmniMessage

SMSc

LI Mediation

Function

X1 Admin

Interface

Law Enforcement

Monitoring Facility

X3X2CDR Database
OmniMessage

SMSc

LI Mediation

Function

X1 Admin

Interface

Law Enforcement

Monitoring Facility

Polling/feed from SMSc

alt [New intercepted message found]

loop [Continuous Monitoring]

Activate interception

Target: +33612345678

Duration: 30 days

Store warrant + target list

Query messages for target

WHERE calling_number = '+33612345678'

OR called_number = '+33612345678'

Matching messages

Generate IRI (metadata)

Send IRI to LEMF

IRI delivered

Generate CC (content)

Send CC to LEMF

CC delivered

Deactivate interception

Remove target from list

SMSc Data Mapping to LI Interfaces:

SMSc Data

Field
X2 (IRI) X3 (CC)

CDR Table

Column

Message ID � Correlation ID
�

Reference
message_id

Calling Number � Party A - calling_number

Called Number � Party B - called_number

Submission Time � Timestamp - submission_time

Delivery Time � Completion - delivery_time

Status � Result - status

Message Body - � Content message_body

Raw PDU - � Binary (Mnesia/CDR)

Source SMSC
� Network

element
- source_smsc

Dest SMSC
� Network

element
- dest_smsc

IMSI � Subscriber ID - (Via frontends)

LIMF Integration Options:

Option 1: Polling Architecture

LIMF periodically queries CDR database (every 1-60 seconds)

SQL query filters by target phone numbers from X1 warrant list

Low complexity, easy to implement

Slight delay between message delivery and LI delivery

Option 2: Real-Time Feed Architecture

SMSc PubSub publishes message events

LIMF subscribes to real-time message stream

LIMF filters based on target list

Near-zero latency for lawful interception

Requires custom integration development

Option 3: Hybrid Architecture

Recent messages: Real-time PubSub feed (< 24 hours)

Historical messages: CDR database polling

Optimal balance of latency and reliability

Interception Triggering Mechanisms

Target-Based Interception:

Phone number matching (MSISDN)

IMSI-based targeting (when available)

Configurable watch lists

Database views for target isolation

API filtering by target identifiers

Event-Based Interception:

All messages to/from specific numbers

Messages via specific SMSC gateways

Messages with specific characteristics (multi-part, failed delivery, etc.)

Geographic routing (via ENUM or prefix matching)

Time-Based Interception:

Date/time range filtering in CDR queries

Retention period enforcement

Automatic archival of old messages

Configurable data retention policies

Example SQL Queries for Lawful Interception:

2. ENCRYPTION AND

CRYPTANALYSIS CAPABILITIES

2.1 Cryptographic Capabilities Overview

The OmniMessage SMSc implements cryptographic mechanisms for securing

communications and protecting sensitive data. This section documents all

cryptographic capabilities in accordance with ANSSI requirements.

2.2 Transport Layer Encryption

2.2.1 TLS/SSL Implementation

-- Get all messages for target number

SELECT * FROM cdrs

WHERE calling_number = '+33612345678'

 OR called_number = '+33612345678'

ORDER BY submission_time DESC;

-- Get messages in specific time window

SELECT * FROM cdrs

WHERE (calling_number = '+33612345678' OR called_number =

'+33612345678')

 AND submission_time BETWEEN '2025-11-01 00:00:00' AND '2025-11-

30 23:59:59'

ORDER BY submission_time;

-- Get conversation between two parties

SELECT * FROM cdrs

WHERE (calling_number = '+33612345678' AND called_number =

'+33687654321')

 OR (calling_number = '+33687654321' AND called_number =

'+33612345678')

ORDER BY submission_time;

Supported Protocols:

TLS 1.2 (RFC 5246)

TLS 1.3 (RFC 8446) - Recommended

SSL 2.0/3.0: NOT SUPPORTED (known vulnerabilities)

TLS 1.0/1.1: DEPRECATED (not recommended)

Implementation:

Erlang/OTP SSL/TLS library (cryptographically validated)

Cowboy web server with TLS support

Phoenix Framework HTTPS endpoints

Cipher Suites:

The system uses Erlang/OTP's default secure cipher suite selection, which

includes:

Preferred - TLS 1.3:

TLS_AES_256_GCM_SHA384

TLS_AES_128_GCM_SHA256

TLS_CHACHA20_POLY1305_SHA256

Supported - TLS 1.2:

ECDHE-RSA-AES256-GCM-SHA384

ECDHE-RSA-AES128-GCM-SHA256

DHE-RSA-AES256-GCM-SHA384

DHE-RSA-AES128-GCM-SHA256

Security Features:

Perfect Forward Secrecy (PFS) via ECDHE/DHE key exchange

Strong Diffie-Hellman groups (2048-bit minimum)

Elliptic Curve Cryptography support

Server Name Indication (SNI) support

Certificate Management:

X.509 certificate support

RSA key sizes: 2048-bit minimum, 4096-bit recommended

ECDSA support

Certificate chain validation

Self-signed certificates (development only)

External CA integration

TLS Configuration Location:

� Complete configuration reference in CONFIGURATION.md

Applications:

HTTPS for REST API (port 8443)

HTTPS for web control panel (port 8086)

Database connections (MySQL/PostgreSQL over TLS)

2.3 Data Encryption at Rest

2.3.1 Database Encryption

MySQL/MariaDB Encryption:

Table-level encryption support

AES-256 encryption algorithm

Transparent data encryption (TDE)

config/runtime.exs

config :api_ex,

 api: %{

 enable_tls: true,

 tls_cert_path: "priv/cert/omnitouch.crt",

 tls_key_path: "priv/cert/omnitouch.pem"

 }

PostgreSQL Encryption:

Transparent data encryption support

Filesystem-level encryption

Column-level encryption (pgcrypto extension)

2.3.2 Mnesia Disc Storage

Mnesia Database:

Disc copies storage for message persistence

File system-level encryption recommended (LUKS, dm-crypt)

Memory protection via Erlang VM isolation

2.3.3 File System Encryption

Sensitive Data Storage:

Configuration files: Filesystem encryption recommended

Private keys: File permissions (0600) + filesystem encryption

Log files: Configurable encryption for archived logs

CDR exports: Encrypted storage for sensitive exports

Key Storage:

TLS certificates and keys stored in priv/cert/

File-based keystores with restricted permissions

Secure key rotation procedures

2.4 Authentication and Access Control

2.4.1 API Authentication

REST API Security:

-- Enable encryption for CDR table

ALTER TABLE cdrs ENCRYPTION='Y';

HTTPS/TLS transport encryption mandatory

Header-based authentication (SMSc header for frontend identification)

IP-based access control (firewall level)

Certificate-based client authentication (optional)

Frontend Registration:

Unique frontend identification (name, type, IP, hostname)

Heartbeat-based authentication

Expiration-based session management (90-second timeout)

Frontend tracking and monitoring

2.4.2 Database Authentication

Database Access Control:

Username/password authentication

TLS/SSL connection support

IP-based connection restrictions

Role-based access control (RBAC)

Configuration:

Access Control Recommendations:

config/runtime.exs

config :sms_c, SmsC.Repo,

 username: "omnitouch",

 password: "omnitouch2024", # Should use strong passwords in

production

 hostname: "localhost",

 ssl: true # Enable TLS for database connections

2.5 Cryptographic Algorithm Details

2.5.1 Hashing Algorithms

Available in Erlang/OTP:

SHA-256, SHA-384, SHA-512 (recommended)

SHA-1 (deprecated, legacy compatibility only)

MD5 (deprecated, not used for security)

BLAKE2 (available in modern OTP versions)

Usage:

Message fingerprinting (duplicate detection)

Data integrity verification

Audit log integrity

2.5.2 Symmetric Encryption

Available Algorithms:

AES (Advanced Encryption Standard)

AES-128-GCM

AES-256-GCM

AES-128-CBC

AES-256-CBC

-- Create read-only user for law enforcement access

CREATE USER 'li_readonly'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT ON sms_c.cdrs TO 'li_readonly'@'%';

-- Create limited user without message body access

CREATE USER 'analytics'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT (id, message_id, calling_number, called_number,

 source_smsc, dest_smsc, submission_time,

delivery_time,

 status, delivery_attempts)

ON sms_c.cdrs TO 'analytics'@'%';

ChaCha20-Poly1305

Key Sizes:

128-bit (minimum)

256-bit (recommended)

Usage:

TLS session encryption

Database encryption at rest

Optional message body encryption

2.5.3 Asymmetric Encryption

Supported Algorithms:

RSA (2048-bit minimum, 4096-bit recommended)

ECDSA (Elliptic Curve Digital Signature Algorithm)

P-256, P-384, P-521 curves

Ed25519 (EdDSA)

Usage:

TLS certificate authentication

Digital signatures

Key exchange

2.6 SMS Protocol Security

2.6.1 SMS Message Encoding

Character Encoding Support:

GSM 7-bit (standard SMS encoding)

UCS-2 (Unicode, 16-bit)

8-bit binary data

Latin-1

TP-DCS (Data Coding Scheme):

Message class indication

Compression flags

Coding group specification

Character set identification

No Native SMS Encryption:

SMS protocol does not provide end-to-end encryption

Message content accessible at SMSc level

Enables lawful interception as required

2.6.2 Protocol Security Considerations

SMPP Protocol (External Frontend):

Username/password authentication at SMPP level

TLS support available (SMPP over TLS)

Bind authentication

IMS Protocol (External Frontend):

SIP-based messaging

SIP authentication mechanisms

Integration with IMS core network security

SS7/MAP Protocol (External Frontend):

SS7 network security

MAP protocol authentication

SCCP/TCAP layer security

Note: Protocol-specific security is implemented in external frontend gateways,

not in the SMSc core.

2.7 Cryptanalysis and Security Assessment

Capabilities

2.7.1 Protocol Analysis Tools

Built-in Debugging Capabilities:

Comprehensive logging system

Message flow tracing

API request/response logging

Database query logging

Error and exception tracking

External Integration:

Standard logging output (stdout/files)

PCAP capture support for network analysis

Database query logging for forensics

Prometheus metrics export

2.7.2 Vulnerability Assessment Considerations

Known Limitations:

SMS protocol inherently unencrypted (by design, enables lawful

interception)

Database credentials in configuration files (should use secrets

management)

Self-signed certificate support (development/testing only)

Security Hardening Recommendations:

Use strong TLS cipher suites

Implement database connection encryption

Use external secrets management (Vault, AWS Secrets Manager)

Regular security updates for Erlang/OTP and dependencies

Firewall restrictions on API ports

IP whitelisting for frontend access

Security Testing:

Regular dependency vulnerability scanning

Penetration testing support

TLS configuration validation

Database security audits

Access control review

2.8 Key Management Infrastructure

2.8.1 Key Generation

TLS Certificate Generation:

Random Number Generation:

Erlang/OTP CSPRNG (Cryptographically Secure Pseudo-Random Number

Generator)

System entropy pool (/dev/urandom)

Strong randomness for session keys, IDs, tokens

2.8.2 Key Storage and Protection

Private Key Storage:

Generate private key (RSA 4096-bit)

openssl genrsa -out omnitouch.pem 4096

Generate certificate signing request

openssl req -new -key omnitouch.pem -out omnitouch.csr

Self-signed certificate (development)

openssl x509 -req -days 365 -in omnitouch.csr -signkey

omnitouch.pem -out omnitouch.crt

Production: Obtain certificate from trusted CA

File system with restricted permissions (0600)

Stored in priv/cert/ directory

PEM format (optionally encrypted)

Secure backup procedures

Key Rotation:

TLS certificate renewal (annually recommended)

Database credential rotation

API token rotation (if implemented)

2.8.3 Key Distribution

Certificate Distribution:

Manual installation in priv/cert/

Configuration file references

ACME protocol support possible (Let's Encrypt)

Symmetric Key Distribution:

Out-of-band key exchange for database credentials

Diffie-Hellman key agreement in TLS

No cleartext key transmission

2.9 Compliance and Standards

This section documents compliance with international telecommunications

standards, regulatory frameworks, and security specifications applicable to SMS

processing across all supported protocols.

2.9.1 SMS over SS7/MAP Protocol Compliance

3GPP and ETSI Standards:

3GPP TS 23.040: Technical realization of Short Message Service (SMS) -

Core SMS protocol specification

3GPP TS 23.038: Alphabets and language-specific information - Character

encoding (GSM7, UCS-2)

3GPP TS 29.002: Mobile Application Part (MAP) specification - SS7

signaling for SMS

3GPP TS 23.003: Numbering, addressing and identification - MSISDN, IMSI

formats

ETSI TS 100 901: Point-to-Point Short Message Service specification

ETSI TS 100 902: Cell Broadcast Short Message Service specification

SS7 Signaling Standards:

ITU-T Q.711-Q.716: Signaling Connection Control Part (SCCP)

ITU-T Q.771-Q.775: Transaction Capabilities Application Part (TCAP)

ITU-T Q.701-Q.710: Message Transfer Part (MTP) Levels 1-3

ETSI EN 300 356: Signaling System No.7 - ISDN User Part (ISUP)

Security Standards for SS7/MAP:

GSMA FS.07: SS7 and Diameter Signaling Security - Baseline security

controls

GSMA FS.11: SS7 Security Monitoring Guidelines

3GPP TS 33.117: Catalogue of general security assurance requirements

ETSI TS 133 210: Network domain security - IP network layer security

Lawful Interception for SS7/MAP:

ETSI TS 101 671: Lawful Interception (LI); Handover interface for the

lawful interception of telecommunications traffic

ETSI TS 102 232-1: Lawful Interception (LI); Handover specification - Part

1: Handover interface for LI management

3GPP TS 33.107: Lawful Interception architecture and functions for 3G

networks

2.9.2 SMS over IMS Protocol Compliance

3GPP IMS Standards:

3GPP TS 23.228: IP Multimedia Subsystem (IMS) - Stage 2 architecture

3GPP TS 24.229: IP Multimedia Call Control Protocol - SIP and SDP

procedures

3GPP TS 24.341: Support of SMS over IP networks - Stage 3 specification

3GPP TS 23.204: Support of Short Message Service (SMS) over generic

3GPP IP access - Stage 2

3GPP TS 29.228: IP Multimedia (IM) Subsystem Cx and Dx interfaces

IMS Security Standards:

3GPP TS 33.203: 3G security; Access security for IP-based services (IMS

AKA)

3GPP TS 33.210: 3G security; Network Domain Security (NDS); IP network

layer security (IPsec)

3GPP TS 33.310: Network Domain Security (NDS); Authentication

Framework (AF)

ETSI TS 133 203: Access security for IP-based services

SIP Protocol Standards:

RFC 3261: SIP: Session Initiation Protocol - Core specification

RFC 3428: SIP Extension for Instant Messaging - MESSAGE method

RFC 3325: Private Extensions to SIP for Asserted Identity

RFC 5765: Security Issues and Solutions in Peer-to-Peer Systems

Lawful Interception for IMS:

ETSI TS 102 232-5: Lawful Interception (LI); Handover specification - Part

5: Service-independent LI for IP Multimedia Subsystem services

3GPP TS 33.107: Lawful Interception requirements and architecture

3GPP TS 33.108: Handover interface for Lawful Interception (LI)

2.9.3 SMPP Protocol Compliance

SMPP Specification:

SMPP v3.4: Short Message Peer-to-Peer Protocol Specification - Industry

standard

SMPP v5.0: Extended SMPP protocol with enhanced features

SMPP Security Guidelines:

TLS over SMPP: Transport layer security for SMPP connections (SMPP over

TLS)

SMPP Bind Authentication: System ID and password authentication

IP-based Access Control: Network-level restrictions for SMPP connections

Interoperability Standards:

GSM 03.40 (ETSI TS 100 901): Technical realization of SMS Point-to-Point

(PP)

GSM 03.38 (ETSI TS 100 900): Alphabets and language-specific

information

GSM 04.11 (ETSI TS 100 942): Point-to-Point SMS support on mobile

radio interface

Message Encoding Compliance:

ITU-T T.50: International Alphabet No. 5 (IA5)

ISO/IEC 8859-1: Latin-1 character encoding

ISO/IEC 10646: Universal Character Set (UCS-2/UTF-16)

2.9.4 Cryptographic Standards Compliance

TLS and Network Security:

NIST SP 800-52: Guidelines for the Selection, Configuration, and Use of

TLS Implementations

NIST SP 800-131A: Transitioning the Use of Cryptographic Algorithms and

Key Lengths

RFC 7525: Recommendations for Secure Use of TLS and DTLS

RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3

Cryptographic Algorithm Standards:

FIPS 197: Advanced Encryption Standard (AES)

FIPS 180-4: Secure Hash Standard (SHA-2 family)

NIST SP 800-38D: Recommendation for Block Cipher Modes of Operation:

GCM Mode

RFC 7539: ChaCha20 and Poly1305 for IETF Protocols

Key Management:

NIST SP 800-57: Recommendation for Key Management

RFC 5280: Internet X.509 Public Key Infrastructure Certificate and CRL

Profile

2.10 Cryptanalysis Resistance

2.10.1 Design Principles

Defense Against Cryptanalysis:

No custom/proprietary cryptographic algorithms

Industry-standard, peer-reviewed algorithms only

Regular security updates for cryptographic libraries

Deprecation of weak algorithms

Use of authenticated encryption (GCM, Poly1305)

2.10.2 Operational Security

Key Rotation:

TLS certificate renewal procedures

Session key rotation (per-session for TLS)

Database credential rotation policies

Monitoring and Detection:

Failed authentication logging

Certificate expiration monitoring

TLS handshake failure logging

Anomaly detection for encryption failures

Security event alerting

3. INTERCEPTION CONTROL AND

AUTHORIZATION

3.1 Access Control for Lawful Interception

Administrative Authorization:

System administrator access required for configuration

Database-level access controls for CDR queries

API access restricted by IP/authentication

Audit logging of all access

Legal Framework Integration:

Interception warrant tracking (external system integration)

Target identifier authorization lists (database views)

Time-limited queries (SQL WHERE clauses)

Automatic enforcement via access policies

3.2 Data Retention and Privacy

Retention Policies:

Active message retention: Configurable (default 24 hours in Mnesia)

CDR retention: Configurable (typical 6 months to 2 years)

Automatic archival from Mnesia to SQL

Automatic purging of old CDRs (cron-based)

Privacy Protections:

Message body deletion option after delivery

Message body exclusion from UI/exports

Database encryption at rest

Access logging and monitoring

Minimal data collection principle

Configuration:

� See CONFIGURATION.md for all retention settings

3.3 Handover Interfaces for Law Enforcement

Standard Interfaces:

1. REST API Access:

HTTPS endpoints for message retrieval

JSON format data exchange

Authentication and authorization

Query filtering by target criteria

2. Direct Database Access:

Read-only SQL credentials

Standard SQL queries

CDR table access

Indexed search capabilities

3. Batch Export:

config/runtime.exs

config :sms_c,

 # Mnesia message retention before archival

 message_retention_hours: 24,

 # Delete message body after delivery for privacy

 delete_message_body_after_delivery: false, # Set true for

privacy mode

 # CDR writing control

 cdr_enabled: true,

 # Batch archival settings

 batch_insert_batch_size: 100,

 batch_insert_flush_interval_ms: 100

CSV export format

JSON export format

Time-range based exports

Configurable field selection

Delivery Formats:

IRI (Intercept Related Information):

CDR metadata fields:

Message ID

Calling/called numbers

Timestamps (submission, delivery, expiry)

Status

Delivery attempts

SMSC routing information

Node information (cluster tracking)

CC (Content of Communication):

Message body (text content)

Raw PDU data

Encoding information

Multipart message assembly

Export Example:

4. SYSTEM SECURITY AND

INTEGRITY

4.1 Application Security

Elixir/Erlang Security:

Erlang VM isolation and sandboxing

Process isolation and supervision

Crash recovery and fault tolerance

No buffer overflow vulnerabilities (managed runtime)

Dependency Management:

Dependency version locking (mix.lock)

Security vulnerability scanning

Regular dependency updates

Minimal dependency footprint

CSV export for law enforcement

mysql -u li_readonly -p -D sms_c -e "

SELECT

 message_id,

 calling_number,

 called_number,

 message_body,

 submission_time,

 delivery_time,

 status

FROM cdrs

WHERE (calling_number = '+33612345678' OR called_number =

'+33612345678')

 AND submission_time BETWEEN '2025-11-01' AND '2025-11-30'

ORDER BY submission_time

" --batch --silent | sed 's/\t/,/g' > interception_report.csv

4.2 Network Security

Network Exposure:

Minimal exposed ports:

8443 (HTTPS REST API)

8086 (HTTPS Control Panel)

Firewall configuration recommended

IP whitelisting for frontend access

DMZ deployment for internet-facing services

Network Segmentation:

Separate management network

Isolated database network

Frontend gateway network separation

Cluster communication network (Erlang distribution)

4.3 Monitoring and Intrusion Detection

Logging Capabilities:

Structured application logging

Configurable log levels

Log rotation and archival

Syslog integration support

Centralized logging (ELK stack compatible)

Security Event Monitoring:

Failed authentication attempts

Unusual message patterns

Database connection failures

TLS handshake failures

System resource anomalies

Metrics and Alerting:

Prometheus metrics export

Message throughput monitoring

Error rate tracking

System resource utilization

Custom alert rules

� Complete monitoring documentation in OPERATIONS_GUIDE.md and

METRICS.md

4.4 High Availability and Disaster Recovery

Cluster Support:

Erlang distributed cluster capability

Mnesia replication across nodes

Automatic failover

Node discovery and joining

Data Redundancy:

Mnesia disc_copies on all cluster nodes

SQL database replication (MySQL/PostgreSQL native)

CDR backup procedures

Configuration backup

Recovery Procedures:

Database backup and restore

Mnesia table recovery

Configuration restoration

Node replacement procedures

5. DOCUMENTATION REFERENCES

5.1 Technical Manuals

Available documentation in the project repository:

README.md - System overview, architecture, and features

CONFIGURATION.md - Complete configuration reference

API_REFERENCE.md - REST API documentation

OPERATIONS_GUIDE.md - Operational procedures and monitoring

CDR_SCHEMA.md - Call Detail Record database schema

sms_routing_guide.md - SMS routing configuration

number_translation_guide.md - Number normalization

METRICS.md - Prometheus metrics and monitoring

PERFORMANCE_TUNING.md - Performance optimization

TROUBLESHOOTING.md - Common issues and solutions

5.2 Security Certifications

Penetration Test Reports: [To be provided upon request]

Security Audit Reports: [To be provided upon request]

Vulnerability Assessments: [To be provided upon request]

Erlang/OTP Cryptographic Validation: Industry-standard cryptographic

library

5.3 Compliance Documentation

ANSSI R226 Authorization Request: This document

Lawful Interception Compliance: As required by French

telecommunications regulations

Data Protection Compliance: GDPR considerations for message data

6. CONTACT INFORMATION

Vendor/Operator Information:

Company Name: Omnitouch Network Services Pty Ltd

Address: PO BOX 296, QUINNS ROCKS WA 6030, AUSTRALIA

Contact Person: Compliance Team

Email: compliance@omnitouch.com.au

Technical Security Contact:

Name: Compliance Team

Email: compliance@omnitouch.com.au

Legal/Compliance Contact:

Name: Compliance Team

Email: compliance@omnitouch.com.au

APPENDICES

Appendix A: SMS Message Flow with

Interception Points

A.1 Outbound SMS Flow (Mobile Terminated)

mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au
mailto:compliance@omnitouch.com.au

Legend: [INTERCEPTION POINT] = Points where lawful interception data is

captured and stored

A.2 Inbound SMS Flow (Mobile Originated)

ApplicationCDR Database
Message Store

(Mnesia)
SMSc REST API

External Gateway

(SMPP/IMS/MAP)
Mobile Network

ApplicationCDR Database
Message Store

(Mnesia)
SMSc REST API

External Gateway

(SMPP/IMS/MAP)
Mobile Network

[INTERCEPTION POINT]

- Source MSISDN

- Destination MSISDN

- Message body

- Source SMSC

- Protocol type

- Timestamp

Inbound SMS

POST /api/messages

(Submit inbound)

Insert message

Message stored

201 Created

Acknowledge

Write CDR record

GET /api/messages?source_smsc=X

Query messages

Inbound messages

Messages list

Appendix B: CDR Schema for Lawful

Interception

The OmniMessage SMSc stores Call Detail Records in a SQL database (MySQL

or PostgreSQL) for long-term retention and lawful interception access.

B.1 Key CDR Fields for Lawful Interception

Field Name Type Description

id BIGINT Auto-incrementing primary key R

message_id BIGINT Unique message identifier
S

c

calling_number VARCHAR(255) Source MSISDN

P

i

t

called_number VARCHAR(255) Destination MSISDN

T

d

t

source_smsc VARCHAR(255) Source gateway identifier
P

t

dest_smsc VARCHAR(255) Destination gateway identifier
R

i

origin_node VARCHAR(255) Erlang cluster node (origination)
S

t

destination_node VARCHAR(255) Erlang cluster node (delivery)
C

d

submission_time DATETIME Message submission timestamp E

delivery_time DATETIME Message delivery timestamp
D

c

expiry_time DATETIME Message expiry timestamp
F

t

Field Name Type Description

status VARCHAR(50)
Message status

(delivered/expired/failed/rejected)

F

d

delivery_attempts INT Number of delivery attempts R

message_parts INT Number of SMS segments

C

m

t

deadletter BOOLEAN Dead letter queue flag
P

f

message_body TEXT SMS message content

M

c

(

inserted_at DATETIME CDR creation timestamp A

updated_at DATETIME CDR update timestamp
M

t

� Complete schema documentation with SQL examples in

CDR_SCHEMA.md

B.2 CDR Query Examples for Lawful Interception

Query all messages for target number:

Query messages within time window:

SELECT * FROM cdrs

WHERE calling_number = '+33612345678'

 OR called_number = '+33612345678'

ORDER BY submission_time DESC;

Export to CSV for law enforcement:

B.3 CDR Database Access Methods

1. Direct SQL Access:

Read-only database credentials

Standard SQL queries

JDBC/ODBC connectivity

Database client tools (MySQL Workbench, pgAdmin)

2. REST API Access:

Future enhancement: REST API for CDR queries

JSON format responses

Authentication and authorization

Query parameter filtering

3. Batch Export:

CSV export via mysql/psql command-line

Automated export scripts

Scheduled exports via cron

SELECT * FROM cdrs

WHERE (calling_number = '+33612345678' OR called_number =

'+33612345678')

 AND submission_time BETWEEN '2025-11-01 00:00:00' AND '2025-11-

30 23:59:59'

ORDER BY submission_time;

.mode csv

.output /tmp/interception_report.csv

SELECT message_id, calling_number, called_number, message_body,

 submission_time, delivery_time, status

FROM cdrs

WHERE calling_number = '+33612345678'

ORDER BY submission_time DESC;

B.4 CDR Retention and Privacy

Retention Configuration:

Privacy Options:

Message body can be set to NULL after delivery

Database table encryption (MySQL ENCRYPTION='Y')

Column-level access restrictions

Masked exports for analytics

Appendix C: REST API Reference for

Interception

C.1 Message Retrieval Endpoints

Get all messages:

Get messages by SMSC:

Get specific message:

config/runtime.exs

config :sms_c,

 # Delete message body after delivery (privacy mode)

 delete_message_body_after_delivery: false, # true for privacy

 # Enable/disable CDR writing

 cdr_enabled: true,

 # Mnesia to CDR archival settings

 message_retention_hours: 24

GET /api/messages

Authorization: Bearer <token>

GET /api/messages/get_by_smsc?smsc=gateway-name

Response Format:

� Complete API documentation in API_REFERENCE.md

C.2 Filtering and Search

Query Parameters:

source_smsc - Filter by source gateway

dest_smsc - Filter by destination gateway

Time-range filtering (via CDR database queries)

Status filtering (via CDR database queries)

Future Enhancements:

REST API for CDR queries

Advanced filtering by phone number

GET /api/messages/{id}

{

 "status": "success",

 "data": [

 {

 "id": 12345,

 "message_id": 12345,

 "source_msisdn": "+33612345678",

 "destination_msisdn": "+33687654321",

 "message_body": "Message content here",

 "source_smsc": "ims.gateway",

 "dest_smsc": "smpp.provider",

 "status": "delivered",

 "delivery_attempts": 1,

 "inserted_at": "2025-11-29T10:30:00Z",

 "deliver_time": "2025-11-29T10:30:05Z",

 "expires": "2025-11-30T10:30:00Z"

 }

]

}

Date range filtering

Full-text search on message body

Appendix D: Configuration Examples

D.1 TLS Certificate Configuration

Generate TLS Certificate:

Configure in application:

D.2 Database Encryption Configuration

MySQL Table Encryption:

Generate 4096-bit RSA private key

openssl genrsa -out priv/cert/omnitouch.pem 4096

Generate certificate signing request

openssl req -new -key priv/cert/omnitouch.pem -out

priv/cert/omnitouch.csr \

 -subj "/C=FR/ST=IDF/L=Paris/O=Omnitouch/CN=smsc.example.com"

Self-signed certificate (development/testing)

openssl x509 -req -days 365 -in priv/cert/omnitouch.csr \

 -signkey priv/cert/omnitouch.pem -out priv/cert/omnitouch.crt

Production: Submit CSR to trusted CA for signing

config/runtime.exs

config :api_ex,

 api: %{

 enable_tls: true,

 tls_cert_path: "priv/cert/omnitouch.crt",

 tls_key_path: "priv/cert/omnitouch.pem"

 }

PostgreSQL Connection Encryption:

D.3 Privacy Configuration

Enable Message Body Deletion:

-- Enable encryption for CDR table

ALTER TABLE cdrs ENCRYPTION='Y';

-- Verify encryption status

SELECT TABLE_NAME, CREATE_OPTIONS

FROM information_schema.TABLES

WHERE TABLE_SCHEMA = 'sms_c' AND TABLE_NAME = 'cdrs';

config/runtime.exs

config :sms_c, SmsC.Repo,

 username: "omnitouch",

 password: "secure_password",

 hostname: "localhost",

 database: "sms_c",

 ssl: true,

 ssl_opts: [

 verify: :verify_peer,

 cacertfile: "/path/to/ca.crt",

 certfile: "/path/to/client.crt",

 keyfile: "/path/to/client.key"

]

config/runtime.exs

config :sms_c,

 # Delete message body after successful delivery

 delete_message_body_after_delivery: true,

 # Hide message body in UI

 hide_message_body_in_ui: true,

 # Hide message body in exports

 hide_message_body_in_export: true

Create Privacy-Preserving Database View:

Appendix E: Glossary

Regulatory and Standards Bodies

ANSSI: Agence nationale de la sécurité des systèmes d'information -

French National Cybersecurity Agency

ETSI: European Telecommunications Standards Institute

3GPP: 3rd Generation Partnership Project - Mobile telecommunications

standards

IETF: Internet Engineering Task Force - Internet standards body

Telecommunications Terms

SMSc: SMS Service Center - Central system for SMS message routing and

delivery

SMPP: Short Message Peer-to-Peer protocol - Industry standard for SMS

exchange

ESME: External Short Message Entity - SMPP client application

IMS: IP Multimedia Subsystem - All-IP network architecture for multimedia

services

SIP: Session Initiation Protocol - Signaling protocol for IMS messaging

P-CSCF: Proxy Call Session Control Function - IMS network entry point

-- Create view without message bodies for general analytics

CREATE VIEW cdrs_metadata AS

SELECT

 id, message_id, calling_number, called_number,

 source_smsc, dest_smsc, origin_node, destination_node,

 submission_time, delivery_time, expiry_time,

 status, delivery_attempts, message_parts, deadletter,

 inserted_at, updated_at

FROM cdrs;

-- Grant access to analytics users

GRANT SELECT ON cdrs_metadata TO 'analytics'@'%';

S-CSCF: Serving Call Session Control Function - IMS session control

HSS: Home Subscriber Server - IMS subscriber database

SS7/MAP: Signaling System 7 / Mobile Application Part - Legacy mobile

signaling protocols

MSC: Mobile Switching Center - Circuit-switched network element

VLR: Visitor Location Register - Subscriber location database

GT: Global Title - SS7 addressing scheme

SCCP: Signaling Connection Control Part - SS7 network layer

TCAP: Transaction Capabilities Application Part - SS7 application layer

MSISDN: Mobile Station International Subscriber Directory Number - Phone

number

IMSI: International Mobile Subscriber Identity - Unique subscriber identifier

E.164: International numbering plan for telephone numbers

ENUM: E.164 Number Mapping - DNS-based phone number to URI mapping

PDU: Protocol Data Unit - Binary encoded SMS message

TP-DCS: Transfer Protocol Data Coding Scheme - SMS encoding

specification

TP-DU: Transfer Protocol Data Unit - SMS-specific PDU format

UDH: User Data Header - Header for concatenated/special SMS messages

TON/NPI: Type of Number / Numbering Plan Indicator - Number format

classification

GSM7: GSM 7-bit default alphabet - Standard SMS character encoding

UCS-2: Universal Character Set 2-byte - Unicode encoding for SMS

System Components

Mnesia: Erlang distributed database system - In-memory/disc storage

CDR: Call Detail Record - Billing and analytics record for messages

REST API: Representational State Transfer - HTTP-based API architecture

Phoenix: Elixir web framework

Cowboy: Erlang HTTP server

Ecto: Elixir database wrapper and query language

PubSub: Publish-Subscribe messaging pattern

Lawful Interception

LI: Lawful Interception - Legal monitoring of telecommunications

LIMF: Lawful Interception Mediation Function - System that interfaces

between telecom network and law enforcement

LEMF: Law Enforcement Monitoring Facility - Law enforcement system

receiving intercepted data

IRI: Intercept Related Information - Call/message metadata for law

enforcement

CC: Content of Communication - Actual message content

X1 Interface: ETSI LI administrative interface - Warrant provisioning and

target activation

X2 Interface: ETSI LI interface for IRI delivery - Metadata handover to law

enforcement

X3 Interface: ETSI LI interface for CC delivery - Content handover to law

enforcement

R226: Articles R226-3 and R226-7 of French Penal Code governing

interception equipment

ETSI: European Telecommunications Standards Institute - Defines LI

standards

ETSI TS 102 232: Technical specification for lawful interception handover

interfaces

Message Processing

MT: Mobile Terminated - Outbound message to mobile subscriber

MO: Mobile Originated - Inbound message from mobile subscriber

DLR: Delivery Receipt - Confirmation of message delivery

Dead Letter: Message that failed delivery after all retry attempts

Exponential Backoff: Increasing retry delay (2min, 4min, 8min, etc.)

