Configuration
Reference

Complete guide to all configuration parameters

Architecture Overview

The OmniMessage SMPP Gateway is a stateless protocol frontend that
translates SMPP messages to/from OmniMessage. All business logic, routing
decisions, and message storage are handled by OmniMessage Core - the
gateway simply:

1. Receives SMPP PDUs from carriers and clients

2. Translates them to OmniMessage format via REST API
3. Polls OmniMessage for messages to send

4. Sends SMPP PDUs to carriers

5. Reports delivery status back to OmniMessage

This is identical to how other OmniMessage frontends (Diameter, MAP, IMS)
work - they're all stateless protocol translators that delegate to OmniMessage
Core.

Configuration File Location

/opt/omnimessage-smpp/config/runtime.exs

Important: After changing configuration, restart the gateway:

sudo systemctl restart omnimessage-smpp

Configuration Structure

The configuration file uses Elixir syntax. Basic structure:

import Config

Global settings

config :omnimessage smpp,
setting name: value

SMPP binds

config :omnimessage smpp, :binds, [
%{

name: "bind name",
... bind settings

Global Settings

###AP|_BASE_URL

OmniMessage Core platform URL

config :omnimessage smpp,
api base url: "https://omnimessage-core.example.com:8443"

Parameter Type Required Default

api base url String (URL) Yes -

Purpose: URL of the OmniMessage Core platform. The gateway communicates
with OmniMessage via REST API for all message processing:

e Submit Messages: Send received SMPP messages to OmniMessage for
processing

* Retrieve Messages: Poll for messages destined for SMPP carriers

e Report Delivery Status: Update message delivery status back to
OmniMessage

e System Health: Periodic health checks

Critical: This is where the gateway gets all its "brains". OmniMessage handles:

°
AN

Message validation and format checking

°
N

Routing decisions (which carrier to use)

°
AN

Rate limiting and throttling

°
AN

Number validation

°
AN

Message storage and persistence

°
N

Delivery retry logic

e v Status tracking
The gateway simply translates SMPP & OmniMessage format.

Examples:

HTTPS with IP
api base url: "https://192.168.1.100:8443"

HTTPS with hostname
api base url: "https://omnimessage-core.company.com:8443"

HTTP (not recommended for production)
api_base url: "http://192.168.1.100:8080"

Network Requirements:

¢ Gateway must have network access to OmniMessage Core
e Use HTTPS in production (configure verify ssl peer)

e Firewall must allow outbound HTTPS on specified port

SMPP_POLL INTERVAL

Queue check frequency (milliseconds)

config :omnimessage smpp,
smpp poll interval: 100

Parameter Type Required Default
smpp_poll interval Integer No 100
Purpose: How often (in milliseconds) each client checks the message queue.

Guidelines:

e High volume (>100 TPS): 100-500ms
¢ Medium volume (10-100 TPS): 500-1000ms
e Low volume (<10 TPS): 1000-2000ms

Environment variable: SMPP_POLL INTERVAL

VERIFY_SSL_PEER

SSL certificate verification

config :omnimessage smpp,
verify ssl peer: false

Parameter Type Required Default
verify ssl peer Boolean No false

Purpose: Whether to verify SSL certificates when connecting to backend API.

Values:

e true: Verify certificates (production with valid certs)

e false: Skip verification (self-signed certs, testing)

Environment variable: VERIFY SSL PEER

SMSC_NAME

Gateway identifier for registration

config :omnimessage smpp,
smsc_name: "smpp gateway"

Parameter Type Required Default

SmsC_name String No "smpp_gateway"

Purpose: Identifies this gateway instance in the message queue backend.

Environment variable: SMSC NAME

SMPP Client Bind Configuration

Client binds are outbound connections where the gateway acts as an
ESME (client) connecting to carrier SMSC servers. In this mode, the gateway
initiates the connection to send and receive messages through external
carriers.

Complete Client Bind Example

config :omnimessage smpp, :binds, [
%{
Unique identifier for this connection
name: "vodafone uk",

Connection mode
mode: :client,

SMPP bind type
bind type: :transceiver,

Carrier SMPP server address
host: "smpp.vodafone.co.uk",
port: 2775,

Authentication credentials
system id: "your username",

password: "your password",

Rate limiting
tps limit: 100,

Queue check frequency
queue check frequency: 1000

Client Bind Parameters

name

Unique connection identifier

Type Required Example

String Yes "vodafone uk"

Purpose: Uniquely identifies this SMPP connection.

e Used in logs and metrics
e Must be unique across all binds

e Use descriptive names (carrier, region, purpose)
Naming conventions:

e carrier region: "vodafone uk", "att us"

* purpose number: "marketing 1", "alerts primary"

mode

Connection type

Type Required Value

Atom Yes :client

Purpose: Defines this as an outbound connection where the gateway acts as
an ESME connecting to an external SMSC.

Fixed value: Always :client for outbound connections.
bind_type

SMPP session type

Type Required Allowed Values

Atom Yes :transmitter, :receiver, :transceiver

Purpose: Defines message direction capability.
Options:

e :transmitter - Send messages only (submit sm)
e :receiver - Receive messages only (deliver_sm)

e :transceiver - Send and receive (most common)

Recommendation: Use :transceiver unless carrier requires specific type.

host

Carrier SMPP server hostname or IP

Type Required Example

String Yes "smpp.carrier.com" or "10.5.1.100"

Purpose: Address of carrier's SMPP server.

Examples:

host: "smpp.vodafone.co.uk"
host: "10.20.30.40"
host: "smpp-primary.carrier.net"”

port

SMPP server port

Type Required Default Range

Integer Yes 2775 1-65535

Purpose: TCP port for SMPP connection.
Standard port: 2775

Examples:

port: 2775 # Standard
port: 3000 # Custom

system id

Authentication username

Type Required Example

String Yes "company user"

Purpose: Username provided by carrier for authentication.

Security: Protect this credential - stored in configuration file.

password

Authentication password

Type Required Example

String Yes "secret password"

Purpose: Password provided by carrier for authentication.
Security:

e Protect this credential
e Use strong passwords

* Rotate periodically

tps_limit

Transactions per second limit

Type Required Default Range

Integer Yes 100 1-10000

Purpose: Maximum messages per second to send through this connection.

Guidelines:

e Set to 70-80% of carrier's maximum
e Prevents throttling/disconnection

¢ Allows headroom for delivery receipts

Examples:

tps limit: 10 # Low volume

tps limit: 50 # Medium volume

tps limit: 100 # High volume (most common)
tps limit: 1000 # Very high volume

Calculation:

If carrier max = 100 TPS
Set tps limit = 70-80
Leaves 20-30 TPS headroom

queue_check frequency

Message queue polling interval (milliseconds)

Type Required Default Range

Integer Yes 1000 100-10000

Purpose: How often to check backend for new messages to send.
Guidelines:

e High volume (>100 TPS): 500-1000ms
¢ Medium volume (10-100 TPS): 1000-2000ms
¢ Low volume (<10 TPS): 2000-5000ms

Trade-offs:

e Lower value = faster message pickup, more API load

e Higher value = slower pickup, less API load

Web Ul Example:

SMPP Server Bind Configuration

Server binds define inbound connections where the gateway acts as an
SMSC (server) accepting connections from external ESMEs (clients). In this
mode, partner systems connect to the gateway to send and receive messages.

Complete Server Bind Example

config :omnimessage smpp, :server binds, [
%{
Unique identifier for this client
name: "partner _acme",
Expected credentials from client
system id: "acme corp",

password: "acme secret",

Allowed bind types
allowed bind types: [:transmitter, :receiver, :transceiver],

IP restrictions
ip whitelist: ["192.168.1.0/24", "10.50.1.100"],

Rate limiting
tps limit: 50,

Queue check frequency
queue check frequency: 1000

Server Bind Parameters

name

Client identifier

Type Required Example

String Yes "partner acme"

Purpose: Identifies the external client connecting to you.

Naming conventions: Use partner/client name for easy identification.

system id

Expected username from client

Type Required Example

String Yes "acme corp"

Purpose: Username that external client must provide to authenticate.

