OmniUPF API
Documentation

Overview

The OmniUPF API provides a comprehensive RESTful interface for managing
and monitoring the eBPF-based User Plane Function. The API enables real-time
control and observability of all UPF components.

API Capabilities

Session Management:

e PFCP Sessions: Query active sessions, view session details, filter by UE IP
or TEID

e PFCP Associations: Monitor control plane node associations and status
Traffic Rules:

* Packet Detection Rules (PDR): Inspect uplink and downlink traffic
classifiers (IPv4/IPv6)

 Forwarding Action Rules (FAR): View forwarding, buffering, and drop
policies
e QoS Enforcement Rules (QER): Monitor rate limiting and QoS policies

e Usage Reporting Rules (URR): Track data volume counters per session
Packet Buffering:

e Buffer Status: View buffered packets per FAR (GET /buffer, GET
/buffer/:far id)

e Buffer Operations: Flush or clear buffered packets (POST
/buffer/:far id/flush, DELETE /buffer/:far id, DELETE /buffer)

e Buffering Control: Manual notification triggering (POST
/buffer/:far id/notify)

¢ Notification Status: View DLDR notification state (GET
/buffer/notifications)

Monitoring and Statistics:

* Packet Statistics: Real-time packet counters by protocol (GTP, IP, TCP,
UDP, ICMP, ARP)

o« XDP Statistics: Datapath performance metrics (pass, drop, redirect, abort)
¢ N3/N6 Interface Stats: RAN and Data Network traffic distribution

* Route Statistics: FIB lookup performance (cache hits, lookups, errors)
Route Management:

 UE Routes: Query UE IP to gNB routing table (GET /routes)
* FRR Integration: Synchronize routes with Free Range Routing daemon
(POST /routes/sync)

* Routing Sessions: View routing protocol sessions (GET
/routing/sessions)

e OSPF Database: Query OSPF external route database (GET
/ospf/database/external)

Configuration:

* UPF Config: Retrieve and edit configuration (GET /config, POST /config)

e Dataplane Config: Query dataplane-specific configuration (GET
/dataplane config)

« XDP Capabilities: Query XDP mode support and interface capabilities
(GET /xdp capabilities)

e eBPF Map Capacity: Monitor resource utilization and capacity (GET
/map_info)

Web Ul Integration

The OmniUPF Web Ul is built on this APl and provides an interactive dashboard
for all API functionality. See the for screenshots and usage

examples.

Swagger APl Documentation

The APl is fully documented using OpenAPI 3.0 (Swagger) specification. The
interactive Swagger Ul provides:

e Complete endpoint documentation with request/response schemas
e Try-it-out functionality for testing API calls directly from the browser
e Schema definitions for all data models

e HTTP status codes and error responses

doc.json

OmniUPF API®

[Base URL: fapi/vl 1

OmniUPF - eBPF User Plane Function API

buffer

/buffer Listall packet buffers

‘E /buffer Clear all buffers v|

/buffer/{far_id} Getbuffer status for a specific FAR

‘ [EEE]) /vuffer/{far_id} Clearbuter for 2 speciic FaR o |

r /buffer/{far_id}/flush Flush butfer for a specific FAR

Interactive Swagger Ul showing the OmniUPF APl endpoints with detailed
documentation.

Accessing Swagger Ul

The Swagger documentation is available at:
http://<upf-host>:8080/swagger/index.html

For example: http://10.98.0.20:8080/swagger/index.html

APl Base Path

All APl endpoints are prefixed with:

/api/vl

API Features
Pagination

OmniUPF API supports pagination for endpoints that return large
datasets. Pagination prevents timeouts and reduces memory usage
when querying thousands of sessions, PDRs, or URRs.

Supported Pagination Styles:

1. **Page-based pagination** (recommended):
- “page : Page number (starting from 1)
- "page size : Items per page (default: 100, max: 1000)

2. **0ffset-based pagination**:
- "offset : Number of items to skip
- "limit : Number of items to return (max: 1000)

Example Requests:

" “bash
Page-based: Get second page with 50 items per page
GET /api/vl/pfcp sessions?page=2&page size=50

Offset-based: Skip first 100 items, return next 50
GET /api/vl/pfcp sessions?offset=100&Llimit=50

Default behavior (no pagination params): First 100 items
GET /api/v1l/pfcp_sessions

Response Format:

{
"data": [
{ /* session object */ },
{ /* session object */ },

1,

“pagination": {
“total": 5432,
"page": 2,

"page size": 50,
“total pages": 109
&#t125;
}

Paginated Endpoints:

e /api/vl/pfcp sessions - PFCP sessions list

e /api/vl/pfcp associations - PFCP associations list

e /api/vl/routes - UE IP routes

e /api/vl/uplink pdr map - Uplink PDRs (basic info)

e /api/vl/uplink pdr map/full - Uplink PDRs with full SDF filter details
e /api/vl/downlink pdr map - Downlink PDRs IPv4 (basic info)

e /api/vl/downlink pdr map/full - Downlink PDRs IPv4 with full SDF filter

details
e /api/vl/downlink pdr map ip6 - Downlink PDRs IPv6 (basic info)

e /api/vl/downlink pdr map ip6/full - Downlink PDRs IPv6 with full SDF
filter details

e /api/vl/far map - Forwarding Action Rules
e /api/vl/ger map - QoS Enforcement Rules

e /api/vl/urr _map - Usage Reporting Rules
Buffer Management Endpoints:

e GET /api/vl/buffer - List all FAR buffers with statistics

* GET /api/vl/buffer/:far id - Get buffer status for specific FAR

e GET /api/vl/buffer/notifications - List DLDR notification status
e DELETE /api/vl/buffer - Clear all buffered packets

* DELETE /api/vl/buffer/:far_id - Clear buffer for specific FAR
e POST /api/vl/buffer/:far _id/flush - Flush (replay) buffered packets
* POST /api/vl/buffer/:far _id/notify - Manually send DLDR notification

Configuration Endpoints:

e GET /api/vl/config - Get current UPF configuration
e POST /api/vl/config - Update UPF configuration (runtime editable fields)
* GET /api/vl/dataplane config - Get dataplane-specific configuration

Routing Integration Endpoints:

e GET /api/vl/routes - List UE routes
e POST /api/vl/routes/sync - Trigger route synchronization with FRR
e GET /api/vl/routing/sessions - Get routing protocol sessions

* GET /api/vl/ospf/database/external - Get OSPF external LSA database

Best Practices:

Use page size=100 for Web Ul display

Use page size=1000 for bulk exports (max limit)

Query pagination.total pages to determine iteration count

Increase page size for better APl performance (fewer requests)

CORS Support

Cross-0rigin Resource Sharing (CORS) is enabled by default for all API
endpoints, allowing Web Ul and third-party applications to consume the API
from different origins.

Prometheus Metrics

In addition to the REST API, OmniUPF exposes Prometheus metrics on the
/metrics endpoint (default port :9090).

Metrics provide:

e PFCP message counters and latency per peer
e Packet statistics by protocol type

e XDP action verdicts

e Buffer statistics

e eBPF map capacity utilization

e URR volume tracking

See the for complete documentation.

Related Documentation

. - Interactive dashboard built on this API

. - Prometheus metrics documentation

. - PFCP error codes and troubleshooting

. - PDR, FAR, QER, URR configuration

. - FRR integration and UE routing

. - Statistics monitoring and capacity planning

. - UPF configuration options

. - Interactive API documentation (replace localhost with your

UPF host)

http://localhost:8080/swagger/index.html

OmniUPF Architecture
Guide

Table of Contents

© 0 N o U A WD -

Overview

OmniUPF leverages eBPF (extended Berkeley Packet Filter) and XDP (eXpress
Data Path) to achieve carrier-grade performance for 5G/LTE packet processing.
By running packet processing logic directly in the Linux kernel, OmniUPF
eliminates the overhead of userspace processing and achieves multi-gigabit
throughput with microsecond latency.

Architecture Layers

Hetwork: Interfaces

M3 Interface MG Inte=rface
GTP-U froem RAN IP froam Dats Metwork

' X.I:IF' Layner | Kemmel) +
XDP Hook N3 XDP Hook NE&
Dertwer Lewve] Diriver Level

J
=BPFF Programs Iterggj.'l--""

{ Euffering

Pl
R UsErspacs
FECF Handle RESTap | f FerMenacer
| | e UDF Socket
~— — — _ . -
Install Rules " instal Rules < Irstall Rules Install Fustes
| .
- % eEFF Maps [Kemel .
ol - Bmbroioy) Ll L3 - "
FDR Ma
= FAR Map QER Map URR Map
uplink_pdr_mag
- far_map ger_map urr_map

downiink_pdr_map

Key Design Principles
Zero-Copy Processing:

e Packets processed entirely in kernel space
* No data copying between kernel and userspace

e Direct packet manipulation using XDP
Lock-Free Data Structures:

e eBPF maps use per-CPU hash tables

e Atomic operations for concurrent access

¢ No mutex/spinlock overhead
Hardware Offload Ready:

e XDP offload mode supports SmartNIC execution
e Compatible with network cards supporting XDP

e Fallback to driver-native or generic modes

eBPF Technology Foundation

What is eBPF?

eBPF (extended Berkeley Packet Filter) is a revolutionary Linux kernel
technology that allows safe, sandboxed programs to run in kernel space
without changing kernel source code or loading kernel modules.

Key Features:

Safety: eBPF verifier ensures programs cannot crash the kernel

Performance: Runs at native kernel speed (no interpretation overhead)

Flexibility: Can be updated at runtime without kernel restart

Observability: Built-in tracing and statistics

eBPF Program Lifecycle

eBPF Verifier JIT Compiler

Load eBPF Program (ELF)

Kernel (eBPF Runtime)

Verify Safety:
- No infinite loops
- Bounded memory access
- Valid map operations

- [Verification Success]

Compile to Native Code

Install Program
Return Program FD
[Verification Failure]

Return Error

Attach to XDP Hook

Program runs for every packet

Update eBPF Maps (PDR/FAR/QER/URR)

eBPF Verifier JIT Compiler

eBPF Maps

Maps updated atomically

Kernel (eBPF Runtime)

eBPF maps are kernel data structures shared between eBPF programs and
userspace.

Map Types Used in OmniUPF:

Map Type

BPF_MAP_TYPE_HASH

BPF MAP TYPE ARRAY

BPF_MAP_TYPE PERCPU HASH

BPF_MAP TYPE LRU HASH

Map Operations:

XDP Datapath

XDP Overview

Description

Hash table with key-
value pairs

Array indexed by
integer

Per-CPU hash table
(lock-free)

LRU (Least Recently
Used) hash

Lookup: O(1) hash lookup (sub-microsecond)
Update: Atomic updates from userspace
Delete: Immediate removal of entries

Iterate: Batch operations for map dumps

Use Case

PDR lookup by TEID
or UE IP

QER, FAR, URR
lookup by ID

High-performance
PDR lookups

Automatic eviction of
old entries

XDP (eXpress Data Path) is a Linux kernel hook that allows eBPF programs to
process packets at the earliest possible point—right after the network driver
receives them, before the kernel networking stack.

XDP Attach Modes

OmniUPF supports three XDP attach modes, each with different performance

and compatibility characteristics.

Userspace eBPF Verifier JIT Compiler

Load eBPF Program (ELF)

Verify Safety:
- No infinite loops
- Bounded memory access
- Yalid map operations

—

alt [Verification Success])

Compile to Native Code

>

Kernel (eBPF Runtime)

Install Program

Returm Program FD

&

L

[Verification Failure]

Program runs for every packet

Maps updated atomically

Return Error
Attach to XDP Hook
Update eBPF Maps (PDR/FAR/QER/URR)
Userspace eBPF Verifier JIT Compiler

1. XDP Offload Mode

Hardware Execution (Best Performance):

e eBPF program runs directly on SmartNIC hardware
e Packet processing in NIC without touching CPU
e Achieves 100 Gbps+ throughput

Kernel (eBPF Runtime)

e Requires compatible SmartNIC (Netronome, Mellanox ConnectX-6)

Configuration:

xdp attach mode: offload

Limitations:

e Requires expensive SmartNIC hardware

e Limited eBPF program complexity

e Not all eBPF features supported in hardware

2. XDP Native Mode (Default for Production)

Driver-Level Execution (High Performance):

eBPF program runs in network driver context

Packets processed before SKB (socket buffer) allocation

Achieves 10-40 Gbps per core

Requires driver with XDP support (most modern drivers)

Configuration:

xdp_attach mode: native

Advantages:

e Very high performance (multi-million pps)
¢ Wide hardware compatibility

e Full eBPF feature set
Supported Drivers:

e Intel: i40e, ice, ixgbe, igb
e Mellanox: miIx4, miIx5

e Broadcom: bnxt

e Amazon: ena

e Most 10G+ network cards

3. XDP Generic Mode
Software Emulation (Compatibility):

e eBPF program runs after kernel allocates SKB

e Software emulation of XDP behavior
e Works on any network interface

e Useful for testing and development

Configuration:

xdp attach mode: generic

Use Cases:

Development and testing
Virtualized environments (VMs without SR-I0V)

Older network hardware

Loopback interface testing

Performance: 1-5 Gbps (significantly slower than native/offload)

XDP Return Codes

eBPF programs return XDP action codes to tell the kernel what to do with
packets:

Return Code Meaning Use in OmniUPF

S0 TGS Send packet to kernel Buffering (local delivery),
- network stack ICMP, unknown traffic
, _ Invalid packets, rate limiting,
XDP_DROP Drop packet immediately

policy drops

Transmit packet back out
XDP_TX _ Not currently used
same interface

Send packet to different Main forwarding path (N3

XDP REDIRECT .
- interface N6)

Processing error, drop
XDP_ ABORTED eBPF program errors
- packet and log

Packet Processing Pipeline

Program Structure

OmniUPF uses eBPF tail calls to create a modular packet processing pipeline.

I
tail_call tail_call ger_enforce tail_call far_execute tail_call XDP_REDIRECT
- - Apply QoS - Forwarding - -

Tail Calls:

Allow eBPF programs to call other eBPF programs

Reuses same stack frame (bounded stack depth)

Enables modular pipeline design

Maximum 33 tail call depth

Uplink Packet Processing

N3 Interface QER Enforcement FAR Processing

URR Accounting N6 Interface

‘ XDP Hook ‘ PDR Lookup ‘

GTP-U Packet (TEID 5678)

Extract TEID, Lookup uplink_pdr_map
| J [PDR Found]

Get FAR ID, QER ID, URR IDs

Apply Rate Limiting (MBR)

| [Rate OK]
Check FAR Action
| J [Action: FORWARD]
Remove GTP-U Header
Decrement TTL, Recalculate Checksum
Increment Volume Counters
XDP_REDIRECT to N6 Interface
[Action: BUFFER]
Encapsulate in GTP-U (TEID=FAR_ID)
XDP_PASS to Buffer Sogket
[Action: DROP]
XDP_DROP
[Rate Exceeded]
XDP_DROP (Rate Limited)
[PDR Not Found]
XDP_DROP (Unknown TEID)
N3 Interface ‘ XDP Hook ‘ PDR Lookup QER Enforcement FAR Processing URR Accounting

Downlink Packet Processing

tail cqy o EE_EMIONCE — Tar_exenute
Watch FOR —— Apply Jas e Forwarding

eBPF Map Architecture

Map Memory Layout

Map Sizing

OmniUPF automatically calculates map sizes based on max sessions
configuration:

PDR Maps = 2 x max_sessions (uplink + downlink)
FAR Maps = 2 x max_sessions (uplink + downlink)
QER Maps = 1 x max_sessions (shared per session)
URR Maps = 3 x max _sessions (multiple URRs per session)

Example (max_sessions = 65,535):

PDR maps: 131,070 entries each
FAR map: 131,070 entries

QER map: 65,535 entries

URR map: 131,070 entries

Total Memory:

PDR maps: 3 x 131,070 x 212 B = ~83 MB
FAR map: 131,070 x 20 B = ~2.6 MB
QER map: 65,535 x 36 B = ~2.3 MB

URR map: 131,070 x 20 B = ~2.6 MB
Total: ~91 MB kernel memory

Buffering Mechanism

Buffering Overview

OmniUPF implements packet buffering for handover scenarios by encapsulating
packets in GTP-U and sending them to a userspace process via UDP socket.

Buffering Architecture

Parse error on line 4: .../>2. Add UDP Header (port 22152)
3. ---------------
-------- ~ Expecting 'SQE', 'DOUBLECIRCLEEND', 'PE', '-)', 'STADIUMEND',
'SUBROUTINEEND?, 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',
‘TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'PS'

Buffer Encapsulation Details

When buffering is enabled (FAR action bit 2 set), the eBPF program:

1. Calculates Original Packet Size:

orig packet len = ntohs(ip->tot len); // From IP header

2. Expands Packet Header:

// Add space for: Outer IP + UDP + GTP-U

gtp _encap size = sizeof(struct iphdr) + sizeof(struct udphdr) +
sizeof(struct gtpuhdr);

bpf xdp adjust head(ctx, -gtp encap size);
3. Builds Outer IP Header:

ip->saddr = original sender ip; // Preserve source to avoid
martian filtering

ip->daddr = local upf ip; // Local IP where userspace
listener binds

ip->protocol = IPPROTO UDP;
ip->ttl = 64;

4. Builds UDP Header:

udp->source = htons(22152); // BUFFER UDP PORT
udp->dest = htons(22152);

udp->len = htons(sizeof(udphdr) + sizeof(gtpuhdr) +
orig packet len);

5. Builds GTP-U Header:

gtp->version = 1;

gtp->message type = GTPU G PDU;

gtp->teid = htonl(far_id | (direction << 24)); // Encode FAR
ID and direction

gtp->message length = htons(orig packet len);

6. Returns XDP_PASS:

o Kernel delivers packet to local UDP socket on port 22152

o Userspace buffer manager receives and stores packet

Buffer Flush Operation

When handover completes, SMF updates FAR to clear BUFFER flag. Buffered
packets are replayed:

IPDA Found]

FORREAL

Buffer Management Parameters

Parameter

Max Per FAR

Max Total

Packet TTL

Buffer Port

Buffer Cleanup
Interval

Default

10,000
packets

100,000
packets

30 seconds

22152

60 seconds

Description

Maximum packets buffered per
FAR

Maximum total buffered packets

Time before buffered packets
expire

UDP port for buffer delivery

How often to check for expired
packets

QoS Enforcement

Rate Limiting Algorithm

OmniUPF implements a sliding window rate limiter for QoS enforcement.

Parse error on line 5: ...= packet _size x 8 x (NSEC_PER_SEC / rate ---------------
-------- ~ Expecting 'SQE', 'DOUBLECIRCLEEND?, 'PE', '-)', 'STADIUMEND',
'SUBROUTINEEND?, 'PIPE', 'CYLINDEREND', 'DIAMOND_STOP', 'TAGEND',
‘TRAPEND', 'INVTRAPEND', 'UNICODE_TEXT', 'TEXT', 'TAGSTART', got 'PS'

Sliding Window Implementation

Algorithm (from ger.h):

static _ always_inline enum xdp action limit rate sliding window(
const u64 packet size,
volatile u64 *window start,
const u64 rate)

static const _ u64 NSEC PER SEC = 1000000000ULL;
static const _ u64 window size = 5000000ULL; // 5ms window

// Rate = 0 means unlimited
if (rate == 0)
return XDP_ PASS;

// Calculate transmission time for this packet
__ub4 tx time = packet size * 8 * (NSEC _PER SEC / rate);
__u64 now = bpf ktime get ns();

// Check if we're ahead of window (packet would transmit in
the future)
__u64 start = *window start;
if (start + tx time > now)
return XDP_DROP; // Rate limit exceeded

// If window has passed, reset it

if (start + window size < now) {
*window start = now - window size + tx time;
return XDP PASS;

// Update window to account for this packet
*window start = start + tx time;
return XDP PASS;

Key Parameters:

Window Size: 5ms (5,000,000 nanoseconds)

Per-Direction: Separate windows for uplink and downlink

Atomic Updates: Uses volatile pointers for concurrent access
MBR = 0: Treated as unlimited bandwidth

QoS Example Calculation

Scenario: MBR = 100 Mbps, Packet Size = 1500 bytes

1. Transmission Time:

tx_time = 1500 bytes x 8 bits/byte x (1,000,000,000 ns/sec +
100,000,000 bps)

tx time = 1500 x 8 x 10 = 120,000 ns = 120 pus
2. Rate Check:

o If last packet transmitted at t=0, next packet can transmit at t=120us

o If packet arrives at t=100us, it's dropped (too early)
o |If packet arrives at t=150us, it's forwarded (window advanced)

3. Maximum Packet Rate:

Max PPS = (100 Mbps + 8) + 1500 bytes = 8,333 packets/second
Inter-packet gap = 120 us

Performance Characteristics

Throughput

Configuration

XDP Offload (SmartNIC)

XDP Native (10G NIC,
single core)

XDP Native (10G NIC, 4
cores)

XDP Generic

Throughput

100 Gbps

10 Gbps

40 Gbps

1-5 Gbps

Latency Breakdown

Packets/Second

148 Mpps

8 Mpps

32 Mpps

0.8-4 Mpps

Total Packet Processing Latency (XDP Native):

Latency

<1us

2-5 s

2-5 s

50-100
S

Stage Latency Cumulative

NIC RX 0.5 us 0.5 s

XDP Hook Invocation 0.1 us 0.6 s

PDR Lookup (Hash) 0.3 us 0.9 s

QER Rate Check 0.1 us 1.0 us
FAR Processing 0.5 ps 1.5 us
URR Update 0.2 us 1.7 ys

GTP-U Encap/Decap 0.8 us 2.5 us
XDP_REDIRECT 0.5 us 3.0 us

NIC TX 0.5 us 3.5 us

Total: ~3.5 us per packet (XDP Native, 10G NIC)

CPU Utilization

Per-Core Processing Capacity:

e Single core: 8-10 Mpps (XDP Native)
e With hyper-threading: 12-15 Mpps

e Multi-core scaling: Near-linear up to 8 cores

CPU Usage by Packet Rate:

CPU % = (Packet Rate / 10,000,000) x 100% per core

Example: 2 Mpps traffic uses ~20% of one core

Memory Bandwidth
eBPF Map Access:

e Hash lookup: ~100 ns (cache hit)
e Hash lookup: ~300 ns (cache miss)

e Array lookup: ~50 ns (always cache hit)

Memory Bandwidth Required:

Bandwidth = Packet Rate x (Avg Packet Size + Map Lookups x 64
bytes)

Example: 10 Mpps x (1500 B + 3 lookups x 64 B) = 160 Gbps memory
bandwidth

Scalability and Tuning

Horizontal Scaling

Multiple UPF Instances:

Setting SMF as parent of SMF would create a cycle

Session Distribution:

¢ SMF distributes sessions across UPF instances
e Each UPF handles subset of UE sessions

¢ No inter-UPF communication needed (stateless)

Vertical Scaling
CPU Tuning:

1. Enable CPU affinity for XDP processing

2. Use RSS (Receive Side Scaling) to distribute RX queues

3. Pin eBPF programs to specific cores

NIC Tuning:

1. Increase RX ring buffer size
2. Enable multi-queue NICs (RSS)

3. Use flow director for traffic steering

Kernel Tuning:

Increase locked memory limit for eBPF maps
ulimit -1 unlimited

Disable IRQ balance for XDP cores
systemctl stop irgbalance

Set CPU governor to performance
cpupower frequency-set -g performance

Increase network buffer sizes
sysctl -w net.core.rmem max=134217728
sysctl -w net.core.wmem max=134217728

Capacity Planning

Formula:

Required CPU Cores = (Expected PPS + 10,000,000) x 1.5 (50%

headroom)
Required Memory = (Max Sessions x 212 B x 3) + 100 MB (eBPF maps +

overhead)
Required Network = (Peak Throughput x 2) + 10 Gbps (headroom)

Example (1 million sessions, 20 Gbps peak):

e CPU: (20 Gbps + 10 Gbps per core) x 1.5 = 3-4 cores
e Memory: (1M x 212 B x 3) + 100 MB = 750 MB

e Network: (20 Gbps x 2) + 10 Gbps = 50 Gbps interfaces

Related Documentation

. - General UPF operations and deployment
. - PDR, FAR, QER, URR details

. - Performance monitoring and metrics

. - Control panel usage

. - Common issues and diagnostics

OmniUPF Configuration
Guide

Table of Contents

© 0 N o U A WD -

Overview

OmniUPF is a versatile user plane function that can operate in multiple modes
to support both 4G (EPC) and 5G core networks. Configuration is managed
through YAML configuration files.

Operating Modes

OmniUPF is a unified platform that can simultaneously operate as:

Control Plane

OmnisMF OmniPGW-C OmniSGW-C
(5G) (4G) (4G)
N4 PFCP Sxb PFCP Sxc PFCP

OmniUPF Unified

Mode Configuration

The operating mode is determined by the control plane (SMF, PGW-C, or
SGW-C) that establishes PFCP associations with OmniUPF. No specific OmniUPF
configuration is required to switch between modes.

Simultaneous Operation:

e OmniUPF can accept PFCP associations from multiple control planes
concurrently

e A single OmniUPF instance can act as UPF, PGW-U, and SGW-U at the
same time

e Sessions from different control planes are isolated and managed
independently

XDP Attachment Modes

OmniUPF uses XDP (eXpress Data Path) for high-performance packet
processing. Three attachment modes are supported.

For detailed XDP setup instructions, especially for Proxmox and other
hypervisors, see the

Mode Comparison

Mode

Generic

Native

Offload

Attach
Point

Network
stack
(kernel)

Network
driver
(kernel)

NIC
hardware
(SmartNIC)

Performance

~1-2 Mpps

~5-10 Mpps

~10-40 Mpps

Use Case

Testing,
development,
compatibility

Production
(bare metal,
VM with SR-
IOV)

High-
throughput
production

NIC
Requirements

Any NIC

XDP-capable
driver

SmartNIC with
XDP offload

XDP Program
Driver

XDP Program
Stack

Generic Mode (Default)

Description: XDP program runs in the kernel network stack

Advantages:

Works with any network interface

No special driver or hardware requirements

Ideal for testing and development

Compatible with all hypervisors and virtualization platforms

Disadvantages:

e Lower performance (~1-2 Mpps per core)

* Packets already passed through driver before XDP processing

Configuration:

xdp_attach mode: generic

Best for:

Virtual machines without SR-IOV

Testing and validation environments

NICs without XDP driver support

Hypervisors like Proxmox, VMware, VirtualBox

Native Mode (Recommended)
Description: XDP program runs at the network driver level

Advantages:

High performance (~5-10 Mpps per core)

Packets processed before entering network stack

Significantly lower latency than generic mode
Works on bare metal and SR-IOV VMs

Disadvantages:

e Requires network driver with XDP support

e Not all NICs/drivers support native XDP

Configuration:

xdp _attach mode: native

Best for:

e Production deployments on bare metal

e VMs with SR-IOV passthrough

¢ NICs with XDP-capable drivers (Intel, Mellanox, etc.)
Requirements:

e XDP-capable network driver (see)

e Linux kernel 5.15+ with XDP support enabled

Offload Mode (Maximum Performance)
Description: XDP program runs directly on SmartNIC hardware
Advantages:

e Maximum performance (~10-40 Mpps)
e Zero CPU overhead for packet processing
e Sub-microsecond latency

e Frees CPU for control plane processing
Disadvantages:

e Requires expensive SmartNIC hardware
e Limited SmartNIC availability

e Complex setup and configuration

Configuration:
xdp attach mode: offload

Best for:

e Ultra-high-throughput production deployments
e Edge computing with strict latency requirements

e Environments where CPU resources are limited

Requirements:

e SmartNIC with XDP offload support (Netronome Agilio CX, Mellanox
BlueField)

e Specialized firmware and drivers

Configuration Parameters

Network Interfaces

Parameter Description Type Default

Network interfaces for
interface name N3/N6/N9 traffic (XDP List [lo]
attachment points)

IPv4 address for N3 interface
n3 address IP 127.0.0.1
(GTP-U from RAN)

IPv4 address for N9 interface Same as

n9 address IP
- (UPF-to-UPF for ULCL) n3 address

Example:

interface name: [ethO, ethl]
n3 address: 10.100.50.233
n9 address: 10.100.50.234

PFCP Configuration

Parameter

pfcp address

pfcp node id

pfcp remote node

association setup timeout

heartbeat retries

heartbeat interval

heartbeat timeout

Example:

Description

Local address for
PFCP server
(N4/Sxb/Sxc
interface)

Local Node ID for
PFCP protocol

Remote PFCP
peers (SMF/PGW-
C/SGW-C) to
connect

Timeout between
Association Setup
Requests
(seconds)

Number of
heartbeat retries
before declaring
peer dead

PFCP heartbeat
interval (seconds)

PFCP heartbeat
timeout (seconds)

Type

Host:Port

List

Integer

Integer

Integer

Integer

Default

: 8805

127.0.0.1

[]

pfcp address: :8805
pfcp node id: 10.100.50.241

pfcp remote node:

- 10.100.50.10 # OmniSMF

- 10.100.60.20 # OmniPGW-C
heartbeat interval: 10
heartbeat retries: 5

APl and Monitoring

Parameter

api address

metrics address

logging level

Example:

api address: :8080
metrics address:

Description

Local address for REST API
server

Local address for Prometheus
metrics endpoint (see

)

Logging level (trace, debug,
info, warn, error)

: 9090

logging level: debug

Type

Host:Port

Host:Port

String

Default

: 8080

: 9090

info

GTP Path Management

Parameter Description Type

List of GTP peers for Echo
Request keepalives

gtp peer List

Interval between GTP Echo

tp echo interval Integer
ol - Requests (seconds) d

Example:

gtp peer:

- 10.100.50.50:2152 # gNB

- 10.100.50.60:2152 # Another UPF for N9
gtp echo interval: 15

Default

[]

10

eBPF Map Capacity

Parameter

max_sessions

pdr map size

far map size

ger map size

urr _map size

Description

Maximum

number of
concurrent
sessions

Size of PDR eBPF
map

Size of FAR eBPF
map

Size of QER eBPF
map

Size of URR eBPF
map

Type

Integer

Integer

Integer

Integer

Integer

Default

65535

Auto-
calculated

Used to
calculate map
sizes

max_sessions x
2

max_ sessions x
2

max_ sessions

max_sessions x
2

Note: Setting map sizes to 0 (default) enables auto-calculation based on
max sessions. Override with specific values if custom sizing is needed.

Example:

max_ sessions: 100000

Maps will be

PDR: 200,000
FAR: 200,000
QER: 100,000
URR: 200,000

auto-sized:
entries
entries
entries
entries

Custom sizing example:

max_sessions: 50000

pdr map size: 131070 # Custom size

far map size: 131070
ger _map size: 65535
urr_map size: 131070

Buffer Configuration

Parameter

buffer port

buffer max packets

buffer max total

buffer packet ttl

buffer cleanup interval

Example:

buffer port: 22152

buffer max packets: 20000
buffer max total: 200000

buffer packet ttl: 60

Description

UDP port for buffered
packets from eBPF

Maximum packets to
buffer per FAR

Maximum total buffered
packets (O=unlimited)

TTL for buffered packets
in seconds (0=no
expiration)

Buffer cleanup interval
in seconds (0=no
cleanup)

buffer cleanup interval: 30

Type

Integer

Integer

Integer

Integer

Integer

Default

22152

10000

100000

30

60

Feature Flags

Parameter Description

: Enable UE IP allocation by
feature ueip ,
- OmniUPF
_ IP pool for UE IP allocation
ueip pool . .
(requires feature ueip)
Enable F-TEID allocation by

feature ftup ,
- OmniUPF

TEID pool size for F-TEID
teid pool allocation (requires
feature ftup)

Example (UE IP allocation):

feature ueip: true

Type

Boolean

CIDR

Boolean

Integer

Default

false

10.60.0.0/24

false

65535

ueip pool: 10.45.0.0/16 # Allocate UE IPs from this pool

Example (F-TEID allocation):

feature ftup: true

teid pool: 1000000 # Allow up to 1M TEID allocations

Route Manager Configuration

For UE route synchronization with FRR (Free Range Routing) daemon. See

for details.

Parameter

route manager enabled

route manager type

route manager vtysh path

route manager nexthop

Example:

route manager enabled: true

route manager type: frr

Description

Enable
automatic UE
route
synchronization

Routing
daemon type
(frr
supported)

Path to vtysh
command

Next-hop IP for
UE routes

route manager vtysh path: /usr/bin/vtysh
route manager nexthop: 10.0.1.1 # Next hop for UE routes

When to Enable:

Type

Boolean

String

String

P
Address

e Multi-UPF deployments requiring route advertisement

e Integration with OSPF or BGP routing protocols

e Requires FRRouting daemon installed and configured

Default

false

frr

/usr/bin/vtysh

 (empty)

Configuration Methods

YAML Configuration File (Recommended)

File: config.yml

Network Configuration
interface name: [ethO]

n3 address: 10.100.50.233
n9 address: 10.100.50.233
xdp_attach mode: native

PFCP Configuration
pfcp address: :8805
pfcp node id: 10.100.50.241
pfcp remote node:
- 10.100.50.10

API and Monitoring
api address: :8080
metrics address: :9090
logging level: info

Capacity
max_sessions: 100000

GTP Peers
gtp peer:

- 10.100.50.50:2152
gtp echo interval: 10

Features

feature ueip: true

ueip pool: 10.45.0.0/16
feature ftup: false

Buffering
buffer max packets: 15000
buffer packet ttl: 45

Hypervisor Compatibility

Overview

OmniUPF is compatible with all major hypervisors and virtualization platforms.
The XDP attach mode and network configuration depend on the hypervisor's
networking capabilities.