Security and Encryption

TLS: Transport Layer Security - Encryption protocol

PFS: Perfect Forward Secrecy - Cryptographic property for session key

security

AES: Advanced Encryption Standard

RSA: Rivest-Shamir-Adleman - Public key cryptography

ECDSA: Elliptic Curve Digital Signature Algorithm

SHA: Secure Hash Algorithm

X.509: Certificate standard

CA: Certificate Authority

CSPRNG: Cryptographically Secure Pseudo-Random Number Generator

Database Terms

MySQL: Open-source relational database

PostgreSQL: Open-source object-relational database

TDE: Transparent Data Encryption

RBAC: Role-Based Access Control

Document Version: 1.0 Date: 2025-11-29 Prepared for: ANSSI R226

Authorization Application Document Classification: Regulatory Compliance -

Confidential

SMS-C API Reference

← Back to Documentation Index | Main README

Complete reference for all SMS-C REST API endpoints with request/response

examples.

Table of Contents

API Overview

Authentication

Common Response Formats

Status Endpoint

Message Queue API

Raw SMS PDU API

Location Management API

Frontend Registration API

Event Logging API

MMS Message API

SS7 Event API

Error Codes

Rate Limiting

Best Practices

API Overview

The SMS-C REST API provides programmatic access to message submission,

routing, and management functions.

Base URL

Default Port: 8443 (configurable) Protocol: HTTPS (TLS required in

production)

Content Type

All requests and responses use JSON:

API Versioning

The current API is version 1 (implicit). Future versions will use URL versioning:

Authentication

TLS Client Certificates (Recommended)

Production deployments should use TLS client certificate authentication:

API Key Authentication

Custom API key authentication via X-API-Key header:

https://api.example.com:8443/api

Content-Type: application/json

https://api.example.com:8443/api/v2/...

curl --cert client.crt --key client.key \

 https://api.example.com:8443/api/status

IP Whitelisting

Restrict API access to trusted IP addresses at the firewall level.

Common Response Formats

Success Response

Error Response

List Response

curl -H "X-API-Key: your_api_key_here" \

 https://api.example.com:8443/api/status

{

 "data": {

 ...

 }

}

{

 "errors": {

 "detail": "Error message describing what went wrong"

 }

}

{

 "data": [

 {...},

 {...}

]

}

Status Endpoint

Health check endpoint for monitoring and load balancers.

Get API Status

Request:

Response (200 OK):

Example:

Use Cases:

Load balancer health checks

Monitoring system connectivity

Service availability verification

Message Queue API

Core message submission and management endpoints.

GET /api/status

{

 "status": "ok",

 "application": "OmniMessage",

 "timestamp": "2025-10-30T12:34:56Z"

}

curl https://api.example.com:8443/api/status

List Messages

Retrieve messages from the queue.

Request:

Optional Headers:

smsc: frontend_name - Filter by destination SMSC

include-unrouted: true|false|1|0 - Include messages without location

registration (default: false)

false (default): Only return messages with explicit routing or location

registration

true : Include messages without location registration (backward

compatible mode)

Query Parameters:

status - Filter by status: pending , delivered , expired , dropped

source_smsc - Filter by source SMSC

dest_smsc - Filter by destination SMSC

limit - Limit results (default: 100, max: 1000)

offset - Pagination offset

Response (200 OK):

GET /api/messages

Examples:

Get pending messages for specific SMSC (only with explicit routing or location):

Get pending messages including unrouted messages (backward compatible):

Get all delivered messages:

{

 "data": [

 {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "deliver_time": null,

 "delivery_attempts": 0,

 "inserted_at": "2025-10-30T12:00:00Z"

 }

]

}

curl -H "smsc: uk_gateway" \

 https://api.example.com:8443/api/messages

curl -H "smsc: uk_gateway" \

 -H "include-unrouted: true" \

 https://api.example.com:8443/api/messages

curl "https://api.example.com:8443/api/messages?

status=delivered&limit=50"

Get Single Message

Retrieve details for a specific message.

Request:

Response (200 OK):

GET /api/messages/:id

{

 "data": {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "source_imsi": null,

 "dest_imsi": null,

 "message_parts": 1,

 "message_part_number": 1,

 "tp_data_coding_scheme": "00",

 "tp_user_data_header": null,

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "deliver_time": null,

 "expires": "2025-10-31T12:00:00Z",

 "deadletter": false,

 "delivery_attempts": 0,

 "charge_failed": false,

 "deliver_after": "2025-10-30T12:00:00Z",

 "raw_data_flag": false,

 "raw_sip_flag": false,

 "raw_pdu": null,

 "inserted_at": "2025-10-30T12:00:00Z",

 "updated_at": "2025-10-30T12:00:00Z"

 }

}

Example:

Submit Message (Synchronous)

Submit a message and receive the message ID immediately.

Request:

Body:

Optional Fields:

dest_smsc - Override routing decision

send_time - Schedule for future delivery (ISO 8601)

message_parts - Total parts for multi-part message

message_part_number - Part number (1-indexed)

tp_data_coding_scheme - SMS DCS (default: "00")

source_imsi - Source subscriber IMSI

dest_imsi - Destination subscriber IMSI

Response (201 Created):

curl https://api.example.com:8443/api/messages/12345

POST /api/messages

Content-Type: application/json

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client"

}

Example:

Performance: ~70 messages/second, 14ms average response time

Use When:

Need message ID immediately

Processing messages/second

Require immediate confirmation

Submit Message (Asynchronous)

Submit a message with high throughput (batch processing).

Request:

{

 "data": {

 "id": 12345,

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client",

 "dest_smsc": "uk_gateway",

 "status": "pending",

 "send_time": "2025-10-30T12:00:00Z",

 "inserted_at": "2025-10-30T12:00:00Z"

 }

}

curl -X POST https://api.example.com:8443/api/messages \

 -H "Content-Type: application/json" \

 -d '{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Hello World",

 "source_smsc": "api_client"

 }'

Body: Same as synchronous endpoint

Response (202 Accepted):

Example:

Performance: ~4,650 messages/second, 0.22ms average response time

Latency: Message appears in database within 100ms (configurable)

Use When:

High-volume bulk messaging (> 100 msg/sec)

Don't need message ID in API response

Throughput more important than instant confirmation

POST /api/messages/create_async

Content-Type: application/json

{

 "data": {

 "status": "accepted",

 "message": "Message queued for processing"

 }

}

curl -X POST

https://api.example.com:8443/api/messages/create_async \

 -H "Content-Type: application/json" \

 -d '{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "message_body": "Bulk notification message",

 "source_smsc": "bulk_api"

 }'

Update Message

Partially update message fields.

Request:

Body:

Updatable Fields:

dest_smsc - Change destination

deliver_after - Delay delivery

message_body - Update message text

status - Change status

Response (200 OK):

Example:

PATCH /api/messages/:id

Content-Type: application/json

{

 "dest_smsc": "alternate_gateway",

 "deliver_after": "2025-10-30T14:00:00Z"

}

{

 "data": {

 "id": 12345,

 "dest_smsc": "alternate_gateway",

 "deliver_after": "2025-10-30T14:00:00Z",

 ...

 }

}

Mark Message Delivered

Mark a message as successfully delivered.

Request:

Body:

Response (200 OK):

Example:

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "backup_gateway"

 }'

POST /api/messages/:id/mark_delivered

Content-Type: application/json

{

 "dest_smsc": "uk_gateway"

}

{

 "data": {

 "id": 12345,

 "status": "delivered",

 "deliver_time": "2025-10-30T12:05:30Z",

 "dest_smsc": "uk_gateway",

 ...

 }

}

Use Case: Called by frontend systems after successful delivery

Increment Delivery Attempt

Increment retry counter and apply exponential backoff.

Request:

Response (200 OK):

Backoff Calculation:

Example:

curl -X POST

https://api.example.com:8443/api/messages/12345/mark_delivered \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "uk_gateway"

 }'

PUT /api/messages/:id

{

 "data": {

 "id": 12345,

 "delivery_attempts": 2,

 "deliver_after": "2025-10-30T12:08:00Z",

 ...

 }

}

deliver_after = now + 2^(delivery_attempts) minutes

curl -X PUT https://api.example.com:8443/api/messages/12345

Use Case: Called by frontend after delivery failure to schedule retry

Delete Message

Remove message from queue.

Request:

Response (204 No Content)

Example:

Warning: Deleting messages removes them permanently. Use with caution.

Raw SMS PDU API

Submit SMS messages as raw PDU (Protocol Data Unit) for maximum

compatibility with legacy systems.

Submit Raw SMS (Synchronous)

Request:

Body:

DELETE /api/messages/:id

curl -X DELETE https://api.example.com:8443/api/messages/12345

POST /api/messages_raw

Content-Type: application/json

PDU Format: Hex-encoded SMS TPDU (Transport Protocol Data Unit)

Response (201 Created):

Example:

Submit Raw SMS (Asynchronous)

Request:

{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_system"

}

{

 "data": {

 "id": 12346,

 "source_msisdn": "+447700900000",

 "destination_msisdn": "+447700900000",

 "message_body": "Test",

 "source_smsc": "legacy_system",

 "raw_pdu": "0001000B916407007009F0000004D4F29C0E",

 ...

 }

}

curl -X POST https://api.example.com:8443/api/messages_raw \

 -H "Content-Type: application/json" \

 -d '{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_system"

 }'

POST /api/messages_raw/async

Content-Type: application/json

Body: Same as synchronous

Response (202 Accepted):

Example:

PDU Handling

The system automatically:

1. Decodes PDU using SMS standards (3GPP TS 23.040)

2. Extracts phone numbers, message text, DCS

3. Detects delivery reports (CP-ACK, RP-ACK, etc.)

4. Performs IMSI to MSISDN lookup if needed

5. Applies routing rules

6. Stores original PDU for reference

Delivery Report Detection:

CP-ACK, CP-ERROR - Connection Protocol acknowledgments

RP-ACK, RP-ERROR, RP-SMMA - Relay Protocol responses

Delivery reports are logged but not stored as messages

{

 "data": {

 "status": "accepted",

 "message": "PDU queued for processing"

 }

}

curl -X POST https://api.example.com:8443/api/messages_raw/async \

 -H "Content-Type: application/json" \

 -d '{

 "pdu": "0001000B916407007009F0000004D4F29C0E",

 "source_smsc": "legacy_gateway"

 }'

Location Management API

Manage subscriber location information for mobile-terminated message

delivery.

List Locations

Request:

Response (200 OK):

Example:

GET /api/locations

{

 "data": [

 {

 "id": 1,

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ran_location": "cell_tower_12345",

 "imei": "123456789012345",

 "ims_capable": true,

 "csfb": false,

 "registered": true,

 "expires": "2025-10-30T13:00:00Z",

 "user_agent": "Samsung Galaxy",

 "inserted_at": "2025-10-30T12:00:00Z",

 "updated_at": "2025-10-30T12:00:00Z"

 }

]

}

curl https://api.example.com:8443/api/locations

Get Location

Request:

Response (200 OK):

Example:

Create/Update Location

Creates new location or updates existing based on IMSI (unique identifier).

Request:

Body:

GET /api/locations/:id

{

 "data": {

 "id": 1,

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 ...

 }

}

curl https://api.example.com:8443/api/locations/1

POST /api/locations

Content-Type: application/json

Required Fields:

imsi - Unique subscriber identifier

msisdn - Phone number

Optional Fields:

location - MSC/VLR address

ran_location - Cell tower/sector ID

imei - Device identifier

ims_capable - IMS VoLTE capability

csfb - Circuit-switched fallback flag

registered - Currently registered

expires - Registration expiry

user_agent - Device model/info

Response (201 Created or 200 OK):

{

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ran_location": "cell_tower_12345",

 "imei": "123456789012345",

 "ims_capable": true,

 "csfb": false,

 "registered": true,

 "expires": "2025-10-30T13:00:00Z",

 "user_agent": "Samsung Galaxy"

}

{

 "data": {

 "id": 1,

 "msisdn": "+15551234567",

 ...

 }

}

Example:

Use Case: Called by mobility management systems (HSS, MME, etc.) when

subscriber registers

Update Location

Request:

Body: Partial update with any location fields

Response (200 OK):

Example:

curl -X POST https://api.example.com:8443/api/locations \

 -H "Content-Type: application/json" \

 -d '{

 "msisdn": "+15551234567",

 "imsi": "001001000000001",

 "location": "msc1.region1.example.com",

 "ims_capable": true,

 "registered": true

 }'

PATCH /api/locations/:id

Content-Type: application/json

{

 "data": {

 "id": 1,

 ...

 }

}

Delete Location

Request:

Response (204 No Content)

Example:

Use Case: Called when subscriber de-registers or times out

Frontend Registration API

Track and manage frontend SMSC connections.

List All Frontends

Request:

Response (200 OK):

curl -X PATCH https://api.example.com:8443/api/locations/1 \

 -H "Content-Type: application/json" \

 -d '{

 "location": "msc2.region2.example.com",

 "ran_location": "cell_tower_67890"

 }'

DELETE /api/locations/:id

curl -X DELETE https://api.example.com:8443/api/locations/1

GET /api/frontends

Example:

List Active Frontends Only

Request:

Response (200 OK): Same format, only active frontends

Example:

{

 "data": [

 {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com",

 "uptime_seconds": 86400,

 "configuration": {

 "max_throughput": 1000,

 "bind_type": "transceiver"

 },

 "status": "active",

 "expires_at": "2025-10-30T12:02:00Z",

 "last_seen_at": "2025-10-30T12:00:30Z",

 "inserted_at": "2025-10-29T12:00:00Z",

 "updated_at": "2025-10-30T12:00:30Z"

 }

]

}

curl https://api.example.com:8443/api/frontends

GET /api/frontends/active

curl https://api.example.com:8443/api/frontends/active

Use Case: Get list of available destinations for routing

Get Frontend Statistics

Request:

Response (200 OK):

Example:

Get Frontend History

Request:

Response (200 OK):

GET /api/frontends/stats

{

 "data": {

 "active_count": 5,

 "expired_count": 2,

 "unique_frontends": 7,

 "total_registrations": 1523

 }

}

curl https://api.example.com:8443/api/frontends/stats

GET /api/frontends/history/:name

Example:

Register Frontend

Register or update frontend connection.

Request:

Body:

{

 "data": [

 {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "status": "active",

 "inserted_at": "2025-10-30T12:00:00Z",

 ...

 },

 {

 "id": 2,

 "frontend_name": "uk_gateway_1",

 "status": "expired",

 "inserted_at": "2025-10-29T12:00:00Z",

 ...

 }

]

}

curl

https://api.example.com:8443/api/frontends/history/uk_gateway_1

POST /api/frontends/register

Content-Type: application/json

Required Fields:

frontend_name - Unique identifier for frontend

frontend_type - Type: smpp , sip , http , etc.

Optional Fields:

ip_address - Frontend IP

hostname - Frontend hostname

uptime_seconds - Uptime since start

configuration - Custom config object

Response (201 Created):

Example:

{

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com",

 "uptime_seconds": 86400,

 "configuration": {

 "max_throughput": 1000,

 "bind_type": "transceiver",

 "system_id": "gateway1"

 }

}

{

 "data": {

 "id": 1,

 "frontend_name": "uk_gateway_1",

 "status": "active",

 "expires_at": "2025-10-30T12:01:30Z",

 ...

 }

}

Registration Timeout: 90 seconds (frontends must re-register every 60-90

seconds)

Use Case: Called periodically by frontend systems to maintain active status

Event Logging API

Track message lifecycle events.

Get Message Events

Request:

Response (200 OK):

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "uk_gateway_1",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway1.uk.example.com"

 }'

GET /api/events/:message_id

Example:

Event Types:

message_inserted - Message created

message_routed - Routing decision made

message_delivered - Successful delivery

message_failed - Delivery failed

message_dropped - Dropped by route

auto_reply_sent - Auto-reply triggered

number_translated - Number transformation applied

routing_failed - No route found

charging_failed - Charging error

{

 "data": [

 {

 "event_epoch": 1698672000,

 "name": "message_inserted",

 "description": "Message inserted into queue",

 "event_source": "node1@server.example.com"

 },

 {

 "event_epoch": 1698672001,

 "name": "message_routed",

 "description": "Routed to uk_gateway via route_id=42",

 "event_source": "node1@server.example.com"

 },

 {

 "event_epoch": 1698672005,

 "name": "message_delivered",

 "description": "Successfully delivered",

 "event_source": "node2@server.example.com"

 }

]

}

curl https://api.example.com:8443/api/events/12345

Record Event

Request:

Body:

Response (201 Created):

Example:

POST /api/events

Content-Type: application/json

{

 "message_id": 12345,

 "name": "custom_event",

 "description": "Custom event description",

 "event_source": "external_system"

}

{

 "data": {

 "message_id": 12345,

 "name": "custom_event",

 "description": "Custom event description",

 "event_source": "external_system",

 "event_epoch": 1698672010

 }

}

curl -X POST https://api.example.com:8443/api/events \

 -H "Content-Type: application/json" \

 -d '{

 "message_id": 12345,

 "name": "external_delivery_confirmed",

 "description": "Confirmed by downstream system"

 }'

Event Retention: 7 days (configurable)

MMS Message API

Manage Multimedia Messaging Service (MMS) messages.

List MMS Messages

Request:

Response (200 OK): Similar to SMS messages with additional MMS fields

Create MMS Message

Request:

Body:

Response (201 Created): Full MMS message object

GET /api/mms_messages

POST /api/mms_messages

Content-Type: application/json

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900000",

 "subject": "Photo",

 "content_type": "image/jpeg",

 "content_location": "https://cdn.example.com/media/12345.jpg",

 "message_size": 524288

}

SS7 Event API

Track SS7 signaling events.

List SS7 Events

Request:

Response (200 OK):

Create SS7 Event

Request:

Body:

GET /api/ss7_events

{

 "data": [

 {

 "id": 1,

 "event_type": "MAP_UPDATE_LOCATION",

 "imsi": "001001000000001",

 "msisdn": "+15551234567",

 "timestamp": "2025-10-30T12:00:00Z",

 ...

 }

]

}

POST /api/ss7_events

Content-Type: application/json

Response (201 Created): Full event object

{

 "event_type": "MAP_UPDATE_LOCATION",

 "imsi": "001001000000001",

 "msisdn": "+15551234567"

}

Error Codes

HTTP Status Codes

Code Meaning Description

200 OK Request successful

201 Created Resource created successfully

202 Accepted Request accepted for processing

204 No Content Successful deletion

400 Bad Request Invalid request format

401 Unauthorized Authentication required

403 Forbidden Insufficient permissions

404 Not Found Resource doesn't exist

422 Unprocessable Entity Validation errors

429 Too Many Requests Rate limit exceeded

500 Internal Server Error Server error

503 Service Unavailable Temporarily unavailable

Error Response Format

Common Error Messages

Error Cause Solution

"destination_msisdn is

required"

Missing

required field

Include destination_msisdn

in request

"Invalid phone number

format"

Malformed

number

Use E.164 format:

+15551234567

"Message too long"
Exceeds size

limit
Split into multiple parts

"No route found" Routing failed Check routing configuration

"Charging failed" OCS error
Verify charging system

connectivity

"Message not found"
Invalid

message ID
Verify ID exists

"Frontend not registered" Unknown SMSC Register frontend first

{

 "errors": {

 "detail": "Validation failed: destination_msisdn is required"

 }

}

Rate Limiting

Default Limits

Endpoint Limit Window

POST /api/messages 100 req/sec Per IP

POST /api/messages/create_async 1000 req/sec Per IP

POST /api/messages_raw 100 req/sec Per IP

GET /api/* 1000 req/sec Per IP

Rate Limit Headers

Rate Limit Exceeded

Response (429 Too Many Requests):

X-RateLimit-Limit: 100

X-RateLimit-Remaining: 95

X-RateLimit-Reset: 1698672060

{

 "errors": {

 "detail": "Rate limit exceeded. Retry after 5 seconds."

 }

}

Best Practices

Message Submission

1. Use Async for Bulk: Use /create_async for > 100 msg/sec

2. Include source_smsc: Always identify your system

3. Validate Numbers: Use E.164 format (+country code)

4. Handle Errors: Implement retry logic for 5xx errors

5. Check Routing: Test routes before bulk submission

Frontend Integration

1. Register Regularly: Re-register every 60 seconds

2. Poll for Messages: Query with smsc header for your messages

3. Use include-unrouted Wisely: By default, only messages with explicit

routing or location registration are returned. Set include-unrouted: true

only if you need backward compatible behavior to receive all unrouted

messages

4. Mark Delivered: Always call mark_delivered after success

5. Increment on Failure: Use PUT endpoint for retry logic

6. Monitor Events: Check event log for delivery issues

Performance

1. Connection Pooling: Reuse HTTP connections

2. Batch Requests: Group multiple messages per request

3. Parallel Processing: Make concurrent API calls

4. Monitor Metrics: Watch Prometheus for bottlenecks

5. Set Timeouts: Use 30-second timeout for API calls

Security

1. Use TLS: Always use HTTPS in production

2. Validate Certificates: Don't skip certificate validation

3. Rotate API Keys: Change keys regularly

4. IP Whitelist: Restrict to known sources

5. Log API Activity: Monitor for suspicious patterns

Error Handling

1. Retry 5xx Errors: Server errors are usually temporary

2. Don't Retry 4xx: Client errors need code fixes

3. Exponential Backoff: Wait longer between retries

4. Circuit Breaker: Stop after repeated failures

5. Alert on Patterns: Monitor error rates

Example Integration (Python)

import requests

import time

class SMSCClient:

 def __init__(self, base_url, api_key=None):

 self.base_url = base_url

 self.session = requests.Session()

 if api_key:

 self.session.headers.update({"X-API-Key": api_key})

 def submit_message(self, from_num, to_num, text,

async_mode=False):

 endpoint = "/messages/create_async" if async_mode else

"/messages"

 url = f"{self.base_url}{endpoint}"

 payload = {

 "source_msisdn": from_num,

 "destination_msisdn": to_num,

 "message_body": text,

 "source_smsc": "python_client"

 }

 try:

 response = self.session.post(url, json=payload,

timeout=30)

 response.raise_for_status()

 return response.json()["data"]

 except requests.exceptions.RequestException as e:

 print(f"API Error: {e}")

 return None

 def get_pending_messages(self, smsc_name,

include_unrouted=False):

 url = f"{self.base_url}/messages"

 headers = {"smsc": smsc_name}

 # Include unrouted messages if requested (backward

compatible mode)

 if include_unrouted:

 headers["include-unrouted"] = "true"

 try:

 response = self.session.get(url, headers=headers,

timeout=30)

 response.raise_for_status()

 return response.json()["data"]

 except requests.exceptions.RequestException as e:

 print(f"API Error: {e}")

 return []

 def mark_delivered(self, message_id, smsc_name):

 url = f"

{self.base_url}/messages/{message_id}/mark_delivered"

 payload = {"dest_smsc": smsc_name}

 try:

 response = self.session.post(url, json=payload,

timeout=30)

 response.raise_for_status()

 return True

 except requests.exceptions.RequestException as e:

 print(f"API Error: {e}")

 return False

Usage

client = SMSCClient("https://api.example.com:8443/api",

api_key="your_key")

Submit single message

result = client.submit_message("+15551234567", "+447700900000",

"Hello")

print(f"Message ID: {result['id']}")

Submit bulk messages (async)

for i in range(1000):

 client.submit_message("+15551234567", f"+44770090{i:04d}",

f"Bulk {i}", async_mode=True)

Frontend polling loop

while True:

 # Get messages with explicit routing or location registration

 messages = client.get_pending_messages("my_gateway")

 # Or use include_unrouted=True for backward compatible

API Changelog

Version 1 (Current)

Initial release

Message queue CRUD

Raw PDU submission

Location management

Frontend registration

Event logging

Planned Features

Batch message submission (single request, multiple messages)

Message templates

Scheduled delivery API

Real-time webhooks for events

GraphQL API endpoint

OAuth2 authentication

behavior

 # messages = client.get_pending_messages("my_gateway",

include_unrouted=True)

 for msg in messages:

 # Deliver message via your protocol

 success = deliver_via_smpp(msg)

 if success:

 client.mark_delivered(msg["id"], "my_gateway")

 else:

 # Increment for retry

 requests.put(f"

{client.base_url}/messages/{msg['id']}")

 time.sleep(5) # Poll every 5 seconds

For questions or issues with the API, check the Troubleshooting Guide or

contact support.

CDR (Call Detail

Record) Schema

Reference

← Back to Documentation Index | Main README

Complete reference for the CDR database table used for long-term message

storage, billing, and analytics.

Table of Contents

Overview

Table Schema

Field Descriptions

SQL Examples

Indexes

Data Types by Database

Privacy Considerations

Retention and Archival

Billing Integration

Overview

The cdrs table stores Call Detail Records for all SMS messages processed by

the system. CDRs are written when:

Messages are successfully delivered

Messages expire without delivery

Messages fail permanently

Messages are rejected

CDRs provide long-term storage separate from the operational Mnesia

database, enabling:

Billing and invoicing

Analytics and reporting

Compliance and auditing

Message history beyond Mnesia retention period

Table Schema

MySQL / MariaDB

CREATE TABLE cdrs (

 id BIGINT AUTO_INCREMENT PRIMARY KEY,

 -- Message identification

 message_id BIGINT NOT NULL,

 -- Phone numbers

 calling_number VARCHAR(255) NOT NULL,

 called_number VARCHAR(255) NOT NULL,

 -- SMSC routing

 source_smsc VARCHAR(255),

 dest_smsc VARCHAR(255),

 -- Node information (for clustered deployments)

 origin_node VARCHAR(255),

 destination_node VARCHAR(255),

 -- Timestamps

 submission_time DATETIME NOT NULL,

 delivery_time DATETIME,

 expiry_time DATETIME,

 -- Status and metadata

 status VARCHAR(50) NOT NULL,

 delivery_attempts INT DEFAULT 0,

 message_parts INT,

 deadletter BOOLEAN DEFAULT FALSE,

 -- Optional message body (privacy controls)

 message_body TEXT,

 -- Audit timestamps

 inserted_at DATETIME NOT NULL,

 updated_at DATETIME NOT NULL,

 -- Indexes

 INDEX idx_cdrs_message_id (message_id),

 INDEX idx_cdrs_calling_number (calling_number),

 INDEX idx_cdrs_called_number (called_number),

 INDEX idx_cdrs_status (status),

 INDEX idx_cdrs_submission_time (submission_time),

 INDEX idx_cdrs_dest_smsc (dest_smsc)

);

PostgreSQL

CREATE TABLE cdrs (

 id BIGSERIAL PRIMARY KEY,

 -- Message identification

 message_id BIGINT NOT NULL,

 -- Phone numbers

 calling_number VARCHAR(255) NOT NULL,

 called_number VARCHAR(255) NOT NULL,

 -- SMSC routing

 source_smsc VARCHAR(255),

 dest_smsc VARCHAR(255),

 -- Node information (for clustered deployments)

 origin_node VARCHAR(255),

 destination_node VARCHAR(255),

 -- Timestamps

 submission_time TIMESTAMP NOT NULL,

 delivery_time TIMESTAMP,

 expiry_time TIMESTAMP,

 -- Status and metadata

 status VARCHAR(50) NOT NULL,

 delivery_attempts INTEGER DEFAULT 0,

 message_parts INTEGER,

 deadletter BOOLEAN DEFAULT FALSE,

 -- Optional message body (privacy controls)

 message_body TEXT,

 -- Audit timestamps

 inserted_at TIMESTAMP NOT NULL,

 updated_at TIMESTAMP NOT NULL

);

-- Indexes

CREATE INDEX idx_cdrs_message_id ON cdrs(message_id);

CREATE INDEX idx_cdrs_calling_number ON cdrs(calling_number);

CREATE INDEX idx_cdrs_called_number ON cdrs(called_number);

Field Descriptions

Primary Key

Field Type Nullable Description

id BIGINT NO
Auto-incrementing primary key for the CDR

record

Message Identification

Field Type Nullable Description

message_id BIGINT NO

Unique message identifier from the

SMS-C message queue. References the

original message ID in Mnesia.

CREATE INDEX idx_cdrs_status ON cdrs(status);

CREATE INDEX idx_cdrs_submission_time ON cdrs(submission_time);

CREATE INDEX idx_cdrs_dest_smsc ON cdrs(dest_smsc);

Phone Numbers

Field Type Nullable Description

calling_number VARCHAR(255) NO

Source MSISDN (mobile

number) of the message

sender. Typically in E.164

format (e.g.,

+15551234567).

called_number VARCHAR(255) NO

Destination MSISDN

(mobile number) of the

message recipient.

