
OmniPGW

Configuration Guide

Complete Reference for runtime.exs Configuration

by Omnitouch Network Services

Table of Contents

1. Overview

2. Configuration File Structure

3. Metrics Configuration

4. Diameter/Gx Configuration

5. S5/S8 Configuration

6. Sxb/PFCP Configuration

UPF Selection Strategies

Load Balancing with UPF Pools

DNS-Based Selection

Dry-Run Mode

7. UE IP Pool Configuration

8. PCO Configuration

9. Web UI Configuration

10. Complete Example

11. Configuration Validation

Overview

OmniPGW uses runtime configuration defined in config/runtime.exs . This

file is evaluated at application startup and allows for dynamic configuration

based on environment variables or external sources.

Configuration Philosophy

Key Principles:

Single Source of Truth - All configuration in one file

Type Safety - Configuration validated at startup

Environment Flexibility - Support for dev, test, production

Clear Defaults - Sensible defaults with explicit overrides

Configuration File Structure

File Location

pgw_c/

├── config/

│ ├── config.exs # Base configuration (imports

runtime.exs)

│ ├── dev.exs # Development-specific config

│ ├── prod.exs # Production-specific config

│ └── runtime.exs # ← Main configuration file

Top-Level Structure

Configuration Sections

:pgw_c config

:metrics

Prometheus Exporter

:diameter

Gx Interface

:s5s8

GTP-C Interface

:sxb

PFCP Interface

:ue

IP Pool Management

:pco

Network Parameters

Metrics Configuration

Purpose

Configure the Prometheus metrics exporter for monitoring OmniPGW.

config/runtime.exs

import Config

config :logger, level: :info

config :pgw_c,

 metrics: %{...},

 diameter: %{...},

 s5s8: %{...},

 sxb: %{...},

 ue: %{...},

 pco: %{...}

Configuration Block

Parameters

Parameter Type Default Description

enabled Boolean true
Enable metrics

exporter

ip_address
String

(IP)
"0.0.0.0"

Bind address

(0.0.0.0 = all

interfaces)

port Integer 9090
HTTP port for

/metrics endpoint

registry_poll_period_ms Integer 10_000
Polling interval for

registry counts

Examples

Production - Bind to specific IP:

config :pgw_c,

 metrics: %{

 # Enable/disable metrics exporter

 enabled: true,

 # IP address to bind HTTP server

 ip_address: "0.0.0.0",

 # Port for metrics endpoint

 port: 9090,

 # How often to poll registries (milliseconds)

 registry_poll_period_ms: 10_000

 }

Development - Localhost only:

Disable metrics:

Accessing Metrics

See: Monitoring & Metrics Guide for detailed metrics documentation.

metrics: %{

 enabled: true,

 ip_address: "10.0.0.20", # Management network

 port: 9090,

 registry_poll_period_ms: 5_000 # Poll every 5 seconds

}

metrics: %{

 enabled: true,

 ip_address: "127.0.0.1",

 port: 42069, # Non-standard port

 registry_poll_period_ms: 10_000

}

metrics: %{

 enabled: false

}

Default endpoint

curl http://<ip_address>:<port>/metrics

Example

curl http://10.0.0.20:9090/metrics

Diameter/Gx Configuration

Purpose

Configure the Diameter protocol for Gx interface (PCRF communication).

Configuration Block

config :pgw_c,

 diameter: %{

 # IP address to listen for Diameter connections

 listen_ip: "0.0.0.0",

 # OmniPGW's Diameter identity (Origin-Host)

 host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

 # OmniPGW's Diameter realm (Origin-Realm)

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 # List of PCRF peers

 peer_list: [

 %{

 # PCRF Diameter identity

 host: "pcrf.epc.mnc001.mcc001.3gppnetwork.org",

 # PCRF realm

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 # PCRF IP address

 ip: "10.0.0.30",

 # Initiate connection to PCRF

 initiate_connection: true

 }

]

 }

Parameters

Parameter Type Required Description

listen_ip String (IP) Yes Diameter listen address

host
String

(FQDN)
Yes

OmniPGW's Origin-Host (must

be FQDN)

realm
String

(Domain)
Yes OmniPGW's Origin-Realm

peer_list List Yes PCRF peer configurations

Peer Configuration:

Parameter Type Required Description

host
String

(FQDN)
Yes

PCRF Diameter

identity

realm
String

(Domain)
Yes PCRF realm

ip String (IP) Yes PCRF IP address

initiate_connection Boolean Yes
Whether OmniPGW

connects to PCRF

FQDN Format

Diameter identities MUST be FQDNs:

3GPP Format:

Examples

Single PCRF:

Multiple PCRFs (Redundancy):

CORRECT

host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org"

INCORRECT

host: "omnipgw" # Not a FQDN

host: "10.0.0.20" # IP not allowed

<hostname>.epc.mnc<MNC>.mcc<MCC>.3gppnetwork.org

Examples:

- omnipgw.epc.mnc001.mcc001.3gppnetwork.org (MCC=001, MNC=001)

- pgw-c.epc.mnc260.mcc310.3gppnetwork.org (MCC=310, MNC=260 - US

T-Mobile)

diameter: %{

 listen_ip: "0.0.0.0",

 host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.0.30",

 initiate_connection: true

 }

]

}

PCRF-Initiated Connection:

See: Diameter Gx Interface Documentation

diameter: %{

 listen_ip: "0.0.0.0",

 host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf-primary.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.1.30",

 initiate_connection: true

 },

 %{

 host: "pcrf-backup.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.2.30",

 initiate_connection: true

 }

]

}

diameter: %{

 listen_ip: "0.0.0.0",

 host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.0.30",

 initiate_connection: false # Wait for PCRF to connect

 }

]

}

S5/S8 Configuration

Purpose

Configure the GTP-C interface for communication with SGW-C.

Configuration Block

config :pgw_c,

 s5s8: %{

 # Local IPv4 address for S5/S8 interface

 local_ipv4_address: "10.0.0.20",

 # Optional: Local IPv6 address

 local_ipv6_address: nil,

 # Optional: Override default GTP-C port (2123)

 local_port: 2123,

 # GTP-C request timeout in milliseconds (default: 500ms)

 # Timeout per attempt when waiting for GTP-C responses

 request_timeout_ms: 500,

 # Number of retry attempts for GTP-C requests (default: 3)

 # Total maximum wait time = request_timeout_ms *

request_attempts

 request_attempts: 3

 }

Parameters

Parameter Type Default Description

local_ipv4_address
String

(IPv4)
Required

S5/S8 interface IPv4

address

local_ipv6_address
String

(IPv6)
nil

S5/S8 interface IPv6

address (optional)

local_port Integer 2123
UDP port for GTP-C

(standard port 2123)

request_timeout_ms Integer 500
Timeout per retry attempt

in milliseconds

request_attempts Integer 3
Number of retry attempts

before giving up

Protocol Details

Protocol: GTP-C Version 2

Transport: UDP

Standard Port: 2123

Direction: Receives from SGW-C

Examples

IPv4 Only (Common):

IPv4 + IPv6 Dual-Stack:

s5s8: %{

 local_ipv4_address: "10.0.0.20"

}

Custom Port (Non-Standard):

High Latency Network:

Timeout Configuration

The S5/S8 interface uses configurable timeouts for GTP-C request/response

transactions (Create Bearer Request, Delete Bearer Request).

Total Wait Time Calculation:

Tuning Guidelines:

s5s8: %{

 local_ipv4_address: "10.0.0.20",

 local_ipv6_address: "2001:db8::20"

}

s5s8: %{

 local_ipv4_address: "10.0.0.20",

 local_port: 2124 # Custom port

}

s5s8: %{

 local_ipv4_address: "10.0.0.20",

 request_timeout_ms: 1500, # 1.5 seconds per attempt

 request_attempts: 3 # Total: 4.5 seconds max

}

Total Maximum Wait = request_timeout_ms × request_attempts

Default: 500ms × 3 = 1.5 seconds

Network Latency Recommended Timeout Total Wait Time

Low latency (<50ms) 200-300ms 600-900ms

Normal (50-150ms) 500ms (default) 1.5s

High latency (>150ms) 1000-2000ms 3-6s

Satellite/unstable 2000-3000ms 6-9s

When to Adjust:

Increase timeout if seeing frequent "Create Bearer Request timed out"

errors but Wireshark shows responses arriving

Decrease timeout for faster failure detection in low-latency environments

Increase retry attempts for unreliable networks with packet loss

Timeout Behavior:

On timeout, error is logged: "Create Bearer Request timed out"

Diameter error returned to PCRF: Result-Code 5012 (UNABLE_TO_COMPLY)

Bearer remains in early storage for cleanup when Charging-Rule-Remove

arrives

Network Planning

IP Address Selection:

Use dedicated management/signaling network

Ensure reachability from all SGW-C nodes

Consider redundancy (VRRP/HSRP) for HA

Firewall Rules:

Allow GTP-C from SGW-C

iptables -A INPUT -p udp --dport 2123 -s <sgw_c_network> -j ACCEPT

Sxb/PFCP Configuration

Purpose

Configure the PFCP interface for communication with PGW-U (User Plane).

Configuration Block

Parameters

Parameter Type Default Description

local_ip_address String (IP) Required PFCP listen address

local_port Integer 8805 PFCP UDP port

Important:

All UPF peers are automatically registered from the

upf_selection configuration (rules + fallback pool) at startup

Auto-registered UPFs use sensible defaults:

Auto-generated name: "UPF-<ip>:<port>"

Passive PFCP association (wait for UPF to initiate)

5-second heartbeat interval

config :pgw_c,

 sxb: %{

 # Local IP address for PFCP communication

 local_ip_address: "10.0.0.20",

 # Optional: Override default PFCP port (8805)

 local_port: 8805

 }

UPF selection rules and pools are configured in the separate

upf_selection section. See UPF Selection Strategies below.

Dynamic UPF registration is supported for DNS-discovered UPFs that

aren't in the configuration

Examples

Minimal Configuration:

Custom PFCP Port:

Complete Example with UPF Selection:

sxb: %{

 local_ip_address: "10.0.0.20"

}

All UPFs in upf_selection will be automatically registered with:

- Auto-generated name: "UPF-10.0.0.21:8805"

- Passive PFCP association (wait for UPF to connect)

- 5-second heartbeat interval

sxb: %{

 local_ip_address: "10.0.0.20",

 local_port: 8806 # Non-standard PFCP port

}

DNS-Based Selection (Dynamic Registration):

sxb: %{

 local_ip_address: "10.0.0.20"

},

upf_selection: %{

 rules: [

 %{

 name: "IMS Pool",

 priority: 10,

 match_field: :apn,

 match_regex: ~r/^ims$/,

 upf_pool: [

 %{remote_ip_address: "10.0.1.21", remote_port: 8805,

weight: 100},

 %{remote_ip_address: "10.0.1.22", remote_port: 8805,

weight: 100}

]

 }

],

 fallback_pool: [

 %{remote_ip_address: "10.0.2.21", remote_port: 8805, weight:

100}

]

}

All 3 UPFs (10.0.1.21, 10.0.1.22, 10.0.2.21) are automatically

registered

sxb: %{

 local_ip_address: "10.0.0.20"

},

upf_selection: %{

 dns_enabled: true,

 dns_query_priority: [:ecgi, :tai],

 dns_suffix: "epc.3gppnetwork.org",

 fallback_pool: [

 %{remote_ip_address: "10.0.2.21", remote_port: 8805, weight:

100}

]

}

DNS-discovered UPFs will be dynamically registered on first use

UPF Selection Strategies

Important: UPF selection configuration has been simplified. All UPF peers are

automatically registered from the upf_selection configuration.

Configuration Structure

UPF selection is configured in the upf_selection section which defines:

1. Static Rules - Pattern-based routing with load balancing pools

2. DNS Settings - Location-based dynamic UPF discovery

3. Fallback Pool - Default pool when no rules match and DNS fails

Selection Priority Order

1. Static Rules (Highest Priority) - Pattern-based routing with load balancing

pools

2. DNS-Based Selection (Lower Priority) - Location-based dynamic UPF

discovery

3. Fallback Pool (Lowest Priority) - Default pool when no rules match and

DNS fails

UPF Selection Decision Flow

Available Match Fields

Static rules can match on any of these session attributes:

Match Field Description
Example

Pattern

:imsi
International Mobile

Subscriber Identity

^313380.* (US

carrier)

:apn
Access Point Name /

DNN

^internet\. or

^ims\.

:serving_network_plmn_id
Serving network

identifier
^313380$

:sgw_ip_address SGW IP address ^10\.100\..*

:uli_tai_plmn_id Tracking Area PLMN ID ^313.*

:uli_ecgi_plmn_id E-UTRAN Cell PLMN ID ^313.*

Selection Methods Comparison

Method When to Use Pros Cons

UPF Pools
Production

deployments

Load balancing, HA,

flexible weights

Requires multiple

UPFs

APN-

Based

Service

differentiation

Route IMS/Internet

separately

Static

configuration

IMSI-

Based

Roaming

scenarios
Geographic routing Regex complexity

DNS-

Based

MEC/Edge

computing

Dynamic, location-

aware

Requires DNS

infrastructure

Fallback

Pool
Safety net Always have a UPF

May not be

optimal

Dry-Run

Mode
Testing configs Safe testing No real traffic

Complete Session Establishment Flow

This diagram shows the complete end-to-end flow of session establishment

including UPF selection and PCO population:

Selected UPFDNS ServerOCS (Gy)PCRF (Gx)PGW-CSGW-C

1. Extract Session Attributes

IMSI, APN, PLMN, TAI, ECGI

2. Check if Online Charging

Required (Rating-Group present?)

alt [Online Charging Required]

3. UPF Selection Process

Rule Matched!

Get UPF Pool from Rule

Use Fallback Pool

alt [DNS Enabled]

[DNS Disabled/Failed]

alt [Rule Match Found]

[No Rule Match]

4. Filter to Healthy UPFs

Check PFCP Association + Heartbeats

Selected UPF Chosen!

5. PCO Population Process

Use Rule PCO Override

+ Global PCO Fallback

Use Global PCO Config

alt [Rule Matched

with PCO

Override]

[No PCO

Override]

alt [Per-Rule Discovery FQDN]

[Global Discovery Enabled]

alt [P-CSCF Discovery Enabled]

Create Session Request

(IMSI, APN, ULI, etc.)

Allocate UE IP

from APN Pool

CCR-Initial (Gx)

Request PCC Rules

CCA-Initial (Gx)

PCC Rules + Charging Info

CCR-Initial (Gy)

Request Quota

CCA-Initial (Gy)

Grant Quota

Evaluate Static Rules

by Priority (High→Low)

NAPTR Query

Based on ULI

UPF IP Address(es)

Weighted Random Selection

Handle Active/Standby

Query p_cscf_discovery_fqdn

P-CSCF IP List

Query Global P-CSCF DNS

P-CSCF IP List

Selected UPFDNS ServerOCS (Gy)PCRF (Gx)PGW-CSGW-C

Use Discovered P-CSCF

Use Static P-CSCF List

(Rule or Global)

alt [DNS Success]

[DNS Failed]

Use Static P-CSCF List

[Discovery Disabled]

Build Complete PCO:

DNS, NBNS, P-CSCF, MTU

6. PFCP Session Establishment

7. Return to SGW-C

Session Established

User Traffic Flows Through UPF

Session Active

✓ UPF Selected: Health-Aware + Weighted

✓ PCO Configured: DNS + P-CSCF + MTU

✓ Charging: Quota Granted (if online)

✓ Traffic Flowing

P CSCF IP List

PFCP Session Establishment

PDRs, FARs, QERs, URRs

PFCP Session Establishment Response

F-TEID for S5/S8-U

Create Session Response

UE IP, PCO, Bearer Info

Key Decision Points:

1. UPF Selection Priority:

Static Rules (Pattern Match) → DNS Discovery → Fallback Pool

Health filtering applied at all stages

Active/Standby logic for high availability

See: PFCP Interface for UPF communication details

2. PCO Population Priority:

Rule PCO Override → P-CSCF DNS Discovery → Global PCO Config

Per-field merging (rule overrides specific fields, global provides

defaults)

See: PCO Configuration for detailed PCO parameters

3. P-CSCF Discovery Priority:

Per-Rule FQDN → Global DNS Discovery → Static Rule PCO → Global

Static PCO

See: P-CSCF Monitoring for discovery metrics and health tracking

4. Charging Integration:

PCRF determines if online charging required (Rating-Group + Online=1)

OCS grants quota before session establishment

PGW-C tracks quota and requests more via CCR-Update

See: Diameter Gx Interface and Diameter Gy Interface for charging

details

Complete Configuration Example

Here's a complete example showing multi-pool UPF selection with automatic

peer registration:

config :pgw_c,

 # PFCP Interface - All UPFs are auto-registered from

upf_selection

 sxb: %{

 local_ip_address: "127.0.0.20"

 },

 # UPF Selection Logic - All UPFs defined here are automatically

registered

 upf_selection: %{

 # DNS-based selection settings

 dns_enabled: false,

 dns_query_priority: [:ecgi, :tai, :rai, :sai, :cgi],

 dns_suffix: "epc.3gppnetwork.org",

 dns_timeout_ms: 5000,

 # Static selection rules (evaluated in priority order)

 rules: [

 # Rule 1: IMS Traffic - Highest Priority

 %{

 name: "IMS Traffic",

 priority: 20,

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [

 %{remote_ip_address: "10.100.2.21", remote_port: 8805,

weight: 80},

 %{remote_ip_address: "10.100.2.22", remote_port: 8805,

weight: 20}

]

 },

 # Rule 2: Enterprise APN

 %{

 name: "Enterprise Traffic",

 priority: 15,

 match_field: :apn,

 match_regex: "^(enterprise|corporate)\.apn",

 upf_pool: [

 %{remote_ip_address: "10.100.3.21", remote_port: 8805,

weight: 100}

]

 },

Key Features

Current Format:

� Automatic Registration: All UPFs from upf_selection are

automatically registered at startup

� Centralized Configuration: All UPF selection and peer configuration in

one section

� Required Pools: All rules use upf_pool format (even for single UPF)

� Structured Fallback: Dedicated fallback_pool with weighted

distribution

� DNS Integration: DNS settings alongside selection rules

� Dynamic Registration: DNS-discovered UPFs are automatically

registered on first use

 # Rule 3: Internet Traffic - Load Balanced

 %{

 name: "Internet Traffic",

 priority: 5,

 match_field: :apn,

 match_regex: "^internet",

 upf_pool: [

 %{remote_ip_address: "10.100.1.21", remote_port: 8805,

weight: 33},

 %{remote_ip_address: "10.100.1.22", remote_port: 8805,

weight: 33},

 %{remote_ip_address: "10.100.1.23", remote_port: 8805,

weight: 34}

]

 }

],

 # Fallback pool - Used when no rules match and DNS fails

 fallback_pool: [

 %{remote_ip_address: "127.0.0.21", remote_port: 8805,

weight: 100}

]

 }

� Health Monitoring: All configured UPFs are monitored with 5-second

heartbeats

Migration from Previous Format:

Removed: sxb.peer_list field (no longer needed)

Removed: selection_list embedded in peer configurations

All UPF definitions now go in upf_selection rules and fallback pool

How UPF Pools Work:

1. Health-Aware Selection: Only healthy UPFs receive traffic

Healthy = PFCP association active + less than 3 consecutive missed

heartbeats

Unhealthy UPFs are automatically filtered out

Falls back to all UPFs if none are healthy (fail-fast)

2. Active/Standby Support: Use weight: 0 for standby UPFs

Active UPFs (weight > 0): Receive traffic when healthy

Standby UPFs (weight == 0): Only receive traffic when all active UPFs

are down

Standby UPFs are treated as weight: 1 when activated

3. Weighted Random Selection: Each session is randomly assigned to a

healthy UPF based on weights

In the example above: 70% go to .21, 20% to .22, 10% to .23

Higher weight = more sessions assigned to that UPF

Equal weights = equal distribution

4. Automatic Registration: All UPFs in pools are automatically registered at

startup

Auto-generated names: "UPF-<ip>:<port>"

Default settings: passive PFCP association, 5-second heartbeats

Immediate health tracking for all configured UPFs

Health-Aware Selection with Active/Standby

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

No, All weight=0

Yes

Yes No, All Unhealthy

UPF Pool Selected

Get UPF Pool from

Rule or Fallback

Check Health of Each

UPF

Query PFCP Peer Status

UPF 1

Associated?

UPF 2

Associated?

UPF 3

Associated?

Consecutive

Missed Heartbeats

< 3?

Mark UPF 1 Unhealthy

Consecutive

Missed Heartbeats

< 3?

Mark UPF 2 Unhealthy

Consecutive

Missed Heartbeats

< 3?

Mark UPF 3 UnhealthyMark UPF 1 Healthy Mark UPF 2 Healthy Mark UPF 3 Healthy

Filter Pool to

Only Healthy UPFs

Any Healthy

UPFs?

Log: No healthy UPFs in

pool

Using full pool as

fallback

Separate by Weight

Active weight > 0

Standby weight = 0

Use Full Pool

All UPFs Included

Any Active

weight > 0

UPFs?

Treat All as Active

weight 0 → 1

Active UPFs

Healthy?

Use Active UPF Pool

Standby Excluded

Activate Standby UPFs

weight 0 → 1

Log: All active down

Weighted Random

Selection

Probability ∝ Weight

Calculate Total Weight

Sum all UPF weights

Sum all UPF weights

Generate Random

Number

0 to Total Weight

Select UPF Based on

Weight Ranges

Selected UPF

Weighted Random Selection Example:

Active/Standby Failover Example:

Pool: [

 UPF-A: weight 50, healthy ✓

 UPF-B: weight 30, healthy ✓

 UPF-C: weight 20, healthy ✓

]

Total Weight: 50 + 30 + 20 = 100

Weight Ranges:

 UPF-A: 0-49 (50%)

 UPF-B: 50-79 (30%)

 UPF-C: 80-99 (20%)

Random number: 63 → Selects UPF-B

Random number: 15 → Selects UPF-A

Random number: 91 → Selects UPF-C

Common Weight Patterns:

Initial Pool: [

 UPF-A: weight 100, healthy ✓ (Active)

 UPF-B: weight 0, healthy ✓ (Standby)

]

Scenario 1: UPF-A Healthy

→ Use Active Pool: [UPF-A: 100]

→ All traffic to UPF-A

Scenario 2: UPF-A Fails

→ No active UPFs healthy

→ Activate Standby: [UPF-B: 1]

→ All traffic fails over to UPF-B

→ Log: "All active UPFs down, activating standby UPFs"

Scenario 3: Both Unhealthy

→ No healthy UPFs

→ Use full pool: [UPF-A: 100, UPF-B: 0]

→ Select with weights (attempt connection, may fail)

→ Log: "No healthy UPFs in pool, using full pool as fallback"

Equal distribution (25% each)

upf_pool: [

 %{remote_ip_address: "10.0.1.1", remote_port: 8805, weight: 1},

 %{remote_ip_address: "10.0.1.2", remote_port: 8805, weight: 1},

 %{remote_ip_address: "10.0.1.3", remote_port: 8805, weight: 1},

 %{remote_ip_address: "10.0.1.4", remote_port: 8805, weight: 1}

]

Primary/backup load balanced (90% / 10%)

upf_pool: [

 %{remote_ip_address: "10.0.1.21", remote_port: 8805, weight:

90},

 %{remote_ip_address: "10.0.1.22", remote_port: 8805, weight: 10}

]

Active/Standby (100% primary, 0% standby until primary fails)

upf_pool: [

 %{remote_ip_address: "10.0.1.21", remote_port: 8805, weight:

100}, # Active

 %{remote_ip_address: "10.0.1.22", remote_port: 8805, weight: 0}

Standby (only when active down)

]

Active with multiple standbys (load balanced when activated)

upf_pool: [

 %{remote_ip_address: "10.0.1.1", remote_port: 8805, weight:

100}, # Active

 %{remote_ip_address: "10.0.1.2", remote_port: 8805, weight: 0},

Standby 1

 %{remote_ip_address: "10.0.1.3", remote_port: 8805, weight: 0}

Standby 2

]

Result: Active gets 100%. If active fails, standbys get 50/50%.

A/B testing (50% / 50%)

upf_pool: [

 %{remote_ip_address: "10.0.1.100", remote_port: 8805, weight:

50}, # Old version

 %{remote_ip_address: "10.0.1.200", remote_port: 8805, weight:

50} # New version

]

Use Cases:

Active/Standby Failover: Use weight: 0 for hot standby UPFs that only

activate when primaries fail

Health-Aware HA: Automatic failover when UPFs lose PFCP association or

miss heartbeats

Horizontal Scaling: Distribute load across multiple UPFs to increase

capacity

High Availability: Automatic distribution prevents single UPF overload

Gradual Rollouts: Use weights for canary deployments (e.g., 95% old, 5%

new)

Cost Optimization: Route more traffic to higher-capacity UPFs

Geographic Distribution: Balance sessions across edge UPFs

PCO (Protocol Configuration Options) Overrides:

Each UPF selection rule can optionally specify custom PCO values that override

the default PCO configuration for matching sessions. This allows different APNs

or traffic types to receive different network parameters.

How PCO Overrides Work:

1. Partial Overrides: Only specify the PCO fields you want to override

2. Default Fallback: Unspecified fields use values from the main pco config

3. Rule-Specific: Each rule can have different PCO overrides

4. Priority Merging: Rule PCO takes priority over default PCO

PCO Population Hierarchy

Priority Order for Each PCO Field:

1. Rule PCO Override (Highest Priority)

2. P-CSCF DNS Discovery (for P-CSCF addresses only)

3. Global PCO Configuration (Lowest Priority / Fallback)

Example: IMS Rule Overrides DNS, Enterprise Rule Overrides

Everything

Available PCO Override Fields:

primary_dns_server_address - Primary DNS server IP

secondary_dns_server_address - Secondary DNS server IP

primary_nbns_server_address - Primary WINS server IP

secondary_nbns_server_address - Secondary WINS server IP

p_cscf_ipv4_address_list - List of P-CSCF server IPs (for IMS) - See PCO

Configuration and P-CSCF Monitoring for dynamic P-CSCF discovery

ipv4_link_mtu_size - MTU size in bytes

P-CSCF Discovery Per Rule:

In addition to PCO overrides, UPF selection rules can specify dynamic P-CSCF

discovery:

p_cscf_discovery_fqdn - (String) FQDN for DNS-based P-CSCF discovery

(e.g., "pcscf.mnc380.mcc313.3gppnetwork.org")

When this parameter is set:

1. PGW-C performs DNS lookup for the specified FQDN during session

establishment

2. DNS server returns list of P-CSCF IP addresses

IMS Session (matched "IMS Traffic" rule):

├─ DNS Servers: FROM GLOBAL (not overridden in rule)

├─ P-CSCF: FROM DNS DISCOVERY (p_cscf_discovery_fqdn set in rule)

│ └─ Fallback: FROM RULE if DNS fails

└─ MTU: FROM GLOBAL (not overridden in rule)

Enterprise Session (matched "Enterprise Traffic" rule):

├─ DNS Servers: FROM RULE (192.168.1.10, 192.168.1.11)

├─ P-CSCF: FROM GLOBAL (not overridden in rule)

└─ MTU: FROM RULE (1500)

Default Session (no rule matched):

├─ DNS Servers: FROM GLOBAL

├─ P-CSCF: FROM GLOBAL or DNS if global discovery enabled

└─ MTU: FROM GLOBAL

3. Discovered P-CSCF addresses are sent to UE via PCO

4. If DNS lookup fails, falls back to p_cscf_ipv4_address_list from PCO

override (if specified) or global PCO config

5. See P-CSCF Monitoring for monitoring discovery success/failure rates

This is particularly useful for:

IMS APNs - Different IMS networks with different P-CSCF servers

Multi-tenant deployments - Different enterprises with dedicated P-CSCF

infrastructure

Geographic routing - DNS returns closest P-CSCF based on UE location

High availability - DNS automatically returns only healthy P-CSCF servers

Example: IMS Traffic with Custom P-CSCF:

Example: Enterprise Traffic with Custom DNS:

rules: [

 %{

 name: "IMS Traffic",

 priority: 20,

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [

 %{remote_ip_address: "10.100.2.21", remote_port: 8805,

weight: 80},

 %{remote_ip_address: "10.100.2.22", remote_port: 8805,

weight: 20}

],

 # P-CSCF Discovery: Dynamically query DNS for P-CSCF addresses

 # DNS lookup returns current P-CSCF IPs based on this FQDN

 p_cscf_discovery_fqdn: "pcscf.mnc380.mcc313.3gppnetwork.org",

 # IMS sessions get custom P-CSCF servers (used as fallback if

DNS fails)

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100", "10.101.2.101"]

 # DNS, NBNS, MTU will use defaults from main pco config

 }

 }

]

Example: Complete Override (All PCO Fields):

rules: [

 %{

 name: "Enterprise Traffic",

 priority: 15,

 match_field: :apn,

 match_regex: "^(enterprise|corporate)\.apn",

 upf_pool: [

 %{remote_ip_address: "10.100.3.21", remote_port: 8805,

weight: 100}

],

 # Enterprise sessions get corporate DNS and custom MTU

 pco: %{

 primary_dns_server_address: "192.168.1.10",

 secondary_dns_server_address: "192.168.1.11",

 ipv4_link_mtu_size: 1500

 # P-CSCF, NBNS will use defaults from main pco config

 }

 }

]

Use Cases:

IMS/VoLTE: Provide carrier-specific P-CSCF servers for voice services

Enterprise APNs: Route corporate traffic through company DNS servers

IoT/M2M: Use public DNS and optimized MTU for low-bandwidth devices

Roaming: Provide local DNS servers for visiting subscribers

Service Differentiation: Different network parameters per service type

DNS-Based UPF Selection:

Enable dynamic UPF selection based on User Location Information (ULI) using

DNS NAPTR queries. DNS settings are now configured within the

upf_selection section.

Note: This provides geographic or topology-based UPF selection. See PFCP

Interface for PFCP association setup with dynamically discovered UPFs and

Session Management for session establishment flows.

rules: [

 %{

 name: "IoT APN - Fully Custom",

 priority: 10,

 match_field: :apn,

 match_regex: "^iot\.m2m",

 upf_pool: [

 %{remote_ip_address: "10.100.5.21", remote_port: 8805,

weight: 100}

],

 # IoT sessions get completely custom PCO

 pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 primary_nbns_server_address: "10.0.0.100",

 secondary_nbns_server_address: "10.0.0.101",

 p_cscf_ipv4_address_list: [], # No P-CSCF for IoT

 ipv4_link_mtu_size: 1280 # Smaller MTU for constrained

devices

 }

 }

]

DNS-based selection works as follows:

1. Priority: DNS selection is used only when NO static rules match (lower

priority)

2. Query Generation: Builds DNS NAPTR queries based on UE location:

ECGI query: eci-

<hex>.ecgi.epc.mnc<MNC>.mcc<MCC>.epc.3gppnetwork.org

TAI query: tac-lb<hex>.tac-

hb<hex>.tac.epc.mnc<MNC>.mcc<MCC>.epc.3gppnetwork.org

RAI, SAI, CGI queries follow similar 3GPP TS 23.003 format

3. Fallback Hierarchy: Tries each location type in priority order until a match

is found

4. Peer Matching: DNS results are filtered against configured peer list

5. Selection: Chooses matching peer (currently first match, load-based

selection coming soon)

Example DNS Records (configure on your DNS server):

upf_selection: %{

 # Enable DNS-based selection

 dns_enabled: true,

 # Location types to query in priority order

 dns_query_priority: [:ecgi, :tai, :rai, :sai, :cgi],

 # DNS suffix for 3GPP NAPTR queries

 dns_suffix: "epc.3gppnetwork.org",

 # DNS query timeout in milliseconds

 dns_timeout_ms: 5000,

 # ... rules and fallback_pool ...

}

Use Cases:

Multi-access Edge Computing (MEC): Route sessions to geographically

closest edge UPFs

Dynamic UPF Discovery: Add/remove UPFs without reconfiguring PGW-C

Load Balancing: Distribute load across UPFs based on location

Network Slicing: Route different slices to different UPFs per location

UPF Health Monitoring

Automatic Health-Aware Selection: The PGW-C continuously monitors the

health of all UPFs and automatically excludes unhealthy UPFs from selection.

Health Check Criteria

A UPF is considered healthy when ALL of the following conditions are met:

1. PFCP Association Active: The UPF has an established PFCP association

2. Heartbeat Responsiveness: Less than 3 consecutive missed heartbeats

3. Process Alive: The UPF peer GenServer process is running

A UPF is considered unhealthy if ANY of the following are true:

PFCP association is not established (associated: false)

3 or more consecutive heartbeat timeouts

UPF peer process has crashed or is unresponsive

Monitoring Mechanism

For Configured UPFs (in upf_selection):

; NAPTR record for TAC 100 in PLMN 313-380

tac-lb64.tac-hb00.tac.epc.mnc380.mcc313.epc.3gppnetwork.org IN

NAPTR 10 50 "a" "x-3gpp-upf:x-sxb" "" upf-edge-1.example.com.

; A record for the UPF

upf-edge-1.example.com IN A 10.100.1.21

Health tracking starts immediately at boot

PFCP association is monitored continuously

Heartbeats are sent every 5 seconds

missed_heartbeats_consecutive counter tracks consecutive failures

All UPFs from rules and fallback pool are automatically registered

For DNS-Discovered UPFs (dynamic registration):

Assumed healthy until first session attempt

Registered automatically on first use

Health tracking begins after registration

Selection Behavior

Active/Standby Mode (when using weight: 0):

1. Filter to only healthy UPFs

2. Separate into active (weight > 0) and standby (weight == 0)

3. Use active UPFs if any are healthy

4. Activate standby UPFs (treat as weight 1) if all active are unhealthy

5. Fall back to full pool if no healthy UPFs exist

Load-Balanced Mode (all weight > 0):

1. Filter to only healthy UPFs

2. Perform weighted random selection among healthy UPFs

3. Fall back to full pool if no healthy UPFs exist

Logging:

Checking UPF Health

[debug] Using active UPF pool (2/3 healthy UPFs, 1 standby)

[info] All active UPFs down, activating standby UPFs (1 standby

UPFs, treating weight 0 as 1)

[warning] No healthy UPFs in pool (3 total), using full pool as

fallback

Programmatically:

Via Web UI:

Navigate to /upf_selection in the control panel

View real-time health status for all UPFs in each pool

Status badges: � Active-UP, ⏸️ Standby-Ready, ❌ Active-DOWN, 🟡 Not

Associated

Role badges: ACTIVE (weight > 0), STANDBY (weight == 0), DYNAMIC (DNS-

discovered, not in config)

Heartbeat miss counter displayed for associated UPFs

Health Monitoring Best Practices

1. Configure UPFs in upf_selection: All UPFs in rules and fallback pools are

automatically monitored

Check if a specific UPF is healthy

iex> PGW_C.PFCP_Node.is_peer_healthy?({10, 100, 1, 21})

true

Get detailed health information

iex> PGW_C.PFCP_Node.get_peer_health({10, 100, 1, 21})

%{

 associated: true,

 missed_heartbeats: 0,

 healthy: true,

 registered: true

}

2. Use standby UPFs: Configure hot standbys with weight: 0 for automatic

failover

3. Monitor via Web UI: Regularly check UPF health status in the control

panel

4. Heartbeat monitoring: The system uses a fixed threshold of 3

consecutive missed heartbeats to determine peer hea.

upf_selection: %{

 rules: [

 %{

 name: "Internet Traffic",

 priority: 10,

 match_field: :apn,

 match_regex: "^internet",

 upf_pool: [

 %{remote_ip_address: "10.100.1.21", remote_port: 8805,

weight: 100}

]

 }

],

 fallback_pool: [

 %{remote_ip_address: "10.100.2.21", remote_port: 8805,

weight: 100}

]

}

All UPFs automatically get:

- 5-second heartbeats

- Health monitoring from startup

- Auto-generated names

upf_pool: [

 %{remote_ip_address: "10.1.1.1", remote_port: 8805, weight:

100}, # Active

 %{remote_ip_address: "10.1.1.2", remote_port: 8805, weight:

0} # Standby

]

Dynamic UPF Registration

Feature: The PGW-C automatically registers and monitors UPFs discovered

through DNS, even if they aren't in the upf_selection configuration.

How It Works

When any selection method (static rules, pools, or DNS) returns a UPF that's

not already registered, the system automatically:

1. Creates a PFCP Peer: Generates a default peer configuration for the

unknown UPF

2. Initiates PFCP Association: Attempts to establish a PFCP association

with the UPF

3. Registers in Peer Registry: Adds the UPF to the internal peer tracking

system

4. Starts Heartbeat Monitoring: Begins periodic heartbeat exchanges (10-

second intervals)

5. Tracks Liveness: Monitors the UPF for failures and recovery

Default Configuration for Dynamic UPFs

When a UPF is dynamically registered, it receives the following default

configuration:

%{

 name: "Dynamic-UPF-<IP>", # e.g., "Dynamic-UPF-10-

100-1-21"

 remote_ip_address: <discovered_ip>, # IP from DNS or

selection

 remote_port: 8805, # Standard PFCP port

(overridable)

 initiate_pfcp_association_setup: true, # PGW-C initiates

association

 heartbeat_period_ms: 10_000 # 10-second heartbeat

interval

}

Note: Dynamic UPFs are registered purely for association management.

They are used as targets in upf_selection rules, not as sources of

selection logic.

Example: DNS Returns Unknown UPF

Benefits

� True Dynamic Discovery: DNS-based UPF selection now works without pre-

configuration � Automatic Scaling: Add UPFs to your network without

restarting PGW-C � Graceful Degradation: If association fails, sessions fail

cleanly (no crashes) � Backwards Compatible: Pre-configured UPFs continue

to work exactly as before � Full Monitoring: Dynamic UPFs get the same

heartbeat monitoring as static peers

Failure Handling

If a dynamically discovered UPF fails to respond to PFCP Association Setup:

DNS query returns: upf-edge-2.example.com -> 10.200.5.99

This UPF is NOT in your upf_selection configuration

Dynamic registration flow:

1. System detects unknown UPF 10.200.5.99

2. Logs: "UPF {10, 200, 5, 99} not pre-configured, attempting

dynamic registration..."

3. Sends PFCP Association Setup Request to 10.200.5.99:8805

4. If UPF responds: Association established, session continues

normally

5. If UPF doesn't respond: Session fails gracefully with clear

error message

[error] PFCP Association Setup failed for dynamic UPF {10, 200, 5,

99}: :timeout

[error] Failed to dynamically register UPF {10, 200, 5, 99}:

:timeout.

 Session creation will fail. Consider adding this UPF to

the upf_selection configuration.

The session creation will fail, but the PGW-C remains stable and continues

processing other sessions.

When to Pre-Configure vs. Dynamic Registration

Scenario Recommendation

Production Core UPFs
Pre-configure in upf_selection (explicit

configuration, monitored from startup)

DNS-Discovered Edge

UPFs

Use dynamic registration (scales automatically

with infrastructure)

Test/Development

UPFs

Either approach works (dynamic is more

convenient)

Mission-Critical UPFs
Pre-configure in upf_selection (ensures

monitoring from startup)

Ephemeral/Auto-

Scaled UPFs

Use dynamic registration (UPFs come and go

dynamically)

Monitoring Dynamic UPFs

Dynamic UPFs appear in logs with their auto-generated names:

You can query the peer registry to see all registered peers (both static and

dynamic):

[info] Creating dynamic PFCP peer configuration for Dynamic-UPF-

10-200-5-99 ({10, 200, 5, 99}:8805)

[info] Dynamic UPF peer Dynamic-UPF-10-200-5-99 registered

successfully with PID #PID<0.1234.0>

Custom Port for Dynamic UPFs

If your UPFs use a non-standard PFCP port, you can manually trigger

registration:

However, DNS-based selection and automatic registration always use port 8805

(standard PFCP port).

UPF Selection Dry-Run Mode:

Test and validate your UPF selection configuration without affecting real

sessions:

When dry-run mode is enabled:

1. No Real Assignment: Sessions are not actually assigned to UPFs

2. Detailed Logging: Selection decisions are logged with full details

3. Error Return: assign_sxb_peer/1 returns {:error, :dry_run_mode}

4. Session Prevention: Returning an error prevents session creation

5. Both Methods: Works with both static rules and DNS-based selection

Log Output Example:

Get all registered peers

PGW_C.PFCP_Node.registered_peer_count()

Check if a specific UPF is registered

PGW_C.PFCP_Node.get_peer({10, 200, 5, 99})

Returns: {:ok, #PID<0.1234.0>} if registered, :error otherwise

Register UPF at custom port

PGW_C.PFCP_Node.register_dynamic_peer({10, 200, 5, 99}, 9999)

config :pgw_c,

 # Enable dry-run mode for testing (disabled by default)

 upf_selection_dry_run: true

Testing via LiveView UI:

The UPF Selection LiveView page (/upf_selection) includes an interactive

testing interface:

1. Navigate to the UPF Selection page in the web panel

2. Scroll to the "Test UPF Selection" section

3. Enter test session attributes:

IMSI (e.g., 313380000000670)

APN (e.g., internet.apn)

Serving Network PLMN ID (e.g., 313380)

4. Click "Test Selection" to simulate the selection

5. View detailed results showing:

Which rule matched (or if DNS would be used)

Selected UPF and peer name

Match field and pattern details

Rule priority

The LiveView testing interface simulates the selection logic without requiring

dry-run mode to be enabled globally, making it safe to test in production

[warning] ⚠️ UPF SELECTION DRY-RUN MODE ENABLED - No actual

assignment will occur

[info] � DRY-RUN: Static rule matched

 Method: Static Rule

 Match Field: :apn

 Match Regex: ~r/^internet\./

 Priority: 10

 Selected UPF: 10.0.1.21:8805

[warning] 🔍 DRY-RUN: Would assign UPF but skipping actual

assignment

 Session IMSI: 313380000000670

 Session APN: internet.apn

 Selection Method: static

 Would Link To: 10.0.1.21:8805

 ⚠️ Returning error to prevent session creation

environments without affecting real traffic.