For step-by-step instructions on enabling native XDP on Proxmox and
other hypervisors, see the XDP Modes Guide,

Packet Path

I Network Interface Card ‘

N

offload mode

Network Driver ‘

N

native mode

Network Stack

gen eric mode

Application

Proxmox VE

Supported Configurations:

1. Bridge Mode (Generic XDP)
Use case: Standard VM networking
Configuration:

¢ Network Device: VirtlO or E1000
e XDP Mode: generic

e Performance: ~1-2 Mpps

Proxmox VM Settings:

Network Device: net0
Model: VirtIO (paravirtualized)
Bridge: vmbro

OmniUPF Config:

interface name: [eth0]
xdp attach mode: generic

2. SR-IOV Passthrough (Native XDP)

Use case: High-performance production
Configuration:

e Network Device: SR-IOV Virtual Function
e XDP Mode: native

e Performance: ~5-10 Mpps

Requirements:

e Physical NIC with SR-IOV support (Intel X710, Mellanox ConnectX-5)
e SR-IOV enabled in BIOS

e |IOMMU enabled (intel iommu=on or amd iommu=on in GRUB)

Enable SR-IOV on Proxmox:

Edit GRUB configuration
nano /etc/default/grub

Add to GRUB CMDLINE LINUX DEFAULT:
intel iommu=on iommu=pt

Update GRUB and reboot
update-grub
reboot

Enable VFs on NIC (example: 4 virtual functions on eth0)
echo 4 > /sys/class/net/eth0/device/sriov_numvfs

Make persistent

echo "echo 4 > /sys/class/net/eth0/device/sriov_numvfs" >>
/etc/rc.local

chmod +x /etc/rc.local

Proxmox VM Settings:

Hardware - Add - PCI Device
Select: SR-IOV Virtual Function
All Functions: No

Primary GPU: No

PCI-Express: Yes (optional)

OmniUPF Config:

interface name: [enslf@] # SR-IOV VF name
xdp_attach mode: native

3. PCI Passthrough (Native XDP)
Use case: Dedicated NIC for single VM
Configuration:

e Entire physical NIC passed to VM
 XDP Mode: native or offload (if SmartNIC)
e Performance: ~5-40 Mpps (depends on NIC)

Proxmox VM Settings:

Hardware - Add - PCI Device

Select: Physical NIC (e.g., 0000:01:00.0)
All Functions: Yes

Primary GPU: No

PCI-Express: Yes

OmniUPF Config:

interface name: [ensl1f0]
xdp_attach mode: native # or 'offload' for SmartNIC

KVM/QEMU

Bridge Mode:

virt-install \
--name omniupf \
--network bridge=br0,model=virtio \
--disk path=/var/lib/libvirt/images/omniupf.qcow2 \

SR-I0V Passthrough:

<interface type='hostdev' managed='yes'>
<source>
<address type='pci' domain='0x0000' bus='0x01l' slot='0x10"'
function='0x1"'/>
</source>
</interface>

VMware ESXi
Standard vSwitch (Generic XDP):

e Network Adapter: VMXNET3
e XDP Mode: generic

SR-IOV (Native XDP):

e Enable SR-IOV in ESXi host settings
¢ Add SR-IOV network adapter to VM
e XDP Mode: native

Microsoft Hyper-V
Virtual Switch (Generic XDP):

e Network Adapter: Synthetic
e XDP Mode: generic

SR-IOV (Native XDP):

e Enable SR-IOV in Hyper-V Manager
e Configure SR-I0V on virtual network adapter
e XDP Mode: native

VirtualBox
NAT/Bridged Mode (Generic XDP only):

e Network Adapter: VirtlO-Net or Intel PRO/1000
e XDP Mode: generic
e Note: VirtualBox does not support SR-IOV

NIC Compatibility

Understanding Mpps vs Throughput

Packets per second (Mpps) and throughput (Gbps) are not directly
equivalent - the relationship depends entirely on packet size. Mobile network
traffic varies dramatically in packet size, from tiny VolP packets to large video
streaming frames.

Packet Size Impact on Throughput

In mobile networks, the UPF processes GTP-U encapsulated packets on the N3
interface and native IP packets on the N6 interface.

GTP-U Encapsulation Overhead (N3 Interface):

e Outer IPv4 header: 20 bytes

e Outer UDP header: 8 bytes

e GTP-U header: 8 bytes

e Total GTP-U overhead: 36 bytes

Minimum GTP-U Packet (N3):

e Inner IP header: 20 bytes (IPv4)
¢ Inner UDP header: 8 bytes

e Minimum payload: 1 byte

e Inner packet total: 29 bytes

e Plus GTP-U overhead: 36 bytes

* Total packet size: 65 bytes

Throughput at 1 Mpps with minimum GTP-U packets:

65 bytes x 1,000,000 pps x 8 bits/byte = 520 Mbps

Maximum GTP-U Packet (N3 with 1500 MTU):

e Inner IP MTU: 1500 bytes (full inner IP packet)
e Plus GTP-U overhead: 36 bytes
e Total packet size: 1536 bytes

Throughput at 1 Mpps with maximum GTP-U packets:

1536 bytes x 1,000,000 pps x 8 bits/byte = 12,288 Mbps = 12.3 Gbps

Native IP Packets (N6 Interface):
On N6 (towards Internet), packets are native IP without GTP-U:

Minimum N6 packet:

IP header: 20 bytes

UDP header: 8 bytes
Minimum payload: 1 byte
Total: 29 bytes

Throughput at 1 Mpps with minimum N6 packets:

29 bytes x 1,000,000 pps x 8 bits/byte = 232 Mbps

Maximum N6 packet (1500 MTU):

e IP MTU: 1500 bytes
e Total: 1500 bytes

Throughput at 1 Mpps with maximum N6 packets:

1500 bytes x 1,000,000 pps x 8 bits/byte = 12,000 Mbps = 12 Gbps

Real-World Performance Examples

Intel X710 NIC (10 Mpps capacity on N3 interface with GTP-U):

[
Traffic nner GTP-U Throughput at Typical Use
Packet
Pattern . Total 10 Mpps Case
Size
VolP calls 65-150 101-186 AMR-WB voice,
0.8-1.5 Gbps
(N3) bytes bytes G.711
Light web 400-600 436-636 HTTP/HTTPS,
RN 3.5-5.1 Gbps fal
(N3) bytes bytes messaging
Modern 1200 1236 Typical 2024
mobile 9.9 Gbps ypteal &
bytes bytes traffic mix
(N3)
Video 1400- 1436- :
_ 11.5-11.9 HD/4K video
streaming 1450 1486
Gbps chunks
(N3) bytes bytes
Maximum 1500 1536 Large TCP
12.3 Gbps
MTU (N3) bytes bytes downloads

On N6 interface (native IP, no GTP-U):

Traffic Throughput at 10 Typical Use

Packet Size
Pattern Mpps Case
Voice RTP
VolP packets 65-150 bytes 0.5-1.2 Gbps
streams
, 400-600
Light web 3.2-4.8 Gbps HTTP requests
bytes
Mod Typical 2024
odern 1200 bytes 9.6 Gbps ypica
mobile traffic
Video 1400-1450 ,
_ 11.2-11.6 Gbps Video downloads
streaming bytes
Maximum Large file
1500 bytes 12.0 Gbps
MTU transfers

At 10 Mpps with modern mobile traffic (1200-byte average), expect ~10
Gbps throughput on both N3 and N6 interfaces.

Why This Matters for Mobile Networks:

Mobile traffic is highly variable in packet size and the GTP-U overhead (36
bytes) significantly impacts small packet performance:

Inner packet size (actual user data):

e VolP (AMR-WB codec): 65-80 bytes -» With GTP-U: 101-116 bytes

e loT sensor data: 50-200 bytes —» With GTP-U: 86-236 bytes

e Web browsing (HTTP/3): 400-800 bytes —» With GTP-U: 436-836 bytes
e Video streaming: 1200-1450 bytes —» With GTP-U: 1236-1486 bytes

e Large downloads: 1500 bytes —» With GTP-U: 1536 bytes

Impact of GTP-U overhead:

e Small packets (< 200 bytes): ~35-70% overhead - Mpps is limiting factor
¢ Medium packets (200-800 bytes): ~5-20% overhead - Mixed limitation

e Large packets (> 1200 bytes): ~3% overhead - Link speed is limiting
factor

Performance Planning:
A NIC rated at 10 Mpps will achieve on N3 interface:

¢ VolP-heavy traffic (100-byte inner packets): ~1.0 Gbps (GTP-U overhead
dominates)

e Modern mobile mix (1200-byte average inner packets): ~9.9 Gbps
e Video-heavy traffic (1400-byte inner packets): ~11.5 Gbps
¢ Maximum throughput (1500-byte inner packets): ~12.3 Gbps

On N6 interface (no GTP-U overhead):

e Modern mobile mix (1200-byte packets): ~9.6 Gbps at 10 Mpps
e Maximum throughput (1500-byte packets): ~12.0 Gbps at 10 Mpps

Rule of Thumb for Mobile UPF:

* Small packet traffic (VolIP, loT, signaling): Mpps is limiting - plan for 1-2
Gbps per 10 Mpps

e Modern mobile traffic (1200-byte average): Plan for ~9-10 Gbps per 10
Mpps capacity

e Video-heavy traffic (streaming, downloads): Plan for ~10-12 Gbps per 10
Mpps capacity

e Always consider both N3 and N6 - N3 has GTP-U overhead, N6 does not

Practical Capacity Planning:

With 1200-byte average packet size (typical for modern mobile networks with
video streaming):

NIC Mpps
Capacity

1 Mpps

5 Mpps

10 Mpps

20 Mpps

40 Mpps

N3 Throughput
(GTP-U)

~1.0 Gbps

~4.9 Gbps

~9.9 Gbps

~19.7 Gbps

~39.4 Gbps

N6 Throughput
(Native IP)

~1.0 Gbps

~4.8 Gbps

~9.6 Gbps

~19.2 Gbps

~38.4 Gbps

Realistic
Deployment

Small cell site, loT
gateway

Medium cell site,
enterprise

Large cell site,
small city

Metro area,
medium city

Large metro,
regional hub

Note: These estimates assume 1200-byte average payload size, which is

representative of modern mobile traffic dominated by video streaming, social
media, and cloud applications. Actual throughput will vary based on traffic mix.

XDP-Capable Network Drivers

OmniUPF requires network drivers with XDP support for native and offload

modes. Generic mode works with any NIC.

Intel NICs

Model

Intel X710

Intel XL710

Intel ES10

Intel 82599ES

Intel 1350

Intel E1000

Driver

i40e

i40e

ice

ixgbe

€1000

Mellanox/NVIDIA NICs

Model

Mellanox
ConnectX-5

Mellanox
ConnectX-6

Mellanox
BlueField

Mellanox
ConnectX-4

Broadcom NICs

Driver

mix5

mix5

mix5

mix4

XDP Support

Yes

Yes

Yes

Yes

Limited

No

XDP
Support

Yes

Yes

Yes

Limited

Mode

Native

Native

Native

Native

Generic

Generic only

Mode

Native

Native

Native +
Offload

Generic

Performance

~10 Mpps

~10 Mpps

~15 Mpps

~8 Mpps

~1 Mpps

~1 Mpps

Performance

~12 Mpps

~20 Mpps

~40 Mpps

~2 Mpps

Model

Broadcom
BCM57 xxx

Broadcom
NetXtreme lI

Other Vendors

Model

Netronome Agilio
CX

Amazon ENA

Solarflare
SFC9xxx

VirtlO

XDP
Support

Driver

bnxt en Yes

bnx2x No
. XDP
Driver
Support
nfp Yes
ena Yes
sfc Yes

virtio_ net Limited

Checking NIC XDP Support

Check if driver supports XDP:

Mode

Native

Generic
only

Mode

Offload

Native

Native

Generic

Performance

~8 Mpps

~1 Mpps

Performance

~30 Mpps

~5 Mpps

~8 Mpps

~2 Mpps

Find NIC driver
ethtool -i eth@ | grep driver

Check XDP support in driver
modinfo <driver name> | grep -i xdp

Example for Intel i40e
modinfo i140e | grep -i xdp

Verify XDP program attachment:

Check if XDP program is attached
ip link show eth® | grep -i xdp

Example output (XDP attached):
2: ethO@: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 xdp qdisc mq

Recommended NICs by Use Case

With 1200-byte average packet size (modern mobile traffic):

Use Case

Testing/Development

Small Cell Site

Medium Cell/Metro

Large Metro

Regional Hub

Proxmox VM
(Bridge)

Proxmox VM (SR-
I0V)

Throughput Estimates:

Recommended
NIC

Any NIC (VirtlO,
E1000)

Intel X710,
Mellanox CX-5

Intel ES10,
Mellanox CX-6

Mellanox CX-6,
Intel ES810

(dual)

Mellanox
BlueField,
Netronome
Agilio

VirtlO

Intel X710/E810
VF, Mellanox
CX-5 VF

Mode

Generic

Native

Native

Native

Offload

Generic

Native

Mpps
Capacity

1-2 Mpps

5-10
Mpps

10-20
Mpps

20-40
Mpps

40+
Mpps

1-2 Mpps

5-10
Mpps

Througl|
(N3

1-2 Gbp:

5-10 Gbj

10-20 Gl

20-40 Gl

40+ Gby

1-2 Gbp:

5-10 Gbj

e Based on 1200-byte average packet size with GTP-U encapsulation (1236

bytes on N3)

e N6 throughput slightly lower (~9.6 Gbps per 10 Mpps) due to no GTP-U

overhead

e Actual performance varies with traffic mix - VolP-heavy networks will see

lower throughput

Additional Resources

Official XDP Documentation:

NIC Compatibility Lists:

Configuration Examples

Example 1: Development Environment (Generic
Mode)

Scenario: Testing OmniUPF on laptop or VM without SR-IOV

Development config
interface name: [eth0]
xdp attach mode: generic
api address: :8080

pfcp address: :8805

pfcp node id: 127.0.0.1
n3 address: 127.0.0.1
metrics address: :9090
logging level: debug
max_sessions: 1000

Example 2: Production Bare Metal (Native
Mode)

Scenario: Production UPF on bare metal server with Intel X710 NIC

https://www.iovisor.org/technology/xdp
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://docs.cilium.io/en/stable/operations/performance/tuning/
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp

Production bare metal config
interface name: [enslf0®, enslfl] # N3 on enslfO, N6 on ensifl
xdp_attach mode: native
api address: :8080
pfcp address: 10.100.50.241:8805
pfcp node id: 10.100.50.241
n3 address: 10.100.50.233
n9 address: 10.100.50.234
metrics address: :9090
logging level: info
max_sessions: 500000
gtp peer:
- 10.100.50.10:2152 # gNB 1
- 10.100.50.11:2152 # gNB 2
gtp echo interval: 30
pfcp _remote node:
- 10.100.50.50 # OmniSMF
heartbeat interval: 10
feature ueip: true
ueip pool: 10.45.0.0/16
buffer max packets: 50000
buffer packet ttl: 60

Example 3: Proxmox VM with SR-IOV (Native
Mode)

Scenario: Production UPF on Proxmox VM with SR-IOV passthrough

Proxmox SR-IOV config
interface name: [ens1f@] # SR-IOV VF
xdp_attach mode: native
api address: :8080
pfcp address: 192.168.100.10:8805
pfcp node id: 192.168.100.10
n3 address: 192.168.100.10
metrics address: :9090
logging level: info
max_sessions: 100000
gtp peer:
- 192.168.100.50:2152
gtp echo interval: 15
pfcp remote node:
- 192.168.100.20 # SMF

Example 4: PGW-U Mode (4G EPC)

Scenario: OmniUPF acting as PGW-U in 4G EPC network

PGW-U configuration
interface name: [ethO]
xdp attach mode: native
api address: :8080
pfcp address: 10.200.1.10:8805
pfcp node id: 10.200.1.10
n3 address: 10.200.1.10 # S5/S8 interface (GTP-U)
metrics address: :9090
logging level: info
max_sessions: 200000
gtp peer:
- 10.200.1.50:2152 # SGW-U
gtp _echo interval: 20
pfcp remote node:
- 10.200.2.10 # OmniPGW-C (Sxb interface)
heartbeat interval: 5

Example 5: Multi-Mode (UPF + PGW-U
Simultaneously)

Scenario: OmniUPF serving both 5G and 4G networks concurrently

Multi-mode configuration
interface name: [ethO, ethl]
xdp _attach mode: native
api address: :8080
pfcp address: :8805
pfcp node id: 10.50.1.100
n3 address: 10.50.1.100
n9 address: 10.50.1.101
metrics address: :9090
logging level: info
max_sessions: 300000
gtp peer:
- 10.50.2.10:2152 # 5G gNB
- 10.50.2.20:2152 # 4G eNodeB (via SGW-U)
gtp_echo _interval: 15
pfcp remote node:
- 10.50.3.10 # OmniSMF (5G)
- 10.50.3.20 # OmniPGW-C (4G)
heartbeat interval: 10
feature ueip: true
ueip pool: 10.60.0.0/16

Example 6: SmartNIC Offload Mode

Scenario: Ultra-high-throughput deployment with Netronome Agilio CX
SmartNIC

SmartNIC offload configuration
interface name: [enplsOnp@] # SmartNIC interface
xdp_attach mode: offload
api address: :8080
pfcp address: 10.10.1.50:8805
pfcp node id: 10.10.1.50
n3 address: 10.10.1.50
metrics address: :9090
logging level: warn # Reduce overhead
max_sessions: 1000000
pdr map size: 2000000
far map size: 2000000
ger _map_size: 1000000
gtp peer:

- 10.10.2.10:2152

- 10.10.2.20:2152

- 10.10.2.30:2152
gtp _echo interval: 30
pfcp remote node:

- 10.10.3.10
heartbeat interval: 15
buffer max packets: 100000
buffer max total: 1000000

Map Sizing and Capacity Planning

Auto-Sizing (Recommended)

Set max sessions and let OmniUPF calculate map sizes automatically:

max_sessions: 100000

Auto-calculated sizes:
PDR: 200,000 entries (2
FAR: 200,000 entries (2
QER: 100,000 entries (1
URR: 200,000 entries (2

X

max sessions)
max_sessions)

X

max_sessions)
max_sessions)

Memory usage: ~91 MB for 100K sessions

Manual Sizing

Override auto-calculation for custom requirements:

max_sessions: 100000

pdr map size: 300000 # Support more PDRs per session
far map size: 200000

ger map size: 150000 # More QERs than default

urr _map size: 200000

Capacity Estimation

Calculate maximum sessions:

Max Sessions = min(
pdr map size / 2,
far map size / 2,
ger map size

)

Example:

e PDR map: 200,000
e FAR map: 200,000
e QER map: 100,000

Max Sessions = min(100,000, 100,000, 100,000) = 100,000

Memory Requirements

Per session memory usage:

PDR: 2 x 212 B =424 B
FAR: 2 x 20B =408
QER:1 x 36 B=36B
URR: 2 x 20B =408B

Total: ~540 B per session

For 100K sessions: ~52 MB kernel memory

Recommendation: Ensure locked memory limit allows 2x estimated usage:

Check current limit
ulimit -1

Set unlimited (required for eBPF)
ulimit -1 unlimited

Related Documentation

. - eBPF/XDP technical details and performance
optimization

. - PDR, FAR, QER, URR configuration
. - Statistics, capacity monitoring, and alerting
. - Complete Prometheus metrics reference

. - Control panel operations

. - UPF architecture and deployment overview

Metrics Reference

This document describes all Prometheus metrics exposed by OmniUPF on the

/metrics endpoint.

Metric Categories

1.

PFCP message metrics - Control plane protocol message counters and
latency per peer

. XDP Action metrics - Dataplane packet verdicts (drop, pass, redirect,

etc.)

3. Packet metrics - Received packet counters by protocol type

. PFCP Session and Association metrics - Session and association counts

per peer

5. URR metrics - Traffic volume counters aggregated per PFCP peer

. Packet Buffering metrics - Packet buffer state, capacity, and throughput

. Downlink Data Report (Notification) metrics - PFCP Session Report

Request notifications and FAR index tracking

. eBPF Map Capacity metrics - eBPF map utilization and capacity

Metrics Reference

PFCP message metrics

Metrics for tracking PFCP protocol messages between the UPF and control plane

nodes.

Metric Name Type Labels Description

Total number of
received PFCP
message name,
upf_pfcp_rx Counter — messages per
peer address
- message type and
peer

Total number of
transmitted PFCP
message name,
upf_pfcp tx Counter = messages per
peer address
- message type and
peer

Total number of

message name, PFCP messages
upf_pfcp _rx_errors Counter cause code, rejected with error
peer address cause per message

type and peer

PFCP message
processing duration
g in microseconds
upf pfcp_rx_latency Summary 9c_CYPS (p50, p90, p99
peer address ,
quantiles) per
message type and

peer

Note: All counters track messages per PFCP peer for granular visibility into
control plane node behavior.

XDP Action metrics

Packet counters by XDP program action/verdict. These metrics track the
dataplane decision for each packet.

Metric Name Type Labels
upf xdp_aborted Counter none
upf xdp_drop Counter none
upf xdp_pass Counter none
upf xdp_tx Counter none
upf xdp_redirect Counter none

Packet metrics

Description

Total number of packets aborted
(XDP_ABORTED)

Total number of packets dropped
(XDP_DROP)

Total number of packets passed to
kernel (XDP_PASS)

Total number of packets
transmitted (XDP_TX)

Total number of packets redirected
(XDP_REDIRECT)

Counters for received packets by protocol type. All metrics use packet type

label.
Metric T Label
e abels
Name yp
upf rx Counter packet type
upf_route Counter packet type

upf rx packet_type values:

e arp - ARP packets
e icmp - ICMP packets
* icmp6 - ICMPV6 packets

Description

Total number of received packets
by type

Total number of packets routed
by lookup result

e ip4 - IPv4 packets

e 1ip6 - IPv6 packets

e tcp - TCP packets

* udp - UDP packets

e other - Other packet types

e gtp-echo - GTP echo request/response

e gtp-pdu - GTP-U PDU (encapsulated user data)

e gtp-other - Other GTP message types

e gtp-unexp - Unexpected/malformed GTP packets

upf_route packet_type values:

ip4-cache - IPv4 route cache hits

e 1ip4-ok - IPv4 FIB lookup success

e ip4-error-drop - IPv4 FIB lookup failed, packet dropped

e ip4-error-pass - IPv4 FIB lookup failed, packet passed to kernel
e 1ip6-cache - IPv6 route cache hits

e 1ip6-o0k - IPv6 FIB lookup success

e ip6-error-drop - IPv6 FIB lookup failed, packet dropped

e ip6-error-pass - IPv6 FIB lookup failed, packet passed to kernel

PFCP Session and Association metrics

Metrics for tracking PFCP sessions and associations between the UPF and
control plane nodes.

Metric Name

upf_pfcp _sessions

upf_pfcp_associations

upf_pfcp_association_status

upf _pfcp sessions per node

Type

Gauge

Gauge

Gauge

Gauge

Labels

none

none

node id,
address

node id,
address

Description

Total number of
currently established
PFCP sessions (all
peers)

Total number of
currently established
PFCP associations (all
peers)

PFCP association
status per peer
(1=up, 0=down)

Number of active
PFCP sessions per
control plane node

URR (Usage Reporting Rule) metrics

Traffic volume metrics aggregated per PFCP peer. Each peer's volume

represents the sum of all URR counters across all sessions from that control

plane node.

Metric Name Type Labels Description

Total uplink
traffic volume

upf_urr_uplink_volume_bytes Gauge peer _address in bytes for all
sessions from
this peer

Total downlink
traffic volume

upf_urr_downlink_volume_bytes Gauge peer _address in bytes for all
sessions from
this peer

Total traffic
volume in
bytes (uplink
+ downlink)
for all sessions

upf_urr_total volume_bytes Gauge peer_address

from this peer

Note: Volumes are aggregated per PFCP peer to avoid high cardinality issues.
Individual URR statistics are available via the REST APl at /api/v1l/urr_map.

Packet Buffering metrics

Metrics for tracking packet buffer state and performance. The UPF can buffer
downlink packets when a UE is in idle state, holding them until the UE is paged
and transitions to connected state.

Metric Name

upf_buffer_packets_total

upf_buffer _packets dropped

upf _buffer packets flushed

upf_buffer packets current

upf_buffer bytes total

upf_buffer bytes current

upf_buffer fars_active

Type

Counter

Counter

Counter

Gauge

Counter

Gauge

Gauge

Labels

none

reason

none

none

none

none

none

~ —h ™ =S e e e | (s o u o) B o T R |

-l [R o M T o)

T Q

Metric Name

upf buffer listener _packets received total

upf_buffer_listener_packets_buffered_total

upf_buffer listener _errors_total

upf_buffer_listener_error_indications_sent_total

upf buffer flush success total

Type

Counter

Counter

Counter

Counter

Counter

Labels

none

none

type

remote peer

none

-3

N & B B o | -

(@]

T T 0o

Metric Name Type Labels

upf_buffer_flush_errors_total Counter reason

upf_buffer flush _packets sent total Counter none

upf_buffer_packets_dropped reason values:

e expired - Packets dropped due to TTL expiration
* global limit - Dropped due to total buffer limit reached
e far limit - Dropped due to per-FAR buffer limit reached

e cleared - Packets manually cleared from buffer
upf_buffer_listener_errors_total type values:

* read error - Error reading from buffer socket

* too small - Packet too small for GTP header

e invalid gtp type - Non-G-PDU GTP message type

e unknown_ teid - No PDR/FAR found for TEID

* not buffering far - FAR does not have BUFF action
* truncated ext - Truncated GTP extension headers

e no_payload - GTP packet has no payload

e buffer full - Buffer capacity exceeded
upf buffer flush_errors _total reason values:

e far lookup failed - Failed to lookup FAR info from eBPF map
* no forw action - FAR does not have FORW action set

e connection failed - Failed to create UDP connection for flushing

(@]

O o T -

Downlink Data Report (Notification) metrics

Metrics for PFCP Session Report Request notifications sent to control plane
when packets are buffered. These notifications trigger the control plane to page

the UE.

Metric Name

upf_dldr_sent_total

upf_dldr_send_errors

upf_dldr_active_notifications

upf far_index size

upf _far_index_registrations_total

Type

Counter

Counter

Gauge

Gauge

Counter

Labels

none

none

none

none

none

De

Tote
of C
Dat.
(DL
noti
sen

Tote
of e
seni
Dow
Rep
noti

Curi
nur
FAR
acti
noti
(not
clee

Cun
nurn
FAR
regi
Farl
DLC
noti

Tote
of F.
regi
Farl

Metric Name Type Labels De

Tote
of F.
unre

upf far_index_unregistrations_total Counter none

fron

Tim
sen
noti
and
buft
pac

upf_buffer_notify_to flush_duration_seconds Histogram pfcp peer

upf buffer _notify to flush_duration_seconds:

e Histogram buckets: 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 30.0, 60.0
seconds

* Label pfcp peer: SMF/PGW-C address (e.g., 10.100.50.241)

e Measures the latency between UPF sending notification to SMF and SMF
responding with session modification to flush packets

e Useful for monitoring control plane responsiveness during idle-to-connected
transitions

GTP-U Error Indication metrics

Metrics for tracking GTP-U Error Indication messages sent and received. Error
Indications are sent when a peer receives packets for unknown TEIDs,
indicating tunnel state mismatches (often due to peer restarts).

Metric Name Type Le

node
upf_buffer listener _error_indications_sent total Counter -
peer_

: o : node

upf_buffer listener_error_indications received total Counter =
peer_

, . _ node

upf_buffer listener _error_indication_sessions _deleted total Counter =
peer_

Label Definitions:

* node id: PFCP Node ID from the association (e.g., "pgw-u-1", "smf-1").
Set to "unknown" if no PFCP association exists for that peer.

* peer address: IP address of the remote peer (e.g., "192.168.50.10")
When Error Indications Are Sent:

e UPF receives GTP-U packet for a TEID that doesn't exist (e.g., after UPF
restart, session already deleted)

e Sender (eNodeB, gNodeB, upstream UPF) is forwarding to stale/deleted
tunnel

e UPF sends Error Indication to inform sender to stop sending

When Error Indications Are Received:

e UPF forwards GTP-U packet to downstream peer (PGW-U, SGW-U, UPF) for
unknown TEID

« Remote peer doesn't recognize the destination TEID (e.g., peer restarted
and lost tunnel state)

e UPF automatically deletes affected sessions to stop forwarding to dead
tunnels

Use Cases:

Detect peer restarts (high Error Indication rate indicates state loss)

Identify configuration mismatches (TEID allocation issues)

Monitor tunnel synchronization health between network elements

Alert on unexpected session deletions

Example PromQL Queries:

Rate of Error Indications received per peer (per second)
rate(upf buffer listener error indications received total[5m])

Total sessions deleted due to Error Indications from specific peer
upf buffer listener error indication sessions deleted total{peer addr

Peers sending unknown TEIDs to this UPF
sum by (node id, peer address) (upf buffer listener error_indications

eBPF Map Capacity metrics

Metrics for tracking eBPF map utilization. These metrics help monitor resource
usage and detect potential capacity issues.

Metric Name Type Labels Description

Maximum capacity of eBPF

upf_ebpf _ map_capacity @ Gauge map name
map

Current number of entries

f f
upf_ebpf map_used Gauge map_name in eBPE map

Common map_name values:

e pdr_map - Packet Detection Rule map
e far map - Forwarding Action Rule map
e ger _map - QoS Enforcement Rule map
e session map - Session lookup map

e teid map - TEID to session mapping

* ue ip map - UE IP address to session mapping

Using Prometheus Metrics

Accessing Metrics

Metrics are exposed on the /metrics endpoint at the address specified by
metrics address in the configuration file (default :9090):

View raw metrics
curl http://localhost:9090/metrics

Example output

upf pfcp sessions 42

upf pfcp associations 2

upf urr total volume bytes{peer address="10.100.50.241"}
1048576000

Prometheus Configuration

Add the OmniUPF target to your prometheus.yml:

scrape configs:
- job name: 'omniupf'
static configs:
- targets: ['localhost:9090']

Grafana Dashboards
Import metrics into Grafana for visualization:

¢ Session counts and trends

Traffic volume per PFCP peer

Packet processing rates

Buffer utilization

eBPF map capacity monitoring

Related Documentation

. - Statistics monitoring, capacity planning, and alerting
. - Configure metrics address and other UPF options
. - View metrics in the Statistics page

. - eBPF datapath and performance optimization

. - Understanding PDR, FAR, QER, URR metrics

. - Using metrics for diagnostics

Monitoring Guide

Table of Contents

N o v kA W

Overview

Effective monitoring of OmniUPF is critical for maintaining service quality,
preventing capacity exhaustion, and troubleshooting performance issues.
OmniUPF provides comprehensive real-time metrics through its Web Ul and
REST API.

Monitoring Categories

Update .
Category Purpose Key Metrics
Frequency
Track packet RX/TX packets,
Packet , ,
L. processing rates Real-time drops, protocol
Statistics
and errors breakdown
Interface Monitor N3/N6 ,
o S Real-time N3 RX/TX, N6 RX/TX
Statistics traffic distribution
XDP Track kernel XDP processed,
Lo datapath Real-time passed, dropped,
Statistics
performance aborted
Route Monitor packet , FIB lookups, cache
N : - Real-time . .
Statistics routing decisions hits/misses
Map usage
eBPF Map Prevent resource
. , Every 10s percentages, used
Capacity exhaustion _
VS. capacity
Track packet Buffered packets,
Buffer buffering durin Every 5s buffer age, FAR
ufferin ,
Statistics E < v 2

mobility

count

Statistics Monitoring

N3/N6 Interface Statistics

N3/N6 interface statistics provide visibility into traffic distribution between the
RAN (N3) and Data Network (N6).

OmniUPF

RAN (N3)

gNB/eNodeB +—GTP

Data Network (N6)

MNative IP———» Internet/IMS/Enterprise

Metrics:

e RX N3: Packets received from RAN (uplink GTP-U traffic)
TX N3: Packets transmitted to RAN (downlink GTP-U traffic)

RX N6: Packets received from Data Network (downlink native IP)

TX N6: Packets transmitted to Data Network (uplink native IP)

Total: Aggregate packet count across all interfaces
Expected Behavior:

e RX N3 = TX N6: Uplink packets flow from RAN to Data Network
e RX N6 = TX N3: Downlink packets flow from Data Network to RAN

e Significant imbalance may indicate:
o Asymmetric traffic (downloads >> uploads)

o Packet drops or forwarding errors

o Routing misconfigurations

XDP Statistics

XDP (eXpress Data Path) statistics show kernel-level packet processing

performance.