Typically in E.164 format

(e.g., +15551234567).

SMSC Routing

Field Type Nullable Description

source_smsc VARCHAR(255) YES

Name or identifier of the

source SMSC that submitted

the message. NULL if

submitted via API or other

non-SMSC interface.

dest_smsc VARCHAR(255) YES

Name or identifier of the

destination SMSC that

delivered (or attempted to

deliver) the message. NULL if

message was never routed.

Node Information

For clustered deployments, tracks which nodes handled the message:

Field Type Nullable Description

origin_node VARCHAR(255) YES

Erlang node name where

message was originally

received (e.g.,

"sms@node1.example.com

Useful for troubleshooting

and load distribution

analysis.

destination_node VARCHAR(255) YES

Erlang node name where

message was delivered fro

(if different from origin).

NULL for single-node

deployments or if message

never delivered.

Timestamps

All timestamps are stored in UTC:

mailto:sms@node1.example.com

Field Type Nullable Description

submission_time DATETIME NO

When the message was first

submitted to the SMS-C. Used

as the start time for billing

calculations.

delivery_time DATETIME YES

When the message was

successfully delivered. NULL if

message expired, failed, or

was rejected.

expiry_time DATETIME YES

When the message expired

(became undeliverable). NULL

if message was delivered or is

still pending.

Delivery Duration Calculation:

TIMESTAMPDIFF(SECOND, submission_time, delivery_time) AS

delivery_duration_seconds

Status and Metadata

Field Type Nullable Description

status VARCHAR(50) NO

Final message status.

Valid values:

delivered , expired ,

failed , rejected

delivery_attempts INT NO

Number of delivery

attempts made before

final status. Default: 0.

Range: 0-255 typically.

message_parts INT YES

Number of SMS

segments for

concatenated

messages. 1 for single-

part messages, 2+ for

multi-part. NULL if

unknown.

deadletter BOOLEAN NO

Whether message was

moved to dead letter

queue. TRUE indicates

message couldn't be

delivered and

exhausted all retries.

Default: FALSE

Status Values:

Status Description Billable
Delivery

Time

delivered
Successfully delivered to

recipient
Yes Set

expired
Exceeded validity period

without delivery

Depends on

billing policy
NULL

failed
Permanent delivery failure

(invalid number, etc.)

Depends on

billing policy
NULL

rejected
Rejected by routing rules or

validation
No NULL

Message Body

Field Type Nullable Description

message_body TEXT YES

The actual SMS message content. Can

be NULL if

delete_message_body_after_delivery

is enabled for privacy. Max length

varies by database (typically 65,535

characters for TEXT type).

Privacy Modes:

Full retention: Message body stored in CDR for compliance/archival

Privacy mode: Message body set to NULL when

delete_message_body_after_delivery: true

Compliance mode: Body stored encrypted or hashed (requires custom

implementation)

Audit Timestamps

Field Type Nullable Description

inserted_at DATETIME NO

When the CDR record was first

inserted into the database.

Typically same as or shortly after

delivery_time/expiry_time.

updated_at DATETIME NO

When the CDR record was last

updated. Same as inserted_at if

never updated.

SQL Examples

Basic Queries

Find all CDRs for a specific phone number:

Count messages by status:

Average delivery time for delivered messages:

SELECT * FROM cdrs

WHERE calling_number = '+15551234567'

 OR called_number = '+15551234567'

ORDER BY submission_time DESC

LIMIT 100;

SELECT status, COUNT(*) as count

FROM cdrs

GROUP BY status;

Billing Queries

Daily message volume by destination SMSC:

Billable messages for a customer (by calling number prefix):

Route performance analysis:

SELECT AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time))

AS avg_delivery_seconds

FROM cdrs

WHERE status = 'delivered'

 AND delivery_time IS NOT NULL;

SELECT

 DATE(submission_time) AS date,

 dest_smsc,

 COUNT(*) AS message_count,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered_count,

 SUM(message_parts) AS total_segments

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 30 DAY)

GROUP BY DATE(submission_time), dest_smsc

ORDER BY date DESC, message_count DESC;

SELECT

 DATE(submission_time) AS date,

 COUNT(*) AS message_count,

 SUM(message_parts) AS total_segments,

 SUM(message_parts) * 0.01 AS total_cost

FROM cdrs

WHERE calling_number LIKE '+1555%'

 AND status = 'delivered'

 AND submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

GROUP BY DATE(submission_time);

Analytics Queries

Messages by hour of day (traffic pattern):

Multi-part message analysis:

SELECT

 dest_smsc,

 COUNT(*) AS total_messages,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered,

 ROUND(100.0 * SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0

END) / COUNT(*), 2) AS delivery_rate_pct,

 AVG(delivery_attempts) AS avg_attempts,

 AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time)) AS

avg_delivery_seconds

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

 AND dest_smsc IS NOT NULL

GROUP BY dest_smsc

ORDER BY delivery_rate_pct DESC;

SELECT

 HOUR(submission_time) AS hour,

 COUNT(*) AS message_count

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

GROUP BY HOUR(submission_time)

ORDER BY hour;

Failed message analysis:

Compliance and Audit Queries

Find all messages between two parties in a time range:

SELECT

 message_parts,

 COUNT(*) AS message_count,

 AVG(TIMESTAMPDIFF(SECOND, submission_time, delivery_time)) AS

avg_delivery_seconds

FROM cdrs

WHERE message_parts IS NOT NULL

 AND status = 'delivered'

GROUP BY message_parts

ORDER BY message_parts;

SELECT

 called_number,

 COUNT(*) AS failure_count,

 AVG(delivery_attempts) AS avg_attempts,

 MAX(submission_time) AS last_failure

FROM cdrs

WHERE status IN ('failed', 'expired')

 AND submission_time >= DATE_SUB(NOW(), INTERVAL 7 DAY)

GROUP BY called_number

HAVING failure_count >= 5

ORDER BY failure_count DESC;

Retention policy enforcement (delete old CDRs):

Cluster Analysis

Message distribution across nodes:

SELECT

 submission_time,

 calling_number,

 called_number,

 status,

 message_body,

 delivery_time

FROM cdrs

WHERE (

 (calling_number = '+15551234567' AND called_number =

'+15559876543')

 OR

 (calling_number = '+15559876543' AND called_number =

'+15551234567')

)

 AND submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

ORDER BY submission_time;

-- Find records older than retention period (example: 2 years)

SELECT COUNT(*) FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

-- Delete old records (use with caution!)

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR)

LIMIT 10000; -- Batch delete to avoid locking

Indexes

The following indexes are created to optimize common queries:

Index Name Columns Purpose

PRIMARY id
Primary key, ensures

unique record

idx_cdrs_message_id message_id
Lookup CDR by original

message ID

idx_cdrs_calling_number calling_number
Find messages from a

specific sender

idx_cdrs_called_number called_number
Find messages to a

specific recipient

idx_cdrs_status status Filter by delivery status

idx_cdrs_submission_time submission_time
Time-based queries,

billing periods

idx_cdrs_dest_smsc dest_smsc
Route performance

analysis

SELECT

 origin_node,

 COUNT(*) AS message_count,

 SUM(CASE WHEN status = 'delivered' THEN 1 ELSE 0 END) AS

delivered_count

FROM cdrs

WHERE submission_time >= DATE_SUB(NOW(), INTERVAL 1 DAY)

GROUP BY origin_node;

Additional Index Recommendations

For high-volume deployments, consider these additional indexes:

Composite index for billing queries:

Composite index for route analysis:

Composite index for compliance searches:

Full-text index for message body searches (MySQL):

Data Types by Database

Field type mappings across supported databases:

CREATE INDEX idx_cdrs_billing ON cdrs(calling_number,

submission_time, status);

CREATE INDEX idx_cdrs_route_perf ON cdrs(dest_smsc,

submission_time, status);

CREATE INDEX idx_cdrs_party_time ON cdrs(calling_number,

called_number, submission_time);

ALTER TABLE cdrs ADD FULLTEXT INDEX idx_cdrs_message_body_ft

(message_body);

-- Usage:

SELECT * FROM cdrs

WHERE MATCH(message_body) AGAINST('keyword' IN NATURAL LANGUAGE

MODE);

Field MySQL/MariaDB PostgreSQL Notes

id
BIGINT

AUTO_INCREMENT
BIGSERIAL

64-bit integer,

auto-incrementing

message_id BIGINT BIGINT 64-bit integer

String fields VARCHAR(255) VARCHAR(255)

Variable-length

string, max 255

chars

message_body TEXT TEXT

Large text, up to

65,535 bytes

(MySQL), unlimited

(PostgreSQL)

Timestamps DATETIME TIMESTAMP
UTC timestamps

recommended

Integers INT INTEGER
32-bit signed

integer

Booleans
BOOLEAN

(TINYINT(1))
BOOLEAN

MySQL stores as

0/1

Privacy Considerations

The CDR table may contain sensitive personal information (phone numbers,

message content). Consider these privacy measures:

1. Message Body Privacy

Configuration options in config/runtime.exs :

2. Phone Number Masking

For analytics that don't require full numbers:

3. Database Encryption

Enable encryption at rest for the database server:

MySQL:

PostgreSQL: Use PostgreSQL transparent data encryption (TDE) or filesystem-

level encryption.

config :sms_c,

 # Delete message body after successful delivery

 delete_message_body_after_delivery: true,

 # Hide message body in UI

 hide_message_body_in_ui: true,

 # Hide message body in exports

 hide_message_body_in_export: true

-- Mask last 4 digits of phone numbers

SELECT

 CONCAT(SUBSTRING(calling_number, 1, LENGTH(calling_number) - 4),

'XXXX') AS masked_calling,

 CONCAT(SUBSTRING(called_number, 1, LENGTH(called_number) - 4),

'XXXX') AS masked_called,

 COUNT(*) AS message_count

FROM cdrs

GROUP BY masked_calling, masked_called;

-- Enable table encryption

ALTER TABLE cdrs ENCRYPTION='Y';

4. Access Controls

Restrict CDR table access:

Retention and Archival

Retention Policies

Define retention periods based on regulatory and business requirements:

Industry Typical Retention Regulatory Basis

Telecom (US) 18-24 months FCC, state laws

Telecom (EU) 6 months - 2 years GDPR, ePrivacy

Financial 5-7 years SOX, SEC

Healthcare 6 years HIPAA

Archival Strategy

1. Partition by Date (MySQL 8.0+, PostgreSQL 11+)

-- Create read-only billing user

CREATE USER 'billing_ro'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT ON sms_c.cdrs TO 'billing_ro'@'%';

-- Create limited analytics user (no message body access)

CREATE USER 'analytics'@'%' IDENTIFIED BY 'secure_password';

GRANT SELECT (id, message_id, calling_number, called_number,

source_smsc,

 dest_smsc, submission_time, delivery_time, status,

 delivery_attempts, message_parts)

ON sms_c.cdrs TO 'analytics'@'%';

2. Archive to Cold Storage

3. Automated Cleanup Script

-- MySQL partitioning by month

ALTER TABLE cdrs PARTITION BY RANGE (TO_DAYS(submission_time)) (

 PARTITION p202510 VALUES LESS THAN (TO_DAYS('2025-11-01')),

 PARTITION p202511 VALUES LESS THAN (TO_DAYS('2025-12-01')),

 PARTITION p202512 VALUES LESS THAN (TO_DAYS('2026-01-01')),

 PARTITION p_future VALUES LESS THAN MAXVALUE

);

-- Drop old partition (fast archival)

ALTER TABLE cdrs DROP PARTITION p202510;

-- Export old CDRs to archive table

CREATE TABLE cdrs_archive LIKE cdrs;

INSERT INTO cdrs_archive

SELECT * FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

-- Verify and delete from main table

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL 2 YEAR);

Cron entry:

Billing Integration

Rate Card Schema

Create a separate rates table for billing:

#!/bin/bash

cleanup_old_cdrs.sh - Run via cron

MYSQL_USER="cleanup_user"

MYSQL_PASS="secure_password"

MYSQL_DB="sms_c"

RETENTION_DAYS=730 # 2 years

Archive old records

mysql -u"$MYSQL_USER" -p"$MYSQL_PASS" "$MYSQL_DB" <<EOF

INSERT INTO cdrs_archive

SELECT * FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL $RETENTION_DAYS

DAY)

LIMIT 100000;

DELETE FROM cdrs

WHERE submission_time < DATE_SUB(NOW(), INTERVAL $RETENTION_DAYS

DAY)

LIMIT 100000;

EOF

Run daily at 2 AM

0 2 * * * /usr/local/bin/cleanup_old_cdrs.sh >>

/var/log/sms_c/cleanup.log 2>&1

Billing Query

Join CDRs with rates for invoicing:

CREATE TABLE billing_rates (

 id INT AUTO_INCREMENT PRIMARY KEY,

 destination_prefix VARCHAR(20) NOT NULL,

 description VARCHAR(255),

 rate_per_message DECIMAL(10, 6) NOT NULL,

 rate_per_segment DECIMAL(10, 6) NOT NULL,

 currency VARCHAR(3) DEFAULT 'USD',

 effective_date DATE NOT NULL,

 expiry_date DATE,

 INDEX idx_prefix (destination_prefix),

 INDEX idx_dates (effective_date, expiry_date)

);

-- Example rates

INSERT INTO billing_rates (destination_prefix, description,

rate_per_message, rate_per_segment, effective_date) VALUES

('+1', 'United States/Canada', 0.0050, 0.0050, '2025-01-01'),

('+44', 'United Kingdom', 0.0080, 0.0080, '2025-01-01'),

('+61', 'Australia', 0.0100, 0.0100, '2025-01-01'),

('+', 'International default', 0.0150, 0.0150, '2025-01-01');

Export for Billing Systems

CSV Export:

SELECT

 DATE(c.submission_time) AS date,

 c.dest_smsc AS route,

 LEFT(c.called_number,

 CASE

 WHEN c.called_number LIKE '+1%' THEN 2

 WHEN c.called_number LIKE '+%' THEN

LENGTH(SUBSTRING_INDEX(c.called_number, '', 4))

 ELSE 0

 END

) AS destination_prefix,

 COUNT(*) AS message_count,

 SUM(c.message_parts) AS segment_count,

 COALESCE(r.rate_per_segment, 0.015) AS rate,

 SUM(c.message_parts) * COALESCE(r.rate_per_segment, 0.015) AS

total_cost

FROM cdrs c

LEFT JOIN billing_rates r ON c.called_number LIKE

CONCAT(r.destination_prefix, '%')

 AND c.submission_time >= r.effective_date

 AND (r.expiry_date IS NULL OR c.submission_time < r.expiry_date)

WHERE c.status = 'delivered'

 AND c.submission_time >= '2025-10-01'

 AND c.submission_time < '2025-11-01'

GROUP BY date, route, destination_prefix

ORDER BY date DESC, total_cost DESC;

See Also

Configuration Guide - Configure CDR export settings

Operations Guide - CDR maintenance procedures

API Reference - Query CDRs via REST API

mysql -u billing_ro -p -D sms_c -e "

SELECT

 id,

 message_id,

 calling_number,

 called_number,

 dest_smsc,

 submission_time,

 delivery_time,

 status,

 message_parts

FROM cdrs

WHERE submission_time >= '2025-10-01'

 AND submission_time < '2025-11-01'

 AND status = 'delivered'

" --batch --silent | sed 's/\t/,/g' > billing_export_202510.csv

SMS-C Configuration

Reference

← Back to Documentation Index | Main README

Complete reference for all SMS-C configuration options with examples for

common deployment scenarios.

Table of Contents

Configuration Files

Database Configuration

API Configuration

Web UI Configuration

Cluster Configuration

Message Queue Configuration

Charging Configuration

ENUM Configuration

Number Translation Configuration

Routing Configuration

Performance Tuning Configuration

Logging Configuration

Common Configuration Scenarios

Configuration Files

The SMS-C uses three main configuration files:

config/config.exs

Static configuration loaded at compile time. Contains:

Application-wide defaults

Logger configuration

Development/test settings

Performance tuning parameters

config/runtime.exs

Runtime configuration loaded at startup. Contains:

Database connection settings

Cluster configuration

External service integration (OCS, ENUM)

Initial routes and translation rules

Environment-specific settings

config/prod.exs (optional)

Production-specific overrides.

Best Practice: Use environment variables in runtime.exs for sensitive values

like passwords and API keys.

SQL CDR Storage Configuration

The SMS-C uses Mnesia for operational data (message queue, routing rules,

number translations) and supports external SQL databases for long-term CDR

(Call Detail Record) storage, billing, and analytics.

Supported SQL Databases

The system supports the following SQL databases for CDR export:

Database Version Adapter
Default

Port
Best For

MySQL 8.0+ Ecto.Adapters.MyXQL 3306

General

purpose,

proven

reliability

MariaDB 10.5+ Ecto.Adapters.MyXQL 3306

MySQL-

compatible

open

source

PostgreSQL 13+ Ecto.Adapters.Postgres 5432

Advanced

features,

JSON

support

Note: Mnesia is used automatically for operational data (message queue,

routing, translations) and requires no configuration. The SQL database is only

used for CDR export and long-term storage.

MySQL / MariaDB Configuration

config/runtime.exs

config :sms_c, SmsC.Repo,

 adapter: Ecto.Adapters.MyXQL,

 username: System.get_env("DB_USERNAME") || "sms_user",

 password: System.get_env("DB_PASSWORD") || "secure_password",

 hostname: System.get_env("DB_HOSTNAME") || "localhost",

 port: String.to_integer(System.get_env("DB_PORT") || "3306"),

 database: System.get_env("DB_NAME") || "sms_c_prod",

 pool_size: String.to_integer(System.get_env("DB_POOL_SIZE") ||

"20")

PostgreSQL Configuration

Choosing a SQL Database

MySQL/MariaDB - Recommended for most deployments:

Excellent performance for CDR writes

Proven reliability in telecom environments

Wide tooling support for billing systems

Easy replication setup

PostgreSQL - Consider if you need:

Advanced JSON/JSONB features for analytics

Complex queries on CDR data

Existing PostgreSQL infrastructure

PostGIS for geographic analysis

Deployment Topologies

Important: The SQL CDR database can run on a separate server from your

SMS-C instance(s). This is the recommended approach for production

deployments.

Single-Server Deployment (Development/Testing):

config/runtime.exs

config :sms_c, SmsC.Repo,

 adapter: Ecto.Adapters.Postgres,

 username: System.get_env("DB_USERNAME") || "sms_user",

 password: System.get_env("DB_PASSWORD") || "secure_password",

 hostname: System.get_env("DB_HOSTNAME") || "localhost",

 port: String.to_integer(System.get_env("DB_PORT") || "5432"),

 database: System.get_env("DB_NAME") || "sms_c_prod",

 pool_size: String.to_integer(System.get_env("DB_POOL_SIZE") ||

"20")

Distributed Deployment (Production - Recommended):

Benefits of Separate SQL Server:

Performance Isolation: CDR writes don't impact message processing

┌─────────────────────────────┐

│ SMS-C Server │

│ ┌──────────┐ ┌──────────┐ │

│ │ SMS-C │ │ SQL DB │ │

│ │ Instance │ │ (CDR) │ │

│ └──────────┘ └──────────┘ │

│ ┌─────────────────────┐ │

│ │ Mnesia (Operational) │ │

│ └─────────────────────┘ │

└─────────────────────────────┘

┌─────────────────┐ ┌─────────────────┐

│ SMS-C Node 1 │ │ SMS-C Node 2 │

│ ┌─────────────┐ │ │ ┌─────────────┐ │

│ │ SMS-C │ │ │ │ SMS-C │ │

│ │ Instance │◄├──────┤►│ Instance │ │

│ └──────┬──────┘ │ │ └──────┬──────┘ │

│ │ │ │ │ │

│ ┌──────▼──────┐ │ │ ┌──────▼──────┐ │

│ │ Mnesia │◄├──────┤►│ Mnesia │ │

│ │(Replicated) │ │ │ │(Replicated) │ │

│ └─────────────┘ │ │ └─────────────┘ │

└────────┬────────┘ └────────┬────────┘

 │ │

 └──────────┬─────────────┘

 │ Network

 ┌──────────▼────────────┐

 │ Dedicated SQL Server │

 │ ┌──────────────────┐ │

 │ │ MySQL/MariaDB │ │

 │ │ or PostgreSQL │ │

 │ │ (CDR Storage) │ │

 │ └──────────────────┘ │

 └───────────────────────┘

Scalability: Independently scale database and message processing

Reliability: Database maintenance doesn't affect SMS-C uptime

Data Management: Centralized CDR storage for multiple SMS-C instances

Backup Flexibility: Independent backup schedules and retention policies

Pool Size Guidelines

Workload
Pool

Size
Description

Development 5-10 Minimal concurrency

Low Volume (< 100 msg/sec) 10-15 Small deployments

Medium Volume (100-1000

msg/sec)
20-30 Typical production

High Volume (> 1000 msg/sec) 40-100
High-throughput

scenarios

Calculation: pool_size = (expected concurrent DB operations) * 1.5

Database Connection Examples

Using Environment Variables (Recommended for Production):

Direct Configuration (Development Only):

Set environment variables

export DB_USERNAME=sms_prod_user

export DB_PASSWORD=strong_password_here

export DB_HOSTNAME=db-primary.internal.example.com

export DB_PORT=3306

export DB_NAME=sms_c_production

export DB_POOL_SIZE=30

Connection Pool Monitoring

Monitor pool usage via Prometheus metrics:

ecto_pools_queue_time - Time waiting for connection

ecto_pools_query_time - Query execution time

ecto_pools_connected_count - Active connections

Alert if wait time exceeds 100ms consistently - indicates need for larger pool.

API Configuration

The REST API provides message submission and management capabilities.

Basic API Configuration

TLS/SSL Configuration

Production Setup with TLS (Recommended):

config :sms_c, SmsC.Repo,

 username: "dev_user",

 password: "dev_password",

 hostname: "localhost",

 database: "sms_c_dev",

 pool_size: 5

config/runtime.exs

config :api_ex,

 port: String.to_integer(System.get_env("API_PORT") || "8443"),

 listen_ip: System.get_env("API_LISTEN_IP") || "0.0.0.0",

 enable_tls: System.get_env("API_ENABLE_TLS") != "false"

Development Setup without TLS:

API Certificate Setup

Generate self-signed certificate for testing:

config :api_ex,

 port: 8443,

 listen_ip: "0.0.0.0",

 enable_tls: true,

 tls_cert_path: "/etc/sms_c/certs/server.crt",

 tls_key_path: "/etc/sms_c/certs/server.key"

config :api_ex,

 port: 8080,

 listen_ip: "127.0.0.1",

 enable_tls: false

Create certificate directory

mkdir -p priv/cert

Generate private key

openssl genrsa -out priv/cert/server.key 2048

Generate certificate signing request

openssl req -new -key priv/cert/server.key -out

priv/cert/server.csr \

 -subj "/C=US/ST=State/L=City/O=Organization/CN=sms-

api.example.com"

Generate self-signed certificate (valid 365 days)

openssl x509 -req -days 365 -in priv/cert/server.csr \

 -signkey priv/cert/server.key -out priv/cert/server.crt

Set permissions

chmod 600 priv/cert/server.key

chmod 644 priv/cert/server.crt

For production, use certificates from a trusted CA (Let's Encrypt, commercial

CA, etc.).

API Access Control

IP Whitelisting (Application Firewall):

API Key Authentication (Application Level):

Configure via custom plug in router - see Operations Guide for implementation

details.

Web UI Configuration

The web interface provides route management, message browsing, and

monitoring.

Basic Web UI Configuration

Using iptables (Linux)

iptables -A INPUT -p tcp --dport 8443 -s 10.0.0.0/8 -j ACCEPT

iptables -A INPUT -p tcp --dport 8443 -j DROP

Using firewalld (Red Hat/CentOS)

firewall-cmd --permanent --add-rich-rule='rule family="ipv4"

source address="10.0.0.0/8" port protocol="tcp" port="8443"

accept'

firewall-cmd --reload

config/runtime.exs

config :control_panel,

 port: String.to_integer(System.get_env("WEB_PORT") || "80"),

 hostname: System.get_env("WEB_HOSTNAME") || "localhost",

 enable_tls: System.get_env("WEB_ENABLE_TLS") == "true"

Production Web UI Setup

Reverse Proxy Setup (Recommended)

Use Nginx or Apache as reverse proxy for additional security and features:

Nginx Configuration Example:

config :control_panel,

 port: 443,

 hostname: "sms-admin.example.com",

 enable_tls: true,

 tls_cert_path: "/etc/sms_c/certs/web.crt",

 tls_key_path: "/etc/sms_c/certs/web.key"

upstream sms_web {

 server 127.0.0.1:4000;

 keepalive 32;

}

server {

 listen 80;

 server_name sms-admin.example.com;

 return 301 https://$server_name$request_uri;

}

server {

 listen 443 ssl http2;

 server_name sms-admin.example.com;

 ssl_certificate /etc/letsencrypt/live/sms-

admin.example.com/fullchain.pem;

 ssl_certificate_key /etc/letsencrypt/live/sms-

admin.example.com/privkey.pem;

 ssl_protocols TLSv1.2 TLSv1.3;

 ssl_ciphers HIGH:!aNULL:!MD5;

 # Basic auth for additional security

 auth_basic "SMS-C Admin";

 auth_basic_user_file /etc/nginx/.htpasswd;

 location / {

 proxy_pass http://sms_web;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

 # WebSocket support for LiveView

 location /live {

 proxy_pass http://sms_web;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection "upgrade";

Cluster Configuration

The SMS-C supports multi-node clustering for high availability and load

distribution.

Single Node Setup

Multi-Node Static Cluster

 proxy_read_timeout 86400;

 }

}

config/runtime.exs

config :sms_c,

 cluster_nodes: [], # Empty list = single node mode

 smsc_node_name: "node1"

Node 1: config/runtime.exs

config :sms_c,

 cluster_nodes: [

 :"sms@node1.internal.example.com",

 :"sms@node2.internal.example.com",

 :"sms@node3.internal.example.com"

],

 smsc_node_name: "node1"

Node 2: config/runtime.exs

config :sms_c,

 cluster_nodes: [

 :"sms@node1.internal.example.com",

 :"sms@node2.internal.example.com",

 :"sms@node3.internal.example.com"

],

 smsc_node_name: "node2"

DNS-Based Auto-Discovery

DNS Setup for Auto-Discovery:

Erlang Distribution Configuration

Start Nodes with Proper Names:

Important: All nodes in a cluster MUST use the same Erlang cookie for

security.

config :sms_c,

 dns_cluster_query: "sms-cluster.internal.example.com",

 smsc_node_name: System.get_env("NODE_NAME") || "node1"

Configure SRV or A records for cluster nodes

SRV record (preferred):

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node1.internal.example.com.

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node2.internal.example.com.

_sms._tcp.sms-cluster.internal.example.com. IN SRV 0 0 0

node3.internal.example.com.

A records (alternative):

sms-cluster.internal.example.com. IN A 10.0.1.10

sms-cluster.internal.example.com. IN A 10.0.1.11

sms-cluster.internal.example.com. IN A 10.0.1.12

Node 1

export NODE_NAME=sms@node1.internal.example.com

export ERLANG_COOKIE=shared_secret_cookie_here

elixir --name $NODE_NAME --cookie $ERLANG_COOKIE -S mix phx.server

Node 2

export NODE_NAME=sms@node2.internal.example.com

export ERLANG_COOKIE=shared_secret_cookie_here

elixir --name $NODE_NAME --cookie $ERLANG_COOKIE -S mix phx.server

Cluster Network Requirements

Open these ports between cluster nodes:

Port Range Protocol Purpose

4369 TCP Erlang Port Mapper Daemon (EPMD)

9100-9200 TCP Erlang distribution

Firewall Configuration Example:

Message Queue Configuration

Controls message retention and expiration behavior.

Message Expiration

Common Values:

60 - 1 hour (testing/development)

1440 - 24 hours (typical production)

4320 - 3 days (extended retention)

10080 - 7 days (maximum retention)

Messages older than this value become undeliverable and are marked for

cleanup.

Allow cluster traffic from internal network

iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 4369 -j ACCEPT

iptables -A INPUT -p tcp -s 10.0.0.0/8 --dport 9100:9200 -j ACCEPT

config/runtime.exs

config :sms_c,

 dead_letter_time_minutes: 1440 # 24 hours

Delivery Retry Configuration

Retry behavior uses exponential backoff:

Attempt Delay

1 2 minutes

2 4 minutes

3 8 minutes

4 16 minutes

5 32 minutes

6 64 minutes

7 128 minutes

8 256 minutes

Maximum attempts before dead letter: Limited by dead_letter_time_minutes .

Cleanup Configuration

Cleanup Intervals:

Retry Delay = 2^(attempt_count) minutes

config/config.exs

config :sms_c,

 cleanup_interval_minutes: 10,

 fingerprint_ttl_minutes: 5,

 event_ttl_days: 7

cleanup_interval_minutes: How often cleanup worker runs (default: 10)

fingerprint_ttl_minutes: Duplicate detection window (default: 5)

event_ttl_days: Event log retention (default: 7)

Charging Configuration

Integration with OCS for online charging and billing.

Enable Charging

Disable Charging

When disabled, all messages are processed without charging checks.

config/runtime.exs

config :sms_c,

 default_charging_enabled: true,

 ocs_url: "http://ocs.internal.example.com:2080/jsonrpc",

 ocs_tenant: "sms.example.com",

 ocs_destination: "default",

 ocs_source: "sms_platform",

 ocs_subject: "sms_user",

 ocs_account: "default_account"

config/runtime.exs

config :sms_c,

 default_charging_enabled: false

Per-Tenant Charging Configuration

Environment Variables by Tenant:

Charging Failure Behavior

Configure what happens when charging fails:

:allow - Process message even if charging fails (log error)

:deny - Reject message if charging fails

OCS Connection Example

Test OCS Connectivity:

config :sms_c,

 ocs_url: System.get_env("OCS_URL") ||

"http://localhost:2080/jsonrpc",

 ocs_tenant: System.get_env("OCS_TENANT") ||

"tenant1.example.com",

 ocs_account: System.get_env("OCS_ACCOUNT") || "default"

Tenant 1

export OCS_TENANT=tenant1.example.com

export OCS_ACCOUNT=tenant1_account

Tenant 2

export OCS_TENANT=tenant2.example.com

export OCS_ACCOUNT=tenant2_account

config :sms_c,

 charging_failure_action: :allow # or :deny

Expected response:

ENUM Configuration

DNS-based E.164 number lookups for intelligent routing.

Disable ENUM (Default)

Test OCS API

curl -X POST http://ocs.internal.example.com:2080/jsonrpc \

 -H "Content-Type: application/json" \

 -d '{

 "method": "SessionSv1.AuthorizeEvent",

 "params": [{

 "Tenant": "sms.example.com",

 "Account": "test_account",

 "Destination": "1234567890",

 "Usage": 100

 }],

 "id": 1

 }'

{

 "id": 1,

 "result": {

 "Attributes": {},

 "MaxUsage": 100,

 ...