Provide to client: Share this credential with your partner.

password

Expected password from client

Type Required Example

String Yes "secure password"

Purpose: Password that external client must provide to authenticate.
Security:

* Use strong passwords
e Unique per client

e Share securely with partner

allowed bind_types

Permitted session types

Type Required Default

List of Atoms Yes -

Purpose: Restricts what bind types the client can use.

Options:

allowed bind types: [:transceiver] # Only transceiver
allowed bind types: [:transmitter, :receiver] # TX or RX
allowed bind types: [:transmitter, :receiver, :transceiver] # Any

Recommendation: Allow all three unless you need restrictions.

ip_whitelist

Allowed client IP addresses

Type Required Default Format

List of Strings Yes [1 IPs or CIDR notation

Purpose: Security - only allow connections from known IPs.
Formats:

e Single IP: "192.168.1.100" (automatically /32)
e CIDR subnet: "192.168.1.0/24", "10.0.0.0/8"
e Mix both: ["192.168.1.0/24", "10.50.1.100"]

Examples:

Allow any IP (not recommended)
ip whitelist: []

Single IP
ip whitelist: ["203.0.113.50"]

Multiple IPs
ip whitelist: ["203.0.113.50", "203.0.113.51"]

Subnet
ip whitelist: ["192.168.1.0/24"]

Mixed
ip whitelist: ["192.168.1.0/24", "10.50.1.100", "10.60.0.0/16"]

Common subnets:

/32 - Single IP (automatic for IPs without mask)

/24 - 256 addresses (e.g., 192.168.1.0-255)

/16 - 65,536 addresses (e.g., 10.50.0.0-255.255)

/8 -16,777,216 addresses (e.g., 10.0.0.0-255.255.255.255)

tps_limit

Messages per second limit

Same as client bind tps limit - controls outbound deliver_sm rate.
queue_check frequency

Queue polling interval

Same as client bind queue check frequency - how often to check for messages
to deliver to this client.

Web Ul Example:

Server Listen Configuration

When server binds are configured, gateway listens for incoming connections.

Complete Listen Example

config :omnimessage smpp, :listen, %{
host: "0.0.0.0",
port: 2775,
max_connections: 100

}

Listen Parameters

host

IP address to bind to

Type Required Default Common Values

String No "0.0.0.0" "0.0.0.0", "127.0.0.1"

Purpose: Which network interface to listen on.

Values:

"0.0.0.0" - Listen on all interfaces (recommended)
e "127.0.0.1" - Listen on localhost only (testing)
e "192.168.1.10" - Listen on specific IP

port

TCP port to listen on

Type Required Default Range

Integer No 2775 1-65535

Purpose: Port for incoming SMPP connections.
Standard: 2775

max_connections

Maximum concurrent connections

Type Required Default Range

Integer No 100 1-10000

Purpose: Limits total number of simultaneous client connections.
Guidelines:

e Set based on expected clients
e Higher values use more memory

» Typical: 10-100 connections

Complete Configuration Examples

Example 1: Single Carrier Connection

import Config

config :omnimessage smpp,
api base url: "https://smsc.company.com:8443",
verify ssl peer: true,
smsc_name: "smpp prod"

config :omnimessage smpp, :binds, [
%{

name: "att primary",
mode: :client,
bind type: :transceiver,
host: "smpp.att.com",
port: 2775,
system id: "company user",
password: "secure pass 123",
tps limit: 100,
queue check frequency: 1000

Example 2: Multiple Carriers

import Config

config :omnimessage smpp,
api base url: "https://smsc.company.com:8443"

config :omnimessage smpp, :binds, [
North America
%{
name: "att us",
mode: :client,
bind type: :transceiver,
host: "smpp.att.com",
port: 2775,
system id: "att username",
password: "att password",
tps limit: 100,
queue check frequency: 1000
}

Europe
{

name: "vodafone uk",

mode: :client,

bind type: :transceiver,
host: "smpp.vodafone.co.uk",
port: 2775,

system id: "voda username",
password: "voda password",
tps limit: 50,

queue check frequency: 1000

o°

Example 3: Gateway with Server Binds

impo

conf
ap

Ou
conf

(o)
%{

rt Config

ig :omnimessage smpp,
i base url: "https://smsc.company.com:8443"

tbound connections
ig :omnimessage smpp, :binds, [

name: "upstream carrier",
mode: :client,

bind type: :transceiver,
host: "smpp.carrier.com",
port: 2775,

system id: "my username",
password: "my password",
tps limit: 100,

queue check frequency: 1000

Inbound client definitions
config :omnimessage_smpp, :server_binds, [

o
%{

name: "partner alpha",

system id: "alpha corp",

password: "alpha secret",

allowed bind types: [:transmitter, :receiver,
ip whitelist: ["203.0.113.0/24"],

tps limit: 50,

queue check frequency: 1000

name: "partner beta",

system id: "beta inc",

password: "beta password",
allowed bind types: [:transceiver],
ip whitelist: ["198.51.100.50"],
tps limit: 25,

queue check frequency: 2000

:transceiver],

Server listening

config :omnimessage smpp, :listen, %{
host: "0.0.0.0",
port: 2775,
max_connections: 100

}

Configuration Validation

After editing configuration, validate before restarting:
Syntax Check

Check Elixir syntax
/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!
(‘config/runtime.exs"')"

If syntax is invalid, you'll see an error. Fix before restarting.
Test Configuration

Restart in foreground to see errors
sudo -u omnimessage-smpp /opt/omnimessage-smpp/bin/omnimessage-
smpp console

Press Ctr1+C twice to exit.

Security Best Practices

1. Protect configuration file:

sudo chmod 600 /opt/omnimessage-smpp/config/runtime.exs
sudo chown omnimessage-smpp:omnimessage-smpp /opt/omnimessage-
smpp/config/runtime.exs

2. Use strong passwords:

o Minimum 12 characters
o Mix letters, numbers, symbols

o Unique per connection

3. Use IP whitelists:

o Always configure ip whitelist for server binds

o Never use empty list [] in production

4. Enable SSL verification:

o Set verify ssl peer: true with valid certificates

5. Regular credential rotation:

o Change passwords quarterly

o Coordinate with carriers/partners

Next Steps

e Review for metrics configuration
e Read for managing connections
e See for common issues

Return to for overview

Glossary

Terms and Definitions

A

API (Application Programming Interface) Interface used to communicate
with the message queue backend system.

Auto-Scroll Feature in the web Ul Logs tab that automatically scrolls to show
newest log entries.

Backend The message queue system that the SMPP Gateway connects to for
retrieving and storing messages.

Bind An SMPP connection between two systems. Can be transmitter, receiver,
or transceiver.

Bind Type The type of SMPP session:

e Transmitter: Send messages only
e Receiver: Receive messages only

e Transceiver: Send and receive messages

Bind Failure When an SMPP authentication attempt fails, usually due to
incorrect credentials or IP restrictions.

C

CIDR (Classless Inter-Domain Routing) Notation for specifying IP address
ranges (e.g., 192.168.1.0/24 represents 256 IP addresses).

Client Bind An outbound SMPP connection where the gateway acts as an
ESME connecting to an external SMSC (typically a carrier's SMPP server). In
this mode, the gateway is the client.

Connection Status Current state of an SMPP bind:

e Connected: Active and operational
e Disconnected: Not connected

e Reconnecting: Attempting to establish connection

Counter A metric that only increases (resets on service restart), used for totals
like messages sent.

D

Data Coding SMPP field specifying message character encoding (GSM-7, UCS-
2, etc.).

Delivery Failure When a message cannot be delivered, indicated by an error
response from the carrier.

Delivery Receipt (DLR) Confirmation from the carrier about message delivery
status.

dest_smsc Field in message queue indicating which SMPP connection should
handle the message.

Disconnection When an active SMPP connection is terminated, either
intentionally or due to error.

Enquire Link SMPP keepalive message sent periodically to verify connection is
active.

ESM Class SMPP field indicating message type and features.

ESME (External Short Message Entity) In SMPP terminology, the client
application that connects to an SMSC to send or receive messages. When the
gateway operates in Client mode, it acts as an ESME connecting to carrier
SMSCs. When it operates in Server mode, it accepts connections from
external ESMEs.