Use Cases:

Configuration Testing: Validate routing rules before deploying to

production

Troubleshooting: Understand why specific sessions route to specific UPFs

Training: Demonstrate UPF selection logic to operations teams

Development: Test new selection rules during development

Match Fields:

:imsi - International Mobile Subscriber Identity

:apn - Access Point Name (APN/DNN)

:serving_network_plmn_id - Serving network PLMN ID

:sgw_ip_address - SGW IP address

:uli_tai_plmn_id - Tracking Area PLMN ID

:uli_ecgi_plmn_id - E-UTRAN Cell PLMN ID

Heartbeat Tuning:

See: PFCP Interface Documentation

Aggressive (detect failures quickly)

heartbeat_period_ms: 2_000 # 2 seconds

Standard (recommended)

heartbeat_period_ms: 5_000 # 5 seconds

Relaxed (high-latency networks)

heartbeat_period_ms: 10_000 # 10 seconds

UE IP Pool Configuration

Purpose

Configure IP address pools for UE allocation, organized by APN.

Configuration Block

Parameters

Parameter Type Required Description

subnet_map Map Yes
Maps APN names to subnet

lists

default
List

(Subnets)
Yes

Fallback pool for unknown

APNs

config :pgw_c,

 ue: %{

 subnet_map: %{

 # APN "internet" pools

 "internet" => [

 "100.64.0.0/20" # 4094 usable IPs

],

 # APN "ims" pools

 "ims" => [

 "100.64.16.0/22" # 1022 usable IPs

],

 # Default pool for unknown APNs

 default: [

 "42.42.42.0/24" # 254 usable IPs

]

 }

 }

Subnet Format

CIDR Notation: <network_address>/<prefix_length>

Usable IP Calculation:

CIDR Total IPs Usable IPs Example Range

/24 256 254 100.64.1.1 - 100.64.1.254

/23 512 510 100.64.0.1 - 100.64.1.254

/22 1024 1022 100.64.0.1 - 100.64.3.254

/21 2048 2046 100.64.0.1 - 100.64.7.254

/20 4096 4094 100.64.0.1 - 100.64.15.254

/16 65536 65534 100.64.0.1 - 100.64.255.254

Examples

Simple Configuration:

Production Configuration:

ue: %{

 subnet_map: %{

 "internet" => ["100.64.1.0/24"],

 default: ["42.42.42.0/24"]

 }

}

Load Balancing (Multiple Subnets per APN):

ue: %{

 subnet_map: %{

 # General internet - large pool

 "internet" => [

 "100.64.0.0/18" # 16,382 IPs

],

 # IMS (VoLTE)

 "ims" => [

 "100.64.64.0/22" # 1,022 IPs

],

 # Enterprise APN

 "enterprise.corp" => [

 "10.100.0.0/16" # 65,534 IPs

],

 # IoT devices

 "iot.m2m" => [

 "100.64.72.0/20" # 4,094 IPs

],

 # Default fallback

 default: [

 "42.42.42.0/24" # 254 IPs

]

 }

}

IPv6 Support:

Recommended IP Ranges

RFC 6598 (Carrier-Grade NAT):

Range: 100.64.0.0/10

Size: ~4 million IPs

ue: %{

 subnet_map: %{

 "internet" => [

 "100.64.0.0/22", # 1022 IPs

 "100.64.4.0/22", # 1022 IPs

 "100.64.8.0/22", # 1022 IPs

 "100.64.12.0/22" # 1022 IPs

],

 # Total: 4088 IPs, randomly distributed

 default: ["42.42.42.0/24"]

 }

}

ue: %{

 subnet_map: %{

 # IPv4 pools

 "internet" => [

 "100.64.0.0/20"

],

 # IPv6 pools (prefix delegation)

 "internet.ipv6" => [

 "2001:db8:1::/48"

],

 default: [

 "42.42.42.0/24"

]

 }

}

Purpose: Designed for service provider NAT

Private IP Ranges (RFC 1918):

10.0.0.0/8 - 16 million IPs

172.16.0.0/12 - 1 million IPs

192.168.0.0/16 - 65,534 IPs

See: UE IP Pool Allocation Documentation

PCO Configuration

Purpose

Configure Protocol Configuration Options (PCO) sent to UE.

Configuration Block

config :pgw_c,

 pco: %{

 # DNS servers

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 # NBNS servers (optional, for Windows devices)

 primary_nbns_server_address: nil,

 secondary_nbns_server_address: nil,

 # P-CSCF addresses for IMS

 p_cscf_ipv4_address_list: ["10.0.0.50", "10.0.0.51"],

 # IPv4 MTU size

 ipv4_link_mtu_size: 1400

 }

Parameters

Parameter Type Default Description

primary_dns_server_address
String

(IPv4)
Required

Primary DNS

server

secondary_dns_server_address
String

(IPv4)
Optional

Secondary DNS

server

primary_nbns_server_address
String

(IPv4)
nil

Primary NBNS

(NetBIOS)

server

secondary_nbns_server_address
String

(IPv4)
nil

Secondary

NBNS server

p_cscf_ipv4_address_list
List

(IPv4)
[]

P-CSCF

addresses for

IMS

ipv4_link_mtu_size Integer 1400

Maximum

Transmission

Unit size

Examples

Public DNS (Google):

Private DNS:

pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 ipv4_link_mtu_size: 1400

}

IMS Configuration:

NBNS (Windows Compatibility):

MTU Tuning:

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11",

 ipv4_link_mtu_size: 1400

}

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11",

 # P-CSCF for IMS/VoLTE

 p_cscf_ipv4_address_list: [

 "10.0.0.50", # Primary P-CSCF

 "10.0.0.51" # Secondary P-CSCF

],

 ipv4_link_mtu_size: 1400

}

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11",

 primary_nbns_server_address: "10.0.0.20",

 secondary_nbns_server_address: "10.0.0.21",

 ipv4_link_mtu_size: 1400

}

See: PCO Configuration Documentation

Web UI Configuration

Purpose

Configure the Control Panel web interface and REST API endpoints for

managing and monitoring OmniPGW.

Note: Web UI configuration is only active in non-test environments. The

configuration is automatically skipped when config_env() is :test ,

:test_mock , or :test_impl .

Standard Ethernet

ipv4_link_mtu_size: 1500

Reduced for tunneling overhead

ipv4_link_mtu_size: 1400

Jumbo frames (if supported)

ipv4_link_mtu_size: 9000

Control Panel Configuration

config :control_panel,

 # Define page navigation order

 page_order: [

 "/application",

 "/configuration",

 "/topology",

 "/ue_search",

 "/pgw_sessions",

 "/session_history",

 "/ip_pools",

 "/diameter",

 "/pfcp_sessions",

 "/upf_status",

 "/upf_selection",

 "/pcscf_monitor",

 "/gy_simulator",

 "/logs"

]

HTTPS Endpoint for Control Panel

config :control_panel, ControlPanelWeb.Endpoint,

 url: [host: "0.0.0.0", path: "/"],

 https: [

 port: 8086,

 keyfile: "priv/cert/omnitouch.pem",

 certfile: "priv/cert/omnitouch.crt"

],

 render_errors: [

 formats: [html: ControlPanelWeb.ErrorHTML, json:

ControlPanelWeb.ErrorJSON],

 layout: false

]

Control Panel Parameters

Parameter Type Required Description

page_order List (Strings) Yes

Navigation

menu page

order (list of

URL paths)

url.host String (IP) Yes
Host address for

URL generation

url.path String Yes

Base path for all

routes (usually

"/")

https.port Integer Yes
HTTPS port for

web interface

https.keyfile String (Path) Yes
Path to SSL/TLS

private key file

https.certfile String (Path) Yes
Path to SSL/TLS

certificate file

render_errors.formats Keyword List Yes

Error page

rendering

modules

render_errors.layout Boolean/Module Yes

Error page

layout (false =

no layout)

REST API Configuration

config :api_ex,

 api: %{

 # Network settings

 port: 8443,

 listen_ip: "0.0.0.0",

 # API metadata

 product_name: "PGW-C",

 title: "API - PGW-C",

 hostname: "localhost",

 # TLS settings

 enable_tls: true,

 tls_cert_path: "priv/cert/omnitouch.crt",

 tls_key_path: "priv/cert/omnitouch.pem",

 # Route definitions

 routes: [

 %{

 path: "/status",

 module: ApiEx.Api.StatusController,

 actions: [:index]

 }

]

 }

API Parameters

Parameter Type Default Description

port Integer 8443 HTTPS port for REST API

listen_ip String (IP) "0.0.0.0"
API listen address (0.0.0.0

= all interfaces)

product_name String "PGW-C"
Product name (for API

metadata)

title String
"API - PGW-

C"
API documentation title

hostname String "localhost" API server hostname

enable_tls Boolean true Enable HTTPS for API

tls_cert_path
String

(Path)
Required

Path to SSL/TLS certificate

file

tls_key_path
String

(Path)
Required

Path to SSL/TLS private key

file

routes
List

(Maps)
[] API route definitions

Route Definition Format

Each route in the routes list is a map with:

Field Type Description Example

path String
URL path for the

route
"/status"

module Module
Controller module

handling requests
ApiEx.Api.StatusController

actions
List

(Atoms)

Allowed controller

actions
[:index, :show]

Examples

Default Configuration (Development):

Control Panel on localhost:8086

config :control_panel, ControlPanelWeb.Endpoint,

 url: [host: "localhost", path: "/"],

 https: [

 port: 8086,

 keyfile: "priv/cert/dev-key.pem",

 certfile: "priv/cert/dev-cert.crt"

]

API on localhost:8443

config :api_ex,

 api: %{

 port: 8443,

 listen_ip: "127.0.0.1", # localhost only

 hostname: "localhost",

 enable_tls: true,

 tls_cert_path: "priv/cert/dev-cert.crt",

 tls_key_path: "priv/cert/dev-key.pem",

 routes: [

 %{path: "/status", module: ApiEx.Api.StatusController,

actions: [:index]}

]

 }

Production Configuration:

Custom Page Order:

Control Panel on all interfaces

config :control_panel, ControlPanelWeb.Endpoint,

 url: [host: "pgw-c.example.com", path: "/"],

 https: [

 port: 443, # Standard HTTPS port

 keyfile: "/etc/ssl/private/pgw-c.key",

 certfile: "/etc/ssl/certs/pgw-c.crt"

]

API on management interface

config :api_ex,

 api: %{

 port: 8443,

 listen_ip: "10.0.0.20", # Management network

 product_name: "OmniPGW-C",

 hostname: "pgw-c-api.example.com",

 enable_tls: true,

 tls_cert_path: "/etc/ssl/certs/pgw-c-api.crt",

 tls_key_path: "/etc/ssl/private/pgw-c-api.key",

 routes: [

 %{path: "/status", module: ApiEx.Api.StatusController,

actions: [:index]},

 %{path: "/sessions", module: ApiEx.Api.SessionController,

actions: [:index, :show]}

]

 }

Accessing Web UI

Control Panel:

REST API:

Prioritize operational pages

config :control_panel,

 page_order: [

 "/ue_search", # Most frequently used

 "/pgw_sessions",

 "/upf_status",

 "/logs",

 "/diameter",

 "/topology",

 "/configuration",

 "/ip_pools",

 "/pfcp_sessions",

 "/upf_selection",

 "/pcscf_monitor",

 "/gy_simulator",

 "/session_history",

 "/application"

]

Default access

https://localhost:8086

Production

https://pgw-c.example.com

Status endpoint

curl -k https://localhost:8443/status

With proper certificate

curl https://pgw-c-api.example.com:8443/status

TLS Certificate Setup

Generate Self-Signed Certificate (Development):

Production Certificate:

For production, use certificates from a trusted Certificate Authority (CA):

Let's Encrypt (free, automated)

Commercial CA (DigiCert, GlobalSign, etc.)

Internal CA for enterprise deployments

Security Considerations

1. Always use TLS in production - Set enable_tls: true

2. Restrict listen_ip - Use specific IP addresses in production (not 0.0.0.0)

3. Use valid certificates - Avoid self-signed certs in production

4. Firewall protection - Restrict access to management ports (8086, 8443)

5. Strong key files - Use 4096-bit RSA or equivalent

6. Regular updates - Rotate certificates before expiration

Troubleshooting

Issue: Cannot access Control Panel

Generate private key and certificate

openssl req -x509 -newkey rsa:4096 -keyout priv/cert/omnitouch.pem

\

 -out priv/cert/omnitouch.crt -days 365 -nodes \

 -subj "/CN=localhost"

Issue: SSL/TLS errors

Verify certificate and key paths are correct

Ensure certificate matches the hostname

Check certificate expiration: openssl x509 -in cert.crt -text -noout

Verify key file permissions (should be readable by PGW-C process)

See: Monitoring Guide for Control Panel usage details

Check if port is listening

netstat -tulpn | grep 8086

Check certificate files exist

ls -la priv/cert/

Check logs for startup errors

tail -f /var/log/pgw_c/application.log

Complete Example

Production-Ready Configuration

config/runtime.exs

import Config

Logger configuration

config :logger, level: :info

config :pgw_c,

 # Metrics (Prometheus)

 metrics: %{

 enabled: true,

 ip_address: "10.0.0.20", # Management network

 port: 9090,

 registry_poll_period_ms: 5_000

 },

 # Diameter/Gx (PCRF interface)

 diameter: %{

 listen_ip: "0.0.0.0",

 host: "omnipgw.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf-primary.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.1.30",

 initiate_connection: true

 },

 %{

 host: "pcrf-backup.epc.mnc001.mcc001.3gppnetwork.org",

 realm: "epc.mnc001.mcc001.3gppnetwork.org",

 ip: "10.0.2.30",

 initiate_connection: true

 }

]

 },

 # S5/S8 (SGW-C interface)

 s5s8: %{

 local_ipv4_address: "10.0.0.20"

 },

 # Sxb/PFCP (PGW-U interface)

 sxb: %{

 local_ip_address: "10.0.0.20"

 },

 # UPF Selection

 upf_selection: %{

 rules: [

 %{

 name: "Default Internet",

 priority: 1,

 match_field: :apn,

 match_regex: ~r/^internet/,

 upf_pool: [

 %{remote_ip_address: "10.0.0.21", remote_port: 8805,

weight: 100},

 %{remote_ip_address: "10.0.0.22", remote_port: 8805,

weight: 0} # Standby

]

 }

],

 fallback_pool: [

 %{remote_ip_address: "10.0.0.21", remote_port: 8805, weight:

100}

]

 },

 # UE IP Pools

 ue: %{

 subnet_map: %{

 "internet" => [

 "100.64.0.0/18" # 16,382 IPs

],

 "ims" => [

 "100.64.64.0/22" # 1,022 IPs

],

 "enterprise.corp" => [

 "10.100.0.0/16" # 65,534 IPs

],

 default: [

 "100.64.127.0/24" # 254 IPs

Configuration Validation

Startup Validation

OmniPGW validates configuration at startup. Check logs:

Common Validation Errors

Invalid IP Address:

Missing Required Field:

Invalid CIDR:

]

 }

 },

 # Protocol Configuration Options

 pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 p_cscf_ipv4_address_list: ["10.0.0.50", "10.0.0.51"],

 ipv4_link_mtu_size: 1400

 }

[info] Loading configuration from runtime.exs

[info] Validating configuration...

[info] Configuration valid

[info] Starting OmniPGW...

[error] Invalid IP address in s5s8.local_ipv4_address: "10.0.0"

[error] Missing required configuration: sxb.local_ip_address

Invalid Diameter Identity:

Configuration Testing

Test configuration without starting:

[error] Invalid subnet in ue.subnet_map: "100.64.1.0/33"

[error] Diameter host must be FQDN, not IP: "10.0.0.20"

Validate syntax

mix compile

Check configuration loading

iex -S mix

iex> Application.get_env(:pgw_c, :metrics)

Environment-Specific Configuration

Development

config/dev.exs

import Config

config :logger, level: :debug

config :pgw_c,

 metrics: %{

 enabled: true,

 ip_address: "127.0.0.1",

 port: 42069,

 registry_poll_period_ms: 10_000

 },

 diameter: %{

 listen_ip: "0.0.0.0",

 host: "omnipgw-dev.local",

 realm: "local",

 peer_list: [

 %{

 host: "pcrf-dev.local",

 realm: "local",

 ip: "127.0.0.1",

 initiate_connection: true

 }

]

 },

 s5s8: %{

 local_ipv4_address: "127.0.0.10"

 },

 sxb: %{

 local_ip_address: "127.0.0.20"

 },

 upf_selection: %{

 fallback_pool: [

 %{remote_ip_address: "127.0.0.21", remote_port: 8805,

weight: 100}

]

 },

 ue: %{

 subnet_map: %{

 "internet" => ["100.64.1.0/24"],

 default: ["42.42.42.0/24"]

 }

 },

 pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 ipv4_link_mtu_size: 1400

 }

Using Environment Variables

Usage:

config/runtime.exs

import Config

config :pgw_c,

 metrics: %{

 enabled: System.get_env("METRICS_ENABLED", "true") == "true",

 ip_address: System.get_env("METRICS_IP", "0.0.0.0"),

 port: String.to_integer(System.get_env("METRICS_PORT",

"9090")),

 registry_poll_period_ms: 10_000

 },

 diameter: %{

 listen_ip: System.get_env("DIAMETER_LISTEN_IP", "0.0.0.0"),

 host: System.get_env("DIAMETER_HOST") || raise("DIAMETER_HOST

required"),

 realm: System.get_env("DIAMETER_REALM") ||

raise("DIAMETER_REALM required"),

 peer_list: [

 %{

 host: System.get_env("PCRF_HOST") || raise("PCRF_HOST

required"),

 realm: System.get_env("PCRF_REALM") ||

System.get_env("DIAMETER_REALM"),

 ip: System.get_env("PCRF_IP") || raise("PCRF_IP

required"),

 initiate_connection: true

 }

]

 }

 # ... rest of config

export DIAMETER_HOST="omnipgw.epc.mnc001.mcc001.3gppnetwork.org"

export DIAMETER_REALM="epc.mnc001.mcc001.3gppnetwork.org"

export PCRF_HOST="pcrf.epc.mnc001.mcc001.3gppnetwork.org"

export PCRF_IP="10.0.0.30"

mix run --no-halt

Related Documentation

Interface Configuration

PFCP Interface - Sxb/PFCP configuration, UPF communication, session

establishment

Diameter Gx Interface - PCRF policy control, PCC rules, QoS

management

Diameter Gy Interface - OCS online charging, quota management, credit

control

S5/S8 Interface - GTP-C configuration, SGW-C communication

Network Configuration

UE IP Allocation - IP pool management, APN-based allocation, DHCP

PCO Configuration - Protocol Configuration Options, DNS, P-CSCF, MTU

P-CSCF Monitoring - P-CSCF discovery monitoring, IMS health tracking

Operational Guides

Session Management - PDN session lifecycle, bearer management

Monitoring Guide - Prometheus metrics, alerts, dashboards

Data CDR Format - Offline charging records, billing integration

Back to Operations Guide

OmniPGW Configuration Guide - by Omnitouch Network Services

Data Charging Data

Record (CDR) Format

Offline Charging for PGW-C

OmniPGW by Omnitouch Network Services

Table of Contents

1. Overview

2. CDR File Format

3. CDR Fields

4. CDR Events

5. File Structure

6. Configuration

7. CDR Generation Flow

8. Field Details

9. Examples

10. Integration

Overview

The Data CDR (Charging Data Record) format provides offline charging

capabilities for the Packet Gateway Control Plane (PGW-C). CDRs are generated

to record bearer session events, data usage, and subscriber information for

billing and analytics purposes.

This common format is compatible with SGW-C CDRs, ensuring consistency in

charging records across the EPC infrastructure.

Key Features

CSV-based format - Simple, human-readable comma-separated values

Event-based recording - Captures bearer start, update, and end events

Volume metering - Records uplink and downlink data usage

Automatic rotation - Configurable file rotation based on time intervals

3GPP compliant - Follows 3GPP TS 32.251 (PS domain charging) and TS

32.298 (CDR encoding)

Use Cases

Use Case Description

Offline Charging Generate CDRs for postpaid billing

Analytics Analyze subscriber usage patterns

Audit Trail Track all bearer session events

Capacity Planning Monitor network resource utilization

Troubleshooting Debug session and bearer issues

CDR File Format

File Naming Convention

Example:

<epoch_timestamp>

1726598022

The filename is the Unix epoch timestamp (in seconds) of when the file was

created.

File Location

Default directory:

PGW-C: /var/log/pgw_c/cdrs/

Configurable via cdr_directory parameter in config/runtime.exs.

File Header

Each CDR file begins with a multi-line header containing metadata:

Header Fields:

File Start Time - When the CDR file was created (human-readable and

Unix timestamp)

File End Time - When the file rotation will occur (human-readable and

Unix timestamp)

Gateway Name - Identifier for the PGW-C instance (configured via

pgw_name parameter)

Column Headers - CSV field names for the data records

Data CDR File:

File Start Time: HH:MM:SS (unix_timestamp)

File End Time: HH:MM:SS (unix_timestamp)

Gateway Name: <gateway_name>

epoch,imsi,event,charging_id,msisdn,ue_imei,timezone_raw,plmn,tac,eci

CDR Fields

Field Summary

Position Field Name Type Description

0 epoch integer
Event timestamp (Unix epoch

seconds)

1 imsi string
International Mobile Subscriber

Identity

2 event string
CDR event type (e.g.,

"default_bearer_start")

3 charging_id integer
Unique charging identifier for the

bearer

4 msisdn string
Mobile Station ISDN Number (phone

number)

5 ue_imei string
International Mobile Equipment

Identity

6 timezone_raw string
UE timezone (reserved, currently

empty)

7 plmn integer Public Land Mobile Network identifier

8 tac integer Tracking Area Code

9 eci integer E-UTRAN Cell Identifier

10 sgw_ip string
SGW-C S5/S8 control plane IP

address

Position Field Name Type Description

11 ue_ip string UE IP address (IPv4|IPv6 format)

12 pgw_ip string
PGW-C S5/S8 control plane IP

address

13 apn string Access Point Name

14 qci integer QoS Class Identifier

15 octets_in integer Downlink data volume (bytes)

16 octets_out integer Uplink data volume (bytes)

CDR Events

Event Types

CDRs are generated for three types of events:

Event

Type
Format Description When Generated

Bearer

Start
<type>_bearer_start

Bearer

establishment

Create Session

Response sent

Bearer

Update
<type>_bearer_update

Usage

reporting

during session

Periodic usage

reports from user

plane

Bearer

End
<type>_bearer_end

Bearer

termination

Delete Session

Request/Response

Bearer Types:

default - Default bearer (one per PDN connection)

dedicated - Dedicated bearer (zero or more per PDN connection)

Event Examples

File Structure

Example CDR File

File Rotation

CDR files are automatically rotated based on the configured duration:

default_bearer_start - Default bearer established

default_bearer_update - Default bearer usage update

default_bearer_end - Default bearer terminated

dedicated_bearer_start - Dedicated bearer established

dedicated_bearer_update - Dedicated bearer usage update

dedicated_bearer_end - Dedicated bearer terminated

Data CDR File:

File Start Time: 18:53:42 (1726598022)

File End Time: 19:53:42 (1726601622)

Gateway Name: sgw-c-prod-01

epoch,imsi,event,charging_id,msisdn,ue_imei,timezone_raw,plmn,tac,e

1726598022,310260123456789,default_bearer_start,12345,15551234567,123

1726598322,310260123456789,default_bearer_update,12345,15551234567,12

1726598622,310260123456789,default_bearer_update,12345,15551234567,12

1726598922,310260123456789,default_bearer_end,12345,15551234567,12345

Rotation Process:

1. Close current CDR file

2. Create new file with current timestamp

3. Write header to new file

4. Continue recording CDRs to new file

Configuration

Configuration Parameters

PGW-C CDR generation is configured in config/runtime.exs :

Parameter Type Description Default Reco

pgw_name string

PGW

instance

identifier

(appears in

CDR

headers)

"omni-

pgw01"

Use host

instance

cdr_file_duration integer
File rotation

interval (ms)
3600000 3600000

cdr_directory string

CDR output

directory

path

"/tmp/pgw_c" /var/lo

usage_report_interval integer

URR

reporting

interval (ms)

- how often

PGW-U

sends usage

reports

60000 60000 (1

Configuration Examples

Minimal Configuration (config/runtime.exs):

Production:

Development:

High-Volume:

config :pgw_c,

 # CDR file configuration

 pgw_name: "omni-pgw01",

 cdr_file_duration: 3_600_000, # 1 hour

 cdr_directory: "/var/log/pgw_c/cdrs",

 # URR configuration (triggers usage reports from PGW-U)

 usage_report_interval: 60_000 # 60 seconds

config :pgw_c,

 pgw_name: "pgw-c-prod-01",

 cdr_file_duration: 3_600_000, # 1 hour rotation

 cdr_directory: "/var/log/pgw_c/cdrs",

 usage_report_interval: 60_000 # 1 minute updates

config :pgw_c,

 pgw_name: "pgw-c-dev",

 cdr_file_duration: 300_000, # 5 minute rotation for

testing

 cdr_directory: "/tmp/pgw_c_cdrs",

 usage_report_interval: 30_000 # 30 second updates for

faster testing

config :pgw_c,

 pgw_name: "pgw-c-prod-heavy",

 cdr_file_duration: 1_800_000, # 30 minute rotation

 cdr_directory: "/mnt/fast-storage/cdrs",

 usage_report_interval: 300_000 # 5 minute updates

(reduce overhead)

URR (Usage Reporting Rules)

PGW-C uses PFCP URRs (Usage Reporting Rules) to trigger usage reports

from PGW-U. When a URR threshold is reached or time expires, PGW-U sends a

Session Report Request containing usage data, which triggers CDR generation.

How URR Configuration Works:

1. usage_report_interval (in ms) is converted to seconds for PFCP time

threshold

2. PGW-C creates URR with time threshold during session establishment

3. PGW-U sends periodic usage reports at configured interval

4. Each usage report triggers a bearer_update CDR event

5. Final usage report (on session deletion) triggers bearer_end CDR event

Example: usage_report_interval: 60_000 means:

PGW-U reports usage every 60 seconds

CDR update events generated every 60 seconds

Granular usage tracking for billing

URR Type Definition:

See PFCP Interface Documentation for URR PFCP details and

lib/core/session/impl/procedures.ex:468 for URR creation during session

establishment.

lib/core/session/types.ex

defmodule PGW_C.Session.Types.URR do

 typedstruct do

 field :urr_id, non_neg_integer()

 field :measurement_method, :duration | nil

 field :reporting_triggers, :time_threshold | nil

 field :time_threshold, non_neg_integer() | nil # seconds

 end

end

CDR Generation Flow

Bearer Lifecycle CDR Events

PGW-C CDR Generation:

CDR ReporterPGW-UPGW-CSGW-C

CDR ReporterPGW-UPGW-CSGW-C

Session Establishment

Generate CDR:

default_bearer_start

octets_in: 0

octets_out: 0

Session Active - Data Flowing

Generate CDR:

default_bearer_update

octets_in: 1048576

octets_out: 524288

Session Termination

Generate CDR:

default_bearer_end

octets_in: 10485760

octets_out: 5242880

Create Session Request

PFCP Session Establishment

(with URR)

PFCP Session Establishment Response

start_report(session, ebi)

Create Session Response

PFCP Session Report Request

(URR Usage Report)

update_report(session, urr_id, octets_in, octets_out)

Delete Session Request

PFCP Session Deletion

PFCP Session Deletion Response

(Final URR Usage Report)

end_report(session, urr_id, octets_in, octets_out)

Delete Session Response

CDR Generation Events

1. Bearer Start:

When: Create Session Response is sent

Purpose: Records bearer establishment with zero usage

octets_in: 0

octets_out: 0

2. Bearer Update:

When: PFCP Session Report Request received from PGW-U (URR usage

report)

Purpose: Records incremental data usage

octets_in: Cumulative downlink bytes since bearer start

octets_out: Cumulative uplink bytes since bearer start

Trigger: URR time threshold expires (configured via

usage_report_interval)

3. Bearer End:

When: PFCP Session Deletion Response received from PGW-U (with final

usage report)

Purpose: Records final data usage before session termination

octets_in: Final total downlink bytes

octets_out: Final total uplink bytes

Field Details

1. epoch (Timestamp)

Type: Unix epoch timestamp (seconds)

Description: The time when the CDR event occurred

Example:

2. imsi (Subscriber Identity)

Type: String (up to 15 digits)

Format: MCCMNC + MSIN

Description: International Mobile Subscriber Identity uniquely identifying the

subscriber

Example:

Source: UE context, received in Create Session Request

3. event (CDR Event Type)

Type: String

Format: <bearer_type>_bearer_<event>

Values:

default_bearer_start

default_bearer_update

default_bearer_end

dedicated_bearer_start

dedicated_bearer_update

1726598022 → 2025-09-17 18:53:42 UTC

310260123456789

 └─┬─┘└─┬─┘└────┬────┘

 MCC MNC MSIN

 (310)(260) (123456789)

dedicated_bearer_end

Determination:

If EBI (EPS Bearer ID) equals LBI (Linked Bearer ID): default

If EBI does not equal LBI: dedicated

Source: Bearer context (EBI vs LBI comparison)

4. charging_id (Charging Identifier)

Type: Unsigned 32-bit integer

Description: Unique identifier for charging correlation across network

elements

Example:

Source: Assigned by PGW-C, received in Create Session Response

Usage:

Correlates charging events across SGW and PGW

Used in Diameter Gy/Gz charging interfaces

Unique per bearer

5. msisdn (Phone Number)

Type: String (E.164 format)

Description: Mobile Station ISDN Number (subscriber's phone number)

Format: Country code + national number

12345

Example:

Source: UE context, typically from HSS via MME

6. ue_imei (Equipment Identity)

Type: String (15 digits)

Format: TAC (8) + SNR (6) + Spare (1)

Description: International Mobile Equipment Identity (device identifier)

Example:

Source: UE context, received from MME

7. timezone_raw (UE Timezone)

Type: String (currently reserved/empty)

Description: Reserved field for UE timezone information

Current Status: Not populated (empty field in CSV)

Future Use: May include timezone offset and daylight saving time flag

Example:

15551234567

 └┬┘└───┬───┘

 CC National

 (1) (5551234567)

123456789012345

└───┬───┘└─┬─┘└┘

 TAC SNR S

8. plmn (Network Identifier)

Type: Integer (legacy format)

Description: Public Land Mobile Network identifier encoded as little-endian

hex

Encoding Process:

Example:

Source: UE location information from MME

Note: This is a legacy encoding format for backward compatibility

9. tac (Tracking Area Code)

Type: Unsigned 16-bit integer

Description: Tracking Area Code identifies the tracking area where the UE is

located

Range: 0 - 65535

, (empty field)

MCC: 505, MNC: 57

 ↓

"50557"

 ↓

Swap pairs: "055570"

 ↓

Hex to decimal: 0x055570 = 349552

349552 → MCC: 505, MNC: 57

Example:

Source: UE location information, received from MME in Create Session Request

Usage:

Identifies mobility management area

Used for paging and location updates

Part of TAI (Tracking Area Identity)

10. eci (E-UTRAN Cell Identifier)

Type: Unsigned 28-bit integer

Description: E-UTRAN Cell Identifier uniquely identifies the cell serving the UE

Format: eNodeB ID (20 bits) + Cell ID (8 bits)

Range: 0 - 268,435,455

Example:

Source: UE location information from MME

Usage:

Identifies specific cell tower and sector

Used for handover and mobility management

Granular location information

1234

5678

11. sgw_ip (SGW Control Plane IP)

Type: String (IPv4 or IPv6 address)

Description: SGW-C's S5/S8 control plane IP address (F-TEID)

Format: Dotted decimal (IPv4) or colon-hex (IPv6)

Example:

Source: Local configuration, assigned to S5/S8 interface

12. ue_ip (UE IP Address)

Type: String (IPv4|IPv6 format)

Description: IP address assigned to the UE for the PDN connection

Format: <ipv4>|<ipv6>

Examples:

Source: PDN Address Allocation (PAA) from PGW-C

Notes:

Empty IPv4: No IPv4 address allocated

Empty IPv6: No IPv6 address allocated

Both present: Dual-stack PDN connection

10.0.0.15 (IPv4)

2001:db8::15 (IPv6)

172.16.1.100| (IPv4 only)

|2001:db8::1 (IPv6 only)

172.16.1.100|2001:db8::1 (Dual-stack)

13. pgw_ip (PGW Control Plane IP)

Type: String (IPv4 or IPv6 address)

Description: PGW-C's S5/S8 control plane IP address (remote F-TEID)

Format: Dotted decimal (IPv4) or colon-hex (IPv6)

Example:

Source: Received in Create Session Response from PGW-C

14. apn (Access Point Name)

Type: String (up to 100 characters)

Description: Access Point Name identifying the external network (PDN)

Format: DNS-like label format

Examples:

Source: Received in Create Session Request from MME

Usage:

Determines which external network to connect to

Drives policy and charging rules

May determine IP address pool

10.0.0.20 (IPv4)

2001:db8::20 (IPv6)

internet

ims

mms

enterprise.corporate

15. qci (QoS Class Identifier)

Type: Unsigned 8-bit integer

Description: QoS Class Identifier defines the bearer's quality of service

Range: 1 - 9 (standardized), 128-254 (operator-specific)

Standardized QCI Values:

QCI
Resource

Type
Priority

Packet

Delay

Packet

Loss

Example

Service

1 GBR 2 100 ms 10^-2
Conversational

Voice

2 GBR 4 150 ms 10^-3
Conversational

Video

3 GBR 3 50 ms 10^-3 Real-time Gaming

4 GBR 5 300 ms 10^-6

Non-

conversational

Video

5 Non-GBR 1 100 ms 10^-6 IMS Signaling

6 Non-GBR 6 300 ms 10^-6 Video (buffered)

7 Non-GBR 7 100 ms 10^-3
Voice, Video,

Gaming

8 Non-GBR 8 300 ms 10^-6 Video (buffered)

9 Non-GBR 9 300 ms 10^-6 Default Bearer

Example:

Source: Bearer QoS parameters from PGW-C

16. octets_in (Downlink Volume)

Type: Unsigned 64-bit integer

Description: Number of bytes transmitted in the downlink direction (network

→ UE)

Units: Bytes

Example:

Source: PFCP Volume Measurement from PGW-U (via URR usage reports)

Notes:

Cumulative for update events

Final total for end events

Always 0 for start events

Reports triggered by URR time threshold (configured via

usage_report_interval)

17. octets_out (Uplink Volume)

Type: Unsigned 64-bit integer

Description: Number of bytes transmitted in the uplink direction (UE →

network)

Units: Bytes

9 → Default bearer (best effort)

1048576 → 1 MB downlink

Example:

Source: PFCP Volume Measurement from PGW-U (via URR usage reports)

Notes:

Cumulative for update events

Final total for end events

Always 0 for start events

Reports triggered by URR time threshold (configured via

usage_report_interval)

Examples

Example 1: Basic Session with Single Update

Timeline:

1. Bearer established

2. 5 minutes later: Usage update (10 MB down, 5 MB up)

3. Session terminated

CDR Output:

524288 → 512 KB uplink

Data CDR File:

File Start Time: 10:00:00 (1726570800)

File End Time: 11:00:00 (1726574400)

Gateway Name: pgw-c-01

epoch,imsi,event,charging_id,msisdn,ue_imei,timezone_raw,plmn,tac,e

1726570800,310260111111111,default_bearer_start,10001,15551111111,111

1726571100,310260111111111,default_bearer_update,10001,15551111111,11

1726571400,310260111111111,default_bearer_end,10001,15551111111,11111

Example 2: Dual-Stack Session with Multiple

Updates

Timeline:

1. Dual-stack bearer established (IPv4 + IPv6)

2. Multiple usage updates

3. Session terminated

CDR Output:

Example 3: Session with Dedicated Bearer

Timeline:

1. Default bearer established (QCI 9)

2. Dedicated bearer created for video (QCI 6)

3. Usage updates for both bearers

4. Dedicated bearer deleted

5. Default bearer terminated

CDR Output:

1726570800,310260222222222,default_bearer_start,10002,15552222222,222

1726571100,310260222222222,default_bearer_update,10002,15552222222,22

1726571400,310260222222222,default_bearer_update,10002,15552222222,22

1726571700,310260222222222,default_bearer_update,10002,15552222222,22

1726572000,310260222222222,default_bearer_end,10002,15552222222,22222

1726570800,310260333333333,default_bearer_start,10003,15553333333,333

1726571100,310260333333333,dedicated_bearer_start,10004,15553333333,3

1726571400,310260333333333,default_bearer_update,10003,15553333333,33

1726571400,310260333333333,dedicated_bearer_update,10004,15553333333,

1726571700,310260333333333,dedicated_bearer_end,10004,15553333333,333

1726572000,310260333333333,default_bearer_end,10003,15553333333,33333

Analysis:

Default bearer (10003) carries background traffic (10 MB down, 4 MB up)

Dedicated bearer (10004) carries video traffic (200 MB down, 2 MB up)

Different QCI values (9 vs 6) reflect different QoS treatment

Integration

CDR Processing Pipeline

CDR Collection Methods

1. File-based Collection:

2. Real-time Streaming:

Related Documentation

Session Management - Session lifecycle and CDR triggers

PFCP Interface - Usage reporting from PGW-U via URRs

Monitoring Guide - CDR generation metrics and alerting

Configuration Guide - CDR and URR configuration parameters

Diameter Gx Interface - Policy control for QCI values in CDRs

Diameter Gy Interface - Online charging integration

3GPP References

TS 32.251 - Packet Switched (PS) domain charging

TS 29.274 - 3GPP Evolved Packet System (EPS); GTP-C protocol

TS 29.244 - Interface between CP and UP nodes (PFCP) - URR support

TS 32.298 - CDR encoding

CDR Format - Offline Charging Records for PGW-C

Developed by Omnitouch Network Services

Monitor CDR directory (PGW-C)

inotifywait -m /var/log/pgw_c/cdrs/ -e close_write | while read

path action file; do

 # File rotation completed, process CDR

 process_cdr "$path$file"

done

Tail and stream to processing pipeline

tail -F /var/log/pgw_c/cdrs/* | process_cdr_stream

Documentation Version: 1.0 Last Updated: 2025-12-28

Diameter Gx Interface

Documentation

Policy and Charging Rules Function (PCRF) Interface

Table of Contents

1. Overview

2. Gx Interface Basics

3. Diameter Protocol

4. Credit Control Messages

5. Policy and Charging Rules

6. Configuration

7. Message Flows

8. Error Handling

9. Troubleshooting

Overview

The Gx interface connects PGW-C to the PCRF (Policy and Charging Rules

Function) or PCF (Policy Control Function) in 5G networks. This interface

enables:

Dynamic Policy Control - Real-time QoS and policy enforcement

Charging Control - Credit authorization and usage tracking

Service Awareness - Application-level traffic differentiation

Subscriber Profile Management - Per-user policy application

Gx in the Network Architecture

Key Functions

Function Description

Policy

Provisioning

PCRF provides PCC rules defining how to handle

traffic

QoS Control
Dynamic adjustment of bitrates and QoS

parameters

Charging Control Credit authorization for prepaid/postpaid scenarios

Gating Control Enable/disable traffic flows based on policy

Usage Monitoring Track data consumption per service

Gx Interface Basics

3GPP Reference

Specification: 3GPP TS 29.212

Diameter Application ID: 16777238 (Gx)

Protocol: Diameter Base Protocol (RFC 6733)

Session Concept

Each UE PDN connection has a corresponding Gx session identified by a

Session-ID. This session:

Created when UE attaches (CCR-Initial)

Updated during the connection lifetime (CCR-Update) - optional

Terminated when UE detaches (CCR-Termination)

Session ID Format

Components:

Origin-Host: PGW-C's Diameter identity

high32: High 32 bits of unique identifier

low32: Low 32 bits of unique identifier

Diameter Protocol

Message Structure

Diameter messages are binary-encoded with the following structure:

Session-ID: <Origin-Host>;<high32>;<low32>[;<optional>]

Example: omni-

pgw_c.epc.mnc999.mcc999.3gppnetwork.org;1234567890;98765

Key Diameter Concepts

AVP (Attribute-Value Pair):

Basic data unit in Diameter

Contains a code, flags, and value

Can be nested (Grouped AVP)

Command:

Request/Answer pair

CCR (Credit-Control-Request) / CCA (Credit-Control-Answer)

Result Codes:

2001 - DIAMETER_SUCCESS

3xxx - Protocol errors

4xxx - Transient failures

Diameter Header (20 bytes)

├── Version (1 byte) = 1

├── Message Length (3 bytes)

├── Flags (1 byte)

│ ├── R: Request (1) / Answer (0)

│ ├── P: Proxiable

│ ├── E: Error

│ └── T: Potentially retransmitted

├── Command Code (3 bytes)

├── Application ID (4 bytes) = 16777238 (Gx)

├── Hop-by-Hop ID (4 bytes)

└── End-to-End ID (4 bytes)

AVPs (Attribute-Value Pairs)

├── AVP Header

│ ├── AVP Code

│ ├── Flags (V, M, P)

│ ├── AVP Length

│ └── Vendor ID (optional)

└── AVP Data

5xxx - Permanent failures

Credit Control Messages

PGW-C uses the Diameter Credit Control Application (RFC 4006) for Gx.