 }

}

config/runtime.exs

config :sms_c,

 enum_enabled: false

Enable ENUM with Default DNS

Enable ENUM with Custom DNS Servers

ENUM Domain Priority

Domains are queried in order until a successful lookup:

ENUM Performance Tuning

For Low-Latency Networks:

config :sms_c,

 enum_enabled: true,

 enum_domains: ["e164.arpa", "e164.org"],

 enum_dns_servers: [], # Use system default DNS

 enum_timeout: 5000 # 5 seconds

config :sms_c,

 enum_enabled: true,

 enum_domains: ["e164.internal.example.com", "e164.arpa"],

 enum_dns_servers: [

 {"10.0.1.53", 53}, # Internal DNS server

 {"8.8.8.8", 53}, # Google Public DNS (fallback)

 {"1.1.1.1", 53} # Cloudflare DNS (fallback)

],

 enum_timeout: 3000 # 3 seconds (faster failover)

config :sms_c,

 enum_domains: [

 "e164.internal.example.com", # Try internal first

 "e164.carrier.net", # Then carrier

 "e164.arpa" # Then public registry

]

enum_timeout: 2000 # 2 seconds

For High-Latency/Satellite Links:

ENUM DNS Setup Example

Configure Private ENUM Zone (BIND9 format):

Test ENUM Resolution:

Number Translation Configuration

Regex-based number normalization applied before routing.

enum_timeout: 10000 # 10 seconds

; Zone file for e164.internal.example.com

$ORIGIN e164.internal.example.com.

$TTL 300

; Number: +1-555-0100 becomes

0.0.1.0.5.5.5.1.e164.internal.example.com

0.0.1.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 10 "u"

"E2U+sip" "!^.*$!sip:15550100@voip-gateway.example.com!" .

0.0.1.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 20 "u"

"E2U+pstn" "!^.*$!pstn:gateway-a.example.com!" .

; Number: +1-555-0200

0.0.2.0.5.5.5.1.e164.internal.example.com. IN NAPTR 100 10 "u"

"E2U+sip" "!^.*$!sip:15550200@voip-gateway.example.com!" .

Query ENUM domain

dig @10.0.1.53 NAPTR 0.0.1.0.5.5.5.1.e164.internal.example.com

Expected output includes NAPTR records:

0.0.1.0.5.5.5.1.e164.internal.example.com. 300 IN NAPTR 100 10

"u" "E2U+sip" "!^.*$!sip:15550100@voip-gateway.example.com!" .

Disable Number Translation

Basic Number Translation Examples

Add Country Code to Local Numbers:

Normalize International Format:

config/runtime.exs

config :sms_c,

 translation_rules: []

config :sms_c,

 translation_rules: [

 %{

 calling_prefix: nil,

 called_prefix: "",

 source_smsc: nil,

 calling_match: "^(\d{10})$", # Match 10-digit

numbers

 calling_replace: "+1\1", # Prepend +1

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "Add +1 to 10-digit North American numbers",

 enabled: true

 }

]

Remove Formatting Characters:

Carrier-Specific Translation

Route Code Stripping:

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(\d+)$", # Match 00 prefix

 calling_replace: "+\1", # Replace with +

 called_match: "^00(\d+)$",

 called_replace: "+\1",

 priority: 10,

 description: "Convert 00 international prefix to +",

 enabled: true

}

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^\+?1?[\s\-\.\(\)]*(\d{3})[\s\-\.\)\(]*(\d{3})

[\s\-\.\(\)]*(\d{4})$",

 calling_replace: "+1\1\2\3",

 called_match: "^\+?1?[\s\-\.\(\)]*(\d{3})[\s\-\.\)\(]*(\d{3})

[\s\-\.\(\)]*(\d{4})$",

 called_replace: "+1\1\2\3",

 priority: 50,

 description: "Normalize US phone number formatting",

 enabled: true

}

Multi-Rule Translation

Rules are evaluated in priority order (lower number = higher priority):

%{

 calling_prefix: nil,

 called_prefix: "101", # Only for 101

prefix

 source_smsc: "carrier_a", # Only from this

carrier

 calling_match: nil, # Don't change

calling

 calling_replace: nil,

 called_match: "^101(\d+)$", # Strip 101 route

code

 called_replace: "\1",

 priority: 5,

 description: "Strip carrier route code from called number",

 enabled: true

}

Routing Configuration

Initial routing rules loaded on first startup. See SMS Routing Guide for complete

routing documentation.

config :sms_c,

 translation_rules: [

 # Priority 1: Most specific rules first

 %{

 calling_prefix: "1555",

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(1555\d{7})$",

 calling_replace: "+\1",

 called_match: nil,

 called_replace: nil,

 priority: 1,

 description: "Premium number normalization",

 enabled: true

 },

 # Priority 50: General rules

 %{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 50,

 description: "General 10-digit normalization",

 enabled: true

 }

]

Load Routes from Configuration

config/runtime.exs

config :sms_c,

 sms_routes: [

 # Geographic routing example

 %{

 calling_prefix: nil,

 called_prefix: "+1",

 source_smsc: nil,

 dest_smsc: "north_america_gateway",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 100,

 priority: 50,

 description: "North America routing",

 enabled: true

 },

 # Load balanced routing example

 %{

 calling_prefix: nil,

 called_prefix: "+44",

 source_smsc: nil,

 dest_smsc: "uk_gateway_1",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 70,

 priority: 50,

 description: "UK primary gateway (70%)",

 enabled: true

 },

 %{

 calling_prefix: nil,

 called_prefix: "+44",

Skip Initial Route Loading

Routes defined in configuration are ONLY loaded if the routing table is empty

(first startup).

Performance Tuning Configuration

See Performance Tuning Guide for detailed optimization strategies.

Batch Insert Worker

Performance Profiles:

 source_smsc: nil,

 dest_smsc: "uk_gateway_2",

 source_type: nil,

 enum_domain: nil,

 auto_reply: false,

 auto_reply_message: nil,

 drop: false,

 charged: :default,

 weight: 30,

 priority: 50,

 description: "UK backup gateway (30%)",

 enabled: true

 }

]

Don't load routes from config (manage via Web UI only)

config :sms_c,

 sms_routes: []

config/config.exs

config :sms_c,

 batch_insert_batch_size: 100, # Messages per batch

 batch_insert_flush_interval_ms: 100 # Max wait time in ms

Profile Batch Size Interval Throughput Latency

High Volume 200 200ms ~5,000 msg/sec Up to 200ms

Balanced 100 100ms ~4,500 msg/sec Up to 100ms

Low Latency 50 20ms ~3,000 msg/sec Up to 20ms

Real-time 10 10ms ~1,500 msg/sec Up to 10ms

Logging Configuration

Log Levels

Production Recommended: :info or :warning Development

Recommended: :debug

Log Output Destinations

Console Only (Development):

File Logger (Production):

config/config.exs

config :logger, :console,

 level: :info, # :debug, :info, :warning, :error

 format: "$time $metadata[$level] $message\n",

 metadata: [:request_id, :message_id, :route_id]

config :logger,

 backends: [:console]

Log Rotation

Using logrotate (Linux):

Common Configuration Scenarios

High-Volume Aggregator

Optimize for maximum throughput (5,000+ messages/second):

config :logger,

 backends: [:console, {LoggerFileBackend, :file_log}]

config :logger, :file_log,

 path: "/var/log/sms_c/application.log",

 level: :info,

 format: "$time $metadata[$level] $message\n",

 metadata: [:request_id, :message_id]

/etc/logrotate.d/sms_c

/var/log/sms_c/*.log {

 daily

 rotate 30

 compress

 delaycompress

 notifempty

 create 0644 sms_user sms_group

 sharedscripts

 postrotate

 # Signal application to reopen log file

 systemctl reload sms_c

 endscript

}

Enterprise Real-Time Messaging

Optimize for low latency (< 20ms):

Database

config :sms_c, SmsC.Repo,

 pool_size: 50

Batch worker

config :sms_c,

 batch_insert_batch_size: 200,

 batch_insert_flush_interval_ms: 200

Message retention

config :sms_c,

 dead_letter_time_minutes: 1440 # 24 hours

Charging (disabled for performance)

config :sms_c,

 default_charging_enabled: false

Cleanup (extended intervals)

config :sms_c,

 cleanup_interval_minutes: 30

Development/Testing

Optimize for debugging and visibility:

Database

config :sms_c, SmsC.Repo,

 pool_size: 20

Batch worker (low latency)

config :sms_c,

 batch_insert_batch_size: 20,

 batch_insert_flush_interval_ms: 10

Message retention

config :sms_c,

 dead_letter_time_minutes: 4320 # 3 days

Charging (enabled)

config :sms_c,

 default_charging_enabled: true,

 ocs_url: "http://ocs.local:2080/jsonrpc"

Multi-Tenant Service Provider

Separate configuration per tenant:

Database

config :sms_c, SmsC.Repo,

 pool_size: 5

Batch worker (immediate)

config :sms_c,

 batch_insert_batch_size: 1,

 batch_insert_flush_interval_ms: 10

Logging (verbose)

config :logger, :console,

 level: :debug

Message retention (short)

config :sms_c,

 dead_letter_time_minutes: 60 # 1 hour

Charging (disabled)

config :sms_c,

 default_charging_enabled: false

Tenant 1 environment

export DB_NAME=sms_c_tenant1

export OCS_TENANT=tenant1.example.com

export OCS_ACCOUNT=tenant1_account

export NODE_NAME=sms_tenant1@node1.example.com

Tenant 2 environment

export DB_NAME=sms_c_tenant2

export OCS_TENANT=tenant2.example.com

export OCS_ACCOUNT=tenant2_account

export NODE_NAME=sms_tenant2@node1.example.com

Geographic Redundancy

Cluster across regions:

Configuration Validation

Test configuration before deployment:

Environment Variables Reference

Common environment variables used in configuration:

US East cluster

config :sms_c,

 cluster_nodes: [

 :"sms@us-east-1a.example.com",

 :"sms@us-east-1b.example.com",

 :"sms@us-west-1a.example.com" # Cross-region for DR

],

 smsc_node_name: "us-east-1a"

Check configuration syntax

mix compile

Validate database connection

mix ecto.create

mix ecto.migrate

Test OCS connectivity (if enabled)

curl -X POST http://localhost:2080/jsonrpc -H "Content-Type:

application/json" \

 -d '{"method":"SessionSv1.Ping","params":[],"id":1}'

Start application in interactive mode

iex -S mix phx.server

Variable Purpose Example

DB_USERNAME Database username sms_prod_user

DB_PASSWORD Database password strong_password

DB_HOSTNAME Database host db.internal.example.com

DB_PORT Database port 3306

DB_NAME Database name sms_c_production

DB_POOL_SIZE Connection pool size 30

API_PORT API listen port 8443

API_LISTEN_IP API listen IP 0.0.0.0

WEB_PORT Web UI port 443

NODE_NAME Erlang node name sms@node1.example.com

ERLANG_COOKIE Cluster secret shared_cookie_value

OCS_URL OCS API URL http://ocs.local:2080/jsonrpc

OCS_TENANT OCS tenant sms.example.com

Configuration Best Practices

1. Use Environment Variables for sensitive values (passwords, API keys)

2. Test Configuration Changes in staging before production

3. Document Custom Settings in deployment notes

4. Version Control Config Files (excluding secrets)

5. Monitor After Changes for performance regressions

6. Keep Backups of working configurations

7. Validate Before Restart to avoid startup failures

8. Use Consistent Naming across environments

9. Set Resource Limits appropriate to hardware

10. Review Periodically to remove unused features

Troubleshooting Configuration

Issues

Symptom Likely Cause Solution

Application won't

start

Syntax error in

config
Check logs, validate syntax

Database

connection fails

Wrong

credentials/host

Verify DB_* environment

variables

API not accessible
Wrong port/IP

binding
Check API_PORT and listen_ip

Cluster nodes

won't connect

Cookie mismatch,

firewall

Verify ERLANG_COOKIE, check

ports 4369, 9100-9200

Charging failures OCS unreachable Test connectivity to ocs_url

ENUM lookups fail
DNS server

unreachable

Test DNS connectivity, check

timeout

Poor performance
Wrong batch

settings

Review Performance Tuning

Guide

Messages not

routing
Routes not loaded

Check sms_routes config or

Web UI

For additional help, see the Troubleshooting Guide.

Message Storage Configuration

(Mnesia)

Message Retention

Messages are stored in Mnesia for fast access with configurable automatic

cleanup.

Recommendations:

Production: 24-72 hours (balance operational needs vs memory)

Development: 4-8 hours (faster cleanup for testing)

High volume: 12-24 hours (conserve memory)

Memory Impact:

Average message: ~1KB

10,000 messages: ~10MB

100,000 messages: ~100MB

CDR (Call Detail Record) Export

When messages are delivered or expired, CDRs can be automatically written to

your Ecto database for long-term storage and billing analytics.

config :sms_c,

 # How long to keep messages in Mnesia (hours)

 message_retention_hours: 24,

 # How often to check for old messages (minutes)

 retention_check_interval_minutes: 60

config :sms_c,

 # Enable/disable CDR writing

 cdr_enabled: true

CDR Records Include:

Message ID, calling/called numbers

Source/destination SMSC

Origin/destination node (for clusters)

Submission, delivery, expiry timestamps

Status, delivery attempts

Optional message body (see privacy controls)

When to Disable:

Testing environments where CDRs aren't needed

Temporary troubleshooting to reduce database load

Privacy Controls

Configure message body visibility and retention for privacy compliance.

Use Cases:

config :sms_c,

 # Delete message body from Mnesia after successful delivery

 delete_message_body_after_delivery: false,

 # Hide message body in web UI

 hide_message_body_in_ui: false,

 # Hide message body in CSV exports

 hide_message_body_in_export: false

Configuration Use Case

delete_message_body_after_delivery:

true

Save Mnesia space, privacy

compliance

hide_message_body_in_ui: true
Prevent operator viewing of

message content

hide_message_body_in_export: true
Data export compliance,

sanitized reports

Example Configurations:

Maximum Privacy (Compliance)

Development (Full Visibility)

Startup Logging

On application startup, configuration status is logged:

config :sms_c,

 delete_message_body_after_delivery: true,

 hide_message_body_in_ui: true,

 hide_message_body_in_export: true,

 cdr_enabled: true # Keep CDRs without bodies

config :sms_c,

 delete_message_body_after_delivery: false,

 hide_message_body_in_ui: false,

 hide_message_body_in_export: false,

 cdr_enabled: true

This provides immediate visibility into active features.

[info] Message storage: Mnesia (retention: 24h)

[info] CDR export: ENABLED

[info] Body deletion after delivery: DISABLED

[info] OCS charging: ENABLED (url: http://..., tenant: ...)

SMS-C Prometheus

Metrics Documentation

← Back to Documentation Index | Main README

Overview

This document describes all Prometheus metrics exposed by the SMS-C system.

These metrics are designed for operations staff to monitor system health,

performance, and troubleshoot issues.

Accessing Metrics

The Prometheus metrics endpoint is available at:

This endpoint exposes metrics in Prometheus text format that can be scraped

by a Prometheus server. The metrics are updated in real-time as the system

processes messages.

Metric Naming Convention

All metrics follow the pattern: sms_c.<category>.<metric_name>.<type>

Categories:

license - License status metrics

message - Message processing metrics

routing - Routing decision metrics

enum - ENUM/NAPTR lookup metrics

http://localhost:9568/metrics

delivery - Message delivery metrics

queue - Queue management metrics

charging - Billing/charging metrics

mnesia - Database metrics

frontend - Frontend connection metrics

location - Location/registration metrics

phoenix.endpoint - HTTP API request metrics

vm - Erlang VM system metrics

License Metrics

sms_c_license_status

Type: Gauge

Description: Current license status of the OmniMessage SMS-C system.

Values:

1 - Valid license

0 - Invalid/expired license

Labels: None

Product Name: omnimessage

Use Case: Monitor license validity to ensure system is operating with a valid

license. When invalid, messages are still received but routed to destination

"NOLICENCE" instead of normal routing.

Behavior When License Invalid:

Inbound messages are accepted and stored

Message destination (dest_smsc) is automatically set to "NOLICENCE"

Normal routing is bypassed

UI and monitoring remain accessible

Database and all services remain operational

Alerting:

Example Prometheus Queries:

Message Processing Metrics

sms_c_message_received_count

Type: Counter

Description: Total number of messages received by the SMS-C from all

sources.

Labels:

source_smsc : Name of the source SMSC that sent the message

- alert: SMS_C_License_Invalid

 expr: sms_c_license_status == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "SMS-C license invalid or expired"

 description: "License status is invalid - messages being

routed to NOLICENCE"

Check if license is valid

sms_c_license_status == 1

Alert on invalid license

sms_c_license_status == 0

Count messages routed to NOLICENCE (indicates license issue)

sms_c_routing_route_matched_count{dest_smsc="NOLICENCE"}

source_type : Type of source connection (ims, circuit_switched, smpp)

message_type : Type of message (sms, mms)

Use Case: Monitor incoming message volume by source and type. Use to

detect traffic patterns, identify busy periods, and spot anomalies in message

flow.

Alerting: Set alerts for sudden drops (potential source connectivity issues) or

spikes (potential attack/spam).

sms_c_message_validated_count

Type: Counter

Description: Total number of message validations performed.

Labels:

valid : Whether validation passed (true or false)

Use Case: Track validation success/failure rates. High failure rates may

indicate malformed messages or integration issues.

Alerting: Alert when validation failure rate exceeds threshold (e.g., > 5%

failures).

sms_c_message_processing_stop_duration

Type: Histogram

Description: Time taken to process a message from receipt to completion

(includes validation, routing, and queueing).

Unit: Milliseconds

Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

Labels:

success : Whether processing succeeded (true or false)

Use Case: Monitor end-to-end message processing performance. Identify

slowdowns in the processing pipeline.

Alerting: Alert when p95 or p99 latency exceeds SLA thresholds.

Routing Metrics

sms_c_routing_route_matched_count

Type: Counter

Description: Total number of times a specific route was matched and selected

for message routing.

Labels:

route_id : Unique identifier of the matched route

dest_smsc : Destination SMSC selected by the route

priority : Priority value of the matched route

Use Case: Understand which routes are being used most frequently. Identify

underutilized or overloaded routes. Useful for capacity planning and route

optimization.

Alerting: Alert if high-priority routes are rarely matched (may indicate routing

misconfiguration).

sms_c_routing_failed_count

Type: Counter

Description: Total number of routing failures where no suitable route could be

found.

Labels:

reason : Failure reason (no_route_found, validation_failed, etc.)

Use Case: Track routing failures to identify configuration gaps or unexpected

traffic patterns.

Alerting: Alert on any routing failures as they indicate messages cannot be

delivered.

sms_c_routing_action_count

Type: Counter

Description: Total number of special routing actions taken.

Labels:

action : Type of action (drop, auto_reply, forward)

route_id : Route that triggered the action

Use Case: Monitor drop rules (anti-spam), auto-reply usage, and forwarding

patterns.

Alerting: Alert on unexpected spikes in drop actions (may indicate spam

attack).

sms_c_routing_stop_duration

Type: Histogram

Description: Time taken to evaluate all routes and select the best match.

Unit: Milliseconds

Buckets: 1, 5, 10, 25, 50, 100, 250, 500 ms

Labels:

dest_smsc : Selected destination SMSC

Use Case: Monitor routing engine performance. Slow routing indicates too

many routes or complex matching logic.

Alerting: Alert when routing takes consistently longer than expected (e.g., p95

> 50ms).

ENUM/NAPTR Lookup Metrics

sms_c_enum_cache_hit_count

Type: Counter

Description: Total number of ENUM lookups served from cache (did not require

DNS query).

Labels:

domain : ENUM domain queried

Use Case: Monitor cache effectiveness. High cache hit rates reduce DNS load

and improve performance.

Alerting: Alert if cache hit rate drops below threshold (may indicate cache

issues or unusual traffic).

sms_c_enum_cache_miss_count

Type: Counter

Description: Total number of ENUM lookups that required a DNS query (not in

cache).

Labels:

domain : ENUM domain queried

Use Case: Track cache misses to understand cache effectiveness. Use with hit

count to calculate hit rate.

Calculation: cache_hit_rate = hits / (hits + misses)

sms_c_enum_cache_size_size

Type: Gauge

Description: Current number of entries in the ENUM cache.

Use Case: Monitor cache size to ensure it's not growing unbounded. Help tune

cache TTL settings.

Alerting: Alert if cache size exceeds expected bounds (may indicate memory

leak).

sms_c_enum_lookup_stop_duration

Type: Histogram

Description: Time taken to complete an ENUM lookup (including DNS query if

not cached).

Unit: Milliseconds

Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

Labels:

domain : ENUM domain queried

success : Whether lookup succeeded (true or false)

cache_hit : Whether result was served from cache (true or false)

Use Case: Monitor ENUM lookup performance. Identify slow DNS servers or

network issues.

Alerting: Alert when p95 lookup time exceeds timeout threshold.

sms_c_enum_naptr_records_record_count

Type: Histogram

Description: Number of NAPTR records returned by a successful ENUM lookup.

Buckets: 0, 1, 2, 3, 5, 10

Labels:

domain : ENUM domain queried

Use Case: Understand ENUM record distribution. Most lookups should return 1-

3 records.

Alerting: Alert if frequently returning 0 records (DNS configuration issue).

Delivery Metrics

sms_c_delivery_queued_count

Type: Counter

Description: Total number of messages queued for delivery to a destination

SMSC.

Labels:

dest_smsc : Destination SMSC name

Use Case: Monitor message flow to each destination. Useful for capacity

planning.

Alerting: Compare with delivery success/failure counts to detect accumulation.

sms_c_delivery_attempted_count

Type: Counter

Description: Total number of delivery attempts made (includes retries).

Labels:

dest_smsc : Destination SMSC name

Use Case: Track delivery attempt volume. High attempt count relative to

queued count indicates retry behavior.

sms_c_delivery_succeeded_count

Type: Counter

Description: Total number of messages successfully delivered to destination

SMSC.

Labels:

dest_smsc : Destination SMSC name

Use Case: Track successful deliveries per destination. Primary success metric.

Alerting: Alert if success rate drops below SLA threshold.

Calculation: success_rate = succeeded / queued

sms_c_delivery_failed_count

Type: Counter

Description: Total number of messages that failed delivery after all retry

attempts.

Labels:

dest_smsc : Destination SMSC name

reason : Failure reason

Use Case: Track delivery failures to identify problematic destinations or failure

patterns.

Alerting: Alert on elevated failure rates or specific failure reasons.

sms_c_delivery_dead_letter_count

Type: Counter

Description: Total number of messages moved to dead letter queue

(undeliverable).

Labels:

reason : Reason for dead letter (e.g., max_retries_exceeded , expired)

Use Case: Monitor undeliverable messages requiring manual intervention.

Alerting: Alert on any dead letter events as they represent complete delivery

failure.

sms_c_delivery_succeeded_duration

Type: Histogram

Description: End-to-end time from message queued to successful delivery.

Unit: Milliseconds

Buckets: 100, 500, 1000, 5000, 10000, 30000, 60000 ms

Labels:

dest_smsc : Destination SMSC name

Use Case: Monitor delivery latency. Identify slow destinations or network

issues.

Alerting: Alert when p95 delivery time exceeds SLA thresholds.

sms_c_delivery_succeeded_attempt_count

Type: Histogram

Description: Number of delivery attempts required before successful delivery.

Buckets: 1, 2, 3, 5, 10

Labels:

dest_smsc : Destination SMSC name

Use Case: Understand retry behavior. Most deliveries should succeed on first

attempt.

Alerting: Alert if average attempt count exceeds 2 (indicates destination

reliability issues).

sms_c_delivery_failed_attempt_count

Type: Histogram

Description: Number of delivery attempts made before final failure.

Buckets: 1, 2, 3, 5, 10

Labels:

dest_smsc : Destination SMSC name

Use Case: Understand how many retries occur before giving up.

Queue Metrics

sms_c_queue_size_size

Type: Gauge

Description: Current total number of messages in queue (all states

combined).

Labels:

queue_type : Type of queue (message_queue, dead_letter)

Use Case: Monitor queue depth to detect backlogs or processing issues.

Alerting: Alert when queue size exceeds capacity thresholds.

sms_c_queue_size_pending

Type: Gauge

Description: Current number of messages pending delivery (not yet

attempted).

Labels:

queue_type : Type of queue

Use Case: Monitor pending message count. High pending counts indicate

processing delays.

Alerting: Alert when pending count exceeds threshold for extended period.

sms_c_queue_size_failed

Type: Gauge

Description: Current number of messages in failed state (awaiting retry).

Labels:

queue_type : Type of queue

Use Case: Monitor failed message accumulation. Indicates delivery issues.

Alerting: Alert on elevated failed count as it impacts delivery rates.

sms_c_queue_size_delivered

Type: Gauge

Description: Current number of delivered messages awaiting cleanup/removal

from queue.

Labels:

queue_type : Type of queue

Use Case: Monitor cleanup lag. High counts indicate cleanup process is falling

behind.

Alerting: Alert if delivered messages accumulate significantly.

sms_c_queue_oldest_message_age_seconds

Type: Gauge

Description: Age (in seconds) of the oldest message currently in pending

state.

Labels:

queue_type : Type of queue

Use Case: Detect message aging and processing stalls. Critical for SLA

monitoring.

Alerting: Alert when oldest message age exceeds SLA threshold (e.g., > 300

seconds).

Charging Metrics

sms_c_charging_requested_count

Type: Counter

Description: Total number of charging/billing requests made to OCS or billing

system.

Labels:

account : Account identifier being charged

Use Case: Track charging volume per account. Useful for billing reconciliation.

sms_c_charging_succeeded_count

Type: Counter

Description: Total number of successful charging operations.

Labels:

account : Account identifier charged

Use Case: Monitor charging success rate per account.

Calculation: success_rate = succeeded / requested

sms_c_charging_failed_count

Type: Counter

Description: Total number of failed charging operations.

Labels:

account : Account identifier

reason : Failure reason

Use Case: Identify charging failures that may impact revenue or require

account intervention.

Alerting: Alert on elevated charging failure rates.

sms_c_charging_succeeded_duration

Type: Histogram

Description: Time taken to complete a successful charging request.

Unit: Milliseconds

Buckets: 10, 50, 100, 250, 500, 1000, 2500, 5000 ms

Labels:

account : Account identifier

Use Case: Monitor billing system performance. Slow charging can delay

message delivery.

Alerting: Alert when p95 charging time exceeds threshold.

System Health Metrics

sms_c_mnesia_table_size_record_count

Type: Gauge

Description: Current number of records in each Mnesia database table.

Labels:

table : Table name (e.g., sms_route)

Use Case: Monitor database growth. Detect unexpected data accumulation.

Alerting: Alert on unexpected table growth rates.

sms_c_frontend_status_count

Type: Gauge

Description: Number of frontends in each connection status.

Labels:

frontend_name : Frontend identifier

status : Connection status (connected, disconnected)

Use Case: Monitor frontend connectivity. Detect connection failures.

Alerting: Alert when expected frontends disconnect.

sms_c_location_registered_count

Type: Counter

Description: Total number of location/subscriber registrations received by the

system.

Labels:

location : Frontend/SMSC name where subscriber is registered

ims_capable : Whether the subscriber supports IMS (true/false)

Use Case: Monitor subscriber registration activity. Track IMS vs non-IMS

subscribers. Detect registration storms or failures.

Alerting: Set alerts for:

Registration rate drops (may indicate network issues)

Unusual spikes in registrations

High ratio of non-IMS registrations (legacy device influx)

Example Query:

HTTP API Request Metrics

phoenix_endpoint_stop_duration

Type: Distribution (Histogram)

Description: HTTP request processing duration in milliseconds, from request

start to response completion.

Labels:

route : API endpoint route (e.g., /api/messages , /api/frontends)

Registration rate per minute

rate(sms_c_location_registered_count[1m])

IMS vs non-IMS registration ratio

sum(rate(sms_c_location_registered_count{ims_capable="true"}[5m]))

/

sum(rate(sms_c_location_registered_count[5m]))

Buckets: 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2.5s, 5s

Use Case: Monitor API performance. Identify slow endpoints. Track response

time SLAs.

Alerting: Set alerts for:

P95 latency > 500ms for critical endpoints

P99 latency > 1s for any endpoint

Increasing latency trends

Example Query:

phoenix_endpoint_stop_count

Type: Counter

Description: Total number of HTTP requests completed, categorized by route

and HTTP status code.

Labels:

route : API endpoint route

status : HTTP status code (200, 201, 400, 404, 500, etc.)

Use Case: Monitor API request volume and success rates. Track error rates by

endpoint.

Alerting: Set alerts for:

Error rate > 5% for any endpoint

P95 response time by endpoint

histogram_quantile(0.95,

 rate(phoenix_endpoint_stop_duration_bucket[5m]))

Requests slower than 1 second

sum(rate(phoenix_endpoint_stop_duration_bucket{le="1000"}[5m]))

5xx errors on critical endpoints

Sudden drops in request volume

Example Query:

phoenix_router_dispatch_exception_count

Type: Counter

Description: Total number of exceptions/errors raised during HTTP request

processing.

Labels:

route : API endpoint route where exception occurred

kind : Type of exception (error, exit, throw)

Use Case: Track application errors. Identify problematic endpoints. Monitor

system stability.

Alerting: Set alerts for any non-zero value on critical endpoints.

Example Query:

Request rate per endpoint

sum by (route) (rate(phoenix_endpoint_stop_count[5m]))

Error rate by endpoint

sum by (route) (rate(phoenix_endpoint_stop_count{status=~"5.."}

[5m])) /

sum by (route) (rate(phoenix_endpoint_stop_count[5m]))

Success rate

sum(rate(phoenix_endpoint_stop_count{status=~"2.."}[5m])) /

sum(rate(phoenix_endpoint_stop_count[5m]))

Erlang VM Metrics

vm_memory_total

Type: Gauge

Description: Total memory allocated by the Erlang VM in bytes.

Use Case: Monitor overall memory usage. Detect memory leaks. Plan capacity.

Alerting: Alert when memory usage > 80% of available system memory.

vm_memory_processes

Type: Gauge

Description: Memory used by Erlang processes in bytes.

Use Case: Track process memory consumption. Most common source of

memory growth.

Alerting: Alert on sustained high growth rate.

vm_total_run_queue_lengths_total

Type: Gauge

Exception rate by endpoint

rate(phoenix_router_dispatch_exception_count[5m])

Total exceptions in last hour

increase(phoenix_router_dispatch_exception_count[1h])

Description: Total number of processes waiting to be scheduled across all CPU

schedulers.

Use Case: Measure system load. High values indicate CPU saturation.

Alerting: Alert when consistently > 10 * number of CPU cores.

vm_system_counts_process_count

Type: Gauge

Description: Current number of processes running in the VM.

Use Case: Monitor process creation patterns. Detect process leaks.

Alerting: Alert when approaching process limit (default 262,144).

Metric Collection and Polling

The system automatically collects the following metrics every 10 seconds:

Queue sizes and ages

Mnesia table sizes

ENUM cache statistics

All other metrics are event-driven and emitted when the corresponding action

occurs.

Common Monitoring Patterns

Delivery Success Rate by Destination

Track the success rate of message delivery for each destination SMSC:

Formula: (sms_c_delivery_succeeded_count) /

(sms_c_delivery_queued_count)

Interpretation: Should be > 95% for healthy destinations. Lower rates

indicate delivery issues.

End-to-End Message Latency

Monitor total time from message receipt to delivery:

Metrics:

sms_c_message_processing_stop_duration (processing)

sms_c_delivery_succeeded_duration (delivery)

Interpretation: Sum represents total user-facing latency.