Exponential Backoff Retry strategy where wait time doubles after each failure
(Imin, 2min, 4min, 8min...).

F

Firewall Network security system that controls incoming and outgoing network
traffic.

G

Gateway The SMPP Gateway application that bridges between message queue
and mobile networks.

Gauge A metric that can increase or decrease, representing current value
(e.g., connection status).

Grafana Popular visualization tool for displaying Prometheus metrics in
dashboards.

GSM-7 Standard 7-bit character encoding for SMS, supporting up to 160
characters per message.

H

HTTP/HTTPS Protocols used for web communication. HTTPS is encrypted
version.

IP Whitelist List of allowed IP addresses that can connect to the gateway
(security feature).

ISDN (Integrated Services Digital Network) Numbering plan commonly
used for telephone numbers.

)

(No terms)

K

Keepalive Periodic messages (enquire_link) sent to maintain connection and
detect failures.

KPI (Key Performance Indicator) Measurable value indicating system
performance (e.g., delivery success rate).

L

Label In Prometheus, key-value pairs attached to metrics for identification

(e.g., bind name="vodafone uk").

LiveView Phoenix framework technology used for real-time web Ul updates.

M

Message Queue Backend system that stores messages waiting to be sent or
received.

Metrics Quantitative measurements of system performance, exposed in
Prometheus format.

MO (Mobile Originated) Messages sent from mobile phones to the gateway
(inbound).

MT (Mobile Terminated) Messages sent from the gateway to mobile phones
(outbound).

MSISDN (Mobile Station International Subscriber Directory Number)
Standard format for mobile phone numbers.

NPI (Numbering Plan Indicator) SMPP field specifying the numbering
scheme (e.qg., ISDN).

o

Outbound Messages flowing from gateway to mobile networks.

Inbound Messages flowing from mobile networks to gateway.

P

PDU (Protocol Data Unit) Individual SMPP message packet (e.g., submit_sm,
deliver_sm).

Prometheus Open-source monitoring system that collects and stores time-
series metrics.

Q

Queue List of messages waiting to be processed or sent.

Queue Check Frequency How often (in milliseconds) the gateway polls the
backend for new messages.

Queue Worker Component that retrieves messages from queue and sends via
SMPP.

R

Rate Limiting Controlling message throughput to comply with carrier
restrictions. See TPS.

Receiver SMPP bind type that only receives messages (deliver_sm).
Reconnect Re-establishing a disconnected SMPP connection.

Retry Attempting to send a failed message again, usually with exponential
backoff.

S

Server Bind Configuration that allows external ESMEs (clients) to connect to
the gateway. In this mode, the gateway acts as an SMSC (server) accepting
inbound connections from partner systems.

Session Active SMPP connection between two systems.

SMPP (Short Message Peer-to-Peer) Industry-standard protocol for
exchanging SMS messages between systems.

SMSC (Short Message Service Center) In SMPP terminology, the server
component that accepts connections from ESMEs (clients) and handles SMS
message routing and delivery. When the gateway operates in Server mode, it
acts as an SMSC accepting connections from external ESMEs.

SSL/TLS Encryption protocols for secure communication.
Submit_SM SMPP PDU for submitting a message for delivery.
Submit_SM_Resp SMPP response to submit_sm, indicating success or failure.

System ID Username used for SMPP authentication.

T

Telemetry Automated collection and transmission of system metrics.

TON (Type of Number) SMPP field specifying number format (e.qg.,
international, national).

TPS (Transactions Per Second) Rate limit for maximum messages per
second through a connection.

Transceiver SMPP bind type that can both send and receive messages (most
common).

Transmitter SMPP bind type that only sends messages (submit_sm).

Throughput Message processing rate, typically measured in messages per
second.

U

UCS-2 16-bit Unicode character encoding for SMS, supporting up to 70
characters per message.

Uptime Duration that a connection or service has been continuously
operational.

\"/

Validity Period Time limit for message delivery attempt before expiration.

W

Web Dashboard Browser-based user interface for monitoring and managing
the gateway.

Whitelist See IP Whitelist.

X

(No terms)

Y

(No terms)

Z

(No terms)

Acronym Quick Reference

Acronym Full Term
API Application Programming Interface
CIDR Classless Inter-Domain Routing
DLR Delivery Receipt

ESME External Short Message Entity

GSM Global System for Mobile Communications
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure
IP Internet Protocol

ISDN Integrated Services Digital Network
KPI Key Performance Indicator

MO Mobile Originated

MSISDN Mobile Station International Subscriber Directory Number

MT Mobile Terminated

NPI Numbering Plan Indicator
PDU Protocol Data Unit

SMPP Short Message Peer-to-Peer

SMSC Short Message Service Center

Acronym Full Term

SMS Short Message Service

SSL Secure Sockets Layer

TLS Transport Layer Security

TON Type of Number

TPS Transactions Per Second

ucCs Universal Coded Character Set
ul User Interface

URL Uniform Resource Locator

Related Documentation

. - System overview and getting started

. - Configuration parameters explained
. - Day-to-day operations

. - Metrics and monitoring

o - Problem resolution

Monitoring and Metrics
Guide

Complete reference for monitoring the SMPP Gateway

Overview

The SMPP Gateway exposes metrics in Prometheus format for monitoring
connection health, message throughput, and system performance.

Critical: Since the gateway is stateless and depends on OmniMessage Core,
OmniMessage connectivity is the most important metric to monitor.
Monitor both:

1. SMPP Gateway metrics - Protocol-level health

2. OmniMessage API metrics - Backend connectivity and health

Metrics Endpoint

URL: http://your-server:4000/metrics
Format: Prometheus text format

Access: Open to localhost by default (configure firewall for remote access)

Quick Test

curl http://localhost:4000/metrics

Available Metrics

All metrics are prefixed with smpp and include labels for identification.

License Metrics

omnimessage smpp _license _status
Type: Gauge Description: Current license status Values:

e 1 = Valid license

e 0 = Invalid/expired license
Labels: None

Example:
omnimessage smpp license status 1

Use:

¢ Alert when value is 0 (invalid license)

e When license is invalid, outbound queue processing stops but SMPP binds
remain connected

¢ Web Ul remains accessible for troubleshooting
Product Name: omnimessage smpp

Notes:

* When license is invalid (license status == 0), the gateway stops
processing outbound queues

e SMPP binds (both client and server) remain connected and accept bind
requests

e Inbound messages are still received but not processed

¢ Ul and monitoring remain accessible regardless of license status

Alerting Example:

- alert: SMPP License Invalid
expr: omnimessage smpp license status ==
for: 1m
labels:
severity: critical
annotations:
summary: "SMPP Gateway license invalid or expired"
description: "License status is invalid - outbound message
processing is blocked"

Connection Status Metrics

smpp_connection_status

Type: Gauge Description: Current connection status of SMPP bind Values:

e 1 = Connected

e O = Disconnected
Labels:

* bind name - Connection name (e.g., "vodafone_uk")
e mode - Connection type ("client" or "server")

e host - Remote host (client mode only)

e port - Remote port (client mode only)

* bind type - SMPP bind type (client mode only)

e system id - System ID used

Example:

smpp _connection status{bind name="vodafone uk",mode="client",6host="sn
1

Use:

e Alert when value is 0 (disconnected)
e Track connection uptime percentage

e Monitor reconnection frequency

Message Counters

smpp_messages _sent_total

Type: Counter Description: Total number of messages sent through SMPP bind
Unit: Messages

Labels: Same as connection_status

Example:

smpp _messages sent total{bind name="vodafone uk",mode="client",...}
150234

Use:

e Calculate message rate (messages/second)
e Track daily/monthly volume

e Compare actual vs expected throughput

smpp_messages_received total

Type: Counter Description: Total number of messages received through SMPP
bind Unit: Messages

Labels: Same as connection_status

Example:

smpp messages received total{bind name="partner acme",mode="server",.
45123

Use:

e Monitor inbound message volume
e Track mobile-originated (MO) traffic

e Alert on unexpected volume changes

Delivery Metrics

smpp_delivery failures _total

Type: Counter Description: Total number of message delivery failures Unit:
Failures