Message Types

UE Attach

CCA-Initial (Success)

CCA-Initial (Failure)Policy Change (Optional)
CCA-Update

UE Detach

CCA-Termination

Initial

Active

Update Termination

CCR-Initial (Credit Control Request - Initial)

When: UE creates a new PDN connection

Purpose:

Request initial policy and charging rules

Provide UE and network context to PCRF

Obtain QoS parameters and charging authorization

Key AVPs Sent by PGW-C:

AVP Name
AVP

Code
Type Description

Session-Id 263 UTF8String
Unique Gx session

identifier

Auth-Application-Id 258 Unsigned32 16777238 (Gx)

Origin-Host 264 DiamIdent
PGW-C's Diameter

identity

Origin-Realm 296 DiamIdent PGW-C's Diameter realm

Destination-Realm 283 DiamIdent PCRF's realm

CC-Request-Type 416 Enumerated 1 = INITIAL_REQUEST

CC-Request-Number 415 Unsigned32
Sequence number (starts

at 0)

Subscription-Id 443 Grouped
UE identifier

(IMSI/MSISDN)

Called-Station-Id 30 UTF8String APN name

Framed-IP-Address 8 OctetString
Allocated UE IPv4

address

IP-CAN-Type 1027 Enumerated 5 = 3GPP-EPS

RAT-Type 1032 Enumerated 1004 = EUTRAN

QoS-Information 1016 Grouped Current QoS (AMBR)

Network-Request-

Support
1024 Enumerated

Network-initiated

procedures

AVP Name
AVP

Code
Type Description

Supported-Features 628 Grouped Gx feature list

Example CCR-I Structure:

CCA-Initial (Credit Control Answer - Initial)

Sent by: PCRF in response to CCR-I

Purpose:

Authorize or reject the session

Provide PCC rules for traffic handling

Specify QoS parameters

Key AVPs Received by PGW-C:

CCR (Command Code: 272, Request)

├── Session-Id: "pgw_c.example.com;123;456"

├── Auth-Application-Id: 16777238

├── Origin-Host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

├── Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── CC-Request-Type: INITIAL_REQUEST (1)

├── CC-Request-Number: 0

├── Subscription-Id (Grouped)

│ ├── Subscription-Id-Type: END_USER_IMSI (1)

│ └── Subscription-Id-Data: "310260123456789"

├── Called-Station-Id: "internet"

├── Framed-IP-Address: 100.64.1.42

├── IP-CAN-Type: 3GPP-EPS (5)

├── RAT-Type: EUTRAN (1004)

├── QoS-Information (Grouped)

│ ├── APN-Aggregate-Max-Bitrate-UL: 100000000 (100 Mbps)

│ └── APN-Aggregate-Max-Bitrate-DL: 50000000 (50 Mbps)

├── Network-Request-Support: 1

└── Supported-Features: [...]

AVP Name
AVP

Code
Description

Result-Code 268 Success (2001) or error code

Experimental-Result 297 Vendor-specific result codes

QoS-Information 1016
Authorized QoS (may differ from

request)

Charging-Rule-Install 1001 PCC rules to activate

Charging-Rule-

Definition
1003 Inline rule definitions

Default-EPS-Bearer-

QoS
1049 QoS for default bearer

Success Response Example:

CCA (Command Code: 272, Answer)

├── Session-Id: "pgw_c.example.com;123;456"

├── Result-Code: DIAMETER_SUCCESS (2001)

├── Origin-Host: "pcrf.example.com"

├── Origin-Realm: "example.com"

├── Auth-Application-Id: 16777238

├── CC-Request-Type: INITIAL_REQUEST (1)

├── CC-Request-Number: 0

├── QoS-Information (Grouped)

│ ├── APN-Aggregate-Max-Bitrate-UL: 50000000 (50 Mbps - reduced)

│ └── APN-Aggregate-Max-Bitrate-DL: 100000000 (100 Mbps -

increased)

├── Charging-Rule-Install (Grouped)

│ ├── Charging-Rule-Name: "default_internet_rule"

│ └── Charging-Rule-Name: "video_streaming_rule"

└── Charging-Rule-Definition (Grouped)

 ├── Charging-Rule-Name: "default_internet_rule"

 ├── QoS-Information: {...}

 └── Precedence: 1000

CCR-Termination (Credit Control Request -

Termination)

When: UE detaches or PDN connection is deleted

Purpose:

Notify PCRF of session termination

Final accounting/charging record

Key Differences from CCR-I:

CC-Request-Type: TERMINATION_REQUEST (3)

May include usage statistics

Simplified AVP set

Example CCR-T:

CCA-Termination

Sent by: PCRF in response to CCR-T

Purpose:

Acknowledge session termination

No policy rules returned

Example CCA-T:

CCR (Command Code: 272, Request)

├── Session-Id: "pgw_c.example.com;123;456"

├── Auth-Application-Id: 16777238

├── Origin-Host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

├── Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── CC-Request-Type: TERMINATION_REQUEST (3)

├── CC-Request-Number: 1

└── Termination-Cause: DIAMETER_LOGOUT (1)

Policy and Charging Rules

PCC Rule Structure

A PCC (Policy and Charging Control) Rule defines how to handle specific

traffic flows:

CCA (Command Code: 272, Answer)

├── Session-Id: "pgw_c.example.com;123;456"

├── Result-Code: DIAMETER_SUCCESS (2001)

├── Origin-Host: "pcrf.example.com"

├── Origin-Realm: "example.com"

├── Auth-Application-Id: 16777238

├── CC-Request-Type: TERMINATION_REQUEST (3)

└── CC-Request-Number: 1

Rule Components

1. Rule Name:

Unique identifier for the rule

Example: "video_streaming_rule"

2. Precedence:

Lower number = higher priority

Range: 0-65535

Used when multiple rules match

3. Flow Filters (TFT - Traffic Flow Template):

Defines which packets match this rule

Examples:

IP 5-tuple: Protocol, Src/Dst IP, Src/Dst Port

"permit out ip from any to 8.8.8.8 80"

4. QoS Information:

QCI (QoS Class Identifier): 1-9 (standardized), 128-254 (operator-

specific)

QCI 1: Conversational Voice

QCI 5: IMS Signaling

QCI 9: Default Internet

ARP (Allocation and Retention Priority): Pre-emption capability

MBR/GBR: Maximum/Guaranteed Bit Rates

5. Charging Information:

Rating Group: Identifies charging category (used by OCS - see Diameter

Gy Interface)

Metering Method: Volume, time, or event-based

Online/Offline Charging: OCS (prepaid via Diameter Gy) vs. offline CDRs

(postpaid - see Data CDR Format)

6. Gating Status:

OPEN: Allow traffic

CLOSED: Block traffic

Dynamic Rule Provisioning

PCRF can provide rules in two ways:

1. Predefined Rules (by name):

2. Dynamic Rules (inline definition):

QoS Information AVP

APN-AMBR (Aggregate Maximum Bit Rate):

Applies to all non-GBR bearers for this APN:

Charging-Rule-Install (Grouped)

├── Charging-Rule-Name: "gold_subscriber_internet"

└── Charging-Rule-Name: "video_qos_boost"

Charging-Rule-Definition (Grouped)

├── Charging-Rule-Name: "dynamic_rule_123"

├── Precedence: 100

├── Flow-Information (Grouped)

│ ├── Flow-Description: "permit out ip from any to 192.0.2.0/24"

│ └── Flow-Direction: DOWNLINK

├── QoS-Information (Grouped)

│ ├── QoS-Class-Identifier: 5

│ ├── Max-Requested-Bandwidth-UL: 10000000

│ └── Max-Requested-Bandwidth-DL: 50000000

└── Rating-Group: 1000

PGW-C Response:

Updates internal AMBR state

Sends Session Modification Request to PGW-U with updated QER

Configuration

Basic Gx Configuration

Edit config/runtime.exs :

QoS-Information (Grouped)

├── APN-Aggregate-Max-Bitrate-UL: 100000000 # 100 Mbps

└── APN-Aggregate-Max-Bitrate-DL: 200000000 # 200 Mbps

Multiple PCRF Peers

For redundancy or geographic distribution:

config :pgw_c,

 diameter: %{

 # IP address to listen for Diameter connections

 listen_ip: "0.0.0.0",

 # PGW-C's Diameter identity (Origin-Host)

 host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org",

 # PGW-C's Diameter realm (Origin-Realm)

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 # List of PCRF peers

 peer_list: [

 %{

 # PCRF Diameter identity

 host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

 # PCRF realm (usually same as PGW-C realm)

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 # PCRF IP address

 ip: "10.0.0.30",

 # Whether PGW-C initiates connection to PCRF

 # true = PGW-C connects to PCRF

 # false = Wait for PCRF to connect

 initiate_connection: true

 }

]

 }

Load Balancing:

Diameter protocol handles peer selection

Requests distributed based on availability

Automatic failover on peer failure

Hostname Resolution

Diameter Identities must be FQDNs (Fully Qualified Domain Names):

Realm Format:

config :pgw_c,

 diameter: %{

 listen_ip: "0.0.0.0",

 host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf-primary.example.com",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "10.0.1.30",

 initiate_connection: true

 },

 %{

 host: "pcrf-backup.example.com",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "10.0.2.30",

 initiate_connection: true

 }

]

 }

CORRECT - FQDN format

host: "pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

INCORRECT - Not a valid Diameter Identity

host: "pgw_c"

host: "10.0.0.20" # IP addresses not allowed

Must be valid domain name

Typically matches 3GPP PLMN format:

epc.mncXXX.mccYYY.3gppnetwork.org

Message Flows

Successful Session Establishment

PGW-UPCRFPGW-CSGW-C

PGW-UPCRFPGW-CSGW-C

1. Allocate UE IP

2. Generate Session-ID

3. Generate Charging-ID

Includes:

- IMSI

- APN

- UE IP

- Requested QoS

Policy Decision:

1. Check subscriber profile

2. Apply policies

3. Determine QoS

4. Generate PCC rules

Includes:

- Result-Code: 2001

- QoS-Information

- PCC Rules

Apply policy:

- Update AMBR

- Store PCC rules

Program QERs based on

PCRF-provided QoS

(see PFCP Interface doc)

Session Active with PCRF Policy Applied

Create Session Request (GTP-C)

CCR-Initial (Diameter Gx)

CCA-Initial (Success)

Session Establishment Request (PFCP)

Session Establishment Response

Create Session Response (GTP-C)

Note: QoS parameters from PCRF are translated into QERs (QoS Enforcement

Rules) and programmed into PGW-U via PFCP. See PFCP Interface for QER

details.

Policy Update (Network-Initiated)

PGW-UPGW-CPCRF

PGW-UPGW-CPCRF

Policy change triggered:

- Time of day

- Usage threshold

- External system

Includes updated PCC rules

Trigger CCR-Update

Apply new policy:

- Update QoS

- Modify PCC rules

Update QERs with

new bitrates

(see PFCP Interface doc)

Updated Policy Active

Re-Auth-Request (RAR)

Re-Auth-Answer (RAA)

CCR-Update

CCA-Update (New Policy)

Session Modification Request (PFCP)

Session Modification Response

Session Termination

Error Handling

Result Codes

PGW-C handles various Diameter result codes in CCA messages:

Success Codes:

Code Name Action

2001 DIAMETER_SUCCESS Continue session establishment

Permanent Failures (5xxx):

Code Name PGW-C Action

5002 DIAMETER_UNKNOWN_SESSION_ID Log error, fail session

5030 DIAMETER_USER_UNKNOWN
Reject session (User

Unknown)

5140 DIAMETER_ERROR_INITIAL_PARAMETERS Log error, retry or fail

5003 DIAMETER_AUTHORIZATION_REJECTED
Reject session (Not

Authorized)

Transient Failures (4xxx):

Code Name PGW-C Action

4001 DIAMETER_AUTHENTICATION_REJECTED Retry or fail session

4010 DIAMETER_TOO_BUSY Retry with backoff

4012 DIAMETER_UNABLE_TO_COMPLY Log error, may retry

Experimental Result Codes

Vendor-specific error codes:

Common 3GPP Experimental Codes:

Code Name Meaning

5065 IP_CAN_SESSION_NOT_AVAILABLE PCRF cannot establish session

5143 INVALID_SERVICE_INFORMATION Service data invalid

Timeout Handling

CCR-I Timeout:

If PCRF doesn't respond to CCR-Initial within timeout:

Error Response to SGW-C:

When CCR-Initial times out, the PGW-C sends a Create Session Response with

cause code :remote_peer_not_responding to the SGW-C.

Failure Scenarios

Scenario 1: PCRF Rejects Session (User Unknown)

Experimental-Result (Grouped)

├── Vendor-Id: 10415 (3GPP)

└── Experimental-Result-Code: <vendor-specific code>

1. PGW-C waits for configured timeout (e.g., 5 seconds)

2. If no CCA received:

 - Log: "CCR-Initial timeout for Session-ID: ..."

 - Respond to SGW-C with error cause

 - Clean up allocated resources

3. SGW-C receives: Create Session Response (Cause: Remote Peer Not

Responding)

PCRFPGW-CSGW-C

PCRFPGW-CSGW-C

IMSI not found

in subscriber database

Session rejected

Cleanup:

- Release UE IP

- No Gx session created

Create Session Request

CCR-Initial (IMSI: 999...)

CCA-Initial

(Result-Code: 5030 USER_UNKNOWN)

Create Session Response

(Cause: User Unknown)

Scenario 2: PCRF Temporarily Unavailable

Troubleshooting

Common Issues

1. Diameter Peer Connection Fails

Symptoms:

Log: "Diameter peer not connected"

No CCR-Initial sent

Possible Causes:

PCRF not reachable

Incorrect PCRF IP in configuration

Firewall blocking Diameter port (3868)

Incorrect Diameter identities (host/realm)

Resolution:

Verify Configuration:

2. CCR-Initial Timeouts

Symptoms:

Create Session Request fails

Log: "CCR-Initial timeout"

Test network connectivity

ping <pcrf_ip>

Test Diameter port (TCP 3868)

telnet <pcrf_ip> 3868

Check Diameter identity configuration

Ensure host and realm are FQDNs, not IPs

config :pgw_c,

 diameter: %{

 # Must be FQDN, not IP

 host: "pgw_c.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

 ip: "10.0.0.30"

 }

]

 }

Possible Causes:

PCRF overloaded

Network latency

PCRF not responding to this Session-ID

Resolution:

1. Check PCRF logs for errors

2. Verify PCRF is processing requests

3. Check network latency: ping <pcrf_ip>

4. Increase timeout if network latency is high

3. Sessions Rejected by PCRF

Symptoms:

CCA-Initial with Result-Code != 2001

Create Session Response fails

Common Result Codes:

Result

Code
Likely Cause Resolution

5030
IMSI not in subscriber

database

Provision subscriber in

HSS/SPR

5003 Authorization rejected
Check subscriber

permissions

4010 PCRF too busy Retry or add PCRF capacity

Check Logs:

4. QoS Not Applied

Symptoms:

Session established but wrong QoS

Bitrates don't match expected values

Debugging Steps:

1. Check CCA-Initial:

Verify QoS-Information AVP present

Check APN-Aggregate-Max-Bitrate-UL/DL values

2. Check PFCP Session Establishment:

Verify QER created with correct MBR values

Check PGW-U logs for QER installation

3. Verify PCRF Policy:

Check PCRF configuration

Verify subscriber profile includes correct QoS

5. Diameter Routing Issues

Symptoms:

Diameter messages not reaching PCRF

Log: "No route to Destination-Realm"

Cause:

Realm mismatch between configuration and messages

PGW-C logs show:

[error] Diameter Gx error: Result-Code 5030

(DIAMETER_USER_UNKNOWN)

[error] IMSI 310260999999999 rejected by PCRF

Resolution:

Ensure consistency:

In CCR-Initial:

Monitoring Gx Health

Key Metrics:

All must match

config :pgw_c,

 diameter: %{

 realm: "epc.mnc999.mcc999.3gppnetwork.org", # PGW-C's realm

 peer_list: [

 %{

 realm: "epc.mnc999.mcc999.3gppnetwork.org" # PCRF's realm

(usually same)

 }

]

 }

Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

Response Metrics by Result Code Class:

The gx_outbound_responses_total metric provides detailed visibility into

Diameter responses sent to PCRF peers, categorized by:

message_type : Response message type (gx_RAA , gx_CCA)

result_code_class : Result code category (2xxx , 3xxx , 4xxx , 5xxx)

diameter_host : PCRF peer receiving the response

Common Result Codes:

2001 (DIAMETER_SUCCESS) - Successful response

3001 (DIAMETER_COMMAND_UNSUPPORTED) - Protocol error

5012 (DIAMETER_UNABLE_TO_COMPLY) - Cannot execute request

5030 (DIAMETER_USER_UNKNOWN) - Subscriber not found

Alert Examples:

Gx message rates

rate(gx_inbound_messages_total{message_type="gx_CCA"}[5m])

rate(gx_outbound_messages_total{message_type="gx_CCR"}[5m])

Gx error rates

rate(gx_inbound_errors_total[5m])

Gx response success rate (new metric)

sum(rate(gx_outbound_responses_total{result_code_class="2xxx"}

[5m])) /

sum(rate(gx_outbound_responses_total[5m])) * 100

Gx response failures by PCRF host

rate(gx_outbound_responses_total{result_code_class!="2xxx"}[5m])

by (diameter_host)

Gx session count

session_id_registry_count

Gx message handling duration

histogram_quantile(0.95,

rate(gx_inbound_handling_duration_bucket[5m]))

Debug Logging

Enable verbose Diameter logging:

Alert on high Gx error rate

- alert: GxErrorRateHigh

 expr: rate(gx_inbound_errors_total[5m]) > 0.1

 for: 5m

 annotations:

 summary: "High Gx error rate detected"

Alert on high Gx response failure rate

- alert: GxResponseFailureRate

 expr: |

sum(rate(gx_outbound_responses_total{result_code_class!="2xxx"}

[5m])) /

 sum(rate(gx_outbound_responses_total[5m])) > 0.1

 for: 5m

 annotations:

 summary: "High Gx response failure rate"

 description: "More than 10% of Gx responses are failures"

Alert on PCRF-specific failures

- alert: GxPCRFFailures

 expr:

rate(gx_outbound_responses_total{result_code_class=~"4xxx|5xxx"}

[5m]) by (diameter_host) > 0.05

 for: 3m

 annotations:

 summary: "PCRF {{ $labels.diameter_host }} receiving failure

responses"

 description: "High failure rate for PCRF host"

Alert on session rejection

- alert: GxSessionRejection

 expr: rate(gx_inbound_errors_total{result_code="5030"}[5m]) >

0.01

 for: 5m

 annotations:

 summary: "PCRF rejecting sessions (USER_UNKNOWN)"

Look for:

[debug] Sending CCR-Initial for Session-ID: ...

[debug] Received CCA-Initial: Result-Code 2001

[error] Diameter error: ...

Web UI - Diameter Peer Monitoring

OmniPGW includes a real-time Web UI for monitoring Diameter peer

connections and status.

Diameter Peers Page

Access: http://<omnipgw-ip>:<web-port>/diameter

config/runtime.exs

config :logger, level: :debug

Or at runtime

iex> Logger.configure(level: :debug)

Purpose: Monitor Diameter Gx peer connectivity to PCRF in real-time

Features:

1. Peer Connection Overview

Connected Count - Number of PCRF peers with active connection

Disconnected Count - Number of configured but not connected peers

Auto-refreshes every 1 second (fastest refresh of all pages)

2. Per-Peer Status Information For each configured PCRF peer:

Host - Diameter identity (Origin-Host)

IP Address - PCRF IP

Port - Diameter port (default 3868)

Status - Connected (green) / Disconnected (red)

Transport - TCP or SCTP

Connection Initiation - Who initiates (PGW or PCRF)

Realm - Diameter realm

Product Name - PCRF product identifier (if advertised)

Application IDs - Supported Diameter applications (e.g., Gx = 16777238)

3. Expandable Details Click any peer row to see:

Complete peer configuration

Capabilities Exchange (CER/CEA) details

Supported features

Full connection state

Operational Use Cases

Monitor PCRF Connectivity:

Troubleshoot Session Creation Failures (Gx Issues):

Verify Diameter Configuration:

Monitor Failover:

Detect Diameter Routing Issues:

1. Open Diameter page in browser

2. Verify all PCRF peers show "Connected"

3. Check Connection Initiation matches configuration

4. Verify Application IDs include Gx (16777238)

1. User sessions failing with "PCRF timeout" errors

2. Open Diameter page

3. Check peer status:

 - Disconnected?

 → Check network connectivity

 → Verify PCRF is running

 → Check firewall rules for TCP 3868

 - Connected but sessions failing?

 → Issue is at application level (check logs)

 → PCRF may be rejecting subscribers

1. After configuring new PCRF peer

2. Open Diameter page

3. Verify peer appears in list

4. Check status changes to "Connected"

5. Expand peer to verify:

 - Realm matches configuration

 - Application IDs include Gx

 - Product Name shows PCRF identifier

Scenario: Primary PCRF fails

1. Diameter page shows primary "Disconnected"

2. Verify backup PCRF still "Connected"

3. New sessions automatically use backup

4. When primary recovers, status returns to "Connected"

Peer shows "Connected" but wrong realm

Application IDs don't include Gx (16777238)

Product Name doesn't match expected PCRF

Identify Configuration Mismatches:

Advantages:

Fastest refresh rate - 1 second updates

Visual connection status - Immediate red/green indication

No Diameter tools needed - No need for diameter CLI tools

Peer configuration visible - Verify settings without checking config files

Application-level details - See supported Diameter applications

Realm verification - Confirm Diameter routing configuration

Integration with Metrics

While the Web UI provides real-time status, combine with Prometheus for:

Historical Gx error rates

CCR/CCA message counts

Latency trends

Web UI = "Is it working right now?" Metrics = "How has it been working over

time?"

Web UI shows:

 Connection Initiation: "Peer initiates"

But configuration says:

 initiate_connection: true

This indicates:

 - OmniPGW attempts to connect

 - But PCRF also initiating

 - May cause connection race conditions

Related Documentation

Configuration and Policy

Configuration Guide - Diameter configuration, PCRF peer setup

PFCP Interface - QoS enforcement via QERs from PCC rules

Session Management - Session lifecycle with policy integration

QoS & Bearer Management - Detailed QoS configuration and bearer

setup

Charging Integration

Diameter Gy Interface - Online charging triggered by PCC rules

Data CDR Format - Offline charging records with policy info

PCO Configuration - P-CSCF delivery for IMS policy control

Operations

Monitoring Guide - Gx metrics, policy tracking, PCRF connectivity alerts

S5/S8 Interface - Bearer management integration with policy

Back to Operations Guide

Diameter Online

Charging (Gy/Ro

Interface)

Online Charging System (OCS) Interface

Table of Contents

1. Overview

2. 3GPP Charging Architecture

3. Gy/Ro Interface Basics

4. Credit Control Messages

5. Online Charging Flows

6. Bearer Charging Control

7. Multiple Services Credit Control

8. Configuration

9. Message Flows

10. Error Handling

11. Integration with Gx

12. Troubleshooting

Overview

The Gy interface (also called Ro interface in IMS contexts) connects PGW-C

to the Online Charging System (OCS) for real-time credit control. This

enables:

Prepaid Charging - Real-time credit authorization and deduction

Real-time Credit Control - Grant quota before service delivery

Service-Based Charging - Different charging for voice, data, SMS, etc.

Immediate Account Updates - Credit balance updates in real-time

Service Denial - Block service when credit exhausted

Online vs. Offline Charging

Aspect
Online Charging

(Gy/Ro)
Offline Charging (Gz/Rf)

Timing Real-time, before service After service delivery

Use Case Prepaid subscribers Postpaid subscribers

Credit

Check

Yes, before granting

service
No, bill generated later

System
OCS (Online Charging

System)

CGF/CDF (Charging Data

Function)

Risk No revenue loss Risk of unpaid bills

Complexity
High (real-time

requirements)
Lower (batch processing)

User Impact Service denied if no credit Service always available

See also: Data CDR Format for offline charging records (postpaid billing)

See also: Session Management for complete PDN session lifecycle including

charging integration

Gy in the Network Architecture

Key Functions

Function Description

Credit Authorization
Request quota from OCS before allowing

traffic

Quota Management Track granted units (bytes, time, events)

Credit Depletion

Detection
Monitor remaining quota

Re-authorization
Request additional quota when threshold

reached

Service Termination Stop service when credit exhausted

Final Settlement Report actual usage upon session end

3GPP Charging Architecture

Charging Reference Points

CDF - Charging Data

Function

OCF - Online Charging

Function

CTF - Charging Trigger

Function

Gy

Online Charging

Gz

Offline Charging

PGW-C

Generates

Charging Events

OCS

Credit Control

Account Management

CGF

CDR Collection

Charging Trigger Function (CTF)

PGW-C acts as a CTF (Charging Trigger Function), responsible for:

1. Detecting chargeable events - Session start, data usage, session end

2. Requesting credit authorization - Before allowing service

3. Tracking quota consumption - Monitor granted units

4. Generating charging events - Trigger credit requests

5. Enforcing credit control - Block traffic when quota exhausted

Online Charging Function (OCF)

The OCS implements the OCF (Online Charging Function):

1. Account balance management - Track subscriber credit

2. Rating - Determine price per unit (per MB, per second, etc.)

3. Credit reservation - Reserve credit for granted quota

4. Credit deduction - Deduct upon usage report

5. Policy decisions - Grant or deny based on balance

Gy/Ro Interface Basics

3GPP Reference

Specification: 3GPP TS 32.299 (Charging architecture)

Protocol: 3GPP TS 32.251 (PS domain charging)

Diameter Application ID: 4 (Gy/Ro - Credit Control Application)

Base Protocol: RFC 4006 (Diameter Credit Control Application)

Session Concept

Each UE PDN connection requiring online charging has a Gy/Ro session

identified by a Session-ID. This session:

Created when bearer requires online charging (CCR-Initial)

Updated when quota is consumed (CCR-Update)

Terminated when session ends (CCR-Termination)

Session ID Format

Components:

Origin-Host: PGW-C's Diameter identity

high32: High 32 bits of unique identifier

low32: Low 32 bits of unique identifier

optional: Additional identifier (e.g., "gy" to distinguish from Gx)

Session-ID: <Origin-Host>;<high32>;<low32>[;<optional>]

Example: omni-

pgw_c.epc.mnc999.mcc999.3gppnetwork.org;9876543210;12345;gy

Credit Control Messages

Message Types

CCR-Initial (Credit Control Request - Initial)

When: UE creates a PDN connection and bearer requires online charging

Purpose:

Request initial credit authorization from OCS

Reserve quota for service delivery

Establish Gy/Ro session

Key AVPs Sent by PGW-C:

AVP Name
AVP

Code
Type Description

Session-Id 263 UTF8String
Unique Gy session

identifier

Auth-Application-Id 258 Unsigned32 4 (Credit Control)

Origin-Host 264 DiamIdent
PGW-C's Diameter

identity

Origin-Realm 296 DiamIdent PGW-C's Diameter realm

Destination-Realm 283 DiamIdent OCS's realm

CC-Request-Type 416 Enumerated 1 = INITIAL_REQUEST

CC-Request-Number 415 Unsigned32
Sequence number (starts

at 0)

Subscription-Id 443 Grouped
UE identifier

(IMSI/MSISDN)

Service-Context-Id 461 UTF8String
Charging context

identifier

Multiple-Services-

Credit-Control
456 Grouped

Service-specific credit

requests

Requested-Service-

Unit
437 Grouped

Requested quota (bytes,

time, etc.)

Used-Service-Unit 446 Grouped Used quota (0 for initial)

Service-Identifier 439 Unsigned32 Service type identifier

AVP Name
AVP

Code
Type Description

Rating-Group 432 Unsigned32
Charging category

identifier

Example CCR-I Structure:

CCA-Initial (Credit Control Answer - Initial)

Sent by: OCS in response to CCR-I

Purpose:

Grant or deny credit authorization

Provide quota for service delivery

CCR (Command Code: 272, Request)

├── Session-Id: "pgw_c.example.com;123;456;gy"

├── Auth-Application-Id: 4

├── Origin-Host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

├── Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── CC-Request-Type: INITIAL_REQUEST (1)

├── CC-Request-Number: 0

├── Subscription-Id (Grouped)

│ ├── Subscription-Id-Type: END_USER_IMSI (1)

│ └── Subscription-Id-Data: "310260123456789"

├── Subscription-Id (Grouped)

│ ├── Subscription-Id-Type: END_USER_E164 (0)

│ └── Subscription-Id-Data: "15551234567"

├── Service-Context-Id: "32251@3gpp.org"

├── Multiple-Services-Credit-Control (Grouped)

│ ├── Service-Identifier: 1

│ ├── Rating-Group: 100

│ └── Requested-Service-Unit (Grouped)

│ └── CC-Total-Octets: 10000000 (request 10 MB)

└── Used-Service-Unit (Grouped)

 └── CC-Total-Octets: 0 (no usage yet)

Specify rating and charging parameters

Key AVPs Received by PGW-C:

AVP Name
AVP

Code
Description

Result-Code 268 Success (2001) or error code

Multiple-Services-Credit-

Control
456 Service-specific credit grants

Granted-Service-Unit 431
Granted quota (bytes, time,

etc.)

Validity-Time 448
Quota validity period

(seconds)

Result-Code 268 Per-service result code

Final-Unit-Indication 430 Action when quota exhausted

Volume-Quota-Threshold - Threshold for re-authorization

Success Response Example:

CCR-Update (Credit Control Request - Update)

When:

Granted quota threshold reached (e.g., 80% consumed)

Validity time expires

Service change requires re-authorization

Tariff time change

Purpose:

Request additional quota

Report usage of previously granted quota

Update charging parameters

Key Differences from CCR-I:

CC-Request-Type: UPDATE_REQUEST (2)

CC-Request-Number incremented

Used-Service-Unit contains actual usage

CCA (Command Code: 272, Answer)

├── Session-Id: "pgw_c.example.com;123;456;gy"

├── Result-Code: DIAMETER_SUCCESS (2001)

├── Origin-Host: "ocs.example.com"

├── Origin-Realm: "example.com"

├── Auth-Application-Id: 4

├── CC-Request-Type: INITIAL_REQUEST (1)

├── CC-Request-Number: 0

└── Multiple-Services-Credit-Control (Grouped)

 ├── Result-Code: DIAMETER_SUCCESS (2001)

 ├── Service-Identifier: 1

 ├── Rating-Group: 100

 ├── Granted-Service-Unit (Grouped)

 │ └── CC-Total-Octets: 10000000 (granted 10 MB)

 ├── Validity-Time: 3600 (quota valid for 1 hour)

 └── Volume-Quota-Threshold: 8000000 (re-auth at 8 MB used,

80%)

Requested-Service-Unit for more quota

Example CCR-U Structure:

CCA-Update (Credit Control Answer - Update)

Sent by: OCS in response to CCR-U

Purpose:

Grant additional quota (if credit available)

Acknowledge usage

Update charging parameters

Possible Outcomes:

1. More Quota Granted:

CCR (Command Code: 272, Request)

├── Session-Id: "pgw_c.example.com;123;456;gy"

├── Auth-Application-Id: 4

├── Origin-Host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

├── Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── CC-Request-Type: UPDATE_REQUEST (2)

├── CC-Request-Number: 1

└── Multiple-Services-Credit-Control (Grouped)

 ├── Service-Identifier: 1

 ├── Rating-Group: 100

 ├── Used-Service-Unit (Grouped)

 │ └── CC-Total-Octets: 8000000 (8 MB used so far)

 └── Requested-Service-Unit (Grouped)

 └── CC-Total-Octets: 10000000 (request another 10 MB)

2. Final Quota (Credit Exhausted):

3. No Credit Available:

CCR-Termination (Credit Control Request -

Termination)

When:

UE detaches

PDN connection deleted

Session terminated for any reason

Purpose:

CCA (Update)

└── Multiple-Services-Credit-Control

 ├── Result-Code: DIAMETER_SUCCESS (2001)

 ├── Granted-Service-Unit

 │ └── CC-Total-Octets: 10000000 (another 10 MB)

 └── Validity-Time: 3600

CCA (Update)

└── Multiple-Services-Credit-Control

 ├── Result-Code: DIAMETER_SUCCESS (2001)

 ├── Granted-Service-Unit

 │ └── CC-Total-Octets: 1000000 (only 1 MB left)

 └── Final-Unit-Indication

 └── Final-Unit-Action: TERMINATE (0)

CCA (Update)

├── Result-Code: DIAMETER_CREDIT_LIMIT_REACHED (4012)

└── Multiple-Services-Credit-Control

 ├── Result-Code: DIAMETER_CREDIT_LIMIT_REACHED (4012)

 └── Final-Unit-Indication

 └── Final-Unit-Action: TERMINATE (0)

Final usage report

Close Gy/Ro session

Final settlement

Key Differences:

CC-Request-Type: TERMINATION_REQUEST (3)

Used-Service-Unit contains final usage

No Requested-Service-Unit (no more quota needed)

Includes Termination-Cause

Example CCR-T Structure:

CCA-Termination (Credit Control Answer -

Termination)

Sent by: OCS in response to CCR-T

Purpose:

Acknowledge session termination

Complete accounting

Release reserved credit

CCR (Command Code: 272, Request)

├── Session-Id: "pgw_c.example.com;123;456;gy"

├── Auth-Application-Id: 4

├── Origin-Host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org"

├── Origin-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── Destination-Realm: "epc.mnc999.mcc999.3gppnetwork.org"

├── CC-Request-Type: TERMINATION_REQUEST (3)

├── CC-Request-Number: 5

├── Termination-Cause: DIAMETER_LOGOUT (1)

└── Multiple-Services-Credit-Control (Grouped)

 ├── Service-Identifier: 1

 ├── Rating-Group: 100

 └── Used-Service-Unit (Grouped)

 └── CC-Total-Octets: 18500000 (18.5 MB total usage)

Example CCA-T:

Online Charging Flows

Service Unit Types

The OCS can grant quota in different units:

Unit Type AVP Description Use Case

Time CC-Time Seconds
Voice calls,

session duration

Volume CC-Total-Octets
Bytes (total

up+down)
Data services

Volume

(separate)

CC-Input-Octets,

CC-Output-Octets

Bytes

(separate)

Asymmetric

charging

Service-

Specific

CC-Service-

Specific-Units
Custom units

SMS, MMS, API

calls

Events - Counted events
Pay-per-use

services

CCA (Command Code: 272, Answer)

├── Session-Id: "pgw_c.example.com;123;456;gy"

├── Result-Code: DIAMETER_SUCCESS (2001)

├── Origin-Host: "ocs.example.com"

├── Origin-Realm: "example.com"

├── Auth-Application-Id: 4

├── CC-Request-Type: TERMINATION_REQUEST (3)

└── CC-Request-Number: 5

Quota Threshold Management

Problem: How does PGW-C know when to request more quota?

Solution: OCS provides a Volume-Quota-Threshold or Time-Quota-

Threshold. PGW-C monitors usage via PFCP Session Reports from PGW-U (see

PFCP Interface).

Example Flow:

Threshold Calculation:

PGW-C Monitoring:

PGW-C monitors usage via PFCP Session Reports from PGW-U:

1. OCS grants 10 MB quota with 80% threshold (8 MB)

2. PGW-C monitors usage via PGW-U usage reports (PFCP Session

Reports)

3. When usage reaches 8 MB:

 → PGW-C sends CCR-Update

 → Continue allowing traffic (don't wait for response)

4. OCS responds with more quota

5. If quota exhausted before CCR-Update sent:

 → PGW-C must block traffic

Granted-Service-Unit: 10000000 bytes (10 MB)

Volume-Quota-Threshold: 8000000 bytes (8 MB)

When 8 MB consumed → Trigger CCR-Update

Remaining buffer: 2 MB (allows time for OCS response)

OCSPGW-CPGW-U

OCSPGW-CPGW-U

Granted: 10 MB

Threshold: 8 MB

Used: 0 MB

Used: 2 MB

(below threshold)

Used: 6 MB

(below threshold)

Used: 8 MB

THRESHOLD REACHED!

Still below granted 10 MB,

allow traffic

New total: 20 MB

New threshold: 18 MB

Session Report (Usage: 2 MB)

Session Report (Usage: 6 MB)

Session Report (Usage: 8 MB)

CCR-Update

(Used: 8 MB, Request: 10 MB)

Session Report (Usage: 9 MB)

CCA-Update

(Granted: 10 MB more)

Final Unit Indication

What happens when credit is exhausted?

OCS includes Final-Unit-Indication AVP in CCA to specify action:

Final-Unit-Action Value PGW-C Behavior

TERMINATE 0 Block all traffic, initiate session termination

REDIRECT 1 Redirect traffic to portal (e.g., top-up page)

RESTRICT_ACCESS 2
Allow access only to specific services (e.g.,

top-up server)

Example: Final Unit with Redirect

PGW-C Actions:

1. TERMINATE: Send CCR-T, delete bearer

2. REDIRECT: Install PFCP rule to redirect HTTP to top-up URL

3. RESTRICT_ACCESS: Install PFCP rules allowing only whitelisted IPs

Bearer Charging Control

What Controls if a Bearer is Charged?

3GPP Specification: TS 23.203, TS 29.212, TS 32.251

CCA (Update)

└── Multiple-Services-Credit-Control

 ├── Result-Code: DIAMETER_SUCCESS (2001)

 ├── Granted-Service-Unit

 │ └── CC-Total-Octets: 1000000 (final 1 MB)

 └── Final-Unit-Indication

 ├── Final-Unit-Action: REDIRECT (1)

 └── Redirect-Server (Grouped)

 ├── Redirect-Address-Type: URL (2)

 └── Redirect-Server-Address:

"http://topup.example.com"

Bearer charging is controlled by PCC Rules provisioned by the PCRF via the Gx

interface. See Diameter Gx Interface for complete PCC rule documentation.

Charging Decision Flow:

Yes No

Bearer Setup Request

PGW-C sends CCR-I to

PCRF

PCRF returns PCC Rules

Does PCC Rule

specify online

charging?

Extract Rating-Group

from PCC Rule

No online charging

for this bearer

PGW-C sends CCR-I

to OCS

OCS

Allow Traffic

No Charging

Quota Granted No Credit

Response?

Allow Traffic

Monitor Usage

Reject Bearer

or Block Traffic

PGW-C monitors

quota consumption

PCC Rule with Charging Information

PCRF Response (CCA-I on Gx):

Key Charging AVPs in PCC Rules:

CCA (Gx Interface)

└── Charging-Rule-Definition (Grouped)

 ├── Charging-Rule-Name: "prepaid_data_rule"

 ├── Rating-Group: 100

 ├── Online: 1 (enable online charging)

 ├── Offline: 0 (disable offline charging)

 ├── Metering-Method: VOLUME (1)

 ├── Precedence: 100

 ├── Flow-Information: [...]

 └── QoS-Information: [...]

AVP Name
AVP

Code
Values Description

Rating-Group 432 Unsigned32
Charging category

(maps to tariff in OCS)

Online 1009
0=Disable,

1=Enable

Enable online charging

(Gy)

Offline 1008
0=Disable,

1=Enable

Enable offline charging

(Gz)

Metering-

Method
1007

0=Duration,

1=Volume, 2=Both
What to meter

Reporting-

Level
1011

0=Service,

1=Rating Group

Granularity of usage

reports

Bearer Charging Decision Matrix

Online Offline Rating-Group Behavior

1 0 Present Online charging only (prepaid)

0 1 Present Offline charging only (postpaid)

1 1 Present Both online and offline (convergent)

0 0 - No charging (free service)

Multiple Rating Groups

A single PDN connection can have multiple bearers with different rating

groups:

Example Scenario:

PGW-C Gy Behavior:

Single CCR-I with multiple MSCC (Multiple-Services-Credit-Control)

sections:

OCS Response:

Per-Service Charging Enforcement

PGW-C tracks quota per Rating-Group:

Default Bearer (Internet)

├── Rating-Group: 100 (Standard Data)

└── Online: 1

Dedicated Bearer 1 (Video Streaming)

├── Rating-Group: 200 (Video Service)

└── Online: 1

Dedicated Bearer 2 (IMS Voice)

├── Rating-Group: 300 (Voice)

└── Online: 1

CCR-Initial

├── Session-Id: "..."