ENUM Cache Effectiveness

Measure how well the ENUM cache is performing:

Formula: (sms_c_enum_cache_hit_count) / (sms_c_enum_cache_hit_count +

sms_c_enum_cache_miss_count)

Interpretation: Should be > 80% after warm-up. Lower rates may indicate

short TTL or high traffic variance.

Route Utilization

Identify which routes handle the most traffic:

Metric: sms_c_routing_route_matched_count grouped by route_id

Interpretation: Use to identify hot routes for optimization and capacity

planning.

Queue Backlog Trend

Monitor if message queue is growing (backlog) or shrinking (catching up):

Metrics:

sms_c_queue_size_pending (current pending)

sms_c_queue_oldest_message_age_seconds (age trending)

Interpretation: Growing pending count + increasing age = backlog forming.

Retry Rate

Understand how often delivery retries are required:

Metric: sms_c_delivery_succeeded_attempt_count histogram percentiles

Interpretation: If p95 > 1, most messages require retries. Indicates

destination reliability issues.

Recommended Alerts

Alert Condition Severit

High Routing

Failure Rate
routing_failed_count increase Critical

Queue

Backlog
queue_size_pending > threshold Warning

Old

Messages in

Queue

queue_oldest_message_age_seconds > 300 Critical

Delivery

Failure Spike
delivery_failed_count spike High

Dead Letter

Events
delivery_dead_letter_count > 0 High

ENUM

Lookup

Timeouts

enum_lookup_stop_duration p95 > 5000ms Warning

Low Cache

Hit Rate
ENUM cache hit rate < 0.7 Warning

Frontend

Disconnected

frontend_status_count{status="disconnected"}

> 0
High

Charging

Failures
charging_failed_count > threshold High

Alert Condition Severit

Slow

Message

Processing

message_processing_stop_duration p95 >

1000ms
Warning

Dashboard Recommendations

Operations Dashboard

Purpose: Real-time system health monitoring

Panels:

1. Message throughput (received/processed/delivered per minute)

2. Queue sizes (pending, failed, delivered)

3. Delivery success rate by destination

4. p95 processing and delivery latency

5. Active frontends status

6. Current alerts

Performance Dashboard

Purpose: System performance analysis

Panels:

1. Message processing duration histogram

2. Routing duration histogram

3. ENUM lookup duration histogram

4. Charging duration histogram

5. Delivery attempts distribution

6. Cache hit rates

Business Dashboard

Purpose: Traffic and usage analysis

Panels:

1. Messages by source SMSC

2. Messages by destination SMSC

3. Route utilization heatmap

4. Auto-reply and drop action counts

5. ENUM usage statistics

6. Charging volume by account

Metric Retention

Recommended Prometheus retention settings:

Raw metrics: 15 days

5-minute aggregates: 90 days

1-hour aggregates: 2 years

This provides detailed recent history while maintaining long-term trends for

capacity planning.

Troubleshooting with Metrics

Scenario: Messages Not Being Delivered

Investigation Steps:

1. Check sms_c_message_received_count - Are messages being received?

2. Check sms_c_routing_failed_count - Are they being routed?

3. Check sms_c_delivery_queued_count - Are they being queued?

4. Check sms_c_delivery_failed_count - Are delivery attempts failing?

5. Check dest_smsc labels to identify problematic destination

Scenario: Slow Message Processing

Investigation Steps:

1. Check sms_c_message_processing_stop_duration histogram - Overall

processing time

2. Check sms_c_routing_stop_duration - Is routing slow?

3. Check sms_c_enum_lookup_stop_duration - Are ENUM lookups slow?

4. Check sms_c_charging_succeeded_duration - Is charging slow?

5. Identify bottleneck and investigate specific component

Scenario: Growing Message Queue

Investigation Steps:

1. Check sms_c_queue_size_pending trend - Is it growing?

2. Check sms_c_delivery_attempted_count - Are delivery attempts

happening?

3. Check sms_c_delivery_failed_count - Are they failing?

4. Check sms_c_delivery_succeeded_duration - Is delivery taking too long?

5. Check dest_smsc labels to identify slow destinations

Prometheus Query Examples

Message Throughput

Messages Received Per Second (5-minute average):

Messages Received Per Minute (1-hour average):

Total Messages Today:

Messages by Source Type:

Messages by Source SMSC:

Delivery Performance

Delivery Success Rate (Percentage):

Delivery Failure Rate (Percentage):

Average Delivery Attempts (p95):

rate(sms_c_message_received_count[5m])

rate(sms_c_message_received_count[1h]) * 60

increase(sms_c_message_received_count[24h])

sum by (source_type) (rate(sms_c_message_received_count[5m]))

sum by (source_smsc) (rate(sms_c_message_received_count[5m]))

(rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

(rate(sms_c_delivery_failed_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

Delivery Success by Destination:

Delivery Failure Reasons:

Time to Delivery (p95):

Time to Delivery (p99):

Queue Metrics

Current Pending Messages:

Failed Messages Awaiting Retry:

Oldest Message Age (Minutes):

histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count_bucket)

sum by (dest_smsc) (rate(sms_c_delivery_succeeded_count[5m]))

sum by (reason) (rate(sms_c_delivery_failed_count[5m]))

histogram_quantile(0.95, sms_c_delivery_succeeded_duration_bucket)

histogram_quantile(0.99, sms_c_delivery_succeeded_duration_bucket)

sms_c_queue_size_pending

sms_c_queue_size_failed

sms_c_queue_oldest_message_age_seconds / 60

Queue Growth Rate (Messages/Hour):

Messages Entering Queue:

Messages Leaving Queue:

Queue Backlog (Entering - Leaving):

Routing Performance

Routing Success Rate:

Most Used Routes:

Routing Latency (p50, p95, p99):

rate(sms_c_queue_size_size[1h]) * 3600

rate(sms_c_delivery_queued_count[5m])

rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m])

rate(sms_c_delivery_queued_count[5m]) -

(rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m]))

(1 - (rate(sms_c_routing_failed_count[5m]) /

(rate(sms_c_routing_route_matched_count[5m]) +

rate(sms_c_routing_failed_count[5m])))) * 100

topk(10, sum by (route_id, dest_smsc)

(rate(sms_c_routing_route_matched_count[1h])))

Routing Failures Per Minute:

Drop Actions Per Hour:

Auto-Reply Actions Per Hour:

ENUM Performance

ENUM Cache Hit Rate:

ENUM Cache Hit Percentage:

ENUM Lookup Latency (p95):

histogram_quantile(0.50, sms_c_routing_stop_duration_bucket)

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

histogram_quantile(0.99, sms_c_routing_stop_duration_bucket)

rate(sms_c_routing_failed_count[5m]) * 60

increase(sms_c_routing_action_count{action="drop"}[1h])

increase(sms_c_routing_action_count{action="auto_reply"}[1h])

rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))

(rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))) * 100

histogram_quantile(0.95, sms_c_enum_lookup_stop_duration_bucket)

ENUM Lookups Per Second (Cached vs Uncached):

Average NAPTR Records Returned:

ENUM Cache Size:

Processing Performance

Message Processing Latency (p95):

Message Processing Latency (p99):

Processing Failures:

Cached (fast)

rate(sms_c_enum_cache_hit_count[5m])

Uncached (requires DNS query)

rate(sms_c_enum_cache_miss_count[5m])

rate(sms_c_enum_naptr_records_record_count_sum[5m]) /

rate(sms_c_enum_naptr_records_record_count_count[5m])

sms_c_enum_cache_size_size

histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket)

histogram_quantile(0.99,

sms_c_message_processing_stop_duration_bucket)

rate(sms_c_message_processing_stop_duration_count{success="false"}

[5m])

Validation Failure Rate:

Charging Metrics

Charging Success Rate:

Charging Failures Per Minute:

Charging Latency (p95):

Charging Volume by Account:

Frontend Health

Active Frontends:

Disconnected Frontends:

rate(sms_c_message_validated_count{valid="false"}[5m]) /

rate(sms_c_message_validated_count[5m])

rate(sms_c_charging_succeeded_count[5m]) /

rate(sms_c_charging_requested_count[5m])

rate(sms_c_charging_failed_count[5m]) * 60

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

sum by (account) (rate(sms_c_charging_requested_count[1h]))

sum(sms_c_frontend_status_count{status="connected"})

Frontends by Name:

System Health

Mnesia Table Sizes:

Route Count:

Translation Rule Count:

Grafana Dashboard Examples

Dashboard 1: Real-Time Operations

Purpose: Monitor current system activity and health.

Panels:

1. Message Throughput (Graph)

Query: rate(sms_c_message_received_count[5m])

Query: rate(sms_c_delivery_succeeded_count[5m])

sum(sms_c_frontend_status_count{status="disconnected"})

sum by (frontend_name)

(sms_c_frontend_status_count{status="connected"})

sms_c_mnesia_table_size_record_count

sms_c_mnesia_table_size_record_count{table="sms_route"}

sms_c_mnesia_table_size_record_count{table="translation_rule"}

Unit: messages/second

Legend: {{source_type}}

2. Delivery Success Rate (Gauge)

Query: (rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])) * 100

Unit: percent (0-100)

Thresholds:

Red: < 90

Yellow: 90-95

Green: > 95

3. Queue Depth (Graph)

Query: sms_c_queue_size_pending

Query: sms_c_queue_size_failed

Unit: messages

Legend: {{queue_type}}

4. Oldest Message Age (Stat)

Query: sms_c_queue_oldest_message_age_seconds / 60

Unit: minutes

Thresholds:

Green: < 5

Yellow: 5-10

Red: > 10

5. Active Frontends (Stat)

Query: sum(sms_c_frontend_status_count{status="connected"})

Unit: count

Color: Blue

6. Routing Failures (Graph)

Query: rate(sms_c_routing_failed_count[5m]) * 60

Unit: failures/minute

Alert threshold: > 0

Dashboard 2: Performance Analysis

Purpose: Analyze system performance and identify bottlenecks.

Panels:

1. End-to-End Latency (Graph)

Query: histogram_quantile(0.50,

sms_c_message_processing_stop_duration_bucket) (p50)

Query: histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket) (p95)

Query: histogram_quantile(0.99,

sms_c_message_processing_stop_duration_bucket) (p99)

Unit: milliseconds

Legend: Percentile

2. Component Latencies (Bar Gauge)

Routing: histogram_quantile(0.95,

sms_c_routing_stop_duration_bucket)

ENUM: histogram_quantile(0.95,

sms_c_enum_lookup_stop_duration_bucket)

Charging: histogram_quantile(0.95,

sms_c_charging_succeeded_duration_bucket)

Delivery: histogram_quantile(0.95,

sms_c_delivery_succeeded_duration_bucket)

Unit: milliseconds

Horizontal bars

3. Delivery Attempts Distribution (Heatmap)

Query: sms_c_delivery_succeeded_attempt_count_bucket

Shows how many attempts are typically needed

Color scale: Blue (1 attempt) to Red (many attempts)

4. ENUM Cache Performance (Graph)

Hit Rate: rate(sms_c_enum_cache_hit_count[5m]) /

(rate(sms_c_enum_cache_hit_count[5m]) +

rate(sms_c_enum_cache_miss_count[5m]))

Cache Size: sms_c_enum_cache_size_size

Dual Y-axis (rate vs size)

5. Processing Success Rate (Gauge)

Query:

(rate(sms_c_message_processing_stop_duration_count{success="tru

e"}[5m]) /

rate(sms_c_message_processing_stop_duration_count[5m])) * 100

Unit: percent

Thresholds:

Red: < 95

Yellow: 95-99

Green: > 99

Dashboard 3: Traffic Analysis

Purpose: Analyze message traffic patterns and routing distribution.

Panels:

1. Messages by Source Type (Pie Chart)

Query: sum by (source_type)

(increase(sms_c_message_received_count[1h]))

Shows distribution: IMS vs CS vs SMPP

2. Messages by Source SMSC (Bar Chart)

Query: sum by (source_smsc)

(rate(sms_c_message_received_count[1h]))

Top 10 sources

Horizontal bars

3. Route Utilization (Table)

Columns:

Route ID

Destination SMSC

Messages (1h): sum by (route_id, dest_smsc)

(increase(sms_c_routing_route_matched_count[1h]))

Priority

Success Rate

Sorted by message count

4. Delivery by Destination (Graph)

Query: sum by (dest_smsc)

(rate(sms_c_delivery_succeeded_count[5m]))

Unit: messages/second

Stacked area chart

Legend: {{dest_smsc}}

5. Drop/Auto-Reply Actions (Stat)

Dropped: increase(sms_c_routing_action_count{action="drop"}

[1h])

Auto-Replied:

increase(sms_c_routing_action_count{action="auto_reply"}[1h])

Side by side stats

6. Hourly Traffic Pattern (Graph)

Query: rate(sms_c_message_received_count[1h]) * 3600

Time range: Last 7 days

Shows daily patterns

Dashboard 4: Capacity & Resources

Purpose: Monitor resource usage and capacity limits.

Panels:

1. Queue Capacity (Graph)

Current: sms_c_queue_size_size

Capacity line: Fixed value based on system limits

Shows utilization trend

2. Database Table Growth (Graph)

Messages:

sms_c_mnesia_table_size_record_count{table="sms_route"}

Translations:

sms_c_mnesia_table_size_record_count{table="translation_rule"}

Trend over last 30 days

3. Message Backlog Trend (Graph)

Query: rate(sms_c_delivery_queued_count[5m]) -

(rate(sms_c_delivery_succeeded_count[5m]) +

rate(sms_c_delivery_failed_count[5m]))

Positive = backlog growing

Negative = catching up

4. Peak Traffic (Stat)

Query: max_over_time(rate(sms_c_message_received_count[5m])

[24h:])

Shows highest 5m rate in last 24h

Unit: messages/second

5. Capacity Utilization (Gauge)

Query: (rate(sms_c_message_received_count[5m]) / MAX_CAPACITY)

* 100

Replace MAX_CAPACITY with your system limit

Unit: percent

Thresholds:

Green: < 70

Yellow: 70-85

Red: > 85

Dashboard 5: SLA Compliance

Purpose: Track SLA metrics and compliance.

Panels:

1. SLA Compliance (Gauge)

Delivery Success: (rate(sms_c_delivery_succeeded_count[1h]) /

rate(sms_c_delivery_queued_count[1h])) * 100

Target line at 99%

Thresholds:

Red: < 95

Yellow: 95-99

Green: >= 99

2. Messages Delivered Within SLA (Stat)

Query:

count(sms_c_delivery_succeeded_duration_bucket{le="5000"}) /

count(sms_c_delivery_succeeded_duration_bucket)

Shows percentage delivered within 5 seconds

Unit: percent

3. SLA Violations (Counter)

Messages exceeding 5 minutes:

increase(sms_c_queue_oldest_message_age_seconds{} > 300)[24h:]

Should be 0

4. Uptime (Stat)

Query: up{job="sms-c"}

Binary: 1 = up, 0 = down

Shows current status

5. Daily Success Rate Trend (Graph)

Query: avg_over_time((rate(sms_c_delivery_succeeded_count[1h])

/ rate(sms_c_delivery_queued_count[1h]))[24h:1h])

Time range: Last 30 days

SLA line at 99%

Alert Rule Examples

Critical Alerts

Routing Failures:

Queue Backlog:

Old Messages in Queue:

alert: RoutingFailuresDetected

expr: increase(sms_c_routing_failed_count[5m]) > 0

for: 2m

labels:

 severity: critical

annotations:

 summary: "{{ $value }} routing failures in last 5 minutes"

 description: "Messages cannot be routed. Check routing

configuration."

alert: MessageQueueBacklog

expr: sms_c_queue_size_pending > 10000

for: 5m

labels:

 severity: critical

annotations:

 summary: "Message queue has {{ $value }} pending messages"

 description: "Queue is backing up. Check delivery performance."

All Frontends Disconnected:

Dead Letter Queue Growing:

Warning Alerts

Low Delivery Success Rate:

alert: OldMessagesInQueue

expr: sms_c_queue_oldest_message_age_seconds > 300

for: 2m

labels:

 severity: critical

annotations:

 summary: "Oldest message is {{ $value }} seconds old"

 description: "Messages not being delivered. Check frontends."

alert: NoActiveFrontends

expr: sum(sms_c_frontend_status_count{status="connected"}) == 0

for: 1m

labels:

 severity: critical

annotations:

 summary: "No frontends connected"

 description: "No delivery path available. Check frontend

connectivity."

alert: DeadLetterMessagesIncreasing

expr: rate(sms_c_delivery_dead_letter_count[10m]) > 0

for: 5m

labels:

 severity: critical

annotations:

 summary: "{{ $value }} messages moved to dead letter queue"

 description: "Messages are becoming undeliverable. Investigate

failures."

High Retry Rate:

Slow Message Processing:

ENUM Lookups Failing:

alert: LowDeliverySuccessRate

expr: (rate(sms_c_delivery_succeeded_count[10m]) /

rate(sms_c_delivery_queued_count[10m])) < 0.95

for: 10m

labels:

 severity: warning

annotations:

 summary: "Delivery success rate is {{ $value |

humanizePercentage }}"

 description: "Success rate below 95%. Investigate delivery

failures."

alert: HighDeliveryRetryRate

expr: histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count_bucket) > 2

for: 15m

labels:

 severity: warning

annotations:

 summary: "95th percentile delivery attempts: {{ $value }}"

 description: "Messages requiring multiple attempts. Check

destination reliability."

alert: SlowMessageProcessing

expr: histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket) > 1000

for: 10m

labels:

 severity: warning

annotations:

 summary: "95th percentile processing time: {{ $value }}ms"

 description: "Message processing is slow. Check system

resources."

Low ENUM Cache Hit Rate:

Charging Failures:

alert: HighEnumFailureRate

expr: rate(sms_c_enum_lookup_stop_duration_count{success="false"}

[10m]) > 0.1

for: 10m

labels:

 severity: warning

annotations:

 summary: "ENUM lookup failure rate: {{ $value }}"

 description: "DNS lookups failing. Check DNS servers."

alert: LowEnumCacheHitRate

expr: rate(sms_c_enum_cache_hit_count[10m]) /

(rate(sms_c_enum_cache_hit_count[10m]) +

rate(sms_c_enum_cache_miss_count[10m])) < 0.70

for: 30m

labels:

 severity: warning

annotations:

 summary: "ENUM cache hit rate: {{ $value | humanizePercentage

}}"

 description: "Low cache efficiency. May indicate unique number

traffic."

alert: ChargingFailuresDetected

expr: rate(sms_c_charging_failed_count[10m]) > 0.05

for: 10m

labels:

 severity: warning

annotations:

 summary: "Charging failure rate: {{ $value }}"

 description: "Charging system errors. Check OCS connectivity."

Additional Notes

All duration metrics use nanosecond precision internally but are converted

to milliseconds for reporting

Counter metrics are cumulative and should be used with rate() or

increase() functions in Prometheus queries

Gauge metrics represent instantaneous values at collection time

Histogram metrics provide percentile calculations (p50, p95, p99) and can

be used to create heatmaps

All metrics include default labels added by Prometheus (instance, job, etc.)

When creating dashboards, use appropriate time ranges: 5m for real-time,

1h for trends, 24h+ for capacity planning

Set up recording rules in Prometheus for frequently-used complex queries

to improve dashboard performance

Use variable templating in Grafana for dynamic dashboards (select

dest_smsc, source_smsc, etc.)

SMS-C Number

Translation Guide

← Back to Documentation Index | Main README

Overview

The SMS-C Number Translation system provides flexible, regex-based

transformation of phone numbers before routing. Translation rules can

normalize numbers, add international prefixes, format numbers for specific

gateways, and chain multiple transformations together. Rules are stored in

Mnesia for persistence and can be modified at runtime without service

interruption.

Key Features

Prefix-based matching: Match numbers by prefix before applying

transformations

Regex-based transformation: Powerful pattern matching and

replacement with capture groups

Source SMSC filtering: Apply different translations based on message

origin

Priority-based evaluation: Control rule order with configurable priorities

(1-255)

Rule chaining: Continue processing through multiple rules with loop

prevention

Separate calling/called transforms: Independent transformation for

originating and destination numbers

Configuration file loading: Load initial rules from runtime.exs on first

startup

Runtime configuration: Add, modify, or disable rules without restarting

Web UI: Full CRUD interface for rule management

Simulation tool: Test translation logic with step-by-step evaluation

Backup/Restore: Export and import translation configurations

Pre-routing integration: Translations applied before routing for

consistent number formats

Architecture

Data Model

Each translation rule contains the following fields:

Field Type Description Required

rule_id integer
Auto-incrementing unique

identifier
Yes (auto)

calling_prefix string/nil
Prefix match for calling

number (nil = wildcard)
No

called_prefix string/nil
Prefix match for called

number (nil = wildcard)
No

source_smsc string/nil
Source SMSC name (nil =

wildcard)
No

calling_match string/nil
Regex pattern to match calling

number
No

calling_replace string/nil
Replacement pattern for

calling number
No

called_match string/nil
Regex pattern to match called

number
No

called_replace string/nil
Replacement pattern for

called number
No

priority integer
Rule priority (1-255, lower =

higher priority)
Yes

description string Human-readable description No

enabled boolean Enable/disable rule Yes

continue boolean
Continue evaluating rules

after match (default: false)
No

Note: Rules are evaluated in priority order (lowest number first). Only enabled

rules are evaluated.

Translation Algorithm

When translating numbers, the system:

1. Retrieves enabled rules sorted by priority (lowest first)

2. Evaluates rules sequentially against message parameters:

Match calling_prefix (if specified)

Match called_prefix (if specified)

Match source_smsc (if specified)

3. Applies first matching rule:

Transform calling number using calling_match and calling_replace

Transform called number using called_match and called_replace

4. Checks continue flag:

If continue: false → Stop processing, return result

If continue: true → Remove matched rule from available rules,

continue with step 2 using transformed numbers

5. Returns final numbers and list of all applied rules

Rule Chaining with Loop Prevention

The continue flag enables powerful rule chaining while preventing infinite

loops:

Wildcards

nil or empty values act as wildcards that match any value

A rule with no matching criteria is a catch-all rule

A rule with no transformation patterns (nil match/replace) passes numbers

through unchanged

Example: Rule Chaining Scenario

Parse error on line 20: ...] style R1 fill:#38B2AC style R ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Configuration

Loading Rules from Configuration File

Translation rules can be defined in config/runtime.exs and will be

automatically loaded on first startup.

Important: Rules from configuration are only loaded when the translation

table is empty (first startup). This preserves rules added via the Web UI during

runtime and prevents duplicates on restarts.

Configuration Loading Flow

Yes

No

Application Starts

Translation

Table\nEmpty?

Load rules

from\nconfig/runtime.exs

For each rule\nin config

Validate rule fields

Valid?

Yes

No

Yes

No

Skip config

load\nPreserve existing

rules

Add to Mnesia

Log error\nSkip rule Log success

More rules?

Report summary\nN/M

rules loaded

Rules ready

Example Configuration

config/runtime.exs

config :sms_c, :translation_rules, [

 # Add +1 to 10-digit US numbers

 %{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: "us_domestic_smsc",

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "Add +1 to 10-digit US numbers from domestic

SMSC",

 enabled: true,

 continue: false

 },

 # Strip leading zeros from international format

 %{

 calling_prefix: "00",

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(.+)$",

 calling_replace: "+\1",

 called_match: nil,

 called_replace: nil,

 priority: 5,

 description: "Convert 00 international prefix to +",

 enabled: true,

 continue: true # Continue to apply more formatting

 },

 # Format UK numbers for specific gateway

 %{

 calling_prefix: "+44",

 called_prefix: "+44",

 source_smsc: nil,

 calling_match: "^\+44(.*)$",

 calling_replace: "0044\1",

 called_match: "^\+44(.*)$",

 called_replace: "0044\1",

 priority: 20,

 description: "Format UK numbers for legacy gateway",

 enabled: true,

 continue: false

 }

]

Getting Started

Initialization Flow

Message Translation Flow

Event LoggerRule DatabaseTranslation EngineApplication

Event LoggerRule DatabaseTranslation EngineApplication

Continue loop with

transformed numbers

alt [Rule has continue: true]

[Rule has continue: false]

alt [Rule matches criteria]

[No more matches]

loop [For each matching rule]

translate_numbers(calling, called, source_smsc)

Log "translation_started"

Get enabled rules (sorted by priority)

Return rule list

Log "N enabled rules"

do_translate_numbers

(available_rules, matched_rules=[])

Find first matching rule

Log "rule matched"

Apply calling_match → calling_replace

Apply called_match → called_replace

Log transformations

Add rule to matched_rules

Log "continue processing"

Remove rule from available_rules

Stop processing

Stop processing

Log final result

{:ok, final_calling, final_called, matched_rules}

Common Use Cases

International Number Normalization

Normalize various international formats to E.164:

Starts with 00 Starts with 011 10 digits, no prefix Already +

Input Numbers

Check Format

Rule 1: Priority 5

00... → +...

continue: true

Rule 2: Priority 5

011... → +...

continue: true

Rule 3: Priority 10

xxxxxxxxxx → +1...

continue: false

Rule 4: Priority 100

Pass through

continue: false

Normalized to E.164

Gateway-Specific Formatting

Chain rules to format numbers for specific gateway requirements:

Parse error on line 2: ...rt TD I[Input: "5551234567"] --> S1[----------------------^

Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

Try again

SMSC-Specific Translations

Apply different translations based on message source:

Prefix-Based Routing Preparation

Normalize numbers before routing to ensure consistent prefix matching:

Mixed Format Numbers

Translation Rules

(555) 123-4567 →

+15551234567

00441234567890 →

+441234567890

639123456789 →

+639123456789

Normalized E.164

Format

Routing Engine

Can reliably match

prefixes: +1, +44, +63

Translation ensures

routing rules can

reliably match prefixes

Number Portability Handling

Handle ported numbers that require prefix changes:

Parse error on line 18: ... style Input fill:#3182CE style R -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Web Interface

Translation Rule Management UI

Access the rule management interface at /number_translation (via navigation

menu):

Features:

View all rules in a sortable table by priority

Add new rules with form validation

Edit existing rules

Enable/disable rules without deleting

Delete rules with confirmation

Visual indicator for rules with continue: true

Import/Export rules as JSON

Adding a Rule:

1. Fill in matching criteria (optional):

Calling prefix (e.g., "+1", "44")

Called prefix (e.g., "+639", "1555")

Source SMSC (leave empty for any)

2. Define transformations (optional):

Calling number regex match and replace

Called number regex match and replace

3. Set priority (1-255, lower = higher priority)

4. Set status:

Enabled: Rule is active

Continue Processing: Continue evaluating more rules after this one

5. Add description

6. Click "Add Rule" or "Update Rule"

Continue Processing Toggle:

Stop (default): Stop processing after this rule matches

Continue: Apply this rule and continue evaluating remaining rules

Rules with continue enabled show a blue "↓ Continue" badge in the table

Editing a Rule:

1. Click "Edit" next to the rule

2. Modify fields as needed

3. Click "Update Rule"

Rule Table Indicators:

Enabled/Disabled badge shows rule status

↓ Continue badge shows rules that will continue processing

Priority badge shows evaluation order

Regex patterns displayed in monospace font for clarity

Translation Simulator

Access the simulator at /translation_simulator (via navigation menu):

Features:

Test translation logic with actual numbers

Step-by-Step Transformation showing each rule applied

See before/after values for each transformation

View which rules matched and why

Load example scenarios for quick testing

View test history (last 10 tests)

Using the Simulator:

1. Enter test parameters:

Calling number (from)

Called number (to)

Source SMSC (optional)

2. Click "Test Translation"

3. View comprehensive results:

Translation Result: Final numbers after all transformations

Rules Applied: Count and list of all rules that matched

Step-by-Step Transformations: Detailed view of each rule:

Step number and rule information

Rule description

Before → After for both calling and called numbers

"↓ Continue" indicator for rules that continued processing

Transformations highlighted in green

Unchanged values marked as "passed through"

4. Load pre-configured examples using the example buttons

5. Review test history to compare different scenarios

Example Output:

Translation Result

═══

Calling Number: 5551234567 → +1-555-123-4567

Called Number: 9078720155 → +1-907-872-0155

✓ Translated by 3 rule(s)

Step-by-Step Transformations

═══

┌─ Step 1 ────────────────────────────────┐

│ Rule #1 (Priority 10) ↓ Continue │

│ Add country code to 10-digit numbers │

│ │

│ Called: 9078720155 → +19078720155 │

└──┘

┌─ Step 2 ────────────────────────────────┐

│ Rule #2 (Priority 20) ↓ Continue │

│ Format area code with dashes │

│ │

│ Called: +19078720155 → +1-907-8720155 │

└──┘

┌─ Step 3 ────────────────────────────────┐

│ Rule #3 (Priority 30) │

│ Final formatting for gateway │

│ │

│ Called: +1-907-8720155 → +1-907-872-0155│

└──┘

API Reference

Core Operations Overview

Translation Parameters

translate_numbers accepts the following parameters:

calling_number (optional): Originating phone number

called_number (optional): Destination phone number

source_smsc (optional): Source SMSC identifier

message_id (optional): For event logging

Returns:

{:ok, translated_calling, translated_called, [rules_applied]} -

Always successful

Returns original numbers if no rules match

Returns list of all rules that were applied (in order)

Example usage

{:ok, new_calling, new_called, rules} =

 NumberTranslation.translate_numbers(

 calling_number: "5551234567",

 called_number: "9078720155",

 source_smsc: "domestic_gateway",

 message_id: "msg_123"

)

Check if any translation occurred

if rules != [] do

 Logger.info("Applied #{length(rules)} translation rules")

 Enum.each(rules, fn rule ->

 Logger.info(" - Rule ##{rule.rule_id}: #{rule.description}")

 end)

end

Rule Management Operations

Add a new rule

{:ok, rule} = NumberTranslation.add_rule(%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: "gateway1",

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "Add +1 to 10-digit numbers",

 enabled: true,

 continue: false

})

Update a rule

{:ok, updated_rule} = NumberTranslation.update_rule(rule_id, %{

 enabled: false,

 description: "Disabled for testing"

})

Delete a rule

:ok = NumberTranslation.delete_rule(rule_id)

Get a specific rule

rule = NumberTranslation.get_rule(rule_id)

List all rules

all_rules = NumberTranslation.list_rules()

List only enabled rules (sorted by priority)

enabled_rules = NumberTranslation.list_enabled_rules()

Import/Export Operations

Best Practices

Rule Design

1. Keep priorities organized:

1-10: Critical normalization rules (add country codes, fix formats)

11-50: Gateway-specific formatting

51-100: Optional transformations

101+: Catch-all or debugging rules

2. Use continue strategically:

Enable continue: true for normalization rules that prepare numbers

for further processing

Export all rules

backup = NumberTranslation.export_rules()

Returns: %{

version: "1.0",

exported_at: ~U[2024-01-15 10:30:00Z],

count: 5,

rules: [...]

}

Save to JSON file

json = Jason.encode!(backup, pretty: true)

File.write!("translation_rules_backup.json", json)

Import rules (merge with existing)

{:ok, %{imported: 3, failed: 0}} =

 NumberTranslation.import_rules(backup, mode: :merge)

Import rules (replace all existing)

{:ok, %{imported: 5, failed: 0}} =

 NumberTranslation.import_rules(backup, mode: :replace)

Disable continue: false for final formatting rules

Avoid long chains (3-4 rules maximum) to maintain performance

3. Document your rules:

Always add clear descriptions

Include examples in the description (e.g., "5551234567 →

+15551234567")

Document the purpose and expected input/output

4. Test regex patterns:

Test patterns with the simulator before deploying

Use capture groups (\1, \2) for flexible transformations

Escape special regex characters (dots, parentheses, etc.)