Labels: Same as connection_status

Example:

smpp _delivery failures total{bind name="vodafone uk",mode="client",..
234

Use:

e Calculate delivery success rate
e Alert on high failure rates

e |dentify problematic connections

Success Rate Calculation:

success rate = (messages sent - delivery failures) / messages sent
* 100

Bind Operation Metrics

smpp_bind success_total

Type: Counter Description: Total number of successful bind operations Unit:
Bind attempts

Example:

smpp _bind success total{bind name="vodafone uk",...} 45

Use:

e Track bind stability

e Monitor authentication success

smpp_bind_failures_total

Type: Counter Description: Total number of failed bind operations Unit: Bind
attempts

Example:

smpp bind failures total{bind name="vodafone uk",...} 3

Use:

¢ Alert on authentication failures
e |dentify credential issues

e Track carrier connection problems

Connection Event Metrics

smpp_connection_attempts_total

Type: Counter Description: Total number of connection attempts Unit:
Attempts

Example:

smpp connection attempts total{bind name="vodafone uk",...} 48

Use:

¢ Track connection churn

e Monitor reconnection frequency

smpp_disconnection_total

Type: Counter Description: Total number of disconnections Unit:
Disconnections

Example:
smpp _disconnection total{bind name="vodafone uk",...} 3

Use:

e Alert on frequent disconnections
e |dentify network issues

e Track connection stability

Uptime Metrics

smpp_uptime_seconds

Type: Gauge Description: Current uptime of SMPP bind in seconds Unit:
Seconds

Example:

smpp_uptime seconds{bind name="vodafone uk",...} 86400

Use:

e Track connection stability
e Calculate uptime percentage

e Alert on recent restarts

OmniMessage API Health Metrics

While the gateway itself exposes SMPP-related metrics, OmniMessage API
health is critical. You should also monitor:

From OmniMessage Metrics (if available)

* omnimessage api requests total - Total APl requests from gateway
* omnimessage api request duration seconds - APl response times

e omnimessage queue depth - Messages pending in OmniMessage queue

From Gateway Logs (if metrics not exposed)

Look for these patterns to detect API issues:

e "api.*connection refused" - Cannot reach OmniMessage
e "api.*timeout" - OmniMessage not responding
e "api.*http 503" - OmniMessage temporarily down

e "api.*parse error" - Response format issue

Prometheus Configuration

Basic Scrape Config

Add to /etc/prometheus/prometheus.yml:

scrape_configs:
- job name: 'omnimessage-smpp'
scrape_interval: 15s
static configs:
- targets: ['your-server:4000']
labels:
environment: 'production'
service: 'omnimessage-smpp'

Multiple Gateways

scrape_configs:

- job name: 'omnimessage-smpp-instances'
scrape _interval: 15s
static configs:
- targets:

- 'smpp-gw-1:4000"

- 'smpp-gw-2:4000"

- 'smpp-gw-3:4000"

labels:

environment: 'production'

Service Discovery

Using file-based discovery:

scrape configs:

- job name: 'omnimessage-smpp-instances'’
file sd configs:
- files:

- '/etc/prometheus/targets/smpp-*.json'

File /etc/prometheus/targets/smpp-production.json:

{
"targets": ["smpp-gw-1:4000", "smpp-gw-2:4000"],
"labels": {
“environment"”: "production”,
"datacenter": "us-east"
}

Grafana Dashboards

Sample Dashboard Panels
Connection Status Panel

Query:
smpp_connection status{job="omnimessage-smpp"}

Visualization: Stat Thresholds:

¢ Red: value < 1 (disconnected)

e Green: value == 1 (connected)

Message Rate Panel

Query:
rate(smpp messages sent total{job="omnimessage-smpp"}[5m])

Visualization: Graph Unit: messages/second Legend: {{bind name}}

Delivery Success Rate Panel

Query:

100 * (1 - (
rate(smpp delivery failures total{job="omnimessage-smpp"}[5m])

/
rate(smpp messages sent total{job="omnimessage-smpp"}[5m])

))

Visualization: Gauge Unit: Percent (0-100) Thresholds:

e Red: < 95%
¢ Yellow: 95-98%

e Green: > 98%

Connection Uptime Panel

Query:
smpp uptime seconds{job="omnimessage-smpp"} / 3600

Visualization: Stat Unit: Hours

Alerting Rules

Prometheus Alert Rules

Save to /etc/prometheus/rules/smpp-alerts.yml:

groups:
- name: smpp gateway
interval: 30s
rules:
Connection down
- alert: SMPPConnectionDown
expr: smpp connection status ==
for: 2m
labels:
severity: critical
annotations:
summary: "SMPP connection {{ $labels.bind name }} is
down"
description: "Connection {{ $labels.bind name }} has
been disconnected for more than 2 minutes."

High failure rate
- alert: SMPPHighFailureRate
expr: |
(
rate(smpp delivery failures total[5m])
/
rate(smpp messages sent total[5m])
) > 0.05
for: 5m
labels:
severity: warning
annotations:
summary: "High delivery failure rate on {{
$labels.bind name }}"
description: "Delivery failure rate is {{ $value |
humanizePercentage }} on {{ $labels.bind name }}."

Bind failures
- alert: SMPPBindFailures
expr: increase(smpp bind failures total[10m]) > 3
labels:
severity: warning
annotations:
summary: "Multiple bind failures on {{ $labels.bind name
P
description: "{{ $labels.bind name }} has failed to bind
{{ $value }} times in the last 10 minutes."

No messages sent (when expected)
- alert: SMPPNoTraffic
expr: rate(smpp messages sent total[lOm]) ==
for: 30m
labels:
severity: warning
annotations:
summary: "No messages sent on {{ $labels.bind name }}"

description: "{{ $labels.bind name }} has not sent any
messages for 30 minutes."

Frequent disconnections
- alert: SMPPFrequentDisconnections
expr: increase(smpp disconnection total[lh]) > 5
labels:
severity: warning
annotations:
summary: "Frequent disconnections on {{
$labels.bind name }}"

description: "{{ $labels.bind name }} has disconnected
{{ $value }} times in the last hour."

OmniMessage API unreachable
- alert: OmniMessageAPIUnreachable
expr: |
count(count_over time({job="omnimessage-smpp"} |=
“api.*connection refused"[5m])) > 0O
for: 1m
labels:
severity: critical
annotations:
summary: "OmniMessage API is unreachable"
description: "The SMPP Gateway cannot reach OmniMessage
API. Check API BASE URL configuration and network connectivity."

OmniMessage API timeouts
- alert: OmniMessageAPITimeout
expr: |
count(count _over time({job="omnimessage-smpp"} |=
"api.*timeout"[5m])) > 5
for: 2m
labels:
severity: warning

annotations:
summary: "OmniMessage API is timing out"
description: "Multiple API timeouts detected.
OmniMessage may be slow or overloaded."

No message flow (API issue)
- alert: NoMessageFlow

expr: rate(smpp messages sent total[1lOm]) == 0 and
rate(smpp messages received total[1lOm]) ==
for: 30m
labels:
severity: warning
annotations:
summary: "No message flow detected - check OmniMessage
connectivity"

description: "No messages sent or received for 30
minutes. Check OmniMessage API connectivity and queue status."

Load rules in prometheus.yml:

rule files:
'/etc/prometheus/rules/smpp-alerts.yml'

Web Dashboard Monitoring

The built-in web Ul provides real-time monitoring without Prometheus.