//-\\

Metrics:

e Aborted: XDP program encountered an error (should always be 0)

Drop: Packets intentionally dropped by XDP program

Pass: Packets passed to network stack for further processing

Redirect: Packets directly redirected to output interface
TX: Packets transmitted via XDP

Interpretation:

Aborted > 0: Critical issue with eBPF program or kernel compatibility

Drop > 0: Policy-based drops or invalid packets

Pass high: Most packets processed in network stack (normal)

Redirect high: Packets forwarded directly (optimal performance)

Packet Statistics

Detailed packet protocol breakdown and processing counters.
Protocol Counters:

e RX ARP: Address Resolution Protocol packets

RX GTP ECHO: GTP-U Echo Request/Response (keepalive)
e RX GTP OTHER: Other GTP control messages

e RX GTP PDU: GTP-U encapsulated user data (main traffic)
e RX GTP UNEXP: Unexpected GTP packet types

e RX ICMP: Internet Control Message Protocol (ping, errors)
e RX ICMP6: ICMPVv6 packets

e RX IP4: IPv4 packets

e RX IP6: IPv6 packets

e RX OTHER: Other protocols

e RX TCP: Transmission Control Protocol packets

e RX UDP: User Datagram Protocol packets
Use Cases:

e Monitor GTP-U PDU count: Primary user traffic indicator

e Check ICMP for connectivity: Network reachability testing

e Track TCP vs UDP ratio: Application traffic patterns

 Detect unexpected protocols: Security or misconfiguration issues

Route Statistics
FIB (Forwarding Information Base) lookup statistics for routing decisions.
IPv4 FIB Lookup:

e Cache: Cached route lookups (fast path)

e OK: Successful route lookups
IPv6 FIB Lookup:

e Cache: Cached IPv6 route lookups

e OK: Successful IPv6 route lookups
Performance Indicators:

e High Cache Hit Rate: Indicates good routing cache performance
e High OK Count: Confirms routing tables are correctly configured

e Low or Zero Lookups: May indicate traffic not flowing or routing bypass

Capacity Monitoring

eBPF Map Capacity

eBPF map capacity monitoring prevents session establishment failures due to
resource exhaustion.

Incoming Packet

Critical eBPF Maps

far_map (Forwarding Action Rules):

Capacity: 131,070 entries
Key Size: 4 B (FAR ID)

Value Size: 16 B (forwarding parameters)

Memory Usage: ~2.6 MB

Criticality: High - Used for all packet forwarding decisions
pdr_map_downlin (Downlink PDRs - IPv4):

e Capacity: 131,070 entries

* Key Size: 4 B (UE IPv4 address)
Value Size: 208 B (PDR info)
Memory Usage: ~27 MB

Criticality: Critical - Session establishment fails if full

pdr_map_downlin_ip6 (Downlink PDRs - IPv6):

Capacity: 131,070 entries

Key Size: 16 B (UE IPv6 address)
Value Size: 208 B (PDR info)
Memory Usage: ~29 MB

Criticality: Critical - IPv6 session establishment fails if full

pdr_map_ teid _ip (Uplink PDRs):

Capacity: 131,070 entries

Key Size: 4 B (TEID)

Value Size: 208 B (PDR info)

Memory Usage: ~27 MB

Criticality: Critical - Uplink traffic fails if full

ger_map (QoS Enforcement Rules):

Capacity: 65,535 entries
Key Size: 4 B (QER ID)

Value Size: 32 B (QoS parameters)

Memory Usage: ~2.3 MB

Criticality: Medium - QoS enforcement only
urr_map (Usage Reporting Rules):

e Capacity: 131,070 entries

e Key Size: 4 B (URR ID)

e Value Size: 16 B (volume counters)

e Memory Usage: ~2.6 MB

e Criticality: Low - Affects charging only

Capacity Thresholds

Threshold

0-50% (Green)

50-70%
(Yellow)

70-90%
(Amber)

90-100% (Red)

Action Required

Normal operation - No action required

Caution - Monitor growth trends, plan capacity increase

Warning - Schedule capacity increase within 1 week

Critical - Immediate action required, new sessions will
fail

Capacity Increase Procedure
Before increasing capacity:

1. Review current usage trends
2. Estimate future growth rate

3. Calculate required capacity

Steps to increase map capacity:

1. Stop OmniUPF service

2. Update UPF configuration file with new map sizes
3. Restart OmniUPF service

4. Verify new capacity in Capacity view

5. Monitor for successful session establishment

Note: Changing eBPF map capacity requires UPF restart and clears all existing
sessions.

Performance Metrics

For detailed information about all Prometheus metrics exposed by OmniUPF,
see the

Packet Processing Rate

Calculation:
Packet Rate (pps) = (Packet Count Delta) / (Time Delta in seconds)

Example:

e Initial RX packets: 7,000
e After 10 seconds: 17,000
e Packet Rate = (17,000 - 7,000) / 10 = 1,000 pps

Performance Targets:

« Small UPF: 10,000 - 100,000 pps
« Medium UPF: 100,000 - 1,000,000 pps
« Large UPF: 1,000,000 - 10,000,000 pps

Bottleneck Indicators:

XDP aborted count increasing
High CPU utilization

Packet drops increasing

Latency increasing

Throughput Calculation

Calculation:

Throughput (Mbps) = (Byte Count Delta x 8) / (Time Delta in
seconds x 1,000,000)

Example:

e Initial RX bytes: 500 MB
e After 60 seconds: 800 MB
e Throughput = (300 MB x 8) / (60 x 1,000,000) = 40 Mbps

Capacity Planning:

e Monitor peak throughput times (e.qg., evening hours)
e Compare to link capacity (N3/N6 interface speeds)
e Plan for 2x peak throughput for headroom

Drop Rate

Calculation:

Drop Rate (%) = (Dropped Packets / Total RX Packets) x 100

Acceptable Thresholds:

< 0.1%: Excellent (normal packet loss due to errors)

0.1% - 1%: Good (minor issues or rate limiting)

1% - 5%: Poor (investigate QoS or capacity issues)

> 5%: Critical (major forwarding or capacity problem)

Common Drop Causes:

QER rate limiting (MBR exceeded)
eBPF map lookup failures
Invalid TEIDs or UE IPs

Routing errors

Alerting and Thresholds

Recommended Alerts

Critical Alerts (Immediate response required):

eBPF map capacity > 90%
XDP aborted count > 0

Drop rate > 5%
UPF health check failed

Warning Alerts (Response within 1 hour):

eBPF map capacity > 70%

Drop rate > 1%

Packet rate approaching link capacity
Buffer TTL exceeded (packets older than 30s)

Informational Alerts (Monitor trends):

e eBPF map capacity > 50%
e Buffered packet count increasing
e New PFCP associations established/released

¢ URR volume thresholds exceeded

Alert Configuration
Alerts can be configured via:

1. Prometheus Metrics: Export metrics for external monitoring (see
for complete list)

2. Log Monitoring: Parse OmniUPF logs for error patterns

3. REST API Polling: Periodically query /map info, /packet stats
endpoints

4. Web Ul Monitoring: Manual monitoring via Statistics and Capacity pages

Capacity Planning

Session Capacity Estimation

Calculate maximum sessions:

Max Sessions = min(
PDR Map Capacity / 2, # Downlink + Uplink PDRs per session
FAR Map Capacity / 2, # Downlink + Uplink FARs per session
QER Map Capacity # Optional, one QER per session

)

Example:

e PDR Map Capacity: 131,070
¢ FAR Map Capacity: 131,070

* QER Map Capacity: 65,535

Max Sessions = min(131,070/ 2, 131,070/ 2, 65,535) = 65,535 sessions

Memory Capacity

Calculate total eBPF map memory:
Memory = ¥ (Map Capacity x (Key Size + Value Size))

Example Configuration:

PDR maps: 3 x 131,070 x 212 B = 83.3 MB
FAR map: 131,070 x 20 B = 2.6 MB

QER map: 65,535 x 36 B = 2.3 MB

URR map: 131,070 x 20 B = 2.6 MB

Total: ~91 MB of kernel memory
Kernel Memory Considerations:

» Ensure sufficient locked memory limit (ulimit -1)
e Reserve 2x estimated usage for safety margin
e Monitor kernel memory availability

Traffic Capacity

Calculate required throughput capacity:

1. Estimate average session throughput:

o Video streaming: ~5 Mbps
o Web browsing: ~1 Mbps
o VoIP: ~0.1 Mbps

2. Calculate aggregate throughput:

Total Throughput = Sessions x Average Session Throughput

3. Add headroom:

Required Capacity = Total Throughput x 2 # 100% headroom

Example:

10,000 concurrent sessions

Average 2 Mbps per session
Total: 20 Gbps
Required capacity: 40 Gbps (N3 + N6 interfaces)

Growth Planning

Trend Analysis:

1. Record daily peak session count
2. Calculate weekly growth rate

3. Extrapolate to capacity limit

Growth Rate Formula:
Weeks to Capacity = (Capacity - Current Usage) / (Weekly Growth)

Example:

e Current sessions: 30,000

e Capacity: 65,535 sessions

e Weekly growth: 2,000 sessions

e Weeks to capacity: (65,535 - 30,000) / 2,000 = 17.8 weeks

Action: Plan capacity upgrade in 12 weeks (leaving 5 weeks buffer).

Troubleshooting Performance
Issues

High Packet Drop Rate

Symptoms: Drop rate > 1%, user complaints of poor connectivity
Diagnosis:

1. Check Statistics - Packet Statistics
2. ldentify if drops are protocol-specific
3. Review XDP Statistics for XDP drops vs. aborts

Common Causes:

QER Rate Limiting: Check QER MBR values vs. actual traffic
Invalid TEIDs: Verify uplink PDR TEID matches gNB assignment
Unknown UE IPs: Verify downlink PDR exists for UE IP

Buffer Overflow: Check buffer statistics

Resolution:

e Increase QER MBR if rate limiting
e Verify SMF has created correct PDRs

e Clear buffers if overflow detected

XDP Processing Errors
Symptoms: XDP aborted > 0
Diagnosis:

1. Navigate to Statistics - XDP Statistics
2. Check aborted counter

3. Review OmniUPF logs for eBPF errors

Common Causes:

e eBPF program verification failure
e Kernel version incompatibility
* eBPF map access errors

e Memory corruption

Resolution:

Restart OmniUPF service

Check kernel version meets minimum requirements (Linux 5.4+)

Review eBPF program logs

Contact support if issue persists

Capacity Exhaustion
Symptoms: Session establishment failures, map capacity at 100%
Diagnosis:

1. Navigate to Capacity page
2. Identify which map is at 100%

3. Check if sessions are stuck (not being deleted)

Immediate Mitigation:

1. Identify stale sessions (check Sessions page)
2. Request SMF to delete old sessions

3. Clear buffers to free FAR entries

Long-term Resolution:

1. Increase eBPF map capacity
2. Schedule UPF restart with larger maps

3. Implement session cleanup policies

Performance Degradation
Symptoms: High latency, low throughput, CPU saturation
Diagnosis:

1. Check packet rate vs. historical baseline

2. Review XDP statistics for processing delays
3. Monitor CPU utilization on UPF host

4. Check N3/N6 interface utilization

Common Causes:

Traffic exceeding UPF capacity

Insufficient CPU cores for packet processing

Network interface bottleneck

eBPF map hash collisions

Resolution:

Scale UPF horizontally (add more instances)

Upgrade CPU or enable RSS (Receive Side Scaling)

Upgrade network interfaces to higher speed

Tune eBPF map hash function

Related Documentation

. - Complete Prometheus metrics reference

. - General UPF architecture and operations
. - PDR, FAR, QER, URR configuration

. - Control panel monitoring features

. - Common issues and diagnostics

. - eBPF datapath and performance optimization

N9 Loopback: Running
SGWU and PGWU on
Same Instance

Overview

OmniUPF supports running both SGWU (Serving Gateway User Plane) and
PGWU (PDN Gateway User Plane) functions on the same instance with
zero-latency N9 loopback. This deployment mode is ideal for:

Simplified 4G EPC deployments - Single UPF instance instead of two

Cost optimization - Reduced infrastructure and operational complexity

Edge computing - Minimize latency for local breakout scenarios

Lab/testing environments - Full EPC user plane on single server

When configured with the same IP address for both N3 and N9 interfaces,
OmniUPF automatically detects traffic flowing between the SGWU and PGWU
roles and processes it entirely in eBPF without ever sending packets to the
network interface.

How It Works

Traditional Deployment (Two Instances)
Packet Flow:

1. eNodeB -» SGWU: GTP packet (TEID=100) arrives on S1-U
2. SGWU: Matches uplink PDR, encapsulates in new GTP tunnel (TEID=200)

3. Packet sent over physical N9 network to PGWU instance
4. PGWU: Receives GTP (TEID=200), decapsulates, forwards to Internet
5. Total: 2 XDP passes + 1 network hop

N9 Loopback Deployment (Single Instance)

N9 Loopback

=200
In-Mem

S1-U GTP
TEID=100

Packet Flow with N9 Loopback:

. eNodeB —» SGWU role: GTP packet (TEID=100) arrives on S1-U

. SGWU role: Matches uplink PDR

. Loopback detection: Destination IP = local IP (10.0.1.10)

. In-place processing: Update GTP TEID to 200 (PGWU session)

. PGWU role: Decapsulates, forwards to Internet

o U~ WN

. Total: 1 XDP pass, zero network hops

Performance benefit: Sub-microsecond internal forwarding vs milliseconds
for network round-trip

Packet Processing Details

Uplink Flow: eNodeB - SGWU -» PGWU -
Internet

— Internet
SGl Plain IP—» DN
N9 Loopback
.. TEID=200
In-Memory -

eModeB 51-U GTP
LTE Base Station TEID=100

Code Path: cmd/ebpf/xdp/n3n6 entrypoint.c lines 349-403
Key Steps:

. Receive: GTP packet from eNodeB with TEID=100

. PDR Match: Lookup uplink PDR for SGWU session (TEID=100)

. FAR Action: Encapsulate in GTP with TEID=200, forward to 10.0.1.10
. Loopback Check: is local ip(10.0.1.10) returns TRUE

. Update TEID: Change ctx->gtp->teid from 100 to 200 (in kernel
memory)

. Re-Process: Lookup PDR for TEID=200 (PGWU session)

o A~ W N P

)]

7. FAR Action: Remove GTP header, forward to Internet

8. Route: Send plain IP packet to N6 interface

Downlink Flow: Internet - PGWU -» SGWU -
eNodeB

A TR

Plain IP (8.8.8.8—»UE 10.60.0.1)
Lookup downlink PDR by UE IP

FAR says: Encap GTP TEID=200, dst=10.0.1.10

[J Loopback Detection
is_local_ip(10.0.1.10) = TRUE

Add GTP header TEID=200

Re-lookup PDR by TEID=200

FAR says: Update GTP TEID=100, forward to eNodeB

Update GTP tunnel (TEID=200 - 100)

Forward GTP(TEID=100, inner: 8.8.8.8—UE)

Single XDP Pass
Zero Network Hops

PGWU PDR/FAR SGWU PDR/FAR

Code Path: cmd/ebpf/xdp/n3n6 entrypoint.c lines 137-194 (IPv4), 265-322
(IPv6)

Key Steps:

. Receive: Plain IP packet from Internet destined to UE (10.60.0.1)

. PDR Match: Lookup downlink PDR by UE IP (PGWU session)

. FAR Action: Encapsulate in GTP with TEID=200, forward to 10.0.1.10
. Loopback Check: is local ip(10.0.1.10) returns TRUE

. Add GTP: Encapsulate packet with TEID=200

. Re-Process: Lookup PDR for TEID=200 (SGWU session)

. FAR Action: Update GTP tunnel to eNodeB TEID=100

. Route: Send GTP packet to S1-U interface (eNodeB)

0 N oo Ul b W N B

Configuration

Requirements
Control Plane:

e SGWU-C: Must connect to OmniUPF PFCP interface (e.qg.,
192.168.1.10:8805)

e PGWU-C: Must connect to same OmniUPF PFCP interface
Network:

e Single IP address for both N3 and N9 interfaces

e Different IP addresses for SGWU-C and PGWU-C (if running on same
host, use different ports)

OmniUPF Configuration

config.yml:

Network interfaces

interface name: [eth@] # Single interface for S1-U
and N9

xdp attach mode: native # Use native for best
performance

PFCP Interface

pfcp address: ":8805" # Listen on all interfaces,
port 8805
pfcp node id: "192.168.1.10" # OmniUPF's PFCP Node ID

User Plane Interfaces

n3 address: "10.0.1.10" # S1-U/N3 interface IP

n9 address: "10.0.1.10" # N9 interface IP (SAME as N3)
APIs

api address: ":8080" # REST API

metrics address: ":9090" # Prometheus metrics (see

Metrics Reference doc)

Resource Pools

ueip pool: "10.60.0.0/16" # UE IP address pool
teid pool: 65535 # TEID allocation pool
Capacity

max_sessions: 100000 # Maximum concurrent UE
sessions

Key Configuration:

* [n3_address and n9 _address MUST be identical to enable loopback
e [] Single PFCP listening address for both control planes
e [] Sufficient max_sessions for combined SGWU + PGWU load

Control Plane Configuration

SGWU-C Configuration

Point to OmniUPF PFCP interface
upf pfcp address: "192.168.1.10:8805"

S1-U interface (same as OmniUPF n3 _address)
sgwu slu address: "10.0.1.10"

N9 interface for forwarding to PGWU (same as OmniUPF)
sgwu n9 address: "10.0.1.10"

PGWU-C Configuration

Point to SAME OmniUPF PFCP interface
upf pfcp address: "192.168.1.10:8805"

N9 interface (receives from SGWU)
pgwu n9 address: "10.0.1.10"

SGi interface for Internet connectivity
pgwu sgi address: "192.168.100.1"

Important:

e Both control planes connect to same PFCP endpoint (:8805)
e OmniUPF creates separate PFCP associations for SGWU-C and PGWU-C

e Sessions are isolated per control plane (tracked by Node ID)

Session Flow Example

UE Attach and PDU Session Establishment

Scenario: UE attaches to network, establishes data session

eNodeB ‘ MME OmNISGW-C OmNiPGW-C ot

Attach Request
Initial UE Message
Create Session Request

PFCP Sesslon Establishment (SGWU)

Create uplink PDR (TEID=100)
Create FAR (encap, TEID=200, dst=10.0.1.10)
Session Establishment Response (F-TEID: 10.0.1.10)
Create Session Request
PFCP Session Establishment (PGWU)
Create uplink PDR (TEID=200)
cr cap, forward to
PDR (UE IP 10.60.0.1)
=200, dst=10.0.1.10)
S blishm o] (F-TEID: 10.0.1.10, UE IP)
Create Session Response (UE IP 10.60.0.1)
PFCP Session Modification (SGWU)
Create downlink PDR (TEID=200)
Create FAR (update tunnel, TEID=100, eNodeB)
Create Session Res ponse
h Accept ()
h Accept
r data flows through OmniUPF
SGWU-PGWU loopback inline
’ UE ‘ ’ NodeB E OmNiSGW-C OmniPGW-C T

PFCP Sessions Created:
SGWU Session (from OmniSGW-C):

e Uplink PDR: Match TEID=100 (from eNodeB) - FAR: Encapsulate
TEID=200, dst=10.0.1.10

e Downlink PDR: Match TEID=200 (from PGWU) — FAR: Update tunnel
TEID=100, forward to eNodeB

PGWU Session (from OmniPGW-C):

¢ Uplink PDR: Match TEID=200 (from SGWU) — FAR: Decapsulate, forward
to Internet

e Downlink PDR: Match UE IP=10.60.0.1 —» FAR: Encapsulate TEID=200,
dst=10.0.1.10

Monitoring and Verification

Verify N9 Loopback is Active

Check XDP Logs:

View real-time eBPF debug output
sudo cat /sys/kernel/debug/tracing/trace pipe | grep loopback

Expected output:

upf: [n3] session for teid:100 -> 200 remote:10.0.1.10

upf: [n9-loopback] self-forwarding detected, processing inline
TEID:200

upf: [n9-loopback] decapsulated, routing to N6

upf: [n6] use mapping 10.60.0.1 -> teid:200
upf: [n6-loopback] downlink self-forwarding detected, processing
inline TEID:200

upf: [n6-loopback] SGWU updating GTP tunnel to eNodeB TEID:100
upf: [n6-loopback] forwarding to eNodeB

Monitor Sessions via REST API

List PFCP Associations:

curl http://localhost:8080/api/v1l/upf pipeline | jq

Expected output:

"associations": |

{

"node id": "sgwc.example.com",
"address": "192.168.1.20:8805",
"sessions": 1000

"node id": "pgwc.example.com",
"address": "192.168.1.21:8805",
"sessions": 1000

}
1,

"total sessions": 2000

}

Verify two separate associations (one for SGWU-C, one for PGWU-C)

List Active Sessions:

curl http://localhost:8080/api/vl/sessions | jq '.sessions[] |
{local seid, ue ip, uplink teid}'

Expected output:

{
"local seid": 12345,
"ue ip": "10.60.0.1",
"uplink teid": 100

}

{
"local seid": 67890,
"ue ip": "10.60.0.1",
"uplink teid": 200

}

Each UE has TWO sessions:

¢ Session from SGWU-C (TEID=100, S1-U interface)
¢ Session from PGWU-C (TEID=200, N9 interface)

Performance Metrics

Check Packet Statistics:
curl http://localhost:8080/api/v1l/xdp stats | jq

Key metrics:

* xdp processed: Total packets processed in eBPF

* xdp pass: Packets passed to network stack (should be zero for loopback
traffic)

e xdp redirect: Packets forwarded via XDP redirect

e xdp tx: Packets transmitted (loopback traffic uses this)
For N9 loopback traffic:

e xdp pass should be minimal (only non-loopback traffic)

e xdp tx or xdp redirect counts loopback forwarding

Troubleshooting

N9 Traffic Going to Network Instead of
Loopback

Symptom: Packets sent to network interface, high latency
Root Cause: n3 address # n9 address

Solution:

WRONG :

n3 address: "10.0.1.10"

n9 address: "10.0.1.20" # Different IP, no loopback!
CORRECT:

n3 address: "10.0.1.10"
n9 address: "10.0.1.10" # Same IP, enables loopback

Verification:
curl http://localhost:8080/api/vl/dataplane config | jq
Should show:

{
“n3 ipv4 address": "10.0.1.10",

"n9 ipv4 address": "10.0.1.10"
}

PDR Not Found After Loopback

Symptom: Logs show [n9-loopback] no PDR for destination TEID
Root Cause: PGWU session not created or TEID mismatch
Diagnosis:

1. Check PFCP Sessions:

curl http://localhost:8080/api/vl/sessions | jq '.sessions[] |
select(.uplink teid == 200)'

2. Verify FAR Configuration:

curl http://localhost:8080/api/vl/far map | jq '.[] |
select(.teid == 200)'

Solution: Ensure PGWU-C creates session with matching TEID that SGWU-C
uses for N9 forwarding

High CPU Usage

Symptom: CPU usage higher than expected

Root Cause: eBPF program processing packets multiple times or excessive
map lookups

Diagnosis:

Check eBPF map access patterns
sudo bpftool map dump name pdr map teid ip4 | wc -1
sudo bpftool map dump name far map | wc -1

Solution:

* Increase max_sessions if map is full (causes lookup failures)
e Verify QER rate limiting is not causing drops and retransmits

e Check for excessive packet buffering

Packet Loss During Handover
Symptom: Packets dropped during eNodeB handover
Root Cause: Buffering not configured or insufficient buffer limits

Configuration:

buffer port: 22152
buffer max packets: 20000

buffer max total: 100000
buffer packet ttl: 30

Verification:

curl http://localhost:8080/api/v1/upf buffer info | jq

Benefits of N9 Loopback

Performance

Metric

Two Instances

Latency 1-5ms
Limited b
Throughput m y
network
2x XDP passes +
CPU Usage
network stack
Risk during
Packet
network
Loss ,
congestion
Operational

Single Instance
(N9 Loopback)

<1us

Limited by
CPU/memory

1x XDP pass

Zero (in-memory)

Improvement

1000x faster

2-3x higher

40-50%
reduction

Eliminated

e Simplified Deployment: Single OmniUPF instance instead of two

« Reduced Infrastructure: Half the servers, network ports, IP addresses

e Lower Complexity: Single configuration, single monitoring endpoint
e Cost Savings: Reduced hardware, power, cooling, maintenance

e Easier Troubleshooting: Single packet trace, single eBPF debug output

Use Cases

Ideal For:

[0 Edge Computing: Minimize latency for local breakout

[0 Small/Medium Deployments: < 100K subscribers

[Lab/Testing: Full EPC user plane on single VM

[Cost-Constrained: Limited hardware budget
Not Recommended For:

e [] Geographic Redundancy: SGWU and PGWU in different data centers
e [] Massive Scale: > 1M subscribers (consider horizontal scaling)

* [] Regulatory Requirements: Mandated separation of SGW and PGW

Comparison with Other
Deployment Modes

Single Instance (N9 Loopback) vs. Separated
Instances

PEWL PORFAR SGWU FORFAR chodel

Intemnet eBPFXDP LIE 1) (TEID=2040)

Plaan IF {3.8.8.8—=UE 10.60.0.1)

Lockup downlink PDR by UE 1P

FAR zays: Encap GTP TEID=200, dst=10.0.1.10
—

Locpback Detection
is_local ip{10.0.1.10) = TRUE

Addl GTF header TEID=200
-

Re-lookup POR by TEND=204
=

FAR zays: Update GTP TEID=100, forward to eNodel

-

Update GTF tunnel {TEID=200 - 100

-
Forward GTFTEID=10Q, inner: 3.83.8.8—+=Uk)
-
Single XDP Pasx
Zero Network Hops
POWL PDRJFAR SGWU FDRFAR
nk=met eBPFXDP (LE 1F) (TEND=200) chodel

Summary

N9 Loopback enables carrier-grade 4G EPC user plane on a single
OmniUPF instance by processing SGWU-PGWU traffic entirely in eBPF
without network hops. This provides:

e [] Sub-microsecond latency for inter-gateway forwarding

[]1 40-50% CPU reduction compared to separated instances

[] Simplified operations - single instance, config, monitoring

[l Lower cost - half the infrastructure
[] Full 3GPP compliance - standard PFCP, GTP-U protocols

Configuration is automatic when n3 address == n9 address - no special
flags or settings required. OmniUPF's eBPF datapath detects loopback
conditions and processes packets inline.

For more information:

e Configuration:

e Architecture:

* Metrics Reference:
e Monitoring:

e Operations:

* Troubleshooting:

PFCP Cause Codes
Reference

Overview

PFCP (Packet Forwarding Control Protocol) uses cause codes in response
messages to indicate the outcome of requests. This document describes the
cause codes implemented in OmniUPF and when they occur during PFCP
message processing.

All cause codes conform to 3GPP TS 129.244 specifications and are returned
in PFCP response messages to indicate success, failure, or specific error
conditions.

Monitoring Cause Codes

OmniUPF tracks PFCP message outcomes using Prometheus metrics. Each PFCP
response includes a cause code that's recorded in:

upf pfcp rx errors{message name="...", cause code="...",
peer address="..."}

This enables monitoring of:

e Success rates per message type and control plane node
e Error patterns indicating misconfigurations or protocol issues

e Association health based on rejection rates

See for complete PFCP metrics documentation.

Cause Code Categories

Success Codes

Code Name When It Occurs

Request successfully processed. All
1 RequestAccepted mandatory IEs present and valid. Rules
created/modified/deleted successfully.

Client Error Codes

Code Name When It Occurs

General rejection for
. unspecified errors. Used
04 RequestRejected .
when no specific cause code

applies.

Session Modification or
Deletion requested for

65 SessionContextNotFound unknown SEID. The
specified session does not
exist on this UPF.

Required Information

Element absent. Examples:

NodelD missing in

o Association Setup, F-SEID

66 MandatorylEMissing L .

missing in Session

Establishment,

RecoveryTimeStamp

missing.

Conditionally required IE
missing based on other IEs

67 ConditionallEMissing present. Used when IEs
depend on each other's
presence.

Required IE present but

contains invalid data.
69 MandatorylElncorrect Examples: Unparseable

NodelD format, invalid
RecoveryTimeStamp value,

malformed F-SEID.

Code Name

When It Occurs

Session operation
attempted without active

72 NoEstablishedPFCPAssociation association. Must establish

PFCP association before
creating sessions.

Error applying PDR, FAR,
QER, or URR rules to eBPF
datapath. Possible causes:

73 RuleCreationModificationFailure eBPF map capacity

exhausted, invalid rule
parameters, resource
allocation failure.

Server/Resource Error Codes

Code Name

74 PFCPEntitylnCongestion
75 NoResourcesAvailable
77 SystemFailure

When It Occurs

UPF experiencing high load or
resource exhaustion. Temporarily
unable to process requests.

Insufficient resources to fulfill
request. Examples: eBPF map
capacity exhausted, memory
allocation failure, TEID pool depleted.

Critical internal error preventing
request processing. Examples: eBPF
program failure, kernel interface
error, database corruption.

Unsupported Feature Codes

Code

68

70

71

76

78

Name

InvalidLength

InvalidForwardingPolicy

InvalidFTEIDAllocationOption

ServiceNotSupported

RedirectionRequested

When It Occurs

IE length field doesn't match
actual data length. Currently
unused in OmniUPF.

Forwarding policy not
supported by UPF. Currently
unused in OmniUPF.

F-TEID allocation option not
supported. Currently unused in
OmniUPF.

Requested service or feature
not implemented. Currently
unused in OmniUPF.

UPF requests redirection to
another UPF instance. Currently
unused in OmniUPF.

Common Scenarios and Causes

Association Setup Failures

Scenario: Missing NodelD

SMF - UPF: Association Setup Request (no NodelD)
UPF - SMF: Association Setup Response (Cause: MandatoryIEMissing)

Resolution: Ensure SMF includes NodelD IE in all Association Setup Requests.

Scenario: Invalid NodelD Format

SMF - UPF: Association Setup Request (NodeID="invalid")
UPF - SMF: Association Setup Response (Cause:
MandatoryIEIncorrect)

Resolution: NodelD must be valid FQDN or IPv4/IPv6 address.

Scenario: Missing Recovery Timestamp

SMF - UPF: Association Setup Request (no RecoveryTimeStamp)
UPF - SMF: Association Setup Response (Cause: MandatoryIEMissing)

Resolution: Include RecoveryTimeStamp in Association Setup Request.

Session Establishment Failures

Scenario: No Association Established

SMF - UPF: Session Establishment Request
UPF - SMF: Session Establishment Response (Cause:
NoEstablishedPFCPAssociation)

Resolution: Establish PFCP association before creating sessions.

Scenario: Rule Creation Failure

SMF - UPF: Session Establishment Request

UPF processes FARs, QERs, URRs successfully

UPF fails to create PDR (eBPF map full)

UPF - SMF: Session Establishment Response (Cause:
RuleCreationModificationFailure)

Resolution:

e Check eBPF map capacity (see)

e Increase map sizes in UPF configuration

¢ Reduce active session count

Scenario: Missing F-SEID

SMF - UPF: Session Establishment Request (no CP F-SEID)
UPF - SMF: Session Establishment Response (Cause:
MandatoryIEMissing)

Resolution: Include CP F-SEID in Session Establishment Request.

Session Modification Failures

Scenario: Unknown SEID

SMF - UPF: Session Modification Request (SEID=12345)
UPF has no session with SEID 12345

UPF - SMF: Session Modification Response (Cause:
SessionContextNotFound)

Resolution:

e Verify SEID matches value from Session Establishment Response
e Check if session was already deleted

e Ensure using correct UPF instance (N9 loopback scenarios)

Session Deletion Failures

Scenario: Unknown SEID

SMF - UPF: Session Deletion Request (SEID=67890)
UPF has no session with SEID 67890

UPF - SMF: Session Deletion Response (Cause:
SessionContextNotFound)

Resolution: SEID may have already been deleted or never existed.

Troubleshooting with Cause Codes

Using Prometheus Metrics

Query Prometheus to identify error patterns:

Error rate by cause code
rate(upf pfcp rx errors{cause code!="RequestAccepted"}[5m])

Top rejection causes
topk(5, sum by (cause code) (upf pfcp rx errors))

Errors by SMF peer

sum by (peer address, cause code)

(upf pfcp rx errors{cause code!="RequestAccepted"})
Session establishment failures

upf pfcp rx errors{message name="SessionEstablishmentRequest",
cause code!="RequestAccepted"}

Using Web Ul

Navigate to Sessions page to view:

e Active session count per control plane node
e Session establishment success/failure rates

* Recent session errors
Navigate to Capacity page to diagnose:

e eBPF map utilization (RuleCreationModificationFailure root cause)

e Resource exhaustion indicators

See for detailed monitoring instructions.