└── Multiple-Services-Credit-Control

 ├── [Rating-Group: 100] → Standard Data

 ├── [Rating-Group: 200] → Video Service

 └── [Rating-Group: 300] → Voice

CCA-Initial

└── Multiple-Services-Credit-Control

 ├── [Rating-Group: 100] → Granted: 10 MB

 ├── [Rating-Group: 200] → Granted: 5 MB (video more expensive)

 └── [Rating-Group: 300] → Granted: 60 seconds

Usage Monitoring per Bearer:

Pseudocode

state.charging_quotas = %{

 100 => %{granted: 10_000_000, used: 0, threshold: 8_000_000},

 200 => %{granted: 5_000_000, used: 0, threshold: 4_000_000},

 300 => %{granted: 60_000, used: 0, threshold: 48_000} #

milliseconds

}

Multiple Services Credit Control

MSCC (Multiple-Services-Credit-Control) AVP

Purpose: Group charging information for a specific service/rating group

Structure:

Multiple-Services-Credit-Control (Grouped, AVP 456)

├── Service-Identifier (Unsigned32, AVP 439)

├── Rating-Group (Unsigned32, AVP 432)

├── Requested-Service-Unit (Grouped, AVP 437)

│ ├── CC-Time (Unsigned32, AVP 420)

│ ├── CC-Total-Octets (Unsigned64, AVP 421)

│ ├── CC-Input-Octets (Unsigned64, AVP 412)

│ └── CC-Output-Octets (Unsigned64, AVP 414)

├── Used-Service-Unit (Grouped, AVP 446)

│ └── [Same structure as Requested-Service-Unit]

├── Granted-Service-Unit (Grouped, AVP 431)

│ └── [Same structure as Requested-Service-Unit]

├── Validity-Time (Unsigned32, AVP 448)

├── Result-Code (Unsigned32, AVP 268)

└── Final-Unit-Indication (Grouped, AVP 430)

 └── Final-Unit-Action (Enumerated, AVP 449)

Service-Identifier vs. Rating-Group

Attribute Service-Identifier Rating-Group

Purpose Identifies service type Identifies charging category

Example 1=Data, 2=Voice, 3=SMS 100=Regular, 200=Premium

Granularity Broad classification Specific tariff

Required Optional Required for charging

Mapping May map to multiple RGs Single tariff in OCS

Example:

Configuration

Basic Gy Configuration

Edit config/runtime.exs :

Service-Identifier: 1 (Data Service)

├── Rating-Group: 100 (Standard Data - $0.01/MB)

└── Rating-Group: 200 (Premium Data - $0.05/MB)

Service-Identifier: 2 (Voice)

└── Rating-Group: 300 (Voice Calls - $0.10/min)

config :pgw_c,

 online_charging: %{

 # Enable or disable online charging globally

 enabled: true,

 # OCS connection timeout (milliseconds)

 timeout_ms: 5000,

 # Default quota request (bytes) if not specified by PCRF

 default_requested_quota: 10_000_000, # 10 MB

 # Threshold percentage for re-authorization

 # (0.8 = trigger CCR-Update at 80% quota consumed)

 quota_threshold_percentage: 0.8,

 # Action when OCS timeout occurs

 # Options: :block, :allow

 timeout_action: :block,

 # Action when OCS returns no credit

 # Options: :terminate, :redirect

 no_credit_action: :terminate,

 # Redirect URL for top-up (used if no_credit_action:

:redirect)

 topup_redirect_url: "http://topup.example.com"

 },

 diameter: %{

 listen_ip: "0.0.0.0",

 host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 # OCS peer configuration

 peer_list: [

 # PCRF for policy control (Gx)

 %{

 host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "10.0.0.30",

 initiate_connection: true

 },

 # OCS for online charging (Gy)

 %{

Configuration Parameters Explained

enabled

true : Online charging active, CCR messages sent to OCS

false : Online charging disabled, no Gy messages

timeout_ms

Time to wait for CCA response from OCS

Recommended: 3000-5000 ms

default_requested_quota

Default quota to request if PCRF doesn't specify

Typical values: 1-100 MB

quota_threshold_percentage

Trigger CCR-Update when this % of quota consumed

Recommended: 0.75-0.85 (75%-85%)

Higher = fewer messages, but risk of quota exhaustion

Lower = more messages, but safer

timeout_action

:block - Block traffic if OCS doesn't respond (safer, prevents revenue loss)

:allow - Allow traffic if OCS doesn't respond (better UX, revenue risk)

no_credit_action

 host: "ocs.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "10.0.0.40",

 initiate_connection: true

 }

]

 }

:terminate - Delete bearer when credit exhausted

:redirect - Redirect to top-up portal

Environment-Specific Configuration

Production (prepaid subscribers):

Test/Development:

Hybrid (some prepaid, some postpaid):

config :pgw_c,

 online_charging: %{

 enabled: true,

 timeout_action: :block,

 no_credit_action: :terminate,

 quota_threshold_percentage: 0.8

 }

config :pgw_c,

 online_charging: %{

 enabled: false # Disable for testing

 }

config :pgw_c,

 online_charging: %{

 enabled: true, # Controlled per-subscriber by PCRF

 timeout_action: :allow, # Don't block postpaid on OCS failure

 no_credit_action: :terminate

 }

Message Flows

Successful Session with Online Charging

PGW-UOCS (Gy)PCRF (Gx)PGW-CSGW-C

PGW-UOCS (Gy)PCRF (Gx)PGW-CSGW-C

1. Allocate UE IP

2. Generate Session-IDs

PCC Rule includes:

Rating-Group: 100

Online: 1

PCRF said online charging

required for RG 100

MSCC:

- Rating-Group: 100

- Requested: 10 MB

MSCC:

- Granted: 10 MB

- Threshold: 8 MB

Install URR (Usage Reporting Rule)

Threshold: 8 MB

Session Active - Traffic Flowing

Create Session Request

CCR-Initial (Gx)

CCA-Initial (Gx)

CCR-Initial (Gy)

CCA-Initial (Gy)

Session Establishment (PFCP)

Session Establishment Response

Create Session Response

Quota Re-authorization (CCR-Update)

Credit Exhaustion (Final Unit)

SGW-COCSPGW-CPGW-U

SGW-COCSPGW-CPGW-U

Request more quota

MSCC:

- Granted: 1 MB (final)

- Final-Unit-Indication:

TERMINATE

Only 1 MB quota left

This is the final grant

All quota consumed

Must terminate session

MSCC:

- Used: 10 MB (final)

Session terminated

due to credit exhaustion

Session Report

(Usage: 8.1 MB)

CCR-Update (Gy)

CCA-Update (Gy)

Session Report

(Usage: 10 MB - quota exhausted)

Session Deletion (PFCP)

Session Deletion Response

CCR-Termination (Gy)

CCA-Termination (Gy)

Delete Bearer Request

Delete Bearer Response

OCS Timeout Handling

OCS (Down)PCRF (Gx)PGW-CSGW-C

OCS (Down)PCRF (Gx)PGW-CSGW-C

Online charging required

Wait for response...

Timeout: 5 seconds

No response

(OCS down or overloaded)

Timeout!

Check config:

timeout_action: :block

Session rejected

No UE IP allocated

Create Session Request

CCR-Initial (Gx)

CCA-Initial (Gx)

CCR-Initial (Gy)

Create Session Response

(Cause: Remote Peer Not Responding)

Error Handling

Result Codes

Success Codes:

Code Name Action

2001 DIAMETER_SUCCESS Continue with granted quota

Transient Failures (4xxx):

Code Name PGW-C Action

4010 DIAMETER_TOO_BUSY Retry with backoff

4011 DIAMETER_UNABLE_TO_COMPLY Log error, may retry

4012 DIAMETER_CREDIT_LIMIT_REACHED Terminate or redirect

Permanent Failures (5xxx):

Code Name PGW-C Action

5003 DIAMETER_AUTHORIZATION_REJECTED Reject session

5031 DIAMETER_USER_UNKNOWN
Reject session (invalid

subscriber)

Per-Service Result Codes

Important: Result-Code can appear at two levels:

1. Message level - Overall result

2. MSCC level - Per-service result

Example:

PGW-C Behavior:

CCA-Initial

├── Result-Code: DIAMETER_SUCCESS (2001) ← Message level: OK

└── Multiple-Services-Credit-Control

 ├── [Rating-Group: 100]

 │ └── Result-Code: DIAMETER_SUCCESS (2001) ← RG 100: OK

 └── [Rating-Group: 200]

 └── Result-Code: DIAMETER_CREDIT_LIMIT_REACHED (4012) ←

RG 200: No credit

Allow traffic for Rating-Group 100

Block traffic for Rating-Group 200

Integration with Gx

The Gx interface (PCRF policy control) determines whether online charging is

required and provides the Rating-Group that drives Gy charging. See Diameter

Gx Interface for complete policy control documentation.

Gx and Gy Relationship

Integration Flow

1. Bearer Setup:

2. Dynamic Policy Update (RAR from PCRF):

PGW-C receives Create Session Request

 ↓

Send CCR-I to PCRF (Gx)

 ↓

Receive CCA-I with PCC Rules

 ↓

Parse PCC Rules:

 - Does rule have Rating-Group?

 - Is Online = 1?

 ↓

If YES:

 Send CCR-I to OCS (Gy) with Rating-Group

 ↓

 Receive CCA-I with quota

 ↓

 If quota granted: Proceed

 If no credit: Reject bearer

If NO:

 Proceed without online charging

PCRF sends RAR (Re-Auth-Request) on Gx

 ↓

New PCC Rule added with Online=1, Rating-Group=200

 ↓

PGW-C sends CCR-U to OCS (Gy)

 - Add MSCC for Rating-Group 200

 ↓

OCS grants quota for new service

 ↓

Install dedicated bearer with online charging

Troubleshooting

Common Issues

1. CCR-Initial to OCS Timeouts

Symptoms:

Sessions fail with "OCS timeout"

Log: "CCR-Initial (Gy) timeout"

Possible Causes:

OCS not reachable

Incorrect OCS IP in configuration

Firewall blocking Diameter port (3868)

OCS overloaded

Resolution:

2. Sessions Rejected by OCS

Symptoms:

CCA-I with Result-Code != 2001

Create Session Response fails

Common Result Codes:

Test network connectivity

ping <ocs_ip>

Test Diameter port (TCP 3868)

telnet <ocs_ip> 3868

Check configuration

Ensure OCS peer is configured in peer_list

Result Code Likely Cause Resolution

4012 Credit limit reached Subscriber needs to top-up

5003 Authorization rejected Check subscriber permissions

5031 User unknown Provision subscriber in OCS

Debug Steps:

1. Check OCS logs for rejection reason

2. Verify subscriber balance in OCS

3. Check IMSI/MSISDN in CCR-I matches subscriber record

3. Quota Exhaustion Not Detected

Symptoms:

User continues using data after balance exhausted

No CCR-Update sent

Possible Causes:

URR (Usage Reporting Rule) not installed in PGW-U

Threshold not configured correctly

PFCP Session Reports not received

Debug Steps:

1. Verify URR in PFCP Session Establishment:

2. Check PGW-U logs for usage reports

Create URR

├── URR-ID: 1

├── Measurement-Method: VOLUME

├── Volume-Threshold: 8000000 (8 MB)

└── Reporting-Triggers: VOLUME_THRESHOLD

3. Verify quota_threshold_percentage in config

4. Incorrect Rating-Group

Symptoms:

OCS rejects with "Unknown Rating-Group"

Sessions fail

Cause:

Rating-Group in CCR-I doesn't match OCS configuration

PCRF provisioned invalid Rating-Group

Resolution:

1. Verify Rating-Group in PCC Rule from PCRF

2. Check OCS configuration for valid Rating-Groups

3. Ensure mapping between PCC Rules and OCS tariffs

Monitoring

Key Metrics

Gy message rates

rate(gy_inbound_messages_total{message_type="cca"}[5m])

rate(gy_outbound_messages_total{message_type="ccr"}[5m])

Gy error rates

rate(gy_inbound_errors_total[5m])

Quota exhaustion events

rate(gy_quota_exhausted_total[5m])

OCS timeout rate

rate(gy_timeout_total[5m])

Gy message handling duration

histogram_quantile(0.95,

rate(gy_inbound_handling_duration_bucket[5m]))

Alerts

Web UI - Gy Credit Control

Simulator

OmniPGW includes a built-in Gy/Ro simulator for testing online charging

functionality without requiring an external OCS.

Access: http://<omnipgw-ip>:<web-port>/gy_simulator

Alert on high Gy error rate

- alert: GyErrorRateHigh

 expr: rate(gy_inbound_errors_total[5m]) > 0.1

 for: 5m

 annotations:

 summary: "High Gy error rate detected"

Alert on OCS timeout

- alert: OcsTimeout

 expr: rate(gy_timeout_total[5m]) > 0.05

 for: 2m

 annotations:

 summary: "OCS timeouts occurring"

Alert on credit exhaustion spike

- alert: CreditExhaustionSpike

 expr: rate(gy_quota_exhausted_total[5m]) > 10

 for: 5m

 annotations:

 summary: "High rate of credit exhaustion"

Purpose: Test and simulate online charging scenarios for prepaid subscribers

Features:

1. Request Parameters

IMSI - Subscriber identity (e.g., "310170123456789")

MSISDN - Phone number (e.g., "14155551234")

Requested Units - Amount of quota to request (in bytes)

Service ID - Service type identifier

Rating Group - Charging category

2. CCR-I Simulation

Send CCR-Initial (Credit-Control-Request Initial)

Simulates initial quota request during session establishment

Tests OCS integration without live traffic

3. Use Cases

Development Testing - Test Gy interface during development

OCS Integration - Verify OCS connectivity and responses

Quota Testing - Test different quota scenarios

Troubleshooting - Debug charging issues

Demo - Demonstrate online charging to stakeholders

How to Use:

Benefits:

No need for external OCS during testing

Quick validation of charging logic

Safe testing environment

Useful for training and demos

Related Documentation

Charging and Policy

Diameter Gx Interface - PCRF policy control, PCC rules that trigger online

charging

Data CDR Format - Offline charging records for postpaid billing

Configuration Guide - Complete online charging configuration

parameters

Session Management

Session Management - PDN session lifecycle, bearer management

PFCP Interface - Usage reporting from PGW-U via URRs

S5/S8 Interface - GTP-C bearer setup and teardown

1. Enter subscriber details (IMSI, MSISDN)

2. Set requested units (e.g., 1000000 for 1 MB)

3. Configure Service ID and Rating Group

4. Click "Send CCR-I"

5. View OCS response and granted quota

Operations

Monitoring Guide - Gy metrics, quota tracking, OCS timeout alerts

UE IP Allocation - IP pool configuration for charged sessions

Back to Operations Guide

OmniPGW Monitoring &

Metrics Guide

Prometheus Integration and Operational Monitoring

by Omnitouch Network Services

Table of Contents

1. Overview

2. Metrics Endpoint

3. Available Metrics

4. Prometheus Configuration

5. Grafana Dashboards

6. Alerting

7. Performance Monitoring

8. Troubleshooting Metrics

Overview

OmniPGW provides two complementary monitoring approaches:

1. Real-Time Web UI (covered briefly here, detailed in respective interface

docs)

Live session viewer

PFCP peer status

Diameter peer connectivity

Individual session inspection

2. Prometheus Metrics (main focus of this document)

Historical trends and analysis

Alerting and notifications

Performance metrics

Capacity planning

This document focuses on Prometheus metrics. For Web UI details, see:

Session Management - Web UI

PFCP Interface - Web UI

Diameter Gx - Web UI

Prometheus Metrics Overview

OmniPGW exposes Prometheus-compatible metrics for comprehensive

monitoring of system health, performance, and capacity. This enables

operations teams to:

Monitor System Health - Track active sessions, allocations, and errors

Capacity Planning - Understand resource utilization trends

Performance Analysis - Measure message handling latency

Alerting - Proactive notification of issues

Debugging - Identify root causes of problems

Monitoring Architecture

Metrics Endpoint

Configuration

Enable metrics in config/runtime.exs :

Accessing Metrics

HTTP Endpoint:

Example:

Output Format

Metrics are exposed in Prometheus text format:

config :pgw_c,

 metrics: %{

 enabled: true,

 ip_address: "0.0.0.0", # Bind to all interfaces

 port: 9090, # HTTP port

 registry_poll_period_ms: 5_000 # Poll interval

 }

http://<omnipgw_ip>:<port>/metrics

curl http://10.0.0.20:9090/metrics

Available Metrics

OmniPGW exposes the following metric categories:

Session Metrics

Active Session Counts:

HELP teid_registry_count The number of TEID registered to

sessions

TYPE teid_registry_count gauge

teid_registry_count 150

HELP address_registry_count The number of addresses registered

to sessions

TYPE address_registry_count gauge

address_registry_count 150

HELP s5s8_inbound_messages_total The total number of messages

received from S5/S8 peers

TYPE s5s8_inbound_messages_total counter

s5s8_inbound_messages_total{message_type="create_session_request"}

1523

s5s8_inbound_messages_total{message_type="delete_session_request"}

1487

Metric Name Type Description

teid_registry_count Gauge
Active S5/S8 sessions

(TEID count)

seid_registry_count Gauge
Active PFCP sessions

(SEID count)

session_id_registry_count Gauge

Active Gx sessions

(Diameter Session-ID

count)

session_registry_count Gauge
Active sessions (IMSI,

EBI pairs)

address_registry_count Gauge
Allocated UE IP

addresses

charging_id_registry_count Gauge

Active charging IDs

(see Data CDR Format

for CDR billing records)

sxb_sequence_number_registry_count Gauge

Pending PFCP

responses (awaiting

response)

s5s8_sequence_number_registry_count Gauge

Pending S5/S8

responses (awaiting

response)

sxb_peer_registry_count Gauge
Number of registered

PFCP peer processes

Usage:

Message Counters

S5/S8 (GTP-C) Messages:

Metric Name Type Labels Description

s5s8_inbound_messages_total Counter message_type

Total

inbound

S5/S8

messages

s5s8_outbound_messages_total Counter message_type

Total

outbound

S5/S8

messages

s5s8_inbound_errors_total Counter message_type

S5/S8

processing

errors

Message Types:

create_session_request

create_session_response

delete_session_request

delete_session_response

create_bearer_request

Current active sessions

teid_registry_count

Session creation rate (per second)

rate(teid_registry_count[5m])

Peak sessions in last hour

max_over_time(teid_registry_count[1h])

delete_bearer_request

Sxb (PFCP) Messages:

Metric Name Type Labels Description

sxb_inbound_messages_total Counter message_type

Total inbound

PFCP

messages

sxb_outbound_messages_total Counter message_type

Total

outbound

PFCP

messages

sxb_inbound_errors_total Counter message_type

PFCP inbound

processing

errors

sxb_outbound_errors_total Counter message_type

PFCP

outbound

processing

errors

Message Types:

association_setup_request

association_setup_response

heartbeat_request

heartbeat_response

session_establishment_request

session_establishment_response

session_modification_request

session_deletion_request

Gx (Diameter) Messages:

Metric Name Type Labels Descript

gx_inbound_messages_total Counter message_type

Total

inbound

Diameter

messages

gx_outbound_messages_total Counter message_type

Total

outbound

Diameter

messages

gx_inbound_errors_total Counter message_type

Diameter

inbound

processin

errors

gx_outbound_errors_total Counter message_type

Diameter

outbound

processin

errors

gx_outbound_responses_total Counter

message_type ,

result_code_class ,

diameter_host

Diameter

response

sent,

categoriz

by result

code clas

and peer

host

Message Types:

gx_CCA (Credit-Control-Answer)

gx_CCR (Credit-Control-Request)

gx_RAA (Re-Auth-Answer)

gx_RAR (Re-Auth-Request)

Result Code Classes (for gx_outbound_responses_total):

2xxx - Success responses (e.g., 2001 DIAMETER_SUCCESS)

3xxx - Protocol errors (e.g., 3001 DIAMETER_COMMAND_UNSUPPORTED)

4xxx - Transient failures (e.g., 4001

DIAMETER_AUTHENTICATION_REJECTED)

5xxx - Permanent failures (e.g., 5012 DIAMETER_UNABLE_TO_COMPLY)

Usage Examples:

Error Handling:

Metric Name Type Labels Description

rescues_total Counter
module ,

function

Total rescue blocks hit

(exception handling)

Latency Metrics

Inbound Message Processing Duration:

Monitor Gx response success rate

sum(rate(gx_outbound_responses_total{result_code_class="2xxx"}[5m]))

sum(rate(gx_outbound_responses_total[5m])) * 100

Track failures by PCRF host

rate(gx_outbound_responses_total{result_code_class!="2xxx"}[5m]) by (

Count total successful Re-Auth-Answer messages

gx_outbound_responses_total{message_type="gx_RAA",result_code_class="

Alert on high failure rate to specific PCRF

rate(gx_outbound_responses_total{result_code_class=~"4xxx|5xxx",diame

[5m]) > 0.1

Metric Name Type Labels D

s5s8_inbound_handling_duration Histogram request_message_type

S

m

h

t

(

d

e

s

r

sxb_inbound_handling_duration Histogram request_message_type

P

m

h

t

(

d

e

s

r

gx_inbound_handling_duration Histogram request_message_type

D

m

h

t

(

d

e

s

r

Outbound Transaction Duration:

Metric Name Type Labels

s5s8_outbound_transaction_duration Histogram request_message_type

sxb_outbound_transaction_duration Histogram request_message_type

gx_outbound_transaction_duration Histogram request_message_type

Buckets (seconds):

Values: 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 5.0

(100µs, 500µs, 1ms, 5ms, 10ms, 50ms, 100ms, 500ms, 1s, 5s)

Usage:

95th percentile S5/S8 latency

histogram_quantile(0.95,

 rate(s5s8_inbound_handling_duration_bucket[5m])

)

Average PFCP latency

rate(sxb_inbound_handling_duration_sum[5m]) /

rate(sxb_inbound_handling_duration_count[5m])

UPF Health Monitoring

UPF Peer Metrics:

Metric Name Type Labels Description

upf_peers_total Gauge -
Total number of

registered UPF peers

upf_peers_healthy Gauge -

Number of healthy

UPF peers (associated

+ heartbeats OK)

upf_peers_unhealthy Gauge -
Number of unhealthy

UPF peers

upf_peers_associated Gauge -

Number of UPF peers

with active PFCP

association

upf_peers_unassociated Gauge -

Number of UPF peers

without PFCP

association

upf_peer_healthy Gauge peer_ip

Health status of

specific UPF

(1=healthy,

0=unhealthy)

upf_peer_missed_heartbeats Gauge peer_ip

Consecutive missed

heartbeats for

specific UPF

Usage:

Alerting Examples:

Monitor UPF pool health

upf_peers_healthy / upf_peers_total

Alert on unhealthy UPFs

upf_peers_unhealthy > 0

Track specific UPF health

upf_peer_healthy{peer_ip="10.98.0.20"}

Identify UPFs with heartbeat issues

upf_peer_missed_heartbeats > 2

P-CSCF Health Monitoring

P-CSCF Server Metrics:

Alert when UPF goes down

- alert: UPF_Peer_Down

 expr: upf_peer_healthy == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "UPF {{ $labels.peer_ip }} is down"

 description: "UPF peer not responding to PFCP heartbeats"

Alert when multiple UPFs are down

- alert: UPF_Pool_Degraded

 expr: (upf_peers_healthy / upf_peers_total) < 0.5

 for: 2m

 labels:

 severity: critical

 annotations:

 summary: "UPF pool degraded"

 description: "Only {{ $value | humanizePercentage }} of UPFs

are healthy"

Warning on missed heartbeats

- alert: UPF_Heartbeat_Issues

 expr: upf_peer_missed_heartbeats > 2

 for: 30s

 labels:

 severity: warning

 annotations:

 summary: "UPF {{ $labels.peer_ip }} heartbeat issues"

 description: "{{ $value }} consecutive missed heartbeats"

Metric Name Type Labels Description

pcscf_fqdns_total Gauge -
Total P-CSCF FQDNs being

monitored

pcscf_fqdns_resolved Gauge -

P-CSCF FQDNs

successfully resolved via

DNS

pcscf_fqdns_failed Gauge -
P-CSCF FQDNs that failed

DNS resolution

pcscf_servers_total Gauge -
Total P-CSCF servers

discovered

pcscf_servers_healthy Gauge fqdn
Healthy P-CSCF servers

per FQDN

pcscf_servers_unhealthy Gauge fqdn
Unhealthy P-CSCF servers

per FQDN

See: P-CSCF Monitoring Guide for detailed IMS health tracking.

License Metrics

License Status:

Metric Name Type Description

license_status Gauge Current license status (1 = valid, 0 = invalid)

Usage:

Alerting Example:

Impact of Invalid License:

When the license is invalid or the license server is unreachable, Create

Session Requests will be rejected with GTP-C cause code "No resources

available" (73). This is visible in packet captures as shown below:

Check if license is valid

license_status == 1

Alert on invalid license

license_status == 0

- alert: PGW_C_License_Invalid

 expr: license_status == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "PGW-C license invalid or expired"

 description: "License status is invalid - create session

requests are being blocked"

Wireshark capture showing Create Session Response with "No resources

available" cause when license is invalid

Notes:

Product name registered with license server: omnipgwc

License server URL is configured in config/runtime.exs under

:license_client

When license is invalid (license_status == 0), create session requests are

blocked with GTP-C cause code 73 (No resources available)

UI and monitoring remain accessible regardless of license status

Diameter, GTP-C, and PFCP peers continue to maintain connections

Existing sessions are not affected - only new session creation is blocked

System Metrics

Erlang VM Metrics:

Metric Name Type Description

vm_memory_total Gauge Total VM memory (bytes)

vm_memory_processes Gauge Memory used by processes

vm_memory_system Gauge Memory used by system

vm_system_process_count Gauge Total Erlang processes

vm_system_port_count Gauge Total open ports

Prometheus Configuration

Scrape Configuration

Add OmniPGW to Prometheus prometheus.yml :

Multiple OmniPGW Instances

Service Discovery

Kubernetes:

prometheus.yml

global:

 scrape_interval: 15s

 evaluation_interval: 15s

scrape_configs:

 - job_name: 'omnipgw'

 static_configs:

 - targets: ['10.0.0.20:9090']

 labels:

 instance: 'omnipgw-01'

 environment: 'production'

 site: 'datacenter-1'

scrape_configs:

 - job_name: 'omnipgw'

 static_configs:

 - targets:

 - '10.0.0.20:9090'

 - '10.0.0.21:9090'

 - '10.0.0.22:9090'

 labels:

 environment: 'production'

Verification

Test scrape:

Grafana Dashboards

Dashboard Setup

1. Add Prometheus Data Source:

2. Import Dashboard:

Create a new dashboard or import from JSON.

scrape_configs:

 - job_name: 'omnipgw'

 kubernetes_sd_configs:

 - role: pod

 relabel_configs:

 - source_labels: [__meta_kubernetes_pod_label_app]

 action: keep

 regex: omnipgw

 - source_labels: [__meta_kubernetes_pod_ip]

 target_label: __address__

 replacement: '${1}:9090'

Check Prometheus targets

curl http://prometheus:9090/api/v1/targets

Query a metric

curl 'http://prometheus:9090/api/v1/query?

query=teid_registry_count'

Configuration → Data Sources → Add data source → Prometheus

URL: http://prometheus:9090

Key Panels

Panel 1: Active Sessions

Panel 2: Session Rate

Panel 3: IP Pool Utilization

Panel 4: Message Latency (95th Percentile)

Query

teid_registry_count

Panel Type: Gauge

Thresholds:

Green: < 5000

Yellow: 5000-8000

Red: > 8000

Query

rate(s5s8_inbound_messages_total{message_type="create_session_request

[5m])

Panel Type: Graph

Unit: requests/sec

Query (for /24 subnet with 254 IPs)

(address_registry_count / 254) * 100

Panel Type: Gauge

Unit: percent (0-100)

Thresholds:

Green: < 70%

Yellow: 70-85%

Red: > 85%

Panel 5: Error Rate

Panel 6: Gx Response Success Rate

Alternative - Breakdown by Result Code Class:

Query

histogram_quantile(0.95,

rate(s5s8_inbound_handling_duration_bucket{request_message_type="crea

[5m])

)

Panel Type: Graph

Unit: milliseconds

Query

rate(s5s8_inbound_errors_total[5m])

Panel Type: Graph

Unit: errors/sec

Alert Threshold: > 0.1

Query: Calculate percentage of successful Gx responses

sum(rate(gx_outbound_responses_total{result_code_class="2xxx"}

[5m])) /

sum(rate(gx_outbound_responses_total[5m])) * 100

Panel Type: Gauge

Unit: percent (0-100)

Thresholds:

Green: > 95%

Yellow: 90-95%

Red: < 90%

Alternative - Per-PCRF Response Status:

Panel 7: UPF Health Status

Alternative - Per-UPF Status:

Query: Show response counts by result code class

sum(rate(gx_outbound_responses_total[5m])) by (result_code_class)

Panel Type: Pie Chart or Bar Chart

Legend: {{ result_code_class }}

Query: Show responses by PCRF host

sum(rate(gx_outbound_responses_total[5m])) by (diameter_host,

result_code_class)

Panel Type: Stacked Bar Chart

Legend: {{ diameter_host }} - {{ result_code_class }}

Query: Overall pool health percentage

(upf_peers_healthy / upf_peers_total) * 100

Panel Type: Gauge

Unit: percent (0-100)

Thresholds:

Green: 100%

Yellow: 50-99%

Red: < 50%

Query: Individual UPF health

upf_peer_healthy

Panel Type: Stat

Mappings:

1 = "UP" (Green)

0 = "DOWN" (Red)

Complete Dashboard Example

{

 "dashboard": {

 "title": "OmniPGW - Operations Dashboard",

 "panels": [

 {

 "title": "Active Sessions",

 "targets": [

 {

 "expr": "teid_registry_count",

 "legendFormat": "Active Sessions"

 }

],

 "type": "graph"

 },

 {

 "title": "Session Creation Rate",

 "targets": [

 {

 "expr":

"rate(s5s8_inbound_messages_total{message_type=\"create_session_reque

[5m])",

 "legendFormat": "Sessions/sec"

 }

],

 "type": "graph"

 },

 {

 "title": "IP Pool Utilization",

 "targets": [

 {

 "expr": "(address_registry_count / 254) * 100",

 "legendFormat": "Pool Usage %"

 }

],

 "type": "gauge"

 },

 {

 "title": "Message Latency (p95)",

 "targets": [

 {

 "expr": "histogram_quantile(0.95,

Alerting

Alert Rules

Create omnipgw_alerts.yml :

rate(s5s8_inbound_handling_duration_bucket[5m]))",

 "legendFormat": "S5/S8 p95"

 },

 {

 "expr": "histogram_quantile(0.95,

rate(sxb_inbound_handling_duration_bucket[5m]))",

 "legendFormat": "PFCP p95"

 }

],

 "type": "graph"

 }

]

 }

}

groups:

 - name: omnipgw

 interval: 30s

 rules:

 # Session Count Alerts

 - alert: OmniPGW_HighSessionCount

 expr: teid_registry_count > 8000

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high session count"

 description: "{{ $value }} active sessions (threshold:

8000)"

 - alert: OmniPGW_SessionCountCritical

 expr: teid_registry_count > 9500

 for: 2m

 labels:

 severity: critical

 annotations:

 summary: "OmniPGW session count critical"

 description: "{{ $value }} active sessions approaching

capacity"

 # IP Pool Alerts

 - alert: OmniPGW_IPPoolUtilizationHigh

 expr: (address_registry_count / 254) * 100 > 80

 for: 10m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW IP pool utilization high"

 description: "IP pool {{ $value }}% utilized"

 - alert: OmniPGW_IPPoolExhausted

 expr: address_registry_count >= 254

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "OmniPGW IP pool exhausted"

 description: "No IPs available for allocation"

 # Error Rate Alerts

 - alert: OmniPGW_HighErrorRate

 expr: rate(s5s8_inbound_errors_total[5m]) > 0.1

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high error rate"

 description: "{{ $value }} errors/sec on S5/S8

interface"

 - alert: OmniPGW_GxErrorRate

 expr: rate(gx_inbound_errors_total[5m]) > 0.05

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW Gx errors"

 description: "{{ $value }} Diameter errors/sec"

 # Gx Response Alerts

 - alert: OmniPGW_GxResponseFailureRate

 expr: |

sum(rate(gx_outbound_responses_total{result_code_class!="2xxx"}

[5m])) /

 sum(rate(gx_outbound_responses_total[5m])) > 0.1

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high Gx response failure rate"

 description: "{{ $value | humanizePercentage }} of Gx

responses are failures (non-2xxx result codes)"

 - alert: OmniPGW_GxPCRFFailures

 expr:

rate(gx_outbound_responses_total{result_code_class=~"4xxx|5xxx"}

[5m]) by (diameter_host) > 0.05

 for: 3m

 labels:

 severity: warning

 annotations:

 summary: "PCRF {{ $labels.diameter_host }} receiving

failure responses"

 description: "{{ $value }} failure responses/sec to PCRF

{{ $labels.diameter_host }}"

 # UPF Health Alerts

 - alert: OmniPGW_UPF_PeerDown

 expr: upf_peer_healthy == 0

 for: 1m

 labels:

 severity: critical

 annotations:

 summary: "UPF peer {{ $labels.peer_ip }} down"

 description: "UPF not responding to PFCP heartbeats"

 - alert: OmniPGW_UPF_PoolDegraded

 expr: (upf_peers_healthy / upf_peers_total) < 0.5

 for: 2m

 labels:

 severity: critical

 annotations:

 summary: "UPF pool degraded"

 description: "{{ $value | humanizePercentage }} of UPFs

are healthy (< 50%)"

 - alert: OmniPGW_UPF_HeartbeatFailures

 expr: upf_peer_missed_heartbeats > 2

 for: 30s

 labels:

 severity: warning

 annotations:

 summary: "UPF {{ $labels.peer_ip }} heartbeat failures"

 description: "{{ $value }} consecutive missed

heartbeats"

 - alert: OmniPGW_UPF_AllDown

 expr: upf_peers_healthy == 0 and upf_peers_total > 0

 for: 30s

 labels:

 severity: critical

 annotations:

 summary: "All UPF peers down"

 description: "No healthy UPFs available for session

creation"

 # Latency Alerts

 - alert: OmniPGW_HighLatency

 expr: |

 histogram_quantile(0.95,

 rate(s5s8_inbound_handling_duration_bucket[5m])

) > 100000

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high message latency"

 description: "p95 latency {{ $value }}µs (> 100ms)"

 # System Alerts

 - alert: OmniPGW_HighMemoryUsage

 expr: vm_memory_total > 2000000000

 for: 10m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high memory usage"

 description: "VM using {{ $value | humanize }}B memory"

 - alert: OmniPGW_HighProcessCount

 expr: vm_system_process_count > 100000

 for: 10m

 labels:

 severity: warning

 annotations:

 summary: "OmniPGW high process count"

 description: "{{ $value }} Erlang processes (potential

leak)"

AlertManager Configuration

alertmanager.yml

global:

 resolve_timeout: 5m

route:

 receiver: 'ops-team'

 group_by: ['alertname', 'instance']

 group_wait: 10s

 group_interval: 10s

 repeat_interval: 12h

 routes:

 - match:

 severity: critical

 receiver: 'pagerduty'

 - match:

 severity: warning

 receiver: 'slack'

receivers:

 - name: 'ops-team'

 email_configs:

 - to: 'ops@example.com'

 - name: 'slack'

 slack_configs:

 - api_url:

'https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK'

 channel: '#omnipgw-alerts'

 title: 'OmniPGW Alert: {{ .GroupLabels.alertname }}'

 text: '{{ range .Alerts }}{{ .Annotations.description }}{{

end }}'

 - name: 'pagerduty'

 pagerduty_configs:

 - service_key: 'YOUR_PAGERDUTY_KEY'

Performance Monitoring

Key Performance Indicators (KPIs)

OmniPGW KPIs

Throughput

Sessions/sec

Latency

Message processing

Availability

Uptime %

Capacity

Active sessions

Session Setup Rate Session Teardown Rate S5/S8 Latency PFCP Latency Gx Latency Active Sessions IP Pool Usage

Throughput Queries

Session Setup Rate:

Session Teardown Rate:

Net Session Growth:

Latency Analysis

Message Processing Latency (Percentiles):

rate(s5s8_inbound_messages_total{message_type="create_session_request

[5m])

rate(s5s8_inbound_messages_total{message_type="delete_session_request

[5m])

rate(s5s8_inbound_messages_total{message_type="create_session_request

[5m]) -

rate(s5s8_inbound_messages_total{message_type="delete_session_request

[5m])

Latency Breakdown by Message Type:

Capacity Trending

Session Growth Trend (24h):

Capacity Remaining:

Time to Capacity Exhaustion:

p50 (Median)

histogram_quantile(0.50,

 rate(s5s8_inbound_handling_duration_bucket[5m])

)

p95

histogram_quantile(0.95,

 rate(s5s8_inbound_handling_duration_bucket[5m])

)

p99

histogram_quantile(0.99,

 rate(s5s8_inbound_handling_duration_bucket[5m])

)

histogram_quantile(0.95,

 rate(s5s8_inbound_handling_duration_bucket[5m])

) by (request_message_type)

teid_registry_count -

teid_registry_count offset 24h

For max capacity of 10,000 sessions

10000 - teid_registry_count

Troubleshooting Metrics

Identifying Issues

Issue: High Session Rejection Rate

Query:

Action:

Check error logs

Verify PCRF connectivity (Gx errors)

Check IP pool exhaustion

Issue: Slow Session Setup

Query:

Action:

Check Gx latency (PCRF response time)

Check PFCP latency (PGW-U response time)

Days until capacity exhausted (based on 1h growth rate)

(10000 - teid_registry_count) /

(rate(teid_registry_count[1h]) * 86400)

rate(s5s8_inbound_errors_total[5m]) by (message_type)

histogram_quantile(0.95,

rate(s5s8_inbound_handling_duration_bucket{request_message_type="crea

[5m])

)

Review system resource usage

Issue: PCRF Policy Failures

Queries:

Action:

Check PCRF connectivity and health

Review subscriber profiles in PCRF (5xxx errors often indicate policy issues)

Verify Diameter peer configuration

Check PCRF logs for corresponding errors

For 5012 (DIAMETER_UNABLE_TO_COMPLY), review Re-Auth-Request

handling

Issue: Memory Leak Suspected

Queries:

Overall Gx response failure rate

sum(rate(gx_outbound_responses_total{result_code_class!="2xxx"}

[5m])) /

sum(rate(gx_outbound_responses_total[5m])) * 100

Breakdown by PCRF host

sum(rate(gx_outbound_responses_total[5m])) by (diameter_host,

result_code_class)

Specific result code classes

rate(gx_outbound_responses_total{result_code_class="5xxx"}[5m]) by

(diameter_host)

Action:

Check for stale sessions

Review registry counts

Restart if leak confirmed

Debugging Queries

Find Peak Session Time:

Compare Current vs. Historical:

Identify Anomalies:

Total memory trend

rate(vm_memory_total[1h])

Process memory trend

rate(vm_memory_processes[1h])

Process count trend

rate(vm_system_process_count[1h])

max_over_time(teid_registry_count[24h])

teid_registry_count /

avg_over_time(teid_registry_count[7d])

abs(

 teid_registry_count -

 avg_over_time(teid_registry_count[1h])

) > 100

Best Practices

Metric Collection

1. Scrape Interval: 15-30 seconds (balance granularity vs. load)

2. Retention: 15+ days for historical analysis

3. Labels: Use consistent labeling (instance, environment, site)

Dashboard Design

1. Overview Dashboard - High-level KPIs for NOC

2. Detailed Dashboards - Per-interface deep dive

3. Troubleshooting Dashboard - Error metrics and logs

Alert Design

1. Avoid Alert Fatigue - Only alert on actionable issues

2. Escalation - Warning → Critical with escalating severity

3. Context - Include runbook links in alert descriptions

Related Documentation

Configuration and Setup

Configuration Guide - Prometheus metrics configuration, Web UI setup

Troubleshooting Guide - Using metrics for debugging

Interface Metrics

PFCP Interface - PFCP session metrics, UPF health monitoring

Diameter Gx Interface - Gx policy metrics, PCRF interaction tracking

Diameter Gy Interface - Gy charging metrics, quota tracking, OCS

timeouts

S5/S8 Interface - GTP-C message metrics, SGW-C communication

Specialized Monitoring

P-CSCF Monitoring - P-CSCF discovery metrics, IMS health

Session Management - Active sessions, session lifecycle metrics

UE IP Allocation - IP pool utilization metrics

Back to Operations Guide

OmniPGW Monitoring Guide - by Omnitouch Network Services

Protocol Configuration

Options (PCO)

Network Parameters Delivered to UE

OmniPGW by Omnitouch Network Services

Overview

PCO (Protocol Configuration Options) are network parameters sent to the

UE (mobile device) during PDN connection establishment. These parameters

enable the UE to access network services like DNS, IMS, and configure network

settings.