Access

URL: https://your-server:8087

Live Status Page
Navigation: SMPP - Live Status

Features:

¢ Real-time connection status

e Message counters

e Connection uptime

e Manual reconnect/disconnect controls

e Auto-refresh every 5 seconds
Use:

¢ Quick status check
¢ Manual intervention

e Real-time troubleshooting

The dashboard displays:

* Total Binds: Combined count of all client and server connections

e Client Binds: Outbound connections to carriers (showing
connected/disconnected count)

e Server Binds: Inbound connections from partners (showing active/waiting
count)

e Server Listening: Configuration of the inbound server socket (host, port,
max connections)

Log Monitoring

System Logs

View logs:

Follow logs in real-time
sudo journalctl -u omnimessage-smpp -f

Last 100 lines
sudo journalctl -u omnimessage-smpp -n 100

Since specific time
sudo journalctl -u omnimessage-smpp --since "1 hour ago"

Filter by level
sudo journalctl -u omnimessage-smpp -p err

Web Ul Logs

Navigation: Logs tab in web Ul
Features:

e Real-time log streaming

e Filter by level (debug, info, warning, error)
e Search logs

* Pause/resume

e Clear logs

The logs view allows you to:

Level Filter: Select log level (All, Debug, Info, Warning, Error)

Search: Find specific log entries by text content

Auto-scroll: Enable/disable automatic scrolling as new logs arrive

Pause/Resume: Pause log updates to review specific entries

Clear: Clear all displayed logs

Key Performance Indicators (KPIs)

Connection Health

Metric: Connection uptime percentage
avg over time(smpp connection status[24h]) * 100
Target: > 99.9%

Message Delivery Rate

Metric: Messages delivered per second

rate(smpp messages sent total[5m])
Target: Matches expected volume

Delivery Success Rate

Metric: Percentage of successful deliveries

100 * (1 - rate(smpp delivery failures total[5m]) /
rate(smpp messages sent total[5m]))

Target: > 98%

Bind Stability

Metric: Bind attempts per hour
rate(smpp bind success total[lh]) * 3600

Target: < 10 per hour (indicates stable connection)

Monitoring Best Practices

1. Set Up Alerts

e Configure Prometheus alerts for critical metrics
e Use PagerDuty/OpsGenie for 24/7 alerting

e Test alerts regularly

2. Create Dashboards

e Build Grafana dashboards for each gateway

¢ Include all connections on one dashboard
e Add capacity planning panels
3. Regular Reviews

e Review metrics weekly
e |dentify trends and patterns

e Plan capacity adjustments

4. Document Baselines

e Record normal message volumes
e Document expected TPS rates

* Note peak times/days

5. Correlate with Backend

e Monitor backend API metrics
e Track end-to-end message flow

e |dentify bottlenecks

Troubleshooting with Metrics

Connection Issues
Check: smpp connection status

e Value 0 = Review logs, check network, verify credentials

¢ Frequent changes = Network instability

Poor Delivery Rates

Check: smpp delivery failures total

e High rate = Check carrier status, review message format

e Compare across connections = Identify problem carrier

Low Throughput
Check: smpp messages sent total rate

e Below expected = Check TPS limits, queue availability
e Check backend API metrics

Bind Problems
Check: smpp bind failures total

e Increasing = Authentication issues, credential problems

e Check system _id and password in config

Related Documentation

. - Configure monitoring settings
. - Operational procedures
. - Resolve issues

. - Overview and quickstart

Operations Guide

Day-to-day operational procedures

Critical Dependency: OmniMessage
Core

IMPORTANT: The OmniMessage SMPP Gateway cannot function without access
to OmniMessage Core. All message processing happens in OmniMessage - the
gateway is just a protocol translator.

If OmniMessage becomes unavailable:

[] New messages cannot be submitted

[J Pending messages cannot be retrieved

[] Delivery status cannot be reported

[] System appears to hang or timeout

Check OmniMessage Health:

Test API connectivity
curl -k https://omnimessage-
core.example.com:8443/api/system/health

Check configured API URL in logs
grep api base url /opt/omnimessage-smpp/config/runtime.exs

Daily Operations

Morning Health Check

Perform these checks at the start of each day:

1. Access Web Dashboard

o URL: https://your-server:8087
o Check if dashboard loads properly

2. Check Connection Status

o Navigate to: SMPP - Live Status
o Verify all connections show "Connected" (green)

o Note any disconnected binds

3. Review Message Metrics

o Navigate to: Queue tab
o Check message counts are reasonable

o Verify no unexpected queue buildup

4. Check System Logs

o Navigate to: Logs tab
o Look for error messages (red)

o Note any warning patterns

5. Review Prometheus Metrics

o curl http://localhost:4000/metrics
o Or check Grafana dashboards

o Verify message rates are normal

Continuous Monitoring

Set up alerts for:

Connection failures (> 2 minutes down)

High delivery failure rates (> 5%)

No traffic for extended periods

Frequent disconnections

See for alert configuration.

Managing SMPP Connections

How SMPP Peers Are Configured

SMPP connections (peers) can be configured using two methods:

Method 1: Web Ul (Recommended)

e Advantage: Changes take effect immediately, no restart required

Location: SMPP - Client Peers / Server Peers tabs

Operations: Add, edit, delete peers

Persistence: Stored in Mnesia database

Best for: Day-to-day operations, testing, quick changes

Method 2: Configuration File

 Advantage: Configuration as code, version control

e Location: /opt/omnimessage-smpp/config/runtime.exs
e Operations: Define peers in Elixir configuration

* Persistence: File-based, survives restarts

e Requires: Service restart after changes

e Best for: Initial setup, infrastructure as code

Note: Web Ul changes are stored separately and override configuration file
settings.

See for configuration file reference.

Adding a New Client Connection

Purpose: Configure the gateway to act as an ESME (client) connecting to a
carrier's SMSC (server)

Preparation: Gather information from carrier:

e SMPP server hostname/IP

e Port number (usually 2775)

e System ID (username)

e Password

e Bind type (usually transceiver)
e TPS limit

Choose one of the following methods:
Option A: Via Web Ul (Recommended)
Advantages: Immediate effect, no restart required
Steps:

1. Navigate to Client Peers:

o Open Web Ul: https://your-server:8087
o Navigate to: SMPP - Client Peers

2. Add New Peer:

o Click "Add New Client Peer"

o Fill in the form:
= Name: vodafone uk (unique identifier)

= Host: smpp.vodafone.co.uk
= Port: 2775

System ID: your username

Password: your password

Bind Type: Transceiver
TPS Limit: 100
= Queue Check Frequency: 1000

o Click "Save"

3. Connection Establishes Automatically:

o Gateway immediately attempts connection
o Navigate to: SMPP - Live Status
o Status should change to "Connected" (green) within 10-30 seconds

o Check Logs tab for successful bind message

4. Test Message Flow:

o Navigate to: Queue tab
o Submit test message with dest smsc matching bind name
o Monitor in Live Status for transmission

o Verify delivery confirmation

Option B: Via Configuration File

Advantages: Infrastructure as code, version control

Steps:

1. Edit Configuration File:

sudo nano /opt/omnimessage-smpp/config/runtime.exs

2. Add New Bind to Configuration:

config :omnimessage smpp, :binds, [
Existing binds...

Add new bind

%{
name: "vodafone uk",
mode: :client,
bind type: :transceiver,
host: "smpp.vodafone.co.uk",
port: 2775,
system id: "your username",
password: "your password",
tps limit: 100,
queue check frequency: 1000

3. Save and Restart Service:

Save file (Ctrl+X, Y, Enter in nano)

Restart service
sudo systemctl restart omnimessage-smpp

4. Verify Connection:

o Navigate to: SMPP - Live Status
o Find new connection
o Status should be "Connected" (green)

o Check logs for successful bind

5. Test Message Flow:

[e]

Navigate to: Queue tab

o

Submit test message with dest_smsc matching new bind name

o

Monitor in Live Status for transmission

(o]

Verify delivery confirmation

Adding a Server Bind

Purpose: Configure the gateway to act as an SMSC (server) accepting
connections from external ESMEs (partner clients)

Preparation:
1. Generate Credentials:

o Create unique system_id: partner name
o Create strong password

o Document and share securely with partner

2. Get Partner Information:

o Partner's source IP addresses
o Expected message volume (for TPS limit)

o Required bind types

Choose one of the following methods:
Option A: Via Web Ul (Recommended)
Advantages: Immediate effect, no restart required
Steps:

1. Navigate to Server Peers:

o Open Web Ul: https://your-server:8087

o Navigate to: SMPP - Server Peers

2. Add New Server Peer:

o Click "Add New Server Peer"

o Fill in the form:
= Name: partner _acme (unique identifier)

= System ID: acme corp
= Password: secure password 123

= Allowed Bind Types: Select all (Transmitter, Receiver,
Transceiver)

= |IP Whitelist: 203.0.113.0/24 (comma-separated for multiple)
= TPS Limit: 50
= Queue Check Frequency: 1000

o Click "Save"

3. Gateway Ready for Connection:

o Server peer is now active and waiting for partner connection

o No restart required

4. Share Information with Partner:

o Gateway IP address

o Port: 2775

o System ID: acme corp

o Password: secure password 123

o Bind Type: As configured

5. Wait for Partner Connection:

[e]

Navigate to: SMPP - Live Status

o

Watch for incoming connection

(o]

Verify authentication success
Check IP matches whitelist

(o]

Option B: Via Configuration File

Advantages: Infrastructure as code, version control
Steps:

1. Edit Configuration File:

sudo nano /opt/omnimessage-smpp/config/runtime.exs

2. Add Server Bind and Listen Configuration:

Add to server binds list
config :omnimessage smpp, :server binds, [
Existing server binds...