Common Debugging Steps

High MandatorylEMissing Rate:

1. Check SMF configuration for required IEs
2. Verify PFCP library version compatibility

3. Review SMF logs for IE construction errors

Frequent RuleCreationModificationFailure:

1. Check eBPF map capacity: GET /api/vl/map info

2. Monitor map usage: upf ebpf map used / upf ebpf map capacity
3. Increase map sizes in configuration if > 70% utilized

4. See

NoEstablishedPFCPAssociation Errors:

1. Verify association exists: GET /api/v1l/pfcp associations
2. Check heartbeat timeout configuration
3. Review association setup logs

4. Ensure SMF and UPF can reach each other

SessionContextNotFound on Modification:

1. Verify SEID from session establishment response
2. Check if session was deleted
3. For N9 loopback: Ensure using correct UPF endpoint

4. Query active sessions: GET /api/vl/pfcp sessions

Cause Code Impact on Operations

Session Lifecycle

SMF UPF

Association Phase

Armemmeimbine O atkiae Mo sme +

OmniCharge OmniRAN)))
Downloads 3 English+ Omnitouch Website (@

- -
Response (Cause: RequestAccepted)
&
[Missing NodelD]
Response (Cause: MandatorylEMissing)
&
[Invalid NodelD]
Response (Cause: MandatorylElncorrect)
&
Session Establishment Phase
Session Establishment Request
alt [No Association]

Response (Cause: NoEstablishedPFCPAssociation)

-4
[eBPF Map Full]
Response (Cause: RuleCreationModificationFailure)
4
[Success]
Response (Cause: RequestAccepted)
-4
Session created, rules active
Session Modification Phase
Session Modification Request
-
alt [Unknown SEID]
Response (Cause: SessionContextNotFound)

-

[Success]

Response (Cause: RequestAccepted)

SMF UPF

Metrics and Alerting

Recommended Alerts:

Critical: High rejection rate
- alert: PfcpHighRejectionRate
expr: |
rate(upf pfcp rx errors{cause code!="RequestAccepted"}[5m]) > 0.1
annotations:
summary: "High PFCP rejection rate: {{ $value }}/s"

Warning: Capacity issues
- alert: PfcpRuleCreationFailures
expr: |

rate(upf pfcp rx errors{cause code="RuleCreationModificationFailure")
[5m]) > 0O
annotations:
summary: "PFCP rule creation failures detected"

Warning: Association issues
- alert: PfcpNoAssociation
expr: |

rate(upf pfcp rx errors{cause code="NoEstablishedPFCPAssociation"}
[5m]) > O
annotations:
summary: "PFCP sessions attempted without association”

3GPP Standards Compliance

OmniUPF implements cause codes according to:

e 3GPP TS 129.244 v16.4.0 - PFCP specification
e Section 8.2.1 - Cause IE definition

e Section 8.19 - Cause values table

Related Documentation

. - PFCP architecture and message handling
. - upf_pfcp_rx_errors metric documentation

. - Capacity monitoring and alerting

. - PFCP association and session issues

. - Sessions and associations monitoring

UE Route Management

Related Documentation:

. - Complete API reference including route
management endpoints

. - Web Ul operations and monitoring

Overview

The UPF (User Plane Function) integrates with FRR (Free Range Routing) to
dynamically manage User Equipment (UE) IP routes. This integration ensures
that as UE sessions are established or terminated, the routing infrastructure
automatically adapts to reflect the current network topology.

What is FRR?

is a robust, open-source routing protocol suite for
Linux and Unix platforms. It implements various routing protocols including
BGP, OSPF, RIP, and others. In our deployment, FRR acts as the routing daemon
that maintains the kernel routing table and can redistribute routes to other
network elements.

Architecture

35 Core SHF FFLCP Session— LIPF UE Roubes—w Roube Sync A= FRR Daermon Kemel Routes—« Linux Routing Table Formarding—s Ketwork Fabric

https://docs.frrouting.org/

How Route Synchronization Works

Route Lifecycle

5G Core SMF

PFCP Session Establishment

Route Sync Engine

FRR Daemon

User Plane Function

Create PDR/FAR Rules

Assign UE IP Address

Track UE Route

Add Route to Table

Update Kernel Routes

UE Session Active

PFCP Session Termination

Remove PDR/FAR Rules

Remove UE Route
Delete Route from Table

Update Kernel Routes

FRR Daemon

User Plane Function Route Sync Engine

5G Core SMF

Automatic Synchronization

The UPF maintains an internal registry of all active UE IP addresses. When
enabled, the route synchronization system:

1. Monitors UE Sessions: Tracks all active PFCP sessions and their
associated UE IP addresses

2. Maintains Route List: Keeps an up-to-date list of routes that need to be
in the routing table

3. Syncs to FRR: Automatically pushes route updates to the FRR daemon via
its API

4. Handles Failures: Tracks sync status (synced/failed) for each route and
retries as needed

FRR Setup

Configuration

FRR is deployed and configured using Ansible templates to establish the base
routing parameters. You define the FRR configuration once as a Jinja2
template in your Ansible playbook, and Ansible automatically propagates it to
all your UPF instances during deployment.

A typical FRR Jinja2 configuration template includes:

frr version 7.2.1

frr defaults traditional
hostname pgw02

log syslog informational

service integrated-vtysh-config
[

ip route {{ hostvars[inventory hostname]['ansible default ipv4']

['gateway'] }}/32 {{ ansible default ipv4['interface'] }}
!

interface {{ ansible default ipv4['interface'] }}
ip address ospf router-id {{hostvars[inventory hostname]
['ansible host']}}

ip ospf authentication null
|

router ospf

ospf router-id {{hostvars[inventory hostname]['ansible host']}}
redistribute kernel

network {{ hostvars[inventory hostname]['ansible default ipv4']
['network'] }}/{{ mask cidr }} area 0O

area 0 authentication message-digest
|

line vty
!

end

Deployment Model:

1. Define Once: Create the FRR Jinja2 template in your Ansible role (e.g.,
roles/frr/templates/frr.conf.j2)

2. Configure Parameters: Set variables in your Ansible inventory for each
UPF host

3. Deploy Everywhere: Run the Ansible playbook to deploy FRR
configuration to all UPF nodes

4. Automatic Customization: Ansible uses host-specific variables (IP
addresses, router IDs, etc.) to customize each UPF's FRR configuration

Customizable Parameters in the Jinja2 template:

e OSPF parameters: Router ID, area configuration, authentication methods,
network advertisements

e BGP configuration: ASN, neighbor relationships, route policies,
communities

* Route redistribution: Which kernel routes to redistribute (e.qg.,
redistribute kernel)

¢ Route filtering: Route maps, prefix lists, access lists

e Interface settings: OSPF/BGP interface parameters

UPF Integration: Once the base FRR configuration is deployed to each UPF
instance, the UPF dynamically adds UE IP addresses as /32 host routes to the
kernel routing table based on active PFCP sessions. These routes are then:

1. Installed in the kernel routing table by the UPF route sync engine
2. Picked up by FRR via the redistribute kernel directive

3. Advertised to routing protocols (OSPF, BGP) according to your FRR
configuration

4. Propagated to the network so that UE traffic can be routed to this UPF
instance

Key Points:

e Set Once, Deploy Everywhere: Define the FRR Jinja2 template once in
Ansible, and it's automatically deployed to all UPF instances

* Ansible handles static config: The Jinja2 template sets up all routing
protocol parameters (OSPF areas, BGP neighbors, authentication, route
policies, etc.)

e UPF handles dynamic routes: Each UPF instance dynamically manages
only the UE IP /32 routes based on its active PFCP sessions

 Automatic route advertisement: FRR on each UPF automatically
redistributes the local UE routes according to your configured policies

e Centralized management: Update the Ansible template and re-run the
playbook to change routing configuration across all UPFs simultaneously

Route Advertisement

5G Core SMF User Plane Function Route Sync Engine FRR Daesmon

PFCP Session Establishment

=

Create PDR/FAR Rules
—
"

Assign UE IP Address

1—-’)

Track UE Route

L

Add Route to Table

|

Update Kernel Routes

«..l
.‘_,_,-'

UE Session Active

PFCP Session Termination

=
=

Remove PDR/FAR Rules

-—
Remove UE Route
Delete Route from Table
Update Kernel Routes
‘___\:)
5G Core SMF User Plane Function Route Sync Engine FRR Dasmon

Monitoring and Management

Web Ul Integration
The UPF Control Panel provides a Routes page that displays:

e Route Status: Whether route synchronization is enabled or disabled
e Total Routes: Number of UE IP addresses being tracked
e Sync Statistics: Count of successfully synced routes and any failures

e Active Routes: Real-time list of all UE IP addresses currently in the routing
table

e OSPF Neighbors: Live status of OSPF adjacencies with neighbor details
e BGP Peers: BGP session status and prefix statistics (when configured)

e OSPF Redistributed Routes: Complete view of external LSAs showing
how UE routes are advertised

The Routes page provides comprehensive visibility into UE route
synchronization, routing protocol neighbors, and redistributed route

advertisements.

Manual Sync Operation

Administrators can trigger a manual route synchronization through the web Ul
using the Sync Routes button. This operation:

1. Re-reads the current list of active UE sessions from the UPF
2. Compares with FRR's routing table
3. Adds any missing routes

4. Removes any stale routes

5. Returns updated sync statistics

Route Flow

UE Connects

T
¢

(Route Removed)

Benefits

e Zero Touch Provisioning: Routes are automatically managed without
manual intervention

e Dynamic Adaptation: Network routing adapts in real-time to UE mobility
and session changes

e Scalability: Supports thousands of concurrent UE routes
* Resilience: Failed sync operations are tracked and can be retried

e Visibility: Full visibility into route status through the web Ul

Technical Details

APl Endpoints

The UPF exposes the following route management endpoints:

e GET /api/vl/routes - List all tracked UE routes without syncing
e POST /api/vl/routes/sync - Sync routes to FRR and return updated list
* GET /api/vl/route stats - Get detailed routing statistics

e GET /api/vl/routing/sessions - Get routing protocol sessions (OSPF
neighbors, BGP peers)

e GET /api/vl/ospf/database/external - Get OSPF AS-External LSA
database (redistributed routes)

See Also: for complete endpoint

details and examples

Route Format

Routes are stored and managed as simple IP addresses (e.g., 100.64.18.5).
The routing daemon handles the full route entry details including:

Destination prefix/mask

Gateway/next-hop

Interface binding
Metric and administrative distance

FRR Verification

OSPF External LSA Database

You can verify that UE routes are being properly redistributed into OSPF by
examining the FRR OSPF Link State Database. External LSAs (Type 5) show
routes that have been injected into OSPF from external sources.

FRR OSPF database showing external LSAs including UE route 100.64.18.5/32
being advertised as an E2 (External Type 2) route.

In the example above, you can see:

e Network LSA (10.98.0.20): The UPF's own network advertisement
e Router LSA (192.168.1.1): OSPF router advertisement

e External LSAs: Including the UE route 100.64.18.5 redistributed into
OSPF with metric type E2 (External Type 2)

This verification confirms that:

1. The UPF is successfully tracking the UE IP address
2. The route sync engine has pushed the route to FRR
3. FRR has redistributed the route into OSPF

4. OSPF neighbors are receiving the route advertisements

Rules Management
Guide

Table of Contents

© N o vk wN R

Overview

OmniUPF uses a set of interconnected rules to classify, forward, shape, and
track user plane traffic. These rules are installed by the SMF via PFCP and
stored in eBPF maps for high-performance packet processing. Understanding
these rules and their relationships is critical for operating and troubleshooting
the UPF.

Rule Types

Key
Rule Type Purpose . Installed By
Field
PDR (Packet Classify TEID) ,
,) SMF via PFCP Session
Detection packets into or UE] .
Establishment/Modification
Rule) flows IP
FAR Determine) ,
(F di ¢ di FAR 1D SMF via PFCP Session
rwardin rwardin
o.wa 'ng © \fva N9 Establishment/Modification
Action Rule) action
Apply
ER (QoS
Q Q bandwidth QER SMF via PFCP Session
Enforcement o) .
Rule) limits and ID Establishment/Modification
ule
marking
URR (Usage Track data) ,
, URR SMF via PFCP Session
Reporting volumes for _ e
. ID Establishment/Modification
Rule) charging

Rule Processing Flow

Packet Detection Rules (PDR)

Purpose

PDRs classify incoming packets into traffic flows. They are the entry point for all
packet processing in the UPF.

PDR Structure

Uplink PDRs

Uplink PDRs match packets arriving on the N3 interface from the RAN.

Key Field: TEID (Tunnel Endpoint Identifier)

e 32-bit unsigned integer
e Assigned by SMF and signaled to gNB
e Unique per UE traffic flow

Value Fields:

FAR ID: Reference to forwarding action rule

QER ID: Reference to QoS enforcement rule (optional)

URR IDs: List of usage reporting rules (optional)

Outer Header Removal: Flag to remove GTP-U encapsulation
Lookup Process:

1. Extract TEID from GTP-U header

2. Hash lookup in uplink pdr _map eBPF map

3. If match found, retrieve FAR ID, QER ID, and URR IDs
4. If no match, drop packet

Example:

TEID: 5678

FAR ID: 2

QER ID: 1

Outer Header Removal: False
SDF Mode: No SDF

Downlink PDRs

Downlink PDRs match packets arriving on the N6 interface from the data
network.

Key Field: UE IP Address

e |IPv4 address (32-bit) or IPv6 address (128-bit)
e Assigned by SMF during PDU session establishment
e Unique per UE

Value Fields:

* FAR ID: Reference to forwarding action rule
* QER ID: Reference to QoS enforcement rule (optional)
* URR IDs: List of usage reporting rules (optional)

e SDF Mode: Service Data Flow filter mode
o No SDF: No filtering, all traffic matches

o SDF Only: Only SDF-matched traffic is forwarded

o SDF + Default: SDF-matched traffic uses specific rules, other traffic
uses default FAR

e SDF Filters: Application-specific filters (ports, protocols, IP ranges)
Lookup Process:

. Extract destination IP from packet header

. Hash lookup in downlink pdr map (IPv4) or downlink pdr map ip6 (IPv6)
. If match found, check SDF filters (if configured)

. Retrieve FAR ID, QER ID, and URR IDs

If no match, drop packet

oA W N e

Example:

UE IP: 10.45.0.1

FAR ID: 1

QER ID: 1

Outer Header Removal: False
SDF Mode: No SDF

SDF Filters (Service Data Flow)

SDF filters provide application-specific traffic classification within a PDR.
Use Cases:

e Differentiate YouTube traffic from web browsing
e Apply different QoS to VolP vs. best-effort data

¢ Route specific applications through different network paths
Filter Criteria:

e Protocol: TCP, UDP, ICMP
e Port Range: Destination ports (e.g., 443 for HTTPS, 5060 for SIP)
e IP Address Range: Specific destination networks

* Flow Description: 3GPP-defined flow templates

Example SDF Configuration:

PDR ID: 10
UE IP: 10.45.0.1
SDF Mode: SDF Only

SDF Filters:
- Protocol: UDP, Ports: 5060-5061 - FAR ID 5 (VoIP FAR)

- Protocol: TCP, Port: 443 - FAR ID 1 (Default FAR)

Forwarding Action Rules (FAR)

Purpose

FARs determine what to do with packets that match a PDR. They define
forwarding actions, GTP-U encapsulation parameters, and destination
endpoints.

FAR Structure

OmniCharge OmniRAN

- -

Key: UE IP Address
IPv4 or IPv6

Downloads

k.

FAR ID

QER ID

URR IDs
SDF Mode
SDF Filters

Uplink PDR

Key: TEID
32-bit integer

"

FAR ID
QER ID
URR IDs
Outer Header Removal

Action Flags

FAR actions are bitwise flags that can be combined:

Flag Bit Value Description

FORWARD 1 2 Forward packet to destination

BUFFER 2 4 Store packet in buffer

DROP 0 1 Discard packet

NOTIFY 3 8 Send notification to control plane
DUPLICATE 4 16 Duplicate packet to multiple destinations

Common Action Combinations:

e Action: 2 (FORWARD) - Normal forwarding (most common)
e Action: 6 (FORWARD + BUFFER) - Forward and buffer during handover
e Action: 4 (BUFFER) - Buffer only (during path switch)

e Action: 1 (DROP) - Drop packet (rare, usually for policy enforcement)

Buffering Control

The BUFFER flag (bit 2) controls packet buffering during mobility events.
Buffering is a critical UPF feature that prevents packet loss during UE state
transitions.

When Buffering is Used

Idle-to-Connected Transition: When downlink packets arrive for a UE in IDLE
state (not connected to gNB), the UPF:

1. Buffers the packets

2. Sends a Downlink Data Notification (DLDR) to the SMF

3. SMF pages the UE to wake up and connect

4. Once connected, SMF updates the FAR with FORWARD action
5. UPF flushes buffered packets to the UE

Handover (Connected-to-Connected): During gNB-to-gNB handover, the

UPF temporarily buffers packets to prevent loss:

. Old gNB connection is dropped

. SMF sets FAR action to BUFFER

. Packets queue during path switch

UE connects to new gNB

SMF updates FAR with new TEID and FORWARD action
UPF flushes packets to new gNB

o v oA WwN e

Data Network

UE is in IDLE state

UE (IDLE) OmniUPF ‘ SMF

Downlink packet arrives

No active FAR with FORWARD

FAR has BUFF + NOCP flags

Buffer packet

PFCP Session Report Request (DLDR)

Page UE

Paging message

RRC Connection Setup

UE transitions to CONNECTED

PFCP Session Modification
FAR Action = FORWARD, Update TEID

Flush buffered packets

Replay packets with new TEID

Deliver packets

uE o) —_—- o

Data Network

Buffer Capacity and Limits

Global Buffer Limits:

Max Total Packets: 100,000 (configurable)

Max Total Bytes: Based on available memory

TTL (Time-to-Live): 60 seconds (configurable)

Packets exceeding TTL: Automatically dropped

Per-FAR Limits:

e Max Packets per FAR: 10,000 (configurable)

e Purpose: Prevent a single FAR from exhausting buffer capacity
Buffer Overflow Behavior:

e When global or per-FAR limit reached, new packets are dropped
e Metrics track drops with reason="global limit" or reason="far limit"

e Oldest packets are NOT automatically evicted (explicit drop only on TTL
expiration)

Downlink Data Notification (DLDR)

When the UPF buffers a packet for an IDLE UE, it sends a PFCP Session Report
Request to the SMF:

DLDR Contents:

e Report Type: Downlink Data Report (DLDR)
 FAR ID: The FAR that triggered buffering

e Downlink Data Service Information: Optional QFI, Paging Policy
Indicator

SMF Actions on DLDR:

1. Page the UE via AMF - gNB

2. Wait for UE to establish RRC connection

3. Send PFCP Session Modification Request to update FAR
4. FAR action changes from BUFF+NOCP to FORW

5. UPF flushes buffered packets

Metrics for DLDR:

e upf dldr sent total: Total DLDRs sent
e upf dldr_send errors: Failed DLDRs

e upf buffer notify to flush duration seconds: Latency from DLDR to
flush

See for complete list.

Buffering Operations

Enable Buffering (Set BUFF flag):

e FAR Action |= 0x04 (set bit 2)
e Example: Action: 2 (FORW) — Action: 6 (FORW+BUFF)

e Used during handover preparation
Buffer-Only Mode (BUFF without FORW):

e FAR Action = 0x04 (BUFF only)
¢ Packets are buffered but NOT forwarded
e Used for IDLE UE state (pending paging)

Disable Buffering (Clear BUFF flag):

e FAR Action &= ~0x04 (clear bit 2)
e Example: Action: 6 (FORW+BUFF) — Action: 2 (FORW)

e Buffered packets remain until flushed or cleared
Flush Buffer:

* Replay all buffered packets using current FAR rules
e Packets are forwarded with updated TEID/destination
e Buffer is emptied after successful flush

e FAR must have FORW action set

Clear Buffer:

e Discard all buffered packets without forwarding
e Use when handover fails or session is deleted

e Metrics track with reason="cleared"
Monitoring Buffered Packets
Buffers Page (Web Ul): Navigate to Buffers to view:

» Total buffered packets
e Total buffered bytes

Number of FARs with buffered packets
Per-FAR packet counts

Oldest packet timestamp
Enable/Disable buffering per FAR

Flush or clear operations

Key Indicators:

e Packets > 10 seconds old: Potential paging delay

* Packets > 30 seconds old: Likely paging failure, clear buffer

* High packet count: Check for stuck sessions or paging failures

Prometheus Metrics:

See

upf buffer packets current: Current buffered packets

upf buffer bytes current: Current buffered bytes

upf buffer fars active: FARs with buffered packets

upf buffer packets dropped{reason}: Dropped packet counts

for complete buffer metrics.

Common Buffering Scenarios

Scenario 1: IDLE UE Downlink Data

Initial State:
- UE in IDLE mode (no gNB connection)
- FAR Action: 0x04 (BUFF only)

Data Arrival:

O NO UL~ WN =

. DN sends downlink packet
. UPF matches PDR, applies FAR

FAR has BUFF flag - packet buffered

. UPF sends DLDR to SMF

. SMF pages UE

. UE connects to gNB

. SMF modifies FAR: Action = 0x02 (FORW)

. UPF flushes buffered packets with new TEID

Scenario 2: Handover Preparation

Initial State:
- UE connected to gNB-1 (TEID 1234)
- FAR Action: 0x02 (FORW)

Handover Process:

SO Ul b WN P

SMF modifies FAR: Action = 0x06 (FORW+BUFF)
Packets forwarded to gNB-1 AND buffered

. UE switches to gNB-2

. SMF modifies FAR: TEID = 5678, Action = 0x02 (FORW)
. UPF flushes buffered packets to gNB-2 with new TEID
. No packet loss during handover

Scenario 3: Path Switch

Initial State:
- UE connected, active data flow

Path Switch:

Uu B W N -

. SMF modifies FAR: Action = 0x04 (BUFF only)

All incoming packets buffered (not forwarded)

. Network reconfigures path

SMF modifies FAR: Action = 0x02 (FORW), new destination
UPF flushes all buffered packets to new path

Outer Header Creation
Determines whether GTP-U encapsulation should be added.
Uplink FAR (N3 - N6):

e Quter Header Creation: False

e Action: Remove GTP-U, forward native IP packet

Downlink FAR (N6 — N3):

Outer Header Creation: True

Remote IP: gNB IP address (e.g., 200.198.5.10)
TEID: Tunnel ID for UE traffic

Action: Add GTP-U header, forward to gNB

FAR Lookup in Web Ul

The Rules Management page provides FAR lookup by ID:

Steps:

1. Navigate to Rules —» FARs tab
2. Enter FAR ID in search field
3. Click "Lookup" to view FAR details

Displayed Information:

e FARID

e Action (numeric + decoded flags)

e Buffering status (ON/OFF)

e Quter Header Creation

e Remote IP address (with integer representation)
e TEID

e Transport Level Marking

QoS Enforcement Rules (QER)

Purpose

QERs apply Quality of Service parameters to traffic flows, including bandwidth
limits and packet marking.

QER Structure

QoS Parameters
QFI (QoS Flow Identifier):

e 6-bit identifier for 5G QoS flows
e Values 1-9 are standardized (e.g., QFI 9 = default bearer)

e Used for packet marking in 5GC
Gate Status:

e Open (0): Traffic allowed

¢ Closed (non-zero): Traffic blocked
Maximum Bit Rate (MBR):

Maximum allowed bandwidth for traffic flow

Specified in kbps
MBR = 0: No rate limit (unlimited)

Traffic exceeding MBR is dropped

Guaranteed Bit Rate (GBR):

Minimum bandwidth guaranteed for traffic flow

Specified in kbps

GBR = 0: Best-effort (no guarantee)
GBR > O: Prioritized flow with guaranteed bandwidth

QoS Flow Types

Best-Effort Flows (GBR = 0):

QER ID: 1

QFI: 9

MBR Uplink: 100000 kbps (100 Mbps)
MBR Downlink: 100000 kbps (100 Mbps)
GBR Uplink: 0 kbps

GBR Downlink: 0 kbps

Guaranteed Flows (GBR > 0):

QER ID: 2

QFI: 1

MBR Uplink: 10000 kbps (10 Mbps)
MBR Downlink: 10000 kbps (10 Mbps)
GBR Uplink: 5000 kbps (5 Mbps)
GBR Downlink: 5000 kbps (5 Mbps)

QoS Enforcement Algorithm

UE [IDLE) gl Ominill FF SMF [rata Network

LE = in IDLE state

Downlink packet arrives
'l I
Mo active FAR with FORMARD
FAR has BUFF + NOCP flags

e —

Buffer packet
.

-

PFCP Sexsion Report Request (DLDA)
-

Page LE
Paging message
RRC Connection Setup
"
UE transitions to CONNMECTED
PRCP Session Modification
FAR Action = FORWARD, Update TEID
-

Flush buffered packets

Replay packets with new TEID
-

Dielrver packets

UE [ID<LE) ghiB Ominill FF SMF [rata Network

MBR Enforcement Mechanism

OmniUPF enforces MBR (Maximum Bit Rate) limits using a sliding window
rate limiter implemented in the eBPF datapath. This algorithm operates at
nanosecond precision directly in the XDP layer, ensuring line-rate performance
without kernel context switches.

How It Works
Algorithm: Sliding Window Rate Limiting
For each packet, the UPF performs the following checks:

1. Gate Status Check: If gate status is CLOSED (non-zero), drop packet
immediately
2. MBR Check: If MBR = 0, bypass rate limiting (unlimited bandwidth)

3. Transmission Time Calculation:

tx_time = (packet size bytes x 8) x (1,000,000,000 ns/sec) /
MBR kbps

4. Window Check: If current time is within the 5ms sliding window, drop
packet

5. Window Advance: If packet is allowed, advance window by tx time

Example Calculation:
Assume:

e MBR = 100,000 kbps (100 Mbps)
e Packet size = 1500 bytes
e Window size = 5,000,000 ns (5 ms)

Step 1: Calculate transmission time at 100 Mbps

tx time = (1500 bytes x 8 bits/byte) x (1,000,000,000 ns/sec) /
100,000,000 bps

12,000,000,000 / 100,000,000

120 ns

Step 2: Check if packet fits in window

current time = 1000000000 ns

window start = 999990000 ns

if (window start + tx time > current time):
DROP packet (would exceed rate limit)

Step 3: If allowed, advance window

window start = window start + 120 ns
PASS packet

Sliding Window Behavior

5ms Window Size:

e The algorithm uses a 5 millisecond sliding window
e Window automatically resets if idle for more than 5ms

e Prevents burst starvation while enforcing average rate

Burst Handling:

¢ Small bursts are allowed within the 5ms window
e Sustained traffic above MBR is rate-limited

e More accurate than simple token bucket algorithms
Per-Direction Rate Limiting:

e Uplink MBR uses ger->ul start timestamp
e Downlink MBR uses ger->dl start timestamp

e Each direction is rate-limited independently

Rate Limit Enforcement Points
Uplink (N3 - N6):

. Packet arrives on N3 interface (from gNB)
. PDR lookup by TEID

. QER lookup by QER ID

. Check ul gate status - drop if closed

. Apply limit rate sliding window() with ul maximum bitrate

o U b WN

. If passed, forward to N6 and update URR counters

Downlink (N6 —» N3):

1. Packet arrives on N6 interface (from Data Network)

2. PDR lookup by UE IP address

3. QER lookup by QER ID

4. Check dl gate status — drop if closed

5. Apply limit rate sliding window() with dl maximum bitrate
6. If passed, add GTP-U header and forward to N3

N9 Loopback (SGWU & PGWU):

e Both uplink and downlink QERs may apply in N9 loopback scenarios
e Each QER is checked independently at SGWU and PGWU boundaries

MBR vs. Observed Throughput

Why observed throughput may differ from MBR:

e Protocol Overhead: GTP-U, UDP, IP headers add ~50-60 bytes per packet
* Packet Size Variance: Smaller packets = more overhead, lower efficiency
 Rate Limit Precision: Enforcement happens per-packet, not per-byte

e Window Reset Behavior: 5ms idle periods allow brief bursts above MBR

Example:

Configured MBR: 100 Mbps
Observed Throughput: ~95-98 Mbps (due to GTP-U/UDP/IP overhead)

How to Verify Rate Limiting:

1. Check URR volume counters over time: upf urr * volume bytes

2. Calculate throughput: (volume delta bytes x 8) / time delta seconds
/ 1000 = kbps

3. Compare against configured MBR in QER

GBR (Guaranteed Bit Rate)

Important: OmniUPF does not currently enforce GBR minimums. GBR is stored
in the QER but not used for traffic prioritization or admission control.

GBR Behavior:

GBR values are accepted from SMF via PFCP
GBR is stored in QER map and visible via API

No bandwidth reservation or traffic prioritization based on GBR

GBR serves as metadata for tracking flow type (best-effort vs. guaranteed)
Future Enhancement:

¢ GBR enforcement requires traffic scheduling or weighted queuing

e May be implemented using eBPF QoS capabilities in future releases

Usage Reporting Rules (URR)

Purpose

URRSs track data volumes for charging, analytics, and policy enforcement. They
maintain packet and byte counters that are reported to the SMF for charging
records.

URR Structure

Volume Tracking
Uplink Volume:

e Bytes transmitted from UE to Data Network
e Measured after GTP-U decapsulation

¢ Includes IP header and payload

Downlink Volume:

e Bytes transmitted from Data Network to UE
e Measured before GTP-U encapsulation

¢ Includes IP header and payload
Total Volume:

e Sum of uplink and downlink volumes

e Used for total usage reporting

Usage Reporting Triggers
URRSs can trigger reports based on:
Volume Threshold.:

e Report when volume exceeds configured limit

e Example: Report every 1 GB of usage
Time Threshold:

e Report at periodic intervals

e Example: Report every 5 minutes
Event-Based:

e Report on session termination
e Report on QoS change

e Report on handover

Volume Display Formatting

The Web Ul automatically formats volume in human-readable units:

Bytes Display
0-1023 B (Bytes)
1024 - 1048575 KB (Kilobytes)
1048576 - 1073741823 MB (Megabytes)

1073741824 - 1099511627775 GB (Gigabytes)

1099511627776+ TB (Terabytes)

Example:

URR ID: 0

Uplink Volume: 12.3 KB
Downlink Volume: 9.0 KB
Total Volume: 21.3 KB

URR Reporting Flow

QER Parameters

| o

OmniCharge OmniRAN

- -

Downloads ¥ English+ Omnitouch We

Gate Status UL
Open/Closed

Gate Status DL
Open/Closed

QER ID . MBR Uplink
Unique |dentifier - Max Bit Rate

MBR Downlink
Max Bit Rate

GBR Uplink
Guaranteed Bit Rate

GBR Downlink
Guaranteed Bit Rate

Rule Relationships

PDR - FAR - QER - URR Chain

Each PDR references a FAR, which may reference a QER and one or more URRs.

Example Session Configuration

Uplink PDR:

TEID: 5678

FAR ID: 2

QER ID: 1

URR IDs: [0]

Outer Header Removal: False

Downlink PDR:

UE IP: 10.45.0.1
FAR ID: 1

QER ID: 1

URR IDs: [0]

SDF Mode: No SDF

FAR ID 1 (Downlink):

Action: 2 (FORWARD)

Quter Header Creation: True

Remote IP: 200.198.5.10
TEID: 5678

FAR ID 2 (Uplink):

Action: 2 (FORWARD)

Quter Header Creation: False

QERID 1:

QFI: 9

MBR Uplink: 100000 kbps
MBR Downlink: 100000 kbps
GBR Uplink: O kbps

GBR Downlink: 0 kbps

URR ID O:

Uplink Volume: 12.3 KB
Downlink Volume: 9.0 KB
Total Volume: 21.3 KB

Common Operations

View Rules for a Session
Via Sessions Page:

1. Navigate to Sessions
2. Find UE by IP or TEID
3. Click "Expand" to view all rules (PDR, FAR, QER, URR)

Via Rules Page:

1. Navigate to Rules

2. Use lookup by TEID (uplink) or UE IP (downlink) in PDR tab
3. Note the FAR ID, QER ID, URR IDs

4. Switch to FAR/QER/URR tabs to view referenced rules

Enable/Disable Buffering
Scenario: During handover, buffer packets to prevent loss
Steps:

1. Navigate to Rules - FARs

2. Enter FAR ID in search field

3. Click "Lookup"

4. If buffering is OFF, click "Enable Buffering"

5. Verify FAR action bit 2 is set (Action value increases by 4)

Alternative via Buffers Page:

1. Navigate to Buffers
2. View FARs with buffering enabled

3. Click "Disable Buffer" when handover completes

Monitor QoS Compliance
Check if traffic is being rate-limited:

1. Navigate to Rules -» QERs
2. Find QER ID associated with UE session
3. Note MBR Uplink and MBR Downlink values

4. Compare with URR volume growth rate

Calculate Average Throughput:

Throughput (kbps) = (Volume Delta in bytes x 8) / (Time Delta in
seconds x 1000)

If throughput approaches MBR, traffic is being rate-limited.

Track Data Usage
Monitor URR volumes:

1. Navigate to Rules -» URRs
2. View uplink, downlink, and total volumes
3. Sort by Total Volume to find highest users

4. Refresh periodically to observe volume growth

Use Cases:

e Verify charging integration
e Detect abnormal data usage

e Plan capacity based on traffic patterns

Troubleshooting

No Traffic Flowing

Check PDR:

1. Verify PDR exists for TEID (uplink) or UE IP (downlink)
2. Confirm FAR ID is valid
3. Check SDF filters aren't blocking traffic

Check FAR:

1. Verify FAR action is FORWARD (not DROP or BUFFER only)
2. Confirm outer header creation matches direction

3. Verify Remote IP and TEID are correct for downlink

Check QER:

1. Verify Gate Status is Open (0)

2. Check MBR is not too restrictive

Packets Being Dropped
Check QER Rate Limiting:

1. Navigate to Rules -» QERs
2. Verify MBR is adequate for traffic load
3. Check URR volume growth matches expected throughput

Check FAR Action:

1. Navigate to Rules - FARs
2. Verify action is FORWARD, not DROP
3. Check buffering isn't stuck in BUFFER-only mode

Buffering Issues

Packets stuck in buffer:

1. Navigate to Buffers page
2. Check oldest packet timestamp
3. If > 30 seconds, handover may have failed

4. Manually flush or clear buffer

5. Disable buffering on FAR

Buffer overflow:

1. Check total packets vs. Max Total (default 100,000)
2. Check per-FAR packets vs. Max Per FAR (default 10,000)
3. Clear buffers if full

4. Investigate why buffering wasn't disabled

URR Not Tracking

Volume counters at zero:

1. Verify PDR references URR ID

2. Check that packets are matching PDR

3. Verify FAR is forwarding (not dropping) packets
4. Confirm URR ID exists in URR map

Volume not reporting to SMF:

1. Check PFCP Session Report configuration
2. Verify URR reporting triggers (volume/time thresholds)

3. Review logs for PFCP Session Report messages

Related Documentation

. - Overview of OmniUPF architecture and
components

. - Control panel usage for rule viewing

. - Statistics and capacity monitoring

. - Common issues and diagnostics

OmniUPF
Troubleshooting Guide

Table of Contents

© o N o U A WD -

R
N P O

Overview

This guide provides systematic troubleshooting procedures for common
OmniUPF issues. Each section includes symptoms, diagnosis steps, root causes,
and resolution procedures.