PCO Information Elements:

IE Name
Container

ID
Description Required

DNS Server IPv4

Address
0x000D Primary DNS Yes

DNS Server IPv4

Address
0x000D Secondary DNS Optional

P-CSCF IPv4

Address
0x000C P-CSCF for IMS Optional (IMS)

IPv4 Link MTU 0x0010
Maximum

transmission unit
Recommended

NBNS Server IPv4

Address
0x0011

NetBIOS name

server
Optional

Configuration

Basic Configuration

PCO Parameters

DNS Server Addresses

Primary and Secondary DNS:

config/runtime.exs

config :pgw_c,

 pco: %{

 # DNS servers (required)

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 # NBNS servers (optional, for Windows devices)

 primary_nbns_server_address: nil,

 secondary_nbns_server_address: nil,

 # P-CSCF addresses for IMS/VoLTE (optional)

 p_cscf_ipv4_address_list: [],

 # P-CSCF Dynamic Discovery (optional)

 p_cscf_discovery_enabled: false,

 p_cscf_discovery_dns_server: nil,

 p_cscf_discovery_timeout_ms: 5000,

 # IPv4 MTU size (bytes)

 ipv4_link_mtu_size: 1400

 }

Common DNS Providers:

Provider Primary Secondary

Google 8.8.8.8 8.8.4.4

Cloudflare 1.1.1.1 1.0.0.1

Quad9 9.9.9.9 149.112.112.112

OpenDNS 208.67.222.222 208.67.220.220

Private DNS:

P-CSCF Addresses (IMS)

For IMS/VoLTE Services:

P-CSCF (Proxy Call Session Control Function):

pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4"

}

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11"

}

pco: %{

 p_cscf_ipv4_address_list: [

 "10.0.0.50", # Primary P-CSCF

 "10.0.0.51" # Secondary P-CSCF

]

}

Entry point for IMS signaling

Required for VoLTE, VoWiFi, RCS

UE uses SIP over this server

P-CSCF Dynamic Discovery

DNS-Based P-CSCF Discovery:

OmniPGW supports dynamic P-CSCF discovery via DNS queries as defined in

3GPP TS 23.003 and TS 24.229. When enabled, PGW-C can query DNS for P-

CSCF addresses instead of using static configuration.

How It Works:

1. When p_cscf_discovery_enabled: true , PGW-C performs DNS queries for

P-CSCF addresses

2. DNS query is sent to the configured p_cscf_discovery_dns_server

3. If DNS query succeeds, discovered P-CSCF addresses are sent to UE via

PCO

4. If DNS query fails or times out, falls back to static

p_cscf_ipv4_address_list

5. See P-CSCF Monitoring for detailed monitoring and metrics

pco: %{

 # Enable dynamic P-CSCF discovery

 p_cscf_discovery_enabled: true,

 # DNS server for P-CSCF queries (as tuple)

 p_cscf_discovery_dns_server: {10, 179, 2, 177},

 # Timeout for DNS queries (milliseconds)

 p_cscf_discovery_timeout_ms: 5000,

 # Static P-CSCF list (used as fallback if DNS fails)

 p_cscf_ipv4_address_list: ["10.0.0.50"]

}

P-CSCF Discovery Flow

Yes

No

Yes

No

Yes

NoYes

No, Timeout

Yes

No, Timeout

Yes No Yes No

Yes, Rule PCO

Yes, Global PCO

No

Yes

No

Session Establishment

Matched UPF

Selection Rule?

Rule has

p_cscf_discovery_fqdn?

Global P-CSCF

Discovery Enabled?

Build DNS Query

for Rule FQDN

Build DNS Query

for Global Discovery

Static P-CSCF

in Rule PCO?

Query DNS Server

A/AAAA Record Lookup

Query DNS Server

using Global DNS Config

Response within

Timeout?

Response within

Timeout?

Parse DNS Response

Extract P-CSCF IPs

Log: DNS Discovery

Timeout

Parse DNS Response

Extract P-CSCF IPs

Log: Global DNS

Timeout

Valid IP

Addresses?

Valid IP

Addresses?

Cache Discovered P-

CSCF IPs

Update Metrics

Log: Invalid DNS

Response

Cache Discovered P-

CSCF IPs

Update Metrics

Log: Invalid DNS

Response

Use Discovered P-CSCF

Addresses

Fallback

P-CSCF List?

Use

p_cscf_ipv4_address_list

FROM RULE PCO

Use

p_cscf_ipv4_address_list

FROM GLOBAL PCO

Empty P-CSCF List

UE may not register for

IMS

Use

p_cscf_ipv4_address_list

FROM GLOBAL PCO

Build PCO IE with P-CSCF

Send PCO to UE

in Create Session

Response

Discovery Priority:

1. Per-Rule FQDN Discovery (Highest Priority) - p_cscf_discovery_fqdn in

UPF selection rule

2. Global DNS Discovery - p_cscf_discovery_enabled: true in global PCO

config

3. Rule PCO Static List - p_cscf_ipv4_address_list in rule PCO override

4. Global PCO Static List (Fallback) - p_cscf_ipv4_address_list in global

PCO config

Monitoring:

All P-CSCF discovery attempts are logged and tracked with metrics:

DNS query success/failure rates

Discovery latency

Fallback usage statistics

Per-rule and global discovery metrics

See P-CSCF Monitoring for complete monitoring details.

Configuration Options:

Parameter Type Default Description

p_cscf_discovery_enabled Boolean false

Enable dynamic

DNS-based P-CSCF

discovery

p_cscf_discovery_dns_server
Tuple

(IP)
nil

DNS server IP

address as 4-tuple

(e.g., {10, 179,

2, 177})

p_cscf_discovery_timeout_ms Integer 5000

Timeout for DNS

queries in

milliseconds

Use Cases:

Dynamic IMS deployments - P-CSCF addresses change based on DNS

configuration

Geographic load balancing - DNS returns closest P-CSCF servers

High availability - DNS automatically returns available P-CSCF servers

Multi-tenant environments - Different subscribers get different P-CSCF

servers

Example: Production IMS with DNS Discovery

Per-Rule P-CSCF Discovery:

P-CSCF discovery can also be configured per UPF selection rule. This allows

different APNs to use different DNS servers for P-CSCF discovery:

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11",

 # Enable dynamic P-CSCF discovery

 p_cscf_discovery_enabled: true,

 p_cscf_discovery_dns_server: {10, 179, 2, 177}, # IMS DNS

server

 p_cscf_discovery_timeout_ms: 3000,

 # Fallback P-CSCF addresses (if DNS fails)

 p_cscf_ipv4_address_list: [

 "10.0.0.50", # Primary fallback

 "10.0.0.51" # Secondary fallback

],

 ipv4_link_mtu_size: 1400

}

See UPF Selection Configuration for details on per-rule P-CSCF discovery.

See also: P-CSCF Monitoring for monitoring P-CSCF discovery and health

NBNS Servers (NetBIOS)

For Windows Device Compatibility:

When to Use:

Enterprise networks with Windows devices

Legacy application support

NetBIOS name resolution required

Link MTU Size

Maximum Transmission Unit:

In upf_selection configuration

rules: [

 %{

 name: "IMS Traffic",

 priority: 20,

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [...],

 # Per-rule P-CSCF discovery

 p_cscf_discovery_fqdn: "pcscf.mnc380.mcc313.3gppnetwork.org"

 }

]

pco: %{

 primary_nbns_server_address: "10.0.0.20",

 secondary_nbns_server_address: "10.0.0.21"

}

Common MTU Values:

MTU Use Case

1500 Standard Ethernet (no tunneling)

1400 GTP tunneling overhead accounted

1420 Reduced overhead

1280 IPv6 minimum MTU

1360 VPN/tunnel environments

Recommendation: Use 1400 for LTE to account for GTP-U overhead.

Configuration Examples

Internet APN

pco: %{

 ipv4_link_mtu_size: 1400 # bytes

}

pco: %{

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4",

 ipv4_link_mtu_size: 1400

}

IMS APN

See: P-CSCF Monitoring for monitoring IMS registration success rates and P-

CSCF health

Enterprise APN

PCO in GTP-C Messages

Create Session Response

OmniPGW includes PCO in the Create Session Response message:

pco: %{

 primary_dns_server_address: "10.0.0.10",

 secondary_dns_server_address: "10.0.0.11",

 p_cscf_ipv4_address_list: [

 "10.0.0.50",

 "10.0.0.51"

],

 ipv4_link_mtu_size: 1400

}

pco: %{

 primary_dns_server_address: "10.100.0.10",

 secondary_dns_server_address: "10.100.0.11",

 primary_nbns_server_address: "10.100.0.20",

 secondary_nbns_server_address: "10.100.0.21",

 ipv4_link_mtu_size: 1400

}

UE Processing

The UE receives PCO and:

1. Configures DNS resolver with provided servers

2. Registers with P-CSCF for IMS services

3. Sets interface MTU to specified value

Troubleshooting

Issue: UE Cannot Resolve DNS

Symptoms:

UE has IP address but cannot access internet

DNS lookups fail

Possible Causes:

1. Incorrect DNS server addresses in PCO config

2. DNS servers not reachable from UE IP pool

3. Firewall blocking DNS traffic

Resolution:

Create Session Response

├── Cause: Request accepted

├── UE IP Address: 100.64.1.42

├── PCO (Protocol Configuration Options)

│ ├── DNS Server IPv4 Address: 8.8.8.8

│ ├── DNS Server IPv4 Address: 8.8.4.4

│ ├── P-CSCF IPv4 Address: 10.0.0.50

│ ├── P-CSCF IPv4 Address: 10.0.0.51

│ └── IPv4 Link MTU: 1400

Issue: IMS Registration Fails

Symptoms:

VoLTE calls fail

UE shows "No IMS registration"

Possible Causes:

1. Missing P-CSCF configuration

2. Incorrect P-CSCF IP addresses

3. P-CSCF not reachable

Resolution:

Issue: MTU Problems

Symptoms:

Some websites load, others don't

Large file transfers fail

Fragmentation issues

Test DNS server reachability

ping 8.8.8.8

Test DNS resolution from UE network

nslookup google.com 8.8.8.8

Verify PCO configuration

grep "primary_dns_server_address" config/runtime.exs

Verify P-CSCF configuration

pco: %{

 p_cscf_ipv4_address_list: ["10.0.0.50"] # Ensure not empty

}

Possible Causes:

MTU too large for tunneling overhead

MTU too small causing excessive fragmentation

Resolution:

Best Practices

DNS Configuration

1. Use Reliable DNS Servers

Public: Google (8.8.8.8), Cloudflare (1.1.1.1)

Private: Internal DNS for enterprise

2. Always Configure Secondary

Provides redundancy

Improves reliability

3. Consider DNS Security

DNSSEC-capable resolvers

DNS filtering for security

Recommended: 1400 for GTP tunneling

pco: %{

 ipv4_link_mtu_size: 1400

}

If still having issues, try lower

pco: %{

 ipv4_link_mtu_size: 1360

}

IMS Configuration

1. Provide Multiple P-CSCF

At least 2 for redundancy

Geographic distribution if possible

2. Ensure Reachability

P-CSCF must be reachable from UE IP pool

Test SIP connectivity

MTU Optimization

1. Account for Overhead

GTP-U: 36 bytes (IPv4)

IPsec: Variable (50-100 bytes)

2. Standard LTE MTU

Recommended: 1400 bytes

Balances throughput and compatibility

3. Test End-to-End

Path MTU discovery

Test with large packets

Related Documentation

Configuration Guides

Configuration Guide - Complete runtime.exs reference, UPF selection

with PCO overrides

UE IP Allocation - IP pool management, APN-based allocation

P-CSCF Monitoring - P-CSCF discovery monitoring, health tracking,

metrics

Session and Interface Management

Session Management - PDN session lifecycle, bearer establishment

S5/S8 Interface - GTP-C protocol, PCO encoding and delivery

PFCP Interface - User plane session establishment

IMS and VoLTE

Diameter Gx Interface - Policy control for IMS bearers

Monitoring Guide - PCO-related metrics and dashboards

Back to Operations Guide

OmniPGW PCO Configuration - by Omnitouch Network Services

P-CSCF Discovery and

Monitoring

Dynamic P-CSCF Server Discovery with Real-Time Monitoring

OmniPGW by Omnitouch Network Services

Overview

P-CSCF (Proxy Call Session Control Function) Discovery and Monitoring

provides dynamic discovery of IMS P-CSCF servers using DNS SRV queries with

real-time SIP OPTIONS health checking. This feature enables:

Per-Rule P-CSCF Discovery: Different P-CSCF servers for different traffic

types

Automatic Monitoring: Background process continuously monitors DNS

resolution (every 60 seconds)

SIP OPTIONS Health Checks: Verifies P-CSCF servers are alive via SIP

OPTIONS pings

TCP First: Attempts SIP OPTIONS via TCP (preferred for reliability)

UDP Fallback: Falls back to UDP if TCP fails

Status Tracking: Marks each server as :up or :down based on

response

Real-Time Health Tracking: Web UI displays resolution status, discovered

IPs, and health status

Graceful Fallback: Three-tier fallback strategy for maximum reliability

Prometheus Metrics: Full observability via Prometheus metrics

Table of Contents

1. Quick Start

2. Configuration

3. How It Works

4. Web UI Monitoring

5. Metrics and Observability

6. Fallback Strategy

7. DNS Configuration

8. Troubleshooting

9. Best Practices

Quick Start

Basic Configuration

See Configuration Guide for complete UPF selection rule configuration and PCO

Configuration for static P-CSCF fallback options.

config/runtime.exs

Global PCO configuration (DNS server for P-CSCF discovery)

config :pgw_c,

 pco: %{

 p_cscf_discovery_dns_server: "10.179.2.177",

 p_cscf_discovery_enabled: true,

 p_cscf_discovery_timeout_ms: 5000

 },

 upf_selection: %{

 rules: [

 # IMS Traffic - Dynamic P-CSCF discovery

 %{

 name: "IMS Traffic",

 priority: 20,

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [

 %{remote_ip_address: "10.100.2.21", remote_port: 8805,

weight: 80}

],

 # P-CSCF Discovery FQDN (see Configuration Guide for more

UPF selection rules)

 p_cscf_discovery_fqdn:

"pcscf.mnc380.mcc313.3gppnetwork.org",

 # Static fallback (see PCO Configuration Guide)

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100",

"10.101.2.101"]

 }

 }

]

 }

Access Monitoring

1. Start OmniPGW

2. Navigate to Web UI → P-CSCF Monitor

(https://localhost:8086/pcscf_monitor)

3. View real-time resolution status and discovered IPs

Configuration

Global P-CSCF Discovery Settings

Configure the DNS server used for P-CSCF discovery in the PCO section:

Per-Rule P-CSCF FQDNs

Each UPF selection rule can specify its own P-CSCF discovery FQDN:

pco: %{

 # DNS server for P-CSCF discovery (separate from DNS given to

UE)

 p_cscf_discovery_dns_server: "10.179.2.177",

 # Enable P-CSCF DNS discovery feature

 p_cscf_discovery_enabled: true,

 # Timeout for DNS SRV queries (milliseconds)

 p_cscf_discovery_timeout_ms: 5000,

 # Static P-CSCF addresses (global fallback)

 p_cscf_ipv4_address_list: ["10.101.2.146"]

}

upf_selection: %{

 rules: [

 # IMS Traffic - IMS-specific P-CSCF

 %{

 name: "IMS Traffic",

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [...],

 p_cscf_discovery_fqdn:

"pcscf.ims.mnc380.mcc313.3gppnetwork.org",

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100"] # Fallback

 }

 },

 # Enterprise - Enterprise-specific P-CSCF

 %{

 name: "Enterprise Traffic",

 match_field: :apn,

 match_regex: "^enterprise",

 upf_pool: [...],

 p_cscf_discovery_fqdn: "pcscf.enterprise.example.com",

 pco: %{

 p_cscf_ipv4_address_list: ["192.168.1.50"] # Fallback

 }

 },

 # Internet - No P-CSCF discovery (uses global config)

 %{

 name: "Internet Traffic",

 match_field: :apn,

 match_regex: "^internet",

 upf_pool: [...]

 # No p_cscf_discovery_fqdn - uses global PCO config

 }

]

}

How It Works

Startup Process

1. Application Starts

P-CSCF Monitor GenServer initializes

Config parser extracts all unique P-CSCF FQDNs from UPF selection

rules

2. FQDN Registration

Each unique FQDN is registered with the monitor

Monitor performs initial DNS SRV query for each FQDN

SIP OPTIONS Health Check (in parallel for all discovered servers):

Try TCP first (SIP/2.0/TCP on port 5060)

If TCP fails, fall back to UDP (SIP/2.0/UDP on port 5060)

Mark each server as :up (responds) or :down (no

response/timeout)

Results (IPs, health status, or errors) are cached with timestamps

3. Periodic Monitoring (Every 60 seconds)

Monitor refreshes all FQDNs

DNS queries run in background without blocking

For each discovered server:

Send SIP OPTIONS via TCP (timeout: 5 seconds)

If TCP fails, try UDP (timeout: 5 seconds)

Update health status based on response

Cache is updated with latest DNS results and health status

Session Creation Flow

DNS ServerP-CSCF MonitorRule EngineOmniPGWUser Equipment

DNS ServerP-CSCF MonitorRule EngineOmniPGWUser Equipment

Background: Monitor refreshes every 60s

Create Session Request (APN=ims)

Match Rule

IMS Traffic Rule (FQDN=pcscf.ims.example.com)

Get IPs for FQDN

[10.101.2.100, 10.101.2.101]

Create Session Response (PCO with P-CSCF IPs)

SRV Query (_sip._tcp.pcscf.ims.example.com)

SRV Records

A/AAAA Query

[10.101.2.100, 10.101.2.101]

Update Cache

DNS Query Process

The monitor uses DNS SRV records for direct P-CSCF discovery:

1. SRV Query: Query SRV records at _sip._tcp.{fqdn}

2. Priority Sorting: Sort by priority and weight

3. Target Extraction: Extract target hostnames from SRV records

4. Hostname Resolution: Resolve target hostnames to IP addresses

(A/AAAA records)

5. Caching: Cache resolved IPs with status and timestamp

P-CSCF Address Selection Precedence

When both FQDN and static PCO are configured on a rule, FQDN takes

precedence:

Selection Logic:

Condition
P-CSCF

Source
IPs Used Log Mess

FQDN

resolves

successfully

DNS

Discovery

(Monitor)

Discovered IPs from DNS

"Using P-CSC

addresses fr

FQDN

pcscf.exampl

FQDN fails

to resolve

Rule PCO

Override

Static IPs from

pco.p_cscf_ipv4_address_list

"Failed to g

CSCF IPs fro

FQDN..., fal

back to stat

config"

FQDN

returns

empty list

Rule PCO

Override

Static IPs from

pco.p_cscf_ipv4_address_list
Fallback trigg

Monitor

unavailable

Rule PCO

Override

Static IPs from

pco.p_cscf_ipv4_address_list

Error triggers

fallback

No FQDN

configured

Rule PCO

Override

or Global

Static IPs from rule or global

config

Uses static co

directly

%{

 name: "IMS Traffic",

 p_cscf_discovery_fqdn: "pcscf.mnc380.mcc313.3gppnetwork.org", #

← Tried FIRST

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100", "10.101.2.101"] #

← Fallback

 }

}

Example Flow:

Real-World Scenarios:

Scenario 1: DNS Discovery Works �

Session Creation for IMS Traffic Rule:

┌─────────────────────────────────────┐

│ 1. Check if FQDN configured? │

│ ✓ Yes: "pcscf.mnc380.mcc313..." │

└──────────────┬──────────────────────┘

 │

 ▼

┌─────────────────────────────────────┐

│ 2. Query Monitor for cached IPs │

│ Monitor.get_ips(fqdn) │

└──────────────┬──────────────────────┘

 │

 ┌───────┴────────┐

 ▼ ▼

┌─────────────┐ ┌──────────────────┐

│ SUCCESS │ │ FAILED/EMPTY │

│ {:ok, ips} │ │ {:error, reason} │

└──────┬──────┘ └────────┬─────────┘

 │ │

 ▼ ▼

┌─────────────┐ ┌──────────────────┐

│ Use DNS IPs │ │ Use Static PCO │

│ [from DNS] │ │ [from config] │

└─────────────┘ └──────────────────┘

 │ │

 └────────┬─────────┘

 ▼

 ┌──────────────────┐

 │ Send to UE in │

 │ PCO message │

 └──────────────────┘

Scenario 2: DNS Fails, Graceful Fallback ⚠️

Scenario 3: No FQDN Configured

Why This Design?

1. Prefer Dynamic: DNS provides flexibility, load balancing, and location-

aware routing

2. Ensure Reliability: Static fallback ensures sessions never fail due to DNS

issues

3. Zero Manual Intervention: Automatic failover without operator

involvement

4. Production Safe: Best of both worlds - agility with stability

Config:

 p_cscf_discovery_fqdn: "pcscf.ims.example.com"

 pco.p_cscf_ipv4_address_list: ["10.101.2.100"]

DNS Result: [10.101.2.150, 10.101.2.151]

UE Receives: [10.101.2.150, 10.101.2.151] ← From DNS

Note: Static PCO is ignored when DNS succeeds

Config:

 p_cscf_discovery_fqdn: "pcscf.ims.example.com"

 pco.p_cscf_ipv4_address_list: ["10.101.2.100"]

DNS Result: ERROR :no_naptr_records

UE Receives: [10.101.2.100] ← From static PCO

Note: Session succeeds despite DNS failure

Config:

 # No p_cscf_discovery_fqdn

 pco.p_cscf_ipv4_address_list: ["192.168.1.50"]

UE Receives: [192.168.1.50] ← From static PCO

Note: DNS discovery not attempted

Recommendation: Always configure both FQDN and static PCO for production

deployments:

Web UI Monitoring

P-CSCF Monitor Page

Access the monitoring interface at: https://localhost:8086/pcscf_monitor

✓ RECOMMENDED: Dynamic with fallback

%{

 p_cscf_discovery_fqdn: "pcscf.ims.example.com", # Preferred

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100"] # Safety net

 }

}

⚠️ RISKY: Dynamic only (falls back to global PCO)

%{

 p_cscf_discovery_fqdn: "pcscf.ims.example.com"

 # No rule-specific fallback!

}

✓ VALID: Static only (no DNS overhead)

%{

 pco: %{

 p_cscf_ipv4_address_list: ["192.168.1.50"]

 }

}

Features:

Overview Statistics

Total FQDNs monitored

Successfully resolved FQDNs

Failed resolutions

Total discovered P-CSCF IPs

FQDN Table

FQDN being monitored

Resolution status (✓ Resolved / ✗ Failed / ⏳ Pending)

Number of discovered IPs

List of resolved IP addresses (with expandable server details)

Last update timestamp

Manual refresh button per FQDN

Health Status: Each discovered server shows:

IP address and port

Hostname (from DNS SRV target)

Real-time health indicator (✓ Up / ✗ Down)

Refresh Controls

Refresh All button: Trigger immediate re-query of all FQDNs

Per-FQDN Refresh: Refresh individual FQDNs on demand

Auto-refresh: Page updates every 5 seconds

Monitoring Metrics Dashboard

Total FQDNs: Number of unique FQDNs registered for monitoring

Successfully Resolved: FQDNs that successfully resolved via DNS

Failed DNS Resolutions: FQDNs that failed to resolve

Total P-CSCF Servers: Total number of servers discovered across all

FQDNs

✓ Healthy (SIP OPTIONS UP): Servers responding to SIP OPTIONS

health checks

✗ Unhealthy (SIP OPTIONS DOWN): Servers not responding to SIP

OPTIONS

DNS Success Rate: Percentage of successful DNS resolutions

Health Check Interval: Frequency of SIP OPTIONS health checks (60s,

5s timeout)

The metrics dashboard provides real-time visibility into both DNS resolution

health and P-CSCF server availability via SIP OPTIONS.

UPF Selection Page Integration

The UPF Selection page (/upf_selection) displays P-CSCF discovery status for

each rule:

Metrics and Observability

Prometheus Metrics

The P-CSCF monitoring system exposes metrics via Prometheus (port 42069 by

default):

Gauge Metrics

📌 IMS Traffic (Priority 20)

 Match: APN matching ^ims

 Pool: UPF-IMS-Primary (10.100.2.21:8805)

 🔍 P-CSCF Discovery

 FQDN: pcscf.mnc380.mcc313.3gppnetwork.org

 Status: ✓ Resolved (2 IPs)

 Resolved IPs: 10.101.2.100, 10.101.2.101

 ⚙️ PCO Overrides

 Primary DNS: 10.103.2.195

 P-CSCF (static fallback): 10.101.2.100, 10.101.2.101

Health Check Details:

healthy : Server responded to SIP OPTIONS ping (TCP or UDP)

unhealthy : Server failed to respond to SIP OPTIONS (5s timeout per

transport)

Metric Examples

DNS Resolution Metrics:

FQDN-level metrics

pcscf_fqdns_total # Total number of monitored

FQDNs

pcscf_fqdns_resolved # Successfully resolved

FQDNs (DNS succeeded)

pcscf_fqdns_failed # Failed FQDN resolutions

(DNS failed)

Server-level metrics (aggregate)

pcscf_servers_total # Total P-CSCF servers

discovered via DNS SRV

pcscf_servers_healthy # Servers responding to SIP

OPTIONS (aggregate)

pcscf_servers_unhealthy # Servers not responding to

SIP OPTIONS (aggregate)

Server-level metrics (per-FQDN with label)

pcscf_servers_healthy{fqdn="..."} # Healthy servers for

specific FQDN

pcscf_servers_unhealthy{fqdn="..."} # Unhealthy servers for

specific FQDN

SIP OPTIONS Health Metrics:

Example Prometheus Alerts:

Query successfully resolved FQDNs

pcscf_fqdns_resolved

Calculate DNS success rate

(pcscf_fqdns_resolved / pcscf_fqdns_total) * 100

Total discovered servers

pcscf_servers_total

Total healthy servers across all FQDNs

pcscf_servers_healthy

Total unhealthy servers

pcscf_servers_unhealthy

Calculate health check success rate

(pcscf_servers_healthy / pcscf_servers_total) * 100

Healthy servers for a specific FQDN

pcscf_servers_healthy{fqdn="pcscf.mnc380.mcc313.3gppnetwork.org"}

Alert on all servers down

pcscf_servers_healthy == 0 AND pcscf_servers_total > 0

Logging

The monitor logs key events:

Alert when all P-CSCF servers are down

- alert: AllPCSCFServersDown

 expr: pcscf_servers_healthy == 0 AND pcscf_servers_total > 0

 for: 5m

 labels:

 severity: critical

 annotations:

 summary: "All P-CSCF servers are unhealthy"

 description: "{{ $value }} healthy servers (0) - all failed

SIP OPTIONS checks"

Alert when more than 50% servers are down

- alert: MajorityPCSCFServersDown

 expr: (pcscf_servers_healthy / pcscf_servers_total) < 0.5

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "Majority of P-CSCF servers are unhealthy"

 description: "Only {{ $value }}% of servers are responding to

SIP OPTIONS"

Alert on DNS resolution failures

- alert: PCSCFDNSResolutionFailed

 expr: pcscf_fqdns_failed > 0

 for: 5m

 labels:

 severity: warning

 annotations:

 summary: "P-CSCF DNS resolution failures"

 description: "{{ $value }} FQDN(s) failing to resolve"

Fallback Strategy

The system uses a three-tier fallback strategy for maximum reliability:

Tier 1: DNS Discovery (Preferred)

Monitor queries DNS and caches resolved IPs

Session uses cached IPs if available

Advantage: Dynamic, load-balanced, location-aware

Tier 2: Rule-Specific Static PCO (Fallback)

Used if DNS discovery fails or returns no IPs

Rule-specific static configuration

Advantage: Rule-specific fallback, predictable

[info] P-CSCF Monitor started

[info] Registering 2 unique P-CSCF FQDNs for monitoring:

["pcscf.ims.example.com", "pcscf.enterprise.example.com"]

[info] P-CSCF Monitor: Registering FQDN pcscf.ims.example.com

[debug] P-CSCF Monitor: Successfully resolved

pcscf.ims.example.com to 2 IPs

[warning] P-CSCF Monitor: Failed to resolve

pcscf.enterprise.example.com: :nxdomain

[debug] Using P-CSCF addresses from FQDN pcscf.ims.example.com:

[{10, 101, 2, 100}, {10, 101, 2, 101}]

p_cscf_discovery_fqdn: "pcscf.ims.example.com"

pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100", "10.101.2.101"]

}

Tier 3: Global PCO Configuration (Last Resort)

Used if no rule-specific config and DNS fails

Global default P-CSCF addresses

Advantage: Always available, prevents session failure

Fallback Logic Example

DNS Configuration

DNS Server Setup

Configure DNS server with SRV and A/AAAA records for P-CSCF discovery:

Global pco config

pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.146"]

}

Session matches "IMS Traffic" rule:

1. Try DNS discovery for "pcscf.ims.example.com"

 ├─ Success → Use [10.101.2.100, 10.101.2.101] ✓

 └─ Failed → Try next tier

2. Try rule's PCO override

 ├─ Configured → Use [10.101.2.100, 10.101.2.101] ✓

 └─ Not configured → Try next tier

3. Use global PCO config

 └─ Use [10.101.2.146] ✓ (Always succeeds)

Important: OmniPGW automatically prepends _sip._tcp. to the configured

FQDN. If you configure p_cscf_discovery_fqdn:

"pcscf.mnc380.mcc313.3gppnetwork.org" , the system will query

_sip._tcp.pcscf.mnc380.mcc313.3gppnetwork.org .

SRV Record Format

SRV records follow this format:

Priority: Lower values have higher priority (10 before 20)

Weight: For load balancing among same priority (higher = more traffic)

Port: SIP port (typically 5060 for TCP, 5060 for UDP)

Target: Hostname to resolve to IP address

; SRV records for P-CSCF (_sip._tcp prefix is queried

automatically)

_sip._tcp.pcscf.mnc380.mcc313.3gppnetwork.org. IN SRV 10 50 5060

pcscf1.example.com.

_sip._tcp.pcscf.mnc380.mcc313.3gppnetwork.org. IN SRV 20 50 5060

pcscf2.example.com.

; A records

pcscf1.example.com. IN A 10.101.2.100

pcscf2.example.com. IN A 10.101.2.101

_service._proto.domain. IN SRV priority weight port target.

Testing DNS Configuration

Troubleshooting

Issue: FQDN Shows "Failed" Status

Symptoms:

Web UI shows ✗ Failed status

Error: :nxdomain , :timeout , or :no_naptr_records

Possible Causes:

1. DNS server not reachable

2. FQDN does not exist in DNS

3. No NAPTR records configured

4. DNS server timeout

Resolution:

Query SRV records (note the _sip._tcp prefix)

dig SRV _sip._tcp.pcscf.mnc380.mcc313.3gppnetwork.org

@10.179.2.177

Expected output:

_sip._tcp.pcscf.mnc380.mcc313.3gppnetwork.org. 300 IN SRV 10 50

5060 pcscf1.example.com.

Resolve P-CSCF hostname to IP

dig A pcscf1.example.com @10.179.2.177

Expected output:

pcscf1.example.com. 300 IN A 10.101.2.100

Issue: No IPs Returned

Symptoms:

Web UI shows "0 IPs"

Status may be ✓ Resolved or ✗ Failed

Possible Causes:

1. NAPTR records exist but replacement FQDNs don't resolve

2. Service field doesn't match IMS/SIP pattern

3. A/AAAA records missing

Resolution:

1. Test DNS server connectivity

ping 10.179.2.177

2. Test NAPTR query manually

dig NAPTR pcscf.mnc380.mcc313.3gppnetwork.org @10.179.2.177

3. Check OmniPGW logs

grep "P-CSCF" /var/log/pgw_c.log

4. Verify configuration

grep "p_cscf_discovery_dns_server" config/runtime.exs

5. Manual refresh in web UI

Click "Refresh" button next to failed FQDN

Check NAPTR record service field

dig NAPTR pcscf.example.com @10.179.2.177

Ensure service contains "SIP" or "IMS":

CORRECT: "SIP+D2U", "x-3gpp-ims:sip"

WRONG: "HTTP", "FTP"

Check A/AAAA records exist

dig pcscf1.example.com A @10.179.2.177

Issue: Sessions Use Wrong P-CSCF

Symptoms:

UE receives unexpected P-CSCF addresses

Static fallback used instead of discovered IPs

Possible Causes:

1. DNS discovery failed but fallback is working

2. Rule matching incorrect

3. FQDN not registered

Resolution:

Issue: High DNS Query Latency

Symptoms:

Slow session creation

Metrics show high pcscf_discovery_query_duration_seconds

Possible Causes:

1. DNS server performance issues

2. Network latency to DNS server

3. Timeout too high

1. Check P-CSCF Monitor page

Verify FQDN is registered and resolved

2. Check session logs

grep "Using P-CSCF addresses from FQDN" /var/log/pgw_c.log

3. Check UPF Selection page

Verify rule shows correct FQDN and status

4. Test rule matching

Create session with specific APN and verify which rule matches

Resolution:

Best Practices

1. DNS Server Selection

Use Dedicated DNS Server

Why?

Separate concerns: UE DNS vs. internal IMS DNS

Different access policies and security

Independent scaling and reliability

Reduce query timeout

pco: %{

 p_cscf_discovery_timeout_ms: 2000 # Reduce from 5000ms

}

Consider using closer DNS server

pco: %{

 p_cscf_discovery_dns_server: "10.0.0.10" # Local DNS

}

pco: %{

 # Dedicated DNS for P-CSCF discovery (not the same as UE DNS)

 p_cscf_discovery_dns_server: "10.179.2.177",

 # UE DNS servers (given to mobile devices)

 primary_dns_server_address: "8.8.8.8",

 secondary_dns_server_address: "8.8.4.4"

}

2. Always Configure Static Fallback

Why?

Ensures sessions succeed even if DNS fails

Graceful degradation

Meets SLA requirements

3. Use Specific FQDNs per Traffic Type

Why?

Different P-CSCF pools per service

Better load distribution

%{

 p_cscf_discovery_fqdn: "pcscf.ims.example.com", # Preferred

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100"] # Required

fallback

 }

}

rules: [

 # IMS

 %{

 name: "IMS",

 match_regex: "^ims",

 p_cscf_discovery_fqdn:

"pcscf.ims.mnc380.mcc313.3gppnetwork.org"

 },

 # Enterprise

 %{

 name: "Enterprise",

 match_regex: "^enterprise",

 p_cscf_discovery_fqdn: "pcscf.enterprise.example.com"

 }

]

Service-specific routing

4. Monitor DNS Query Performance

5. Regular DNS Health Checks

Web UI: Check P-CSCF Monitor page daily

Metrics: Monitor pcscf_monitor_fqdns_failed metric

Logs: Watch for DNS errors

Testing: Periodically verify DNS records exist

6. Configure Appropriate Timeout

7. Use DNS Redundancy

Configure primary and secondary DNS:

Alert on high P-CSCF query latency

alert: HighPCSCFQueryLatency

expr: histogram_quantile(0.95,

pcscf_discovery_query_duration_seconds_bucket) > 2

for: 5m

labels:

 severity: warning

annotations:

 summary: "P-CSCF DNS queries are slow (p95 > 2s)"

Production: Balance reliability vs. latency

pco: %{

 p_cscf_discovery_timeout_ms: 5000 # 5 seconds

}

High-performance: Favor speed, rely on fallback

pco: %{

 p_cscf_discovery_timeout_ms: 2000 # 2 seconds

}

Related Documentation

PCO Configuration - Protocol Configuration Options, DNS and P-CSCF

settings

Configuration Guide - Complete OmniPGW configuration reference

Monitoring - Metrics, logging, and observability

Session Management - Session lifecycle and PCO delivery

PFCP Interface - User Plane Function communication

Back to Main Documentation

OmniPGW P-CSCF Monitoring - by Omnitouch Network Services

Primary P-CSCF DNS

pcscf.mnc380.mcc313.3gppnetwork.org. IN NAPTR 10 50 "s" "SIP+D2U"

"" _sip._udp.pcscf1.example.com.

Secondary P-CSCF DNS

pcscf.mnc380.mcc313.3gppnetwork.org. IN NAPTR 20 50 "s" "SIP+D2U"

"" _sip._udp.pcscf2.example.com.

PFCP/Sxb Interface

Documentation

Packet Forwarding Control Protocol - PGW-C to PGW-U Communication

Table of Contents

1. Overview

2. Protocol Basics

3. PFCP Association Management

4. PFCP Session Management

5. Packet Processing Rules

6. Configuration

7. DNS-based UPF Selection

8. Message Flows

9. Troubleshooting

10. Web UI - PFCP Monitoring

11. Related Documentation

Overview

The Sxb interface uses the PFCP (Packet Forwarding Control Protocol)

for communication between the PGW-C (control plane) and PGW-U (user plane).

This separation allows:

Control Plane (PGW-C) - Handles signaling, session management, policy

decisions

User Plane (PGW-U) - Handles actual packet forwarding at high speed

PFCP Architecture

Protocol Basics

PFCP Version

PGW-C implements PFCP Version 1 (3GPP TS 29.244).

Transport

Protocol: UDP

Default Port: 8805

Message Format: Binary encoded using PFCP specification

Node ID Types

PFCP peers are identified by Node ID, which can be:

IPv4 Address - Most common

IPv6 Address

FQDN (Fully Qualified Domain Name)

PFCP Association Management

Before session management can occur, a PFCP association must be

established between PGW-C and PGW-U.

Association Setup Flow

PGW-UPGW-C

PGW-UPGW-C

Initial Association Setup

Includes:

- Node ID

- Recovery Time Stamp

- CP Function Features

Includes:

- Node ID

- Recovery Time Stamp

- UP Function Features

- User Plane IP Resources

Association Established

loop [Heartbeat Loop (every 5s by

default)]

If 3 consecutive

heartbeats missed,

mark association down

Association Setup Request

Association Setup Response

Heartbeat Request

Heartbeat Response

Peer State Management

Each PFCP peer maintains state:

Field Description

is_associated Boolean indicating association status

remote_node_id Peer's Node ID (IP or FQDN)

remote_ip_address IP address for communication

remote_port UDP port (default 8805)

heartbeat_period_ms Heartbeat interval in milliseconds

missed_heartbeats_consecutive Count of missed heartbeats

up_function_features Supported user plane features

up_recovery_time_stamp Peer's recovery timestamp

Heartbeat Mechanism

Purpose: Detect peer failures and maintain association liveness

Configuration:

Failure Detection:

Each missed heartbeat increments missed_heartbeats_consecutive

Typically configured to fail after 3 consecutive misses

Failed association prevents new sessions to that peer

PFCP Session Management

PFCP sessions are created for each UE PDN connection to program forwarding

rules in the user plane.

In config/runtime.exs

sxb: %{

 local_ip_address: "10.0.0.20"

},

upf_selection: %{

 fallback_pool: [

 %{remote_ip_address: "10.0.0.21", remote_port: 8805, weight:

100}

]

}

All UPFs are automatically registered with 5-second heartbeats

Session Lifecycle

Session Establishment

When: UE attaches and creates a PDN connection

PGW-C sends to PGW-U:

Session Establishment Request containing:

SEID (Session Endpoint ID) - Unique session identifier

Node ID - PGW-C's Node ID

F-SEID - Fully Qualified SEID (includes IP + SEID)

PDRs - Packet Detection Rules (typically 2: uplink + downlink)

FARs - Forwarding Action Rules (typically 2: uplink + downlink)

QERs - QoS Enforcement Rules (bitrate limits)

BAR - Buffering Action Rule (for downlink buffering)

PGW-U responds:

Session Establishment Response containing:

Cause - Success or failure reason

F-SEID - PGW-U's session endpoint

Created PDRs - Acknowledgment of created rules

F-TEID - Fully Qualified TEID for S5/S8 interface

Session Modification

When: QoS changes, policy updates, or bearer modifications occur

Modification can include:

Adding new PDRs, FARs, QERs

Removing existing rules

Updating rule parameters

Session Deletion

When: UE detaches or PDN connection is terminated

Process:

1. PGW-C sends Session Deletion Request with SEID

2. PGW-U removes all rules and releases resources

3. PGW-U responds with Session Deletion Response

F-TEID Allocation

F-TEID (Fully Qualified Tunnel Endpoint Identifier) identifies GTP-U tunnel

endpoints for user plane traffic. When establishing a PFCP session, someone

must allocate the F-TEID that identifies where the UPF should send uplink

traffic. There are two approaches:

Understanding F-TEID Allocation

What's Being Allocated: The F-TEID consists of:

TEID (Tunnel Endpoint Identifier) - 32-bit number identifying the tunnel

IP Address - Where to send GTP-U packets (the UPF's IP address)

The Question: Who allocates the TEID value?