Performance

1. Minimize rule count:

Combine similar rules where possible

Use prefix matching to reduce regex evaluations

Remove or disable unused rules

2. Optimize regex patterns:

Use prefix matching first (faster than regex)

Keep regex patterns simple

Avoid backtracking-heavy patterns

3. Limit rule chaining:

Long chains (5+ rules) can impact performance

Consider combining multiple steps into one rule if possible

Monitor translation latency with Telemetry metrics

Operations

1. Test before deploy:

Use the simulator with real-world examples

Test edge cases (empty numbers, special characters)

Verify continue flag behavior

2. Backup regularly:

Export rules before making major changes

Version control your exports

Test imports in non-production first

3. Monitor translations:

Enable message_id logging for debugging

Check event logs for translation decisions

Monitor which rules are being applied

4. Gradual rollout:

Add new rules as disabled first

Test with simulator

Enable and monitor

Adjust as needed

Regex Tips

1. Common patterns:

10-digit US number: ^(\d{10})$

International format: ^\+(\d+)$

Remove leading zeros: ^0+(.+)$

Add dashes: ^(\d{3})(\d{3})(\d{4})$ → \1-\2-\3

2. Capture groups:

Use parentheses to capture: ^(\d{3})(\d{7})$

Reference in replace: +1\1\2

Multiple captures: ^\+(\d{1,3})(\d+)$ → 00\1\2

3. Escape special characters:

Literal dot: \.

Literal plus: \+

Literal parenthesis: \(or \)

Troubleshooting

Rule Not Matching

Symptom: Expected rule doesn't match, numbers pass through unchanged

Possible causes:

Prefix doesn't match (check for exact prefix match)

Source SMSC doesn't match

Regex pattern doesn't match input format

Rule is disabled

Higher priority rule matched first (with continue: false)

Solutions:

1. Use simulator to see which rules are evaluated

2. Check rule status (enabled/disabled)

3. Verify prefix matching (case-sensitive)

4. Test regex pattern separately

5. Check priority order

Wrong Transformation Applied

Symptom: Number transformed but result is incorrect

Possible causes:

Regex pattern matches but replace pattern is wrong

Multiple rules applying in unexpected order

Capture group references incorrect (\1, \2, etc.)

Solutions:

1. Use simulator to see step-by-step transformations

2. Verify regex pattern captures correct groups

3. Check replace pattern syntax

4. Test regex in online regex tester

5. Review rule priority and continue flags

Infinite Loop / Performance Degradation

Symptom: Translation takes very long or appears to hang

Note: This should not happen due to loop prevention, but if it does:

Possible causes:

Bug in loop prevention logic

Extremely long regex evaluation

Very long rule chain

Solutions:

1. Check application logs for errors

2. Review rules with continue: true

3. Simplify regex patterns

4. Reduce number of chained rules

5. Report bug if loop prevention failed

Unexpected Rule Chaining

Symptom: More rules applied than expected

Possible causes:

Rules have continue: true when they shouldn't

Priority ordering allows multiple matches

Transformed number matches additional rules

Solutions:

1. Use simulator to see exact rule chain

2. Review continue flags on all rules

3. Adjust priorities to control order

4. Set continue: false on final rule

Translation Not Applied Before Routing

Symptom: Router sees untranslated numbers

Possible causes:

Translation not integrated in message flow

Translation happening after routing

Application code bypassing translation

Solutions:

1. Verify application integration: translation should be called before routing

2. Check message processing pipeline

3. Review event logs for translation events

4. Ensure translate_numbers is called in correct order

Advanced Topics

Integration with Routing

Translation happens before routing to ensure consistent number formats:

GatewayRouting EngineNumber TranslationApplication

GatewayRouting EngineNumber TranslationApplication

Translation ensures

routing rules see

normalized numbers

translate_numbers(calling, called, source_smsc)

{translated_calling, translated_called, rules}

route_message(translated_calling, translated_called)

{dest_smsc, route}

send_message(dest_smsc, translated numbers)

Event Logging

Translation decisions are logged via the EventLogger:

translation_started : Translation begins

translation_candidates : Number of enabled rules

translation_matched : Rule matched and applied

translation_calling : Calling number transformed

translation_called : Called number transformed

translation_continue : Rule has continue=true, continuing evaluation

translation_none : No rules matched

Enable logging by passing message_id to translate_numbers/1 .

Telemetry Metrics

Monitor translation performance with Telemetry:

Key metrics to monitor:

Translation duration (p50, p95, p99)

Rules applied per message

Rules matched vs not matched

Continue flag usage

Clustering

Mnesia tables are automatically distributed across clustered nodes. Translation

rules are replicated for high availability.

Parse error on line 25: ... style New fill:#3182CE style P ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Migration Strategies

When deploying new translation rules:

:telemetry.attach(

 "number-translation-handler",

 [:sms_c, :number_translation, :translate, :stop],

 fn _event_name, measurements, metadata, _config ->

 # measurements: %{duration: microseconds}

 # metadata: %{rules_applied: count, ...}

 end,

 nil

)

No

Yes

Planning New Rules

1. Design rules offline

2. Test in simulator

Rules work

correctly?

Debug patterns 3. Add rules as disabled

4. Deploy to production

5. Enable rules one at a

time

6. Monitor logs &

metrics

No

YesYes

No

Working as

expected?

Disable rule, investigate 7. Enable next rule

More rules?

Migration Complete ✓

Examples

Example 1: US Number Normalization

Requirement: Convert various US number formats to E.164 (+1XXXXXXXXXX)

Rule 1: 10-digit numbers (highest priority)

%{

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 5,

 description: "Add +1 to bare 10-digit numbers",

 enabled: true,

 continue: false

}

Rule 2: 1 + 10 digits (medium priority)

%{

 calling_match: "^1(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^1(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "Convert 1XXXXXXXXXX to +1XXXXXXXXXX",

 enabled: true,

 continue: false

}

Test cases:

"5551234567" → "+15551234567" (Rule 1)

"15551234567" → "+15551234567" (Rule 2)

"+15551234567" → "+15551234567" (No match, pass through)

Example 2: International Prefix Conversion

with Chaining

Requirement: Convert 00 prefix to +, then format for gateway

Example 3: SMSC-Specific Handling

Requirement: Apply different rules based on source SMSC

Rule 1: Convert 00 to + (continues to next rule)

%{

 calling_match: "^00(.+)$",

 calling_replace: "+\1",

 called_match: "^00(.+)$",

 called_replace: "+\1",

 priority: 5,

 description: "Convert 00 international prefix to +",

 enabled: true,

 continue: true # Continue to format

}

Rule 2: Format for gateway (stops processing)

%{

 calling_match: "^\+(\d+)$",

 calling_replace: "00\1",

 called_match: "^\+(\d+)$",

 called_replace: "00\1",

 priority: 10,

 description: "Format + numbers as 00 for gateway",

 enabled: true,

 continue: false # Stop after this

}

Test case:

Step 1: "00441234567890" → "+441234567890" (Rule 1, continue)

Step 2: "+441234567890" → "00441234567890" (Rule 2, stop)

Result: "00441234567890"

Rules applied: [Rule 1, Rule 2]

Rule 1: Trusted SMSC - pass through (priority 5)

%{

 source_smsc: "trusted_gateway",

 calling_match: nil, # No transformation

 calling_replace: nil,

 called_match: nil,

 called_replace: nil,

 priority: 5,

 description: "Pass through numbers from trusted gateway",

 enabled: true,

 continue: false

}

Rule 2: Untrusted SMSC - normalize (priority 10)

%{

 source_smsc: "untrusted_gateway",

 calling_match: "^(.*)$",

 calling_replace: "+VALIDATE\1",

 called_match: "^(.*)$",

 called_replace: "+VALIDATE\1",

 priority: 10,

 description: "Add validation prefix for untrusted source",

 enabled: true,

 continue: false

}

Rule 3: Catch-all for other SMSCs (priority 100)

%{

 source_smsc: nil, # Wildcard

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "Default: Add +1 to 10-digit numbers",

 enabled: true,

 continue: false

}

Example 4: Multi-Step Formatting Chain

Requirement: Normalize → Add country code → Format with dashes

Rule 1: Strip leading zeros (continue)

%{

 calling_match: "^0+(.+)$",

 calling_replace: "\1",

 called_match: "^0+(.+)$",

 called_replace: "\1",

 priority: 5,

 description: "Strip leading zeros",

 enabled: true,

 continue: true

}

Rule 2: Add country code if missing (continue)

%{

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 10,

 description: "Add +1 to 10-digit numbers",

 enabled: true,

 continue: true

}

Rule 3: Format with dashes (stop)

%{

 calling_match: "^\+1(\d{3})(\d{3})(\d{4})$",

 calling_replace: "+1-\1-\2-\3",

 called_match: "^\+1(\d{3})(\d{3})(\d{4})$",

 called_replace: "+1-\1-\2-\3",

 priority: 15,

 description: "Format as +1-XXX-XXX-XXXX",

 enabled: true,

 continue: false

}

Test case:

Input: "005551234567"

Step 1: "005551234567" → "5551234567" (Rule 1, continue)

Step 2: "5551234567" → "+15551234567" (Rule 2, continue)

Step 3: "+15551234567" → "+1-555-123-4567" (Rule 3, stop)

Support

For issues or questions:

Check the test suite at

test/sms_c/messaging/number_translation_test.exs for examples

Use the simulator to debug translation logic

Review event logs for translation decisions

Check Mnesia table contents: :mnesia.table_info(:translation_rule,

:size)

Monitor Telemetry metrics for performance issues

Result: "+1-555-123-4567"

Rules applied: [Rule 1, Rule 2, Rule 3]

SMS-C Operations

Guide

← Back to Documentation Index | Main README

Daily operational procedures, monitoring, and maintenance tasks for SMS-C

operations teams.

Table of Contents

Daily Operations

Monitoring

Message Tracking

Route Management

Frontend Management

Number Translation Management

System Maintenance

Backup and Recovery

Capacity Planning

Incident Response

Daily Operations

Morning Health Check

Perform these checks at the start of each day:

1. Check System Status

2. Review Prometheus Metrics

Access Prometheus dashboard and check:

Message throughput (last 24 hours)

Routing failure rate (should be < 1%)

Queue backlog (should be < 1000 pending)

Delivery success rate (should be > 95%)

Frontend connection status (all expected frontends active)

3. Check Message Queue

Access Web UI: https://sms-admin.example.com/message_queue

Review:

Total pending messages (should be low)

Oldest message age (should be < 5 minutes)

Messages with high delivery attempts (investigate if > 3)

Dead letter messages (investigate any present)

4. Review Frontend Status

Access Web UI: https://sms-admin.example.com/frontend_status

Verify:

All expected frontends are active

No unexpired disconnections

No frontend errors in last 24 hours

API health check

curl https://api.example.com:8443/api/status

Expected response:

{"status":"ok","application":"OmniMessage","timestamp":"2025-10-

30T08:00:00Z"}

5. Check Application Logs

Access Web UI: https://sms-admin.example.com/logs or check log files

Look for:

Error-level messages

Routing failures

Charging failures

Database connection issues

Cluster node problems

Message Volume Monitoring

Check Hourly Message Counts:

Use Prometheus query:

Expected Patterns:

Business hours: Higher volume

Nights/weekends: Lower volume

Delivery rate: Should be > 95%

Alert Conditions:

Sudden drop in messages (> 50% decrease)

Sudden spike in messages (> 200% increase)

Messages received per hour

increase(sms_c_message_received_count[1h])

Messages delivered per hour

increase(sms_c_delivery_succeeded_count[1h])

Calculate delivery rate

rate(sms_c_delivery_succeeded_count[1h]) /

rate(sms_c_message_received_count[1h])

Delivery rate drop below 90%

Monitoring

Key Metrics to Watch

Message Processing Metrics

Message Received Count (sms_c_message_received_count):

What: Total messages entering system

Alert: Sudden drop or spike

Query: rate(sms_c_message_received_count[5m])

Message Processing Duration (sms_c_message_processing_stop_duration):

What: End-to-end processing time

Alert: p95 > 1000ms

Query: histogram_quantile(0.95,

sms_c_message_processing_stop_duration)

Routing Metrics

Routing Failures (sms_c_routing_failed_count):

What: Messages that couldn't be routed

Alert: Any failures (> 0)

Query: increase(sms_c_routing_failed_count[5m])

Route Matched (sms_c_routing_route_matched_count):

What: Which routes are being used

Alert: High-priority routes not matching

Query: sms_c_routing_route_matched_count

Delivery Metrics

Delivery Success Rate:

What: Percentage of successful deliveries

Alert: Rate < 95%

Query: rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])

Delivery Attempts (sms_c_delivery_succeeded_attempt_count):

What: Retries needed for delivery

Alert: p95 > 2 (too many retries)

Query: histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count)

Queue Metrics

Queue Size (sms_c_queue_size_size):

What: Total messages in queue

Alert: Size > 10,000

Query: sms_c_queue_size_size

Oldest Message Age (sms_c_queue_oldest_message_age_seconds):

What: Age of oldest pending message

Alert: Age > 300 seconds

Query: sms_c_queue_oldest_message_age_seconds

Dashboard Setup

Operational Dashboard Panels:

1. Message Throughput (Graph)

Messages received (5-minute rate)

Messages delivered (5-minute rate)

Time range: Last 24 hours

2. Queue Status (Single Stats)

Current pending messages

Oldest message age

Failed message count

3. Delivery Performance (Graph)

Success rate over time

Failure rate over time

Time range: Last 24 hours

4. Routing Status (Table)

Route ID

Match count (last hour)

Destination SMSC

Priority

5. Frontend Status (Table)

Frontend name

Status (active/expired)

Last seen

Message count (last hour)

6. System Health (Single Stats)

API response time (p95)

Database query time (p95)

ENUM lookup time (p95)

Alert Configuration

Critical Alerts (Immediate Response Required):

Warning Alerts (Investigation Needed):

No route found - messages cannot be delivered

- alert: RoutingFailures

 expr: increase(sms_c_routing_failed_count[5m]) > 0

 severity: critical

 description: "{{ $value }} messages failed routing in last 5

minutes"

Queue building up - processing falling behind

- alert: QueueBacklog

 expr: sms_c_queue_size_pending > 10000

 severity: critical

 description: "Queue has {{ $value }} pending messages"

Messages aging - delivery stuck

- alert: OldMessagesInQueue

 expr: sms_c_queue_oldest_message_age_seconds > 300

 severity: critical

 description: "Oldest message is {{ $value }} seconds old"

Frontend disconnected - no delivery path

- alert: FrontendDisconnected

 expr: sms_c_frontend_status_count{status="disconnected"} > 0

 severity: critical

 description: "{{ $value }} frontends disconnected"

Message Tracking

Find Specific Message

By Message ID:

1. Web UI: Navigate to /message_queue

2. Enter message ID in search box

3. View full details and event history

Delivery success rate dropping

- alert: LowDeliveryRate

 expr: rate(sms_c_delivery_succeeded_count[10m]) /

rate(sms_c_delivery_queued_count[10m]) < 0.90

 severity: warning

 description: "Delivery success rate is {{ $value }}"

Too many delivery retries

- alert: HighRetryRate

 expr: histogram_quantile(0.95,

sms_c_delivery_succeeded_attempt_count) > 2

 severity: warning

 description: "95th percentile delivery attempts: {{ $value }}"

ENUM lookups slow or failing

- alert: SlowEnumLookups

 expr: histogram_quantile(0.95, sms_c_enum_lookup_stop_duration)

> 5000

 severity: warning

 description: "ENUM lookups taking > 5 seconds"

Low ENUM cache hit rate

- alert: LowEnumCacheHitRate

 expr: rate(sms_c_enum_cache_hit_count[10m]) /

(rate(sms_c_enum_cache_hit_count[10m]) +

rate(sms_c_enum_cache_miss_count[10m])) < 0.70

 severity: warning

 description: "ENUM cache hit rate: {{ $value }}"

Via API:

By Phone Number:

1. Web UI: Navigate to /message_queue

2. Enter phone number in search box

3. View all messages for that number

Track Message Lifecycle

View Event History:

1. Web UI: Click on message in queue, view "Events" section

2. API: GET /api/events/12345

Common Event Sequence:

Failed Delivery Sequence:

curl https://api.example.com:8443/api/messages/12345

1. message_inserted - Message created

 ↓

2. number_translated - Numbers normalized (if configured)

 ↓

3. message_routed - Routing decision made

 ↓

4. charging_attempted - Charging check (if enabled)

 ↓

5. message_delivered - Successfully delivered

Check Delivery Status

Pending Messages:

Status: "pending"

deliver_after: Future timestamp

delivery_attempts: 0 or low number

Delivered Messages:

Status: "delivered"

deliver_time: Timestamp of delivery

dest_smsc: Frontend that delivered

Failed Messages:

Status: "pending" with high delivery_attempts

deadletter: true (if expired)

Check event log for failure reasons

Location-Based Message Routing

The SMS-C supports location-based message retrieval, allowing frontends to

automatically receive messages destined for subscribers registered at their

location.

1. message_inserted

 ↓

2. message_routed

 ↓

3. delivery_attempt_1 - First attempt failed

 ↓

4. delivery_attempt_2 - Second attempt failed (2min delay)

 ↓

5. delivery_attempt_3 - Third attempt failed (4min delay)

 ↓

6. message_dead_letter - Exceeded retry limit

How It Works:

When a frontend queries for pending messages using

get_messages_for_smsc(smsc_name) , the system returns messages in two

ways:

1. Explicit Routing - Messages where dest_smsc explicitly matches the

frontend name

2. Location-Based Routing - Messages where:

dest_smsc is null (not explicitly routed)

destination_msisdn has an active location record

The location's location field matches the frontend name

The location has not expired

Example Scenario:

A subscriber with MSISDN +447700900123 registers at frontend uk_gateway :

When a message arrives for this subscriber without explicit routing:

Subscriber registers (creates location record)

POST /api/locations

{

 "msisdn": "+447700900123",

 "imsi": "234150123456789",

 "location": "uk_gateway",

 "expires": "2025-11-01T12:00:00Z"

}

Message submitted without dest_smsc

POST /api/messages

{

 "source_msisdn": "+15551234567",

 "destination_msisdn": "+447700900123",

 "message_body": "Hello",

 "source_smsc": "api"

 # Note: dest_smsc is null

}

The uk_gateway frontend will automatically receive this message when it polls:

Location Requirements:

For location-based routing to work:

The locations table must have an entry for the destination_msisdn

The location field must match the querying SMSC name

The expires timestamp must be in the future

Monitoring Location-Based Routing:

Check location records:

Common Issues:

Message not delivered: Check if location has expired

Wrong frontend: Verify location field matches expected frontend name

Location not found: Subscriber may need to re-register

Manual Interventions

Retry Failed Message:

Frontend polls for messages

GET /api/messages/queue?smsc=uk_gateway

Returns the message even though dest_smsc is null

because the destination subscriber is registered at uk_gateway

Via API

GET /api/locations/{msisdn}

Check if location is expired

expires field should be > current time

Change Destination:

Delete Stuck Message:

Route Management

View Current Routes

Web UI: Navigate to /sms_routing

Via API:

Check Route Usage:

Prometheus query:

Reset delivery_attempts and deliver_after

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "delivery_attempts": 0,

 "deliver_after": "2025-10-30T12:00:00Z"

 }'

Route to different SMSC

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{

 "dest_smsc": "backup_gateway"

 }'

curl -X DELETE https://api.example.com:8443/api/messages/12345

List all routes

curl https://api.example.com:8443/api/routes

Add New Route

Web UI:

1. Navigate to /sms_routing

2. Click "Add New Route"

3. Fill in fields:

Calling Prefix: Source number prefix (optional)

Called Prefix: Destination number prefix (required for geographic

routing)

Source SMSC: Source system filter (optional)

Dest SMSC: Destination gateway (required unless auto-reply/drop)

Priority: Route priority (1-255, lower = higher priority)

Weight: Load balancing weight (1-100)

Description: Human-readable description

Enabled: Check to activate immediately

4. Click "Save Route"

Example: Geographic Route:

Called Prefix: +44

Dest SMSC: uk_gateway

Priority: 50

Weight: 100

Description: "UK routing"

Example: Load Balanced Route:

Create two routes with same criteria but different weights:

Route 1:

Called Prefix: +44

Messages routed by each route (last hour)

increase(sms_c_routing_route_matched_count[1h])

Dest SMSC: uk_primary

Priority: 50

Weight: 70

Description: "UK primary (70%)"

Route 2:

Called Prefix: +44

Dest SMSC: uk_backup

Priority: 50

Weight: 30

Description: "UK backup (30%)"

Test Routes

Routing Simulator:

1. Navigate to /simulator

2. Enter test parameters:

Calling Number: +15551234567

Called Number: +447700900000

Source SMSC: (optional)

Source Type: (optional)

3. Click "Simulate Routing"

4. Review results:

Selected Route: Which route was chosen

All Matches: Which routes matched criteria

Evaluation: Why each route matched or didn't match

Test Before Production:

Test all new routes in simulator

Verify correct route is selected

Check priority ordering

Validate weight distribution

Modify Existing Route

Web UI:

1. Navigate to /sms_routing

2. Find route in list

3. Click "Edit"

4. Modify fields

5. Click "Save Route"

Common Modifications:

Disable Route: Uncheck "Enabled" (temporary removal)

Adjust Weight: Change load balance distribution

Change Priority: Reorder route evaluation

Update Destination: Switch to different SMSC

Delete Route

Web UI:

1. Navigate to /sms_routing

2. Find route in list

3. Click "Delete"

4. Confirm deletion

Warning: Deleting routes is permanent. Consider disabling instead.

Export/Import Routes

Export Routes (Backup):

1. Navigate to /sms_routing

2. Click "Export Routes"

3. Save JSON file

Import Routes:

1. Navigate to /sms_routing

2. Click "Import Routes"

3. Select JSON file

4. Choose import mode:

Merge: Add to existing routes

Replace: Delete all and import

Use Cases:

Backup before major changes

Copy routes between environments

Disaster recovery

Configuration versioning

Frontend Management

Monitor Frontend Connections

Web UI: Navigate to /frontend_status

Check:

All expected frontends are "active"

Last seen times are recent (< 90 seconds)

No unexpected expired frontends

Via API:

Get active frontends

curl https://api.example.com:8443/api/frontends/active

Get statistics

curl https://api.example.com:8443/api/frontends/stats

Investigate Disconnections

Frontend Expired:

1. Check frontend logs for errors

2. Verify network connectivity to SMS-C

3. Confirm frontend is running

4. Check frontend registration logic (should re-register every 60s)

Registration Not Showing:

1. Verify frontend is calling POST /api/frontends/register

2. Check API logs for registration errors

3. Verify JSON payload format

4. Test registration manually with curl

Example Manual Registration:

View Frontend History

Web UI:

1. Navigate to /frontend_status

2. Find frontend in list

3. Click "History"

4. Review past registrations

Via API:

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "test_gateway",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50",

 "hostname": "gateway.example.com"

 }'

Use Cases:

Investigate connection reliability

Track frontend uptime patterns

Identify configuration changes

Number Translation Management

Number translation rules are managed via config/runtime.exs . Changes

require application restart.

View Active Translation Rules

Check configuration file:

Common Translation Tasks

Add Country Code to Local Numbers:

Edit config/runtime.exs :

curl https://api.example.com:8443/api/frontends/history/uk_gateway

cat config/runtime.exs | grep -A 20 "translation_rules:"

Normalize International Format:

Carrier-Specific Code Stripping:

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^(\d{10})$",

 calling_replace: "+1\1",

 called_match: "^(\d{10})$",

 called_replace: "+1\1",

 priority: 100,

 description: "Add +1 to 10-digit US numbers",

 enabled: true

}

%{

 calling_prefix: nil,

 called_prefix: nil,

 source_smsc: nil,

 calling_match: "^00(\d+)$",

 calling_replace: "+\1",

 called_match: "^00(\d+)$",

 called_replace: "+\1",

 priority: 10,

 description: "Convert 00 prefix to +",

 enabled: true

}

Test Translation Rules

After configuration changes:

1. Restart application to load new rules

2. Submit test message with source/destination that should match

3. Check event log for number_translated event

4. Verify numbers were transformed correctly

Disable Translation Rule

Set enabled: false in rule:

Restart application.

%{

 calling_prefix: nil,

 called_prefix: "101",

 source_smsc: "carrier_a",

 calling_match: nil,

 calling_replace: nil,

 called_match: "^101(\d+)$",

 called_replace: "\1",

 priority: 5,

 description: "Strip carrier code from carrier A",

 enabled: true

}

%{

 ...

 enabled: false

}

System Maintenance

Database Maintenance

Check Database Size:

Use your database management tools to monitor CDR storage size:

MySQL/MariaDB: Query information_schema.tables for database size

PostgreSQL: Use pg_database_size() function or \l+ command in psql

Cleanup Old CDR Records:

CDR records should be archived and purged periodically based on your

retention policy:

Configure automatic archiving based on business requirements (typically

30-90 days in operational database)

Archive older records to data warehouse or cold storage

Delete archived records from operational database in batches to avoid lock

contention

Optimize Tables:

Periodically optimize database tables to maintain performance:

MySQL/MariaDB: Run OPTIMIZE TABLE command during low-traffic

periods

PostgreSQL: Run VACUUM ANALYZE regularly (or enable autovacuum)

Run Weekly during low-traffic period to maintain optimal performance.

Mnesia Database Maintenance

Check Mnesia Table Size:

Backup Mnesia Tables:

Restore Mnesia:

Log Rotation

Configure logrotate for application logs:

In IEx console

:mnesia.table_info(:sms_route, :size)

:mnesia.table_info(:translation_rule, :size)

Export routes (Web UI)

Navigate to /sms_routing

Click "Export Routes"

Or via Mnesia backup

:mnesia.backup("/var/backups/sms_c/mnesia_backup.bup")

Via Web UI import

Or restore backup:

:mnesia.restore("/var/backups/sms_c/mnesia_backup.bup", [])

/etc/logrotate.d/sms_c

/var/log/sms_c/*.log {

 daily

 rotate 30

 compress

 delaycompress

 notifempty

 create 0644 sms_user sms_group

 sharedscripts

 postrotate

 systemctl reload sms_c || true

 endscript

}

Restart Application

Graceful Restart (zero downtime in cluster):

Emergency Restart (all nodes):

After Restart:

Verify all frontends reconnect

Check Prometheus for metric continuity

Monitor logs for errors

Verify message processing resumes

Backup and Recovery

What to Backup

1. Configuration Files:

config/runtime.exs

config/config.exs

config/prod.exs (if exists)

2. Routing Tables (Mnesia):

Export via Web UI

Or Mnesia backup command

Restart one node at a time

systemctl restart sms_c

Wait for node to join cluster

Repeat for each node

systemctl restart sms_c

3. SQL CDR Database:

Daily full backup

Transaction log backups (continuous)

4. TLS Certificates:

priv/cert/*.crt

priv/cert/*.key

Backup Procedures

Daily Configuration Backup:

Database Backup:

#!/bin/bash

/opt/sms_c/scripts/backup_config.sh

BACKUP_DIR="/var/backups/sms_c/$(date +%Y%m%d)"

mkdir -p $BACKUP_DIR

Backup configuration

cp -r /opt/sms_c/config $BACKUP_DIR/

Backup certificates

cp -r /opt/sms_c/priv/cert $BACKUP_DIR/

Set permissions

chmod 600 $BACKUP_DIR/cert/*

echo "Configuration backup completed: $BACKUP_DIR"

Routing Table Backup:

Schedule Backups (crontab):

#!/bin/bash

/opt/sms_c/scripts/backup_database.sh

BACKUP_DIR="/var/backups/sms_c/database"

DATE=$(date +%Y%m%d_%H%M%S)

mkdir -p $BACKUP_DIR

Backup SQL CDR database

MySQL/MariaDB: Use mysqldump with --single-transaction for

consistency

PostgreSQL: Use pg_dump -F c for custom format

Example structure (adapt to your database):

- Use appropriate backup tool (mysqldump, pg_dump)

- Enable transaction-safe backups for consistency

- Compress output to save space

- Configure retention period (e.g., 30 days)

Remove old backups

find $BACKUP_DIR -name "sms_c_*.gz" -mtime +30 -delete

echo "Database backup completed: sms_c_${DATE}"

#!/bin/bash

/opt/sms_c/scripts/backup_routes.sh

BACKUP_DIR="/var/backups/sms_c/routes"

DATE=$(date +%Y%m%d)

mkdir -p $BACKUP_DIR

Export via API

curl https://api.example.com:8443/api/routes/export \

 > $BACKUP_DIR/routes_${DATE}.json

echo "Routes backup completed: routes_${DATE}.json"

Recovery Procedures

Restore Configuration:

Restore SQL CDR Database:

Use appropriate restore tools for your database:

MySQL/MariaDB: Decompress and pipe to mysql client

PostgreSQL: Use pg_restore with custom format dumps

Important: Stop the SMS-C application before restoring database to prevent

data conflicts.

Restore Routing Tables:

1. Navigate to Web UI /sms_routing

2. Click "Import Routes"

3. Select backup JSON file

4. Choose "Replace" mode

5. Confirm import

Daily at 2 AM

0 2 * * * /opt/sms_c/scripts/backup_config.sh

0 2 * * * /opt/sms_c/scripts/backup_database.sh

0 2 * * * /opt/sms_c/scripts/backup_routes.sh

Stop application

systemctl stop sms_c

Restore config files

cp -r /var/backups/sms_c/20251030/config/* /opt/sms_c/config/

Restore certificates

cp -r /var/backups/sms_c/20251030/cert/* /opt/sms_c/priv/cert/

Start application

systemctl start sms_c

Capacity Planning

Monitor Growth Trends

Message Volume Trend:

Prometheus query (30-day average):

Database Growth Rate:

Capacity Indicators

CPU Usage:

Normal: < 50% average

High: > 70% sustained

Critical: > 90%

Memory Usage:

Normal: < 70% of available

High: > 80%

Critical: > 90%

Disk Usage:

avg_over_time(sms_c_message_received_count[30d])

-- Monthly data growth

SELECT

 DATE_FORMAT(inserted_at, '%Y-%m') AS month,

 COUNT(*) AS message_count,

 ROUND(SUM(LENGTH(message_body)) / 1024 / 1024, 2) AS data_mb

FROM message_queues

GROUP BY month

ORDER BY month DESC

LIMIT 12;

Normal: < 60% full

High: > 75%

Critical: > 85%

Queue Depth:

Normal: < 1000 pending

High: > 5000 pending

Critical: > 10,000 pending

Scaling Recommendations

When to Scale Vertically (Upgrade Resources):

CPU consistently > 70%

Memory consistently > 80%

Single-node bottleneck

When to Scale Horizontally (Add Nodes):

CPU > 50% on all nodes

Message volume > 5,000 msg/sec

Geographic distribution needed

High availability required

Database Scaling:

Read replicas for reporting queries

Connection pooling optimization

Index optimization

Partition large tables by date

Incident Response

Severity Levels

Critical (Immediate Response):

No messages being delivered

All frontends disconnected

Database unavailable

API completely down

High (Response within 1 hour):

Delivery success rate < 80%

Multiple frontends disconnected

Routing failures > 10%

Queue backlog growing

Medium (Response within 4 hours):

Single frontend disconnected

Delivery success rate 80-95%

Slow message processing

ENUM lookups failing

Low (Response within 24 hours):

Minor performance degradation

Single route issue

Non-critical warning alerts

Incident Checklist

1. Assess Severity:

Check Prometheus alerts

Review dashboard metrics

Check message queue status

Verify frontend connections

2. Gather Information:

Recent configuration changes?