Quick Diagnostic Checklist

Before deep troubleshooting, verify:

1. Check OmniUPF is running
systemctl status omniupf

2. Check PFCP association
curl http://localhost:8080/api/v1/upf pipeline

3. Check eBPF maps are loaded
ls /sys/fs/bpf/

4. Check XDP program is attached
ip link show | grep -i xdp

5. Check kernel logs for errors
dmesg | tail -50
journalctl -u omniupf -n 50

Diagnostic Tools

OmniUPF REST API

Check UPF status:
curl http://localhost:8080/api/v1/upf status
Check PFCP associations:
curl http://localhost:8080/api/v1l/upf pipeline
Check session count:
curl http://localhost:8080/api/vl/sessions | jgq 'length'’

Check eBPF map capacity:

curl http://localhost:8080/api/v1l/map info
Check packet statistics:

curl http://localhost:8080/api/vl/packet stats
Check XDP statistics:

curl http://localhost:8080/api/v1l/xdp stats

eBPF Map Inspection

List all eBPF maps:

1s -1lh /sys/fs/bpf/
bpftool map list

Show map details:

bpftool map show
bpftool map dump name pdr _map downlin

Count entries in map:

bpftool map dump name far map | grep -c "key:"

XDP Program Inspection

Check if XDP program is attached:

ip link show eth® | grep xdp
List all XDP programs:
bpftool net list
Show XDP program details:
bpftool prog show
Dump XDP statistics:

bpftool prog dump xlated name xdp upf func

Network Debugging

Capture PFCP traffic on N4 (control plane):

PFCP is not processed by XDP, tcpdump works normally
tcpdump -1 ethO® -n udp port 8805 -w /tmp/pfcp traffic.pcap

Capture GTP-U traffic on N3 (requires out-of-band capture):

WARNING: Standard tcpdump on UPF host CANNOT capture XDP-
processed packets!

XDP processes GTP-U before the kernel network stack sees
packets.

Use out-of-band capture instead:

1. Network TAP between gNB and UPF

2. Switch port mirroring/SPAN to copy N3 traffic
3. Virtual switch port mirroring to analyzer VM
On analyzer/monitoring host (NOT on UPF):

tcpdump -i <mirror _interface> -n udp port 2152 -w
/tmp/n3 capture.pcap

Or use statistics API for packet counts:

curl http://localhost:8080/api/vl/packet stats
curl http://localhost:8080/api/v1/n3n6 stats

Monitor packet counters:

watch -n 1 'ip -s link show ethO'

Check routing table:

ip route show
ip route get 10.45.0.100 # Check route for UE IP

Check ARP table:

ip neigh show

Installation Issues

Issue: "eBPF filesystem not mounted"

Symptoms:

ERRO[0000] failed to load eBPF objects: mount bpf filesystem at
/sys/fs/bpf

Cause: eBPF filesystem not mounted

Resolution:

Mount eBPF filesystem
sudo mount bpffs /sys/fs/bpf -t bpf

Make persistent (add to /etc/fstab)
echo "bpffs /sys/fs/bpf bpf defaults 0 0" | sudo tee -a /etc/fstab

Verify mount
mount | grep bpf

Issue: Kernel version too old

Symptoms:

ERRO[0000] kernel version 5.4.0 is too old, minimum required is
5.15.0

Cause: Linux kernel version below minimum requirement

Resolution:

Check kernel version
uname -r

Upgrade kernel (Ubuntu/Debian)
sudo apt update
sudo apt install linux-generic-hwe-22.04

sudo reboot

Verify new kernel
uname -r # Should be >= 5.15.0

Issue: Missing libbpf dependency

Symptoms:

error while loading shared libraries: libbpf.so0.0: cannot open
shared object file

Cause: libbpf library not installed

Resolution:

Install libbpf (Ubuntu/Debian)
sudo apt update
sudo apt install libbpf-dev

Verify installation
ldconfig -p | grep libbpf

Configuration Problems

Issue: Invalid configuration file

Symptoms:

ERRO[0000] unable to read config file: unmarshal errors

Cause: YAML syntax error in config file

Resolution:

Validate YAML syntax
cat config.yml | python3 -c "import yaml, sys;
yaml.safe load(sys.stdin)"

Common 1issues:

- Incorrect indentation (use spaces, not tabs)
- Missing colons after keys

- Unquoted strings with special characters

- List items without hyphens

H oW B B

Example of correct YAML:
cat > config.yml <<EOF
interface name: [ethO]
xdp_attach mode: generic
api address: :8080

pfcp address: :8805

EOF

Issue: Interface name not found

Symptoms:
ERRO[0OOO] interface eth® not found

Cause: Configured interface does not exist

Resolution:

List all network interfaces
ip link show

Check interface status
ip addr show eth0

If interface has different name, update config.yml:
interface name: [enslfO@] # Use actual interface name

For VMs, check interface naming scheme
ls /sys/class/net/

Issue: Port already in use

Symptoms:
ERRO[0000] failed to start API server: address already in use

Cause: Port 8080, 8805, or 9090 already bound by another process

Resolution:

Find process using port
sudo lsof -i :8080
sudo netstat -tulpn | grep :8080

Kill conflicting process
sudo kill <PID>

Or change OmniUPF port in config
api address: :8081

pfcp address: :8806

metrics address: :9091

Issue: Invalid PFCP Node ID

Symptoms:
ERRO[000O] invalid pfcp node id: must be valid IPv4 address

Cause: PFCP Node ID is not a valid IPv4 address

Resolution:

pfcp node id: 10.100.50.241

PFCP Association Issues

Issue: No PFCP associations established
Symptoms:

e Web Ul shows "No associations"

e SMF logs show "PFCP Association Setup failure"

Diagnosis:

1. Check if PFCP server is listening
sudo netstat -ulpn | grep 8805

2. Check firewall rules
sudo iptables -L -n | grep 8805

sudo ufw status

3. Capture PFCP traffic
tcpdump -i any -n udp port 8805 -vv

4. Check PFCP associations via API
curl http://localhost:8080/api/v1/upf pipeline

Common Causes & Resolutions:

Firewall blocking PFCP

Resolution:

Allow PFCP traffic (UDP 8805)
sudo ufw allow 8805/udp
sudo iptables -A INPUT -p udp --dport 8805 -j ACCEPT

Wrong PFCP Node ID

Resolution:

Set PFCP Node ID to correct N4 interface IP
pfcp node id: 10.100.50.241 # Must match IP on N4 network

Network unreachable to SMF

Resolution:

Test connectivity to SMF
ping <SMF IP>

Check routing to SMF
ip route get <SMF IP>

Add route if missing
sudo ip route add <SMF NETWORK>/24 via <GATEWAY>

SMF configured with wrong UPF IP

Resolution:

e Check SMF configuration for UPF address
e Ensure SMF has UPF's pfcp node id IP configured
e Verify SMF can route to UPF's N4 network

Issue: PFCP heartbeat failures

Symptoms:
WARN[0030] PFCP heartbeat timeout for association 10.100.50.10
Diagnosis:

Check PFCP statistics
curl http://localhost:8080/api/v1l/upf pipeline | jq
‘.associations[] | {remote id, uplink teid count}'

Monitor heartbeat logs
journalctl -u omniupf -f | grep heartbeat

Causes & Resolutions:

Network packet loss

Resolution:

Check packet loss to SMF
ping -c 100 <SMF IP> | grep loss

If high loss, investigate network:
- Check link status

- Check switch/router health
- Check for congestion

Heartbeat interval too aggressive

Resolution:

Increase heartbeat interval

heartbeat interval: 30 # Increase from 5 to 30 seconds
heartbeat retries: 5 # Increase retries

heartbeat timeout: 10 # Increase timeout

Packet Processing Problems

Issue: No packets flowing (RX/TX counters at
0)

Symptoms:

e Statistics page shows 0 RX/TX packets

e UE cannot establish data session

Diagnosis:

1. Check if XDP program is attached
ip link show eth@® | grep xdp

2. Check interface is UP
ip link show eth0

3. Check packet statistics (XDP-aware)

Note: tcpdump cannot see XDP-processed GTP-U packets
curl http://localhost:8080/api/vl/packet stats

Resolutions:

XDP program not attached

Resolution:

Restart OmniUPF to re-attach XDP
sudo systemctl restart omniupf

Verify attachment

ip link show eth® | grep xdp
bpftool net list

Interface down or no link

Resolution:

Bring interface up
sudo ip link set eth0O up

Check link status
ethtool eth® | grep "Link detected"”

If link down, check physical connection or VM network config

Wrong interface configured

Resolution:

Update config.yml with correct interface
interface name: [enslf@] # Use actual interface name from

link show'

ip

Issue: Packets received but not forwarded
(high drop rate)

Symptoms:

e RX counters increasing but TX counters not

e Drop rate > 1%

Diagnosis:

Check drop statistics
curl http://localhost:8080/api/vl/xdp stats | jq '.drop'

Check route statistics
curl http://localhost:8080/api/vl/packet stats | jq '.route stats'

Monitor packet drops
watch -n 1 'curl -s http://localhost:8080/api/vl/packet stats | jq

“.total rx, .total tx, .total drop"'

Common Causes:

No PDR match (unknown TEID or UE IP)

Resolution:

Check if sessions exist
curl http://localhost:8080/api/vl/sessions

If no sessions, verify:

- PFCP association is established

- SMF has created sessions

- Session establishment was successful

Check PDR map entries

bpftool map dump name pdr map teid ip | grep -c key
bpftool map dump name pdr map downlin | grep -c key

Routing failures

Resolution:

Check FIB lookup failures
curl http://localhost:8080/api/vl/packet stats | jq '.route stats'

Test routing for UE IP
ip route get 10.45.0.100

Add missing route
sudo ip route add 10.45.0.0/16 dev ethl # Route UE pool to N6

QER rate limiting

Symptoms:

Throughput lower than expected

Traffic capped at a specific rate

URR volume counters show plateau behavior

XDP drop counters increasing during traffic bursts
Diagnosis:

1. Check configured MBR for the session:

Find the session's QER ID
curl http://localhost:8080/api/vl/pfcp sessions | jq '.data[] |
select(.ue ip == "10.45.0.1")"

Look up the QER configuration
curl http://localhost:8080/api/vl/qer map | jq '.datal] |
select(.qer id == 1)

2. Verify gate status:

Gate status should be 0 (OPEN) for both uplink and downlink
curl http://localhost:8080/api/vl/qer map | jq '.datal] |
{gqer id, ul gate: .ul gate status, dl gate: .dl gate status}'

3. Calculate actual throughput from URR:

Query URR volume counters at two points in time
curl http://localhost:8080/api/v1l/urr map | jq '.data[] |
select(.urr_id == 0)'

Calculate throughput (manual):
throughput kbps = (volume delta bytes x 8) /
time delta seconds / 1000

4. Compare MBR vs. actual throughput:

o Expected throughput = 95-98% of MBR (due to protocol overhead)
o If throughput is significantly below MBR, check for other bottlenecks

o If throughput matches MBR exactly, rate limiting is working as
expected

Resolution:

e If MBR is too low: Request SMF to update QER with higher MBR via PFCP
Session Modification

e If gate is closed: Investigate why SMF closed the gate (policy, quota, or
error)

e If rate limiting is unexpected: Verify SMF policy configuration and QoS
profile

Understanding MBR Enforcement:

OmniUPF uses a sliding window algorithm to enforce MBR limits at nanosecond
precision in the eBPF datapath. See
for detailed explanation of:

How packet size and rate determine drop decisions

Why observed throughput differs from configured MBR

Per-direction (uplink/downlink) rate limiting

5ms sliding window behavior
Common Scenarios:

e VoIP calls dropping: Check if MBR is sufficient for codec bitrate (G.711 =
~80 kbps)

* Video streaming buffering: Ensure MBR > video bitrate + overhead
(1080p = ~5-10 Mbps)

e Burst traffic: Small bursts allowed within 5ms window, sustained traffic
rate-limited

Issue: One-way traffic (uplink works, downlink
doesn't)

Symptoms:

e RX N3 packets but no TX N3 packets (downlink problem)
e RX N6 packets but no TX N6 packets (uplink problem)

Diagnosis:

Check N3/N6 interface statistics (XDP-aware method)

curl http://localhost:8080/api/v1/n3n6 stats

curl http://localhost:8080/api/vl/packet stats

Note: Standard tcpdump cannot capture XDP-processed GTP-U

traffic

Use statistics API or xdpdump for traffic analysis
See "Packet Capture with XDP" section for details

Uplink Failure (RX N3, no TX N6):

Cause: No FAR action or routing issue to N6

Resolution:

Check FAR has FORWARD action
curl http://localhost:8080/api/vl/sessions | jq '.[].fars[] |
select(.applied action == 2)'

Check N6 route exists
ip route get 8.8.8.8 # Test route to internet

Add default route if missing
sudo ip route add default via <N6 GATEWAY> dev ethl

Downlink Failure (RX N6, no TX N3):
Cause: No downlink PDR or missing GTP encapsulation

Resolution:

Check downlink PDR exists for UE IP
curl http://localhost:8080/api/vl/sessions | jq '.[].pdrs[] |
select(.pdi.ue ip address)'

Verify FAR has OUTER HEADER CREATION
curl http://localhost:8080/api/vl/sessions | jq '.[].fars[] |

.outer _header creation'

Check gNB reachability
ping <GNB N3 IP>

XDP and eBPF Issues

For detailed XDP configuration, mode selection, and troubleshooting,
see the

Issue: XDP program failed to load

Symptoms:
ERRO[0000] failed to load XDP program: invalid argument
Diagnosis:

Check kernel XDP support
grep XDP /boot/config-$(uname -r)

Should show:
CONFIG_XDP SOCKETS=y
CONFIG BPF=y
CONFIG BPF SYSCALL=y

Check dmesg for detailed error
dmesg | grep -i bpf

Causes & Resolutions:

Kernel lacks XDP support

Resolution:

Rebuild kernel with XDP support or upgrade to newer kernel
Ubuntu 22.04+ has XDP enabled by default

sudo apt install linux-generic-hwe-22.04

sudo reboot

XDP program verification failure

Resolution:

Check OmniUPF logs for verifier errors
journalctl -u omniupf | grep verifier

Common issues:
- eBPF complexity exceeds limits (increase kernel limits)

- Invalid memory access (bug in eBPF code)

Increase eBPF verifier log level for debugging
sudo sysctl kernel.bpf stats enabled=1

Issue: XDP aborted count increasing
Symptoms:

e XDP stats show aborted > 0

e Packet drops increasing

Diagnosis:

Check XDP aborted count
curl http://localhost:8080/api/vl/xdp stats | jgq '.aborted'

Monitor XDP stats
watch -n 1 'curl -s http://localhost:8080/api/v1l/xdp stats'

Cause: eBPF program encountered runtime error

Resolution:

Check kernel logs for eBPF errors
dmesg | grep -i bpf

Restart OmniUPF to reload eBPF program
sudo systemctl restart omniupf

If issue persists, enable eBPF logging (requires rebuild):
Build OmniUPF with BPF ENABLE LO0OG=1

Issue: eBPF map full (capacity exhausted)
Symptoms:

e Session establishment fails

e Map capacity at 100%
Diagnosis:
Check map capacity
curl http://localhost:8080/api/vl/map info | jq '.[] | {map_name,
capacity, used, usage percent}'
Identify full maps

curl http://localhost:8080/api/vl/map info | jq '.[] |
select(.usage percent > 90)'

Immediate Mitigation:

1. Identify stale sessions
curl http://localhost:8080/api/vl/sessions | jq '.[] | {seid,
uplink teid, created at}'

2. Request SMF to delete old sessions
(via SMF admin interface or API)

3. Monitor map usage decrease

watch -n 5 'curl -s http://localhost:8080/api/vl/map _info | jq ".
[1 | select(.map name==\"pdr map downlin\") | .usage percent"'

Long-term Resolution:

Increase map capacity in config.yml
max_sessions: 200000 # Increase from 100000

Or set individual map sizes
pdr map size: 400000

far map size: 400000
ger _map size: 200000

Important: Changing map sizes requires OmniUPF restart and clears all
existing sessions.

Performance Issues

Issue: Low throughput (below expected)
Symptoms:

e Throughput < 1 Gbps despite capable NIC
e High CPU utilization

Diagnosis:

Check packet rate
curl http://localhost:8080/api/vl/packet stats | jq '.total rx,
.total tx'

Check NIC statistics
ethtool -S eth@® | grep -i drop

Check XDP mode
ip link show eth® | grep xdp

Resolutions:

Using generic XDP mode

Resolution:

Switch to native mode for better performance
xdp_attach _mode: native # Requires XDP-capable NIC/driver

Single-core bottleneck

Resolution:

Enable RSS (Receive Side Scaling) on NIC
ethtool -L ethO® combined 4 # Use 4 RX/TX queues

Verify RSS enabled
ethtool -1 eth0

Pin interrupts to specific CPUs
See /proc/interrupts and use irgbalance or manual affinity

Buffer bloat

Resolution:

Reduce buffer limits to decrease latency
buffer max packets: 5000
buffer packet ttl: 15

Issue: High latency
Symptoms:

e Ping latency > 50ms

e User experience degradation

Diagnosis:

Test latency to UE
ping -c 100 <UE IP> | grep avg

Check buffered packets
curl http://localhost:8080/api/v1/upf buffer info | jq
'.total packets buffered'

Check route cache performance
curl http://localhost:8080/api/vl/packet stats | jg '.route stats’

Resolutions:

Packets being buffered excessively

Resolution:

Check why packets are buffered
curl http://localhost:8080/api/v1/upf buffer info | jq '.buffers[]
| {far_id, packet count, direction}'

Clear buffers if stuck
(restart OmniUPF or trigger PFCP session modification to apply

FAR)

FIB lookup latency

Resolution:

Ensure route cache is enabled (build-time option)
Build with BPF ENABLE ROUTE CACHE=1

Optimize routing table
Use fewer, more specific routes instead of many small routes

Issue: Packet drops under load
Symptoms:

e Drop rate increases with traffic

e RX errors on NIC

Diagnosis:

Check NIC errors
ethtool -S eth® | grep -E "drop|error|miss”

Check ring buffer size
ethtool -g ethO

Monitor drops in real-time
watch -n 1 'ethtool -S eth® | grep -E "drop|miss"'

Resolution:

Increase RX ring buffer size
ethtool -G eth® rx 4096

Increase TX ring buffer size
ethtool -G eth@® tx 4096

Verify new settings
ethtool -g ethO

Hypervisor-Specific Issues

For step-by-step hypervisor configuration instructions, see the

Proxmox: XDP not working in VM
Symptoms:

e Cannot attach XDP program in native mode

e Only generic mode works
Cause: VM using bridged networking without SR-IOV
Resolution:

Option 1: Use generic mode (simplest)
xdp_attach mode: generic

Option 2: Configure SR-IOV passthrough

On Proxmox host:

1. Enable IOMMU

nano /etc/default/grub

Add: intel iommu=on iommu=pt
update-grub

reboot

2. Create VFs
echo 4 > /sys/class/net/ethOQ/device/sriov_numvfs

3. Assign VF to VM in Proxmox UI
Hardware - Add - PCI Device - Select VF

In VM:

interface name: [ens1fQ] # SR-IOV VF
xdp attach mode: native

VMware: Promiscuous mode required
Symptoms:

e Packets not received by OmniUPF
Cause: vSwitch blocking non-matching MAC addresses

Resolution:

Enable promiscuous mode on vSwitch (in vSphere Client):
1. Select vSwitch - Edit Settings

2. Security - Promiscuous Mode: Accept

3. Security - MAC Address Changes: Accept

4. Security - Forged Transmits: Accept

VirtualBox: Performance very low

Symptoms:

e Throughput < 100 Mbps
Cause: VirtualBox does not support SR-IOV or native XDP

Resolution:

Use generic mode (only option)
xdp attach mode: generic

Optimize VirtualBox settings:

- Use VirtIO-Net adapter (if available)
- Enable "Allow All" promiscuous mode

- Allocate more CPU cores to VM

- Use bridged networking instead of NAT

H R OH OB R

H*

Consider migrating to KVM/Proxmox for better performance

NIC and Driver Issues

Issue: NIC driver does not support XDP

Symptoms:
ERRO[0000] failed to attach XDP program: operation not supported
Diagnosis:

Check NIC driver
ethtool -i eth® | grep driver

Check if driver supports XDP
modinfo <driver name> | grep -i xdp

List XDP-capable interfaces
ip link show | grep -B 1 "xdpgeneric\|xdpdrv\|xdpoffload"

Resolution:

Option 1: Use generic mode
xdp _attach mode: generic
Option 2: Update NIC driver

Check for driver updates (Ubuntu)
sudo apt update
sudo apt install linux-modules-extra-$(uname -r)

Or install vendor-specific driver

Example for Intel:
Download from https://downloadcenter.intel.com/

Option 3: Replace NIC

Use XDP-capable NIC:

- Intel X710, E810

- Mellanox ConnectX-5, ConnectX-6

- Broadcom BCM57xxx (bnxt en driver)

Issue: Driver crashes or kernel panics
Symptoms:

e Kernel panic after attaching XDP
e NIC stops responding

Diagnosis:

Check kernel logs
dmesg | tail -100

Check for driver bugs
journalctl -k | grep -E "BUG: |panic:"

Resolution:

1. Update kernel and drivers
sudo apt update

sudo apt upgrade

sudo reboot

2. Disable XDP offload (use native only)
xdp attach mode: native

3. Use generic mode as workaround
xdp attach mode: generic

4. Report bug to NIC vendor or Linux kernel team

Session Establishment Failures

Issue: Session establishment fails
Symptoms:

e SMF reports session establishment failure

e UE cannot establish PDU session
See for common failure scenarios and resolutions.

Diagnosis:

Check OmniUPF logs for session errors
journalctl -u omniupf | grep -i "session establishment"

Check PFCP session count
curl http://localhost:8080/api/vl/sessions | jgq 'length'’

Capture PFCP traffic during session establishment
tcpdump -i any -n udp port 8805 -w /tmp/pfcp session.pcap

Common Causes:

Map capacity full

Resolution:

Check map usage
curl http://localhost:8080/api/vl/map info | jq '.[] |
select(.usage percent > 90)'

Increase capacity (see eBPF map full section above)

Invalid PDR/FAR parameters

Resolution:

Check OmniUPF logs for validation errors

journalctl -u omniupf | grep -E "invalid|error" | tail -20
Common issues:

- Invalid UE IP address (0.0.0.0 or duplicate)

- Invalid TEID (0 or duplicate)

- Missing FAR for PDR

- Invalid FAR action

HH*

Verify SMF configuration and session parameters

Feature not supported (UEIP/FTUP)

Resolution:

Enable required features if needed
feature ueip: true # UE IP allocation by UPF
ueip pool: 10.60.0.0/16

feature ftup: true # F-TEID allocation by UPF
teid pool: 100000

Buffering Issues

Issue: Packets stuck in buffer
Symptoms:

e Buffered packet count increasing

e Packets not delivered after handover

Diagnosis:

Check buffer statistics
curl http://localhost:8080/api/v1/upf buffer info

Check individual FAR buffers

curl http://localhost:8080/api/v1/upf buffer info | jq '.buffers[]
| {far_id, packet count, oldest packet ms}'

Monitor buffer size

watch -n 5 'curl -s http://localhost:8080/api/v1/upf buffer info |
jq ".total packets buffered"'

Causes & Resolutions:

FAR never updated to FORWARD

Cause: SMF never sent PFCP Session Modification to apply FAR

Resolution:

Check FAR status
curl http://localhost:8080/api/vl/sessions | jq '.[].fars[] |
{far id, applied action}'

Action BUFF
Action FORW

1 (buffering)
2 (forwarding)

If stuck in BUFF state, request SMF to:
- Send PFCP Session Modification Request
- Update FAR with FORW action

Buffer TTL expired

Cause: Packets expired before FAR update

Resolution:

Increase buffer TTL
buffer packet ttl: 60 # Increase from 30 to 60 seconds

Buffer overflow

Cause: Too many packets buffered per FAR

Resolution:

Increase buffer limits
buffer max packets: 20000 # Per FAR
buffer max total: 200000 # Global limit

Advanced Debugging

Enable Debug Logging

logging level: debug

Restart OmniUPF with debug logging
sudo systemctl restart omniupf

Monitor logs in real-time
journalctl -u omniupf -f --output cat

eBPF Program Tracing

Trace eBPF program execution (requires bpftrace)
sudo bpftrace -e 'tracepoint:xdp:* { @[probe] = count(); }'

Trace map operations

sudo bpftrace -e 'tracepoint:bpf:bpf map lookup elem {
printf("%ss\n", str(args->map name)); }'

Packet Capture with XDP
Understanding XDP Packet Capture Limitations:

XDP processes packets before the kernel network stack, so standard tcpdump
cannot see XDP-processed traffic. GTP-U packets (UDP port 2152) on N3 are
processed by XDP and will not appear in tcpdump on the UPF host.

Recommended Methods for Traffic Analysis:

Method 1: Use statistics API for monitoring (RECOMMENDED)
curl http://localhost:8080/api/vl/xdp stats

curl http://localhost:8080/api/vl/packet stats | jq

curl http://localhost:8080/api/v1/n3n6 stats

Method 2: Capture PFCP traffic (not affected by XDP)
tcpdump -i any -n udp port 8805 -w /tmp/pfcp.pcap

Method 3: Out-of-band packet capture (RECOMMENDED for GTP-U)
Use network TAP or switch port mirroring to capture traffic
Examples:

- Physical TAP between gNB and UPF

- Switch SPAN/mirror port copying N3 traffic to analyzer

- Virtual switch port mirroring in hypervisor

i

i

i

On capture host (NOT the UPF):

tcpdump -i <mirror interface> -n udp port 2152 -w
/tmp/n3 mirror.pcap

Out-of-Band Capture Setup Examples:

Physical Network:

Use a network TAP or configure switch port mirroring

Example: Cisco switch SPAN configuration

(config)# monitor session 1 source interface Gil/0/1
(config)# monitor session 1 destination interface Gil/0/24

On monitoring host connected to Gil/0/24:
tcpdump -i eth@ -n udp port 2152 -w /tmp/n3 capture.pcap

Virtual Environment (VMware, KVM, etc.):

Configure virtual switch port mirroring to send UPF traffic to
analyzer VM

Example: Linux bridge with tcpdump on different VM

On hypervisor, mirror UPF's N3 interface to analyzer interface

On analyzer VM:
tcpdump -i ethl -n udp port 2152 -w /tmp/n3 virtual.pcap

Why Out-of-Band is Required:

e XDP bypasses the kernel network stack entirely
e Packets are processed in the NIC driver or hardware
e Host-based tcpdump sees packets AFTER XDP processing (too late)

e Qut-of-band capture sees raw wire traffic before UPF processing

What You CAN Capture on UPF Host:

e [] PFCP traffic (UDP 8805) - control plane, not processed by XDP
e [] APl responses and metrics

e [] GTP-U traffic (UDP 2152) - dataplane, processed by XDP

Getting Help

If troubleshooting steps do not resolve your issue:

1. Collect diagnostic information:

System info
uname -a
cat /etc/os-release

OmniUPF info

curl http://localhost:8080/api/v1/upf status
curl http://localhost:8080/api/vl/map info
curl http://localhost:8080/api/vl/packet stats

Logs
journalctl -u omniupf --since "1 hour ago" > /tmp/omniupf.log
dmesg > /tmp/dmesg.log

Network info

ip addr > /tmp/network.txt

ip route >> /tmp/network.txt
ethtool eth® >> /tmp/network.txt

2. Report issue with:

o OmniUPF version

o Linux kernel version

o Network topology diagram

o Configuration file (redact sensitive info)
o Relevant log excerpts

o Steps to reproduce

Related Documentation

. - Configuration parameters and examples

. - eBPF/XDP internals and performance tuning
. - Statistics, capacity, and alerting

. - Prometheus metrics for troubleshooting

. - PFCP error codes and troubleshooting

. - PDR, FAR, QER, URR concepts

o - UPF architecture and overview

Web Ul Operations
Guide

Table of Contents

© o N o U A WD -

e
= O

Overview

The OmniUPF Web Ul provides a comprehensive control panel for real-time
monitoring and management of the User Plane Function. The interface is built

on Phoenix LiveView and provides:

* Real-time visibility into PFCP sessions and active PDU connections
* Rules inspection for PDR, FAR, QER, and URR across all sessions
 Buffer management for packet buffering during mobility events

e Statistics monitoring for packet processing, routes, and interfaces
e Capacity tracking for eBPF map usage and limits

e Live log viewing for troubleshooting

Architecture

The control panel communicates with multiple OmniUPF instances via their
REST API to:

e Query PFCP sessions and associations

Inspect packet detection and forwarding rules

Monitor packet buffers and their status

Access real-time statistics and performance metrics

Track eBPF map capacity and utilization

Accessing the Control Panel

Default Access

The control panel is accessible via HTTPS on the OmniUPF management server:
https://<upf-server>:443/
Default Port: 443 (HTTPS with self-signed certificate)

Configuration
The control panel requires OmniUPF host configuration in config/config.exs:
Multiple UPF instances can be configured for multi-instance deployments:

The upf _hosts configuration defines which OmniUPF instances are available in
the host selector dropdown throughout the UL.

Navigation
The control panel provides navigation tabs for each operational area:

e Sessions - /sessions - PFCP sessions and associations

* Rules - /rules - PDR, FAR, QER, URR rule inspection

e Buffers - /buffers - Packet buffer monitoring and control

e Statistics - /statistics - Packet, route, XDP, and interface statistics

e Capacity - /capacity - eBPF map usage and capacity monitoring

e Config - /upf config - UPF configuration and dataplane addresses

* Routes - /routes - UE routes and routing protocol sessions (OSPF, BGP)

 XDP Capabilities - /xdp capabilities - XDP mode support and
performance capabilities

e Logs - /logs - Live log streaming

Sessions View

URL: /sessions

Features

The Sessions view displays all active PFCP sessions and associations from
selected OmniUPF instances.

PFCP Associations Summary

Displays all active PFCP associations (control connections from SMF/PGW-C):

Column Description
Node ID SMF or PGW-C node identifier (FQDN or IP)
Address SMF/PGW-C IP address for PFCP communication

Next Session ID Next available PFCP session ID for this association

Purpose:

e Verify SMF connectivity to UPF
e Monitor number of control plane connections

e Track session ID allocation per association

Active Sessions Table

Displays all PFCP sessions representing active UE PDU sessions:

Column Description

Local SEID UPF-assigned session endpoint identifier

Remote SEID SMF-assigned session endpoint identifier

UE IP User equipment IPv4 or IPv6 address
TEID GTP-U Tunnel Endpoint Identifier for uplink traffic
PDRs Number of packet detection rules in session
FARs Number of forwarding action rules in session
QERs Number of QoS enforcement rules in session
URRs Number of usage reporting rules in session
Actions Expand button to view detailed rule information
Features:

Filter by IP: Find sessions for specific UE IP address

Filter by TEID: Find sessions by tunnel endpoint ID
Expand session: View complete PDR/FAR/QER/URR JSON details

Auto-refresh: Updates every 10 seconds
Expanded Session View:
When you click "Expand" on a session, the view shows:

* Packet Detection Rules (PDRs): Complete JSON with TEID, UE IP, FAR ID,
QER ID, SDF filters

[e]

PDR IDs are clickable - Click to navigate to the Rules tab and view
full PDR details

Uplink PDRs (TEID = 0) link to uplink PDR lookup
Downlink PDRs (IPv4) link to downlink PDR lookup
Downlink PDRs (IPv6) link to IPv6 downlink PDR lookup

[e]

(o]

(o]

 Forwarding Action Rules (FARs): Action flags, outer header creation,
destination endpoints

¢ QoS Enforcement Rules (QERs): MBR, GBR, QFI, and other QoS
parameters

* Usage Reporting Rules (URRs): Volume counters (uplink, downlink, total
bytes)

Expanded session view showing detailed PDRs, FARs, and QERs for a specific
session.