Option 1: UPF Allocates (Recommended Default)

PGW-C says "please allocate a TEID for me" (CHOOSE flag)

UPF picks a TEID from its local pool and responds with the value

Option 2: PGW-C Allocates (Compatibility Mode)

PGW-C picks a TEID and tells UPF "use this specific TEID"

UPF uses the provided TEID without allocation

UPF Allocation (Default - Recommended)

Configuration:

How It Works:

1. PGW-C builds PFCP Session Establishment Request with F-TEID CHOOSE flag

2. UPF receives request, allocates TEID from its internal pool

3. UPF responds with allocated F-TEID (TEID + IP address)

4. PGW-C stores allocated F-TEID for session lifetime

Why This is Better (Usually):

� Separation of Concerns

UPF owns user plane = UPF manages user plane identifiers

No need for PGW-C to track what TEIDs UPF has available

Each component manages its own resource pool

� Multi-PGW-C Scalability

Multiple PGW-C instances can talk to same UPF without coordination

No risk of TEID collisions between different PGW-C instances

UPF ensures uniqueness across all control plane peers

� Standard 3GPP Behavior

CHOOSE flag is defined in 3GPP TS 29.244 for this purpose

Modern UPF implementations support it

Follows "let the owner allocate" principle

� Simpler Failover

If PGW-C restarts, UPF still owns TEID namespace

No need to synchronize TEID allocation state

UPF can continue using existing TEIDs

When to Use:

sxb: %{

 allocate_uplink_f_teid: false # Default

}

� Production deployments with modern UPFs (default)

� Multi-PGW-C deployments sharing UPF pools

� Cloud-native architectures with stateless control planes

� You want standard 3GPP PFCP behavior

Potential Issues:

⚠️ Some legacy or proprietary UPF implementations don't support CHOOSE

flag

⚠️ If session establishment fails with "mandatory IE missing" or similar, UPF

may not support CHOOSE

PGW-C Allocation (Legacy Compatibility)

Configuration:

How It Works:

1. PGW-C allocates TEID from local pool during session creation

2. PGW-C builds PFCP Session Establishment Request with explicit TEID value

3. UPF receives request, uses provided TEID without allocation

4. Both PGW-C and UPF track the same TEID value

Why You Might Need This:

� UPF Doesn't Support CHOOSE

Some UPF implementations (especially legacy/proprietary) don't support

dynamic allocation

UPF expects explicit TEID in PFCP Session Establishment Request

Only workaround for compatibility

� Centralized TEID Management

sxb: %{

 allocate_uplink_f_teid: true

}

If you need PGW-C to have full visibility into all allocated TEIDs

Useful for debugging user plane issues (PGW-C knows exact TEID values)

Can correlate TEID in packet captures with session state

� Deterministic Allocation

If you need predictable TEID allocation patterns

Some test environments may require specific TEID ranges

Trade-offs:

⚠️ Coordination Required for Multi-PGW-C

Multiple PGW-C instances sharing a UPF must avoid TEID collisions

Requires either:

Partitioned TEID ranges per PGW-C (complex configuration)

Shared TEID allocation service (additional infrastructure)

Accept collision risk with random allocation (low probability)

⚠️ State Synchronization

PGW-C must track allocated TEIDs to avoid reuse

TEID pool state lost on PGW-C restart (must rebuild from sessions)

More complex failover scenarios

⚠️ Non-Standard Behavior

Not the intended PFCP design pattern

May not work with all UPF implementations expecting CHOOSE

When to Use:

⚠️ Only when UPF doesn't support CHOOSE flag

⚠️ Legacy UPF implementations (e.g., some proprietary hardware)

⚠️ Specific compatibility requirements

⚠️ Debugging scenarios requiring PGW-C TEID visibility

TEID Collision Handling: PGW-C uses random allocation with collision

detection:

TEID range: 1 to 0xFFFFFFFF (4.2 billion values)

Collision probability: ~0.023% at 1 million sessions

Automatic retry on collision (transparent to caller)

TEIDs automatically released when session terminates

How to Choose

Yes

No

Don't Know

Yes

No

Yes

No Yes

Does your UPF

support CHOOSE flag?

Use UPF Allocation

allocate_uplink_f_teid:

false

Legacy UPF or

compatibility issue?

Test with UPF Allocation

Session establishment

succeeds?

Check error message

Error mentions

CHOOSE or mandatory

IE?

Use PGW-C Allocation

allocate_uplink_f_teid:

true

Different issue

check UPF logs

Troubleshooting

Symptom: Session establishment fails immediately

Check PFCP logs:

If UPF rejects CHOOSE flag:

Error may say "Mandatory IE missing" or "Invalid IE"

UPF expects explicit F-TEID but received CHOOSE

Solution: Set allocate_uplink_f_teid: true

If PGW-C allocation causes issues:

Very rare - TEID space is huge (4 billion values)

Check for TEID exhaustion (unlikely below millions of sessions):

Switching Between Modes:

Look for CHOOSE-related errors

grep -i "choose\|mandatory.*missing" /var/log/pgw_c.log

Check PFCP Session Establishment Response cause codes

grep "Session Establishment Response" /var/log/pgw_c.log

Check registry count

grep "registered_teid_count" /var/log/pgw_c.log

Edit config/runtime.exs

sxb: %{

 local_ip_address: "10.0.0.20",

 allocate_uplink_f_teid: false # Change to true if UPF doesn't

support CHOOSE

}

Then restart PGW-C:

Verifying Which Mode is Active: Check PFCP packet captures:

Packet Processing Rules

PFCP uses a set of rules to define how the user plane processes packets.

Rule Architecture

Match

No Match

Yes

No

Incoming Packet PDR Match?

Apply FAR

Drop Packet

QER Configured?

Enforce QoS

Forward/Buffer/Drop Outgoing Packet

PDR (Packet Detection Rule)

Purpose: Identify which packets this rule applies to

Typical PGW-C Configuration:

PDR #1 - Downlink:

systemctl restart pgw_c

Capture PFCP traffic

tcpdump -i any -n port 8805 -w pfcp.pcap

Open in Wireshark and look at Session Establishment Request

If F-TEID shows "CHOOSE" flags: UPF allocation mode

If F-TEID shows explicit TEID value: PGW-C allocation mode

PDR #2 - Uplink:

Key PDR Fields:

PDR ID - Unique rule identifier (per session)

Precedence - Rule matching priority (higher = more specific)

PDI - Matching criteria (interface, IP, TEID, etc.)

Outer Header Removal - Strip GTP-U header on ingress

FAR ID - Associated forwarding action

QER ID - Associated QoS enforcement (optional)

FAR (Forwarding Action Rule)

Purpose: Define what to do with matched packets

FAR #1 - Downlink (Internet → UE):

PDR ID: 1

Precedence: 100

PDI (Packet Detection Information):

 - Source Interface: CORE (Internet side)

 - UE IP Address: 100.64.1.42/32

FAR ID: 1 (associated forwarding rule)

PDR ID: 2

Precedence: 100

PDI (Packet Detection Information):

 - Source Interface: ACCESS (SGW side)

 - F-TEID: <S5/S8 tunnel endpoint>

FAR ID: 2 (associated forwarding rule)

QER ID: 1 (QoS enforcement)

FAR #2 - Uplink (UE → Internet):

Key FAR Fields:

FAR ID - Unique rule identifier

Apply Action - FORWARD, DROP, BUFFER, NOTIFY

Forwarding Parameters:

Destination interface (ACCESS/CORE)

Outer Header Creation (add GTP-U tunnel)

Network Instance (VRF/routing table)

QER (QoS Enforcement Rule)

Purpose: Enforce bitrate limits and QoS parameters. QERs can also track

usage for online charging quota management (see Diameter Gy Interface for

credit control).

Example QER:

FAR ID: 1

Apply Action: FORWARD

Forwarding Parameters:

 - Destination Interface: ACCESS (to SGW)

 - Outer Header Creation: GTP-U/UDP/IPv4

 - Remote F-TEID: <SGW S5/S8 tunnel endpoint>

FAR ID: 2

Apply Action: FORWARD

Forwarding Parameters:

 - Destination Interface: CORE (to Internet)

 - (No outer header - plain IP forwarding)

Key QER Fields:

QER ID - Unique rule identifier

Gate Status - OPEN (allow) or CLOSED (block)

MBR - Maximum Bitrate (uplink/downlink)

GBR - Guaranteed Bitrate (for dedicated bearers)

QCI - QoS Class Identifier (affects scheduling)

BAR (Buffering Action Rule)

Purpose: Control downlink packet buffering when UE is idle

Example BAR:

Used for: Idle mode DRX (Discontinuous Reception) optimization

Configuration

Basic Sxb Configuration

Edit config/runtime.exs :

QER ID: 1

Gate Status: OPEN

Maximum Bitrate:

 - Uplink: 100 Mbps

 - Downlink: 50 Mbps

Guaranteed Bitrate: (optional, for GBR bearers)

 - Uplink: 10 Mbps

 - Downlink: 10 Mbps

BAR ID: 1

Downlink Data Notification Delay: 100ms

Suggested Buffering Packets Count: 10

Multiple PGW-U Peers

For load balancing or redundancy:

config :pgw_c,

 sxb: %{

 # Local IP address for PFCP communication

 local_ip_address: "10.0.0.20",

 # Optional: Override default port (8805)

 local_port: 8805,

 # Optional: Control F-TEID allocation for user plane

 # When false (default): UPF allocates F-TEID (CHOOSE flag)

 # When true: PGW-C pre-allocates F-TEID and provides explicit

value

 # Note: Some UPFs may not support CHOOSE flag and require

explicit allocation

 allocate_uplink_f_teid: false

 },

 # UPF Selection - All UPFs defined here are automatically

registered

 upf_selection: %{

 fallback_pool: [

 %{

 # PGW-U IP address

 remote_ip_address: "10.0.0.21",

 # PFCP port (default: 8805)

 remote_port: 8805,

 # Weight for load balancing (100 = normal, 0 = standby)

 weight: 100

 }

]

 }

UPF Selection Configuration

PGW-C uses a three-tier UPF selection system with priority-based rules:

1. Static Rules (Highest Priority) - Match based on session attributes

2. DNS-Based Selection (Medium Priority) - Location-aware routing via DNS

NAPTR queries

3. Fallback Pool (Lowest Priority) - Default UPF pool when no rules match

config :pgw_c,

 sxb: %{

 local_ip_address: "10.0.0.20"

 },

 upf_selection: %{

 fallback_pool: [

 %{remote_ip_address: "10.0.1.21", remote_port: 8805, weight:

50}, # 50% traffic

 %{remote_ip_address: "10.0.2.21", remote_port: 8805, weight:

50} # 50% traffic

]

 }

Both UPFs automatically registered with 5-second heartbeats

Complete UPF Selection Example

config :pgw_c,

 # PFCP Interface

 sxb: %{

 local_ip_address: "10.0.0.20"

 },

 # UPF Selection: All UPFs defined here are automatically registered

 upf_selection: %{

 #

===

 # DNS-Based Selection (Location-Aware Routing)

 #

===

 # Queries DNS using User Location Information (ULI)

 # Provides dynamic UPF selection based on cell location

 dns_enabled: false,

 dns_query_priority: [:ecgi, :tai, :rai, :sai, :cgi],

 dns_suffix: "epc.3gppnetwork.org",

 dns_timeout_ms: 5000,

 #

===

 # Static Selection Rules (Evaluated by Priority)

 #

===

 # Rules are checked from highest to lowest priority

 # First matching rule determines the UPF pool

 rules: [

 # Rule 1: IMS Traffic - Highest Priority

 %{

 name: "IMS Traffic",

 priority: 20,

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [

 %{remote_ip_address: "10.100.2.21", remote_port: 8805,

weight: 80},

 %{remote_ip_address: "10.100.2.22", remote_port: 8805,

weight: 20}

],

 # Optional: PCO overrides for this rule

 pco: %{

 p_cscf_ipv4_address_list: ["10.101.2.100", "10.101.2.101"]

 }

 },

 # Rule 2: Enterprise APN - High Priority

 %{

 name: "Enterprise Traffic",

 priority: 15,

 match_field: :apn,

 match_regex: "^(enterprise|corporate)\.apn",

 upf_pool: [

 %{remote_ip_address: "10.100.3.21", remote_port: 8805,

weight: 100}

],

 pco: %{

 primary_dns_server_address: "192.168.1.10",

 secondary_dns_server_address: "192.168.1.11",

 ipv4_link_mtu_size: 1500

 }

 },

 # Rule 3: Roaming Subscribers - Medium Priority

 %{

 name: "Roaming Subscribers",

 priority: 10,

 match_field: :serving_network_plmn_id,

 match_regex: "^(310|311|312|313)", # US networks

 upf_pool: [

 %{remote_ip_address: "10.100.4.21", remote_port: 8805,

weight: 100}

]

 },

 # Rule 4: Internet Traffic - Lower Priority

 %{

 name: "Internet Traffic",

 priority: 5,

 match_field: :apn,

 match_regex: "^internet",

 upf_pool: [

 %{remote_ip_address: "10.100.1.21", remote_port: 8805,

weight: 33},

 %{remote_ip_address: "10.100.1.22", remote_port: 8805,

weight: 33},

 %{remote_ip_address: "10.100.1.23", remote_port: 8805,

Supported Match Fields

Match Field Description Example Value

:imsi
International Mobile

Subscriber Identity
"310260123456789"

:apn Access Point Name "internet" , "ims"

:serving_network_plmn_id
Serving network

PLMN (MCC+MNC)

"310260" (US

carrier)

:sgw_ip_address
SGW IP address

(string format)
"10.0.1.50"

:uli_tai_plmn_id
Tracking Area PLMN

ID
"310260"

:uli_ecgi_plmn_id
E-UTRAN Cell PLMN

ID
"310260"

UPF Pool and Load Balancing

weight: 34}

]

 }

],

 #

===

 # Fallback Pool (Last Resort)

 #

===

 # Used when no rules match and DNS selection fails or is disabled

 fallback_pool: [

 %{remote_ip_address: "127.0.0.21", remote_port: 8805, weight:

100}

]

 }

Each rule can specify a UPF pool with weighted random selection:

How Weighted Selection Works:

1. Calculate total weight: 50 + 30 + 20 = 100

2. Generate random number: 0.0 to 100.0

3. Select UPF based on cumulative weight ranges:

0-50: UPF-1 (50% chance)

50-80: UPF-2 (30% chance)

80-100: UPF-3 (20% chance)

Use Cases:

Equal distribution: All weights equal (33, 33, 34)

Primary/backup: High weight primary (80), low weight backup (20)

Capacity-based: Weight proportional to UPF capacity

PCO Overrides

Rules can override PCO (Protocol Configuration Options) values:

upf_pool: [

 %{remote_ip_address: "10.100.1.21", remote_port: 8805, weight:

50},

 %{remote_ip_address: "10.100.1.22", remote_port: 8805, weight:

30},

 %{remote_ip_address: "10.100.1.23", remote_port: 8805, weight:

20}

]

Available PCO Override Fields:

primary_dns_server_address

secondary_dns_server_address

primary_nbns_server_address

secondary_nbns_server_address

p_cscf_ipv4_address_list

ipv4_link_mtu_size

DNS-Based Selection

When enabled, PGW-C performs DNS NAPTR queries based on User Location

Information:

Query Priority:

1. ECGI (E-UTRAN Cell Global Identifier) - Most specific

2. TAI (Tracking Area Identity) - Cell area

3. RAI (Routing Area Identity) - 3G/2G area

%{

 name: "IMS Traffic",

 match_field: :apn,

 match_regex: "^ims",

 upf_pool: [...],

 pco: %{

 # Override only specific fields

 p_cscf_ipv4_address_list: ["10.101.2.100", "10.101.2.101"],

 # Other fields use defaults from main pco config

 }

}

upf_selection: %{

 dns_enabled: true,

 dns_query_priority: [:ecgi, :tai, :rai, :sai, :cgi],

 dns_suffix: "epc.3gppnetwork.org",

 dns_timeout_ms: 5000

}

4. SAI (Service Area Identity) - 3G service area

5. CGI (Cell Global Identity) - 2G cell

Example DNS Query:

DNS Selection Process:

1. Try queries in priority order (ECGI first, then TAI, etc.)

2. If DNS returns candidates, use first result (dynamically registered if

needed)

3. Select returned UPF

4. If no DNS match or DNS disabled, fall through to fallback pool

See DNS-based UPF Selection for detailed information.

DNS-based UPF Selection

Overview

DNS-based UPF selection provides location-aware routing by performing

DNS NAPTR queries using User Location Information (ULI) from the UE's current

cell.

3GPP Reference: TS 23.003 - DNS procedures for UPF discovery

Benefits:

Automatic UPF selection based on geographic location

No manual rule configuration per cell

Dynamic adaptation to network topology changes

For ECGI query:

eci-1a2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org

For TAI query:

tac-lb64.tac-hb00.tac.epc.mnc999.mcc999.epc.3gppnetwork.org

Reduces backhaul by routing to nearest UPF

How It Works

Parse error on line 25: ... style PGWC fill:#4CAF50,stroke:#2E7 --------------------

--^ Expecting 'SOLID_OPEN_ARROW', 'DOTTED_OPEN_ARROW',

'SOLID_ARROW', 'BIDIRECTIONAL_SOLID_ARROW', 'DOTTED_ARROW',

'BIDIRECTIONAL_DOTTED_ARROW', 'SOLID_CROSS', 'DOTTED_CROSS',

'SOLID_POINT', 'DOTTED_POINT', got 'TXT'

Try again

Configuration

config :pgw_c,

 upf_selection: %{

 # Enable DNS-based selection

 dns_enabled: true,

 # Query priority: try ECGI first, then TAI, then RAI, etc.

 dns_query_priority: [:ecgi, :tai, :rai, :sai, :cgi],

 # DNS suffix for queries

 dns_suffix: "epc.3gppnetwork.org",

 # DNS query timeout

 dns_timeout_ms: 5000,

 # Static rules still take precedence over DNS

 rules: [...],

 # Fallback if DNS fails

 fallback_pool: [...]

 }

DNS Query Formats

DNS queries are built using User Location Information (ULI) from the GTP-C

message:

1. ECGI (E-UTRAN Cell Global Identifier)

Most specific - LTE cell-level routing

Format:

Example:

When Used: LTE (4G) networks

2. TAI (Tracking Area Identity)

Cell area - Multiple cells in same tracking area

Format:

Example:

When Used: LTE (4G) tracking areas

eci-<HEX-ECI>.ecgi.epc.mnc<MNC>.mcc<MCC>.<dns_suffix>

Cell ID: 0x1A2B3C (1,715,004 decimal)

PLMN: MCC=999, MNC=999

eci-1a2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org

tac-lb<LB>.tac-hb<HB>.tac.epc.mnc<MNC>.mcc<MCC>.<dns_suffix>

TAC: 0x0064 (100 decimal)

Low byte: 0x64, High byte: 0x00

tac-lb64.tac-hb00.tac.epc.mnc999.mcc999.epc.3gppnetwork.org

3. RAI (Routing Area Identity)

3G/2G routing area

Format:

Example:

When Used: 3G/2G UMTS/GPRS networks

4. SAI (Service Area Identity)

3G service area

Format:

Example:

When Used: 3G UMTS service areas

5. CGI (Cell Global Identity)

2G cell-level

rac<RAC>.lac-lb<LB>.lac-hb<HB>.lac.rai.mnc<MNC>.mcc<MCC>.

<dns_suffix>

RAC: 0x0A (10 decimal)

LAC: 0x1234 (4660 decimal)

rac0a.lac-lb34.lac-hb12.lac.rai.mnc999.mcc999.epc.3gppnetwork.org

sac<SAC>.lac-lb<LB>.lac-hb<HB>.lac.sai.mnc<MNC>.mcc<MCC>.

<dns_suffix>

SAC: 0x0001

LAC: 0x1234

sac0001.lac-lb34.lac-

hb12.lac.sai.mnc999.mcc999.epc.3gppnetwork.org

Format:

Example:

When Used: 2G GSM cells

DNS Response Processing

NAPTR Record Format:

DNS returns NAPTR records pointing to UPF IP addresses:

PGW-C Processing:

1. Parse NAPTR records to extract UPF IP addresses

2. Select first candidate from DNS response

3. Dynamically register if not already configured (or implement load-based

selection)

Example:

ci<CI>.lac-lb<LB>.lac-hb<HB>.lac.cgi.mnc<MNC>.mcc<MCC>.

<dns_suffix>

CI: 0x5678

LAC: 0x1234

ci5678.lac-lb34.lac-hb12.lac.cgi.mnc999.mcc999.epc.3gppnetwork.org

eci-1a2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org.

 IN NAPTR 10 50 "a" "x-3gpp-upf:x-s5-gtp:x-s8-gtp" ""

upf1.epc.mnc999.mcc999.3gppnetwork.org.

upf1.epc.mnc999.mcc999.3gppnetwork.org.

 IN A 10.100.1.21

DNS returns: [10.100.1.21, 10.100.5.99, 10.200.3.50]

Selected: 10.100.1.21 (first candidate)

Action: Register dynamically if not in upf_selection

Selection Priority Example

No

No

No

Yes

Yes

Yes

Yes

Session: APN=internet

ECGI=0x1A2B3C

Static Rule 1

APN=ims?

Static Rule 2

APN=enterprise?

Static Rule 3

APN=internet?

DNS Enabled?

DNS Query:

eci-1a2b3c.ecgi...

Select IMS UPF Pool

Select Enterprise UPF

Select Internet UPF Pool

Yes
No

No

Candidates

match peers?

Select UPF

10.100.1.21
Use Fallback Pool

Use Cases

1. Geographic Load Balancing

Scenario: Operator has UPFs in multiple cities

DNS Configuration:

Benefit: Users automatically routed to nearest UPF, reducing latency and

backhaul

2. Edge Computing

Scenario: MEC (Multi-access Edge Computing) UPFs deployed at cell sites

Chicago cell

eci-aaa.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org → UPF-Chicago

(10.1.1.21)

New York cell

eci-bbb.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org → UPF-NewYork

(10.2.1.21)

Los Angeles cell

eci-ccc.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org → UPF-

LosAngeles (10.3.1.21)

DNS Configuration:

Benefit: Ultra-low latency for edge applications

3. Dynamic Network Topology

Scenario: UPF addresses change due to upgrades or maintenance

Benefit: Update DNS records without changing PGW-C configuration

Troubleshooting DNS Selection

DNS Query Failures

Symptoms:

Log: "DNS UPF selection failed: :nxdomain"

Sessions fall back to fallback pool

Possible Causes:

1. DNS server not configured correctly

2. DNS zone not populated for cell IDs

3. ULI not present in GTP-C message

Resolution:

Each cell points to local edge UPF

eci-*.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org → Local Edge UPF

Test DNS query manually

dig eci-1a2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org NAPTR

Check PGW-C logs for DNS queries

grep "DNS UPF selection: querying" /var/log/pgw_c.log

Verify ULI present in session

Check "uli" field in session state

DNS Returns Unknown UPF

Behavior:

DNS returns a candidate UPF not in upf_selection

System automatically attempts dynamic registration

If PFCP association succeeds, UPF is used for the session

If PFCP association fails, falls back to fallback pool

Example:

Resolution Options:

1. Pre-configure in upf_selection for immediate monitoring:

2. Update DNS to return pre-configured UPF IPs

3. Allow dynamic registration (recommended for MEC/edge scenarios)

Query Timeout

Symptoms:

Log: "DNS UPF selection: query timeout"

DNS returns: [10.99.1.50]

upf_selection: [10.100.1.21, 10.100.1.22]

Action: Dynamically register 10.99.1.50

 - Send PFCP Association Setup

 - If success: Use for session

 - If timeout: Fall back to fallback pool

upf_selection: %{

 fallback_pool: [

 %{remote_ip_address: "10.99.1.50", remote_port: 8805, weight:

100}

]

}

Sessions take longer to establish

Resolution:

Monitoring DNS Selection

Metrics:

Logs:

upf_selection: %{

 dns_timeout_ms: 10000 # Increase timeout to 10 seconds

}

DNS query success rate

rate(upf_selection_dns_success_total[5m]) /

rate(upf_selection_dns_attempts_total[5m])

DNS query latency

histogram_quantile(0.95,

rate(upf_selection_dns_duration_seconds_bucket[5m]))

Fallback usage (indicates DNS issues)

rate(upf_selection_fallback_used_total[5m])

[debug] DNS UPF selection: querying eci-

1a2b3c.ecgi.epc.mnc999.mcc999.epc.3gppnetwork.org

[debug] DNS UPF selection: got 2 candidates from DNS

[info] DNS UPF selection: selected 10.100.1.21

Message Flows

Complete Session Establishment Flow

Session Modification Flow

PGW-UPGW-CPCRF

PGW-UPGW-CPCRF

New QoS limits:

UL: 50 Mbps

DL: 100 Mbps

Contains:

- SEID

- Update QER

Update QER:

- Apply new bitrates

- Update policer

Cause: SUCCESS

Updated QoS Active

Policy Update (Gx)

Session Modification Request

Session Modification Response

Acknowledgment (Gx)

Heartbeat Failure Recovery

PGW-U (Failed)PGW-C

Timeout (no response)

missed_heartbeats = 1

Timeout (no response)

missed_heartbeats = 2

Timeout (no response)

missed_heartbeats = 3

loop [Heartbeat Attempts]

Mark peer as DOWN

is_associated = false

New sessions will:

- Select different peer

- Or fail if no peers available

PGW-U recovers

Restore association

is_associated = true

missed_heartbeats = 0

Heartbeat Request

Heartbeat Request

Heartbeat Request

Association Setup Request

Association Setup Response

PGW-U (Failed)PGW-C

loop [Heartbeats Resume]

Heartbeat Request

Heartbeat Response

Troubleshooting

Common Issues

1. Association Setup Fails

Symptoms:

Log message: "PFCP Association Setup failed"

No response to Association Setup Request

Possible Causes:

PGW-U not reachable (network issue)

PGW-U not running

Firewall blocking UDP port 8805

Incorrect remote_ip_address in configuration

Resolution:

2. Heartbeats Failing

Symptoms:

Log: "Consecutive heartbeat failures: 3"

Association marked as down

Possible Causes:

Network latency or packet loss

PGW-U overloaded

Heartbeat interval too aggressive

Resolution:

The heartbeat period is fixed at 5 seconds with a failure threshold of 3

consecutive missed heartbeats.

3. Session Establishment Fails

Symptoms:

Create Session Response with error cause

Log: "PFCP Session Establishment failed"

Possible Causes:

No PGW-U peers available

PGW-U resource exhaustion

Invalid rule configuration

Test connectivity

ping <pgw_u_ip_address>

Test UDP port

nc -u -v <pgw_u_ip_address> 8805

Check firewall

iptables -L -n | grep 8805

Check:

1. Verify at least one peer has is_associated = true

2. Check PGW-U logs for errors

3. Verify SEID uniqueness

4. Duplicate SEID Errors

Symptoms:

Session Establishment Response: Cause "Session context not found"

Cause:

SEID collision (very rare)

PGW-U restart without PGW-C awareness

Resolution:

Restart PFCP association (triggers new recovery timestamp)

PGW-C will detect PGW-U restart and clean up old sessions

Monitoring PFCP Health

Metrics to Monitor:

Alert Examples:

Web UI - PFCP Monitoring

OmniPGW provides two Web UI pages for monitoring PFCP/Sxb operations in

real-time.

PFCP peer association status

pfcp_peer_associated{peer="PGW-U Primary"} 1

Active PFCP sessions

seid_registry_count 150

PFCP message rates

rate(sxb_inbound_messages_total[5m])

PFCP errors

rate(sxb_inbound_errors_total[5m])

Heartbeat failures

pfcp_consecutive_heartbeat_failures{peer="PGW-U Primary"} 0

Alert on association down

- alert: PFCPAssociationDown

 expr: pfcp_peer_associated == 0

 for: 1m

 annotations:

 summary: "PFCP peer {{ $labels.peer }} is down"

Alert on high session establishment failures

- alert: PFCPSessionEstablishmentFailureHigh

 expr:

rate(sxb_inbound_errors_total{message_type="session_establishment_res

[5m]) > 0.1

 for: 5m

 annotations:

 summary: "High PFCP session establishment failure rate"

UPF/PFCP Peer Status Page

Access: http://<omnipgw-ip>:<web-port>/upf_status

Purpose: Monitor PFCP association status with all configured PGW-U peers

Features:

1. Peer Status Overview

Associated Count - Number of peers with active PFCP association

Not Associated Count - Number of peers down or not connected

Auto-refreshes every 2 seconds

2. Per-Peer Information For each configured PGW-U peer:

Peer Name - Friendly name from configuration

IP Address - Remote PGW-U IP

Association Status - Associated (green) or Not Associated (red)

Node ID - PFCP Node identifier

Recovery Timestamp - Last restart time of peer

Heartbeat Period - Configured heartbeat interval

Consecutive Missed Heartbeats - Current failure count

UP Function Features - Capabilities advertised by PGW-U

3. Expandable Details Click any peer to see:

Full peer configuration

UP function features bitmap

Association timestamps

Complete peer state

PFCP Sessions Page

Access: http://<omnipgw-ip>:<web-port>/pfcp_sessions

Purpose: View active PFCP sessions between OmniPGW and PGW-U

Features:

1. Active Session Count

Total number of active PFCP sessions

Updates in real-time

2. Session Information For each PFCP session:

Session Key - Internal registry key

Process ID - Session process identifier

IMSI - Associated subscriber (if available)

Status - Session state

3. Full Session State Expandable view showing:

Complete PFCP session context

PDRs, FARs, QERs, BARs (forwarding rules)

F-SEIDs (session endpoint identifiers)

PGW-U peer association

Operational Use Cases

Monitor PFCP Association Health:

Troubleshoot Session Establishment Failures:

1. Open UPF Status page

2. Verify all peers show "Associated"

3. Check missed heartbeat count = 0

4. If peer shows "Not Associated":

 - Check peer IP reachability

 - Verify peer is running

 - Check firewall (UDP 8805)

1. User session fails to establish

2. Check PGW Sessions page - session exists?

3. Check PFCP Sessions page - PFCP session created?

4. If no PFCP session:

 - Check UPF Status - is any peer associated?

 - Check logs for PFCP errors

5. If PFCP session exists:

 - Inspect PDRs/FARs to verify rules programmed

 - Issue is likely downstream (PGW-U or network)

Verify Peer Load Distribution:

Detect Peer Failures:

Quick glance at UPF Status page

Red "Not Associated" badge immediately visible

Missed heartbeat counter shows degradation before total failure

Set up monitoring alerts based on Web UI data

Advantages:

Real-time monitoring - No need to query metrics or SSH

Visual status - Color-coded associated/not associated

Peer health trends - Missed heartbeat count shows early warning

Session-level inspection - See exact PDRs/FARs/QERs programmed

No tools required - Just a web browser

Related Documentation

Configuration

Configuration Guide - UPF selection, health monitoring, PFCP

configuration

Session Management - PDN session lifecycle, bearer establishment

Charging and Monitoring

Diameter Gx Interface - PCC rules that drive PFCP QoS enforcement

Diameter Gy Interface - Online charging quota management via URRs

1. With multiple PGW-U peers configured

2. Check PFCP Sessions page

3. Verify sessions distributed across peers

4. Identify if one peer has disproportionate load

Data CDR Format - CDR generation from PFCP usage reports

Monitoring Guide - PFCP metrics, session tracking, UPF health alerts

Network Interfaces

S5/S8 Interface - Control plane bearer management

UE IP Allocation - UE address assignment via PFCP

Back to Operations Guide

QoS & Bearer

Management

Overview

The PGW-C implements a policy-driven bearer and QoS management system

that coordinates three key interfaces:

Gx (Diameter) - Receives policy decisions and QoS parameters from PCRF

S5/S8 (GTP-C) - Manages bearer contexts with SGW-C

Sxb (PFCP) - Programs QoS enforcement rules into PGW-U

Architecture Flow

Key Concepts

Session: Contains UE information, bearer map, PDR/FAR/QER/BAR maps,

and AMBR

Bearer Context: Links EBI (EPS Bearer ID) to specific PDRs, FARs, and

QERs

QER (QoS Enforcement Rule): Enforces MBR/GBR limits and gate status

in the user plane

Default Bearer: Always created with PDN session, provides basic

connectivity

Dedicated Bearer: Created dynamically based on PCRF policy, provides

specific QoS guarantees

Configuration

Important: Dynamic QoS Policy

All QoS parameters are dynamically received from the PCRF via Diameter Gx

interface and defined in the PCRF (See OmniHSS for more info).

Operators configure the PCRF connection in config/runtime.exs :

QoS policies, charging rules, and bandwidth limits are configured on

the PCRF, not in PGW-C configuration files.

config :pgw_c,

 diameter: %{

 listen_ip: "0.0.0.0",

 host: "omni-pgw_c.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "192.168.1.100",

 initiate_connection: true

 }

]

 }

Bearer Lifecycle

Default Bearer Creation

The default bearer is created during PDN session establishment:

Create Session Request

UE IP assigned

CCR-Initial sent to PCRF

CCA-Initial received

with QoS

PFCP Session

Establishment

Delete Session Request

AllocateIP

RequestPolicy

CreateBearer

ProgramUPF

Active

Workflow:

1. SGW-C sends Create Session Request

2. PGW-C allocates UE IP address from configured pool

3. PGW-C sends CCR-Initial to PCRF with IMSI, APN, IP address

4. PCRF responds with CCA-Initial containing QoS parameters:

Default-EPS-Bearer-QoS (QCI, ARP)

QoS-Information (AMBR adjustments)

5. PGW-C creates bearer context with:

Fixed IDs: Downlink PDR=1, Uplink PDR=2, Downlink FAR=1, Uplink

FAR=2, QER=1, BAR=1

QER programmed with MBR from bearer QoS

6. PGW-C sends PFCP Session Establishment Request to PGW-U

7. PGW-C sends Create Session Response to SGW-C

Default bearer characteristics:

Always exists for the lifetime of the PDN session

Typically uses QCI 5 or QCI 9 (non-GBR)

EBI tracked in session state

Cannot be deleted independently (deleting it terminates the session)

Dedicated Bearer Creation

Dedicated bearers are created dynamically based on PCRF policy:

Trigger: Re-Auth Request (RAR) from PCRF with Charging-Rule-Install

Workflow:

1. PCRF sends RAR with Charging-Rule-Definition containing:

Charging-Rule-Name (policy rule identifier)

Flow-Information (packet filters)

QoS-Information (QCI, MBR, GBR, ARP)

Precedence (rule matching priority)

2. PGW-C translates dynamic rule to PFCP entities:

Each Flow-Information entry → new PDR with SDF Filter

QoS-Information → new QER with MBR/GBR enforcement

Flow-Description → IP 5-tuple matching rules

3. PGW-C sends PFCP Session Modification Request to add PDRs/FARs/QERs

4. PGW-C initiates Create Bearer Request to SGW-C

5. SGW-C responds with Create Bearer Response confirming establishment

Example Charging-Rule-Definition:

Bearer Modification

Bearer QoS can be modified via:

Gx RAR with updated Charging-Rule-Definition

PFCP Session Modification to update existing QERs (change bitrates),

FARs (change forwarding), or PDRs (change packet filters)

Bearer Deletion

Triggers:

Delete Session Request (SGW-initiated) - Deletes default bearer and

terminates session

Re-Auth Request with Charging-Rule-Remove (PCRF-initiated) -

Deletes dedicated bearer

Charging-Rule-Name: "video_streaming"

Flow-Information:

 - Flow-Description: "permit in ip from any to 10.0.0.1 5000-

6000"

 Flow-Direction: 1 (downlink)

QoS-Information:

 QoS-Class-Identifier: 7

 Max-Requested-Bandwidth-UL: 5000000 (5 Mbps)

 Max-Requested-Bandwidth-DL: 10000000 (10 Mbps)

 Guaranteed-Bitrate-UL: 1000000 (1 Mbps)

 Guaranteed-Bitrate-DL: 2000000 (2 Mbps)

Precedence: 100

Flow-Status: 2 (ENABLED)

Workflow:

1. Remove bearer from session state

2. Remove associated PDRs/FARs/QERs

3. Send Delete Bearer Request to SGW-C (if PCRF-initiated)

4. Send PFCP Session Modification (remove rules) or Session Deletion (if

default bearer)

QoS Parameters

QCI (QoS Class Identifier)

Source: PCRF via Gx QoS-Class-Identifier AVP

Standard Values:

QCI 1: Conversational Voice (GBR, 100ms delay budget)

QCI 2: Conversational Video (GBR, 150ms delay budget)

QCI 3: Real Time Gaming (GBR, 50ms delay budget)

QCI 4: Non-Conversational Video (GBR, 300ms delay budget)

QCI 5: IMS Signaling (non-GBR, 100ms delay budget) - Default for

default bearer

QCI 6: Video (TCP-based), Live Streaming (non-GBR, 300ms delay budget)

QCI 7: Voice, Interactive Gaming (non-GBR, 100ms delay budget)

QCI 8: Video (TCP-based), e.g., YouTube (non-GBR, 300ms delay budget)

QCI 9: Default Internet (non-GBR, 300ms delay budget)

Operator Note:

QCI is received from PCRF and signaled to SGW-C in Bearer-Level-QoS IE

PGW-C does not directly enforce QCI behavior - actual enforcement is via

MBR/GBR in QERs

Lower QCI values typically indicate higher priority

QCI determines packet forwarding treatment and scheduling priority

ARP (Allocation and Retention Priority)

Source: PCRF via Allocation-Retention-Priority grouped AVP

Components:

Priority-Level: 1 (highest priority) to 15 (lowest priority)

Pre-emption-Capability: Can this bearer pre-empt lower-priority bearers?

0 = ENABLED (can pre-empt others)

1 = DISABLED (cannot pre-empt)

Pre-emption-Vulnerability: Can this bearer be pre-empted by higher-

priority bearers?

0 = ENABLED (can be pre-empted)

1 = DISABLED (cannot be pre-empted)

Default Values:

Priority-Level: 1

Pre-emption-Capability: ENABLED (0)

Pre-emption-Vulnerability: DISABLED (1)

Operator Note:

ARP is signaled to SGW-C and ultimately to eNodeB

Not enforced by PGW-C - enforcement is typically at eNodeB during radio

admission control

Used during network congestion to determine which bearers to admit or

drop

Critical for emergency services (priority-level 1) and high-value services

MBR (Maximum Bit Rate)

Source: PCRF via Max-Requested-Bandwidth-UL and Max-Requested-

Bandwidth-DL AVPs

Format: Bytes per second (converted to kbps internally: bytes / 1000)

Applied to: All bearers (default and dedicated)

How it works:

PGW-C creates QER with mbr: %Bitrate{ul: kbps_ul, dl: kbps_dl}

QER sent to PGW-U via PFCP

PGW-U enforces rate limiting (traffic policing)

Excess traffic above MBR is dropped

Example:

GBR (Guaranteed Bit Rate)

Source: PCRF via Guaranteed-Bitrate-UL and Guaranteed-Bitrate-DL AVPs

Format: Bytes per second (converted to kbps)

Applied to: Dedicated bearers only (GBR bearers)

How it works:

If GBR is specified in Charging-Rule-Definition, bearer is GBR type

PGW-U enforces minimum bitrate guarantee via QER

Requires proper scheduling at eNodeB to reserve radio resources

GBR bearers have admission control - can be rejected if resources

unavailable

Example:

Max-Requested-Bandwidth-UL: 5000000 (5 Mbps)

Max-Requested-Bandwidth-DL: 10000000 (10 Mbps)

→ QER created with mbr: {ul: 5000, dl: 10000} kbps

→ PGW-U drops uplink packets exceeding 5 Mbps

→ PGW-U drops downlink packets exceeding 10 Mbps

Operator Note:

GBR requires sufficient network capacity planning

Oversubscribing GBR resources leads to admission failures

Monitor GBR usage via session counts and bearer metrics

AMBR (Aggregate Maximum Bit Rate)

Source: PCRF via APN-Aggregate-Max-Bitrate-UL and APN-Aggregate-Max-

Bitrate-DL AVPs

Scope: Applies to all non-GBR bearers for the APN (not per-bearer)

How it works:

AMBR is an aggregate limit across all non-GBR bearers in a session

Sent to SGW-C in Create Session Response

Enforcement typically at eNodeB/SGW

PGW-C stores AMBR in session state and signals it to SGW-C

Example:

Operator Note:

Guaranteed-Bitrate-UL: 1000000 (1 Mbps)

Guaranteed-Bitrate-DL: 2000000 (2 Mbps)

→ QER created with gbr: {ul: 1000, dl: 2000} kbps

→ Network guarantees at least 1 Mbps uplink and 2 Mbps downlink

→ Used for VoIP, video calls, live streaming

APN-Aggregate-Max-Bitrate-UL: 50000000 (50 Mbps)

APN-Aggregate-Max-Bitrate-DL: 100000000 (100 Mbps)

→ All non-GBR bearers combined cannot exceed 50 Mbps uplink / 100

Mbps downlink

→ Individual bearers limited by their own MBR

→ AMBR provides additional overall cap per UE/APN

Set via subscriber profile in HSS/PCRF

Used to enforce subscription tiers (e.g., 10 Mbps plan vs 100 Mbps plan)

Does not affect GBR bearers

Flow Status and Gating

Flow Status (Gx) to Gate Status (PFCP)

Mapping

The PCRF controls whether traffic is allowed via the Flow-Status AVP in

Charging-Rule-Definition:

Flow-Status (Gx)
Gate-Status (PFCP

QER)
Meaning

0 = ENABLED-UPLINK ul: OPEN, dl: CLOSED
Only uplink traffic

allowed

1 = ENABLED-

DOWNLINK
ul: CLOSED, dl: OPEN

Only downlink traffic

allowed

2 = ENABLED ul: OPEN, dl: OPEN Both directions allowed

3 = DISABLED
ul: CLOSED, dl:

CLOSED
No traffic allowed

4 = REMOVED
ul: CLOSED, dl:

CLOSED
Bearer being deleted

Use cases:

DISABLED: Used for parked services or credit exhaustion (packets dropped

but bearer retained)

ENABLED-UPLINK: Unusual, but could be used for upload-only services

ENABLED-DOWNLINK: Download-only services or credit-limited scenarios

ENABLED: Normal operation

Monitoring & Observability

Prometheus Metrics

Session-level metrics:

Gx interface metrics:

PFCP interface metrics:

Bearer creation metrics:

session_registry_count # Active bearers (IMSI, EBI pairs)

address_registry_count # Allocated UE IPs

charging_id_registry_count # Active charging sessions

gx_inbound_messages_total{message_type="gx_RAR"} # Policy

updates from PCRF

gx_outbound_messages_total{message_type="gx_CCR"} # Policy

requests to PCRF

gx_outbound_transaction_duration_bucket # Latency to

PCRF

sxb_outbound_messages_total{message_type="pfcp_session_establishment_

sxb_outbound_messages_total{message_type="pfcp_session_modification_r

sxb_outbound_transaction_duration_bucket

s5s8_inbound_messages_total{message_type="create_session_request"}

Default bearers

s5s8_outbound_messages_total{message_type="create_bearer_request"}

Dedicated bearers

Web UI Monitoring

PGW Sessions Page (/pgw_sessions):

Search by IMSI, IP address, MSISDN, or APN

View active bearers per session

Inspect bearer QoS parameters (QCI, MBR, GBR, AMBR)

Real-time auto-refresh (2 seconds)

Diameter Page (/diameter):

PCRF peer connectivity status

Gx session count

Peer state (connected/disconnected)

Logs Page (/logs):

Real-time log streaming

Filter by "Credit Control" for CCR/CCA exchanges

Filter by "Re-Auth" for RAR events (policy changes)

Filter by "PFCP" for user plane programming events

Key Log Messages

[debug] Sending Credit Control Request: ... # CCR to PCRF

[debug] Handling Credit Control Answer: ... # CCA from

PCRF (contains QoS)

[debug] Handling Re-Auth Request # RAR from

PCRF (policy change)

[debug] Sending Session Establishment Request # PFCP to

PGW-U (program QERs)

[debug] Sending Session Modification Request # PFCP to

PGW-U (update QERs)

Operational Tasks

Verify QoS Applied to Session

1. Access Web UI → PGW Sessions page

2. Search for IMSI (e.g., 999000123456789)

3. Expand session details

4. Check qer_map section:

5. Verify values match expected PCRF policy

Troubleshoot Missing QoS

Symptom: Session created but QoS not applied

Steps:

1. Check PCRF connectivity:

Access Web UI → Diameter page

Verify PCRF peer status = "connected"

If disconnected, check network connectivity and Diameter configuration

2. Verify CCR/CCA exchange:

Access Web UI → Logs page

Search for "Credit Control Answer"

Verify QoS-Information AVP present in CCA log

Check for errors in CCA (Result-Code should be 2001 = SUCCESS)

3. Verify PFCP programming:

Search logs for "PFCP Session Establishment Request"

qer_id: 1

gate_status: {ul: OPEN, dl: OPEN}

mbr: {ul: 50000, dl: 100000} # kbps

gbr: {ul: 10000, dl: 20000} # kbps (or nil for non-GBR)

Verify QER included in message

Check PGW-U logs for PFCP processing errors

4. Check PCRF policy configuration:

Verify subscriber profile in PCRF

Confirm APN-specific policy rules exist

Check PCRF logs for policy evaluation errors

Monitor Bearer Creation Rate

Prometheus queries:

Capacity Planning

Key metrics to monitor:

Capacity limits:

Default bearer creation rate (sessions/second)

rate(s5s8_inbound_messages_total{message_type="create_session_request

[5m])

Dedicated bearer creation rate

rate(s5s8_outbound_messages_total{message_type="create_bearer_request

[5m])

Policy update rate from PCRF

rate(gx_inbound_messages_total{message_type="gx_RAR"}[5m])

UE IP address utilization (percentage)

(address_registry_count / <configured_pool_size>) * 100

Active bearer count

session_registry_count

PCRF query latency (P95)

histogram_quantile(0.95, gx_outbound_transaction_duration_bucket)

Address pool size: configured in config/runtime.exs under ue.subnet_map

TEID space: 32-bit (4 billion unique identifiers, auto-managed)

Concurrent sessions: typically limited by address pool size

Planning guidelines:

Monitor IP address utilization - scale pool before exceeding 80%

Monitor PCRF latency - high latency impacts session setup time

Monitor dedicated bearer creation rate - indicates policy complexity

Related Documentation

Session Management - PDN session lifecycle

Diameter Gx Interface - PCRF policy protocol details

PFCP Interface - User plane programming

Configuration Guide - System configuration

Monitoring Guide - Metrics and observability

S5/S8 Interface

Documentation

GTP-C Communication with SGW-C

OmniPGW by Omnitouch Network Services

Overview

The S5/S8 interface connects OmniPGW to the SGW-C (Serving Gateway

Control plane) using the GTP-C v2 (GPRS Tunnelling Protocol - Control plane)

protocol. This interface handles session management signaling between the

gateways.