Recent deployments?

External dependencies status (OCS, DNS)?

Error messages in logs?

3. Immediate Actions:

Stop ongoing changes

Roll back recent deployments if suspected cause

Enable verbose logging if needed

Notify stakeholders

4. Investigation:

Review application logs

Check system resource usage

Examine database performance

Test external dependencies

5. Resolution:

Apply fix

Test in simulator

Deploy to production

Monitor for improvement

6. Post-Incident:

Document root cause

Update monitoring/alerts

Implement preventive measures

Update runbooks

Common Incidents

High Queue Backlog:

1. Check delivery success rate

2. Verify frontends are connected and polling

3. Check database performance

4. Review Prometheus for bottlenecks

5. Consider increasing batch size/interval

Routing Failures:

1. Review routing configuration

2. Test in routing simulator

3. Check for missing routes

4. Verify catch-all route exists

5. Check event logs for failure reasons

Frontend Disconnections:

1. Check frontend system status

2. Verify network connectivity

3. Review frontend logs

4. Test manual API registration

5. Check firewall rules

Slow Message Processing:

1. Check database query performance

2. Review batch worker configuration

3. Verify adequate resources (CPU/Memory)

4. Check for ENUM lookup delays

5. Review charging system performance

For detailed troubleshooting procedures, see the Troubleshooting Guide.

Performance Tuning

Guide

← Back to Documentation Index | Main README

This guide explains how to optimize SMS-C performance for different workload

scenarios.

Performance Overview

SMS-C delivers 1,750 messages/second throughput using Mnesia for in-

memory message storage with automatic SQL database archiving for CDR

retention.

Key Performance Metrics

Measured on Intel i7-8650U @ 1.90GHz (8 cores):

Operation Throughput
Latency

(avg)
Improvement

Message Insert (with

routing)

1,750

msg/sec
0.58ms

21x faster than

SQL

Message Insert

(simple)

1,750

msg/sec
0.57ms

21x faster than

SQL

Get Messages for

SMSC
800 msg/sec 1.25ms In-memory query

Memory per Insert 62 KB - 50% reduction

Capacity: ~150 million messages per day on single node

Table of Contents

Message Storage Architecture

Mnesia Optimization

CDR Archiving Configuration

Query Optimization

Benchmarking

Message Storage Architecture

SMS-C uses a dual-storage architecture for optimal performance:

Active Message Store (Mnesia)

Purpose: Ultra-fast message insertion, routing, and delivery

Storage: In-memory with disk persistence (disc_copies)

Performance: 1,750 msg/sec insert throughput, 0.58ms latency

Retention: Configurable (default: 24 hours)

Clustering: Supports distributed Mnesia for horizontal scaling

CDR Archive (SQL Database)

Purpose: Long-term message history and reporting

Storage: SQL database (MySQL/MariaDB or PostgreSQL) for durable

archival

Performance: Batched writes to minimize database load

Retention: Permanent (or per data retention policy)

Queries: Analytics, reporting, compliance

Data Flow

Mnesia Optimization

Message Retention Configuration

Tuning Guidelines:

High volume (>1M msg/day): 12-24 hours retention

Minimizes Mnesia table size

Faster queries

More frequent archiving to MySQL

config/runtime.exs

config :sms_c,

 message_retention_hours: 24 # Default: 24 hours

Medium volume (100K-1M msg/day): 24-48 hours retention

Good balance for most deployments

Adequate buffer for retry logic

Low volume (<100K msg/day): 48-168 hours retention

Longer message history in fast storage

Less frequent archiving

Mnesia Table Indices

MessageStore automatically creates indices on:

status - For filtering pending/delivered messages

dest_smsc - For SMSC-specific queries

expires - For expiration handling

destination_msisdn - For subscriber queries

source_msisdn - For subscriber queries

Mnesia Disc Persistence

Messages are stored as disc_copies providing:

� In-memory performance

� Automatic disk persistence

� Crash recovery

� No data loss on restart

CDR Archiving Configuration

The BatchInsertWorker handles CDR archiving to MySQL using batched writes:

CDR Tuning Guidelines

High Volume Archiving

Larger batches reduce MySQL load

Higher latency for CDR writes (acceptable for archiving)

Balanced (Recommended)

Good balance for most deployments

CDRs written within 100ms

Real-time CDR Requirements

Faster CDR writes for compliance

More MySQL write operations

config/runtime.exs

config :sms_c,

 batch_insert_batch_size: 100, # CDR batch size

 batch_insert_flush_interval_ms: 100 # Auto-flush interval

batch_insert_batch_size: 200

batch_insert_flush_interval_ms: 200

batch_insert_batch_size: 100

batch_insert_flush_interval_ms: 100

batch_insert_batch_size: 20

batch_insert_flush_interval_ms: 20

Query Optimization

Using Mnesia Indices Effectively

Queries that use indexed fields are fastest:

MySQL Connection Pool

For CDR queries and archiving, configure MySQL connection pool:

Guidelines:

Standard deployment: pool_size: 10

Heavy CDR reporting: pool_size: 20-30

Archiving only: pool_size: 5

Benchmarking

Running Benchmarks

The project includes Benchee-based benchmarks for performance testing:

Fast queries (use indices)

MessageStore.list(status: :pending)

MessageStore.list(dest_smsc: "gateway-1")

Messaging.get_messages_for_smsc("gateway-1")

Slower queries (full table scan)

MessageStore.list(limit: :infinity) # Returns all messages

config/runtime.exs

config :sms_c, SmsC.Repo,

 pool_size: 10 # Increase for heavy CDR reporting

Interpreting Results

Example output:

Key metrics:

ips: Iterations per second (higher is better)

average: Average execution time (lower is better)

median: Middle value, more representative than average for skewed

distributions

99th %: 99th percentile latency (important for SLA compliance)

Performance Baseline

Expected performance on modern hardware (Intel i7-8650U, 8 cores):

Raw SMS API benchmark (compares sync vs async)

mix run benchmarks/raw_sms_bench.exs

General message API benchmark

mix run benchmarks/message_api_bench.exs

Name ips average

deviation median 99th %

submit_message_raw_async (batch) 4.65 K 0.22 ms

±41.72% 0.184 ms 0.55 ms

submit_message_raw (sync) 0.0696 K 14.36 ms

±33.42% 12.57 ms 33.71 ms

Metric
insert_message

(Mnesia)

Previous

(MySQL)

Throughput (with

routing)
1,750 msg/sec 83 msg/sec

Throughput (simple) 1,750 msg/sec 89 msg/sec

Response Time (avg) 0.58ms 16ms

Response Time (p99) <5ms 30ms

Memory per operation 62 KB 121 KB

Performance Gain 21x faster -

Key Improvements:

� Removed duplicate number translation calls

� Async post-processing (routing, charging, events)

� Mnesia in-memory storage vs MySQL disk I/O

� 50% memory reduction

Monitoring

Runtime Statistics

Check batch worker statistics:

Returns:

SmsC.Messaging.BatchInsertWorker.stats()

Key Metrics to Monitor

1. Queue Size: current_queue_size - Should be below batch_size most of

the time

2. Flush Duration: last_flush_duration_ms - Should be < 100ms for

batch_size=100

3. Flush Errors: flush_errors - Should be 0 or very low

4. Throughput: total_flushed / uptime - Should match expected load

Alerts

Set up monitoring alerts for:

Queue size consistently at max (indicates backpressure)

Flush duration increasing (database performance degradation)

Flush errors > 0 (database connectivity issues)

Throughput below expected (performance degradation)

Troubleshooting

Symptom: Low Throughput

Possible causes:

1. Database connection pool exhausted: Increase pool_size

%{

 total_enqueued: 10000,

 total_flushed: 9900,

 total_batches: 99,

 current_queue_size: 100,

 flush_errors: 0,

 last_flush_at: ~U[2025-10-22 12:34:56Z],

 last_flush_count: 100,

 last_flush_duration_ms: 45

}

2. Slow database: Check query performance, add indexes

3. Network latency: Optimize network path to database

4. Batch size too small: Increase batch_insert_batch_size

Symptom: High Latency

Possible causes:

1. Flush interval too high: Reduce batch_insert_flush_interval_ms

2. Batch size too high: Reduce batch_insert_batch_size

3. Database slow writes: Check disk I/O, optimize tables

4. Using async API when you need sync: Switch to synchronous endpoint

Symptom: Memory Issues

Possible causes:

1. Queue backing up: Messages accumulating faster than flushing

2. Batch size too large: Reduce batch_insert_batch_size

3. Flush failures: Check flush_errors in stats

4. Need to restart worker: Supervisor.terminate_child/2 and restart

Best Practices

1. Start with defaults (100/100ms) and tune based on observed behavior

2. Monitor in production for at least 1 week before optimizing

3. Test configuration changes in staging with production-like load

4. Use benchmarks to validate configuration changes

5. Document your tuning decisions for future reference

6. Set up alerts before optimizing to catch regressions

7. Consider time zones - peak load varies by region

Example Configurations

Configuration: High-Volume Aggregator

Configuration: Enterprise Real-Time Messaging

Configuration: Development/Testing

Further Reading

Ecto Performance Guide

config/prod.exs

config :sms_c,

 batch_insert_batch_size: 200,

 batch_insert_flush_interval_ms: 200

config :sms_c, SmsC.Repo,

 pool_size: 50

config/prod.exs

config :sms_c,

 batch_insert_batch_size: 20,

 batch_insert_flush_interval_ms: 10

config :sms_c, SmsC.Repo,

 pool_size: 20

config/dev.exs

config :sms_c,

 batch_insert_batch_size: 10,

 batch_insert_flush_interval_ms: 50

config :sms_c, SmsC.Repo,

 pool_size: 5

https://hexdocs.pm/ecto/Ecto.Repo.html#module-shared-options

Benchee Documentation

Phoenix Under Pressure

https://hexdocs.pm/benchee/Benchee.html
https://dockyard.com/blog/2020/02/27/phoenix-liveview-under-pressure

SMS-C Routing Guide

← Back to Documentation Index | Main README

Overview

The SMS-C Routing system provides flexible, high-performance routing of SMS

messages based on multiple criteria including number prefixes, SMSC

identifiers, connection types, and more. Routes are stored in Mnesia for

persistence and can be modified at runtime without service interruption.

Key Features

Prefix-based routing: Route based on calling/called number prefixes with

longest-match-wins logic

SMSC-based routing: Route based on source or destination SMSC

Type-based routing: Route based on source connection type (IMS, Circuit

Switched, SMPP)

Priority-based routing: Control route selection order with configurable

priorities

Weight-based load balancing: Distribute traffic across multiple routes

using weights

Auto-reply routing: Automatically send replies back to message

originators

Drop routing: Discard messages matching specific criteria (spam filtering,

etc.)

Charging control: Configure charging behavior per route (Yes/No/Default)

Configuration file loading: Load initial routes from runtime.exs on first

startup

Runtime configuration: Add, modify, or disable routes without restarting

Web UI: Full CRUD interface for route management with frontend

dropdown

Simulation tool: Test routing logic before deployment

Backup/Restore: Export and import routing configurations

ENUM support: DNS-based number lookup (for future implementation)

Architecture

Data Model

Each route contains the following fields:

Field Type Description Required

route_id integer
Auto-incrementing

unique identifier
Yes (auto)

calling_prefix string/nil
Prefix match for calling

number (nil = wildcard)
No

called_prefix string/nil
Prefix match for called

number (nil = wildcard)
No

source_smsc string/nil
Source SMSC name (nil

= wildcard)
No

dest_smsc string/nil

Destination SMSC name

(required unless

auto_reply or drop is

true)

Conditional

source_type atom/nil

Source type: :ims ,

:circuit_switched ,

:smpp , or nil

No

enum_domain string/nil
DNS ENUM domain for

lookup
No

auto_reply boolean
If true, sends reply back

to originator

No (default:

false)

auto_reply_message string/nil

Message text for auto-

reply (required if

auto_reply is true)

Conditional

drop boolean
If true, discards message

(spam filtering)

No (default:

false)

Field Type Description Required

charged atom
Charging behavior:

:yes , :no , or :default

No (default:

:default)

weight integer
Load balancing weight

(1-100, default 100)
Yes

priority integer
Route priority (1-255,

lower = higher priority)
Yes

description string
Human-readable

description
No

enabled boolean Enable/disable route Yes

Note: A route must be one of three types:

1. Normal routing: auto_reply=false , drop=false , requires dest_smsc

2. Auto-reply: auto_reply=true , requires auto_reply_message

3. Drop: drop=true , discards the message

Routing Algorithm

When routing a message, the system follows this priority order:

PRIORITY 1: Location-Based Routing (Highest)

1. Check subscriber registration: If the destination MSISDN is registered in

the locations table

2. Route directly to serving frontend: Skip all routing rules and send

directly to the frontend serving that subscriber

3. This happens AFTER number translation to ensure consistency with

location registrations

PRIORITY 2: Standard Routing Rules (if no location registration found)

1. Filters enabled routes that match ALL specified criteria

2. Sorts by specificity (more specific routes first):

Longer called prefix = higher specificity (×100 points)

Longer calling prefix = medium specificity (×50 points)

Source SMSC specified = +25 points

ENUM result domain specified = +15 points

Source type specified = +10 points

ENUM domain specified = +5 points

3. Groups by priority (lower number = higher priority)

4. Selects from highest priority group using weighted random selection

5. Executes route action:

Normal route: Returns destination SMSC for message delivery

Auto-reply route: Sends reply back to originator asynchronously

Drop route: Discards message and logs event

Wildcards

nil or empty values act as wildcards that match any value

A route with no criteria specified is a catch-all route

Configuration

Loading Routes from Configuration File

Routes can be defined in config/runtime.exs and will be automatically loaded

on first startup. This is useful for defining baseline routing rules that should be

present when the system first starts.

Important: Routes from configuration are only loaded when the routing table

is empty (first startup). This preserves routes added via the Web UI during

runtime and prevents duplicates on restarts.

Configuration Loading Flow

Example Route Configuration Structure

Route Configuration

Route

Matching Criteria Destination Behavior Control

calling_prefix called_prefix source_smsc source_type dest_smsc auto_reply drop priority weight enabled charged

yes no default

See config/runtime.exs and config/sms_routes.example.exs for complete

examples including:

Geographic routing

Auto-reply routes

Drop routes (spam filtering)

Load-balanced routes

Premium number routing with charging

Getting Started

Initialization Flow

Route Types Overview

Route Types

Wildcard Route Prefix-based Route Type-based Route Multi-criteria Route

No criteria specified

Matches everything

Use case: Default

fallback

Match calling/called

prefix

Example: +44 →

UK_Gateway

Use case: Geographic

routing
Match source type

Example: IMS →

IMS_Gateway

Use case: Protocol

routing

Combine multiple

criteria

Example: +639 from

SMPP → Philippines_GW

Use case: Complex

routing

Message Routing Flow

Event LoggerRoute DatabaseRouting EngineLocation StoreApplication

Event LoggerRoute DatabaseRouting EngineLocation StoreApplication

alt [Normal route]

[Auto-reply route]

[Drop route]

alt [Matching routes found]

[No matching routes]

alt [Subscriber registered on frontend]

[No location registration]

Translate numbers (if needed)

Check location by MSISDN (destination)

Location found (frontend: smsc1)

Log "location_based_routing"

Set dest_smsc = frontend

Route complete (skip standard routing)

Not found

route_message(calling, called, source_smsc, source_type)

Log "routing_started"

Get enabled routes

Return route list

Filter matching routes

(prefix, SMSC, type, ENUM)

Log "N candidates found"

Sort by priority & specificity

Group by priority

Weighted random selection

Log "route_selected"

{:ok, dest_smsc, route}

Create reply message (async)

Log "auto_reply_triggered"

{:ok, nil, route}

Log "message_dropped"

{:ok, nil, route}

Log "no_route_found"

{:error, :no_route_found}

Common Use Cases

Location-Based Routing (Highest Priority)

Route messages directly to the frontend serving a registered subscriber,

bypassing all routing rules:

Parse error on line 4: ...ed
on frontend "ims-core-1"| REG[Loc ---------------

--------^ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',

'SUBROUTINEEND', 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',

'TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'STR'

Try again

How it works:

1. Message arrives with destination number

2. Numbers are translated (if configured)

3. System checks if translated destination MSISDN is in the locations table

4. If registered, message routes directly to the frontend serving that

subscriber

5. Standard routing rules are completely skipped

6. If not registered, normal routing rules apply

Benefits:

Guaranteed delivery to the correct frontend for registered subscribers

Fastest routing - no route table evaluation needed

Accurate routing - subscriber location is the source of truth

Overrides all routing rules - ensures subscriber reach-ability

Use cases:

IMS/VoLTE subscribers registered on specific IMS cores

Mobile subscribers attached to specific MSCs

SIP subscribers registered on specific application servers

Geographic Routing

Route messages to regional SMSCs based on destination country:

Load Balancing

Distribute traffic across multiple SMSCs with weights:

Weight: 70 Weight: 30

Message to +639*

Route Selection

Same Priority: 10

Philippines Primary

70% of traffic

Philippines Secondary

30% of traffic

Deliver Message

Weighted random

selection

ensures traffic

distribution

Premium Number Routing

Route premium numbers to special handling with priority:

Protocol-specific Routing

Route based on source connection type:

IMS SMPP Circuit Switched No type specified

Incoming Message

Check Source Type

IMS Gateway

Priority: 10

SMPP Gateway

Priority: 20

CS Gateway

Priority: 30

Default Gateway

Priority: 100

Route Message

Network Migration

During migration, route specific prefixes to new infrastructure:

Priority 1

Yes

No

Priority 50

Yes No

Message to +639*

Evaluate Routes

by Priority

Check: Starts with

6391?

New Platform SMSC

Migrated ranges

Continue to next priority

Check: Starts with 639?

Legacy Platform SMSC

Remaining ranges
No route found

Deliver Message

Priority-based routing

allows

gradual migration:

• New ranges → Priority

1

• Legacy ranges →

Priority 50

Complex Multi-criteria Routing

Combine multiple criteria for fine-grained control:

Web Interface

Route Management UI

Access the route management interface at /sms_routing (configure in your

router):

Features:

View all routes in a sortable table

Add new routes with form validation

Edit existing routes

Enable/disable routes without deleting

Delete routes with confirmation

Real-time updates (5-second refresh)

Adding a Route:

1. Click "Add New Route"

2. Fill in the form fields (only destination SMSC is required)

3. Set weight (1-100, default 100) and priority (1-255, default 100)

4. Check "Enabled" to activate immediately

5. Click "Save Route"

Editing a Route:

1. Click "Edit" next to the route

2. Modify fields as needed

3. Click "Save Route"

Disabling a Route:

Click "Disable" to temporarily deactivate without deleting

Click "Enable" to reactivate

Routing Simulator

Access the simulator at /simulator (via the navigation menu):

Features:

Test routing logic with various parameters

Detailed field-by-field evaluation showing why each route matched or

didn't match

See all routes evaluated in priority order

Visual indicators for matched/selected routes

Load example scenarios for quick testing

View test history (last 10 tests)

Using the Simulator:

1. Enter test parameters:

Calling number (from)

Called number (to)

Source SMSC (optional)

Source type (Any/IMS/Circuit Switched/SMPP)

2. Click "Simulate Routing"

3. View comprehensive results:

Routing Result: Selected route and destination (or "No Route Found")

Route Evaluation: All routes with field-by-field analysis:

✓ Green checkmark = Field matched

✗ Red X = Field didn't match

Reason for each field's match/non-match

Visual indicators:

Green border + "SELECTED" badge = Route actually used

Purple border + "MATCHED" badge = Routes that matched but

weren't selected

Gray border = Routes that didn't match

4. Load pre-configured examples using the example buttons

5. Review test history to compare different scenarios

Example Evaluation Output: For each route, you'll see why it matched or

didn't:

Calling prefix: "Matches prefix '1234'" or "Does not start with '44'"

Called prefix: "Wildcard (matches any)" or "Does not start with '639'"

Source SMSC: "Matches 'smsc1'" or "Expected 'untrusted_smsc', got

'none'"

Source type: "Wildcard (matches any)" or "Expected 'smpp', got 'IMS'"

API Reference

Core Operations Overview

Import/Export

merge

replace

export_routes Create Backup File

import_routes Import Mode

Add to Existing

Clear & Replace All

Message Routing

Match Found

No Match

route_message Evaluate Criteria

calling_number

called_number

source_smsc

source_type

message_id for logging

Result

Return: dest_smsc +

route

Return: error

Route Management

init_tables
Create/Check Mnesia

Tables

add_route Insert New Route

update_route Modify Existing Route

delete_route Remove Route

get_route Retrieve Single Route

list_routes Get All Routes

list_enabled_routes Get Active Routes Only

Route Management Operations

Mnesia DatabaseRouting APIApp

Initialize System

Add New Route

Update Route

Delete Route

Query Routes

init_tables()

Create tables if needed

Tables ready

:ok

add_route(route_data)

Validate fields

Insert route

Route ID assigned

{:ok, route}

update_route(route_id, changes)

Check route exists

Route found

Apply updates

Updated

{:ok, updated_route}

delete_route(route_id)

Remove route

Deleted

:ok

list_routes() or list_enabled_routes()

Mnesia DatabaseRouting APIApp

Query routes

Route list

[routes]

Message Routing Parameters

route_message accepts the following parameters:

calling_number (optional): Originating phone number

called_number (optional): Destination phone number

source_smsc (optional): Source SMSC identifier

source_type (optional): Connection type (:ims , :circuit_switched ,

:smpp)

message_id (optional): For event logging

Returns:

{:ok, dest_smsc, route} - Route found and selected

{:error, :no_route_found} - No matching route

Import/Export Operations

Import Process

merge

replace

Valid

Invalid

Yes

No
import_routes backup,

mode
Check Mode

Keep existing routes

Delete all existing routes

For each route in backup

Validate route data

Add to database

Skip & log error

More routes?
Return: imported count,

failed count

Export Process

export_routes
Query all routes from

Mnesia

Convert to exportable

format

Add metadata:

version, exported_at
Return backup map

Best Practices

Route Design

1. Use priorities wisely: Reserve low priorities (1-10) for critical routes

2. Keep it simple: Start with broad routes and add specific ones as needed

3. Document routes: Always add descriptions to routes

4. Use catch-all: Always have a default route with low priority

Performance

1. Minimize route count: Combine similar routes where possible

2. Use longest prefixes: More specific prefixes reduce evaluation time

3. Disable unused routes: Don't delete routes you might need later; disable

them

Operations

1. Test before deploy: Use the simulator to verify routing logic

2. Backup regularly: Export routes before making major changes

3. Monitor routing: Check event logs for routing decisions

4. Gradual rollout: Use weights to gradually shift traffic to new routes

Testing

1. Write integration tests: Test your specific routing scenarios

2. Load test: Verify routing performance under load

3. Failover testing: Ensure backup routes work when primaries fail

Troubleshooting

No Route Found

Symptom: {:error, :no_route_found} returned

Possible causes:

No routes configured

All matching routes are disabled

Route criteria don't match message parameters

Prefix doesn't match (check for typos)

Solutions:

1. Check that routes exist: SmsRouting.list_enabled_routes()

2. Use simulator to test routing with actual message parameters

3. Add a catch-all route for debugging: add_route(%{dest_smsc:

"debug_smsc", priority: 255})

4. Check event logs for routing evaluation details

Wrong Route Selected

Symptom: Message routed to unexpected destination

Possible causes:

Priority misconfiguration

Wildcard route has higher priority

Specificity calculation favors different route

Multiple routes with same criteria using weights

Solutions:

1. Use simulator to see all matching routes

2. Check priority values (lower = higher priority)

3. Verify specificity scores in simulator

4. Review weight distribution for load-balanced routes

Performance Issues

Symptom: Routing is slow

Possible causes:

Too many routes in database

Complex route patterns

Mnesia table not properly indexed

Solutions:

1. Consolidate similar routes

2. Remove disabled routes that are no longer needed

3. Ensure Mnesia indexes are created (automatic in init_tables)

4. Consider caching frequently-used routing decisions

Advanced Topics

ENUM/NAPTR Integration

ENUM (E.164 Number Mapping) provides DNS-based number lookup using

NAPTR records. The SMS-C includes full ENUM support with caching,

configurable DNS servers, and route matching based on ENUM lookup results.

What is ENUM?

ENUM maps E.164 phone numbers to DNS names using a simple

transformation:

Phone Number: +1-212-555-1234

ENUM Query: 4.3.2.1.5.5.5.2.1.2.1.e164.arpa

DNS Record Type: NAPTR (Naming Authority Pointer)

Result: SIP URI, routing information, or other service data

Configuration

ENUM functionality is configured in config/runtime.exs :

Enable ENUM Lookups:

Set enum_enabled: true to enable ENUM lookups before routing. When

enabled, the system will perform DNS ENUM lookups for incoming messages

and use the results in routing decisions.

ENUM Domains:

List the ENUM domains to query in priority order. The system will try each

domain until a successful lookup occurs.

Common ENUM domains:

e164.arpa - Official IETF ENUM domain

e164.org - Alternative ENUM registry

Custom private ENUM domains

DNS Servers:

Configure specific DNS servers for ENUM queries. Format: {ip_address, port}

Leave empty or set to [] to use system default DNS servers.

Example custom DNS configuration:

Google Public DNS: {"8.8.8.8", 53} , {"8.8.4.4", 53}

Cloudflare DNS: {"1.1.1.1", 53} , {"1.0.0.1", 53}

Custom ENUM DNS: {"10.0.0.53", 53}

Timeout:

Set the DNS query timeout in milliseconds (default: 5000ms). Increase for slow

networks, decrease for faster failover.

How ENUM Lookups Work

Parse error on line 37: ... style Router fill:#3182CE style C -----------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

ENUM Caching

The system caches ENUM lookup results for 15 minutes to improve

performance and reduce DNS load.

Cache Benefits:

Reduces DNS query load

Improves routing latency

Protects against DNS server failures (cached results remain available)

Cache Statistics:

View cache size and status in the NAPTR Test page

Monitor cache hit/miss rates via Prometheus metrics

Clear cache manually if needed (configuration changes, testing, etc.)

Cache Behavior:

Both successful and failed lookups are cached

Failed lookups cached to avoid repeated queries for invalid numbers

Cache automatically expires after 15 minutes

Cache survives application restarts (stored in ETS)

Using ENUM in Routes

Routes can match on ENUM lookup results using the enum_result_domain field:

Example Scenario:

ENUM lookup for +1-555-0100 returns NAPTR record:

Service: E2U+sip

Replacement: sip:customer@voip-carrier.com

Result Domain: voip-carrier.com

Route Configuration:

Create a route with enum_result_domain: "voip-carrier.com" to match

messages where ENUM lookup returned this domain.

Matching Logic:

If route has enum_result_domain: nil - matches all messages (wildcard)

If route has enum_result_domain: "specific.com" - only matches if ENUM

returned that domain

Routes with matching ENUM domains receive higher specificity scores

Priority Calculation:

Routes with ENUM result domains receive +15 specificity points, prioritizing

them over generic routes.

Testing ENUM Lookups

Access the NAPTR Test page at /naptr_test (via navigation menu).

Features:

Perform live ENUM lookups against configured DNS servers

View detailed NAPTR record information

See result domains extracted from NAPTR records

Monitor cache statistics

Clear cache for testing

Test Workflow:

1. Enter a phone number (with or without + prefix)

2. Specify ENUM domain (default: e164.arpa)

3. Click "Perform Lookup"

4. Review results:

NAPTR records found

Order and preference values

Service types (E2U+sip, E2U+tel, etc.)

Regular expressions

Replacement values

Extracted result domains (used for route matching)

Current Configuration Display:

DNS servers being used (or "System Default")

Timeout setting

Cache size and status

Clear cache button

Understanding Results:

Each NAPTR record contains:

Order: Priority for processing (lower first)

Preference: Within same order (lower first)

Flags: Processing instructions (u=terminal, s=continue)

Service: Service type (E2U+sip, E2U+tel, etc.)

Regexp: Substitution expression

Replacement: Alternative domain or address

Result Domain: Extracted domain for route matching

Common ENUM Use Cases

1. VoIP Peering

Use ENUM to identify numbers hosted on SIP/VoIP networks and route directly

to VoIP gateways:

ENUM returns SIP URI: sip:number@voip-carrier.com

Result domain: voip-carrier.com

Route with enum_result_domain: "voip-carrier.com" selected

Traffic sent to direct VoIP peering gateway

2. Carrier Identification

Identify the carrier serving a number and route accordingly:

ENUM returns carrier information

Result domain: carrier-a.com

Route to carrier A's interconnect

Optimize routing costs and quality

3. Number Portability

Handle ported numbers that moved between carriers:

ENUM lookup returns current carrier

Route to correct destination automatically

No manual routing table updates needed

4. Least Cost Routing

Combine ENUM with multiple routes:

ENUM identifies destination network

Multiple routes for same domain with different costs

Use priority and weights to prefer lower-cost routes

5. Emergency Services

Route emergency numbers (911, 112, etc.) to proper emergency services:

ENUM lookup identifies local emergency gateway

High-priority route ensures immediate routing

No delay from normal route evaluation

ENUM Routing Strategy

Recommended Configuration:

1. High Priority ENUM Routes (Priority 1-10)

Routes that match specific ENUM result domains

Used for direct peering, VoIP routing

Highest specificity, selected first

2. Medium Priority Prefix Routes (Priority 50-100)

Standard prefix-based routing

Used when ENUM lookup fails or returns no records

Reliable fallback

3. Low Priority Catch-All (Priority 200+)

Default route for everything else

Ensures no message goes unrouted

Example Route Hierarchy:

Priority 1: enum_result_domain: "sip.carrier.com" → Direct VoIP gateway

Priority 10: enum_result_domain: "tel.carrier.com" → Carrier's PSTN

gateway

Priority 50: called_prefix: "+1" → North America default gateway

Priority 100: called_prefix: "+" → International default gateway

Priority 200: No criteria → Ultimate fallback

Performance Considerations

DNS Query Latency:

ENUM lookups add DNS query time to routing:

Cached: < 1ms (fast)

Uncached: 10-100ms (depends on DNS server)

Recommendations:

Use geographically close DNS servers

Configure appropriate timeout (5000ms default)

Monitor cache hit rates (target > 80%)

Consider warming cache for known numbers

Scalability:

The caching system handles high-volume scenarios:

Cache is shared across all processes

Read-concurrent ETS table for performance

Automatic cache cleanup via TTL

Scales to millions of cached entries

Failure Handling:

ENUM failures gracefully fall back to regular routing:

DNS timeout → Fall through to next route

No NAPTR records → Use prefix-based routes

Invalid NAPTR format → Log error, continue routing

DNS server unavailable → Use cached results or fallback

Monitoring ENUM Operations

Use Prometheus metrics to monitor ENUM performance:

sms_c_enum_lookup_stop_duration - Lookup latency

sms_c_enum_cache_hit_count - Cache hits

sms_c_enum_cache_miss_count - Cache misses

sms_c_enum_cache_size_size - Current cache size

sms_c_enum_naptr_records_record_count - NAPTR records per lookup

Key Metrics to Watch:

Cache hit rate: Should be > 70% after warm-up

Lookup duration p95: Should be < 1000ms

Failed lookups: Monitor for DNS issues

See docs/METRICS.md for complete metrics documentation.