Use Cases

Verify UE Connectivity:

1. Navigate to Sessions view
2. Enter UE IP address in filter
3. Confirm session exists with correct TEID

4. Expand to verify PDR/FAR configuration

Monitor Session Count:

¢ Check total session count in header
e Compare across multiple UPF instances

e Track session growth over time
Troubleshoot Session Issues:

e Search for specific UE IP or TEID
e Expand session to inspect rule configuration

* Verify FAR forwarding parameters
e Check QER QoS settings

Real-time Updates

The Sessions view automatically refreshes every 10 seconds. A health check
indicator shows UPF connectivity status:

e HEALTHY (green): UPF is reachable and responding
e UNHEALTHY (red): UPF is not reachable or not responding
e UNKNOWN (gray): Health status not yet determined

Rules Management

URL: /rules

The Rules view provides comprehensive inspection of all packet detection,
forwarding, QoS, and usage reporting rules across all sessions.

PDR Tab - Packet Detection Rules

View and inspect all PDRs in the UPF with lookup forms and clickable
navigation:

Uplink PDRs (N3 - N6):

e Lookup Form: Search by TEID to view specific uplink PDR details
e TEID: GTP-U tunnel endpoint ID from gNB (clickable - navigates to lookup)
* FAR ID: Associated forwarding action rule (clickable - navigates to FAR tab)

* QER ID: Associated QoS enforcement rule (clickable - navigates to QER
tab)

* URR IDs: Associated usage reporting rules (clickable - navigates to URR
tab)

e Outer Header Removal: GTP-U decapsulation flag

e SDF Filters: Service data flow classification rules
Downlink PDRs (N6 —» N3):

e Lookup Form: Search by UE IPv4 address to view specific downlink PDR
details

e UE IP: IPv4 address of user equipment (displayed in lookup results)
* FAR ID: Associated forwarding action rule (clickable - navigates to FAR tab)

* QER ID: Associated QoS enforcement rule (clickable - navigates to QER
tab)

* URR IDs: Associated usage reporting rules (clickable - navigates to URR
tab)

e SDF Mode: Service data flow filter mode (none, sdf only, sdf + default)

e Pagination: Browse PDRs with page controls (default 100 per page, max
1000)

IPv6 Downlink PDRs:

e API supports pagination for IPv6 downlink PDRs
e Same structure as IPv4 but keyed by IPv6 addresses
e Full Ul tab can be added if needed

FAR Tab - Forwarding Action Rules
View all FARs with their forwarding actions and parameters:
Features:

e Lookup Form: Search by FAR ID to view specific FAR details

¢ Auto-lookup: Clicking FAR IDs from PDR details automatically populates
lookup

* Real-time Updates: FAR status reflects current buffering state

Column Description
FAR ID Unique forwarding rule identifier

Forwarding action flags (FORWARD, DROP, BUFFER,

Action
DUPLICATE, NOTIFY)

Buffering Current buffering status (Enabled/Disabled)

Destination Outer header creation parameters (TEID, IP address)

FAR Action Flags:

FORWARD (1): Forward packet to destination

DROP (2): Discard packet

BUFFER (4): Store packet in buffer

NOTIFY (8): Send notification to control plane

DUPLICATE (16): Duplicate packet to multiple destinations

Buffering Toggle:

e Click "Enable Buffer" or "Disable Buffer" to toggle buffering flag
e Useful for troubleshooting handover scenarios

e Changes FAR action immediately in eBPF map

QER Tab - QoS Enforcement Rules

View QoS rules applied to traffic flows:
Features:

e Clickable Navigation: Click QER IDs from PDR details to navigate and
highlight specific QER
e Auto-highlight: QER row is highlighted when navigated from PDR

e Pagination: Browse QERs with page controls (default 100 per page, max

1000)
Column Description
Unique QoS rule identifier (clickable when referenced
QER ID

from PDRSs)

MBR (Uplink) Maximum bit rate for uplink traffic (kbps)

MBR

. Maximum bit rate for downlink traffic (kbps)
(Downlink)
GBR (Uplink) Guaranteed bit rate for uplink traffic (kbps)
GBR . : .

. Guaranteed bit rate for downlink traffic (kbps)
(Downlink)
QFlI QoS Flow ldentifier (5G marking)

QoS Interpretation:

e MBR = 0: No rate limit
e GBR = 0: Best-effort (no guaranteed bandwidth)
e GBR > 0: Guaranteed bit rate flow (prioritized)

URR Tab - Usage Reporting Rules

View usage tracking rules and volume counters:

Features:

e Lookup Form: Search by URR ID to find and highlight specific URR

e Clickable Navigation: Click URR IDs from PDR details to navigate and
highlight specific URR

e Auto-highlight: URR row is highlighted in blue when navigated from PDR
or searched via lookup

e Pagination: Browse URRs with page controls (default 100 per page, max

1000)

Column

URR ID

Uplink Volume

Downlink
Volume

Total Volume

Actions

Volume Display:

Description

Unique usage reporting rule identifier (clickable when
referenced from PDRs)

Bytes sent from UE to data network

Bytes sent from data network to UE

Total bytes in both directions

Delete button to reset counters for this URR

e Automatically formatted (B, KB, MB, GB, TB)

* Real-time counters updated every refresh

e Used for charging and analytics

Filtering:

e Only shows URRs with non-zero volume

e |nactive URRs (all counters at 0) are filtered out for performance

Use Cases

Inspect Traffic Classification:

1. Navigate to Rules - PDR tab
2. Search for specific TEID or UE IP
3. Verify PDR associates with correct FAR and QER

Troubleshoot Forwarding Issues:

1. Navigate to Rules - FAR tab
2. Locate FAR ID from session PDR
3. Verify action is FORWARD (not DROP or BUFFER)

4. Check outer header creation parameters

Monitor QoS Enforcement:

1. Navigate to Rules -» QER tab
2. Verify MBR and GBR values match policy
3. Check QFI marking for 5G flows

Track Data Usage:

1. Navigate to Rules - URR tab
2. Sort by total volume to find highest users
3. Monitor volume growth over time

4. Verify charging integration

Buffer Management

URL: /buffers

Features

The Buffers view displays packet buffers maintained by the UPF during mobility
events or path switches.

Total Statistics
Dashboard displays aggregate buffer statistics:

e Total Packets: Number of buffered packets across all FARs
e Total Bytes: Total buffered data size

e Total FARs: Number of FARs with buffered packets

¢ Max Per FAR: Maximum packets allowed per FAR

e Max Total: Maximum total buffered packets

e Packet TTL: Time-to-live for buffered packets (seconds)

Buffers by FAR
Table of all FARs with buffered packets:
Column Description

FAR ID Forwarding action rule identifier
Packet Count Number of packets buffered for this FAR
Byte Count Total bytes buffered for this FAR
Oldest Packet Timestamp of oldest buffered packet
Newest Packet Timestamp of newest buffered packet
Actions Buffer control buttons (pill-style)

Buffer Control Actions

For each FAR with buffered packets, the following pill-style buttons are
available:

Buffering Control:

e Disable Buffer (red): Turn off buffering for this FAR (updates FAR action
flag)

 Enable Buffer (purple): Turn on buffering for this FAR
Buffer Operations:

* Flush (blue): Replay all buffered packets using current FAR rules

e Clear (gray): Delete all buffered packets without forwarding
Clear All Buffers:

e Red "Clear All" button in header
¢ Clears buffers for all FARs

e Requires confirmation

Use Cases
Monitor Handover Buffering:

1. During handover, verify packets are being buffered
2. Check FAR buffering status (should be enabled)

3. Monitor packet count and age

Complete Handover:

1. After path switch, click "Flush" to replay buffered packets
2. Verify packets are forwarded to new path
3. Click "Disable Buffer" to stop buffering

Clear Stuck Buffers:

1. Identify FARs with old buffered packets (check oldest timestamp)
2. Click "Clear" to discard stale packets

3. Or click "Disable Buffer" to prevent further buffering

Troubleshoot Buffer Overflow:

1. Check total packet count vs. max total
2. ldentify FARs with excessive buffering
3. Verify SMF has sent session modification to disable buffering

4. Manually disable buffering if SMF command missed

Real-time Updates

The Buffers view automatically refreshes every 5 seconds to show current
buffer status.

Statistics Dashboard

URL: /statistics

Features

The Statistics view provides real-time performance metrics from the OmniUPF
datapath. For detailed information about Prometheus metrics, see the

Packet Statistics

Aggregate packet processing counters:

RX Packets: Total packets received on all interfaces

TX Packets: Total packets transmitted on all interfaces

Dropped Packets: Packets discarded due to errors or policy

GTP-U Packets: Packets processed with GTP-U encapsulation
Use: Monitor overall UPF traffic load and packet drop rate

Route Statistics

Per-route forwarding metrics (if available):

* Route hits: Packets matched by each routing rule

e Forwarding success: Successfully forwarded packet count

* Forwarding errors: Failed forwarding attempts
Use: Identify busy routes and forwarding errors

XDP Statistics

eXpress Data Path performance metrics:

XDP Processed: Total packets processed at XDP layer
XDP Passed: Packets sent to network stack
XDP Dropped: Packets dropped at XDP layer

XDP Aborted: Processing errors in XDP program
Use: Monitor XDP performance and detect processing errors

XDP Drop Causes:

Invalid packet format

eBPF map lookup failure

Policy-based drops

Resource exhaustion

N3/N6 Interface Statistics

Per-interface traffic counters:
N3 Interface (RAN connectivity):

e RX N3: Packets received from gNB/eNodeB
e TX N3: Packets transmitted to gNB/eNodeB

N6 Interface (Data Network connectivity):

¢ RX N6: Packets received from data network (Internet/IMS)
e TX N6: Packets transmitted to data network

Total: Aggregate packet count across interfaces

Use: Monitor traffic balance and interface-specific issues

Use Cases
Monitor Traffic Load:

1. Check packet RX/TX rates
2. Verify traffic is flowing in both directions

3. Compare N3 vs N6 traffic (should be roughly equal)

Detect Packet Drops:

1. Check dropped packet counter
2. Review XDP dropped counter

3. Investigate cause in logs if drops are high

Performance Analysis:

1. Monitor XDP processed vs. passed ratio
2. Check for XDP aborts (indicates errors)
3. Verify N3/N6 interface traffic distribution

Capacity Planning:

1. Track packet rate over time
2. Compare to UPF capacity limits

3. Plan for scaling if approaching limits

Real-time Updates

Statistics automatically refresh every 5 seconds.

Capacity Monitoring

URL: /capacity

Features

The Capacity view displays eBPF map usage and capacity limits for all maps in
the UPF datapath.

eBPF Map Usage Table

Table of all eBPF maps with usage information:

Column Description

Map Name eBPF map name (e.g., uplink pdr map, far map)

Used Number of entries currently in map
Capacity Maximum entries allowed in map
Usage Visual progress bar with percentage

Key Size Size of map keys in bytes

Value Size Size of map values in bytes

Color-Coded Usage Indicators

The usage progress bar is color-coded based on utilization:

Green (<50%): Normal operation, ample capacity

Yellow (50-70%): Caution, monitor growth

Amber (70-90%): Warning, plan capacity increase

Red (>90%): Critical, immediate action required

Critical Maps to Monitor
uplink_pdr_map:

e Stores uplink PDRs keyed by TEID

e One entry per uplink traffic flow

e Critical: Exhaustion prevents new session establishment
downlink_pdr _map / downlink_pdr _map _ip6:

e Stores downlink PDRs keyed by UE IP address
e One entry per UE IPv4/IPv6 address

e Critical: Exhaustion prevents new session establishment
far_map:

e Stores forwarding action rules keyed by FAR ID
e Shared across multiple PDRs

e High Priority: Affects forwarding decisions
ger_map:

e Stores QoS enforcement rules keyed by QER ID

e Medium Priority: Affects QoS but not basic connectivity
urr_map:

e Stores usage reporting rules keyed by URR ID

e Low Priority: Affects charging but not connectivity

Use Cases
Capacity Planning:

1. Monitor map usage trends over time
2. ldentify which maps are growing fastest

3. Plan capacity increases before reaching limits

Prevent Session Establishment Failures:

1. Check PDR map usage before expected traffic surge
2. Increase map capacity if approaching limits

3. Monitor after capacity increase to verify

Troubleshoot Session Failures:

1. When session establishment fails, check Capacity view
2. If PDR maps are red (>90%), capacity is exhausted

3. Increase map capacity or clear stale sessions

Optimize Map Configuration:

1. Review key and value sizes
2. Calculate memory usage per map

3. Optimize map sizes based on actual usage patterns

Capacity Configuration

eBPF map capacities are configured at UPF startup in the UPF configuration file.
Typical values:

e Small deployment: 10,000 - 100,000 entries per map
¢ Medium deployment: 100,000 - 1,000,000 entries per map
e Large deployment: 1,000,000+ entries per map

Memory Calculation:
Map Memory = (Key Size + Value Size) x Capacity

For example, a PDR map with 1 million entries and 64-byte values uses
approximately 64 MB of kernel memory.

Real-time Updates

Capacity view automatically refreshes every 10 seconds.

Configuration View

URL: /upf config

Features

The Configuration view displays UPF operational parameters and dataplane
configuration.

UPF Configuration

Displays static UPF configuration:

* PFCP Interface: IP address and port for SMF/PGW-C connectivity
* N3 Interface: IP address for RAN (gNB/eNodeB) connectivity

* N6 Interface: IP address for data network connectivity

* N9 Interface: IP address for inter-UPF communication (optional)
e API Port: REST API listening port

¢ Version: OmniUPF software version
Dataplane (eBPF) Configuration
Displays active runtime dataplane parameters:

e Active N3 Address: Runtime N3 interface binding
e Active N9 Address: Runtime N9 interface binding (if enabled)

These values reflect the actual eBPF datapath configuration and may differ
from static configuration if interfaces have been changed.

Use Cases
Verify UPF Connectivity:

1. Check N3 interface IP matches gNB configuration
2. Verify N6 interface can route to data network

3. Confirm PFCP interface is reachable from SMF

Troubleshoot Interface Issues:

1. Compare static config with dataplane active addresses

2. Verify interfaces are bound correctly

3. Check for interface configuration changes

Documentation and Audit:

1. Record UPF configuration for documentation
2. Verify deployment matches design specifications

3. Audit interface assignments

Routes View

URL: /routes

Features

The Routes view provides comprehensive monitoring of User Equipment (UE) IP
routes and routing protocol sessions (OSPF and BGP).

Route Status Overview

Dashboard displays aggregate route statistics:

Status: Routing enabled or disabled

Total Routes: Total number of UE IP routes

Synced: Number of successfully synced routes

Failed: Number of routes that failed to sync

Active UE IP Routes

Table displaying all active User Equipment IP routes:

Column Description

Index Route index number

UE IP Address [Pv4 or IPv6 address assigned to the UE

Purpose:

e View all UE IP addresses that have routes configured
e Verify route distribution to routing protocols

e Monitor route synchronization status

OSPF Neighbors

Table of OSPF (Open Shortest Path First) protocol neighbors:

Column Description

Neighbor ID OSPF router identifier

Address IP address of the OSPF neighbor
Interface Interface used for OSPF adjacency
State OSPF adjacency state (Full, Init, etc.)
Priority OSPF priority value

Up Time Duration the neighbor has been up

Dead Time Time until neighbor is considered dead

OSPF States:

e Full (green): Fully adjacent and exchanging routing information

e Other states (yellow): Adjacency forming or incomplete

BGP Peers

Table of BGP (Border Gateway Protocol) peers:

Column Description

Neighbor IP IP address of the BGP peer

ASN Autonomous System Number of the peer
State BGP session state (Established, Idle, etc.)
Up/Down Duration of current state

Prefixes Received Number of route prefixes received from peer

Msg Sent Total BGP messages sent to peer
Msg Rcvd Total BGP messages received from peer
BGP States:

e Established (green): Active BGP session, exchanging routes

e Other states (red): Session down or establishing

The header also displays the local BGP Router ID and ASN when BGP is
configured.

OSPF Redistributed Routes

Table showing OSPF External LSAs (Link State Advertisements) for redistributed
UE routes:

Column Description
Link State ID LSA identifier (typically the network address)
Mask Network mask for the route

Advertising Router Router ID advertising this external route

Metric Type OSPF external metric type (E1 or E2)

Metric OSPF cost metric for the route

Age Time since LSA was originated (seconds)

Seq Number LSA sequence number for versioning
Purpose:

e Verify UE routes are being redistributed into OSPF
e Monitor which router is advertising external routes

e Track LSA aging and updates

Route Control Actions

Sync Routes Button:

e Manually triggers route synchronization to FRR (Free Range Routing)
e Forces update of routing protocol with current UE routes

* Useful after configuration changes or to recover from sync failures

Refresh Button:

e Manually refresh all route information

e Updates OSPF neighbors, BGP peers, and route tables

Use Cases
Monitor Routing Protocol Health:

1. Navigate to Routes view
2. Check OSPF neighbor states (should be "Full")
3. Verify BGP peers are "Established"

4. Confirm expected number of neighbors/peers

Verify UE Route Distribution:

1. Check Active UE IP Routes table for specific UE
2. Scroll to OSPF Redistributed Routes section
3. Verify UE route appears in external LSAs

4. Confirm advertising router matches expected UPF

Troubleshoot Route Sync Issues:

1. Check Synced vs. Failed counters in status overview
2. If routes are failing, click "Sync Routes" button
3. Monitor error messages in red banner if sync fails

4. Check OSPF/BGP error messages in respective sections

Verify Multi-UPF Deployment:

1. Select different UPF instances from dropdown
2. Compare route counts across instances

3. Verify OSPF neighbors see each other

4. Check BGP peering relationships

Monitor Route Scaling:

1. Track total route count as UE sessions increase
2. Verify routes are distributed to routing protocols
3. Monitor OSPF LSA count growth

4. Check BGP prefix count received by peers

Real-time Updates

The Routes view automatically refreshes every 10 seconds to show current
routing protocol status and UE routes.

Routing Integration
The Routes view integrates with FRR (Free Range Routing) running on the UPF:

* OSPF: Routes are redistributed as External Type-2 LSAs
 BGP: Routes are advertised to configured BGP peers

e Sync mechanism: REST API calls trigger vtysh commands to update FRR

XDP Capabilities View

URL: /xdp capabilities

Features

The XDP Capabilities view displays eXpress Data Path (XDP) mode support,
performance capabilities, and throughput calculations for the UPF dataplane.

Interface Configuration

Displays network interface and driver information:

Field Description

Interface Name Network interface used for XDP (e.g., ethO, ens1f0)
Driver Network driver name (e.qg., i40e, ixgbe, virtio_net)
Driver Version Driver version string

Current Mode Active XDP mode (DRV, SKB, or NONE)

Multi-Queue Count Number of NIC queue pairs for parallel processing

XDP Modes

The view displays all XDP modes with their support status and performance
characteristics:

XDP_DRYV (Driver Mode):

¢ Performance: ~5-10 Mpps (millions of packets per second)

e Description: Native XDP support in driver, highest performance

e Requires: NIC driver with native XDP support (i40e, ixgbe, mix5, etc.)
e Status: Supported if driver has XDP hooks

e Indicator: Green checkmark (v) if supported, red X (X) if not
XDP_SKB (Generic Mode):

e Performance: ~1-2 Mpps

e Description: Fallback mode using kernel network stack
* Requires: Any network interface

e Status: Always supported

¢ Indicator: Green checkmark (v)
Current Mode Indicator:

e Blue dot next to the currently active XDP mode

¢ Shows which mode is actually in use

Unsupported Mode Reasons:

e If a mode is unsupported, the "Reason" field explains why

e Common reasons: driver lacks XDP support, interface type incompatibility

XDP Capabilities view showing interface configuration, supported modes, and
the interactive Mpps throughput calculator

Recommendations

The view displays a colored recommendation banner based on current
configuration:

Green (Optimal):

e "v Optimal: XDP_DRV mode enabled with native driver support"

e Highest performance mode is active
Yellow (Warning):

e "A Consider upgrading to XDP_DRV mode for better performance"

e Running in generic mode when driver mode is available
e "A Warning: XDP_DRV not supported by this driver"

e Hardware limitations prevent optimal performance
Blue (Informational):

e General information about XDP configuration

Mpps Performance Calculator

Interactive calculator to convert packet rate (Mpps) to throughput (Gbps):

Input Parameters

Packet Rate (Mpps):

e Range: 0.1 - 100 Mpps
e Default: Maximum Mpps for current XDP mode

e Represents millions of packets processed per second
Average Packet Size (bytes):

e Range: 64 - 9000 bytes
e Default: 1200 bytes (typical GTP packet)

e Includes full packet with GTP encapsulation
Quick Preset Buttons:

e 64B (min): Minimum Ethernet frame size
e 128B: Small packets

e 256B: Control plane or signaling

e 512B: Medium-sized packets

e 1024B: Large packets

e 1518B (max): Maximum Ethernet frame size without jumbo frames

Calculation Results

Total Throughput (Gbps):

e Wire-rate throughput including all headers
e Formula: Gbps = Mpps x Packet Size x 8 / 1000
e Includes GTP, UDP, IP, and Ethernet headers

User Data Rate (Gbps):

e Actual user payload throughput
e Excludes ~50 bytes GTP encapsulation overhead
e Formula: Gbps = Mpps x (Packet Size - 50) / 1000

Packet Rate:

e Displays Mpps and packets/sec with thousands separator
e Example: 10 Mpps = 10,000,000 packets/sec

Formula Display:
e Shows calculation breakdown step-by-step
e Example: 10 Mpps x 1200 bytes x 8 bits/byte + 1000 = 96 Gbps
Understanding Mpps
The view includes an explanation section covering:
What is Mpps:

e Millions of Packets Per Second
e Key metric for packet processing performance

¢ Independent of packet size
Relationship to Throughput:

e Same Mpps with larger packets = higher Gbps
e Same Mpps with smaller packets = lower Gbps

e Throughput depends on both rate and packet size

GTP Encapsulation Overhead:

Ethernet header: 14 bytes
IP header: 20 bytes (IPv4) or 40 bytes (IPv6)
UDP header: 8 bytes

GTP header: 8 bytes (minimum)

Total typical overhead: ~50 bytes per packet

Use Cases
Evaluate XDP Performance:

1. Navigate to XDP Capabilities view
2. Check current XDP mode (should be DRV for best performance)
3. Note the Mpps performance range

4. Review recommendation banner

Calculate Expected Throughput:

1. Enter expected packet rate in Mpps
2. Enter average packet size for your traffic profile
3. Review calculated throughput in Gbps

4. Compare to link capacity or performance requirements

Optimize XDP Configuration:

1. Check if XDP_DRV mode is supported but not active
2. Review driver version and compatibility
3. Follow recommendation to upgrade to driver mode if available

4. Verify multi-queue count matches CPU cores
Capacity Planning:

1. Use calculator to determine required Mpps for target throughput
2. Compare to current XDP mode capabilities
3. Determine if hardware upgrade needed

4. Plan interface and driver selection for new deployments

Troubleshoot Performance Issues:

1. Verify XDP mode is DRV, not SKB
2. Check driver version for known performance issues
3. Verify multi-queue count is sufficient

4. Calculate if current mode supports required throughput

Performance Optimization Tips

Driver Mode (XDP_DRV):

Use NICs with native XDP support (Intel i40e/ixgbe, Mellanox mix5)

Update NIC drivers to latest version

Enable multi-queue (RSS) for parallel processing

Tune NIC ring buffer sizes
Generic Mode (XDP_SKB):

e Acceptable for development and testing
¢ Not recommended for production high-throughput

e Consider hardware upgrade for production deployments
Multi-Queue Configuration:

e Number of queues should match or exceed CPU core count
e Enables parallel packet processing across cores

e Distributes load via RSS (Receive Side Scaling)

Real-time Updates

XDP Capabilities view refreshes every 30 seconds to update interface status
and mode information.

Logs Viewer

URL: /logs

Features
View OmniUPF application logs in real-time from the control panel.

Features:

Live log streaming via Phoenix LiveView

Real-time updates as logs are generated

Scrollable log history

Useful for troubleshooting during active sessions

Log Levels

OmniUPF logs use standard Elixir Logger levels:

DEBUG: Detailed diagnostic information

INFO: General informational messages (default)

WARNING: Warning messages for non-critical issues

ERROR: Error messages for failures

Use Cases
Troubleshoot Session Establishment:

1. Open Logs view
2. Initiate session establishment from SMF

3. Watch for PFCP message logs and any errors

Monitor PFCP Communication:

1. View PFCP association setup messages
2. Track session creation/modification/deletion

3. Verify heartbeat messages

Debug Forwarding Issues:

1. Look for packet processing errors

2. Check eBPF map operation logs

3. ldentify FAR/PDR configuration issues

Best Practices

Operational Guidelines

Monitoring:

Regularly check Capacity view to prevent map exhaustion

Monitor Statistics for unusual traffic patterns or drops

Track session count growth over time

Watch for XDP processing errors

Buffer Management:

Monitor buffers during handover scenarios

Clear stuck buffers if packets age beyond TTL

Verify buffering is disabled after handover completes

Use "Flush" instead of "Clear" to avoid packet loss

Session Management:

Use filters to quickly locate specific UE sessions

Expand sessions to verify rule configuration

Compare sessions across multiple UPF instances

Check health indicator before troubleshooting

Troubleshooting:

Use Logs for real-time debugging

Check Sessions view to verify UE connectivity

Verify Rules configuration for traffic flows

Monitor Statistics for packet drops or forwarding errors

Performance

Control panel auto-refresh is 5-10 seconds depending on view

Large session lists may take time to load

Rules view filters by active entries (non-zero volumes for URRSs)

Buffer operations execute immediately on selected UPF

Related Documentation

. - PDR, FAR, QER, URR configuration

. - Statistics, metrics, and capacity planning

. - Complete Prometheus metrics reference

. - PFCP error codes and session diagnostics

. - REST API reference and pagination

. - UE routing and FRR integration details

. - Detailed XDP mode documentation and eBPF
information

. - Common issues and diagnostics

. - General UPF operations and architecture

XDP Attachment Modes
for OmniUPF

Table of Contents

© o N o U A WD -

Overview

OmniUPF uses XDP (eXpress Data Path) for high-performance packet
processing. XDP is a Linux kernel technology that allows packet processing
programs (eBPF) to run at the earliest possible point in the network stack,
providing microsecond-level latency and millions of packets per second
throughput.

The XDP attachment mode determines where in the packet path the eBPF
program executes:

Packet Flow

Metwork Interface Card

Physical NIC
1. Hardware RX bmﬂad XDP
Fastest
Network Driver XDP Program
virtio_net, ixgbe, etc. on SmartNIC
. / . Native XDP
2. Driver Processing
1 Fast
Linux Network Stack XDP Program
TCP/IP, routing in Driver
3. Stack Processing .
' “Generic XDP
I Slow
Application XDP Program
OmniUPF in Stack

Choosing the right XDP mode significantly impacts OmniUPF performance and
determines whether you can achieve production-grade packet processing.

XDP Mode Comparison

Aspect

Attach Point

Performance

Latency

CPU Usage

NIC
Requirements

Hypervisor
Support

Use Case

Configuration

Generic Mode

Linux network
stack

~1-2 Mpps

~100 pus

High

Any NIC

All hypervisors

Testing,
development

xdp attach mode:

generic

Native Mode

Network driver

~5-10 Mpps

~10 ps

Medium

XDP-capable
driver

Most (requires
multi-queue)

Production

(recommended)

xdp attach mode:

native

Offload Mode

NIC hardware

~10-40 Mpps

~1 us

Low

SmartNIC with
XDP support

Rare (PCI
passthrough)

High-throughput
edge sites

xdp attach mod
offload

Recommendation: Use native mode for production deployments. Generic

mode is only suitable for testing.

Generic Mode (Default)

Description

Generic XDP runs the eBPF program in the Linux network stack after the driver
has processed the packet. This is the slowest XDP mode but works with any

network interface.

Performance Characteristics

e Throughput: ~1-2 million packets per second (Mpps)
e Latency: ~100 microseconds per packet
e CPU Overhead: High (packet copied to kernel stack before XDP)

When to Use

e Development and testing only
 Lab environments where performance doesn't matter

e Initial deployment to verify functionality before optimizing

Configuration

interface name: [eth@]
xdp attach mode: generic

Warning: Generic mode is not suitable for production. It will bottleneck at
high packet rates and waste CPU resources.

Native Mode (Recommended for
Production)

Description

Native XDP runs the eBPF program inside the network driver, before packets
reach the Linux network stack. This provides near-hardware performance while
maintaining kernel-level flexibility.

Performance Characteristics

Throughput: ~5-10 million packets per second (Mpps) per core

Latency: ~10 microseconds per packet

CPU Overhead: Low (packet processed at driver level)

Scaling: Linear scaling with CPU cores and NIC queues

When to Use

Production deployments (recommended)

Carrier-grade networks requiring high throughput

Edge computing scenarios with performance requirements

Any deployment where performance matters

NIC Driver Requirements

Native XDP requires a network driver with XDP support. Most modern NICs
support native XDP:

Physical NICs (bare metal):

e |Intel: ixgbe (10G), i40e (40G), ice (100G)
e Broadcom: bnxt en

e Mellanox: mlx4 en, mlx5 core

e Netronome: nfp (with offload support)

e Marvell: mvneta, mvpp2

Virtual NICs (hypervisors):

VirtlO: virtio net (KVM, Proxmox, OpenStack) v

VMware: vmxnet3 v

Microsoft: hv_netvsc (Hyper-V) v

Amazon: ena (AWS) v

SR-I0V: ixgbevf, i40evf (PCl passthrough) v

Note: VirtualBox does not support native XDP (use generic mode only).

Configuration

interface name: [ethO]
xdp _attach mode: native

Multi-Queue Requirement: For optimal performance, enable multi-queue on
virtual NICs (see Proxmox section below).

Offload Mode (SmartNIC)

Description

Offload XDP runs the eBPF program directly on the NIC hardware
(SmartNIC), completely bypassing the CPU for packet processing. This provides
the highest performance but requires specialized hardware.

Performance Characteristics

e Throughput: ~10-40 million packets per second (Mpps)
e Latency: ~1 microsecond per packet

e CPU Overhead: Near-zero (processing on NIC)

When to Use

e Ultra-high-throughput deployments (10G+ per UPF instance)

e Edge sites with hardware acceleration

e Cost-sensitive deployments (reduce CPU requirements)
Hardware Requirements

Only Netronome Agilio SmartNICs currently support XDP offload:

e Netronome Agilio CX 10G/25G/40G/100G

Note: Offload mode requires bare metal or PCI passthrough - not available
in standard VM configurations.

Configuration

interface name: [ethO]
xdp attach mode: offload

Enabling Native XDP on Proxmox
VE

Proxmox VE uses VirtlO network devices for VMs, which support native XDP via

the virtio net driver. However, you must enable multi-queue for optimal
performance.

Step 1: Understanding the Requirement

Why Multi-Queue Matters:

e Single queue (default): All network traffic processed by one CPU core —»
bottleneck

¢ Multi-queue: Traffic distributed across multiple CPU cores - linear scaling

CPU Core 1 CPU Core 2 CPU Core 3 CPU Core 4

Step 2: Enable Multi-Queue in Proxmox
Option A: Via Proxmox Web Ul
1. Shutdown the VM completely (not just reboot)

o Select your VM in the Proxmox web interface
o Click Shutdown

2. Edit Network Device

o Go to Hardware tab
o Click on your network device (e.g., net0)
o Click Edit

3. Set Multiqueue

o Find the "Multiqueue" field
o Set to 8 (or match your vCPU count, max 16)
o Click OK

4. Start the VM
o Click Start

Option B: Via Proxmox Command Line

SSH to your Proxmox host

Find your VM ID
gm list

Set multi-queue (replace XXX with your VM ID)
gm set XXX -netO virtio=XX:XX:XX:XX:XX:XX,bridge=vmbr0,queues=8

Example for VM 191 with MAC BC:24:11:1D:BA:00
gm set 191 -net® virtio=BC:24:11:1D:BA:00,bridge=vmbr0,queues=8

Shutdown the VM
gm shutdown XXX

Wait for shutdown, then start
gm start XXX

Queue Count Recommendations:

e 4 queues: Minimum for production (good for 2-4 vCPU VMs)
¢ 8 queues: Recommended for most deployments (4-8 vCPU VMs)

e 16 queues: Maximum for high-performance (8+ vCPU VMs)

Step 3: Verify Multi-Queue Inside VM

After VM restart, SSH into the VM and verify:

Check queue configuration
ethtool -1 ethO

Expected output:
Channel parameters for ethO:
Combined: 8 <-- Should match your configured value

Count actual queues
ls -1d /sys/class/net/eth0/queues/rx-* | wc -1
ls -1d /sys/class/net/eth0/queues/tx-* | wc -1

Both should show 8 (or your configured value)

Step 4: Enable Native XDP in OmniUPF

Edit the OmniUPF configuration:

Edit config file
sudo nano /config.yaml

Change XDP mode:

Before
xdp attach mode: generic

After
xdp_attach mode: native

Restart OmniUPF:

sudo systemctl restart omniupf

Step 5: Verify Native XDP is Active

Check logs:

View startup logs

journalctl -u omniupf --since "1 minute ago" | grep -1
“xdp\ |attach"

Expected output:

xdp _attach mode:native

XDPAttachMode:native
Attached XDP program to iface "eth0" (index 2)

Check via API:

Query configuration
curl -s http://localhost:8080/api/vl/config | grep xdp attach mode

Expected output:
"xdp_attach mode": "native",

Common Proxmox Issues
Issue: "Failed to attach XDP program"
Solution:

» Verify multi-queue is enabled (ethtool -1 eth0)
¢ Check kernel version: uname -r (must be = 5.15)

e Ensure VirtlO driver loaded: lsmod | grep virtio net
Issue: Only 1 queue despite configuration
Solution:

¢ VM must be fully shutdown (not rebooted) for queue changes
e Use gm shutdown XXX && sleep 5 && gm start XXX

* Verify in Proxmox config: grep net0® /etc/pve/qgemu-server/XXX.conf

Issue: Performance not improving with native mode

Solution:

¢ Check CPU pinning (avoid oversubscription)
e Monitor top - CPU usage should spread across cores

* Verify XDP stats: curl http://localhost:8080/api/v1/xdp stats

Enabling Native XDP on Other
Hypervisors

VMware ESXi / vSphere

VMware uses vmxnet3 driver which supports native XDP.