Protocol Details

GTP-C Version 2

Protocol: GTP-C v2 (3GPP TS 29.274)

Transport: UDP

Port: 2123 (standard)

Interface Type: Control Plane

TEID (Tunnel Endpoint Identifier)

Each session has a unique TEID for routing messages:

Local TEID - Allocated by OmniPGW for incoming messages

Remote TEID - Allocated by SGW-C for outgoing messages

Message Flow:

 SGW-C → OmniPGW: Destination TEID = OmniPGW's Local TEID

 OmniPGW → SGW-C: Destination TEID = SGW-C's Remote TEID

Configuration

Basic Configuration

Timeout Configuration

The S5/S8 interface uses configurable timeouts for GTP-C request/response

transactions.

Parameters:

request_timeout_ms - Timeout in milliseconds per retry attempt (default:

500ms)

request_attempts - Number of retry attempts before giving up (default: 3)

config/runtime.exs

config :pgw_c,

 s5s8: %{

 # Local IPv4 address for S5/S8 interface

 local_ipv4_address: "10.0.0.20",

 # Optional: Local IPv6 address

 local_ipv6_address: nil,

 # Optional: Override default port

 local_port: 2123,

 # GTP-C request timeout in milliseconds (default: 500ms)

 # Timeout per attempt when waiting for GTP-C responses (Create

Bearer, Delete Bearer, etc.)

 request_timeout_ms: 500,

 # Number of retry attempts for GTP-C requests (default: 3)

 # Total maximum wait time = request_timeout_ms *

request_attempts

 # Example: 500ms * 3 attempts = 1500ms (1.5 seconds) total

 request_attempts: 3

 }

Total Wait Time: request_timeout_ms × request_attempts

Default behavior: 500ms × 3 attempts = 1.5 seconds total maximum

wait

Tuning Guidelines:

Network Latency
Recommended

request_timeout_ms
Total Wait Time

Low latency

(<50ms)
200-300ms

600-900ms (3

attempts)

Normal (50-150ms) 500ms (default) 1.5s (3 attempts)

High latency

(>150ms)
1000-2000ms 3-6s (3 attempts)

Unstable/satellite 2000-3000ms 6-9s (3 attempts)

Example - High Latency Network:

When timeout occurs:

OmniPGW logs error: "Create Bearer Request timed out"

Returns error to PCRF (Diameter Result-Code: 5012 UNABLE_TO_COMPLY)

Bearer remains in early storage for cleanup via Charging-Rule-Remove

Network Requirements

Firewall Rules:

s5s8: %{

 local_ipv4_address: "10.0.0.20",

 request_timeout_ms: 1500, # 1.5 seconds per attempt

 request_attempts: 3 # Total: 4.5 seconds max

}

Routing:

Message Types

The S5/S8 interface handles GTP-C signaling for PDN session management. For

detailed session lifecycle and state management, see Session Management

Guide.

Session Management

Create Session Request

Direction: SGW-C → OmniPGW

Purpose: Establish a new PDN connection

Key IEs (Information Elements):

Allow GTP-C from SGW-C network

iptables -A INPUT -p udp --dport 2123 -s <sgw_network>/24 -j

ACCEPT

Allow outbound GTP-C to SGW-C

iptables -A OUTPUT -p udp --dport 2123 -d <sgw_network>/24 -j

ACCEPT

Ensure route to SGW-C network

ip route add <sgw_network>/24 via <gateway_ip> dev eth0

IE Name Type Description

IMSI Identity International Mobile Subscriber Identity

MSISDN Identity Mobile phone number

APN String Access Point Name (e.g., "internet")

RAT Type Enum Radio Access Technology (EUTRAN)

Bearer Context Grouped Default bearer information

UE Time Zone Timestamp UE's timezone

ULI Grouped User Location Information (TAI, ECGI)

Serving Network PLMN MCC/MNC of serving network

Example:

Create Session Response

Direction: OmniPGW → SGW-C

Purpose: Acknowledge session creation

Create Session Request

├── IMSI: 310260123456789

├── MSISDN: 14155551234

├── APN: internet

├── RAT Type: EUTRAN (6)

├── Bearer Context

│ ├── EBI: 5

│ ├── Bearer QoS (QCI 9, ARP, bitrates)

│ └── S5/S8 F-TEID (SGW-U tunnel endpoint)

└── ULI

 ├── TAI: MCC 310, MNC 260, TAC 12345

 └── ECGI: MCC 310, MNC 260, ECI 67890

Key IEs:

IE Name Type Description

Cause Result Success or error code

Bearer Context Grouped Bearer information

PDN Address

Allocation
IP

Allocated UE IP address (see UE IP

Allocation)

APN Restriction Enum APN usage restrictions

PCO Options
Protocol Configuration Options (see PCO

Configuration)

Success Response:

Delete Session Request

Direction: SGW-C → OmniPGW

Purpose: Terminate PDN connection

Key IEs:

Create Session Response

├── Cause: Request accepted (16)

├── PDN Address Allocation

│ └── IPv4: 100.64.1.42

├── Bearer Context

│ ├── EBI: 5

│ ├── Cause: Request accepted

│ └── S5/S8 F-TEID (PGW-U tunnel endpoint from PFCP)

├── APN Restriction: Public-1 (1)

└── PCO

 ├── DNS Server: 8.8.8.8

 ├── DNS Server: 8.8.4.4

 └── Link MTU: 1400

IE Name Description

EBI EPS Bearer ID to delete

Linked EBI Related bearer (optional)

Delete Session Response

Direction: OmniPGW → SGW-C

Purpose: Acknowledge session deletion

Key IEs:

IE Name Description

Cause Success or error code

Bearer Management

Create Bearer Request

Direction: OmniPGW → SGW-C

Purpose: Create dedicated bearer (initiated by PCRF policy)

Triggered by:

PCRF sends new PCC rule requiring dedicated bearer

OmniPGW requests SGW-C to establish bearer

Delete Bearer Request

Direction: OmniPGW → SGW-C or SGW-C → OmniPGW

Purpose: Delete dedicated bearer

Scenarios:

PGW-initiated: PCRF policy change removes dedicated bearer

SGW-initiated: Radio resource release

Message Flows

Session Establishment

OmniPGWSGW-CMMEeNodeBUE

OmniPGWSGW-CMMEeNodeBUE

Allocate UE IP

Contact PCRF

Setup PGW-U

Session Active

Attach Request

Attach Request

Create Session Request

Create Session Request (S5/S8)

Create Session Response

Create Session Response

Attach Accept

Attach Accept

Session Termination

Cause Codes

Success

Code Name Description

16 Request accepted Successful operation

Errors (Permanent Failures)

Code Name When Used

65 User Unknown PCRF rejected (IMSI not found)

66 No resources available IP pool exhausted

93 Service not supported Invalid APN

94 Semantic error in TFT Invalid traffic flow template

Errors (Transient Failures)

Code Name When Used

72 Remote peer not responding PCRF/PGW-U timeout

73 Collision with network initiated request Simultaneous operations

Monitoring

S5/S8 Metrics

Useful Queries

Session Creation Rate:

Error Rate:

Latency (p95):

Message counters

s5s8_inbound_messages_total{message_type="create_session_request"}

s5s8_inbound_messages_total{message_type="delete_session_request"}

Error counters

s5s8_inbound_errors_total

Message handling latency

s5s8_inbound_handling_duration_bucket

Active TEIDs

teid_registry_count

rate(s5s8_inbound_messages_total{message_type="create_session_request

[5m])

rate(s5s8_inbound_errors_total[5m])

histogram_quantile(0.95,

rate(s5s8_inbound_handling_duration_bucket{request_message_type="crea

[5m])

)

Troubleshooting

Issue: No Response from OmniPGW

Symptoms:

SGW-C sends Create Session Request

No response received

Timeout at SGW-C

Causes:

1. Network connectivity issue

2. OmniPGW not listening on configured IP

3. Firewall blocking UDP 2123

4. Wrong TEID in request

Debug:

Issue: Session Creation Fails

Symptoms:

Create Session Response with error cause

Session not established

Check OmniPGW is listening

netstat -ulnp | grep 2123

Check for incoming packets

tcpdump -i any -n port 2123

Verify configuration

grep "local_ipv4_address" config/runtime.exs

Check firewall

iptables -L -n | grep 2123

Common Causes:

Issue: TEID Collision

Symptoms:

Message routed to wrong session

Unexpected behavior

Cause:

TEID reused before cleanup

Bug in TEID allocation

Resolution:

Ensure unique TEID allocation

Check TEID registry for leaks

Cause 65 (User Unknown):

 → PCRF rejected subscriber

 → Check IMSI in HSS/SPR

Cause 66 (No resources):

 → IP pool exhausted

 → Check: curl http://pgw:9090/metrics | grep

address_registry_count

 → Expand IP pool

Cause 72 (Remote peer not responding):

 → PCRF timeout or PGW-U down

 → Check Gx connectivity

 → Check PFCP association

Best Practices

Network Design

1. Dedicated Network Interface

Use separate VLAN for S5/S8

Isolate from management traffic

2. MTU Optimization

Ensure MTU supports GTP headers

Minimum MTU: 1500 bytes (1464 payload + 36 GTP)

3. Redundancy

Multiple OmniPGW instances

DNS-based load balancing from SGW-C

Performance

1. UDP Buffer Sizes

Increase socket buffers for high load

Typical: 4-8 MB per socket

2. Connection Limits

Plan for expected session count

Monitor TEID registry count

Security

1. IP Filtering

Only allow GTP-C from known SGW-C IPs

Use iptables or network ACLs

2. Message Validation

OmniPGW validates all incoming messages

Rejects malformed GTP-C packets

Related Documentation

Core Functions

Configuration Guide - S5/S8 interface configuration, local IP setup

Session Management - PDN session lifecycle, bearer establishment

UE IP Allocation - IP address delivery via Create Session Response

PCO Configuration - PCO parameters in GTP-C messages

Related Interfaces

PFCP Interface - User plane coordination with S5/S8 control plane

Diameter Gx Interface - Policy integration with bearer setup

Diameter Gy Interface - Charging integration with bearer management

Operations

Monitoring Guide - S5/S8 GTP-C metrics, message tracking

Data CDR Format - CDR generation from GTP-C sessions

Back to Operations Guide

OmniPGW S5/S8 Interface - by Omnitouch Network Services

Session Management

Guide

PDN Connection Lifecycle and Operations

OmniPGW by Omnitouch Network Services

Overview

A PDN (Packet Data Network) Session represents a UE's data connection

through OmniPGW. Each session coordinates multiple interfaces and resources

to enable data connectivity.

Session Components

Session Identifiers

Each session has multiple identifiers for different interfaces:

Identifier Interface Purpose

TEID S5/S8 (GTP-C)
Tunnel Endpoint ID for SGW-C

communication

SEID Sxb (PFCP)
Session Endpoint ID for PGW-U

communication

Session-ID
Gx

(Diameter)
Diameter session for PCRF communication

Charging-

ID
Accounting Unique ID for billing/charging

Session Data

PDN Session

UE Information Network Context QoS Parameters Tunnel Endpoints

IMSI MSISDN UE IP Address APN Serving Network UE Location APN-AMBR Bearer Contexts S5/S8 F-TEID Sxb F-SEID

Session Creation

Call Flow

Steps

1. Receive Create Session Request (S5/S8)

Session creation is initiated via GTP-C signaling on the S5/S8 interface. See

S5/S8 Interface for complete GTP-C protocol details and message formats.

Input:

IMSI, MSISDN, IMEI

APN (e.g., "internet")

RAT Type (EUTRAN)

UE Location (TAI, ECGI)

Bearer Context (QoS, F-TEID)

2. Resource Allocation

3. Policy Request (Gx)

Request policy from PCRF:

Send CCR-Initial

- Allocate UE IP from APN pool

- Generate Charging ID

- Generate Gx Session-ID

- Allocate S5/S8 TEID

- Select PGW-U peer

Receive CCA-Initial with QoS and PCC rules

4. User Plane Setup (PFCP)

Program PGW-U with forwarding rules:

Send Session Establishment Request

Include PDRs, FARs, QERs, BAR

Receive F-TEID for S5/S8 tunnel

5. Response to SGW-C

Send Create Session Response:

UE IP Address

S5/S8 F-TEID (from PGW-U)

PCO (DNS, P-CSCF, MTU)

Bearer Context

Session Modification

Triggers

Sessions can be modified due to:

QoS Changes - PCRF updates bitrates

Bearer Operations - Add/remove dedicated bearers

Handover - SGW change

Policy Updates - New PCC rules from PCRF

QoS Modification Flow

PGW-UOmniPGWPCRF

PGW-UOmniPGWPCRF

Update internal state

Update QERs with

new bitrates

New QoS Active

RAR (Re-Auth Request)

RAA (Re-Auth Answer)

CCR-Update

CCA-Update (New QoS)

Session Modification Request

Session Modification Response

Session Deletion

Call Flow

PGW-UPCRFOmniPGWSGW-C

PGW-UPCRFOmniPGWSGW-C

UE Detach

Cleanup:

- Release UE IP

- Deregister TEIDs

- Release Charging ID

- Generate final CDR

Delete Session Request

Session Deletion Request (PFCP)

Session Deletion Response

CCR-Termination (Gx)

CCA-Termination

Delete Session Response

Cleanup Process

Resources Released:

1. UE IP address → back to pool

2. TEID → removed from registry

3. SEID → removed from registry

4. Session-ID → removed from registry

5. Charging-ID → released

6. Session process terminated

Billing Records Generated:

Final CDR (Charging Data Record) written for offline billing - See Data CDR

Format

Session State

State Machine

Session Tracking

Registry Lookups:

Monitoring Sessions

Active Session Count

By TEID (S5/S8):

 TEID 0x12345678 → Session PID

By SEID (Sxb):

 SEID 0xABCDEF → Session PID

By Session-ID (Gx):

 "pgw.example.com;123;456" → Session PID

By UE IP:

 100.64.1.42 → Session PID

By IMSI + EBI:

 "310260123456789" + EBI 5 → Session PID

Total active sessions

teid_registry_count

PFCP sessions

seid_registry_count

Gx sessions

session_id_registry_count

Session Metrics

Common Issues

Session Creation Fails

Causes:

1. IP Pool Exhausted - No IPs available

2. PCRF Unreachable - Gx timeout

3. PGW-U Down - No PFCP peer available

4. PCRF Rejection - User unknown, not authorized

Debug:

Session creation rate

rate(s5s8_inbound_messages_total{message_type="create_session_request

Session deletion rate

rate(s5s8_inbound_messages_total{message_type="delete_session_request

Session creation latency (p95)

histogram_quantile(0.95,

rate(s5s8_inbound_handling_duration_bucket{request_message_type="crea

[5m])

)

Check IP pool

curl http://pgw:9090/metrics | grep address_registry_count

Check PCRF connectivity

Check for Gx errors in logs

Check PGW-U association

Verify PFCP peer status

Session Stuck/Stale

Symptoms:

Session not deleted properly

Resources not released

Registries show higher count than expected

Causes:

1. Delete Session Request not received

2. Session process crash without cleanup

3. Registry leak

Resolution:

UE Cannot Establish Session

Symptoms:

UE attach fails

Create Session Response with error cause

Common Causes & Responses:

Restart OmniPGW (releases all sessions)

Implement session timeout mechanism

Cause Value Meaning Action

User Unknown
PCRF rejected (IMSI not in

database)

Provision

subscriber

No Resources Available IP pool exhausted Expand IP pool

Remote Peer Not

Responding
PCRF/PGW-U timeout

Check

connectivity

Service Not Supported Invalid APN
Configure APN

pool

Best Practices

Session Limits

Configure appropriate capacity:

Session Cleanup

Ensure proper cleanup:

1. Always respond to Delete Session Requests

2. Implement session timeout for stale sessions

3. Monitor registry counts for leaks

Expected concurrent users: 10,000

Session overhead per user: ~10KB RAM

Total RAM for sessions: ~100MB

Erlang VM settings:

 - Max processes: 262,144 (default)

 - Process heap size: Adjust based on load

High Availability

Session Redundancy:

Use stateless design (sessions tied to instance)

Implement session database for HA (future)

DNS/load balancer for failover

Session Data Elements

What Information Does a Session Store?

Each active PDN session maintains the following information:

UE Identification:

IMSI: "310260123456789" (subscriber identity)

MSISDN: "14155551234" (phone number)

MEI/IMEI: Device identifier

PDN Connection Details:

APN: "internet" (network name)

UE IP Address: 100.64.1.42 (allocated IP)

PDN Type: IPv4, IPv6, or IPv4v6

Session Identifiers:

Charging ID: Unique billing identifier

Default Bearer EBI: EPS Bearer Identifier (typically 5)

QoS Parameters:

APN-AMBR: Aggregate Maximum Bit Rate

Uplink: 100 Mbps

Downlink: 50 Mbps

Forwarding Rules:

PDRs (Packet Detection Rules): Match packets

FARs (Forwarding Action Rules): Forward/drop actions

QERs (QoS Enforcement Rules): Rate limiting

BAR (Buffering Action Rule): Downlink buffering

Interface Context:

S5/S8 State: Local/remote TEIDs, SGW-C address

Sxb State: Local/remote SEIDs, PGW-U address

Gx State: Diameter Session-ID, request counter

Web UI - Live Session Monitoring

OmniPGW includes a real-time Web UI for monitoring active sessions without

needing to query metrics or logs.

UE Search & Deep Dive

Access: http://<omnipgw-ip>:<web-port>/ue_search

Purpose: Search for specific UE sessions and view detailed information

Features:

1. Search Functionality Search sessions by:

IMSI (e.g., "310170123456789")

MSISDN (phone number)

IP Address (e.g., "100.64.1.42")

2. Search Options

Dropdown selector to choose search type

Real-time search with instant results

Clear interface with search hints

3. Deep Dive Results Once found, displays comprehensive session

information:

a) Active Sessions

All active sessions for this subscriber

IMSI, MSISDN, UE IP Address

APN, RAT Type

PGW TEID, SGW TEID

b) Current Location Real-time location data from the session:

TAC (Tracking Area Code) - Tracking area where UE is located

Cell ID (ECI) - E-UTRAN Cell Identifier

ECGI - E-UTRAN Cell Global Identifier (PLMN + ECI)

MCC/MNC - Mobile Country Code / Mobile Network Code

Cell Tower Database Integration: If the OpenCellID database is configured,

the interface displays:

Cell tower geographic coordinates (latitude/longitude)

Embedded Google Maps showing exact tower location

Visual map of UE's last known cell site

See Cell Tower Database Setup below for configuration instructions.

c) Bearer Information Detailed bearer listing with QoS parameters:

Default Bearer:

EBI (EPS Bearer Identifier)

QCI (QoS Class Identifier)

Charging Rule Name

APN-AMBR (uplink/downlink)

Dedicated Bearers (if active):

EBI, QCI, Charging Rule Name

MBR UL/DL (Maximum Bit Rate)

GBR UL/DL (Guaranteed Bit Rate)

d) Charging Information (Gy Interface)

Gy Session ID

Granted Quota, Used Quota

Charging Characteristics

e) Policy Information (Gx Interface)

Gx Session ID

PCRF Origin/Destination Host

CC Request Number

Installed Charging Rules (PCC rules from bearers)

f) Recent Events

Event history for this subscriber

Session create/update/delete events

Use Cases:

Troubleshoot specific subscriber issues

Verify session establishment

Check assigned IP address

Inspect session parameters

PGW Sessions Page

Access: http://<omnipgw-ip>:<web-port>/pgw_sessions

Purpose: Real-time view of all active PDN sessions

Features:

1. Session Overview

Live session count (updates every 2 seconds)

Grid view of all active sessions

No refresh needed - auto-updates

2. Quick Session Information Visible for each session:

IMSI - Subscriber identity

UE IP - Allocated IP address

SGW TEID - S5/S8 tunnel ID from SGW

PGW TEID - S5/S8 tunnel ID from OmniPGW

APN - Access Point Name

3. Search Functionality Search sessions by:

IMSI (e.g., "310260")

UE IP address (e.g., "100.64")

MSISDN / phone number

APN name

4. Expandable Details Click any session row to see complete details:

Full subscriber information (IMSI, MSISDN, IMEI)

Network context (RAT type, serving network MCC/MNC)

QoS parameters (AMBR uplink/downlink in human-readable format)

Tunnel identifiers (both TEIDs in hex format)

Process ID for debugging

Complete session state (raw data structure)

Network Topology View

Access: http://<omnipgw-ip>:<web-port>/topology

Purpose: Visual representation of network connections and active sessions

Features:

1. Topology Visualization

Visual graph of network elements

Shows PGW-C (Control Plane) node

Connected HSS (Home Subscriber Server) peers

Active session count display

2. Interactive Elements

Zoom controls (+/-)

Center view button

Click nodes for details

Shows connection status (green = active, red = down)

3. Session Count

Real-time active session counter

Updates automatically

Visual indication of load

Use Cases:

Understand network architecture at a glance

Verify peer connections

Monitor topology changes

Quick network health check

Session History & Audit Log

Access: http://<omnipgw-ip>:<web-port>/session_history

Purpose: Track historical session events and audit trail

Features:

1. Event Filtering

Filter by event type (All Events, Session Created, Session Deleted, etc.)

Date range selection (From Date / To Date)

Search by IMSI, MSISDN, IP address, or TEID

2. Export Functionality

Export to CSV for analysis

Includes all filtered results

Useful for compliance and reporting

3. Event Types Tracked

Session creation events

Session deletion events

Modification events

Error events

Use Cases:

Audit trail for compliance

Historical session analysis

Troubleshoot past issues

Generate usage reports

Track session patterns over time

Operational Use Cases

Session Verification:

Capacity Monitoring:

Glance at active session count

Compare against licensed capacity

Identify usage patterns by APN

Troubleshooting:

1. User reports connectivity issue

2. Search Web UI by IMSI or phone number

3. Verify session exists and UE has IP address

4. Check QoS values match subscriber plan

5. Verify tunnel endpoints are established

Find specific session by any identifier

Inspect full session state without SSH/IEx

Verify SGW and PGW TEIDs match between systems

Check AMBR values applied from PCRF

Advantages Over Metrics:

See individual session details (metrics show aggregates)

Search and filter capabilities

Human-readable formatting (bandwidth in Mbps, not bps)

Real-time state inspection

No command-line access required

Cell Tower Database Setup

OmniPGW can integrate with the OpenCellID database to display cell tower

locations in the UE Search interface. This feature enables geographic

visualization of where subscribers are located based on their serving cell site.

Overview

When configured, the UE Search interface will:

Display cell tower coordinates (latitude/longitude)

Show an embedded Google Maps view of the tower location

Provide visual confirmation of subscriber location

Help troubleshoot location-based routing issues

Setup

Access the Cell Towers page at http://<omnipgw-ip>:<web-port>/cell_towers

and click the "Redownload Database" button. This triggers an automatic

background download and import process.

Features:

Downloads fresh data from OpenCellID.org

Automatically extracts and imports into SQLite

Runs in the background (takes 10-15 minutes)

Shows progress notifications via web interface

Safe: only deletes old database after confirming new download succeeds

First-Time Setup: When you first access the Cell Towers page, it will show

setup instructions with the "Redownload Database" button. Simply click it to

initialize the database.

Database Information

Database Location:

SQLite DB: priv/cell_towers.db

CSV Download (temporary): priv/data/cell_towers.csv.gz

Indexes: Automatically created on MCC, MNC, LAC, CellID for fast lookups

Database Size:

~107 MB compressed download from OpenCellID.org

Import time: 10-15 minutes depending on hardware

Lookup Performance:

Cell tower lookups are indexed and very fast (<1ms)

No performance impact on session establishment

Lookups happen only when viewing UE Search results

Features Enabled

After setup, the following features become available:

UE Search Page:

Current Location section shows cell tower coordinates

Embedded Google Maps displaying tower location

Visual representation of subscriber's last known cell site

Cell Towers Web UI:

View database statistics (total records, database size, created date)

Redownload Database button - One-click update to latest OpenCellID

data

Browse the cell tower database

Search by MCC, MNC, LAC, Cell ID

View geographic distribution of towers

See setup instructions if database not yet configured

Operational Benefits:

Quickly identify subscriber geographic location

Verify roaming scenarios

Troubleshoot location-based issues

Support emergency services location requirements

Updating the Database

The OpenCellID database is community-maintained and updated regularly.

To refresh your local database:

1. Navigate to http://<omnipgw-ip>:<web-port>/cell_towers

2. Click the "Redownload Database" button

3. Confirm the action in the popup dialog

4. Wait 10-15 minutes for background download/import to complete

5. Refresh the page to see updated statistics

Recommended Update Frequency: Monthly or quarterly

Note: OpenCellID may rate-limit downloads. If you've downloaded recently,

wait a few hours before trying again.

Troubleshooting

Redownload Fails:

Check internet connectivity to OpenCellID.org

Verify firewall allows HTTPS downloads

Check disk space (~200 MB free space required)

Check application logs for specific error messages

OpenCellID may be rate-limiting - wait a few hours and try again

Check that the web UI shows the error message from the background task

Database Write Errors:

Check database write permissions in priv/ directory

Ensure sufficient disk space (~150 MB for database)

Verify the application has permission to create/delete files in priv/

Cell Tower Not Found:

Database may not have coverage for all cell sites

OpenCellID is community-contributed and may have gaps

Cell tower data may be outdated for newly deployed sites

Map Not Displaying:

Check browser JavaScript console for errors

Verify Google Maps embed permissions

Check if cell tower coordinates are valid

Related Documentation

Core Session Functions

PFCP Interface - User plane session establishment, PDRs, FARs, QERs,

URRs

UE IP Allocation - IP address assignment, APN pool management

PCO Configuration - DNS, P-CSCF, MTU parameters delivered to UE

Configuration Guide - UPF selection, session establishment flows

Policy and Charging

Diameter Gx Interface - PCRF policy control, PCC rules, QoS

management

Diameter Gy Interface - OCS online charging, quota tracking

Data CDR Format - Offline charging records generation

Network Interfaces

S5/S8 Interface - GTP-C protocol, SGW-C communication

QoS & Bearer Management - Bearer QoS enforcement

Operations

Monitoring Guide - Session metrics, active session tracking, alerts

P-CSCF Monitoring - IMS session monitoring

Back to Operations Guide

OmniPGW Session Management - by Omnitouch Network Services

OmniPGW

Troubleshooting Guide

Troubleshooting Procedures and Common Issues

by Omnitouch Network Services

Table of Contents

1. Overview

2. Troubleshooting Tools

3. Session Establishment Issues

4. PFCP / User Plane Issues

5. Diameter (Gx/Gy) Issues

6. IP Allocation Issues

7. Performance Issues

8. System Health Issues

9. Quick Reference

Overview

This guide provides step-by-step troubleshooting procedures for common

OmniPGW operational issues. Each issue includes:

Symptom: What you'll observe

Likely Causes: Common root causes

Diagnosis: How to confirm the cause

Resolution: Step-by-step fix

Prevention: How to avoid recurrence

Related Documentation

Monitoring Guide - Prometheus metrics, alerting, performance monitoring

Configuration Guide - System configuration reference

Troubleshooting Tools

Web UI

Access: http://<omnipgw_ip>:4000

Key Pages:

/pgw_sessions - Real-time session viewer (search by IMSI, IP, MSISDN,

APN)

/diameter - Diameter peer status (Gx PCRF, Gy OCS)

/pfcp_peers - PFCP peer status (PGW-U connectivity)

/logs - Real-time log streaming with filtering

Prometheus Metrics

Access: http://<omnipgw_ip>:9090/metrics

Key Metrics:

teid_registry_count - Active sessions

address_registry_count - Allocated UE IPs

sxb_inbound_errors_total - PFCP errors

gx_inbound_errors_total - Diameter Gx errors

gy_inbound_errors_total - Diameter Gy errors

See Monitoring Guide for complete metrics reference.

Log Analysis

Web UI: Access /logs page and use search filters

Common Log Filters:

"create_session_request" - Session establishment

"Credit Control" - Gx/Gy interactions

"PFCP Session" - User plane programming

"error" or "ERROR" - Error messages

"timeout" - Timeout issues

Session Establishment Issues

Issue: Create Session Request Rejected with

"No Resources Available"

Symptom:

SGW-C receives Create Session Response with cause "No resources

available" (73)

All new session attempts fail

Existing sessions continue working

Logs: [PGW-C] Create Session Request blocked - invalid license

Wireshark capture showing Create Session Response with "No resources

available" cause

Likely Cause:

Invalid or expired OmniPGW license

License server unreachable

Diagnosis:

1. Check license metric:

Value of 0 indicates invalid license

2. Check logs for license warnings:

Search for "license" or "License"

Look for "Unable to contact license server" messages

3. Verify license server connectivity:

Check configured URL in config/runtime.exs under :license_client

Default: https://localhost:10443/api

license_status

Resolution:

1. Verify license server is reachable:

2. Check license configuration in config/runtime.exs :

3. Verify product is licensed:

Product name: omnipgwc

Contact Omnitouch to verify license status

4. Restart OmniPGW after configuration changes

Prevention:

Monitor license_status metric with critical alerts

Ensure license server high availability

Set up license expiry alerts before expiration

Issue: Create Session Request Rejected (Other

Causes)

Symptom:

SGW-C receives Create Session Response with error cause

Users cannot establish PDN connections

Metric: s5s8_inbound_errors_total increasing

Likely Causes:

curl -k https://<license_server_ip>:10443/api/status

config :license_client,

 license_server_api_urls:

["https://<license_server_ip>:10443/api"],

 licensee: "Your Company Name"

1. IP pool exhausted

2. PCRF (Gx) unreachable or rejecting policy

3. PGW-U (PFCP) unavailable

4. Invalid APN configuration

Diagnosis:

1. Check IP pool utilization:

If equals configured pool size, pool is exhausted

2. Check PCRF connectivity:

Web UI → /diameter page

Look for PCRF peer status = "disconnected"

Logs: Search "Credit Control Answer" for errors

3. Check PFCP peer status:

Web UI → /pfcp_peers page

Look for "Association: DOWN"

Metric: pfcp_peer_associated = 0

4. Check APN configuration:

Review config/runtime.exs under ue.apn_map

Verify requested APN exists in configuration

Resolution:

For IP Pool Exhaustion:

1. Identify stale sessions: Web UI → /pgw_sessions, look for old sessions

2. Expand IP pool in config/runtime.exs :

address_registry_count

3. Restart OmniPGW

4. Verify: curl http://<ip>:9090/metrics | grep address_registry_count

For PCRF Connectivity Issues:

1. Check network connectivity: ping <pcrf_ip>

2. Verify PCRF Diameter service: telnet <pcrf_ip> 3868

3. Check config/runtime.exs Diameter peer configuration

4. Restart OmniPGW if config changed

5. Verify via Web UI → /diameter (peer should show "connected")

For PFCP Issues:

See PFCP / User Plane Issues section

Prevention:

Monitor IP pool utilization with alerts at 80%

Monitor PCRF connectivity with Diameter peer alerts

Implement session cleanup for idle sessions

Issue: Sessions Stuck in Intermediate State

Symptom:

Session appears in Web UI but incomplete

Metrics show growing session count but no user traffic

Delete Session Request fails or times out

Likely Causes:

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => "10.0.0.0/23" # Changed from /24 to /23

(doubles capacity)

 }

 }

1. PFCP Session Establishment failed but S5/S8 session created

2. PCRF CCR-Initial timed out

3. Create Bearer Request (dedicated bearer) failed

4. Network disruption during session setup

Diagnosis:

1. Search for session in Web UI:

/pgw_sessions → Search by IMSI

Check if pfcp_seid is present (if missing, PFCP failed)

Check if gx_session_id is present (if missing, Gx failed)

2. Check logs for the IMSI:

Filter logs by IMSI

Look for "Session Establishment Request" (PFCP)

Look for "Credit Control Request" (Gx)

Look for timeout or error messages

3. Check metrics:

Resolution:

1. For PFCP establishment failures:

Check PGW-U health and logs

Verify PFCP association: Web UI → /pfcp_peers

Send Delete Session Request from SGW-C to cleanup

2. For Gx timeout issues:

Sessions with TEID but no PFCP session

teid_registry_count - seid_registry_count

Sessions with TEID but no Gx session

teid_registry_count - session_id_registry_count

Check PCRF latency: histogram_quantile(0.95,

rate(gx_outbound_transaction_duration_bucket[5m]))

Increase Gx timeout in config/runtime.exs if needed

Send Delete Session Request to cleanup

3. Manual cleanup (last resort):

Currently requires OmniPGW restart to clear stuck sessions

Monitor teid_registry_count before/after restart to confirm cleanup

Prevention:

Monitor PFCP and Gx latency metrics

Implement session timeout/cleanup for incomplete sessions

Alert on registry count mismatches

PFCP / User Plane Issues

Issue: PFCP Association Down

Symptom:

Web UI → /pfcp_peers shows "Association: DOWN"

All new session establishments fail

Metric: pfcp_peer_associated = 0

Logs: "PFCP heartbeat timeout" or "Association Setup failed"

Likely Causes:

1. PGW-U unreachable (network issue)

2. PGW-U crashed or restarted

3. PFCP configuration mismatch (IP, port)

4. Firewall blocking UDP 8805

Diagnosis:

1. Check network connectivity:

2. Check PFCP configuration:

Review config/runtime.exs under upf.peer_list

Verify IP address and node ID match PGW-U configuration

3. Check PGW-U status:

Access PGW-U logs

Verify PGW-U is running: systemctl status omnipgw_u (or equivalent)

4. Check metrics:

Resolution:

1. For network issues:

Verify routing: traceroute <pgw_u_ip>

Check firewall rules: Ensure UDP 8805 allowed

Check security groups (if cloud deployment)

2. For PGW-U crashes:

Restart PGW-U service

Wait 30 seconds for association re-establishment

Verify via Web UI → /pfcp_peers (should show "Association: UP")

3. For configuration issues:

ping <pgw_u_ip>

nc -u -v <pgw_u_ip> 8805

Heartbeat failures

pfcp_consecutive_heartbeat_failures

PFCP error rate

rate(sxb_inbound_errors_total[5m])

Correct config/runtime.exs PFCP peer configuration

Restart OmniPGW

Verify association established

Prevention:

Monitor pfcp_peer_associated metric with critical alerts

Monitor pfcp_consecutive_heartbeat_failures (alert at > 2)

Implement redundant PGW-U instances

Enable PFCP keepalive/heartbeat (should be default)

Issue: PFCP Session Modification Failures

Symptom:

Dedicated bearer creation fails

QoS policy updates (from PCRF RAR) fail

Logs: "Session Modification Request failed"

Metric:

sxb_inbound_errors_total{message_type="session_modification_respon

se"} increasing

Likely Causes:

1. Invalid PFCP rules (PDR/FAR/QER references)

2. PGW-U resource exhaustion

3. Rule ID conflicts

4. PGW-U software bug

Diagnosis:

1. Check logs:

Filter for "Session Modification" and SEID

Look for error cause codes in PFCP response

Common causes: "Rule ID already exists", "Out of resources"

2. Check PGW-U logs:

Look for PFCP processing errors

Check resource utilization (CPU, memory)

3. Check session state in Web UI:

/pgw_sessions → Find session by IMSI

Review pdr_map , far_map , qer_map for conflicts

Look for duplicate IDs

Resolution:

1. For rule conflicts:

Delete and recreate dedicated bearer

If persistent, Delete Session and have UE reconnect

2. For PGW-U resource issues:

Check PGW-U capacity (sessions, PDRs, throughput)

Scale PGW-U if needed

Reduce session load on affected PGW-U instance

3. For software bugs:

Capture full session state (Web UI session details)

Capture PFCP message logs

Report to vendor with reproduction steps

Prevention:

Monitor PGW-U resource utilization

Test dedicated bearer creation in staging

Monitor sxb_inbound_errors_total with alerts

Diameter (Gx/Gy) Issues

Issue: PCRF Peer Disconnected (Gx)

Symptom:

Web UI → /diameter shows PCRF peer "disconnected"

Sessions created without QoS policies (default QCI=5 applied)

Logs: "Diameter peer connection failed" or "CER/CEA timeout"

Likely Causes:

1. PCRF unreachable (network issue)

2. PCRF service down

3. Diameter configuration mismatch (Origin-Host, Realm)

4. Firewall blocking TCP 3868

Diagnosis:

1. Check network connectivity:

2. Check Diameter configuration:

Review config/runtime.exs under diameter.peer_list

Verify host , realm , ip match PCRF configuration

Check origin_host matches what PCRF expects

3. Check PCRF logs:

Look for CER (Capabilities-Exchange-Request) from PGW-C

Look for rejection reasons

4. Check metrics:

ping <pcrf_ip>

telnet <pcrf_ip> 3868

Resolution:

1. For network issues:

Verify routing to PCRF

Check firewall rules: Ensure TCP 3868 allowed

Test connectivity: nc -v <pcrf_ip> 3868

2. For PCRF service down:

Restart PCRF service

Wait for automatic reconnection (30s retry interval)

Verify via Web UI → /diameter

3. For configuration mismatch:

Correct config/runtime.exs Diameter configuration:

Restart OmniPGW

Verify connection established

Prevention:

Diameter connection errors

diameter_peer_connected{peer="<pcrf_host>"}

config :pgw_c,

 diameter: %{

 host: "pgw-c.epc.mnc999.mcc999.3gppnetwork.org", #

Must match PCRF config

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 peer_list: [

 %{

 host: "pcrf.epc.mnc999.mcc999.3gppnetwork.org",

 realm: "epc.mnc999.mcc999.3gppnetwork.org",

 ip: "192.168.1.100",

 initiate_connection: true

 }

]

 }

Monitor Diameter peer connectivity with critical alerts

Implement redundant PCRF instances (if supported)

Document Diameter configuration in runbook

Issue: CCR/CCA Timeouts (Gx Policy Requests)

Symptom:

Session establishment slow (> 5 seconds)

Logs: "Credit Control Request timeout"

Metric: gx_outbound_transaction_duration very high (> 5s)

Sessions created with default QoS (fallback behavior)

Likely Causes:

1. PCRF overloaded

2. PCRF database slow

3. Network latency

4. PCRF software issue

Diagnosis:

1. Check Gx latency:

2. Check PCRF health:

Access PCRF monitoring dashboards

Check CPU, memory, database connections

Review PCRF logs for slow queries

P95 latency

histogram_quantile(0.95,

rate(gx_outbound_transaction_duration_bucket[5m]))

P99 latency (outliers)

histogram_quantile(0.99,

rate(gx_outbound_transaction_duration_bucket[5m]))

3. Check network latency:

4. Check logs:

Count CCR/CCA exchanges: Filter "Credit Control"

Measure time between "Sending CCR" and "Received CCA"

Resolution:

1. For PCRF overload:

Scale PCRF (add instances)

Reduce CCR message size if possible

Tune PCRF thread pools/workers

2. For network latency:

Investigate network path (routers, switches)

Consider co-locating PGW-C and PCRF

3. Temporary workaround (increase timeout):

Edit config/runtime.exs :

Restart OmniPGW

Note: This only masks the issue; fix root cause

Prevention:

Monitor Gx latency with alerts (warning > 1s, critical > 5s)

Capacity plan PCRF for expected session rate

ping -c 100 <pcrf_ip> | tail -1 # Check avg latency

config :pgw_c,

 diameter: %{

 transaction_timeout_ms: 10000 # Increase from default

5000

 }

Test PCRF performance under load

Issue: OCS Peer Disconnected (Gy)

Symptom:

Web UI → /diameter shows OCS peer "disconnected"

Sessions cannot be charged (online charging fails)

Logs: "Gy peer connection failed"

Diagnosis and Resolution:

Similar to PCRF Peer Disconnected, but for Gy interface.