Troubleshooting ENUM

Issue: No NAPTR Records Found

Verify ENUM domain configuration

Test DNS server connectivity

Check if number is actually in ENUM registry

Try alternative ENUM domain (e.g., e164.org)

Use NAPTR Test page to diagnose

Issue: Slow ENUM Lookups

Check DNS server latency

Verify network connectivity

Increase timeout if needed

Consider using closer DNS servers

Check cache hit rate

Issue: Wrong Route Selected After ENUM

Verify enum_result_domain field in routes

Use Route Simulator to test routing logic

Check that result domain extraction is correct

Review NAPTR record format in Test page

Issue: ENUM Lookups Disabled

Verify enum_enabled: true in config/runtime.exs

Check that enum_domains list is not empty

Restart application after config changes

Check application logs for ENUM initialization

Security Considerations

DNS Cache Poisoning:

Use trusted DNS servers only

Consider DNSSEC if available

Validate NAPTR record formats

Monitor for unexpected result domains

Resource Exhaustion:

Cache limits prevent memory exhaustion

Timeout prevents hanging on slow DNS

Failed lookups cached to prevent retry storms

Information Disclosure:

ENUM lookups reveal routing intentions to DNS servers

Use private DNS servers for sensitive routing

Consider VPN/encrypted DNS for privacy

Event Logging

Routing decisions are logged via the EventLogger:

sms_routing_started : Routing evaluation begins

sms_routing_candidates : Number of enabled routes found

sms_routing_matches : Number of matching routes

sms_routing_selected : Selected route details

sms_routing_failed : No route found

Enable logging by passing message_id to route_message/1 .

Clustering

Mnesia tables are automatically distributed across clustered nodes. Routes are

replicated for high availability.

Parse error on line 25: ... style New fill:#3182CE style P ---------------------^

Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW', 'SOLID_ARROW',

'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Examples

See the test suite at test/sms_c/messaging/sms_routing_test.exs for

comprehensive examples of:

Prefix matching

Priority-based routing

Weight-based load balancing

Multi-criteria routing

Edge cases

Migration from Old Routing

If migrating from the old config-based routing, follow this process:

Migration Steps Detail

1. Initialize Tables

Creates Mnesia routing tables

Prepares system for new routing

2. Analyze Old Routes

Regex patterns → Prefix-based routes

Canned responses → Auto-reply routes

Custom logic → Multi-criteria routes

3. Test Thoroughly

Use the routing simulator

Verify all scenarios

Check edge cases

4. Update Code

Replace old routing calls

Use route_message/1 API

Update error handling

5. Deploy & Monitor

Deploy new routing system

Monitor for issues

Keep old config as backup initially

6. Clean Up

Remove old routing configuration

Remove migration code

Update documentation

Support

For issues or questions:

Check the test suite for examples

Use the simulator to debug routing logic

Review event logs for routing decisions

Check Mnesia table contents: :mnesia.table_info(:sms_route, :size)

SMS-C Troubleshooting

Guide

← Back to Documentation Index | Main README

Comprehensive guide for diagnosing and resolving common SMS-C issues.

Table of Contents

Diagnostic Tools

Message Delivery Issues

Routing Problems

Performance Issues

Database Problems

Frontend Connection Issues

Charging/Billing Issues

ENUM Lookup Problems

Cluster Issues

API Problems

Web UI Issues

System Resource Issues

Diagnostic Tools

Quick Health Check

Log Analysis

View Recent Errors:

Monitor Logs in Real-Time:

1. Check API status

curl https://api.example.com:8443/api/status

2. Check Prometheus metrics endpoint

curl https://api.example.com:9568/metrics | grep sms_c

3. Check application logs

tail -f /var/log/sms_c/application.log

4. Check process status

systemctl status sms_c

5. Check SQL CDR database connectivity (MySQL/MariaDB)

mysql -u sms_user -p -h db.example.com -e "SELECT 1"

For PostgreSQL:

psql -U sms_user -h db.example.com -d sms_c_prod -c "SELECT 1"

Last 100 error-level log entries

tail -1000 /var/log/sms_c/application.log | grep "\[error\]"

Search for specific error patterns

grep "routing_failed" /var/log/sms_c/application.log

Find SQL database errors

grep -i "database\|sql\|ecto" /var/log/sms_c/application.log |

grep error

Metric Queries

Check Message Processing Rate:

Check Queue Status:

Check System Performance:

Follow logs with filter

tail -f /var/log/sms_c/application.log | grep -E "

(error|warning|critical)"

Messages per second

rate(sms_c_message_received_count[5m])

Delivery success rate

rate(sms_c_delivery_succeeded_count[5m]) /

rate(sms_c_delivery_queued_count[5m])

Current queue depth

sms_c_queue_size_pending

Oldest message age (seconds)

sms_c_queue_oldest_message_age_seconds

Message processing latency (p95)

histogram_quantile(0.95,

sms_c_message_processing_stop_duration_bucket)

Routing latency (p95)

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

Message Delivery Issues

Messages Not Being Delivered

Symptoms:

Messages stuck in "pending" status

High pending message count

No delivery notifications

Diagnostic Steps:

1. Check Frontend Connections:

Expected: List of active frontends Problem: Empty list or missing expected

frontends

2. Check Message Queue:

Access Web UI: /message_queue

Filter by status: "pending"

Check dest_smsc value

Verify deliver_after is not in future

3. Check Routing:

Access Web UI: /simulator

Test with actual message parameters

Verify route matches and destination is correct

4. Check Frontend Polling:

Review frontend system logs:

Is frontend querying /api/messages ?

curl https://api.example.com:8443/api/frontends/active

Is frontend sending smsc header correctly?

Solutions:

No Frontends Connected:

Messages Routed to Wrong SMSC:

Review routing configuration

Check route priorities

Test in routing simulator

Verify frontend name matches dest_smsc in messages

Messages Scheduled for Future:

Check deliver_after timestamp

Reset if needed:

Check frontend system status

systemctl status frontend_service

Verify frontend can reach API

curl -k https://api.example.com:8443/api/status

Manually register frontend

curl -X POST https://api.example.com:8443/api/frontends/register \

 -H "Content-Type: application/json" \

 -d '{

 "frontend_name": "test_gateway",

 "frontend_type": "smpp",

 "ip_address": "10.0.1.50"

 }'

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"deliver_after": "2025-10-30T12:00:00Z"}'

Messages Failing with Retries

Symptoms:

delivery_attempts counter increasing

Messages with high attempt count (> 3)

Exponential backoff delays

Diagnostic Steps:

1. Check Event Log:

Look for:

Delivery failure events

Error descriptions

Retry timestamps

2. Check Frontend Logs:

Why is frontend failing to deliver?

Network errors?

Protocol errors?

Downstream system unavailable?

Solutions:

Temporary Network Issues:

Wait for retry (automatic)

Monitor for successful delivery

Persistent Failures:

curl https://api.example.com:8443/api/events/12345

Invalid Destination Number:

Verify number format

Check number translation rules

Delete message if truly invalid

Dead Letter Messages

Symptoms:

deadletter: true in message

Messages past expiration time

Status still "pending"

Diagnostic Steps:

1. Find Dead Letter Messages:

Access Web UI: /message_queue

Filter by expired status

Check expiration timestamps

2. Check Why Expired:

Review event log

Check delivery attempt history

Verify routing was successful

Route to alternate gateway

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"dest_smsc": "backup_gateway"}'

Reset retry counter

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"delivery_attempts": 0, "deliver_after": "2025-10-

30T12:00:00Z"}'

Solutions:

Extend Expiration:

Routing Problems

No Route Found

Symptoms:

Error: no_route_found

sms_c_routing_failed_count metric increasing

Event log shows "routing_failed"

Diagnostic Steps:

1. Check Routes Exist:

Access Web UI: /sms_routing

Verify routes are configured

Check at least one route is enabled

2. Test Routing:

Access Web UI: /simulator

Enter message parameters (calling number, called number, source SMSC)

Review evaluation results

Check why routes didn't match

3. Check Route Criteria:

Add 24 hours to expiration

curl -X PATCH https://api.example.com:8443/api/messages/12345 \

 -H "Content-Type: application/json" \

 -d '{"expires": "2025-10-31T12:00:00Z", "deadletter": false}'

Prefix matches required?

Source SMSC filter too restrictive?

All routes disabled?

Solutions:

No Routes Configured:

Add catch-all route:

Routes Too Specific:

Add broader route:

All Routes Disabled:

Enable appropriate routes via Web UI

Check configuration didn't accidentally disable routes

Wrong Route Selected

Symptoms:

Calling Prefix: (empty)

Called Prefix: (empty)

Source SMSC: (empty)

Dest SMSC: default_gateway

Priority: 255

Weight: 100

Enabled: ✓

Description: Catch-all default route

Called Prefix: +

Dest SMSC: international_gateway

Priority: 200

Weight: 100

Enabled: ✓

Description: International catch-all

Messages routed to unexpected destination

Wrong gateway receiving traffic

Load balance not distributing as expected

Diagnostic Steps:

1. Use Routing Simulator:

Access Web UI: /simulator

Test with actual message parameters

Review "All Matches" section

Check priority and specificity scores

2. Check Route Priorities:

Lower number = higher priority

Routes evaluated in priority order

Within same priority, weights apply

3. Check Route Specificity:

Specificity scoring:

Longer called prefix: +100 points per character

Longer calling prefix: +50 points per character

Source SMSC specified: +25 points

Source type specified: +10 points

ENUM domain specified: +15 points

Solutions:

Adjust Priorities:

Make specific route higher priority:

Adjust Weights:

Change load balance distribution:

Add More Specific Route:

Override general route for specific case:

Auto-Reply Not Working

Symptoms:

Auto-reply route configured but not triggering

No reply messages being sent

Premium Route:

 Called Prefix: +1555

 Priority: 10 (high priority)

General Route:

 Called Prefix: +1

 Priority: 50 (lower priority)

Primary (70%):

 Weight: 70

Backup (30%):

 Weight: 30

Specific Route:

 Called Prefix: +15551234

 Dest SMSC: dedicated_gateway

 Priority: 1

General Route:

 Called Prefix: +1

 Dest SMSC: general_gateway

 Priority: 50

Event log missing auto-reply event

Diagnostic Steps:

1. Check Route Configuration:

auto_reply: true

auto_reply_message contains text

Route is enabled

Route matches message criteria

2. Test in Simulator:

Verify route is selected

Check for "auto_reply" indication

3. Check Event Log:

Solutions:

Route Not Matching:

Broaden criteria (remove filters)

Check priority (should be higher than normal routes)

Verify enabled status

Message Not Set:

Edit route, add message:

Wrong Priority:

curl https://api.example.com:8443/api/events/12345 | grep

auto_reply

Auto-Reply: ✓

Auto-Reply Message: "Thank you for your message. We will respond

soon."

Auto-reply routes should have high priority (low number):

Performance Issues

High Message Processing Latency

Symptoms:

sms_c_message_processing_stop_duration p95 > 1000ms

Slow API responses

Queue building up

Diagnostic Steps:

1. Check Component Latencies:

2. Check System Resources:

Auto-Reply Route:

 Priority: 10

Normal Route:

 Priority: 50

Routing latency

histogram_quantile(0.95, sms_c_routing_stop_duration_bucket)

ENUM lookup latency

histogram_quantile(0.95, sms_c_enum_lookup_stop_duration_bucket)

Charging latency

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

Delivery latency

histogram_quantile(0.95, sms_c_delivery_succeeded_duration_bucket)

CPU usage

top -b -n 1 | grep sms_c

Memory usage

ps aux | grep beam.smp

Solutions:

Routing Slow (Many routes):

- Reduce number of enabled routes

- Combine similar routes

- Optimize route criteria

ENUM Lookups Slow:

- Check DNS server latency

- Increase timeout

- Use faster/closer DNS servers

- Disable ENUM if not needed

Charging Slow:

- Check OCS performance

- Increase OCS timeout

- Disable charging if not needed

- Use async charging

Database Slow:

- Increase connection pool size

- Add indexes

- Optimize queries

- Upgrade database resources

Configuration Changes:

```elixir

# config/config.exs

# Increase batch size for throughput

config :sms_c,

  batch_insert_batch_size: 200,

  batch_insert_flush_interval_ms: 200

# Increase database pool



Low Message Throughput

Symptoms:

Processing < 100 msg/sec

Using async API but still slow

High API response times

Diagnostic Steps:

1. Check Batch Worker:

Look for:

current_queue_size  near max

flush_errors  > 0

last_flush_duration_ms  very high

2. Check Bottlenecks:

Solutions:

Database Bottleneck:

Increase pool size:

config :sms_c, SmsC.Repo,

  pool_size: 50

# In production console (iex)

SmsC.Messaging.BatchInsertWorker.stats()

# Database query time

ecto_pools_query_time

# Connection pool queue time

ecto_pools_queue_time



Batch Configuration:

Tune for throughput:

Use Async Endpoint:

Queue Backlog Growing

Symptoms:

sms_c_queue_size_pending  increasing

Oldest message age increasing

Processing can't keep up with incoming rate

Diagnostic Steps:

1. Check Incoming vs Delivery Rate:

config :sms_c, SmsC.Repo,

  pool_size: 50  # Increase from 20

config :sms_c,

  batch_insert_batch_size: 200,  # Larger batches

  batch_insert_flush_interval_ms: 200  # Longer interval

# High throughput: use /create_async

curl -X POST 

https://api.example.com:8443/api/messages/create_async

# NOT: /api/messages (synchronous)

# Incoming rate

rate(sms_c_message_received_count[5m])

# Delivery rate

rate(sms_c_delivery_succeeded_count[5m])



2. Check Frontend Capacity:

Are frontends polling frequently enough?

Are frontends processing messages fast enough?

Any frontend errors?

3. Check Delivery Success Rate:

Solutions:

Frontends Not Polling:

Check frontend connectivity

Verify polling interval (should be 5-10 seconds)

Restart frontend services

Frontends Too Slow:

Add more frontend instances

Optimize frontend processing

Increase frontend concurrency

High Retry Rate:

Investigate delivery failures

Fix downstream issues

Route to alternate gateways

Temporary Spike:

Wait for queue to drain

Monitor until normal

Consider capacity upgrades if recurring

rate(sms_c_delivery_succeeded_count[5m]) / 

rate(sms_c_delivery_attempted_count[5m])



Database Problems

Connection Failures

Symptoms:

Error: "unable to connect to database"

API returning 500 errors

Application won't start

Diagnostic Steps:

1. Check SQL CDR Database Status:

2. Check Network:

3. Check Credentials:

# MySQL/MariaDB

systemctl status mysql

# PostgreSQL

systemctl status postgresql

# Test connectivity (MySQL/MariaDB)

mysql -u sms_user -p -h db.example.com -e "SELECT 1"

# Test connectivity (PostgreSQL)

psql -U sms_user -h db.example.com -d sms_c_prod -c "SELECT 1"

# Ping database host

ping db.example.com

# Check port connectivity (MySQL/MariaDB: 3306, PostgreSQL: 5432)

telnet db.example.com 3306

# or

telnet db.example.com 5432



Solutions:

Database Down:

Wrong Credentials:

Update configuration:

Network Issue:

Check firewall rules

Verify security groups (cloud)

Check VPN/network connectivity

Connection Pool Exhausted:

# Verify environment variables

echo $DB_USERNAME

echo $DB_HOSTNAME

echo $DB_PORT

# Try manual connection with same credentials (MySQL/MariaDB)

mysql -u $DB_USERNAME -p$DB_PASSWORD -h $DB_HOSTNAME

# For PostgreSQL:

# psql -U $DB_USERNAME -h $DB_HOSTNAME -d sms_c_prod

# Start database (MySQL/MariaDB)

systemctl start mysql

# Start database (PostgreSQL)

systemctl start postgresql

export DB_USERNAME=correct_user

export DB_PASSWORD=correct_password

# Restart application

systemctl restart sms_c



Increase pool size:

Slow Queries

Symptoms:

Database query time high

API responses slow

Connection pool queue building up

Diagnostic Steps:

1. Check Slow Query Log:

2. Check Missing Indexes:

config :sms_c, SmsC.Repo,

  pool_size: 50  # Increase from current value

-- MySQL/MariaDB: Enable slow query log

SET GLOBAL slow_query_log = 'ON';

SET GLOBAL long_query_time = 1;  -- Log queries > 1 second

-- View slow queries (MySQL/MariaDB)

SELECT * FROM mysql.slow_log ORDER BY query_time DESC LIMIT 10;

-- PostgreSQL: Enable slow query log in postgresql.conf

-- log_min_duration_statement = 1000  # milliseconds

-- Then check PostgreSQL logs

-- Check table indexes

SHOW INDEX FROM message_queues;

-- Expected indexes:

-- - source_smsc

-- - dest_smsc

-- - send_time

-- - inserted_at



3. Check Table Stats:

Solutions:

Missing Indexes:

Table Fragmentation:

-- Table sizes (MySQL/MariaDB)

SELECT

  table_name,

  table_rows,

  ROUND(data_length / 1024 / 1024, 2) AS data_mb,

  ROUND(index_length / 1024 / 1024, 2) AS index_mb

FROM information_schema.tables

WHERE table_schema = 'sms_c_prod';

-- Table sizes (PostgreSQL)

-- SELECT schemaname, tablename,

--   

pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename)) 

AS size

-- FROM pg_tables WHERE schemaname = 'public';

CREATE INDEX idx_message_queues_source_smsc ON 

message_queues(source_smsc);

CREATE INDEX idx_message_queues_dest_smsc ON 

message_queues(dest_smsc);

CREATE INDEX idx_message_queues_send_time ON 

message_queues(send_time);

CREATE INDEX idx_message_queues_status ON message_queues(status);

-- MySQL/MariaDB

OPTIMIZE TABLE message_queues;

OPTIMIZE TABLE frontend_registrations;

-- PostgreSQL

-- VACUUM ANALYZE message_queues;

-- VACUUM ANALYZE frontend_registrations;



Too Much Data:

Clean up old records:

Disk Space Full

Symptoms:

Error: "Disk full"

Cannot write to database

Application crashes

Diagnostic Steps:

1. Check Disk Usage:

2. Find Large Files:

-- Delete delivered messages older than 30 days

DELETE FROM message_queues

WHERE status = 'delivered'

AND deliver_time < DATE_SUB(NOW(), INTERVAL 30 DAY)

LIMIT 10000;

df -h

# Check SQL database directory (MySQL/MariaDB)

du -sh /var/lib/mysql

# Check SQL database directory (PostgreSQL)

du -sh /var/lib/postgresql



Solutions:

Clean Old Data:

Rotate Logs:

Expand Disk:

Resize volume (cloud)

Add new disk and extend volume

Move data to larger disk

# Find largest files (MySQL/MariaDB)

find /var/lib/mysql -type f -exec du -h &#123;&#125; + | sort -rh 

| head -20

# Find largest files (PostgreSQL)

find /var/lib/postgresql -type f -exec du -h &#123;&#125; + | sort 

-rh | head -20

# Check log files

du -sh /var/log/sms_c/*

-- Delete old messages

DELETE FROM message_queues

WHERE inserted_at < DATE_SUB(NOW(), INTERVAL 90 DAY)

LIMIT 100000;

# Force logrotate

logrotate -f /etc/logrotate.d/sms_c

# Clear old log files

find /var/log/sms_c -name "*.log.*" -mtime +30 -delete



Frontend Connection Issues

Frontend Not Showing as Active

Symptoms:

Frontend status shows "expired"

Frontend not in active list

Messages not being delivered to frontend

Diagnostic Steps:

1. Check Registration:

2. Check Frontend Logs:

Is frontend calling /api/frontends/register ?

Any API errors?

Registration frequency (should be every 60s)

3. Check API Logs:

Solutions:

Frontend Not Registering:

Test manual registration:

curl https://api.example.com:8443/api/frontends/active | grep 

frontend_name

grep "frontend.*register" /var/log/sms_c/application.log | tail 

-20



If successful, problem is in frontend code/configuration.

Registration Timing Out:

Frontends expire after 90 seconds. Ensure registration every 60 seconds:

Network Issues:

Check firewall between frontend and API

Verify DNS resolution

Test with curl from frontend server

Frontend Repeatedly

Connecting/Disconnecting

Symptoms:

Frontend status flipping between active/expired

High registration count in history

Unstable connection

Diagnostic Steps:

1. Check Frontend Health:

curl -X POST https://api.example.com:8443/api/frontends/register \

  -H "Content-Type: application/json" \

  -d '&#123;

    "frontend_name": "uk_gateway",

    "frontend_type": "smpp",

    "ip_address": "10.0.1.50"

  &#125;'

# Frontend should call register every 60 seconds

while True:

    register_with_smsc()

    time.sleep(60)



Is frontend process stable?

Any crashes or restarts?

Resource issues (CPU/memory)?

2. Check Network Stability:

3. Check Registration Timing:

Too frequent? (every few seconds)

Too infrequent? ( > 90 seconds)

Solutions:

Frontend Unstable:

Fix frontend application issues

Increase frontend resources

Check frontend logs for errors

Network Issues:

Check for intermittent connectivity

Review firewall logs

Check load balancer health checks

Wrong Registration Interval:

Correct interval:

# Check packet loss

ping -c 100 api.example.com

# Check connection resets

netstat -s | grep -i reset

REGISTRATION_INTERVAL = 60  # seconds



Charging/Billing Issues

Charging Failures

Symptoms:

sms_c_charging_failed_count  increasing

Event log shows "charging_failed"

Messages marked as charge_failed: true

Diagnostic Steps:

1. Check OCS Connectivity:

Expected: {"result":"Pong"}

2. Check OCS Logs:

3. Check Configuration:

Solutions:

OCS Unavailable:

# Test OCS API

curl -X POST http://ocs.example.com:2080/jsonrpc \

  -H "Content-Type: application/json" \

  -d '&#123;

    "method": "SessionSv1.Ping",

    "params": [],

    "id": 1

  &#125;'

tail -f /var/log/ocs/ocs.log

# Verify OCS URL

grep ocs_url config/runtime.exs



Configuration Error:

Update configuration:

Disable Charging Temporarily:

Restart application.

Account Issues:

Check account exists in OCS

Verify account has balance

Check rating plans are configured

Charging Too Slow

Symptoms:

sms_c_charging_succeeded_duration  p95 > 500ms

Message processing slow when charging enabled

Fast when charging disabled

Diagnostic Steps:

# Check OCS status

systemctl status ocs

# Start if needed

systemctl start ocs

config :sms_c,

  ocs_url: "http://correct-host:2080/jsonrpc",

  ocs_tenant: "correct_tenant"

config :sms_c,

  default_charging_enabled: false



1. Check Charging Latency:

2. Check OCS Performance:

3. Check Network Latency:

Solutions:

OCS Slow:

Optimize OCS configuration

Add OCS resources

Use faster rating engine

Network Latency:

Deploy OCS closer to SMS-C

Use direct network path

Avoid VPN/tunnels if possible

Timeout Too Low:

Increase timeout:

histogram_quantile(0.95, sms_c_charging_succeeded_duration_bucket)

# OCS response time

curl -w "%&#123;time_total&#125;\n" -X POST 

http://ocs.example.com:2080/jsonrpc \

  -H "Content-Type: application/json" \

  -d '&#123;"method":"SessionSv1.Ping","params":[],"id":1&#125;'

# Ping OCS host

ping -c 10 ocs.example.com

config :sms_c,

  ocs_timeout: 5000  # 5 seconds



ENUM Lookup Problems

ENUM Lookups Failing

Symptoms:

sms_c_enum_lookup_stop_duration  showing failures

Event log shows ENUM errors

Routes with enum_result_domain  not matching

Diagnostic Steps:

1. Check ENUM Configuration:

2. Test DNS Connectivity:

3. Check DNS Server:

Solutions:

DNS Server Unreachable:

grep -A 10 "enum_" config/runtime.exs

# Test DNS server

dig @8.8.8.8 e164.arpa

# Test ENUM query

# For +15551234567:

dig @8.8.8.8 NAPTR 7.6.5.4.3.2.1.5.5.5.1.e164.arpa

# Is custom DNS reachable?

ping 10.0.1.53

# Test port

nc -zv 10.0.1.53 53



Use alternate DNS:

ENUM Domain Wrong:

Update domain:

Timeout Too Short:

Increase timeout:

Disable ENUM (if not needed):

ENUM Cache Issues

Symptoms:

Low cache hit rate (< 70%)

Cache size growing unbounded

Memory usage high

Diagnostic Steps:

config :sms_c,

  enum_dns_servers: [

    &#123;"8.8.8.8", 53&#125;,  # Google Public DNS

    &#123;"1.1.1.1", 53&#125;   # Cloudflare DNS

  ]

config :sms_c,

  enum_domains: ["e164.arpa"]  # Use standard domain

config :sms_c,

  enum_timeout: 10000  # 10 seconds

config :sms_c,

  enum_enabled: false



1. Check Cache Stats:

2. Check Traffic Pattern:

Are numbers repeating?

Cache TTL appropriate?

Solutions:

Low Hit Rate (Expected):

Traffic to unique numbers (normal)

Monitor but don't alarm if < 70%

Cache Growing:

Clear cache via NAPTR Test page or restart application.

High Memory Usage:

Expected with large cache

Monitor overall system memory

Consider TTL adjustment

Cluster Issues

Node Can't Join Cluster

Symptoms:

# Cache hit rate

rate(sms_c_enum_cache_hit_count[5m]) / 

(rate(sms_c_enum_cache_hit_count[5m]) + 

rate(sms_c_enum_cache_miss_count[5m]))

# Cache size

sms_c_enum_cache_size_size



Single node running

Cluster queries returning only local results

Erlang distribution errors

Diagnostic Steps:

1. Check Node Names:

2. Check Erlang Cookie:

3. Check Network:

Solutions:

Cookie Mismatch:

Set same cookie on all nodes:

# In IEx console

Node.self()

# Expected: :sms@node1.example.com

Node.list()

# Expected: List of other nodes

# Check cookie file

cat ~/.erlang.cookie

# Verify same on all nodes

# Can nodes reach each other?

ping node2.example.com

# Check ports

nc -zv node2.example.com 4369

nc -zv node2.example.com 9100-9200



Firewall Blocking:

Open required ports:

DNS Issues:

Use IP addresses instead of hostnames:

Cluster Split Brain

Symptoms:

Nodes running but disconnected

Different data on different nodes

Mnesia inconsistencies

Diagnostic Steps:

1. Check Node Connectivity:

export ERLANG_COOKIE=same_secret_value_here

# Or update ~/.erlang.cookie

echo "same_secret_value_here" > ~/.erlang.cookie

chmod 400 ~/.erlang.cookie

# EPMD

iptables -A INPUT -p tcp --dport 4369 -j ACCEPT

# Erlang distribution

iptables -A INPUT -p tcp --dport 9100:9200 -j ACCEPT

config :sms_c,

  cluster_nodes: [

    :"sms@10.0.1.10",

    :"sms@10.0.1.11"

  ]



2. Check Mnesia:

Solutions:

Reconnect Nodes:

Mnesia Inconsistency:

Export routes from correct node

Stop all nodes

Delete Mnesia directory

Start nodes

Import routes

API Problems

API Not Responding

Symptoms:

Connection timeout

# On each node (IEx)

Node.list()

:mnesia.system_info(:running_db_nodes)

# Stop all nodes

systemctl stop sms_c

# Start one node first

systemctl start sms_c  # On node1

# Wait for it to fully start, then start others

systemctl start sms_c  # On node2

systemctl start sms_c  # On node3



Connection refused

No response

Diagnostic Steps:

1. Check API Process:

2. Check Firewall:

3. Check TLS Configuration:

Solutions:

Application Not Running:

Firewall Blocking:

# Is application running?

systemctl status sms_c

# Check listening ports

netstat -tlnp | grep 8443

# Check iptables

iptables -L -n | grep 8443

# Test local connectivity

curl -k https://localhost:8443/api/status

# Check certificate exists

ls -l priv/cert/server.crt priv/cert/server.key

# Check certificate validity

openssl x509 -in priv/cert/server.crt -noout -dates

systemctl start sms_c



Certificate Issues:

Generate new certificate (see Configuration Guide).

Wrong Port:

Check configuration:

API Returning 500 Errors

Symptoms:

Internal Server Error

500 status code

Error in logs

Diagnostic Steps:

1. Check Application Logs:

2. Check Database:

3. Check Resources:

# Allow API port

iptables -A INPUT -p tcp --dport 8443 -j ACCEPT

grep "port:" config/runtime.exs

tail -100 /var/log/sms_c/application.log | grep "\[error\]"

mysql -u sms_user -p -e "SELECT 1"



Solutions:

Database Unavailable:

Start database

Fix connection configuration

Out of Memory:

Restart application

Increase system memory

Check for memory leaks

Application Error:

Check specific error in logs

Fix configuration issue

Restart application

Web UI Issues

Can't Access Web UI

Symptoms:

Connection timeout

404 Not Found

Page won't load

# Memory

free -h

# CPU

top -b -n 1

# Disk

df -h



Diagnostic Steps:

1. Check Application Status:

2. Check Port:

3. Check URL:

Correct hostname?

Correct port?

HTTP vs HTTPS?

Solutions:

Wrong Port:

Check configuration:

Access on correct port (default: 80 or 4000).

Application Not Running:

Firewall:

systemctl status sms_c

netstat -tlnp | grep 80

grep "control_panel" config/runtime.exs

systemctl start sms_c

iptables -A INPUT -p tcp --dport 80 -j ACCEPT



LiveView Not Updating

Symptoms:

Page loads but doesn't update

Data is stale

WebSocket errors in browser console

Diagnostic Steps:

1. Check Browser Console:

Open Developer Tools (F12)

Look for WebSocket errors

Check network tab for failed requests

2. Check Proxy Configuration:

If using reverse proxy, ensure WebSocket support:

Solutions:

WebSocket Blocked:

Configure proxy for WebSocket

Check firewall

Check browser extensions

Refresh Page:

Hard refresh (Ctrl+F5)

Clear browser cache

location /live &#123;

    proxy_http_version 1.1;

    proxy_set_header Upgrade $http_upgrade;

    proxy_set_header Connection "upgrade";

&#125;



System Resource Issues

High CPU Usage

Symptoms:

CPU consistently > 80%

System slow

Application unresponsive

Diagnostic Steps:

1. Check Process:

2. Check Metrics:

Solutions:

High Traffic:

Scale horizontally (add nodes)

Scale vertically (add CPU)

Inefficient Routing:

Reduce number of routes

Optimize route criteria

Too Many ENUM Lookups:

top -b -n 1 | grep beam.smp

# Message processing rate

rate(sms_c_message_received_count[5m])

# Routing operations

rate(sms_c_routing_route_matched_count[5m])



Check cache hit rate

Consider disabling if not needed

High Memory Usage

Symptoms:

Memory usage > 90%

Application crashes

Out of memory errors

Diagnostic Steps:

1. Check Memory:

2. Check Cache Sizes:

Solutions:

ENUM Cache Too Large:

Clear cache

Reduce TTL

Disable ENUM if not needed

Batch Queue Growing:

If queue is large, flush manually or restart.

free -h

ps aux | grep beam.smp

sms_c_enum_cache_size_size

# Check worker stats (IEx)

SmsC.Messaging.BatchInsertWorker.stats()



Add Memory:

Scale vertically

Add swap (temporary)

Memory Leak:

Restart application

Report issue for investigation

For additional assistance, consult:

Operations Guide - Daily procedures

Configuration Guide - Configuration options

Metrics Guide - Monitoring setup

Application logs - /var/log/sms_c/application.log