Requirements:

e ESXi 6.7 or later
¢ vmxnet3 driver version 1.4.16+ in VM

* VM hardware version 14 or later
Enable Multi-Queue:

1. Power off the VM

2. Edit VM settings:

o Right-click VM - Edit Settings
o Network Adapter - Advanced
o Set Receive Side Scaling to Enabled

3. Edit .vmx file (optional, for more queues):

ethernet0O.pnicFeatures = "4"
ethernet0.multiqueue = "8"

4. Start VM and verify:

ethtool -1 ens192 # Check queue count

Configure OmniUPF:

interface name: [ens192] # VMware typically uses ensl92
xdp_attach mode: native

KVM / libvirt (Raw)

Enable Multi-Queue via virsh:

Edit VM configuration
virsh edit your-vm-name

Add to network interface section:

<interface type='network'>
<source network='default'/>
<model type='virtio'/>
<driver name='vhost' queues='8'/>
</interface>

Restart VM and verify:

ethtool -1 eth®

Microsoft Hyper-V
Hyper-V uses hv netvsc driver which supports native XDP.
Requirements:

e Windows Server 2016 or later

e Linux Integration Services 4.3+ in VM

e Generation 2 VM
Enable Multi-Queue:

PowerShell on Hyper-V host:

Set VMQ (Virtual Machine Queue) - Hyper-V's multi-queue
Set-VMNetworkAdapter -VMName "YourVM" -VrssEnabled $true -
VmmgEnabled $true

Configure OmniUPF:

interface name: [ethO]
xdp_attach mode: native

VirtualBox
Warning: VirtualBox does NOT support native XDP.

Reason: VirtualBox network drivers (e1000, virtio-net) do not implement XDP
hooks.

Workaround: Use generic mode only:

xdp_attach mode: generic # Only option for VirtualBox

Verifying XDP Mode

After configuring native XDP, verify it's working correctly:

1. Check OmniUPF Logs

View recent logs
journalctl -u omniupf --since "5 minutes ago" | grep -i xdp

Look for:
v "xdp attach mode:native"

v~ "Attached XDP program to iface"
x "Failed to attach" or "falling back to generic”

2. Check via API

Query configuration endpoint
curl -s http://localhost:8080/api/vl/config | jgq .xdp attach mode

Expected output:
"native"

3. Check XDP Statistics

View XDP processing stats
curl -s http://localhost:8080/api/v1/xdp stats | jq

Example output:

{
"xdp aborted": 0, # Should be 0 (errors)
"xdp _drop": 1234, # Dropped packets
“xdp pass": 5678, # Passed to stack
“xdp_redirect": 9012, # Redirected packets
"xdp_tx": 3456 # Transmitted packets

4. Verify Driver Support

Check if driver supports XDP
ethtool -i ethO® | grep driver

For Proxmox/KVM: Should show "virtio net"

For VMware: Should show "vmxnet3"
For Hyper-V: Should show "hv netvsc"

5. Performance Test

Compare packet processing before and after:

Monitor packet rate
watch -n 1 'curl -s http://localhost:8080/api/vl/packet stats | jq
.rx_packets'

Generic mode: ~1-2 Mpps
Native mode: ~5-10 Mpps (5-10x improvement)

Troubleshooting XDP Issues

Issue: "Failed to attach XDP program" on
Startup

Symptoms:
Error: failed to attach XDP program to interface ethO

Diagnosis:

1. Check driver support:

ethtool -i ethO® | grep driver

If driver is not virtio net/vmxnet3/hv netvsc, native XDP
won't work

2. Check kernel version:

uname -r

Must be >= 5.15 for reliable XDP support
3. Check for existing XDP programs:

ip link show eth® | grep xdp

If another XDP program is attached, unload it first
ip link set dev ethO xdp off

Solution:

e Update kernel to 5.15+ if older
e Ensure virtio_net driver is loaded: modprobe virtio net

e Fall back to generic mode if driver doesn't support native XDP

Issue: Native Mode Falls Back to Generic

Symptoms:
Warning: falling back to generic XDP mode

Diagnosis:

Check dmesg for driver errors:

dmesg | grep -i xdp | tail -20

Common causes:
1. Driver doesn't support native XDP:

o VirtualBox drivers (no native XDP support)
o Older NIC drivers

2. Multi-queue not enabled:

o Check: ethtool -1 eth0

o Should show > 1 combined queue

3. Kernel XDP support disabled:

Check if XDP is enabled in kernel
grep XDP /boot/config-$(uname -r)

Should show:

CONFIG XDP SOCKETS=y
CONFIG BPF=y

Solution:

e Enable multi-queue (see Proxmox section)
e Update to supported driver
e Rebuild kernel with XDP support if necessary

Issue: Performance Not Improving with Native
Mode

Symptoms: Native mode enabled but packet rate same as generic mode
Diagnosis:

1. Verify multi-queue distribution:

Check per-queue statistics
ethtool -S eth@® | grep rx _queue

Traffic should be distributed across multiple queues

2. Check CPU utilization:

Monitor CPU usage per core
mpstat -P ALL 1

Should see load spread across multiple CPUs
3. Verify XDP is actually running in native mode:

Check bpftool (if available)
sudo bpftool net list

Should show XDP attached to interface

Solution:

e Increase queue count (8-16 queues)
e Enable CPU pinning to prevent core migration

e Check for CPU oversubscription on hypervisor

Issue: XDP Program Aborted (xdp_aborted > 0)

Symptoms:

curl http://localhost:8080/api/v1l/xdp stats
{

"xdp aborted": 1234, # Non-zero indicates errors

Diagnosis:

XDP aborted means the eBPF program hit an error during execution.

1. Check eBPF verifier logs:
dmesg | grep -i bpf | tail -20
2. Check for map size limits:

eBPF maps may be full
curl http://localhost:8080/api/v1l/map info

Look for maps at 100% capacity

Solution:

e Increase eBPF map sizes in configuration
e Check for corrupted packets causing eBPF errors

e Verify Linux kernel eBPF support is complete

Issue: Multi-Queue Not Working on Proxmox
Symptoms: ethtool -1 eth® shows only 1 queue despite configuration
Diagnosis:

1. Check Proxmox VM config:

On Proxmox host
grep net0 /etc/pve/gemu-server/YOUR VM ID.conf

Should show: queues=8

2. Verify VM was fully shutdown:

0On Proxmox host
gm status YOUR VM ID

Must show "status: stopped" before starting

Solution:

On Proxmox host

Force shutdown and restart
gm shutdown YOUR VM ID

sleep 10

gm start YOUR VM ID

Then check inside VM
ethtool -1 eth®

Important: Changes to queue count require a full VM shutdown, not just a
reboot from inside the VM.

Issue: Permission Denied When Attaching XDP

Symptoms:
Error: permission denied when attaching XDP program

Diagnosis:
XDP operations require CAP_NET _ADMIN and CAP_SYS ADMIN capabilities.
Solution:

1. Run OmniUPF as root (or with capabilities):
sudo systemctl restart omniupf

2. If using systemd, verify service file has capabilities:

/lib/systemd/system/omniupf.service

[Service]

CapabilityBoundingSet=CAP NET ADMIN CAP SYS ADMIN CAP NET RAW
AmbientCapabilities=CAP_NET ADMIN CAP_SYS ADMIN CAP NET RAW

3. If using Docker, run with --privileged:

docker run --privileged -v /sys/fs/bpf:/sys/fs/bpf ...

Performance Impact Summary

Real-world performance comparison for OmniUPF packet processing:

. Generic .
Scenario Native Mode Improvement
Mode

Packet Rate 1.5 Mpps 8.2 Mpps 5.5x faster
Latency 95 us 12 us 8x lower

CPU Usage (1 85% (1) 15% 5x more

core
Gbps) ° (distributed) efficient
Max Throughput ~1.2 Gbps ~10 Gbps 8x higher

Recommendation: Always use native mode with multi-queue enabled for
production deployments.

Hardware Recommendations for
XDP

A IMPORTANT: Before purchasing any hardware, consult with
Omnitouch support to confirm it's 100% compatible with your specific
configuration and deployment requirements.

Known Good NICs for Native XDP

These NICs are verified to support native XDP mode with OmniUPF:

Intel NICs (Recommended for Bare Metal)

. XDP
Model Speed Driver Notes
Support
Intel P , widel ilable,
nte 10GbE xgbe Native v roven .WI ely available
X520 good price/performance
Intel 10/40GbE 140 Native v Excellent multi-queue
i40e ative
X710 support
Intel , , Latest generation, best
100GbE ice Native v
E810 performance
Native v ,
Intel , Good for lower bandwidth
. 1GbE igb (kernel
i350 needs
5.10+)

Mellanox/NVIDIA NICs (High Performance)

Model

ConnectX-
a4

ConnectX-
5

ConnectX-
6

BlueField-
2

Speed

25/50/100GbE

25/50/100GbE

50/100/200GbE

100/200GbE

Broadcom NICs

Model

BCM57xxx
series

Virtual NICs (VM Deployments)

Speed

10/25/50GbE

XDP

Driver
Support
mix5 Native v
mix5 Native v
mix5 Native v
mix5 Native v
. XDP
Driver
Support
bnxt_ en Native v

Notes

High throughput,
good for edge
computing

Excellent
performance,
hardware
acceleration

Latest generation,
best for ultra-high
throughput

SmartNIC with DPU
capabilities

Notes

Common in
Dell/HP servers

Platform

Proxmox/KVM

VMware ESXi

Hyper-V

AWS

VirtualBox

NIC
Type

VirtlO

vmxnet3

Synthetic

NIC

ENA

Any

Driver

virtio_net

vmxnet3

hv_netvsc

€ena

various

XDP .
Multi-Queue \
Support
) Yes
Native v , Best
(configurable)
. Requ
Native v Yes
6.7+
. Wind
Native v Yes
Servi
) EC2 |
Native v Yes)
insta
) Not
Generic
No recor
only [J
for p

NICs with Hardware Offload Support

True XDP hardware offload (eBPF runs on NIC):

Vendor

Netronome

Netronome

Netronome

Netronome

Model

Agilio CX 10G

Agilio CX 25G

Agilio CX 40G

Agilio CX
100G

Speed

10GbE

25GbE

40GbE

100GbE

Notes

Only confirmed XDP offload
support

Requires special firmware

Very expensive (~$2,500-5,000)

Enterprise-grade only

Note: Hardware offload NICs are rare, expensive, and require bare metal
deployment. Most deployments should use native XDP instead.

Tested Configurations

These configurations have been verified with OmniUPF in production:

Budget Option (1-10 Gbps)

e NIC: Intel X520 (10GbE dual-port)

e Mode: Native XDP

e Throughput: ~8-10 Gbps per UPF instance
e Cost: ~$100-200 (used/refurbished)

Mid-Range (10-50 Gbps)

* NIC: Intel X710 (40GbE) or Mellanox ConnectX-4 (25GDbE)
 Mode: Native XDP

e Throughput: ~25-40 Gbps per UPF instance

e Cost: ~$300-800

High-End (50-100+ Gbps)

* NIC: Mellanox ConnectX-5/6 (100GbE)

* Mode: Native XDP

e Throughput: ~80-100 Gbps per UPF instance
e Cost: ~$1,000-2,500

VM Deployments (Proxmox/KVM)

e NIC: VirtlO with 8-16 queues
e Mode: Native XDP
e Throughput: ~5-10 Gbps per UPF instance

e Cost: No additional hardware cost

What NOT to Buy

Avoid these for production OmniUPF deployments:

NIC/Platform Reason Alternative

No XDP support, poor .
Realtek NICs)] Intel i350 or better
Linux drivers

. , Migrate to
VirtualBox No native XDP support
Proxmox/KVM
Consumer-grade Limited queue support, Server-grade
NICs unreliable Intel/Mellanox
Very old NICs ,
No XDP driver support Intel X520 or newer

(<2014)

Pre-Purchase Checklist
Before buying hardware, verify:

1. [Driver Support: Check if Linux driver supports XDP

On similar system
modinfo <driver name> | grep -i xdp

2. [] Kernel Version: Ensure kernel = 5.15 for reliable XDP

uname -r

3. [0 Multi-Queue: Verify NIC supports multiple queues (RSS/VMDq)
4. [] PCI Bandwidth: Ensure PCle slot has sufficient lanes

o 10GDbE: PCle 2.0 x4 minimum

o 40GDbE: PCle 3.0 x8 minimum
o 100GbE: PCle 3.0 x16 or PCle 4.0 x8

5. [] Deployment Type:

o Bare metal: Physical NIC required
o VM: VirtlO or SR-IOV support needed

o Container: Host NIC configuration inherited

A Don't buy hardware based solely on this guide - always confirm with
Omnitouch support first!

Additional Resources

e Configuration Guide: - Complete configuration
reference
e Troubleshooting Guide: - Comprehensive

problem diagnosis

e Architecture Guide: - eBPF and XDP architecture
details
e Monitoring Guide: - Performance monitoring and

statistics

Quick Reference

Proxmox Native XDP Setup (TL;DR)

On Proxmox host:
gm set <VM ID> -net® virtio=<MAC>,bridge=vmbr0, queues=8
gm shutdown <VM ID> && sleep 10 && gm start <VM ID>

Inside VM:

ethtool -1 eth® # Verify 8 queues

sudo nano /etc/omniupf/config.yaml # Set: xdp attach mode: native
sudo systemctl restart omniupf

journalctl -u omniupf --since "1 min ago" | grep xdp # Verify
native mode

Verify XDP Mode is Active

Check configuration
curl -s http://localhost:8080/api/vl/config | grep xdp_attach mode

Check statistics
curl -s http://localhost:8080/api/vl/xdp stats | jq

Check queues
ethtool -1 ethO

OmniUPF Operations
Guide

Table of Contents

© N o vk wN R

Overview

OmniUPF (eBPF-based User Plane Function) is a high-performance 5G/LTE User
Plane Function that provides carrier-grade packet forwarding, QoS enforcement,
and traffic management for mobile networks. Built on Linux eBPF (extended
Berkeley Packet Filter) technology and enhanced with comprehensive
management capabilities, OmniUPF delivers the core packet processing
infrastructure required for 5G SA, 5G NSA, and LTE networks.

What is a User Plane Function?

The User Plane Function (UPF) is the 3GPP-standardized network element
responsible for packet processing and forwarding in 5G and LTE networks. It
provides:

 High-speed packet forwarding between mobile devices and data
networks

¢ Quality of Service (QoS) enforcement for different traffic types

Traffic detection and routing based on packet filters and rules

Usage reporting for charging and analytics

Packet buffering for mobility and session management scenarios

Lawful intercept support for regulatory compliance

OmniUPF implements the full UPF functionality defined in 3GPP TS 23.501 (5G)
and TS 23.401 (LTE), providing a complete, production-ready user plane
solution using Linux kernel eBPF technology for maximum performance.

OmniUPF Key Capabilities
Packet Processing:

e Full 3GPP-compliant user plane packet processing

e eBPF-based datapath for kernel-level performance

e GTP-U (GPRS Tunneling Protocol) encapsulation and decapsulation
e |IPv4 and IPv6 support for both access and data networks

e XDP (eXpress Data Path) for ultra-low latency processing

e Multi-threaded packet processing
QoS and Traffic Management:

* QoS Enforcement Rules (QER) for bandwidth management

e Packet Detection Rules (PDR) for traffic classification

e Forwarding Action Rules (FAR) for routing decisions

e Service Data Flow (SDF) filtering for application-specific routing

e Usage Reporting Rules (URR) for volume tracking and charging
Control and Management:

e PFCP (Packet Forwarding Control Protocol) interface to SMF/PGW-C
e RESTful API for monitoring and diagnostics

* Real-time statistics and metrics

e eBPF map capacity monitoring

* Web-based control panel

Performance Features:

e Zero-copy packet processing via eBPF

e Kernel-level packet forwarding (no userspace overhead)
e Multi-core scalability

e Offload-capable for hardware acceleration

e Optimized for cloud-native deployments

For detailed control panel usage, see

Understanding User Plane
Architecture

OmniUPF is a unified user plane solution providing carrier-grade packet
forwarding for 5G Standalone (SA), 5G NSA, and 4G LTE/EPC networks.
OmniUPF is a single product that can simultaneously function as:

* UPF (User Plane Function) - 5G/NSA user plane (controlled by OmniSMF
via N4/PFCP)

e PGW-U (PDN Gateway User Plane) - 4G EPC gateway to external
networks (controlled by OmniPGW-C via Sxc/PFCP)

e SGW-U (Serving Gateway User Plane) - 4G EPC serving gateway
(controlled by OmniSGW-C via Sxb/PFCP)

OmniUPF can operate in any combination of these modes:

e UPF-only: Pure 5G deployment
e PGW-U + SGW-U: Combined 4G gateway (typical EPC deployment)

e UPF + PGW-U + SGW-U: Simultaneous 4G and 5G support (migration
scenario)

All modes use the same eBPF-based packet processing engine and PFCP
protocol, providing consistent high performance whether operating as UPF,
PGW-U, SGW-U, or all three simultaneously.

5G Network Architecture (SA Mode)

The OmniUPF solution sits at the data plane of 5G networks, providing the high-
speed packet forwarding layer that connects mobile devices to data networks
and services.

Radio Access Network 5G Core - Control Plane
UE AMF
Mobile Device Access & Mobility
User Data 5
N1l
GTP-U :
' | R
gMB/eNodeB SMF
5G/LTE Base Station Session Management
N3 Interface N4 PFCP Ni‘ =
GTP-U Tunnel Session Control
5G Core - LSEF Plane H i
T
OmniUPF PCF CHF
User Plane Function Policy Control Charging
N6 Interface
MNative IP

Data NLtworkE

Data Network
Internet/IMS/Enterprise

4G LTE/EPC Network Architecture

OmniUPF also supports 4G LTE and EPC (Evolved Packet Core) deployments,
functioning as either OmniPGW-U or OmniSGW-U depending on the network
architecture.

Combined PGW-U/SGW-U Mode (Typical 4G Deployment)

In this mode, OmniUPF acts as both SGW-U and PGW-U, controlled by separate
control plane functions.

Sxb PFCP
Session Control

SGi Interface
Native IP

Separated SGW-U and PGW-U Mode (Roaming/Multi-Site)

In roaming or multi-site deployments, two separate OmniUPF instances can be
deployed - one as SGW-U and one as PGW-U.

N9 Loopback Mode (Single Instance SGWU+PGWU)

For simplified deployments, OmniUPF can run both SGWU and PGWU roles
on a single instance with N9 loopback processing entirely in eBPF.

Sxb PFCP

Key Features:

e [] Sub-microsecond N9 latency - Processed entirely in eBPF, never
touches network

[] 40-50% CPU reduction - Single XDP pass vs. two separate instances

[Simplified deployment - One instance, one configuration file

[0 Automatic detection - When n3 address = n9 address, loopback is
enabled

[] Full 3GPP compliance - Standard PFCP and GTP-U protocols

Configuration:

OmniUPF config.yml
interface name: [ethO]

n3 address: "10.0.1.10" # S1-U interface IP

n9 address: "10.0.1.10" # Same IP enables N9 loopback
pfcp address: ":8805" # Both SGWU-C and PGWU-C connect
here

When to use:

Edge computing deployments (minimize latency)

Cost-constrained environments (single server)

Lab/testing (simplified setup)

Small to medium deployments (< 100K subscribers)

When NOT to use:

e Geographic redundancy required (SGWU and PGWU in different locations)
e Regulatory mandates for separated gateways

e Massive scale (> 1M subscribers)

For complete details, configuration examples, troubleshooting, and
performance metrics, see

How User Plane Functions Work in the Network

The user plane function (OmniUPF, OmniPGW-U, or OmniSGW-U) operates as
the forwarding plane controlled by the respective control plane:

1. Session Establishment

o 5G: OmniSMF establishes PFCP association via N4 interface with
OmniUPF

o 4G: OmniPGW-C or OmniSGW-C establishes PFCP association via
Sxb/Sxc with OmniPGW-U/OmniSGW-U

o Control plane creates PFCP sessions for each UE PDU session (5G) or
PDP context (4G)

o User plane receives PDR, FAR, QER, and URR rules via PFCP

o eBPF maps are populated with forwarding rules

2. Uplink Packet Processing (UE —» Data Network)

o 5G: Packets arrive on N3 interface from gNB with GTP-U encapsulation

o 4G: Packets arrive on S1-U interface (SGW-U) or S5/S8 interface (PGW-
U) from eNodeB with GTP-U encapsulation

o User plane matches packets against uplink PDRs based on TEID
o eBPF program applies QER (rate limiting, marking)
o FAR determines forwarding action (forward, drop, buffer, duplicate)

o GTP-U tunnel removed, packets forwarded to N6 (5G) or SGi (4G)
interface

o URR tracks packet and byte counts for charging

3. Downlink Packet Processing (Data Network — UE)

o 5G: Packets arrive on N6 interface as native IP
o 4G: Packets arrive on SGi interface as native IP

o User plane matches packets against downlink PDRs based on UE IP
address

o SDF filters may further classify traffic by port, protocol, or application
o FAR determines GTP-U tunnel and forwarding parameters

o GTP-U encapsulation added with appropriate TEID

o 5G: Packets forwarded to N3 interface toward gNB

o 4G: Packets forwarded to S1-U (SGW-U) or S5/S8 (PGW-U) toward
eNodeB

4. Mobility and Handover

o 5G: OmniSMF updates PDR/FAR rules during handover scenarios

o 4G: OmniSGW-C/OmniPGW-C updates rules during inter-eNodeB
handover or TAU (Tracking Area Update)

o User plane may buffer packets during path switch

o Seamless transition between base stations without packet loss

Integration with Control Plane (4G and 5G)

OmniUPF integrates with both 5G and 4G control plane functions via standard
3GPP interfaces:

5G Interfaces

3GPP
Interface From - To Purpose
Spec
N4 OmniSMF & PFCP session establishment, TS
OmniUPF modification, deletion 29.244
User plane traffic from RAN TS
N3 gNB = OmniUPF P
(GTP-U) 29.281
NG OmniUPF —» User plane traffic to DN (native TS
Data Network IP) 23.501
NoS OmniUPF & Inter-UPF communication for TS
OmniUPF roaming/edge 23.501

4G/EPC Interfaces

Interface

Sxb

Sxc

S1-U

S5/S8

SGi

Note: All PFCP interfaces (N4, Sxb, Sxc) use the same PFCP protocol defined in

From - To

OmniSGW-C &
OmniUPF (SGW-U
mode)

OmniPGW-C &
OmniUPF (PGW-U
mode)

eNodeB - OmniUPF
(SGW-U mode)

OmniUPF (SGW-U) &
OmniUPF (PGW-U)

OmniUPF (PGW-U
mode) -» PDN

Purpose

PFCP session control for
serving gateway

PFCP session control for
PDN gateway

User plane traffic from
RAN (GTP-U)

Inter-gateway user
plane (GTP-U)

User plane traffic to
data network (native IP)

3GPP
Spec

TS
29.244

TS
29.244

TS
29.281

TS
29.281

TS
23.401

TS 29.244. The interface names differ but the protocol and message formats

are identical.

UPF Components

eBPF Datapath

The eBPF datapath is the core packet processing engine that runs in the

Linux kernel for maximum performance.

Core Functions:

e GTP-U Processing: Encapsulation and decapsulation of GTP-U tunnels

e Packet Classification: Matching packets against PDR rules using TEID, UE

IP, or SDF filters

* QoS Enforcement: Apply rate limiting and packet marking per QER rules

e Forwarding Decisions: Execute FAR actions (forward, drop, buffer,

duplicate, notify)

e Usage Tracking: Increment URR counters for volume-based charging

eBPF Maps: The datapath uses eBPF maps (hash tables in kernel memory) for

rule storage:

Map Name Purpose
uplink pdr map Uplink PDRs
Downlink
downlink pdr map
PDRs (IPv4)
d Link bd oo Downlink
ownlin r map i
—PETM3PEPE ppRs (1PV6)
Forwarding
far map
- rules
ger_map QoS rules
Usage
urr_ma
el tracking
sdf filter map SDF filters

Performance Characteristics:

Key

TEID (32-
bit)

UE IP
address

UE IPv6
address

FAR ID

QER ID

URR ID

PDR ID

Value

PDR info (FAR ID,
QER ID, URR IDs)

PDR info

PDR info

Forwarding
parameters (action,
tunnel info)

QoS parameters
(MBR, GBR,
marking)

Volume counters
(uplink, downlink,
total)

Application filters
(ports, protocols)

e Zero-copy: Packets processed entirely in kernel space

e XDP support: Attach at network driver level for sub-microsecond latency
e Multi-core: Scales across CPU cores with per-CPU map support

e Capacity: Millions of PDRs/FARs in eBPF maps (limited by kernel memory)

For capacity monitoring, see

PFCP Interface Handler

The PFCP interface implements 3GPP TS 29.244 for communication with SMF
or PGW-C.

Core Functions:

* Association Management: PFCP heartbeat and association setup/release
e Session Lifecycle: Create, modify, and delete PFCP sessions
¢ Rule Installation: Translate PFCP IEs into eBPF map entries

e Event Reporting: Notify SMF of usage thresholds, errors, or session
events

PFCP Message Support:

Message Type

Association Setup

Association
Release

Heartbeat

Session
Establishment

Session
Modification

Session Deletion

Session Report

Information Elements (IE) Supported:

Direction

SMF - UPF

SMF - UPF

Bidirectional

SMF - UPF

SMF - UPF

SMF - UPF

UPF — SMF

e Create PDR, FAR, QER, URR
e Update PDR, FAR, QER, URR
 Remove PDR, FAR, QER, URR
¢ Packet Detection Information (UE IP, F-TEID, SDF filter)

Purpose

Establish PFCP control association

Tear down PFCP association

Keep association alive

Create new PDU session with
PDR/FAR/QER/URR

Update rules for mobility, QoS
changes

Remove session and all associated
rules

Report usage, errors, or events

e Forwarding Parameters (network instance, outer header creation)
¢ QoS Parameters (MBR, GBR, QFl)

e Usage Report Triggers (volume threshold, time threshold)

REST API Server

The REST API provides programmatic access to UPF state and operations.

Core Functions:

e Session Monitoring: Query active PFCP sessions and associations
* Rule Inspection: View PDR, FAR, QER, URR configurations

e Statistics: Retrieve packet counters, route stats, XDP stats

e Buffer Management: View and control packet buffers

* Map Information: Monitor eBPF map usage and capacity

API Endpoints: (34 total endpoints)

Category

Health

Config

Sessions

PDRs

FARs

QERs

URRs

Buffers

Statistics

Capacity

Dataplane

Endpoints

/health

/config

/pfcp _sessions,
/pfcp associations

/uplink pdr map,
/downlink pdr map,
/downlink pdr map ip6,
/uplink pdr map ip6

/far_map

/qer _map

/urr_map

/buffer

/packet stats, /route stats,
/xdp stats, /n3n6 stats

/map_info

/dataplane config

For API details and usage, see

Description

Health check and
status

UPF configuration

PFCP
session/association
data

Packet detection
rules

Forwarding action

rules

QoS enforcement
rules

Usage reporting rules

Packet buffer status
and control

Performance metrics

eBPF map capacity
and usage

N3/N9 interface
addresses

Web Control Panel

The Web Control Panel provides a real-time dashboard for UPF monitoring
and management.

Features:

¢ Sessions View: Browse active PFCP sessions with UE IP, TEID, and rule
counts

* Rules Management: View and manage PDRs, FARs, QERs, and URRs
across all sessions

e Buffer Monitoring: Track buffered packets and control buffering per FAR

o Statistics Dashboard: Real-time packet, route, XDP, and N3/N6 interface
statistics

e Capacity Monitoring: eBPF map usage with color-coded capacity
indicators

e Configuration View: Display UPF configuration and dataplane addresses

* Logs Viewer: Live log streaming for troubleshooting

For detailed Ul operations, see

PFCP Protocol and SMF Integration

PFCP Association

Before sessions can be created, the SMF must establish a PFCP association with
the UPF.

Association Lifecycle:

SMF/PGW-C OmniUPF

PFCP Association Setup Request

Validate node capabilities

PFCP Association Setup Response (Node ID, features)

- [Heartbeat (every 60s)]

PFCP Heartbeat Request

PFCP Heartbeat Response

Association remains active

PFCP Association Release Request

Clean up all sessions

PFCP Association Release Response

SMF/PGW-C OmniUPF

Key Points:

Each SMF establishes one association with the UPF
UPF tracks association by Node ID (FQDN or IP address)

Heartbeat messages maintain association liveness

All sessions under an association are deleted if association is released

For viewing associations, see

SMF Restart Detection and Orphaned Session
Cleanup

OmniUPF automatically detects when an SMF restarts and cleans up orphaned
sessions per 3GPP TS 29.244 specifications.

How It Works:

When an SMF establishes a PFCP association, it provides a Recovery
Timestamp indicating when it started. OmniUPF stores this timestamp for
each association. If the SMF restarts:

SMF loses all session state in memory
. SMF re-establishes PFCP association with UPF
. SMF sends new Recovery Timestamp (different from before)

. UPF detects the timestamp change = SMF restarted

v WwN e

UPF automatically deletes all orphaned sessions from the old SMF
instance

6. SMF creates fresh sessions for active subscribers

Restart Detection Flow:

Radio Access Network

UE
Mobile Device

User Data
GTR-U

eModeB
LTE Base Station

51-U Interface
GTP-U Tunnel

5Gi Inkerface”

Mative IP
Data Networks

PDN
Internet/IMS/Enterprise

Log Example:

When an SMF restarts, you'll see:

WARN: Association with NodeID:

already exists

EPC - Control Plane

MME
Mobility Management

511

L |

OmniSGW-C
Lerving Gateway Control

Sxb PFCP

ERPC -'I.I ser Plane

OmniUPF Single
Instance
Functions as PGW-U +
SGW-U
N9 Loopback Enabled -

N9 Loopback
In-Meamary
Zero Network Hops

smf-1 and address:

Control Plane G'atewiys

Lo

OmniPCF
Policy & Charging Rules

Gx

¥
OminiPGW-C
PDN Gateway Control

Sxc PFCP

192.168.1.10

WARN: SMF Recovery Timestamp changed (old: 2025-01-15T10:00:00Z,
new: 2025-01-15T10:30:15Z) - SMF restarted, deleting 245 orphaned

sessions

INFO: Deleting orphaned session 2 (LocalSEID) due to SMF restart
INFO: Deleting orphaned session 3 (LocalSEID) due to SMF restart

INFO: Deleting orphaned session 246 (LocalSEID) due to SMF restart

Important Notes:

1. Isolation: Only the restarted SMF's sessions are deleted. Other SMF
associations and their sessions are not affected.

2. Timestamp Comparison: If the Recovery Timestamp is identical,
sessions are retained (SMF reconnected without restarting).

3. 3GPP Compliance: This behavior is mandated by 3GPP TS 29.244 Section
5.22.2:

"If the Recovery Time Stamp of the CP function has changed since the
last Association Setup, the UP function shall consider that the CP
function has restarted and shall delete all the PFCP sessions associated
with that CP function."

For troubleshooting orphaned sessions, see

GTP-U Error Indication Handling

OmniUPF handles GTP-U Error Indication messages from downstream peers
(PGW-U, SGW-U, eNodeB, gNodeB) per 3GPP TS 29.281 specifications.

What Are Error Indications:

When OmniUPF forwards a GTP-U packet to a remote peer (e.g., PGW-U in SGW-
U deployment), the peer may send back an Error Indication if it doesn't
recognize the TEID (Tunnel Endpoint Identifier). This indicates:

e The remote peer has restarted and lost tunnel state
e The tunnel was never created on the remote side (configuration mismatch)

e The tunnel was already deleted on the remote side
How It Works:

1. UPF forwards packet —» Sends GTP-U packet with TEID X to remote peer
(port 2152)

2. Remote peer doesn't recognize TEID X — Looks up TEID in its tunnel
table, not found

3. Remote peer sends Error Indication -» GTP-U message type 26 with IE
containing erroneous TEID

4. UPF receives Error Indication —» Parses message to extract TEID X

5. UPF finds affected sessions — Searches all sessions for FARs forwarding
to TEID X

6. UPF deletes sessions » Removes sessions from eBPF maps and PFCP
state

7. UPF updates metrics - Increments Prometheus counters for monitoring

Error Indication Flow:

OmniUPF
UE (SGW-U role) PGW-U

PGW-U has active tunnel
TEID: 0x12345678

Uplink data packet

GTP-U G-PDU
(TEID: 0x12345678)

Forwards normally

A PGW-U RESTARTS
Loses all tunnel state!