Key differences:

Port: Typically TCP 3868 (same as Gx)

Impact: Charging fails, sessions may be rejected or allowed without

charging (depends on config)

Configuration: Check diameter.peer_list for OCS entry

See: Diameter Gy Interface for Gy-specific troubleshooting

IP Allocation Issues

Issue: IP Pool Exhausted

Symptom:

Create Session Request rejected with cause "No resources available"

Metric: address_registry_count equals configured pool size

Web UI → /pgw_sessions shows many active sessions

Logs: "IP allocation failed: pool exhausted"

Likely Causes:

1. Pool too small for subscriber base

2. Sessions not releasing IPs (Delete Session failures)

3. Rapid session churn without cleanup

4. IP address leak

Diagnosis:

1. Check pool utilization:

2. Check configured pool size:

Review config/runtime.exs under ue.subnet_map

Example: "10.0.0.0/24" = 254 usable IPs

3. Compare session count to IP count:

4. Review active sessions:

Web UI → /pgw_sessions

Sort by session start time

Look for very old sessions (potential leaks)

Resolution:

Immediate (expand pool):

1. Edit config/runtime.exs :

For /24 subnet (254 IPs)

(address_registry_count / 254) * 100

Should be approximately equal

teid_registry_count

address_registry_count

2. Restart OmniPGW

3. Verify: Sessions can now establish

Long-term (cleanup):

1. Identify stale sessions in Web UI

2. Coordinate with SGW-C to send Delete Session Requests

3. Implement session timeout policy on PCRF/SGW

4. Monitor address_registry_count to verify pool freed up after cleanup

Prevention:

Monitor IP pool utilization with alerts:

Warning: > 70%

Critical: > 85%

Trend analysis to predict exhaustion

Implement session idle timeout

Regular session audits

Issue: Duplicate IP Address Assigned

Symptom:

UE reports IP address conflict

Logs: "IP already allocated" warning

Two sessions in Web UI with same IP address

Likely Causes:

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => "10.0.0.0/22" # 1022 IPs (was /24 = 254

IPs)

 }

 }

1. Software bug (rare)

2. Database inconsistency after crash

3. Manual intervention error

Diagnosis:

1. Search for IP in Web UI:

/pgw_sessions → Search by IP address

Check if multiple IMSIs have same IP

2. Check logs:

Search for IP address

Look for "IP allocation" events

Resolution:

1. Identify affected sessions:

Note both IMSIs with duplicate IP

2. Delete one session:

Coordinate with SGW-C to send Delete Session Request for one IMSI

Prefer deleting the newer session

3. UE reconnects:

UE should automatically reconnect

Will receive new unique IP

4. If persistent:

Restart OmniPGW to rebuild IP registry

All sessions will be lost (coordinate maintenance window)

Prevention:

Monitor for duplicate allocations (no built-in metric currently)

Regular database integrity checks (if applicable)

Quick Reference

Common Prometheus Queries

Active sessions

teid_registry_count

Session setup rate (per second)

rate(s5s8_inbound_messages_total{message_type="create_session_request

IP pool utilization (for /24 subnet)

(address_registry_count / 254) * 100

P95 session setup latency

histogram_quantile(0.95,

rate(s5s8_inbound_handling_duration_bucket{request_message_type="crea

[5m]))

Error rate

rate(s5s8_inbound_errors_total[5m])

PCRF latency

histogram_quantile(0.95, rate(gx_outbound_transaction_duration_bucket

PFCP association status

pfcp_peer_associated

Common Log Filters (Web UI)

Filter Purpose

IMSI Find all logs for specific subscriber

"create_session" Session establishment flow

"delete_session" Session teardown flow

"Credit Control" Gx PCRF interactions

"PFCP Session" User plane programming

"error" All error messages

"timeout" Timeout issues

"Association" PFCP association events

Health Check Commands

Related Documentation

Monitoring Guide - Prometheus metrics, Grafana dashboards, alerting

Configuration Guide - System configuration reference

Session Management - Session lifecycle details

PFCP Interface - PFCP troubleshooting details

Diameter Gx Interface - Gx policy troubleshooting

Diameter Gy Interface - Gy charging troubleshooting

QoS & Bearer Management - QoS-related issues

Back to Operations Guide

OmniPGW Troubleshooting Guide - by Omnitouch Network Services

Check service status

systemctl status omnipgw_c

Check web UI

curl http://<omnipgw_ip>:4000

Check metrics endpoint

curl http://<omnipgw_ip>:9090/metrics

Check active sessions

curl http://<omnipgw_ip>:9090/metrics | grep teid_registry_count

Check PFCP association

curl http://<omnipgw_ip>:9090/metrics | grep pfcp_peer_associated

Check IP pool usage

curl http://<omnipgw_ip>:9090/metrics | grep

address_registry_count

UE IP Pool Allocation

Documentation

IP Address Management for Mobile Devices

Table of Contents

1. Overview

2. IP Allocation Concepts

3. Configuration

4. Allocation Process

5. Advanced Topics

6. Monitoring

7. Troubleshooting

Overview

The PGW-C allocates IP addresses to UE (User Equipment) devices when they

establish PDN (Packet Data Network) connections. This is a critical function that

enables mobile devices to communicate with external networks.

Why IP Allocation Matters

Each UE receives a unique IP address from the PGW-C that:

Identifies the device on the network

Routes traffic to/from the device

Enables charging and policy enforcement

Persists for the duration of the PDN connection

Supported IP Versions

IP Version Support Description

IPv4 � Full Standard IPv4 addresses

IPv6 � Full IPv6 addresses and prefixes

IPv4v6 � Full Dual-stack (both IPv4 and IPv6)

IP Allocation Concepts

PDN Type

When a UE requests a PDN connection, it specifies a PDN Type:

PDN Type Description Allocated Addresses

IPv4 IPv4-only connection Single IPv4 address

IPv6 IPv6-only connection IPv6 prefix (e.g., /64)

IPv4v6 Dual-stack connection Both IPv4 address and IPv6 prefix

Allocation Methods

PGW-C supports two IP allocation methods:

Yes

No

Yes No Yes No

UE PDN Connection

Request

UE Requests

Specific IP?

Static Allocation

Dynamic Allocation

IP Available?

Assign Requested IP Reject Request

Select Subnet

Based on APN

Generate Random IP

from Subnet

Already

Allocated?

Retry

Max 100 times
Assign IP

Register in

Address Registry

1. Dynamic Allocation (Most Common):

PGW-C selects IP from configured pool

Random selection to avoid predictability

Collision detection ensures uniqueness

2. Static Allocation:

UE requests specific IP in GTP-C message

PGW-C validates availability

Useful for enterprise devices with fixed IPs

APN-Based Subnet Selection

Different APNs (Access Point Names) can use different IP pools:

Benefits:

Traffic Segregation - Different APNs route to different networks

Policy Differentiation - Apply different policies per APN

Capacity Planning - Size pools based on expected usage

Billing - Track usage by service type

Address Registry

The Address Registry tracks allocated IPs:

Function Description

Registration Maps UE IP → Session Process PID

Lookup Find session by UE IP

Deregistration Release IP when session ends

Collision Detection Prevent duplicate allocations

Configuration

Basic Configuration

Edit config/runtime.exs :

Subnet Notation

CIDR Notation: <network>/<prefix_length>

CIDR Usable IPs Example Range

/24 254 100.64.1.1 - 100.64.1.254

/23 510 100.64.0.1 - 100.64.1.254

/22 1022 100.64.0.1 - 100.64.3.254

/20 4094 100.64.0.1 - 100.64.15.254

/16 65534 100.64.0.1 - 100.64.255.254

Notes:

config :pgw_c,

 ue: %{

 subnet_map: %{

 # APN "internet" uses two subnets

 "internet" => [

 "100.64.1.0/24", # 254 usable IPs

 "100.64.2.0/24" # 254 usable IPs

],

 # APN "ims" uses one subnet

 "ims" => [

 "100.64.10.0/24"

],

 # Default pool for unknown APNs

 default: [

 "42.42.42.0/24"

]

 }

 }

Network address (e.g., 100.64.1.0) is not allocated

Broadcast address (e.g., 100.64.1.255) is not allocated

PGW-C allocates from <network> + 1 to <broadcast> - 1

Multiple Subnets per APN

Load Balancing Across Subnets:

Selection Method:

PGW-C randomly selects one subnet from the list

Provides basic load balancing

Each session independently selects a subnet

Benefits:

Distribute load across multiple subnets

Easier capacity expansion (add new subnets)

Flexibility for routing policies

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => [

 "100.64.1.0/24",

 "100.64.2.0/24",

 "100.64.3.0/24",

 "100.64.4.0/24"

]

 }

 }

Real-World Example

config :pgw_c,

 ue: %{

 subnet_map: %{

 # General internet access

 "internet" => [

 "100.64.0.0/20" # 4094 IPs for general use

],

 # IMS (Voice over LTE)

 "ims" => [

 "100.64.16.0/22" # 1022 IPs for IMS

],

 # Enterprise APN

 "enterprise.corp" => [

 "10.100.0.0/16" # 65534 IPs for enterprise

],

 # IoT devices (low bitrate)

 "iot.m2m" => [

 "100.64.20.0/22" # 1022 IPs for IoT

],

 # Default fallback

 default: [

 "42.42.42.0/24" # 254 IPs for unknown APNs

]

 }

 }

IPv6 Configuration

IPv6 Prefix Delegation:

UE typically receives a /64 prefix

Allows UE to assign multiple IPs (e.g., for tethering)

Example: UE receives 2001:db8:1:a::/64

Dual-Stack (IPv4v6) Configuration

Dual-Stack Allocation:

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => [

 # IPv4 pools

 "100.64.1.0/24"

],

 "internet.ipv6" => [

 # IPv6 pools (prefix delegation)

 "2001:db8:1::/48"

],

 default: [

 "42.42.42.0/24"

]

 }

 }

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => [

 "100.64.1.0/24", # IPv4 pool

 "2001:db8:1::/48" # IPv6 pool (will be used for IPv6

allocation)

]

 }

 }

UE requests PDN Type: IPv4v6

PGW-C allocates both IPv4 address and IPv6 prefix

Both addresses active simultaneously

Allocation Process

IP allocation occurs during session creation when PGW-C receives a Create

Session Request via the S5/S8 interface. See S5/S8 Interface for GTP-C

message details and Session Management for session lifecycle.

Step-by-Step: Dynamic IPv4 Allocation

Address RegistryPGW-CSGW-CUE

Address RegistryPGW-CSGW-CUE

1. Parse APN: "internet"

subnet_map["internet"]

→ ["100.64.1.0/24", "100.64.2.0/24"]

Selected: 100.64.1.0/24

Range: 100.64.1.1 - 100.64.1.254

Random IP: 100.64.1.42

100.64.1.42 → <session_pid>

loop [Up to 100 attempts]

Allocated: 100.64.1.42

UE uses 100.64.1.42

for internet access

Attach Request

Create Session Request

(APN: internet, PDN Type: IPv4)

Lookup subnet for APN "internet"

Randomly select subnet

Generate random IP

Check if IP already allocated

Not allocated

Register IP → Session PID

Create Session Response

(UE IP: 100.64.1.42)

Attach Accept

(IP: 100.64.1.42)

How It Works

Dynamic Allocation Process:

1. Subnet Lookup: System retrieves configured subnets for the requested

APN

2. Random Selection: One subnet is randomly selected from the available

list

3. IP Generation: A random IP is generated within the subnet range

4. Uniqueness Check: System verifies the IP hasn't been allocated

5. Retry Logic: If collision detected, retry up to 100 times with new random

IP

6. Registration: Once unique IP found, it's registered to the session

Key Design Points:

Max 100 attempts: Prevents infinite loops when pool is nearly exhausted

Random selection: Avoids predictable IP assignment patterns for security

Atomic operations: Process-based registry ensures no duplicate

allocations

Fallback to default: If APN not found in config, uses default pool

Collision Handling

Scenario: Two sessions try to allocate same IP simultaneously

Address Registry

(Process-based)
Session 2Session 1

Address Registry

(Process-based)
Session 2Session 1

Both randomly select

100.64.1.42

Registry processes

requests sequentially

Session 1 gets IP

Session 2 retries

Session 2 gets new IP

Register 100.64.1.42 → Session 1

Register 100.64.1.42 → Session 2

Success - IP allocated

Error - Already allocated

Generate new random IP

100.64.1.43

Register 100.64.1.43 → Session 2

Success - IP allocated

How Collision Prevention Works:

Registry processes requests one at a time (serialized)

No race conditions possible

First request to register an IP succeeds

Subsequent requests for same IP are rejected

Rejected sessions automatically retry with new random IP

Default Subnet Fallback

Scenario: UE requests unknown APN

Example Configuration:

Behavior:

UE requests APN: "unknown.apn"

System looks for "unknown.apn" in subnet_map

Not found, so falls back to default pool

Allocates IP from 42.42.42.0/24

Fallback Logic:

1. First, try to find APN-specific pool in configuration

2. If not found, use the default pool

3. If no default configured, allocation fails

Config

subnet_map: %{

 "internet" => ["100.64.1.0/24"],

 default: ["42.42.42.0/24"]

}

Deallocation on Session Termination

Automatic Cleanup:

When session process terminates, registry cleans up

IP immediately available for new allocations

No manual intervention required

Advanced Topics

Pool Exhaustion

Scenario: All IPs in pool are allocated

What Happens:

1. PGW-C attempts 100 random allocations

2. All attempts find IP already allocated

3. Returns: {:error, :ue_ip_address_allocation_failed}

4. Session establishment fails

5. SGW-C receives error response

Prevention:

Static IP Allocation

Use Case: Enterprise device needs fixed IP

GTP-C Message Format:

Pool: 100.64.1.0/24 (254 usable IPs)

Allocated: 254 IPs

New request arrives → Exhaustion

Monitor pool utilization

address_registry_count / total_pool_size > 0.8 # Alert at 80%

Expand pool before exhaustion

"internet" => [

 "100.64.1.0/24",

 "100.64.2.0/24", # Add additional subnet

 "100.64.3.0/24"

]

OmniPGW Processing:

1. Extract Requested IP: Parse PDN Address Allocation IE from request

2. Validate IP: Check if requested IP is in configured pool for this APN

3. Check Availability: Verify IP is not already allocated to another session

4. Allocate or Reject:

If available: Allocate requested IP to this session

If unavailable: Reject session with appropriate cause code

Possible Results:

Success: UE receives exactly the IP address it requested

Failure (IP in use): Session rejected - IP already allocated

Failure (IP not in pool): Session rejected - IP not in configured range

IPv6 Prefix Delegation

UE requests IPv6:

PGW-C allocates /64 prefix:

Create Session Request

├── IMSI: 310260123456789

├── APN: enterprise.corp

├── PDN Address Allocation (IE)

│ └── PDN Type: IPv4

│ └── IPv4 Address: 10.100.0.50 ← UE requests specific IP

Create Session Request

├── PDN Type: IPv6

Benefits:

UE can assign multiple IPs (e.g., tethering)

Supports SLAAC (Stateless Address Autoconfiguration)

Eliminates NAT requirement

Dual-Stack Allocation

UE requests IPv4v6:

PGW-C allocates both:

Traffic Handling:

IPv4 traffic uses IPv4 address

IPv6 traffic uses IPv6 prefix

Both active simultaneously

Separate GTP tunnels (or dual-stack tunnel)

Private vs. Public IP Addresses

Private IP Pools (RFC 1918):

Allocated Prefix: 2001:db8:1:a::/64

UE can use:

- 2001:db8:1:a::1

- 2001:db8:1:a::2

- ... (18 quintillion addresses)

Create Session Request

├── PDN Type: IPv4v6

IPv4: 100.64.1.42

IPv6: 2001:db8:1:a::/64

Requires NAT at PGW-U to access internet

Public IP Pools:

No NAT required - direct internet routing

Recommendation:

Use private IPs (RFC 6598): 100.64.0.0/10 (Carrier-Grade NAT)

Reserve public IPs for special services only

Monitoring

Web UI - IP Pool Management

OmniPGW provides a real-time web interface for monitoring IP pool allocation

and utilization.

Access: http://<omnipgw-ip>:<web-port>/ip_pools

Not routable on public internet

subnet_map: %{

 "internet" => [

 "10.0.0.0/8",

 "172.16.0.0/12",

 "192.168.0.0/16"

]

}

Routable public IPs (example only)

subnet_map: %{

 "internet" => [

 "203.0.113.0/24" # Public IP block

]

}

Features:

1. Pool Overview

Total IPs across all pools

Currently allocated addresses

Available IPs remaining

Real-time utilization percentage

2. Per-APN Pool Status Each configured pool displays:

Pool Name - APN identifier (e.g., "default", "ims.something.else",

"Internet")

APN Label - Configured APN name badge

IP Range - CIDR notation showing subnet range

Utilization - Visual indicator showing percentage used

Allocation Stats:

Total: Number of IPs in pool

Allocated: Currently assigned IPs

Available: Remaining IPs for allocation

3. Real-time Updates

Auto-refresh every 2 seconds

No page reload required

Live utilization tracking

Use Cases:

Quick capacity check before maintenance

Identify pools approaching exhaustion

Verify pool configuration

Monitor allocation patterns by APN

Key Metrics

Address Registry Count:

Example:

Current allocated IPs

address_registry_count

Pool utilization (requires calculation)

address_registry_count / <total_pool_size> * 100

Pool: 100.64.1.0/24 (254 IPs)

Allocated: 150 IPs

Utilization: 150 / 254 = 59%

Alerts

Grafana Dashboard

Panel 1: IP Pool Utilization

Panel 2: Allocated IPs Over Time

Panel 3: Allocation Rate

Alert on high pool utilization

- alert: UEIPPoolUtilizationHigh

 expr: address_registry_count > 200 # For /24 pool

 for: 10m

 annotations:

 summary: "UE IP pool utilization above 80%"

 description: "Current: {{ $value }} / 254 IPs allocated"

Alert on pool exhaustion

- alert: UEIPPoolExhausted

 expr: address_registry_count >= 254 # For /24 pool

 for: 1m

 annotations:

 summary: "UE IP pool exhausted - no IPs available"

Alert on allocation failures

- alert: UEIPAllocationFailures

 expr: rate(ue_ip_allocation_failures_total[5m]) > 0

 for: 5m

 annotations:

 summary: "UE IP allocation failures occurring"

Gauge showing percentage

(address_registry_count / 254) * 100

Time series

address_registry_count

Panel 4: Pool Exhaustion Risk

Troubleshooting

Issue 1: Session Establishment Fails (No IP

Available)

Symptoms:

Create Session Response: Cause "Request rejected"

Log: "UE IP address allocation failed"

Possible Causes:

1. Pool Exhausted

2. Configuration Error

Rate of new allocations

rate(address_registry_count[5m])

Days until exhaustion (based on current rate)

(254 - address_registry_count) / rate(address_registry_count[1h])

Check current allocation

curl http://<pgw_c_ip>:42069/metrics | grep

address_registry_count

3. APN Misconfiguration

Resolution:

Expand pool: Add more subnets

Cleanup stale sessions: Restart PGW-C to release leaked IPs

Verify config: Check runtime.exs for typos

Issue 2: IP Address Collision

Symptoms:

Two UEs receive same IP (very rare)

Routing issues

Cause:

Bug in Address Registry (should not happen)

Debug:

Verify subnet configuration

config :pgw_c,

 ue: %{

 subnet_map: %{

 "internet" => [

 "100.64.1.0/24" # Ensure valid CIDR

]

 }

 }

If APN not found, falls back to default

Ensure default pool exists

subnet_map: %{

 default: ["42.42.42.0/24"]

}

Resolution:

Should self-correct (second session retries)

If persistent, report bug

Issue 3: Wrong IP Pool Used

Symptoms:

UE receives IP from unexpected subnet

APN "internet" gets IP from "ims" pool

Cause:

Incorrect subnet_map configuration

Verify:

Resolution:

Ensure APN names match exactly (case-sensitive)

Use default pool for catch-all

Issue 4: IPv6 Allocation Fails

Symptoms:

UE requests IPv6, receives error

Check for duplicate IPs in logs

grep "already_registered" /var/log/pgw_c.log

Check exact APN string matching

subnet_map: %{

 "internet" => [...], # Case-sensitive

 "Internet" => [...] # Different APN!

}

Possible Causes:

1. No IPv6 pool configured

2. Invalid IPv6 prefix

Resolution:

Issue 5: High Pool Utilization

Symptoms:

Nearing pool exhaustion

address_registry_count approaching max

Proactive Measures:

1. Add Subnets:

Missing IPv6 subnets

subnet_map: %{

 "internet" => [

 "100.64.1.0/24" # Only IPv4

]

}

Too small prefix (should be /48 or larger)

"internet" => [

 "2001:db8::/128" # Wrong - no room for allocation

]

Add IPv6 pool

subnet_map: %{

 "internet" => [

 "100.64.1.0/24",

 "2001:db8:1::/48" # IPv6 pool

]

}

2. Use Larger Subnets:

3. Session Cleanup:

Monitor stale sessions

Ensure proper Delete Session Request handling

Best Practices

Capacity Planning

Calculate required pool size:

Subnet Selection

Recommended:

"internet" => [

 "100.64.1.0/24", # Existing

 "100.64.2.0/24", # New subnet (adds 254 IPs)

 "100.64.3.0/24" # New subnet (adds 254 IPs)

]

Replace /24 with /22

"internet" => [

 "100.64.0.0/22" # 1022 usable IPs

]

Expected concurrent users: 10,000

Peak concurrency: 30% (3,000 simultaneous sessions)

Growth buffer: 50%

Required IPs: 3,000 * 1.5 = 4,500 IPs

Subnet: /20 (4,094 usable IPs) - Too small

Subnet: /19 (8,190 usable IPs) - Sufficient

Use 100.64.0.0/10 (RFC 6598 - Carrier-Grade NAT)

Provides 4 million IPs

Reserved for service provider NAT

Avoid:

Public IPs (expensive, limited)

Common private ranges that conflict with enterprise VPNs

Configuration Layout

config :pgw_c,

 ue: %{

 subnet_map: %{

 # Primary internet APN - large pool

 "internet" => [

 "100.64.0.0/18" # 16,382 IPs

],

 # IMS - smaller dedicated pool

 "ims" => [

 "100.64.64.0/22" # 1,022 IPs

],

 # Enterprise - medium pool

 "enterprise.corp" => [

 "100.64.68.0/22" # 1,022 IPs

],

 # IoT - large pool for many devices

 "iot.m2m" => [

 "100.64.72.0/20" # 4,094 IPs

],

 # Default - small fallback

 default: [

 "100.64.127.0/24" # 254 IPs

]

 }

 }

Related Documentation

Configuration

Configuration Guide - UE IP pool configuration, APN subnet mapping

PCO Configuration - DNS, P-CSCF, MTU delivered with IP address

Session Management - Session lifecycle, IP allocation during PDN setup

PFCP Interface - UE address assignment via PFCP to UPF

Network Planning

S5/S8 Interface - IP address delivery via GTP-C

Diameter Gx Interface - Policy control for IP allocation

Operations

Monitoring Guide - IP pool utilization metrics, allocation tracking

Data CDR Format - UE IP addresses in CDRs for billing correlation

Back to Operations Guide

OmniPGW Operations

Guide

OmniPGW - Packet Gateway Control Plane (PGW-C)

by Omnitouch Network Services

Table of Contents

1. Overview

2. Architecture

3. Network Interfaces

4. Key Concepts

5. Getting Started

6. Configuration

7. Web UI - Real-Time Operations Dashboard

8. Monitoring & Metrics

9. Detailed Documentation

10. Additional Resources

11. Contributing

12. Support

Overview

OmniPGW is a high-performance Packet Gateway Control Plane (PGW-C)

implementation for 3GPP LTE Evolved Packet Core (EPC) networks, developed

by Omnitouch Network Services. It manages the control plane functions for

data sessions, including:

Session Management - Creating, modifying, and terminating UE (User

Equipment) data sessions

IP Address Allocation - Assigning IP addresses to mobile devices from

configured pools

Policy & Charging Control - Interfacing with PCRF for policy enforcement

and charging

User Plane Coordination - Controlling the PGW-U (User Plane) for packet

forwarding

What PGW-C Does

Accepts session requests from SGW-C via S5/S8 interface (GTP-C)

Allocates UE IP addresses from configured subnet pools

Requests policy decisions from PCRF via Gx interface (Diameter)

Programs forwarding rules in PGW-U via Sxb interface (PFCP)

Manages QoS enforcement through bearer contexts and QoS rules

Tracks charging information for billing systems

Architecture

Component Overview

PGW-C Application

Registries

PFCP NodeSession Management

Protocol Brokers

Configuration ConfigurationConfiguration

Telemetry Telemetry

IP Address

Registry

S5/S8 Broker

GTP-C v2

Session

Supervisor

Sxb Broker

PFCP

PFCP Peer

Manager

Gx Broker

Diameter

Session 1 Session 2 Session N...

TEID

Registry

SEID

Registry

Charging ID

Registry

Configuration

Manager

Metrics

Exporter

Process Architecture

PGW-C is built on Elixir/OTP and uses a supervised process architecture:

Application Supervisor - Top-level supervisor managing all components

Protocol Brokers - Handle incoming/outgoing protocol messages

Session Processes - One GenServer per active PDN connection

Registries - Track allocated resources (IPs, TEIDs, SEIDs, etc.)

PFCP Node Manager - Maintains PFCP associations with PGW-U peers

Each component is supervised and will automatically restart on failure,

ensuring system reliability.

Network Interfaces

PGW-C implements three primary 3GPP interfaces:

S5/S8 Interface (GTP-C v2)

Purpose: Control plane signaling between SGW-C and PGW-C

Protocol: GTP-C Version 2 over UDP

Key Messages:

Create Session Request/Response

Delete Session Request/Response

Create Bearer Request/Response

Delete Bearer Request/Response

Configuration: See S5/S8 Configuration

Sxb Interface (PFCP)

Purpose: Control plane signaling between PGW-C and PGW-U

Protocol: PFCP (Packet Forwarding Control Protocol) over UDP

Key Messages:

Association Setup Request/Response

Session Establishment Request/Response

Session Modification Request/Response

Session Deletion Request/Response

Heartbeat Request/Response

Configuration: See PFCP/Sxb Interface Documentation

Gx Interface (Diameter)

Purpose: Policy and Charging Rules Function (PCRF) interface

Protocol: Diameter (IETF RFC 6733)

Key Messages:

Credit Control Initial Request/Answer (CCR-I/CCA-I)

Credit Control Termination Request/Answer (CCR-T/CCA-T)

Configuration: See Diameter Gx Interface Documentation

Key Concepts

PDN Session

A PDN (Packet Data Network) Session represents a UE's data connection to an

external network (like the Internet). Each session has:

UE IP Address - Allocated from a configured subnet pool

APN (Access Point Name) - Identifies the external network

Bearer Context - Contains QoS parameters and tunnel information

Charging ID - Unique identifier for billing

TEID (Tunnel Endpoint ID) - S5/S8 interface tunnel identifier

SEID (Session Endpoint ID) - Sxb interface session identifier

Bearer Context

A bearer represents a traffic flow with specific QoS characteristics:

Default Bearer - Created with every PDN session

Dedicated Bearers - Additional bearers for specific QoS needs

EBI (EPS Bearer ID) - Unique identifier for each bearer

QoS Parameters - QCI, ARP, bitrates (MBR, GBR)

PFCP Rules

The PGW-C programs the PGW-U with packet processing rules:

PDR (Packet Detection Rule) - Matches packets (uplink/downlink)

FAR (Forwarding Action Rule) - Specifies forwarding behavior

QER (QoS Enforcement Rule) - Enforces bitrate limits

BAR (Buffering Action Rule) - Controls packet buffering

See PFCP Interface Documentation for details.

IP Address Allocation

UE IP addresses are allocated from configured subnet pools:

APN-based selection - Different APNs can use different subnets

Dynamic allocation - Random IP selection from available range

Static allocation - Support for UE-requested IP addresses

Collision detection - Ensures unique IP assignment

See UE IP Pool Allocation for configuration.

Getting Started

Prerequisites

Elixir ~1.16

Erlang/OTP 26+

Network connectivity to SGW-C, PGW-U, and PCRF

Understanding of LTE EPC architecture

Starting OmniPGW

1. Configure runtime settings in config/runtime.exs

2. Compile the application:

3. Start the application:

Verifying Operation

Check the logs for successful startup:

mix deps.get

mix compile

mix run --no-halt

Access metrics at http://127.0.0.42:42069/metrics (configured address).

Configuration

All runtime configuration is defined in config/runtime.exs . The configuration

is structured into several sections:

Configuration Overview

runtime.exs

Metrics Config Diameter/Gx Config S5/S8 Config Sxb/PFCP Config UE IP Pool Config PCO Config

IP Address/Port Poll Period Origin Host/Realm PCRF Peer List Local IPv4/IPv6 UDP Port Local IP Address PGW-U Peer List APN Subnet Map Default Subnet DNS Servers P-CSCF Addresses Link MTU

[info] Starting OmniPGW...

[info] Starting Metrics Exporter on 127.0.0.42:42069

[info] Starting S5/S8 Broker on 127.0.0.10

[info] Starting Sxb Broker on 127.0.0.20

[info] Starting Gx Broker

[info] Starting PFCP Node Manager

[info] OmniPGW successfully started

Quick Configuration Reference

Section Purpose Documentation

metrics Prometheus metrics exporter Monitoring Guide

diameter Gx interface to PCRF Diameter Gx Config

s5s8 GTP-C interface to SGW-C S5/S8 Config

sxb PFCP interface to PGW-U PFCP Config

ue UE IP address pools IP Pool Config

pco Protocol Configuration Options PCO Config

CDR Offline charging & usage reporting CDR Format

See the Complete Configuration Guide for detailed information.

Web UI - Real-Time Operations

Dashboard

OmniPGW includes a built-in Web UI for real-time monitoring and operations,

providing instant visibility into system status without needing command-line

tools or metrics queries.

Accessing the Web UI

Available Pages:

http://<omnipgw-ip>:<web-port>/

Page URL Purpose
Refresh

Rate

UE Search /ue_search
Deep dive into specific

subscriber sessions

On-

demand

PGW

Sessions
/pgw_sessions

View all active PDN

sessions
2 seconds

Session

History
/session_history

Audit log of session

events
5 seconds

Network

Topology
/topology

Visual network

topology view
5 seconds

IP Pools /ip_pools
UE IP address pool

utilization
2 seconds

PFCP

Sessions
/pfcp_sessions

View PFCP sessions

with PGW-U
2 seconds

UPF Status /upf_status
Monitor PFCP peer

associations
2 seconds

UPF

Selection
/upf_selection

View UPF selection

rules & P-CSCF status
Static

Diameter

Peers
/diameter

Monitor PCRF

connectivity
1 second

P-CSCF

Monitor
/pcscf_monitor

P-CSCF DNS discovery

status
5 seconds

Gy

Simulator
/gy_simulator

Test Gy/Ro online

charging

On-

demand

Page URL Purpose
Refresh

Rate

Cell Towers /cell_towers
Browse OpenCellID

database
Static

Logs /logs
Real-time log

streaming
Live

Key Features

Real-Time Updates:

All pages auto-refresh (no manual reload needed)

Live data streaming from OmniPGW processes

Color-coded status indicators (green/red)

Search & Filter:

Search sessions by IMSI, IP, MSISDN, or APN

Instant filtering without page reload

Expandable Details:

Click any row to see complete details

Inspect full session state

View peer configuration and capabilities

No Authentication Required (Internal Use):

Direct access from management network

Designed for NOC/operations team use

Bind to management IP only for security

Operational Workflows

Session Troubleshooting (Deep Dive):

Quick Session Lookup:

System Health Check:

Capacity Monitoring:

Glance at PGW Sessions count

1. User reports connection issue

2. Open UE Search page (/ue_search)

3. Search by IMSI, MSISDN, or IP address

4. Review comprehensive session details:

 a) Active Sessions - Verify session exists with correct

parameters

 b) Current Location - Check TAC, Cell ID, geographic location

 c) Bearer Information - Verify default and dedicated bearers

 - QCI, MBR/GBR, Charging Rule Names

 - APN-AMBR limits

 d) Charging Information - Gy session ID, quota status

 e) Policy Information - Gx session, installed PCC rules

 f) Recent Events - Session history and state changes

5. If session not found → Check Diameter page for PCRF

connectivity

6. If location issues → Verify cell tower data in Current Location

section

1. User reports issue

2. Open PGW Sessions page (/pgw_sessions)

3. Search by IMSI or phone number

4. Verify session exists with basic details:

 - UE IP address allocated

 - QoS parameters

 - Tunnel endpoints established

5. For detailed analysis → Click session to expand or use UE

Search

1. Open UPF Status page → Verify all PGW-U peers "Associated"

2. Open Diameter page → Verify all PCRF peers "Connected"

3. Open PGW Sessions → Check active session count vs. capacity

Compare to licensed/expected capacity

Identify peak usage times

Monitor distribution across APNs

Web UI vs. Metrics

Use Web UI for:

Deep-dive subscriber troubleshooting (UE Search)

Individual session details and state inspection

Real-time peer status (PFCP, Diameter)

Quick health checks across all interfaces

Troubleshooting specific users by IMSI/MSISDN/IP

Geographic location verification (Cell Tower integration)

Bearer QoS analysis (MBR, GBR, QCI)

Policy and charging rule inspection

Session history and audit trails

IP pool capacity monitoring

Verifying configuration and rules

Use Prometheus Metrics for:

Historical trends

Alerting and notifications

Capacity planning graphs

Performance analysis

Long-term monitoring

Best Practice: Use both together - Web UI for immediate operations,

Prometheus for trends and alerts.

Monitoring & Metrics

In addition to the Web UI, OmniPGW exposes Prometheus-compatible metrics

for monitoring:

Available Metrics

Session Metrics

teid_registry_count - Active S5/S8 sessions

seid_registry_count - Active PFCP sessions

session_id_registry_count - Active Gx sessions

address_registry_count - Allocated UE IP addresses

charging_id_registry_count - Active charging IDs

Message Metrics

s5s8_inbound_messages_total - GTP-C messages received

sxb_inbound_messages_total - PFCP messages received

gx_inbound_messages_total - Diameter messages received

Message handling duration distributions

Error Metrics

s5s8_inbound_errors_total - S5/S8 protocol errors

sxb_inbound_errors_total - PFCP protocol errors

gx_inbound_errors_total - Diameter errors

Accessing Metrics

Metrics are exposed via HTTP at the configured endpoint:

See Monitoring & Metrics Guide for dashboard setup and alerting.

curl http://127.0.0.42:42069/metrics

Detailed Documentation

This section provides a comprehensive overview of all OmniPGW

documentation. Documents are organized by topic and use case.

Documentation Structure

Documentation by Topic

� Getting Started

Document Description Purpose

OPERATIONS.md
Main operations guide (this

document)

Overview and quick

start

OmniPGW Documentation

├── OPERATIONS.md (This Guide)

│

└── docs/

 ├── Configuration & Setup

 │ ├── configuration.md Complete runtime.exs

reference

 │ ├── ue-ip-allocation.md IP pool configuration

 │ └── pco-configuration.md DNS, P-CSCF, MTU settings

 │

 ├── Network Interfaces

 │ ├── pfcp-interface.md Sxb/PFCP (PGW-U

communication)

 │ ├── diameter-gx.md Gx (PCRF communication)

 │ ├── diameter-gy.md Gy/Ro (OCS communication)

 │ └── s5s8-interface.md S5/S8 (SGW-C communication)

 │

 └── Operations

 ├── session-management.md PDN session lifecycle

 └── monitoring.md Prometheus metrics &

alerting

⚙️ Configuration

Document Description Lines

configuration.md
Complete runtime.exs configuration

reference
1,600+

ue-ip-allocation.md UE IP pool management and allocation 943

pco-

configuration.md

Protocol Configuration Options (DNS, P-

CSCF, MTU)
344

🔌 Network Interfaces

Document Description Lines

pfcp-

interface.md
PFCP/Sxb interface to PGW-U 1,355

diameter-gx.md
Diameter Gx interface to PCRF (Policy

Control)
941

diameter-gy.md
Diameter Gy/Ro interface to OCS (Online

Charging)
1,100+

s5s8-

interface.md
GTP-C S5/S8 interface to SGW-C 456

📊 Operations & Monitoring

Document Description Lines

session-

management.md
PDN session lifecycle and operations 435

monitoring.md
Prometheus metrics, Grafana

dashboards, alerting
807

data-cdr-format.md
CDR file format, URR configuration,

offline charging
847

qos-bearers.md
QoS & bearer management, policy

control
448

troubleshooting.md
Troubleshooting procedures and

common issues
687

🔧 Advanced Features

Document Description Lines

pcscf-monitoring.md P-CSCF discovery and health monitoring 894

Documentation Features

📈 Mermaid Diagrams

All documents include Mermaid charts for visual understanding:

Architecture diagrams

Sequence diagrams (message flows)

State machines

Network topology

💡 Practical Examples

Every document includes:

Real-world configuration examples

Copy-paste ready configs

Common use cases

🔍 Troubleshooting

Each interface document includes:

Common issues and solutions

Debug commands

Metrics for diagnosis

🔗 Cross-References

Documents are extensively cross-linked for easy navigation.

Reading Paths

For Network Operators

1. OPERATIONS.md - Overview (this document)

2. configuration.md - Setup

3. monitoring.md - Monitoring

4. session-management.md - Day-to-day operations

For Network Engineers

1. OPERATIONS.md - Architecture overview (this document)

2. pfcp-interface.md - User plane control

3. diameter-gx.md - Policy control

4. diameter-gy.md - Online charging

5. s5s8-interface.md - Session management

6. ue-ip-allocation.md - IP management

For Configuration & Deployment

1. configuration.md - Complete reference

2. ue-ip-allocation.md - IP pools

3. pco-configuration.md - Network parameters

4. monitoring.md - Set up monitoring

Document Statistics

Total Documents: 14

Total Lines: ~10,900+

Total Size: ~265 KB

Mermaid Diagrams: 75+

Code Examples: 150+

Key Concepts Covered

Architecture

� Control/User plane separation

� OTP/Elixir architecture

� Process supervision

� GenServer-based sessions

Protocols

� PFCP (Packet Forwarding Control Protocol)

� GTP-C v2 (GPRS Tunnelling Protocol)

� Diameter (RFC 6733)

3GPP Interfaces

� Sxb (PGW-C ↔ PGW-U)

� Gx (PGW-C ↔ PCRF)

� Gy/Ro (PGW-C ↔ OCS)

� S5/S8 (SGW-C ↔ PGW-C)

Operations

� Session management

� IP allocation strategies

� QoS enforcement

� Charging integration

� Monitoring & alerting

Additional Resources

3GPP Specifications

Spec Title

TS 29.274 GTP-C v2 (S5/S8 interface)

TS 29.244 PFCP (Sxb interface)

TS 29.212 Diameter Gx interface (Policy Control)

TS 32.299 Diameter Charging Applications (Gy/Ro)

TS 32.251 Packet Switched domain charging

TS 23.401 EPC architecture

Related Documentation

Configuration file: config/runtime.exs

https://docs.omnitouch.com.au/assets/files/runtime-5a376f1bb18ba442c3a5fd4ed3a56b4d.exs/