Add new server bind
%{
name: "partner _acme",
system id: "acme corp",
password: "secure password 123",
allowed bind types: [:transmitter, :receiver,
:transceiver],
ip whitelist: ["203.0.113.0/24"],
tps limit: 50,
queue check frequency: 1000

}

Ensure listen configuration exists (only needed once)
config :omnimessage smpp, :listen, %{

host: "0.0.0.0",

port: 2775,

max_connections: 100

}

3. Save and Restart Service:

sudo systemctl restart omnimessage-smpp

4. Share Information with Partner:

o Gateway IP address

o Port: 2775

o System ID: acme corp

o Password: secure password 123

o Bind Type: As configured

5. Wait for Partner Connection:

o Navigate to: SMPP - Live Status

o Watch for incoming connection
o Verify authentication success

o Check IP matches whitelist

Modifying Existing Connection

Purpose: Update connection parameters (TPS limits, passwords, IP whitelist,
etc.)

Choose one of the following methods:

Option A: Via Web Ul (Recommended)

Advantages: Immediate effect, no restart required
Steps:
1. Navigate to Peers:

o Open Web Ul: https://your-server:8087
o For client connections: SMPP - Client Peers

o For server connections: SMPP - Server Peers

2. Edit Peer:

o Find the peer to modify
o Click "Edit" button

o Update desired parameters:
= Common changes: TPS limit, password, IP whitelist, host/port

o Click "Save"
3. Changes Apply Immediately:

o Connection automatically reconnects with new settings
o No service restart required

o Navigate to: SMPP - Live Status to verify

4. Verify Changes:

o Check connection establishes successfully
o Monitor Logs tab for errors

o Test message flow if applicable
Option B: Via Configuration File
Advantages: Infrastructure as code, version control
Steps:

1. Edit Configuration File:

sudo nano /opt/omnimessage-smpp/config/runtime.exs

2. Modify Bind Parameters:

o Find the bind in the :binds or :server binds list

o Update desired parameters:
= Common changes: TPS limit, passwords, IP whitelist, host/port

o Example:
%{
name: "vodafone uk",
... other params

tps limit: 150, # Changed from 100
password: "new password" # Updated password

}

3. Save and Restart Service:

sudo systemctl restart omnimessage-smpp

4. Verify Changes:

o Navigate to: SMPP - Live Status
o Check connection establishes successfully

o Monitor logs for errors

o Test message flow

Removing a Connection
Purpose: Decommission an SMPP connection
Steps:

1. Notify Stakeholders:

o |Inform carrier/partner

o Coordinate downtime window

2. Disconnect via Web Ul:

o Navigate to: SMPP - Live Status
o Find connection
o Click "Drop Connection"

o Confirm action

3. Remove Configuration:

o Navigate to: SMPP - Client/Server Peers

o Find connection
o Click "Delete"

o Confirm removal
4. Verify Removal:

o Check Live Status - connection should be gone

o Review logs for clean shutdown

Managing Message Flow

Checking Message Queue
Purpose: Monitor pending messages
Steps:

1. Access Queue:

o Navigate to: Queue tab

o View list of pending messages

2. Check Message Details:

o Click on message row

o Review:
= Destination number

Message body
Target SMSC (dest_smsc)
Delivery attempts

Status

3. Search for Specific Message:

o Use search filter

o Filter by destination, content, or SMSC

Troubleshooting Stuck Messages
Symptoms: Messages not being delivered
Steps:

1. Check Connection Status:

o Navigate to: SMPP - Live Status
o Verify target connection is connected

o If disconnected, see

2. Check Message Details:

o Navigate to: Queue tab
o Find stuck message
o Check dest smsc field matches connection name

o Check deliver after timestamp (retry scheduling)

3. Check Delivery Attempts:

o High attempts = repeated failures
o Check logs for error messages

o May indicate invalid format or carrier rejection

4. Manual Intervention (if needed):

o Contact carrier to verify issue
o May need to cancel and resubmit message

o Check with backend team for queue issues

Connection Troubleshooting

Reconnecting a Bind
Symptoms: Connection shows "Disconnected" (red)
Steps:

1. Check Network Connectivity:

ping -c 3 carrier-smpp-server.com
telnet carrier-smpp-server.com 2775

2. Check Logs for Errors:

o Navigate to: Logs tab
o Filter: Error level

o Look for authentication failures, network timeouts

3. Verify Credentials:

o Navigate to: SMPP - Client/Server Peers
o Check system _id and password are correct

o Contact carrier if unsure

4. Manual Reconnect:

o Navigate to: SMPP - Live Status

(o]

Find disconnected bind
Click "Reconnect" button
Wait 10-30 seconds

Check if status changes to "Connected"

(o]

o

(o]

5. If Reconnect Fails:

o Check firewall rules
o Verify carrier server is operational
o Contact carrier support

o See

Handling Authentication Failures
Symptoms: Repeated bind failures in logs
Causes:

e Incorrect username/password
¢ |P not whitelisted at carrier

e Account suspended/expired
Steps:
1. Verify Credentials:

o Navigate to: SMPP - Client Peers
o Double-check system _id and password

o Confirm with carrier

2. Check IP Whitelisting:

o Confirm your gateway IP with carrier

o Request carrier verify IP whitelist

3. Check Account Status:

o Verify account is active
o Check for expired contracts

o Contact carrier billing

4. Update Configuration:

o |f credentials changed, update in Web Ul

o Click "Reconnect" to retry with new credentials

Monitoring and Alerting

Checking Prometheus Metrics

Quick check:
curl http://localhost:4000/metrics | grep smpp connection status

Expected output:

smpp_connection status{bind name="vodafone uk",...} 1
smpp_connection status{bind name="att us",...} 1

All values should be 1 (connected).

Responding to Alerts
Connection Down Alert:

1. Check Web Ul -» SMPP - Live Status
2. Attempt manual reconnect
3. Check logs for errors

4. Contact carrier if prolonged outage

5. See

High Failure Rate Alert:

1. Check logs for error patterns
2. Review recent configuration changes
3. Contact carrier about rejections

4. Check message format compliance

No Traffic Alert:

1. Check backend queue has messages
2. Verify dest smsc routing is correct
3. Check TPS limits aren't too restrictive

4. Review queue check frequency setting

Maintenance Procedures

Routine Maintenance
Perform monthly:
1. Review Metrics:

o Analyze message volume trends
o Check delivery success rates

o |dentify optimization opportunities

2. Update Documentation:

o Document any configuration changes
o Update contact information

o Note carrier maintenance windows

3. Credential Audit:

o Review all SMPP passwords

o Plan credential rotation

o Verify IP whitelists are current
4. Capacity Planning:

o Review peak message rates
o Check against TPS limits

o Plan for growth

Service Restart
When needed:

e After configuration file changes
e After system updates

e During troubleshooting

Steps:

Check current status
sudo systemctl status omnimessage-smpp

Restart service
sudo systemctl restart omnimessage-smpp

Verify restart
sudo systemctl status omnimessage-smpp

Check logs
sudo journalctl -u omnimessage-smpp -n 50

Verify via Web Ul:

1. Access dashboard (may take 30-60 seconds to come online)
2. Navigate to: SMPP - Live Status
3. Wait for all connections to establish (1-2 minutes)

4. Check logs for errors

Configuration Backup

Backup critical files before changes:

Backup configuration

sudo cp /opt/omnimessage-smpp/config/runtime.exs \
/opt/omnimessage-smpp/config/runtime.exs.backup.$(date +%Y%m%d)

Backup certificates

sudo tar -czf /tmp/smpp-certs-$(date +%Y%m%d).tar.gz \
/opt/omnimessage-smpp/priv/cert/

Restore if needed:

Restore configuration
sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup.YYYYMMDD \
/opt/omnimessage-smpp/config/runtime.exs

Restart service
sudo systemctl restart omnimessage-smpp

Emergency Procedures

Complete Service Outage
Steps:

1. Check service status:
sudo systemctl status omnimessage-smpp
2. If service stopped, start it:

sudo systemctl start omnimessage-smpp

3. Check logs for crash reason:
sudo journalctl -u omnimessage-smpp -n 100

4. If won't start:

o Check configuration syntax errors
o Verify SSL certificates exist
o Check disk space: df -h

o Check memory: free -h

5. Contact support if unresolved

Carrier Requests Emergency Disconnect
Steps:
1. Drop connection immediately:

o Navigate to: SMPP - Live Status
o Find affected connection

o Click "Drop Connection"

2. Document reason:

o Note carrier name
o Record time and reason

o Save correspondence

3. Investigate issue:

o Check recent message patterns
o Review logs for errors

o |dentify root cause

4. Coordinate resolution:

o Work with carrier

o Implement fixes
o Test before reconnecting
High Volume Spike
Symptoms: Unexpectedly high message traffic
Steps:
1. Check TPS limits:

o Navigate to: SMPP - Live Status
o Verify connections aren't throttling

o May need to increase TPS limits temporarily

2. Monitor carrier stability:

o Watch for disconnections

o Check delivery success rates

3. Coordinate with backend:

o Verify message source is legitimate

o May need to implement rate limiting upstream

4. Scale if needed:

o May need additional gateway instances

o Contact support for scaling advice

Best Practices

Daily Checklist

Check all SMPP connections are connected

Review error logs for any issues

Monitor message queue for buildup
Check Prometheus/Grafana dashboards

Verify delivery success rates > 98%

Weekly Tasks

Review metrics trends

Check for pattern anomalies

Test disaster recovery procedures
Update documentation as needed

Review and acknowledge alerts

Monthly Tasks

Credential audit

Capacity planning review

Update carrier contacts

Review and optimize TPS settings

Backup configuration files

Related Documentation

. - Configure connections and settings
. - Set up Prometheus alerting
. - Resolve common issues

J - System overview

Troubleshooting Guide

Common issues and solutions

OmniMessage Connectivity Issues

Since the SMPP Gateway is stateless and depends entirely on OmniMessage
Core, connectivity problems with OmniMessage are the most critical issues.

Symptoms of OmniMessage Disconnection

e No outbound messages: Queue builds up, messages not being sent
* No inbound messages: Partners can't submit messages
e Timeouts: API calls timing out or hanging

¢ Logs show: "Connection refused", "Timeout", "HTTP 503", "Connection
reset"

Diagnosis

1. Check OmniMessage Availability:

Test connectivity
curl -k -v https://omnimessage-
core.example.com:8443/api/system/health

Test from gateway host specifically

ssh gateway-server 'curl -k https://omnimessage-
core.example.com:8443/api/system/health’

2. Check Configured API URL:

Review the configuration
grep -Al 'api base url' /opt/omnimessage-smpp/config/runtime.exs

Check for network connectivity
ping omnimessage-core.example.com
nc -zv omnimessage-core.example.com 8443

3. Check Gateway Logs for API Errors:

Look for API-related errors
sudo journalctl -u omnimessage-smpp -f | grep -i
‘api\ |omnimessage\|connect'

Search logs for recent errors
sudo journalctl -u omnimessage-smpp -n 200 | grep -i error

Solutions
If OmniMessage is down:

1. Contact OmniMessage operations team
2. Pending messages will accumulate in the queue
3. Gateway will keep retrying (see SMPP_POLL INTERVAL)

4. Check OmniMessage status page or monitoring

If OmniMessage is up but gateway can't reach it:

1. Check firewall rules allow outbound HTTPS
2. Check DNS resolution: nslookup omnimessage-core.example.com

3. Check network routing: traceroute omnimessage-core.example.com
4. Verify SSL certificates if using HTTPS

If API URL is misconfigured:

1. Edit /opt/omnimessage-smpp/config/runtime.exs
2. Verify api base url is correct (must be HTTPS for production)

3. Restart gateway: sudo systemctl restart omnimessage-smpp

Connection Problems

Connection Won't Establish
Symptoms:

e Status shows "Disconnected" (red)
e No successful bind in logs

e Repeated connection attempts

Possible Causes & Solutions:

1. Network Connectivity Issues

Check:

Test DNS resolution
nslookup smpp.carrier.com

Test connectivity
ping -c 3 smpp.carrier.com

Test port

telnet smpp.carrier.com 2775
or

nc -zv smpp.carrier.com 2775

Solutions:

e If DNS fails: Use IP address instead of hostname in configuration
e If ping fails: Check firewall rules, contact carrier

e If port fails: Verify correct port number, check firewall

2. Incorrect Credentials

Check:

e Logs show "bind failed" or "authentication error"

e Web Ul: SMPP - Client Peers - verify system_id and password
Solutions:

e Confirm credentials with carrier
e Check for typos (case-sensitive)

e Update configuration and reconnect

3. IP Not Whitelisted
Check:

e Connection rejected immediately

e Carrier logs show unauthorized IP
Solutions:

e Confirm your gateway's public IP:

curl ifconfig.me

e Request carrier add IP to whitelist

e Verify IP hasn't changed (dynamic IP)

4. Firewall Blocking

Check:

Check if port is open
sudo iptables -L -n | grep 2775

Check UFW (Ubuntu/Debian)
sudo ufw status | grep 2775

Check firewalld (RHEL/CentO0S)
sudo firewall-cmd --list-ports | grep 2775

Solutions:

Ubuntu/Debian
sudo ufw allow out 2775/tcp

RHEL/CentO0S

sudo firewall-cmd --permanent --add-port=2775/tcp
sudo firewall-cmd --reload

Connection Keeps Dropping
Symptoms:

e Connection established but frequently disconnects
e smpp disconnection total metric increasing

e Logs show repeated reconnections
Possible Causes & Solutions:

1. Network Instability

Check:

Monitor packet loss
ping -c 100 smpp.carrier.com | grep loss

Check network errors
netstat -s | grep -1 error

Solutions:

e Contact carrier about network issues
e Check with ISP if on your end

e Consider backup connection/route

2. Enquire Link Timeout

Check:

e Logs show "enquire_link timeout"

e Connection drops after periods of inactivity
Solutions:

¢ Default timeout is 30 seconds
e Verify network allows keepalive packets

e Check for aggressive firewalls timing out idle connections
3. TPS Limit Exceeded
Check:

e High message rate at disconnect time

e Carrier throttling messages
Solutions:

e Review tps limit setting
e Reduce TPS to 70-80% of carrier maximum

e Spread traffic across multiple binds
4. Carrier Server Issues
Check:

e Check carrier service status

e Contact carrier support
Solutions:

e Wait for carrier to resolve

e Configure backup carrier if available

Message Delivery Problems

Messages Not Being Sent
Symptoms:

e Messages stuck in queue
* smpp_messages sent total notincreasing

e Connection shows connected
Possible Causes & Solutions:
1. Wrong dest_smsc Routing
Check:

e Web Ul -» Queue - Check message dest smsc field

e Compare with connection name in SMPP - Live Status
Solutions:

* Messages route based on dest smsc field
» Verify backend is setting correct dest smsc

e If dest smsc is NULL, check default routing
2. Messages Scheduled for Future
Check:

* Web Ul » Queue - Check deliver after field

e Messages with future timestamp won't send yet
Explanation:

e Retry system sets deliver after for failed messages

e Messages wait until that time before retry

Solutions:

¢ Wait for scheduled time

e If urgent, contact backend team to reset timestamp
3. TPS Limit Too Low
Check:

e Large queue buildup

e Messages sending very slowly
Solutions:

e Increase tps _limit in configuration
e Verify carrier can handle higher rate

e See
4. Queue Worker Not Running
Check:

e Service status

e Logs for errors

Solutions:

Restart service
sudo systemctl restart omnimessage-smpp

Check logs
sudo journalctl -u omnimessage-smpp -f

High Delivery Failure Rate
Symptoms:

e smpp delivery failures total increasing

e Logs show "submit_sm_resp" with error status

e Messages not reaching recipients
Possible Causes & Solutions:
1. Invalid Destination Numbers
Check:

e Logs for specific error codes

e Review message destination format
Common Error Codes:

e Ox0000000B - Invalid destination
* 0x00000001 - Invalid message length
e Ox00000003 - Invalid command

Solutions:

e Validate number format (E.164 recommended)
¢ Check number includes country code

e Verify with carrier requirements
2. Invalid Message Content
Check:

e Message length
e Special characters

e Encoding

Solutions:

GSM-7: Max 160 characters
UCS-2: Max 70 characters

Remove unsupported characters

Check encoding settings

3. Carrier Rejection

Check:

e Specific error codes from carrier

e Patterns in rejected messages
Solutions:

e Contact carrier for rejection reason
e May need content filtering

e Check for spam/abuse patterns

4. Expired Messages

Check:

e Message expires timestamp

e Delivery attempt timing
Solutions:

e Increase message validity period

¢ Reduce retry delay for time-sensitive messages

Web Ul Problems

Can't Access Web Dashboard

Symptoms:

e Browser can't connect to

e Timeout or connection refused
Possible Causes & Solutions:

1. Service Not Running

Check:

https://your-server:8087/

sudo systemctl status omnimessage-smpp

Solutions:

If stopped, start it
sudo systemctl start omnimessage-smpp

Check logs for errors
sudo journalctl -u omnimessage-smpp -n 50

2. Firewall Blocking Port 8087

Check:

sudo ufw status | grep 8087
or
sudo firewall-cmd --list-ports | grep 8087

Solutions:

Ubuntu/Debian
sudo ufw allow 8087/tcp

RHEL/CentO0S

sudo firewall-cmd --permanent --add-port=8087/tcp
sudo firewall-cmd --reload

3. SSL Certificate Issues

Check:

e Browser shows security warning

e Certificate expired or invalid
Solutions:

e Accept security exception (if self-signed)

¢ |nstall valid SSL certificate

e Check certificate files exist:

ls -1 /opt/omnimessage-smpp/priv/cert/

4. Wrong URL

Check:

e Verify using HTTPS (not HTTP)
e Verify correct server IP/hostname
e Verify port 8087

Web Ul Shows Errors

Symptoms:

e Page loads but shows errors
e Functions don't work

e Data not displaying
Solutions:
1. Clear Browser Cache:

o Ctrl+F5 (hard refresh)

o Clear browser cache and cookies

2. Check Browser Console:

o Press F12
o Check Console tab for JavaScript errors

o Report to support if errors found

3. Try Different Browser:

o Test in Chrome, Firefox, Edge

o |solate browser-specific issues

4. Check Service Logs:

sudo journalctl -u omnimessage-smpp -f

Metrics Problems

Prometheus Metrics Not Available
Symptoms:

e curl http://localhost:4000/metrics fails
e Prometheus can't scrape metrics

e Empty or error response
Possible Causes & Solutions:

1. Service Not Running

Check:
sudo systemctl status omnimessage-smpp
Solutions:

sudo systemctl start omnimessage-smpp

2. Port Not Accessible

Check:

Test locally
curl http://localhost:4000/metrics

Test remotely
curl http://your-server-ip:4000/metrics

Solutions:

¢ |f local works but remote doesn't: Check firewall

e Open port 4000 in firewall for Prometheus server
3. Wrong Endpoint
Verify:

e Endpointis /metrics (not /prometheus or /stats)
e Port is 4000 (not 8087)

Metrics Show Unexpected Values
Symptoms:

e Counters reset to zero
¢ Gauges show wrong values

e Missing metrics for some binds
Solutions:
1. Service Restart Resets Counters:

o Counters reset on service restart
o This is normal behavior

o Use increase() or rate() in Prometheus queries

2. New Binds Not Showing:

o Metrics only appear after first event

o Send test message to populate metrics

o Check bind is enabled and connected

3. Stale Metrics:

o Old binds may still show in metrics
o Restart service to clear stale entries

o Or use Prometheus relabeling to filter

Performance Problems

High CPU Usage

Check:
top -p $(pgrep -f omnimessage-smpp)

Possible Causes:

¢ Very high message volume
e Too many connections

e Configuration issue
Solutions:

e Check message rate is within capacity
e Review TPS limits

e Contact support if sustained high CPU

High Memory Usage

Check:

ps aux | grep omnimessage-smpp

Possible Causes:

« Large message queue in memory

e Memory leak (rare)
Solutions:

e Restart service to clear memory
e Check message queue size

e Contact support if memory grows continuously

Slow Message Processing
Symptoms:

e Messages take long to send
e Queue building up

* Low message rate
Check:

1. TPS limits - may be too restrictive
2. queue_check frequency - may be too high
3. Backend API response time - may be slow

4. Network latency to carrier

Solutions:

Increase TPS if carrier allows

Decrease queue check frequency for faster polling
Optimize backend API

Check network latency

Configuration Problems

Configuration File Syntax Errors
Symptoms:

e Service won't start after config change

e Logs show "syntax error" or "parse error"

Check:

Validate Elixir syntax
/opt/omnimessage-smpp/bin/omnimessage-smpp eval "File.read!
(‘config/runtime.exs')"

Common Mistakes:

Missing comma between map entries

Mismatched quotes (" vs ')

Unmatched brackets or braces

Missing import Config at top
Solutions:

e Restore from backup
e Carefully review syntax

e Use text editor with Elixir syntax highlighting

Changes Not Taking Effect
Symptoms:

* Modified configuration but no change in behavior

e Old settings still active

Solutions:

Configuration changes require restart
sudo systemctl restart omnimessage-smpp

Verify restart succeeded
sudo systemctl status omnimessage-smpp

Check logs for errors
sudo journalctl -u omnimessage-smpp -n 50

Emergency Recovery

Complete System Failure

Steps:

1. Check basic system health:

Disk space
df -h

Memory
free -h

CPU load
uptime

2. Check service status:
sudo systemctl status omnimessage-smpp
3. Review recent logs:

sudo journalctl -u omnimessage-smpp -n 200

4. Try service restart:
sudo systemctl restart omnimessage-smpp

5. If restart fails:

o Check configuration syntax
o Verify SSL certificates exist
o Check file permissions

o Review logs for specific error

6. Restore from backup (if needed):

Restore config

sudo cp /opt/omnimessage-smpp/config/runtime.exs.backup \
/opt/omnimessage-smpp/config/runtime.exs

Restart
sudo systemctl restart omnimessage-smpp

7. Contact support if unresolved

Getting Help

Information to Gather
Before contacting support, collect:

1. Version: cat /opt/omnimessage-smpp/VERSION
2. Recent Logs:

sudo journalctl -u omnimessage-smpp -n 200 > /tmp/smpp-logs.txt

3. Configuration (sanitize passwords):

sudo cp /opt/omnimessage-smpp/config/runtime.exs
/tmp/config.exs
Edit /tmp/config.exs to remove passwords before sending

4. Metrics Output:

curl http://localhost:4000/metrics > /tmp/metrics.txt

5. System Info:

uname -a > /tmp/system-info.txt
free -h >> /tmp/system-info.txt
df -h >> /tmp/system-info.txt

Contact Support

e Email:
e Phone: +61 XXXX XXXX (24/7)

¢ Include: All information from above

Related Documentation

. - Normal operational procedures
. - Configuration reference
. - Monitoring and metrics

. - System overview

mailto:support@omnitouch.com