Uplink data packet

GTP-U G-PDU
(TEID: 0x12345678)

Lookup TEID 0x12345678
0 NOT FOUND

A GTP-U Error Indication
(Erroneous TEID: 0x12345678)

Parse Error Indication
Extract TEID: 0x12345678

Find sessions with FAR
forwarding to TEID 0x12345678

Delete affected sessions
- Remove from eBPF maps
- Clear PFCP state

Update metrics:
error_indications_received++
sessions_deleted++

Stopped forwarding to
dead tunnel TEID 0x12345678

OmniUPF
UE (SGW-U role) PGW-U

Packet Format (3GPP TS 29.281 Section 7.3.1):

GTP-U Error Indication:

GTP-U Header (12 bytes)

| |
| |
| |
Version, PT, Flags	0x32
Message Type	26 (6x1A)
Length	9 bytes
TEID	0 (always)
Sequence Number	varies
N-PDU Number	0
Next Extension Header	0
IE: TEID Data I (5 bytes)	
Type	16 (0x10)
Erroneous TEID	4 bytes

When This Matters:
Scenario 1: PGW-U Restart in S5/S8 GTP Architecture

* SGW-U (OmniUPF) forwards S5/S8 traffic to PGW-U
e PGW-U restarts and loses all S5/S8 tunnel state

¢ SGW-U continues forwarding to old TEIDs

e PGW-U sends Error Indications

e SGW-U automatically stops using dead tunnels
Scenario 2: Peer UPF Restart in N9 Architecture

e UPF-1 (OmniUPF) forwards N9 traffic to UPF-2
o UPF-2 restarts
e UPF-1 receives Error Indications

e UPF-1 cleans up sessions

Log Example:

When receiving an Error Indication:

WARN: Received GTP-U Error Indication from 192.168.50.10:2152 for

TEID 0x12345678 - remote peer doesn't recognize this TEID

WARN: Found session LocalSEID=42 with FAR GlobalId=1 forwarding to
erroneous TEID 0x12345678 from peer 192.168.50.10

INFO: Deleting session LocalSEID=42 due to GTP-U Error Indication

for TEID 0x12345678 from 192.168.50.10

WARN: Deleted 1 session(s) due to GTP-U Error Indication for TEID
0x12345678 from peer 192.168.50.10

Prometheus Metrics:

Monitor Error Indication activity with per-peer and per-node granularity:

Total Error Indications received from peers
upf buffer listener error indications received total{node id="pgw-u-
1",peer address="192.168.50.10"}

Sessions deleted due to Error Indications

upf buffer listener error _indication sessions deleted total{node id='
u-1",peer address="192.168.50.10"}

Error Indications sent (for unknown incoming TEIDs)

upf buffer listener error indications sent total{node id="enodeb-
1",peer address="10.60.0.1"}

Metric Labels:

* node id: PFCP Node ID from the association (or "unknown" if no
association exists)

* peer address: IP address of the remote peer

These metrics help identify problematic peers and track Error Indication
patterns per control plane node.

Important Notes:

1. Automatic Cleanup: No operator intervention needed - sessions are
deleted automatically

2. TEID Matching: Only sessions with FARs forwarding to the exact erroneous
TEID are deleted

3. Per-Peer Isolation: Error Indications from one peer only affect sessions
forwarding to that peer

4. Multiple Sessions: If multiple sessions forward to the same dead TEID, all
are deleted

5. Complementary to Recovery Timestamp:

o Recovery Timestamp detection = proactive (detects restart during
association setup)

o Error Indication handling = reactive (detects dead tunnels when traffic
flows)

6. Malformed Packet Handling: Invalid Error Indications are logged and
ignored (no sessions deleted)

For troubleshooting Error Indications, see

PFCP Session Creation

When a UE establishes a PDU session (5G) or PDP context (LTE), the SMF
creates a PFCP session at the UPF.

Session Establishment Flow:

SMF/PGW-C OmniUPF

PFCP Association Setup Request

[
L

Validate node capabilities

O

PFCP Association Setup Response (Node ID, features)

=l
-

loop [Heartbeat (every 60s)]

PFCP Heartbeat Request

PFCP Heartbeat Response

F 9

Association remains active

PFCP Association Release Request

[
|

Clean up all sessions

—

PFCP Association Release Response

F

SMF/PGW-C OmniUPF

Typical Session Contents:

¢ Uplink PDR: Match on N3 TEID, forward via FAR to N6

e Downlink PDR: Match on UE IP address, forward via FAR to N3 with GTP-U
encapsulation

* FAR: Forwarding parameters (outer header creation, network instance)
e QER: QoS limits (MBR, GBR) and packet marking (QFI)
e URR: Volume reporting for charging (optional)

PFCP Session Modification

SMF can modify sessions for mobility events (handover), QoS changes, or

service updates.

Common Modification Scenarios:

1. Handover (N2-based)

o Update uplink FAR with new gNB tunnel endpoint (F-TEID)
o Optionally buffer packets during path switch

o Flush buffer to new path when ready
2. QoS Change

o Update QER with new MBR/GBR values
o May add/remove SDF filters in PDR for application-specific QoS

3. Service Update

o Add new PDRs for additional traffic flows
o Modify FARs for routing changes

Session Modification Flow:

‘ SMF/PGW-C | ‘ OmniUPF |

PFCP Session Modification Request (Update FAR)

Lookup session by remote SEID

Update eBPF maps with new FAR parameters

PFCP Session Modification Response

Packets immediately use updated rules

‘ SMF/PGW-C | ‘ OmniUPF |

For rule management, see

PFCP Session Deletion
When a PDU session is released, SMF deletes the PFCP session at UPF.
Session Deletion Flow:

PDU Session Release Request
PFCP Session Deletion Request

Lookup session by remote SEID
Remove all PDRs from eBPF maps
Remove all FARs, QERs, URRs
Clear buffered packets (if any)
Finalize URR reports

PFCP Session Deletion Response (final usage report)

PDU Session released

‘ All session resources freed ‘

Cleanup Performed:

All PDRs removed (uplink and downlink)
All FARs, QERs, URRs removed

Packet buffers cleared

Final usage report sent to SMF for charging

Common Operations

OmniUPF provides comprehensive operational capabilities through its web-
based control panel and REST API. This section covers common operational
tasks and their significance.

Session Monitoring
Understanding PFCP Sessions:

PFCP sessions represent active UE PDU sessions (5G) or PDP contexts (LTE).
Each session contains:

e Local and remote SEIDs (Session Endpoint Identifiers)
e PDRs for packet classification

e FARSs for forwarding decisions

e QERs for QoS enforcement (optional)

e URRs for usage tracking (optional)

Key Session Operations:

View all sessions with UE IP addresses, TEIDs, and rule counts

Filter sessions by IP address or TEID

Inspect session details including full PDR/FAR/QER/URR configurations

Monitor session counts per PFCP association

For detailed session procedures, see

Rule Management
Packet Detection Rules (PDR):
PDRs determine which packets match specific traffic flows. Operators can:

e View uplink PDRs keyed by TEID from N3 interface
* View downlink PDRs keyed by UE IP address (IPv4 and IPv6)

* Inspect SDF filters for application-specific classification

* Monitor PDR counts and capacity usage
Forwarding Action Rules (FAR):
FARs define what to do with matched packets. Operators can:

* View FAR actions (FORWARD, DROP, BUFFER, DUPLICATE, NOTIFY)

e Inspect forwarding parameters (outer header creation, destination)
e Monitor buffering status per FAR

* Toggle buffering for specific FARs during troubleshooting

QoS Enforcement Rules (QER):
QERs apply bandwidth limits and packet marking. Operators can:

* View QoS parameters (MBR, GBR, packet delay budget)
* Monitor active QERs per session

e Inspect QFI markings for 5G QoS flows
Usage Reporting Rules (URR):
URRs track data volumes for charging. Operators can:

e View volume counters (uplink, downlink, total bytes)
e Monitor usage thresholds and reporting triggers

* Inspect active URRs across all sessions

For rule operations, see

Packet Buffering

Why Buffering is Critical for UPF

Packet buffering is one of the most important functions of a UPF
because it prevents packet loss during mobility events and session
reconfigurations. Without buffering, mobile users would experience dropped

connections, interrupted downloads, and failed real-time communications every
time they move between cell towers or when network conditions change.

The Problem: Packet Loss During Mobility

In mobile networks, users are constantly moving. When a device moves from
one cell tower to another (handover), or when the network needs to reconfigure
the data path, there's a critical window where packets are in flight but the new
path isn't ready yet:

OmniUPF

-= (SGW-U role)

PGW-U

PGW-U has active tunnel

OmniCharge OmniRAN

- -

Downloads % English+ Omnitouch Website (%

™

GTP-U G-PDU
(TEID: 0x12345678)

[
-

Forwards normally

M PGW-U RESTARTS
Loses all tunnel state!

Uplink data packet

.
L

GTP-U G-PDU
(TEID: 0x12345678)

P
L

Lookup TEID 0x12345678
[0 NOT FOUND

—

A GTP-U Error Indication
(Erroneous TEID: 0x12345678)

il
-

Parse Error Indication
Extract TEID: 0x12345678

<

Find sessions with FAR
forwarding to TEID 0x12345678

—

Delete affected sessions
- Remove from eBPF maps
- Clear PFCP state

-

Update metrics:
error_indications_received++
sessions_deleted++

<

Stopped forwarding to
dead tunnel TEID 0x12345678

OmniUPF

— (SGW-U role)

PGW-U

Without buffering: Packets arriving during this critical window would be
dropped, causing:

e TCP connections to stall or reset (web browsing, downloads interrupted)

Video calls to freeze or drop (Zoom, Teams, WhatsApp calls fail)

Gaming sessions to disconnect (online gaming, real-time apps fail)

VolIP calls to have gaps or drop entirely (phone calls interrupted)

Downloads to fail and need to restart

With buffering: OmniUPF temporarily holds packets until the new path is
established, then forwards them seamlessly. The user experiences zero
interruption.

When Buffering Happens

OmniUPF buffers packets in these critical scenarios:
1. N2-Based Handover (5G) / X2-Based Handover (4G)

When a UE moves between cell towers:

‘ UE ‘ ‘ Old gNB ‘ ‘ New gNB ‘ SMF/MME ‘ ‘ OmniUPF ‘ ‘ Internet ‘
‘ UE moving from Cell A to Cell B ‘
Path Switch Request
PFCP Session Modification
(Update FAR: BUFF=1, new F-TEID)
Start buffering downlink packets
Packets for UE
Buffer packets (new path not ready)
Session Modification Response
Path Switch Ack
PFCP Session Modification
(Update FAR: BUFF=0, FORW=1)
Buffered| packets via new tunnel
New packets via new tunnel
Seamless delivery
‘ UE ‘ ‘ Old gNB ‘ ‘ New gNB ‘ ‘ SMF/MME ‘ ‘ OmniUPF ‘ ‘ Internet ‘

Timeline:

e T+0ms: Old path still active
e T+10ms: SMF tells UPF to buffer (old path closing, new path not ready)

e T+10-50ms: Critical buffering window - packets arrive but can't be
forwarded

e T+50ms: New path ready, SMF tells UPF to forward

e T+50ms+: UPF flushes buffered packets to new path, then forwards new
packets normally

Without buffering: ~40ms of packets (potentially thousands) would be lost.
With buffering: Zero packet loss, seamless handover.

2. Session Modification (QoS Change, Path Update)
When the network needs to change session parameters:

* QoS upgrade/downgrade: User moves from 4G to 5G coverage (NSA
mode)

e Policy change: Enterprise user enters corporate campus (traffic steering
changes)

e Network optimization: Core network reroutes traffic to closer UPF (ULCL
update)

During the modification, the control plane may need to update multiple rules
atomically. Buffering ensures packets aren't forwarded with partial/inconsistent
rule sets.

3. Downlink Data Notification (Idle Mode Recovery)

When a UE is in idle mode (screen off, battery saving) and downlink data
arrives:

OmniUPF ‘ SMF ‘ ‘ AMF ‘ ‘ gNB ‘ ‘ UE (Idle) ‘

Downlink packet arrives

‘ No uplink tunnel (UE idle) ‘

Buffer packet

Downlink Data Notification
Paging Request
Paging
Wake up!
Service Request

Initial UE message

Session re-establishment

Update FAR (BUFF=0, new tunnel)
Deliver buffered packets

Forward new packets

OmniUPF ‘ SMF ‘ ‘ AMF ‘ ‘ gNB ‘ ‘ UE (Idle) ‘

Without buffering: The initial packet that triggered the notification would be
lost, requiring the sender to retransmit (adds latency). With buffering: The
packet that woke up the UE is delivered immediately when the UE reconnects.

4. Inter-RAT Handover (4G < 5G)
When a UE moves between 4G and 5G coverage:

e Architecture changes (eNodeB < gNB)
e Tunnel endpoints change (different TEID allocation)

e Buffering ensures smooth transition between RAT types

How Buffering Works in OmniUPF

Technical Mechanism:
OmniUPF uses a two-stage buffering architecture:

1. eBPF Stage (Kernel): Detects packets requiring buffering based on FAR
action flags

2. Userspace Stage: Stores and manages buffered packets in memory

Buffering Process:

SMF/PGW-C OmniUPF

PFCP Session Modification Request (Update FAR)

Lookup session by remote SEID
Update eBPF maps with new FAR parameters

—

PFCP Session Modification Response

-+
Packets immediately use updated rules
SMF/PGW-C OmniUPF
Key Details:

Buffer Port: UDP port 22152 (packets sent from eBPF to userspace)
Encapsulation: Packets wrapped in GTP-U with FAR ID as TEID

Storage: In-memory per-FAR buffers with metadata (timestamp, direction,
packet size)

Limits:
o Per-FAR limit: 10,000 packets (default)
o Global limit: 100,000 packets across all FARs
o TTL: 30 seconds (default) - packets older than TTL are discarded

Cleanup: Background process removes expired packets every 60 seconds

Buffer Lifecycle:

. Buffering Enabled: SMF sets FAR action BUFF=1 (bit 2) via PFCP Session

Modification

. Packets Buffered: eBPF detects BUFF flag, encapsulates packets, sends to

port 22152

. Userspace Storage: Buffer manager stores packets with FAR ID,

timestamp, direction

. Buffering Disabled: SMF sets FAR action FORW=1, BUFF=0 with new

forwarding parameters

5. Flush Buffer: Userspace replays buffered packets using new FAR rules
(new tunnel endpoint)

6. Resume Normal: New packets forwarded immediately via new path

Why This Matters for User Experience

Real-World Impact:

Scenario Without Buffering With Buffering
Video Call During Call freezes for 1-2 Seamless, no
Handover seconds, may drop interruption
File Download at Download fails, must Download continues
Cell Edge restart uninterrupted
Online Gaming Connection drops, Smooth gameplay, no
While Moving kicked from game disconnects

Call drops every

VolP Call in Car Crystal clear, no drops

handover
Streaming Video Video buffers, quality
. Smooth playback
on Train drops
Mobile Hotspot for SSH session drops, All connections
Laptop video call fails maintained

Network Operator Benefits:

Reduced Call Drop Rate (CDR): Critical KPI for network quality

Higher Customer Satisfaction: Users don't notice handovers

Lower Support Costs: Fewer complaints about dropped connections

Competitive Advantage: "Best network for coverage" marketing

Buffer Management Operations

Operators can monitor and control buffering via the Web Ul and API:

Monitoring:

View buffered packets per FAR ID (count, bytes, age)

Track buffer usage against limits (per-FAR, global)

Alert on buffer overflow or excessive buffering duration

Identify stuck buffers (packets buffered > TTL threshold)

Control Operations:

Flush buffers: Manually trigger buffer replay (troubleshooting)

Clear buffers: Discard buffered packets (clean up stuck buffers)

Adjust TTL: Change packet expiration time

Modify limits: Increase per-FAR or global buffer capacity
Troubleshooting:

e Buffer not flushing: Check if SMF sent FAR update to disable buffering

* Buffer overflow: Increase limits or investigate why buffering duration is
excessive

e Old packets in buffer: TTL may be too high, or FAR update delayed

* Excessive buffering: May indicate mobility issues or SMF problems

For detailed buffer operations, see

Buffer Configuration

Configure buffering behavior in config.yml:

Buffer settings

buffer port: 22152 # UDP port for buffered packets
(default)

buffer max packets: 10000 # Max packets per FAR (prevent
memory exhaustion)

buffer max total: 100000 # Max total packets across all
FARs

buffer packet ttl: 30 # TTL in seconds (discard old
packets)

buffer cleanup interval: 60 # Cleanup interval in seconds

Recommendations:

* High-mobility networks (highways, trains): Increase
buffer max packets to 20,000+

* Dense urban areas (frequent handovers): Decrease buffer packet ttl
to 15s

* Low-latency applications: Set buffer packet ttl to 10s to prevent
stale data

e loT networks: Decrease limits (lIoT devices generate less traffic during
handover)

For complete configuration options, see

Statistics and Monitoring
Packet Statistics:

Real-time packet processing metrics including:

RX packets: Total received from all interfaces

TX packets: Total transmitted to all interfaces

Dropped packets: Packets discarded due to errors or policy

GTP-U packets: Tunneled packet counts

Route Statistics:

Per-route forwarding metrics:

* Route hits: Packets matched by each route
* Forwarding counts: Success/failure per destination

e Error counters: Invalid TEIDs, unknown UE IPs
XDP Statistics:

eXpress Data Path performance metrics:

XDP processed: Packets handled at XDP layer

XDP passed: Packets sent to network stack

XDP dropped: Packets dropped at XDP layer

XDP aborted: Processing errors
N3/N6 Interface Statistics:
Per-interface traffic counters:

e N3 RX/TX: Traffic to/from RAN (gNB/eNodeB)
e N6 RX/TX: Traffic to/from data network

e Total packet counts: Aggregate interface statistics

For monitoring details, see

Capacity Management
eBPF Map Capacity Monitoring:
UPF performance depends on eBPF map capacity. Operators can:

e Monitor map usage with real-time percentage indicators
e View capacity limits for each eBPF map

e Color-coded alerts:
o Green (<50%): Normal

o Yellow (50-70%): Caution
o Amber (70-90%): Warning

o Red (>90%): Critical
Critical Maps to Monitor:

e uplink pdr map: Uplink traffic classification

e downlink pdr map: Downlink IPv4 traffic classification
e far_map: Forwarding rules

* ger map: QoS rules

e urr _map: Usage tracking
Capacity Planning:

e Each PDR consumes one map entry (key size + value size)
e Map capacity is configured at UPF startup (kernel memory limit)

* Exceeding capacity causes session establishment failures

For capacity monitoring, see

Configuration Management
UPF Configuration:
View and verify UPF operational parameters:

* N3 Interface: IP address for RAN connectivity (GTP-U)

* N6 Interface: IP address for data network connectivity

* N9 Interface: IP address for inter-UPF communication (optional)
e PFCP Interface: IP address for SMF connectivity

e API Port: REST API listening port

¢ Metrics Endpoint: Prometheus metrics port
Dataplane Configuration:
Active eBPF datapath parameters:

e Active N3 address: Runtime N3 interface binding

e Active N9 address: Runtime N9 interface binding (if enabled)

For configuration viewing, see

Troubleshooting

This section covers common operational issues and their resolution strategies.

Session Establishment Failures
Symptoms: PFCP sessions fail to create, UE cannot establish data connectivity
Common Root Causes:

1. PFCP Association Not Established

o Verify SMF can reach UPF PFCP interface (port 8805)
o Check PFCP association status in Sessions view

o Verify Node ID configuration matches between SMF and UPF

2. eBPF Map Capacity Exhausted

o Check Capacity view for red (>90%) map usage
o |Increase eBPF map sizes in UPF configuration

o Delete stale sessions if map is full

3. Invalid PDR/FAR Configuration

o Verify UE IP address is unique and valid
o Check TEID allocation doesn't conflict

o Ensure FAR references valid network instances

4. Interface Configuration Issues

o Verify N3 interface IP is reachable from gNB
o Check routing tables for N6 connectivity to data network
o Confirm GTP-U traffic is not blocked by firewall

For detailed troubleshooting, see

Packet Loss or Forwarding Issues
Symptoms: UE has connectivity but experiences packet loss or no traffic flow
Common Root Causes:

1. PDR Misconfiguration

o Verify uplink PDR TEID matches gNB-assigned TEID
o Check downlink PDR UE IP matches assigned IP

o Inspect SDF filters for overly restrictive rules

2. FAR Action Issues

o Verify FAR action is FORWARD (not DROP or BUFFER)
o Check outer header creation parameters for GTP-U

o Ensure destination endpoint is correct

3. QoS Limits Exceeded

o Check QER MBR (Maximum Bit Rate) settings
o Verify GBR (Guaranteed Bit Rate) allocation

o Monitor packet drops due to rate limiting

4. Interface MTU Issues

o Verify GTP-U overhead (40-50 bytes) doesn't cause fragmentation
o Check N3/N6 interface MTU configuration

o Monitor for ICMP fragmentation needed messages

Buffer-Related Issues
Symptoms: Packets buffered indefinitely, buffer overflow
Common Root Causes:

1. Buffering Not Disabled After Handover

o Check FAR buffering flag (bit 2)
o Verify SMF sent Session Modification to disable buffering

o Manually disable buffering via control panel if stuck

2. Buffer TTL Expiration

o Check packet age in buffer view
o Verify buffer TTL configuration (default may be too long)

o Clear expired buffers manually

3. Buffer Capacity Exhausted

o Monitor total buffer usage and per-FAR limits
o Check for misconfigured rules causing excessive buffering

o Adjust max_per_far and max_total buffer limits

For buffer troubleshooting, see

Statistics Anomalies
Symptoms: Unexpected packet counters, missing statistics
Common Root Causes:

1. Counter Overflow

o eBPF maps use 64-bit counters (should not overflow)
o Check for counter reset events in logs

o Verify URR reporting is functioning
2. Route Statistics Not Updating

o Verify eBPF program is attached to interfaces
o Check kernel version supports required eBPF features

o Review XDP statistics for processing errors

3. Interface Statistics Mismatch

o Compare N3/N6 stats with kernel interface counters
o Check for traffic bypassing eBPF (e.qg., local routing)
o Verify all traffic flows through XDP hooks

Performance Degradation
Symptoms: High latency, low throughput, CPU saturation
Diagnosis:

1. Monitor XDP Statistics: Check for XDP drops or aborts
2. Check eBPF Map Access Time: Hash lookups should be sub-microsecond
3. Review CPU Utilization: eBPF should distribute across cores

4. Analyze Network Interface: Verify NIC supports XDP offload

Scalability Considerations:

XDP Performance: 10M+ packets per second per core

PDR Capacity: Millions of PDRs limited only by kernel memory

Session Count: Thousands of concurrent sessions per UPF instance

Throughput: Multi-gigabit throughput with proper NIC offload

For performance tuning, see

Additional Documentation

Component-Specific Operations Guides

For detailed operations and troubleshooting for each UPF component:

Complete configuration reference including:

e Configuration parameters (YAML, environment variables, CLI)
e Operating modes (UPF/PGW-U/SGW-U)

e XDP attachment modes overview

e Hypervisor compatibility (Proxmox, VMware, KVM, Hyper-V, VirtualBox)
e NIC compatibility and XDP driver support

e Configuration examples for different scenarios

e Map sizing and capacity planning

Detailed XDP configuration and optimization including:

e XDP attachment modes explained (generic/native/offload)
e Performance comparison and benchmarks

e Step-by-step Proxmox VE native XDP setup

e Multi-queue configuration for optimal performance

e VMware ESXi, KVM, and Hyper-V XDP setup

e XDP verification and troubleshooting

* Hardware selection for XDP performance

Deep technical dive including:

e eBPF technology foundation and program lifecycle

e XDP packet processing pipeline with tail calls

e PFCP protocol implementation

e Buffering architecture (GTP-U encapsulation to port 22152)
e QoS sliding window rate limiting (5ms window)

e Performance characteristics (3.5us latency, 10 Mpps/core)

PFCP rules reference including:

Packet Detection Rules (PDR) - Traffic classification

Forwarding Action Rules (FAR) - Routing decisions with action flags
QoS Enforcement Rules (QER) - Bandwidth management (MBR/GBR)
Usage Reporting Rules (URR) - Volume tracking and reporting

e Uplink and downlink packet flow diagrams

e Rule processing logic and precedence

Statistics and capacity management including:

* N3/N6 interface statistics and traffic distribution

e XDP processing statistics (pass/drop/redirect/abort)

e eBPF map capacity monitoring with color-coded zones

e Performance metrics (packet rate, throughput, drop rate)
e Capacity planning formulas and session estimation

e Alerting thresholds and best practices

Control panel usage including:

e Dashboard overview and navigation

e Sessions monitoring (healthy/unhealthy states)
e Rules inspection (PDR, FAR, QER, URR details)
e Buffer monitoring and packet buffering state

* Real-time statistics dashboard

e eBPF map capacity visualization

e Configuration viewing

Complete REST API reference including:

e OpenAPIl/Swagger interactive documentation

* API pagination (page-based and offset-based)
e PFCP sessions and associations endpoints

e Packet Detection Rules (PDR) - IPv4 and IPv6

e Forwarding Action Rules (FAR)

* QoS Enforcement Rules (QER)

e Usage Reporting Rules (URR)

e Packet buffer management

e Statistics and monitoring endpoints

¢ Route management and FRR integration
e eBPF map information

e Configuration management

e Authentication and security guidelines

e Common API workflows and examples

Prometheus metrics documentation including:

e PFCP message metrics (counters, latency, errors per peer)

e XDP action metrics (dataplane verdicts)

e Packet metrics (protocol-level counters with packet type labels)
e PFCP session and association metrics (per control plane node)

¢ URR metrics (traffic volume per PFCP peer)

e Packet buffering metrics (buffer state, capacity, throughput)

e Downlink Data Report notification metrics (DLDR tracking)

* eBPF map capacity metrics (resource utilization)

e Prometheus configuration examples

e Grafana dashboard recommendations

PFCP error code documentation including:

e Cause code definitions and 3GPP compliance (TS 129.244)

* When each cause code occurs (success, client errors, server errors)
e« Common failure scenarios with resolutions

e Troubleshooting with Prometheus metrics

e Association setup and session lifecycle failures

e Debugging steps for high rejection rates

e Alerting recommendations for cause codes

FRR routing integration including:

* FRR (Free Range Routing) overview and architecture
e UE route synchronization lifecycle

e Automatic route sync to routing daemon

* Route advertisement via OSPF and BGP

e OSPF neighbor monitoring

* OSPF External LSA database verification

e BGP peer session management

e Web Ul route monitoring interface

e Manual route sync operations

e Mermaid diagrams for route flow and architecture

Comprehensive problem diagnosis including:

* Quick diagnostic checklist and tools

e Installation and configuration issues

e PFCP association failures

e Packet processing problems

e XDP and eBPF errors

e Performance degradation

e Hypervisor-specific issues (Proxmox, VMware, VirtualBox)
e NIC and driver problems

e Step-by-step resolution procedures

Documentation by Use Case

Installing and Configuring OmniUPF

1. Start with this guide for overview
2. for setup parameters

3. to access control panel

Deploying SGWU+PGWU on Single Instance (N9 Loopback)

1. - Complete guide for combined
SGWU+PGWU deployment

2. - Network and PFCP setup
- Verify loopback is active

4, - Common issues and solutions

Deploying on Proxmox

1. - Start here for
performance

Optimizing Performance

- Enable native XDP for 5-10x performance boost

A W

Understanding Packet Processing

Planning Capacity

Managing UE Routes and FRR Integration

- Complete routing integration guide
- Route API endpoints

- Routes page operations

> W

- OSPF LSA verification

Using the REST API

1 - Complete API reference

2 - Interactive APl explorer

3. - APl usage examples
4

- Web interface as API client example

Troubleshooting Issues

1. - Start here
2. - Check statistics and capacity
3. - Use control panel diagnostics

Quick Reference

Common API Endpoints

OmniUPF provides a REST API for monitoring and management:

Status and health
GET http://localhost:8080/api/v1/upf status

PFCP associations
GET http://localhost:8080/api/v1/upf pipeline

Sessions
GET http://localhost:8080/api/v1l/sessions

Statistics
GET http://localhost:8080/api/vl/packet stats
GET http://localhost:8080/api/v1/xdp stats

Capacity monitoring
GET http://localhost:8080/api/vl/map info

Buffer statistics
GET http://localhost:8080/api/v1/upf buffer info

For complete APl documentation, access the Swagger Ul at http://<upf-
ip>:8080/swagger/index.html

Essential Configuration Parameters

Network interfaces

interface name: [eth@] # Interfaces for N3/N6/N9 traffic
xdp attach mode: native # generic|native|offload

n3 address: 10.100.50.233 # N3 interface IP

pfcp address: :8805 # PFCP listen address

pfcp node id: 10.100.50.241 # PFCP Node ID

Capacity

max_sessions: 100000 # Maximum concurrent sessions

API and monitoring
api address: :8080 # REST API port
metrics address: :9090 # Prometheus metrics port

Important Monitoring Thresholds

e eBPF Map Capacity < 70%: Normal operation

« eBPF Map Capacity 70-90%: Plan capacity increase within 1 week
« eBPF Map Capacity > 90%: Critical - immediate action required

e Packet Drop Rate < 0.1%: Excellent

e Packet Drop Rate 0.1-1%: Good - minor issues

 Packet Drop Rate > 5%: Critical - investigate immediately

e XDP Aborted > 0: Critical issue with eBPF program

3GPP Standards Reference

OmniUPF implements the following 3GPP specifications:

Specification Title Relevance
System architecture for the 5G 5G UPF architecture
TS 23.501 _
System (5GS) and interfaces

General Packet Radio Service
TS 23.401 (GPRS) enhancements for E-UTRAN
access

LTE UPF (PGW-U)
architecture

Interface between the Control
TS 29.244 Plane and the User Plane nodes N4 PFCP protocol
(PFCP)

General Packet Radio System
TS 29.281 (GPRS) Tunnelling Protocol User GTP-U encapsulation
Plane (GTPv1-U)

Policy and charging control
TS 23.503 framework for the 5G System QoS and charging
(5GS)

TS 29.212 Policy and Charging Control (PCC) QoS enforcement

Glossary

5G Architecture Terms

e 3GPP: 3rd Generation Partnership Project - Standards body for mobile
telecommunications

e AMF: Access and Mobility Management Function - 5G core network element
for access control

e CHF: Charging Function - 5G charging system
e DN: Data Network - External network (Internet, IMS, enterprise)
e eNodeB: Evolved Node B - LTE base station

e F-TEID: Fully Qualified Tunnel Endpoint Identifier - GTP-U tunnel ID with IP
address

 gNB: Next Generation Node B - 5G base station

e GTP-U: GPRS Tunnelling Protocol User Plane - Tunneling protocol for user
data

¢ MBR: Maximum Bit Rate - QoS parameter for maximum allowed bandwidth

e GBR: Guaranteed Bit Rate - QoS parameter for guaranteed minimum
bandwidth

¢ N3: Interface between RAN and UPF (user plane traffic)

* N4: Interface between SMF and UPF (PFCP control)

e NG6: Interface between UPF and Data Network (user plane traffic)

¢ N9: Interface between two UPFs (inter-UPF user plane traffic)

e PCF: Policy Control Function - 5G policy server

* PDU: Protocol Data Unit - Data session in 5G

e PGW-C: PDN Gateway Control Plane - LTE control plane equivalent to SMF
e PGW-U: PDN Gateway User Plane - LTE user plane (UPF equivalent)

e QFI: QoS Flow Identifier - 5G QoS flow marking

¢ QoS: Quality of Service - Traffic prioritization and bandwidth management
¢ RAN: Radio Access Network - Base station network (gNB/eNodeB)

e SEID: Session Endpoint Identifier - PFCP session ID

e SMF: Session Management Function - 5G core network element for session
control

e TEID: Tunnel Endpoint Identifier - GTP-U tunnel ID
e UE: User Equipment - Mobile device

e UPF: User Plane Function - 5G packet forwarding network element

PFCP Protocol Terms

e Association: Control relationship between SMF and UPF

* FAR: Forwarding Action Rule - Determines packet forwarding behavior
e |E: Information Element - PFCP message component

* Node ID: UPF or SMF identifier (FQDN or IP address)

 PDR: Packet Detection Rule - Classifies packets into flows

* PFCP: Packet Forwarding Control Protocol - N4 control protocol

* QER: QoS Enforcement Rule - Applies bandwidth limits and marking

e SDF: Service Data Flow - Application-specific traffic filter

e Session: PFCP session representing UE PDU session or PDP context

 URR: Usage Reporting Rule - Tracks data volumes for charging

eBPF and Linux Kernel Terms

 BPF: Berkeley Packet Filter - Kernel packet filtering technology

eBPF: Extended BPF - Programmable kernel data path

Hash Map: eBPF key-value store for fast lookups

XDP: eXpress Data Path - Kernel packet processing at driver level

Verifier: Kernel component that validates eBPF programs for safety

Map: eBPF data structure shared between kernel and userspace

Zero-copy: Packet processing without copying to userspace

OmniUPF Product Terms

e OmniUPF: eBPF-based User Plane Function (this product)

Datapath: Packet processing engine (eBPF programs)

Control Plane: PFCP handler and session management
REST API: HTTP API for monitoring and management

Web Ul: Browser-based control panel

